Modern-CPP-Programming/htmls/24.Optimization_II.html
2026-01-06 09:09:47 -08:00

2286 lines
1.5 MiB
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8"/>
<meta name="generator" content="pdf2htmlEX"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
<style type="text/css">
/*!
* Base CSS for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/#sidebar{position:absolute;top:0;left:0;bottom:0;width:250px;padding:0;margin:0;overflow:auto}#page-container{position:absolute;top:0;left:0;margin:0;padding:0;border:0}@media screen{#sidebar.opened+#page-container{left:250px}#page-container{bottom:0;right:0;overflow:auto}.loading-indicator{display:none}.loading-indicator.active{display:block;position:absolute;width:64px;height:64px;top:50%;left:50%;margin-top:-32px;margin-left:-32px}.loading-indicator img{position:absolute;top:0;left:0;bottom:0;right:0}}@media print{@page{margin:0}html{margin:0}body{margin:0;-webkit-print-color-adjust:exact}#sidebar{display:none}#page-container{width:auto;height:auto;overflow:visible;background-color:transparent}.d{display:none}}.pf{position:relative;background-color:white;overflow:hidden;margin:0;border:0}.pc{position:absolute;border:0;padding:0;margin:0;top:0;left:0;width:100%;height:100%;overflow:hidden;display:block;transform-origin:0 0;-ms-transform-origin:0 0;-webkit-transform-origin:0 0}.pc.opened{display:block}.bf{position:absolute;border:0;margin:0;top:0;bottom:0;width:100%;height:100%;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}.bi{position:absolute;border:0;margin:0;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}@media print{.pf{margin:0;box-shadow:none;page-break-after:always;page-break-inside:avoid}@-moz-document url-prefix(){.pf{overflow:visible;border:1px solid #fff}.pc{overflow:visible}}}.c{position:absolute;border:0;padding:0;margin:0;overflow:hidden;display:block}.t{position:absolute;white-space:pre;font-size:1px;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%;unicode-bidi:bidi-override;-moz-font-feature-settings:"liga" 0}.t:after{content:''}.t:before{content:'';display:inline-block}.t span{position:relative;unicode-bidi:bidi-override}._{display:inline-block;color:transparent;z-index:-1}::selection{background:rgba(127,255,255,0.4)}::-moz-selection{background:rgba(127,255,255,0.4)}.pi{display:none}.d{position:absolute;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%}.it{border:0;background-color:rgba(255,255,255,0.0)}.ir:hover{cursor:pointer}</style>
<style type="text/css">
/*!
* Fancy styles for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/@keyframes fadein{from{opacity:0}to{opacity:1}}@-webkit-keyframes fadein{from{opacity:0}to{opacity:1}}@keyframes swing{0{transform:rotate(0)}10%{transform:rotate(0)}90%{transform:rotate(720deg)}100%{transform:rotate(720deg)}}@-webkit-keyframes swing{0{-webkit-transform:rotate(0)}10%{-webkit-transform:rotate(0)}90%{-webkit-transform:rotate(720deg)}100%{-webkit-transform:rotate(720deg)}}@media screen{#sidebar{background-color:#2f3236;background-image:url("")}#outline{font-family:Georgia,Times,"Times New Roman",serif;font-size:13px;margin:2em 1em}#outline ul{padding:0}#outline li{list-style-type:none;margin:1em 0}#outline li>ul{margin-left:1em}#outline a,#outline a:visited,#outline a:hover,#outline a:active{line-height:1.2;color:#e8e8e8;text-overflow:ellipsis;white-space:nowrap;text-decoration:none;display:block;overflow:hidden;outline:0}#outline a:hover{color:#0cf}#page-container{background-color:#9e9e9e;background-image:url("");-webkit-transition:left 500ms;transition:left 500ms}.pf{margin:13px auto;box-shadow:1px 1px 3px 1px #333;border-collapse:separate}.pc.opened{-webkit-animation:fadein 100ms;animation:fadein 100ms}.loading-indicator.active{-webkit-animation:swing 1.5s ease-in-out .01s infinite alternate none;animation:swing 1.5s ease-in-out .01s infinite alternate none}.checked{background:no-repeat url()}}</style>
<style type="text/css">
.ff0{font-family:sans-serif;visibility:hidden;}
@font-face{font-family:ff1;src:url('data:application/font-woff;base64,d09GRgABAAAAABwQAA0AAAAAKvQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAb9AAAABoAAAAcpiahdEdERUYAABvYAAAAHAAAAB4AJwBST1MvMgAAAaQAAABDAAAAVlcVnJZjbWFwAAACyAAAAOUAAAGq/048o2dhc3AAABvQAAAACAAAAAj//wADZ2x5ZgAABEwAABUvAAAhtPoCdNZoZWFkAAABMAAAADQAAAA2LdUa12hoZWEAAAFkAAAAIAAAACQGoAM1aG10eAAAAegAAADfAAABMKaGD2lsb2NhAAADsAAAAJoAAACaJH0cMG1heHAAAAGEAAAAHgAAACAAkgBtbmFtZQAAGXwAAAGaAAAC2VSExQxwb3N0AAAbGAAAALYAAAD2N6zo7nicY2BkYGBgYmRbdepQfzy/zVcGbuYXQBGGp02va2D0/53/2Zi/Mb0DcjkYmECiAK/5D7F4nGNgZGBgevefjYGBhf//zv+Xmb8xAEVQgA8AoGMG2nicY2BkYGDwYchiYGEAASYgZmQAiTmA+QwAFPMBAAAAeJxjYGR8w7SHgZWBgakLSDMw9EBoxgcMhoxMQFEGDmYGGGB2YECAgDTXFCCl8JuZ6d1/NqDKdwy/gHxGkBwAIfMMlAB4nE2OMU8CQRCF38xaYiikOI+wFwuMWpCcBTS3HdeAJFZgchYm9wNojJWxsLXlB1BZ8Qeo+A/UXI+9JQm83bNwky8z7+28zEiE8GQC6DXrHG+ywpQ46qF5gpN7zOg3fKXn/QfS+yMh3X+65+fMB160wh0pdANnYtZPUqLwvYzxrAfqnHpbe8RxtgiUSJm9CTMV2mdNRLrk/zluNeVNP9yZoitHJPIIy72X1JkAfbHHtV4gZ+9Micz74U7mQuaV+W/mFmiFzC9i3SNi9XRkx78vXJEBb7Y6qjHvsCcnPzB2AHicY2BgYGaAYBkGRgYQWALkMYL5LAwdQFqOQQAowsegyKDPYMFgxWDH4MbgyRDAEM4QxVDFsJlh52/m//+B6hQYNBgMwfKODB4M3gxBQPlEsDzD////H/+/+//O/9v/b/y/9v/q/yv/L/+/+P/0/8n/+1g9oPbiAYxsDHBFjExAggldAdALLBAmKxs7BycXNw8DLx+/gKCQsAiDKFBUjIFBXEJSSlqGQVaOQV5BUUlZhUFVTV1DU4uBQRuiUUdXT9/A0MjYxNTM3MLSytrG1s7ewdHJ2cWVkPOoADy9CKkAAC8UMggAAAAAAAAAAAAAAAAAADwAbgCeAPIBFAFAAVIBbAGMAbQB9gJQAogC2AMmA1gDogPQA/gENAR0BLQE5AUcBUoFfgWYBcwF8AZABnQGrAbcBxoHcgeeB9AIBghsCKII7gk2CXIJvAn4CjIKnArUCwILPgt6C5QL4gwaDEgMggy6DOoNOg1uDaINzg4gDlwOoA7MDxgPQA+mEAQQUBDaAAB4nJVZCZgcZZnu/6+uo6+qrruP6vucnp6Znj6HmcxMJpOZTCAJOScJBFGCmIRAgI1IjGJABFZUQFdXxFWEoIu7cgm4PPugcuhDwGNXRR8iCllll1WIsFwCTmW//6/unskQPJ4Hqqu6M9/9vd/7/eXCrotdLtcb+D5XyFV0uVSN03kR9aJ0Pyr0owb8V2+OoKohaxx8mR9FzqP+BscjXhv0CTxCLOI9ymrFo1kZS4NLTMVfKd6QfEYTkJtl/iUUe6AmcdzcgaiuRzNR3YiARuSaPcah8/FRV8LlYh3hhbxcb7bGECiII13jRUbXDNNA5/slRQpI3925LeATFa9H4KL5gcjKEf8LHjcr3o5qX3xzjd+NOI4RkmMXfHXHfb+YCbiojlHQscnRkdO4jmONemuMadRBX9s50LHpbcJBadAvfffNjnA3nxq74NYd9/5iZYClekH+cpRFR0D+SaBM4zLpAZSgn/lGcxzx9KY+jqieWjWBBhD5NHROQi16o0kIdB9JaUH5bMudMPQEg6z3KqKWSn3syuQ7fI3uMTPBbR9VlUhEkfFHtwUzZtJXKnlTJ/7aicM1TATvdKkQFS2TkrV0Q06l67WUXK/qcoqJNOyXNtovNhoouBFJKNu9DzYa9otOLDcf+5zrsOujrqjL1QK7O7EkCWstKIzDnrogSH6vh/dyjI8Je3httSpEVXGDn4UoxiUhKcBXGs9rjly/60E0iDwuntgGMusjCA1WvlepfA95ZmbauuFKdEtE9/GFeFhQqTCqRGg/dHL/HORGIrnhkZOMFiJxR89x9h2+hBLi0DrygR8RpD/tT4dlQWI+lg47OlfB5Un8Axc8ZiFmxC4ZhNRrY5gkDypUrqEnK/ZvKpU1AwOVct+MERQNTWemZ2ZmsDswg0JBUVSC4ty/Unn9cDkK8sq0FkEg8WEcNaEQM2meFk+zXRUiglKVUK1VNQ0dHdUs+zZL837nrKHmbJL18J6q0mrO7rosl815hpgrbl5e5/UKaS5B9f5g52n1tXtU/9LJ3vJVZ5ZWF3NCBX8YuT0ZasOx36HXwYYJxwaSP6LSNGrVMQyGtCPbgqSCkwssg9CNMeA0dCQfR+j1vR8aObfm53i39+TtqR6FK4yXIe44oeqWLxErb6wJHC9YvJTpW5EPl8fLyd2TKx7feUlvyTPl807rpWJ8cpLXFINBDHKLgfxYqbjS5y96OMZIWjqrZSb7zx2Rt7pcmPQu5gCfkq4ctboXoKFdAhnHWpVChgH5qBoFOcMxmDPDJc2yYuqRmCr8WtCUlZZWiur/gcSbHrXUnQSDdhqRsC6hGyRBj9oXahqardiHSYxyEKOjoG+4EyOAim6QmHo/AzERQXU/bgBc1VIUq0QMZtHSOvqRDxZn+jNSzsvxXN+74iXdhxDvj6hLs17ZCIhB3oggwzAZLOjyI5n8edt/te+DZiITYtyjAf8WNVRJjCUrIXVE5rGgBVHVUoKyHAjI/BcDHyLx6OQw7Wo5qEZsZBtBYkgMaZl0IU8t5MEcXO93Z9KcrsUxMR69bmSHd1dWVTJBD0LJXN3jZ73x/FlJH+fuWffwJ5DbK1tatY9T8pYeV3zu5ydnixOJ8sxJG3tS6BLNq+SifHCTVT15q310aaJiRrynTeVarZgnbAw49fUq2PYtkjPoOcyQfqal08rwYJfTtGyVVJDwI3elP6YyodK28dumm7we7RlHlqox+IqI156zv1MwIlb9I3v/aZoUbyAlIUWGPmK6/kuumKtOIpBJQ4JAS60KxWkU6nnHYahoFbKVJlMkzjjuP/vb/bt//sTu/dcmzo+7pdySnMS4kUfJ1jOKB2GPkomE4Q4/fuTI1Znsnocf3pPN3LtkoDJixbNSMBuzj0Sski7Lem80EosXNVFSi6Q8HXxCj4FNCTpDj0OoxaNzAWLN36Gzul/Zu4/DsXcf+zoTw6e4dOJrF8c8yBkqJjKYWHjuU16PKIfx+NyDYcXvEfGe8Fu6z36CU32aH6lICah+hbd/7gNbS2Dw3VDflitLJBLTBlCKJzY2SC9hOn5N1Sgw+UIGRhW+u9BMmb60/fuCOJgtsD/lw4q4RVTC/E/ZZ87kOSRYM9FoKPHuPcUoH8DbNI1hNG3uYOBxFNZi2fU/c9G8nQ56vwx6o668q49oFhkCgqSJiEYWuppkD/qI5Ep1bvCXe4bWNGP2UUvTo69J4ZN6m9nwKdN3fu3G9+8Vw/VszLr90utvfKi2qmCyehTPWhr0WjQ3khteHYzd9Z6fooA+YD972R/oPHgVX4kfIv5DHGnbkMFMIRdglj73IwJ4QdLqLQrGOr6SG+ktrvjW6du2nXHv0GkNQcU+lsmtrZ7fbLVa5y3LFqoc9g8L7rTfd9rpd919+mlBze0918uk40sn7D9NjPsDBewjNUL8fwr8l1xxhy20nQcEMQ0eKrUXycRz/NQXv2H/kfiLhDs2TV3Hhvu2jB24bHRzf5hFs1/6N8fNnZtv6h1eO5idey01sGqY1AmRvwF/s42SC6QbMaKtkNFTZLbAL/o4JVh4AwyWHVTR38fUSPL3g4iP6mbYfuPTN+pqkE4UvMHSjIiQkpj7tail/hBjxjCd+Uj01UFf2xuQT2fXPD531Ou4Hkn8V+9zRPZzmlWjGvcBSdwPYr9HxL41r2pe9rchVpk24hNhKXleLOmjGEq16ZuOvw1iY6r9cFs63KNR+lWFQD3y2q9RDbNEw9GjbQoKerbB9Q80Jx1e0ZGu/2FeVmX+j9u2PQB/k+7YVmB4fdEfy4h8Ahyx+IGguiQdfGaPZqWJuDSYtkzPjab99hsxzaOj8s5/nhdvP48qmu71vd7WY4Ae47h8OuJb1TjWsQH5u7Vt4xtBXcALDJ172i0EAz5HDnMxyGkuiGWG4xmRgRFGe/z4wELnm7Vmd6gyF2tWFIz2jxzgJSOYDBoSv3fKh+BbonpDVT4wwSHPSVf4kqGN7YBjtvwp+/tBhceYV4Iodlv/3Fsd03rsRw6Gih9Hyy2JZGE+16luPNFii1BNXpDpM6q6/UJHPzwAvlETQXUR63MvdzQV536PA51cY+j/30H//QB4JuAeCqaSMvwPA5JNi4A9cbY65sZP2Xfad6G16NTPID5gFcbWjBasAGw4Cx9m7X9Au9HF9qVDqWW9raRpplq9E+molZ3uH8mGw9mRgWlXp98vA79UZxoe3xfEGZ7wLaflL7t83+fb9fbmJVdc09q6/4OFVlx2o1/v2vFUx59d5y9dZr8lmblkV/4naR32UjRtL23MouARYOVbRBX0ZxN/0u8PjAT8En8QKrJCFL4YjAz3tXLhL6lD6y6/fGMjLooYe/0oYb/R0YyEQLw4Ubwmf+fQ0JERyNkgxDIHsRxrc6QB1M+RTYfSpGqjXiDbIybwOgbEwyQMSUKcQ01gp0ugOMK5A3tPXslxoq5qogdLbi/n33I0IeUq1d6R0NDg+pmes9epPPnBLY+d8YEh691rdj564Xkmxpzg8XpgBRM2K/5T35NPiAGf358Ij6xZtrUgFr0cR34Jjm7OlThDuYTUGGy2+B58J9ldEEQqU+jGiIeYkcnsANU9QUV5lCbikKIEwfkywNQlpsEwc8/SYEQZwD+hDVRQuxCHmzpYAPOsTQrbYx+mSLP7iG8qDK+fLjTP2NakDbt0w+yEZhVj6rNj72okvXpt5ynoJooB29avXb8O3eJULiI24wed/gBOxRCmSfMMwe1MarM9tvGD7NN8RJa2keH8DFtoSnKEv5nX6lfxEUUqFPCNjDR3C6wojKbiMyUmCnPantCHv4D+Dr4EXSHAitdA1+RiXQWKGJ3HwrzmGiy6jnKjCxwMPDGvuQ+ypizNiLLJngNE26/t5OB5mQTPB909afiem+0RENLCW+gP4aiw2wQkMXe5RTXg1XvwDaw4d1AlbEJF+1avGFlh79MNavs2NUZM/+4NVd/G7WgGjJej9rkbU30b0MeDUDR0/4O47ejidHvfaqEMS5LUTjjwqRyF0h0ApQ3YsdCujP2WCiKUOLovGfTan0fjQUnlnfXKCKA/Ed6uRMxQJBSwOTch8dCLPcB7D6NfQp0NdVF2tE3Vxthad5GiJwGUV/AN0a1rdKVAhzUrF1Ob54yvi5eXNsctMVE4fSnH+jDvDa7e/NjVktUsJApxVkyFdYqv2qlbhuKDccPHocxA3yTnG5IFgU9++ebNCAf0HiteRl4lTzHvVeyjc7ROtliRBRMWDVHSoHE37+w1MjUI+5AgJXuny5P9aKBIMALME6zluQJFwKuQTyvGavnEQLLP8OE/psOtYjVpVgud2fO/Hj1iJKvFRimRalhGxn6zYMaaKbpbvYoOQZxK3c2F0HZCv7Qu/+rwdRomAx0S9KlNL/zf4JJCyM8ARsTr/bGS4cdgRCm+YRy+4aoC78u89Kqo+Lx6JeAL65o1mI9HE414aMgbKEAciN6XaRwWTEFnbyL5qZodJsE08sQCx4AxhF6GFo0YzZN7JorxABSrIMZLy0on12nGrk720wjQeCQtzQPJ0aLDJrjeDAXlcJOG5TckY3Ovv5QwrWZqjAREEUnNJMCmpyEWKVehjUqpuNtxmwaEa58fkWeeElP0dFCW7BcRG4xUkhsnfbB+M26vumrTJVfsu3j3e/cwxdb7eOSGHgml+2PasNdjJv2Cx5Pfv2/vpRe9a3LqatIXhK99GD/o6nG0UkwWcQzVqrALdHGRHpPVSHYIeqMPI87vifWaMS9Tq1Qq4L6lBVV96OFsLOzF55HTHssfCornzdi3k1ZB67EsZ9d+jWM9CnD/8LEqNtATrhogyxqil44CcJLUo66ZRntQ0RIg21x7oTOdYEB14u4a2ySrQVqEkQLrgRHghJ564tDaAayL1UqhMJWvhJU3LxgpZSej0cFDWxvDowGO4Z9kxES4EnauO/bvDSraZz6NPhtw+/LLbo34mZDuR5zPSFVTn4qq4/HRaGZLrnftrZkMr2Z2hKMxf7lKr/Z3qoxhTJM4LoHLK1BThQW8ivQ5F0OL2WCNNJmho1co4IfSvZNw0+4r5E2s7F895RBVtZieHP3VAj54VMsVJ1fTeQ+V6zqEv+LsmIvZ6uJTsYdohqgCXo3V4kqHDUNqdhHJj4RNM6w6MwYfu/9YzfUMyI4SLmFqzoo5hronQx01jUVqnvnswHYfz3JYsDJ61ItpW8zrS34jJbotVXArUBsB9BOiboFi5JqCGL4EMSzOb6IiejubbjlsWkK0Fl/KVgwlcLmQEDRLIU7qMfU6Mzeclr5wu5s1DE/w63yM37EgirddqeuCeO1vOR/TPheG60Mn5v0LInc874d8M3mo4eE/k+8TpR86i0I+rWWdydPUhzKl5cffOKuBWugb/UiwuZsWBORK7UktG/vV4tsLiEnVnlhq+3ZSHO1aBNuKf6kWwRhyjneiWiTqeS0/mnt7MbYVilbeJPoodmEOsIt3TtYdGIcudafJVIszZIhwr7z8ystXI04kRzJmgEPYp/eOlQwfOvL8828ejVj9EcsfsMID0Ugy3bQMw2qmHZ4+BgPoCVeMIFTOmVmLK6JJtAEi0vcDAANkYCXKU+Wpvk5jRYzRzfde/b5alpfN+IX/I7dn1P00pWVLA5x+8ebUi1LAL9P5MIZeBp0W6WZ2wfwmh3/HjYe6Q2FrVToaYmptZWNNT4j7z1VlWvsfixipC86pf5oE8KGRbHVFI/bSJK12+0ffj4fNg1/t1B86G/Ql6WbAi+id83Q2J7Y2t2syCSkKlstxMcCia1SA+qmJ++bzM5GvGbxXJvLJbPkE5GfIyU6XdpBgNepdcg5fOEe6XWoOpC6OTQN94q7h1ikBBANXGN66JhE1cqmyPPjNZhmpkuIjg9g7tHLGSqWtaK9a+eTn5ZDCrXBLwlRTi/JuXtCk8si1fg6YOgsj2TswqIQ8HMvrci/1XwP73o9Xu/LOWUwmTc5ygVQ2ut6TYUT5UXseovefUm/s1CoVU48mYurWSmWrphZ6AHs4tzCgGcHr5mboAcKGmecHsnFgThbpC9DzCnrMOelayMqOJ+ldPCNdAVkcOGvDqXoUsqv31Fo0zbQjIpuWrEYWRZRf9kSmGy9032URov4k6Ak7vNk5FegS9CiiuzR6kv2AOLhyUPwAWwwZFs9u386H43oR3c6K9rWlErpQZC1JFO2foH5To3KBj+Mfg9waPDDOhgeJK/DdV1kFpsO9O28lqDZyg398rhBKLFdMkWNP4pB7xBNKWbJicrtQMBDQ4iFhrViy3GJejwjuTeu8kZwqS+h2+0BU5YCh/LiFBn6eMhgIyoFAAKsR+9n+G9/Dm1JQtH+G0jkFt9+xgY2InH12MBw4I3LM67z7IgYmyMuNDoob6HCmTJbQc2blYKg36/3SP3ozZVXzz54KBKs3473+Zp9hII/3ugMRryH4H77HJxi8tPtcQTI8/rsfEone2LEajXlfe1dh2uShPbRQq9lqpwDKx6RvbZwk3MJqpRW9y4FeBxg+lQ5nRYHnH2ALkWzE3MgiXC4yUt4oojv4gJ2Xcs2syEwLklu3omZYRjf53ZFo7d9r8esvcpu01+ByP9gRpb2WooeoGd7hTylyBsTUWuTE+/6K/f2K/5Xc9aqqV1ARbvtv0DQtlyspQdTAWJHzcGc/jhmZxjWFFLQLduymw5fIq5q2b835NzXjJKxvf09DDsLRrm+UVuc8HoZvzJQjVl9SZNlQQTb15JIc52Y5jfWFU1Xrc2u2oxuuCkfYHp4rlfLFIuvzBTCDZTMXDpU5PsS6cUCV/e+byOjUrhZKoE3OezGk0SyTF2NkAjS778WqaFPmh5nMUHp5YrrkDUoSrmZQXQc63xTgkhR8HsH+gnMuA3wU30H56Kq/gZGy7/wPO5z10jZnjXuZeqUy2OWsjxDOigbf9mtMfeSvYLP9i36FQfk7h+YCzyW+BMAXwtGm26c+C+gSs2iM5d/RvxhdCMDBNHiHAxSD6AVRQ+nl0cpJXZ++Eg0rPOI4npWXLcFnErOKdO+4jVq4i1wrx3mz/lbe7VFqXo/gTY9e1M6DH2wvkPdKrr9sWYaYpi7yCC0/kVGcGk8t+eO85eixE5hCAuuLjl5kn0OPEGcdcHUTu5jxdkyXunb+jVE9kdGF7gP354uMGT9h4A9VhqiPN0dMtR30ZGrkv+GO5UO5hDJSaf8DEoS7khFD+EsZef5W1i0odVJaidGLboFPPpGO7zkuSuu+6lSZ6/8BWLZ9YwB4nJVSzUrDQBD+traiB4s3QRTm2AqJaZSCHlusUGwtjS1eU03b0JKVpFB69HVEfAyfwCfxCfy6WRX1ZJbMfDM7880PC6CMFyjk3/ALK2ypPYsLKKojizdQUY8WF7GjXi0uoazeLd7ETuGQkaq4TevZZK2xwq4qWVwgv1i8gZ46triIffVkcQkH6s3iTewXFJrQeMAKKWJMMMUCAh8ezwkcnhyf0TtilKABl7KNEHeYMXeJjDqmL0SCe3PnomOiuuY+j1xHVGgnhilipRBzjGlpI2/ou6UeIMAF+pSCS+prenq0qmREUz+s0ngyXYjveSeOQ3kmo5U0XGmHdzO9zGaxhMm9tN2OK129pDOWik5kFE3D+Vj0WG6iWxkEF/1ALvvXg15QJe8VGw7MABlqHBdXnSBMshpRg/3NORcaek7ZMiMsjE65sMisy2WO4Jz/bybniyC/r9NTs2v1aaGlk0VLp5NIfNeTc/ms7Kzr0a47NY7p1/82+U2NH0nrNxexuYw7z/edN+jhlBjDKM1iboTlvFP5B+0HGhp0TQAAeJxtzsdKA2EAReHvT6JZGGPBLi4EK0qcJFjBjWjsvbflgNkkMpqH8Wl1kAE3Hrgc7upeOb98f7n2Hydpgpy8gh4lvcr69BswaMiwEaPGjJswacq0GbPmzFuwaMmyihWRqpq6VWvWbdi0ZduuPQ37Dhw6cpwunTpz7sKlq/TNjVt37j149OTZi9eQC/lQCF2hOxTLn29JHFc+Ou9x0mwnpXbrrxQ7rWZjJ4oyVzPXMtd/AOc9I58AAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJvIGYB8xgABtcAenicY2BgYGQAgtsKp6pB9NOm1zUwGgBPWAfeAAA=')format("woff");}.ff1{font-family:ff1;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff2;src:url('data:application/font-woff;base64,d09GRgABAAAAAAvgAA0AAAAAEHgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAALxAAAABoAAAAcpiahdEdERUYAAAuoAAAAHAAAAB4AJwAeT1MvMgAAAaQAAABBAAAAVlTVYARjbWFwAAACRAAAAK0AAAGqWURRJmdhc3AAAAugAAAACAAAAAj//wADZ2x5ZgAAAygAAAZ+AAAIuAXp82poZWFkAAABMAAAADMAAAA2LUsbjmhoZWEAAAFkAAAAHgAAACQFxgNPaG10eAAAAegAAABaAAAAYDADBA9sb2NhAAAC9AAAADIAAAAyF2gVBG1heHAAAAGEAAAAHQAAACAAXABJbmFtZQAACagAAAG2AAADNlI2Eadwb3N0AAALYAAAAEAAAABSAjUChnicY2BkYGBgYmSLbeLjiee3+crAzfwCKMLwtOl1DZxW+v+KmZnpIJDLwcAEEgUAQ6sMEwB4nGNgZGBgOvj/FQMDsw8DEDAzMzAyoAIJAFiiAxwAAHicY2BkYGCQYHBjYGIAARDJyAAScwDzGQALxQCmAAAAeJxjYGTSYZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgxVTAf/vwKqPMggBlMDAMBxCoUAAAB4nGOUYAADRl8QAUT2DFlMmgxOQKzNLMTgwTiNwYjZh8GD6RmDJVMqgxKTP4MxUyGDLpMegzaTBIM2ox6DOtNrBn2gnDZTDVBODygXBcT+DCqM3xiMAe3fDDsAAHicY2BgYGaAYBkGRgYQWALkMYL5LAwdQFqOQQAowsegwKDHYMRgwuDM4MkQwJDIkMaQyVDAUMRQwlD1/z9QHbK8P1A+GSifC5P///j/tf+X/1/6f+T//v+7/q/6v/L/8v9L/i/+v+j/XKi9eAAjGwNcESMTkGBCVwDxAgKwADErAxuqKnYwyQEmObnQLeFm4OHl42cA+paBQVBIWIRBlEEMLCFOyHl0AQAsIyf1AAAAAAAAAAAAAAAAAAASAFYAigDOAPoBKgFsAaoB7AIgAlwCkgK2Av4DOANmA54D/gQuBFwAAHicdVV/bBtnGb73O/vufLYvtuO7y9m+nM+X2E2cOMnd+ZzESbo2TeaRpFuSxiXtSNGiLVmaLmlRUbtqDMFUTUjtGGLdtCVDRXQi2lREBRKIDWn7Y6VigMQKGhLiDySKBgK1+3frlffOibJKQ7K/u/OP73me933e56OAWqEo6iauLEU5SSaXtx3zptalaV0T3qLht0Dtx+UWeZUqUVQ7q9vOXnDKdt7IMaxjmZKYZIxcCcp240EgrABNYJkVpwK3Mu4Zmv3LEwdHzYMxOqRkjDibyKzVj30z0alp3AOh59+dZ8PC1asJnv3HicWxhf4SaGI6RWeUB59arev9TlZl7dA5NjRNEaqIPO6SK1QrpSMTQ0xKVRCRB1u2TGcY9DKMIG4rJMW4ZcQB7h5XHLl9ablddhT3FuznGJZhAsevuZ9dOawmNJrWEuphDT7kA4RjQ+4APO2e9/TW7v2L3CDvUr2I4onL+9rkimNKKjTUFkpg5ARaTLbSiF1xbA+Z3HjtzKWPPnpprW5zMToQYRkC8W8fSlVnRro7hh/e13rkAgMkGIh+/NUf3Hzl5ZvzU5FQ039iHM1wa9+IdB549tAj58a7haeXgoEgQR4mklkkb1IqRek7MstxO1+EsoT1FbEDYtwrAiwaXz9tpPpT+Nq98/WRph2ld++oCWwn1hH10TTqC1PYX9hVKLF2iaAsgrKIZY4Qmv7diy/83nsv9UzMdnZMT/WUJmaLHTOTPTB76cM/vvzKn//0nfpztTaj9tzhoxceLuSnLuL+AwiyibwznmNw/yLc36ptDboPSBfBk4FwNNl8ceHnitNinFw3WhwF7+DE8gtLJKGP9T6ea7rUO6YnCNyZWPnvjiZf3VOTYtrSFCHlfpLSrHRDYw6XUdJMtVEFv3ps2SzbPWAwqA1ksYBMRuhKs9c2ubkVrB5gyWhNWSmL0h9yAal5do8u6WKIuRxgeYF7i091/vYrCzStZDi7f57nYklQ8AmEdLwJNsOc5B5ICVt37vjzYt37hGRIzJ8Xv7rb9rFMtI+Axvli92ROP3rqjTdOzQ0V+CAPDBMKRJeGEx3DpZxeGio2jz4Z9M3z0wfPvP731/dakZatMBeMzh/hWs1je0eOmRp3ZNJ3jqe/G5dhQqiYPyvIQi83Cm806l7IN+ruNQZHlQxffNL9Z58s94GycmG2y3p0Kh2NpqcW7ba7yy8pMQ1OaTHltZWv9e8TVPe8KtQqlK8VZ5LE4Z53xWzYxZCNEngIKngNt0TDa7lvA/RVhcRVt+KjvdOshKpzT6Sj405WUbLOeDS92jvUHmffe89DXUPUrUNDgnrFsK/bxi9VId49YDZw4TbituP1/0BZYoHdJQS3Fa46cywdHXU0RdGc0dahc2s+hWtQn6sK6k98hB+3CV5jt6EbGtFB6A5Cieikz20pV8RGBS1g19fLslxurPj3Jh3W9SbFv3O/qzc19unBWr2N+/TuOBI3KtBMrkCz8aQlNkzqb42zKKcxzXBotiHI24vB5T4Zfs1J3K+g1t5Xr8l9Z+OR4FtvMnzirCekQXsD3O5EAj4A9/lJj8AkzKGQYNQ9Cj8SgvgL96IW2+3dIPLxaphDFLRqAQqfo+IzwXGBuG1g5FTIYC3Ahzj3fd4nkLTPhDkmCGIt31uHjyfdZ2J8GH4WcV/dRn6GVSDIus9Ch/eB70tvNh7C2QhhOnjZ4EfP/cmDBiEPbf51c+NvG/W26oCaGRxsbxuoDlYH2qh7Jzc2Tq5fvvz4/sdMlLy4f3y5oiiV5R3Pw6eoR6byu7lzvwtMiUGkHbeMAHx6YuK83Le66juhaXa1HhT7u8bS0RNd/SKcHpj5IRavUVhvAOYOdmWKsqC+Ixc9PNQyjXg2NebN2PZkl208Hr7AgY2jkm0lsiR78W1bJo3xh5nY4ELIdLigjusST0J81jwi9x1f8Vjdnj872W908kwiFJWKbCT6i2Sm18h0s5Evl6oye0DI5XSpvZRuyYSzV+9jO+0UR4Voj5o6Gm8ZicIerShFCPrtmrRH9frfhkUrwmf+KWB4kbSdB2J+N6e9U96o6KSosOZMMZaqiIX3C2IlFSse6mMVAf4NswtmOOt+P9vsITdnYTUbNhe2/BzE5TrWJ+1ng9fpCmzv59WC9VVX4HrE/V48xEL53MEvBRQOHovxrPvBt6x9eoS+cSMQ5nj4zQOPbAV4lncHJMspUf8DKK+TJwAAeJytUk1r20AQfSt/QKHNrYeWHqa3JCBFVoJLArnEjQMmToIchxy7Tta2sK01koPxH+qp9O/07/R5tRRampyiRTNv3s7MzswugB38hEL13f3BCu/UZ48DNNWpxzXE6rvHdbwPah43sBN88bhJvqCnqr+h9cNFbbHCR9XwOMBbdeBxDd/UV4/r2Fe/PG7gU/DB4yb2gy46sFhigwIZJphiBUGCmOsQIVeFj8mO6CU4Q0TZg8YDZoxdo6TOyGnkeHR7EfrO68rtV55bj13auctkeJLGHGNa1slbcvfUQwxwjpRScEF9TeaG1h4zomOXmyKbTFeSxPFhGFIey2gjZ5H09MPMrstZJjp/lF7Uj+TKrklmsmtzGZmpno/FjuXW3MtwcJ4O5CK9Ht4M9pj3kgWnLGThmuhQLtlWi43jsp/ahc47elm2aG5bKpzfnIYtFpq66/paOV1wisbNMGK44IT/8+lD8oYRT0ynGVv5t8m3/OwTWujafNW1xcRIEsVyIn8VFaZm8jTXBfl22OJMkvZLHf17JP6bbPtwDXdLXlx1aVVDMY6IcWeKMuNYWU58JK9w3G9GIozPAAB4nG3Duw1AUAAAwPNMoBAmEIWKFcQnUfhEVJaxOKJ2yQk+96X0J39HglgilSlUao1WpzcYTWaL1WZ3OB/Plwa7AAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQnEgZgHzGAAEmwBGeJxjYGBgZACC2wqnqkH006bXNTAaAE9YB94AAA==')format("woff");}.ff2{font-family:ff2;line-height:0.727000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff3;src:url('data:application/font-woff;base64,d09GRgABAAAAAAhgAA0AAAAACvwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAIRAAAABoAAAAcpiahdEdERUYAAAgoAAAAHAAAAB4AJwAWT1MvMgAAAagAAABDAAAAVlS/XyhjbWFwAAACLAAAAIAAAAF6FyEeZWdhc3AAAAggAAAACAAAAAj//wADZ2x5ZgAAAtAAAANpAAAD6I/4diNoZWFkAAABMAAAADMAAAA2LP0bj2hoZWEAAAFkAAAAIQAAACQFgwKLaG10eAAAAewAAAA/AAAAQBc5A2lsb2NhAAACrAAAACIAAAAiByIGHG1heHAAAAGIAAAAHgAAACAAVQAvbmFtZQAABjwAAAGrAAAC+sbGcTJwb3N0AAAH6AAAADUAAABCASgB1nicY2BkYGBgYmSzUviSEM9v85WBm/kFUIThadPrGjit9P8b01ambUAuBwMTSBQAawINegB4nGNgZGBg2vb/G5DsYmD4P51pK0MKgygDMhAAAJXSBhEAAAB4nGNgZGBgEGDQYWBmAAEmIGZkAIk5gPkMAAh6AIUAAHicY2BknMU4gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEGGBmQQECaawqQUmAoZdr2/xtQ5TYGLpgaAFD5DJAAeJxjlGAAA0ZfEMHAwNTFEMukwxDFeJXBk3Ezgx3jNyDezGDD8IzBj/EVgwVQnR9jOYMSYxJDMlAuAgAoLwuyAHicY2BgYGaAYBkGRgYQKAHyGMF8FoYIIC3EIAAUYWJQYHBicGNIZEhlyGTIZyj9/x8oBxNLBosV/f////H/Q//3/1/6f8n/hf/n/J8FNRMNMLIxwCUYmYAEE7oCiJPwAxYgZsUtzcbAzsEJpLnAPG4GBh5ePn6ChtINAADnGhioAAAAAAAAAAAAAAA4AFQAkgC8AOgBGgEsAVQBbAGwAdIB9AAAeJxFkk9s22QYxr/XSe22Sez8sZ0madM6zh/SlGyNE7t103aBJl29tE2TLWmjNCWN2JhASCDg0knRQGN/QGioVEIIbVymVULcYFx6AAlthx04chjSxAkJxBUkBIbXKRuSJb+f9Ol5ft/zPsRGtgmhvqLuEZb4yQQhMRZkyadkRIYFJgw2NZ4CRsmo/cGGA7XnvnPBND/6+cJbnGO3sdqcduxW9nKX1i9Lzm7rin5Q7R2deY26d7F4siE6u+DIFP84Y/46Uzd/WycESBP9DqgviQsPcsRSlxjJJvsk6toX9Ah9WYWky/zh+fo+HFJvgpk3v8PLhCIr//wOj+EhCZIEIZKsIWckTWmqpi6CGpcjjKYiNQdahKUYWlQymgofGoPjnalwkh0YcL9euDjkiMUqa4PVjdJp96tsaHFZGaBTz0xFYzExEIqnPEaUH0hm9cxzk+3TtwuMRx4ZjfM8Mi+g9y/oHcB8aITWFgC9/EwaGehjM4aHz2qbW22eP9h9Vo8HJ5R0cZvjtPla1T6ZvdZp3fQECgH+pZLRmRkN4ntQk5rr5x7ov+eprt+n2LT4E2G4W3aUK8tFXnh7eV1ZNB6cGJlVX/Z5F3IFZf5qp3M1C9G/v3mcqzXr54iVUx5ZHyErT8aQVjqGQ62n8iKjpilLHh6Y33On5ioVmx1qZzd3BH5/oz3mX6K8E6NcaiPw01pnNiTZc9d3O9dX56ZiWXFoKdv3WMPdJakPiI0whCiyT9FkTfnYaBtS3VuHo0t1vDOD7+OQw0HE41Y9iY2xtsUCcqnwp/DJVqMrCJ9uNTo73lOz6vnovD5z/scX3r3S6b7/XrPaOHfYbhGrN5bnLbhPhvHPAgfoyqga3Cy9wZ0wdore6ivwDmwbj+DbzRbg/Qjm8Dn6p/5zT2j9TqSpRBoSiGLHKBirN3SY8uMnwp6z2aithPRai7M7w4LnZFIYdwxOpvQAa+SD+krNZR8eFbzyhMwGe1p1ailT9IXctH3YI0SzsVzARY0XYgveAEvbmSHRi8YWdxc59qk54jvujubDqDSFURiZoREIyrXiRnC26jwbKoZuOG+o7mklPZbogUvv9fS/qrKlsYlZ0nBEvP83BUtirVbFAQ4NR+VFPeIqlUuD4rSy7syXM/lFHVbNr2OSrkGY/AtU2M+HAAAAeJydUkFO40AQrDFJxCKEuK1W4tBH0MqWYyAScAMRpIgkKCYRVxucxErwgB0U5RH8BHHnLfuFfcSWx7Mcwg2P3F1dU9PT3TaAHbxDoXpGn1hhU/202EFDeRZv4Ld6tbiGXfXH4jp2nC2LG9h1zqhUtR+M3sypEivq6xY72FZi8QZG6tjiGkR9WFzHnvprcQPi/MIFNJ6wQo4UE0yxgCCAz3UIl6vCJ2RjqgTn8Gg7iHCPGc8uUdCn5CJkeDB7HrpG1TP7lbJU7DPOTKaEN0WYY8xIG3tL7o5+iBCXGNAKruj7ZG4YHTAjLvTTKk8n04UEvn/ourQnEq/k3JNOdD/Ty2KWSpQ9SMfretLTS5Kp7OtM4mQazceix3Kb3MkwvByEcjXoD2/CA+a9ZsGhaaBAky3juhtGWdEkKnvI8WiqRU/njxF92zSyMD7n2BIzNI+DEpzyXc/nso2YCVI848WoS1WLfNOOOGCEts4WbZ1PEgk8X07lfxVuP56nzy8JqZbbZNdB62vN63dg/XT5LyYst6Ck+g5VyT6OiDFK8iLlpHi1fyTfyf8PegN9zwB4nGNgYmD4/wWI0xl0GLABASBmZGBiYGZQZdBkcGFwY3Bn8GDwYQhiCGUIYwhniAAA+TgG/QAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJ+IGYB8xgABEMAPnicY2BgYGQAgtsKp6pB9NOm1zUwGgBPWAfeAAA=')format("woff");}.ff3{font-family:ff3;line-height:0.704000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff4;src:url('data:application/font-woff;base64,d09GRgABAAAAABhgAA0AAAAAIlAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAYRAAAABoAAAAcpiahdEdERUYAABgoAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABIAAAAVnXoGWpjbWFwAAAC5AAAAOUAAAGiEcv+wGdhc3AAABggAAAACAAAAAj//wADZ2x5ZgAABHwAABE7AAAYuBd9Oo9oZWFkAAABMAAAADQAAAA2LYoa12hoZWEAAAFkAAAAIAAAACQGVQLkaG10eAAAAewAAAD1AAABWK5IE4psb2NhAAADzAAAAK4AAACuDpMI9G1heHAAAAGEAAAAHgAAACAAnQBMbmFtZQAAFbgAAAGsAAAC+r/NfRxwb3N0AAAXZAAAALkAAAD50MXPC3icY2BkYGBgYmRTvH4+O57f5isDN/MLoAjD06bXNTD6/+H/bMwLmd4BuRwMTCBRAJItDtN4nGNgZGBgevefjYGBecP/w/+vMy9kAIqggDAAqvcHPXicY2BkYGAIY/BkYGUAASYgZmQAiTmA+QwAEt8A6gAAeJxjYGQ8wDiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqCgA4MCAwwEpLmmACmF38xM7/6zAVW+Y/gF5DOC5AAfQwzWeJxNkL1KA0EUhb97hxQa2EYIgQ0BMSCEYGEhi5XaWIjIigo2S6IiiA+RSl8iTyA2AQsrK21trFJqaWUTbPXMrIUDH+f+HebOWJt0bF/MIWxT2A0HolC+FRalLUbqN5POU70vTv800hGr//IazfuEjhj5mB1/Y+jHVL4pJspfqDRT2Yy+P6rXpQrXXKg+9HcKeWq9lQ4Y+B09nyZvFqZkfq5dlrkULftgwxsc2pNmGvSkK7ZOHndTXvLFnjV/nu2TI8VlyCljXf1u9CXPifxjveWKpdR71R33ZFJibA/pnaR/mCXOwgLfEd8l93ZNWCP/BaCgQlMAAAB4nGNgYGBmgGAZBkYGEJgD5DGC+SwMDWBaACjCw6DAoMpgxRDOEM0Qy1ClIKwgqSCroKT67Dfz//9AVSBZDQZHhiigbCJYVgYsy/D////H/+//v/v/+v+r/6/8v/jA8oHJA6MHereyWYOgNuIEjGwMcCWMTECCCV0BxOlAlzKwsrFzcHJx8/Dy8QsICgmLiIqJQ9RISEpJy8jKySsoKimrqKqpa2hqaevo6jEw6BswGALljYxNTM3MLSytrG1s7ewdHJ2cXVzd3D08vbzxOw4ZBBCv1IfBz5/BF8YLDiGkHgDiQS96AAAAAAAAAAAAAAAAAABsAJAAtAEOATABQAFOAVoBegG4AdACEgJSAm4CoALiAv4DRAOGA5gDvAPuBCIEQgRiBHwErgTGBNIE8AUKBRwFSgVkBYoFrAXiBggGRgZiBoAGnAbUBvIHBAcUB0YHcAeWB8IH7ggSCHIIkgikCMQI3AjoCRoJOglgCYwJvAnSChwKOgpYCnIKogq6CuYLBgsUCyQLPgtYC2YLgAu+C+wMFAxcAAB4nH1YCXRbVXp+/5P9JFuyZFmbV1mLLVmWbcV6kp5sWbId75YjW5I3eYnXkAUIZMKQeEicPSSBQFhmpulkGdowpE1oU5xJGHBzSDgc8LB0oMMwMy0Npz1QmFOYaQPDsPi5/31PXpJJ6yO/9d7/fve737/cR6VS/oXXJDL6MyqdyqGKKB/VSlGgZSw2r8fHuvXFWikwVrzjgNxqlt+Ax2a1KCU6rVHCun233K2Jbe7p9nMxaJbxkTSFTCGFGXm6TPHd5HOeshcwGVqVXKHSyZkCO7x48z1d1HPf1r7erVtHGMV8ZqZClkX/IVMx//fJpxD0d0vU+ZzN7s/LpOP8MzfdUvgHVOcCAx04Ly1FpVptag8XknAsI2UIROgIvuTKLKnI1gT7nWUFRVWFX1+Axh9PO9u4nKz+qV1nhn48MVgk2vGjHa9oB8lQSqRWH+fzeiokdlYP3put6IMvfX2rFf0F0U4duGEG7YQEfq0WF+h1WoFaDycVz75aqKDt5MJdCEmadVopJ54ZFRhpgx5m9Aq5blimUyr0stEsuUIvV91tDhkkSn22avw2j+GiWpNZt12jzlJnabY3ZGjUGQpZIMuUQadlqTXyptu+WZz7s/TbdAulwTut1azWWrxqs8XDmtUet05tpt8285+U8B+bzZBdAgZQLl1nm838x6KNsYV91EUqTjEUxUmtnNXLXix15OTEYXpnnLyXU1dBS31DSZBfs9cMWv5LSLtaLfbFI+mL71jSMR6PL63Ji8ilinCZFKhHVCi8mMqfY1QyRSr0kBP929SMb2NahSw1Q/J3WgXBRFOlC7+DOfonuKY2wYISrJYKIMxzIUAjBj2daa+QWC1ELgY96+ZgriQ7wZkCtRqLLX/IXZbIr4homLRcZ16XSa0ujHUVQvMP+zzV2ury+CN/0R3yuTwJ/j+B9qvUJfp13AO7g5vvFPlI4OEsjo1QHOBl1YzU6+NYNQtn+cs72a59Ae3Oalqmp6tTg/NPYvtSbH8V2zuF9rUQkngFX6OlNjuqRdSGEqTiD50vAHCV37JjjbGgRB1pMK8qzEpTp0JKWmrFk6PftZpMac3p0i2au5ls5lLdjpbCQr/PGBrMqXRZslOBUUjP7Bywh4tNaTVpzOZMEDEv8lVKfADZtnNGpIl4Ae0EhB8CARMjtQv0oValRoC5qcSOqNy0yedvkOdytpZwSnlVoHRVr66ocH11+E4/549djE5tqKn0xWr0ZS5jkIH0Na7ySr/b56nur3MPF6iHxfXKRxDv0ccwRikRgVVn9Zq9GuTMqmYk8N5EJ//l/ODEeXjp3LlzQeSxH3bU8i8jbjvivor9TEncNhF4kkJGalWbdWadIJurewYCkyazvrdSpik35dU4SqqVq6GT/6oiGLnn9bX7fGV+h4fOKmx0xSPlFthS95Zj301ayqXKhFGIL1dIBOc16IRRiH2px06udYyOBEjOB3MF1kA831tdmn/qbo71elrXpzWuax6KGSyhQBPQadme4pAt+9+qO+2Nma726ejJV7UB3c774kcnOhyhtTWKTENpS1nIsbg+XyCGY4I/YBC2ZmpwLFwZM8xZG9rLuz+dwtW+AqfpTvuG469tgi5IhRb0qkXsBspKuRY5QuhcBSxGH7KSEoEtnRYdwadZcQ1z2/t7pzqrQ8F7Y11bgiF/tLuhimsk/5I17lWRVs7Tjiu8PRYa1mrj5S0bNrSUx7WaIZCwq+s93vp6/kZLa0trY3vbCh5ziNJBVBkZhCPOSTwT8Rhp5HGlXyKEH9zRXFtYUVU3IjMNuJqH6mvjRfV19l6AdL3bErQXIKFVLdB56tUKr+2BrSXOoxN3NjcYWx41qKU5ntWlVRXxiKNmSNSZEG9gFpmRUpQGI446GXXisDHON8aTWqSn6UvYQk1RZqvdLLUCq5HY7FaGOCA9PdTBv7+mHVL7WwYLJMB4c5S5b7xBX+IjAHG9+clWWwuOIiFj0eNoR0npqUKRe7N6iXKbx+YEHUqInPGxjx5/dBP/p083HlvbGr13433x6fvGDj0Qfex4dOtseAt9aUMz152VMf6byaYvfx6I8Z+tEXSxeuELOkxfE/QvCNNuyyQ8GvQGjB62FfHNx9HhQFFxw4GRtWtHDvgcTrfS6bCzo02NjU2jq63FXHlRmnzjRijZtFEm08aMCkVv3/em+noVchtyMopzOY5zkRFOQJiJmWh+EfvxmV38V8Dsnuk9sun48U1HoOeRV+lL//T4vp/Mv3Aaca7F/qX0DMkzDkCfxAXH2aNvqoV4RpfyHrhyGTV8BNr5S2/jxTQ9Uw+fBvl5oJL9ldg/A2+W+6J308oL2HgfVPDvJOAC/R34Jsi/gg2T3PQucvP/MONFCdC9k5tFZqpcngpVWZnTLzLTVLv/HVulyItcmRMrVmWKvOieDiZxrUNe5EQpaoKIxSNLr0vw5xIJ6EmQ6aA03gYXlZwHdRnbC/lOzV5OJPAmGX/342XmUvzVC1EMs8b+ka6+bqU7Yq7UZ0Dv9+P9pWG/LteWlU4bxdhA1uahRQwSqY5gABboh4a+ONDTA3cO85/DXYf/A1Echa38Z4s44Ab2YYT1wEBbDDf4OxOVIKcvzR+hhTaTKGIG2+QIc7NjdSKxEi8gkzRo9AbWx2lYCYOqd6w60PZknQwiWywnc6SgiO79Dn0XMPfv4s/AgbOO+SfpS338eFOh5x2IL2OeQNsZAmbRpsaAOOiJHV80QEQ4wEeH5x9D2LmH6XtQg/6F39HP0G9gjtCjjcxkJGPdKwMW/czPdu184fnd06P7BxMH9g0N7IfP+Z//8p9P/OjX/Im9f/XUvof/4QKV1HMzjp9OFIl6Rhlb1exKRTcfWvtM4qt1h6Jj0aNH4yPwX93b+Ov0pe2x+ij/vhAn/Av7BDyZlFmwITVY7UugiCVElUlA1YKdNSC05o5t63sr3AK+n/UeGB48eHAoI18qW5fovAMSfU/XnJrKIkh//aMHz5/n/+dsCi15dOMwtYh3o8CXXmDMKsIloYRbgrwxMXuq9783PT68JjHefexYzxgE+ZfpS/eEg+OGS1yY/7Zd4L4MtXYDcZes1BqmejsWSGKN5HOjjwicGoxAfnq4sXt0arNqdFt9tFRXXO+tLfBNvxZXdQyv7rLqilwdtWbvP/ZMN0WjXZ6qoixVZkZeYVVzZJu7q67VVWnMUsk1+dZqHBtLbno/fUHIY4If4zySmYzefxA9OZEYwONBepS+B+aP0fdCvahXXPsozl+9lMNQtMKK4wUdfeyO9d9PjDU0TkY+ueuJJ+6CN3n3yPoNa+Et0hcrCvph0T/SgIRyUbr0w/zvh/jfDz/rYyBt8ADqvh21VnfMuOpj6E32kzyF/dDNkspnpHhGnSa1rzFCIZAryVOv921dhWVq3WT09d6oq5iG1NaB6HhBkSQFmLZBYhse+1s3e51/Gsf46Jm/VPu/BT9/bt1RjbbqGxBrYT/iXIXjqYQ6EJK06IAtZulVvAz2HEJmXoMP+V0mkI466QiEHPMzoq/egfVyOtbLUrIXUrMkBkD6mTNDQ19LPg5++7jQRr/AUC+IbQzJzPcCtjjzdVCyOYga82GNcRzeRIWZiMa8i6WCUEpJxTpU6hUdDeub4+Hgxmr/ye3u4mgzE441j0Te5GyuQkuRK+qsbaCd3qB7tXMsfDKU3mS0ajRi/o3hGB8IOTFnUX1CvFryGKlOSPofbO5oDUXCrYmm4UjM22i3hriB6xMPVlUgfb8KHB7p6w68X9cjxpIitHkacRvEOG8T3M8grUAGlSCihdPtiaEdUxMVdWWKkhqHuyF3TaivqYQ9cuVYVk59bpY/7Gwf9SE+Yus5AV/eSg4wbahZiXcpzuD0n4vUx1sn17d3rQ5HbAFuIOorNZk9tQ+Ojx3iwDb/7mtcd6K3J98oztuKdk8hxixh3mZSo3KGZeN6AS0jhVP863RPTXcj09o3MH1/fGBVSVVaY5mzRfEvbaP+es+RibEjbSFPXajZL84dUcIgfZXMHYQ9QwGQxbeSxRVNw6C9NCPXrNuyOdzePtJSVEZvVaeqrLnbqvlp2Fs90D4mx2yUv+CGD+FVqpziqGbRFmO1i/tXO845AG5jytJu1oY/0bqPZYQ4R0jReJwgfCEQVvBDR5aClaeYhxvcDnl1vzrH73Bm7xke2lOXW2BeW8+VtHf/tbfYwnGW4kcfHNCbVDJI1IYScAhdppxrGC1Q6r00o8lnzVWdnf56m6nf4fQ3jphMv7nL477XzfNNSnV2WoqlrIzwEMXDDK6bVshVHlJBMgWQVJYOZiIg19jzPJWRsL/3MFiVGrMucyDwBapprvUkrk8Y2TxDPyrWhSQzk23siXBYhkl89nsJsoYLLy+w1PPYRkVyhmE5S9MYgkgN8XzYHarWmUrTtfnqcCIRaOi0BAtTMkwGGtACUN3CHieZp+1inuZYKbwXO9HV1Pr6wNkP4kcRkO8X58W1xTlRJ5ZrBUQj1gr4nJ7DtbIk50on57p8xerEtXHr6LlIqtppZt2Lp9bq/sl8/zByoMkv0iIFyxfXWtfEYieXxoYZHOPP+NTdwmdrVf8KPuFaS8dJoncj6v1d1Ltc8ErtrWkxqZF39wwm9u4eGtgT6a7293RXBeL/OnbwwPjEI0cH4n293T1Dw2LMCMEHiEXwyeWYoVsRM5JbhQ9Q48FIuGW4ORHprFpdkm5lq/uvTx6s+gM9XVlzZG3TRPWcVuUaF32yCO0+h3YzSYRPXeHrmPC8bHIHuezuDd0t45s7rKvz0sJhr6uqv7MqVJx+7fPgodHJg4W58kb+lYeL20fbm9dVZYgcxvDQgvbTyZ4Nkuxx0NI+Gm6uuwfLvbHwr+Da4Ahg23zkawPyxQrfoBalJXyEEj8YhXBTKSRl8nXLQBKPMQU2rHK2dfUr2mJrlWpMspZcs8pXaOdyVeEmRV2kR6Eq1OucFXmSFFm6jNndXGwqa6xsUmUrFSkSKZMhdwSKce9Cm+ptIaU+Q86kyLKyU1LS1ZocAb8GMXXQAaJ2Ele9QkxhdRhfdFoSUzva2uLdfU1Hj7KVjjzbXpBX79pV/XXcLOgH+87gPitrOYquSNgwE27YFHBFCirZpsiqQDCA2/CfFpuqvGAR8y5cwb5yMe+K+boW4Mr5/vORsSIGZJ5OmOUb8X9+3OI69Itkjj+BffKEPnaSq1WAfQ1i38UzfeJwfxvu2VIcoc7DHZ7KVEgtq2qud+DZUUds/mmk3PXgWzD77N+4ao7Ovnu4pOzgL8l8CCFviJiI71o5rOiI774R/8FjsWuz8SMHY5dnZz987+mn3xO4Uy6wwhyyCR6yv3UBCRVQiztjg5FGMBq48tt8r6nYypTY0hUGRdG1Tp/MXCEByV6Ynf+kqVxWn5mSlzcAszuzug4am4B8VhS+kzyOdtW31gjCV6HH+SMgj2CV8BDcwf+xBy+ecEACAnb+bPI7D0V9Djegculb3A0+A258HhS/xcFH1EVxT6BZ+R2PniQf8mjyHu4X3mcIe2ecP2sQTxfjpOU14QgfxbA9/hMfG8c+25b6iFYN4umngvFry0PEkt8L/0hN0Vr4oYgRd3ha/t/BOAVGYm/5nVx8i+mHZB+32KqkpremphfbvkDONaKfoyboe4Uc6fw/s2TqTY9vnzhBt/Tg9nm0YekBrSdpFVESPc7h2CSvFJCaFwMLxgHpTYMLH5FwbJiLx1PC4dP344Br/HnmfFN28RQ9GZ9vg1lxlMH2UXljVpFzKjkveAVt60hNAbe1qCF1oO0me6fDYdi7ZKxBjcb4RlyhFIGn60msOVTlLWhvsmu/PYv09cUJrPGb8oXh5s3FCn1u5hTB0FNXZF6eDm1oH01vJONfVjMqS872JJHhUWSO+l9As1agAHicnVLBTttAEH1rkohWFeJWVephjkGVLcfQSMANlCBFJKCYRFw3sEmsBC+yg6J8RP8Ecedb+gv9iL6stz2kt3rlmTezb2ZnZhfAAd6gUH3jv1hhX332OEBDRR7v4Zv64XENh+qnx3UcBB89buAwOCdT1T7QenVRW6zIr3sc4JMSj/cwVt89rkHUu8d1fFW/PG5Agi+4hMUzNiiQYYY5VhAkiLmOEXJV+JTeCVmCC0SUPWg8YMHYNUrqjD6NHI9uL0LfsQZuv2JuGU3auctkeJLGElNa1sk7+u6pR0jRwZBScEV9Q88trSNmxKV93hTZbL6SJI6Pw5DyVCYbuYikpx8Wdl0uMtH5o/SifiQDu6Yzk6bNZWLmejkVO5U7cy+jtDNM5Wp4M7pNj5j3mgWnroESLbaL636q87JFtO2hwJOrFgNbPGnqrmtk5XTBsRk3tIiRgjP+u/lCNmLIe2ESzYiK1aa/5Uec0ELX5quuLWZGkiiWM/lTRTg0s5elLuhqhy12nbT/rXn3DOxGb9+i4UbJu6juoSo5xgkxxqYoM06KR8cn8j/5fwNy7n3FeJxtzkdKQ2EAReHvf7Fh792Zvb4kdlBENPbe20TIQAjRgdmAE/cjisvTIG/ogcuZHa7IHz9vRv3HZXlBJKVGnXoNGjVp1qJVm3YdOnXp1qNXn34DBg0ZNlLujRk3YdKUaTNiaRlZs+bMW7BoybIVq9Zs2JSzZduOXXv2HTh05NiJU2fOXZSfXLl249adew8+fPv05T1EIRUqQmWoqn1+yRcfS4VC/rW6VHzKrcdx4nTiTOLsL210IVUAAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYATCUCBmAfMYAAdFAIR4nGNgYGBkAILbCqeqQfTTptc1MBoAT1gH3gAA')format("woff");}.ff4{font-family:ff4;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff5;src:url('data:application/font-woff;base64,d09GRgABAAAAABS4AA4AAAAAHiQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAUnAAAABoAAAAcpiahdkdERUYAABSAAAAAHAAAAB4AJwA9T1MvMgAAAbgAAABCAAAAVla+Aa5jbWFwAAACYAAAAPIAAAHatJ6A+2N2dCAAAANUAAAABAAAAAQAIQJ5Z2FzcAAAFHgAAAAIAAAACP//AANnbHlmAAADyAAADp8AABXU9KSlWGhlYWQAAAFEAAAAMgAAADYsRBq6aGhlYQAAAXgAAAAdAAAAJATAATNobXR4AAAB/AAAAGMAAAB2CjMFu2xvY2EAAANYAAAAcAAAAHCGHIuGbWF4cAAAAZgAAAAfAAAAIAB8AIJuYW1lAAASaAAAAZ8AAALxUj/WB3Bvc3QAABQIAAAAbgAAAJAFiQabeJxjYGRgYGBiZDurtGtjPL/NVwZ55hdAEYanTa9rEfR/RSYupi1ALgcDE0gUAHT5DJgAAHicY2BkYGDa8l8RSPIyAAETFwMjAypgAQA6ZgH4AAAAeJxjYGRgYDBnCGRgZgABJiBmZACJOTDogQQAERoA/wB4nGNgZOJl2sPAysDA1AWkGRh6IDTjAwZDRiagKAMHJwMYNAAFGZBAQJprCpBSUBBm2vJfEahyC8N9BqgaANEpCrsAAHicJYxLCkAAFEVPhsRE/kVESgbyXQEThtZgb7ZhGVbjllfvdXrndg2bHI1h/8vNScnEwkVPQ8Kg++gX4XGQEsv2hLzKVOIOk42CkVppi50WVw7xLJeyEoh9HHWEZEwfbOgJ9QB4nJWQy0pCURSGv2NmZfe0+8VTdvGSmmUSQYOaBZEDm0VEbxANe7KgyygoGgWV3RwIPsjfOh5x0Eh/2Gv/a+1vwdoL6MI/czh4erfMaeRBbuxO4ZoLW0ySJkOOAkV22GWPAw45osQJZ5xzybUbkazHJdFk8y12v8EeU+bU2AuuPFZ1VfWrH33rS5+q6ENvetWLnvWkRz3oXne6rcWbs7UpJ0SrwQlYCPwH/C97CnYToode+sL9AwwyxDCM2MPomA9EIMr4hLnJKb8yPTNr25lfiLmLS/HlldW1RDKVXieTzW3kN7cK252M2raKHfJ/0IM5ogAAACECeQAAACoAKgAqACoAWACGAKQAtgDWAP4BPAGIAcACAAJCAmgChALEAwADIgNOA4oDygQiBFoEfgScBMAE0gUSBUoFfgW6Be4GKAaYBtIHAAc6B3wHnAf0CCwIUAiMCL4JGglWCY4JvgoKCk4KlgrYCup4nI1YeXAb13nftwtiCRLHntgFsAsQxy5AgMRb4RQviDclUpREiRJtHaRYKVJl1TLDWFYm8hEdGdea5nAaZWLXk6ONk7qZiSON7bGb2p4cM8644/SPjKxGTtqJx2MratOpFceTpDbY7+0CJOU4mcyQu28fgO/8fd/ve0vRVJyiUJZ+lGIolspfQhTuv8y6qF8VLrlbftZ/maFhSV1iyHYL2b7MutF7/ZcR2S/ycT5d5JNx5Ln+0kv0o+8fidO3gTjqiZXvoOfopyiNolokdzJhps1yqcYUC0FZcrN+JEtBJYrQc1xQWjR25GqjxbYg1xa4bXr7LN/W7VWmS8uf3Xx+biiqeH3e9v5vzd7+xEavl6KI7FmQfdiRjSQ/A8LLpUq1hsqlPE3UVApBJYgO20IlgQhtj01WRSEDmlDBlqq2e/1tIDU2dGAh5RPaVdBny05R29F1WqZEeJJyYGZiACUTpT4QXtBREV2vnJ09WyEXtH/2XKVyzr44dpVRK7qK9kMU4bfJeKJUjKOrlfrLlQqqwLdnyXeqK0+iK2B7gNjOIrdtfBVVIDDoiqf+gk8TVA8aJjf6Aiu9f7AjxLMS/dWOkKPjCFyep09QYYoywL5EGUzjQQoIqVRBiswXCxDX5/O/wXgG43RuU8obMmZ8HG8YhonOJYwUzc5qVt3HCEReAS7XQF6OyHOD0eXSJlQpl8xkws2SXDnRtfMGaWOLzhpdE7T605i/emJuINXT7u0QhfjS3MLZv5LPhv+VC0d8li6agv+Z23f1DqX0gKhoYW306J23HzsoHg+qwZBCdGdXfoNeB91VR/c6RVFULFRKpu0fbFUdg/7AHnD09U8cXHggKgf1NmFrqn9qcrAbx3AxaQ7kR6PumCh1HN27+47J/MZLk8uzI2EtKovecHDstnFT5bTohmin6vUpuhaujO7pm9sY2gkxpqkIGPc2fReVpEwnyjKJqdwMd9nJmVhDfQjMgIAneQa9jUdLfo7HT2Jc/h9NbPuPdk6ORIVR/N3vv2zsZQSIv7lX0EJ+dIBrFfX6JbSh/m+Ura8IcfgpxCFGdTUikaebPjYAYqeD7LB2ZmRJCUKE0E/v3Z2ZGDS/dnx8VFeCmpsL1475e6d3ndw5ViltaY3vKG794e33xEbv3/3w5aFcSI/Kgsfzl3Pdp/aUt/bm4qEjUxRUfTMPQegEuXW5qOaRXUykYqMo3dAcLFSUktlYodfvnz/wwEi5uPHUd05tLJZGD24ulScmD0/6pj8+vWN5x6WtSx+dKs5I8mhm8PChocxIUJ55M1WppMxy+e2usbEuPDJix+D7EPMp9BTVThForEszv26NptLRSOf6f3Qi0pnRI9lM/Vl70ZkGWSnqBXQdfQPqMLBWicFmRV4v1b9e6kE7e3rq3+4pof3oG7OzX4DipCkoMfRryLtBZRrVZQegmk6yJP1+ZAMAqgxSDy1GLCjBdDtCvy4cCvC8qoufF3WV5wOHCrInepJVe1X2ZKxVfqZaNQyG5xU/2rMH+RWeZwy1nUG/0/0Bvd7q8nwbuervkTzIoP8N+hClQh6ydh6aBZ60b+syYWOS5MFZoDcWZv4XW4Jg4Z/tWLA6i31Hu4vL+/t75VLpgbur/d8aPgbF/4ppLNayY5Kw661o9emBd8zxV/pJHW6Fy/dAr0J02i2gobIYLxDUA8LR96z6f1nW4qJlIdm+A5wNItE06kWQEQUZN0BGbK2PrNntCIH+j0gdoRuCXv88xpqG8Zcxxq8xkiky0DCIiYZJBPZxfIDjOJALfQ7dBLk5ggqQYlcHSjNg02pBroZHEZtLdBPzkibwIvs4h/FRjHke4+FQ2OM80gNGXY3xjCCiF+uHzYYrgVB9CD1mmASPZaiJq1ATCtFMSX5XIu8q1VyFKMOW0nlEypFUod2oqhV01SWqpb4jfWVVcLkEtewst3s9hWrvhjaP14N7+3FrO3rgsflpQ3W3hFPbDjw2vy0VbnGHjOl/ONedDEa6uu65YKW0aLpE+jLoJ325RlEp4nPaDzoHUKlGk16kBO36L5cwsiFaLCg1sEQHOoSvpRuFGkPwTXTtjt3zNZbnDNotBASRQUx3bqA4cHSpNnZ853SVBWZgJDHVIh3Hm7KxbYNl/ebn7swEBeuM18uxfr+vrIdr6Z1ShN9bHj2ckUXrDOQmfnc5Fe32CIGgZvOSCpd3IE9pm5NJ5QBv3pokubkP9sYJh7xjJ/6jOYyfwDi3bD+JOrpPF9B/B3iO5wJd9aKTnC7neUIXJUffNeDRt4BHFTJfgAqzzJcqfajRpx0SfCt/SRME7RKQX/7Tn4ZrlyFp9OOaRLrx+w8DAd7Cx/ackkZOr1EQ8LEqaL76863khkZa03woRn9NbIXb+wsi/NaA3xaaNrgb7cKGo7MgPhbW6yf2xB319F3kSpyBuWFlEV1deZrMDa4Pzg1TZGwAPForv6c96F/WcUS62aXNJEuyDmtokToCYKTL9oAFxFmjaU8kuiPSs2vrga98yrVkoQ5Bjl78yCEuiZ9ZXCplCokAR5shn57ctXF8OzPLaCFN3b6w6RX3pklXNh4xOFbygf62ld/b9R0mGV7VD36uFp+O1vgJgGjz0437ZvswbYoSk8LWhC6UBmdO7hwv5kYqVnHbtfmzmQRUObpumJL2VfPsgYG5gcxE5+xuiMk46LsC/qaINj9tu0ewbzMiRgk/03AQYI+ucKmpwvwnw8WDA49EgxtQMVXtkNk9fcOKW+Cyy55kV8f5/amp8e7tqlZFSiKX5GpzFd4DfiUgrjT4pTsdlyApvUo4Snm18fIkqk0GBNdo2prQeLowNHPPveCj414Kf7M/W9w2XrA2mSYf7D57YOFM8izxrq5+Yiw9sHtwYG7W4fwS+PcT8C9Cpu+Ghw3Kh2TGSV+xfbNrmUU/kTJb8eKDn9w7fxSKr/6Wb640oUDpZvf4F/ObvcveVDZ6/p/Pn94nS0xlU4Vru+vOAYtgi9Tjs/Qxp3+SrCVgil2rElm6tVXbbkdp9GxMNLwzSwSzS/ssq/5by9q3D1t754e9oUyITitadtQkCK6/bhdo1DBzg5NMe5TwWGQljlbQC1QRutcO0j3t+b85TqbdMoz+NClWhdjhdgYc558EHf7ZxoABgRZLeVei0W7JwLGiC+0Rt8Irh8bzBoM8LVyrisb2VVLJh3740JgoRP9iotCFezKPFDYXCqlk8Q6fmIjkw2olyhkLf72AHsmHON7VmukcXZTbW8R2CC7SxeH44Nyeoel81DT0THl4MdLxjylId6pSrv+IU7l2N+NqU9KxfJ7EtB0SiAAz3etm8HID9x9GS3ZlkI9olL9oWVE1kd2ctPDf5XEylceAm/LIg0lM5vMr2dRg7XHTcJhQ0r6e/cI1By8wqKGX6XmYEWIfZOkmPhknlDCwoZet+i8s68QRy7qgC/PWhbgVhz/7BAAeAhxfQq+p8biqxOMgu2slgT4OsmNUJ+lk5ETlzFt2M4Hhe01NdU3H3W3h9Ej2czFZ7BAiGyLyKWw9qgsuR1UymC9lIjtVTVNaGDNmoQeJO3/f1InI+QrVIYbF1RjCnMXKHxY+ma+SpT1uk09ZBUq+bn0MB0NHxjIYfxHjDNwGNeEcn+c53xctK7Z0IQITihEMoPODo01+B7+/e9rgBcY07niK9H6w4VWwQf5jEUWv4vqL2LrHce2UnSInMXUVfk8S04aeo0ZXfag2YUDquOHVH24VeRJDgv8G3KM0+Zhus7Z0pX0BPaer3Vu6ZdEXiGZ1pXu3FYpGQ1bMYFO5DeH0xo4c54qGwJYU/VpnbKTnmwHF9hQehnvtByWAonBXtK6uZDUeeCPgnB1t3IK9XX8mbpU/CVtNQB+GW+gEvERgS1MV6HGvQo/zUFLzVEGQw64dJNCr987uPn36n07vmiwWpiaPTAInnHnh3Lnbajt3DQzu3+9gv20lg26A3eu470OBonw4AeWJ0dhKkh4dFlFx+AMc9KRt97uGyQnpWziIzLS/BL1Ju3dCzvzoTxR4EP1Sz+hbZw9Du8R4YgLj47owsq83i04GI6pAHxtfdlolAaJ/JOfkZAxi9GOI0WiTBQj7kDkPFDWHvDydzjPO2xMnJfaUB1OwE0cY81zox1x6pmdLwRchw5zMtYT39fUGu3S1a+NwnFUzWzb0ZlvD5DNedCH3bF9P+SOcXjb0s3K2W4OKnQciDogziQinBNwu1hex4r5IKiLC3DwKjOPz+3BE0rwCzUoRC+xWwO4f0LlGRhImeUvi4Mke8ptxkqUokHbN3rZnsh8s3L9rWx5P28PelzD+EnCG4td1RhQkkTk3tHlk/E3D3Eymfy6w2TR+4eVC/tZoyMcFuADBMPA1gnNiZwPDTrjWilYizFlD67cIgPFEmrUG/tZpty0dHVJnlsBBE1N50wzF7rtpF/XvBElo6zZ+ZD+8ZOcnuPIeehf0xZzzB9M4fqw72ESaqtC7WD3hxQFedp9QMV7GmFtY4MgCfcaoP2cyvIAm7PPNmyhsGk7+/SC/DvKLDj8zBAIYOQNdmmn0iSiyD58KecEDU311dcBEdTXSS7uDUjxghrxSR0xw9UbUDUtwHoWDqJkzffGI7BezJmxsWNqAPqv66y9yAZ/88P6CKqloyK8ajJDgmd+eCYdLU+8SRnfsImfhm2BX4Zb+vO4tCJyKmzFglWrDntX2fNNaxrK8eUyR8bJlJT92Z9KCnUxfjyTlycaxU0nSn+UAfegQCgShAC8+BMWRordtQ5wMq4cuOnaowE0k/qVG/P2udS+A/LQMp68aXf2j+bjIePSOkmYWIkpQY1yuQKe/hfOjvwnZ+fEd2rOany2eoJXSy8mgpgVbWl0ulIi0dedptGhn7P9QC8kYsnHwc7DHfk/CxhtvCJB9uEmunW7swYZFa2fen2v1z8AZhuVR4t8ZURJFRtLQVoA5y9f/84ZzAu5kGVEM+HgkCoB+OO50w1kBdvxc/Vc6KQg+8Oe9Z/x/ELH0wgB4nJWSzUrDQBDH/xtTUQ960JsicxIVEtJUC3qsWKE0Kv0Qr6mmbWjJljRQ+gy+inj0UXwEn8N/N4uCeDEhs7+Zna+dDYBtvEGhfB6+WWFL7Vt24KrA8hpO1YtlFzvqw3IF245reR07To2eyt2k9mqiVqywpyqWHWyoI8tr6Klzyy4O1bvlCg7Up+V1HDq7uILGDEvkSDHCGAUEIQK+NXh8S76gdUAvQQM+ZQsxnjBh7AJzriltMTI8mz0fkfG6Nful58rjmHpmMiWsFGOKITVtZI+2R659dHGNDqXghusdLffUTpgRV3q2zNPRuJAwCGqeR3khg6U0fGnFTxO9mE9SibNnafmRL7d6QWMqxzqTQTKOp0PRQ+klj9LvXne6ctO56993T5i3zYYj05wmF6jyyGhHkc50u6iSG9yY8nRo6Cll0/gWZs05tsQMzWeU4JLfX/m87ySlT52Wqh1wSA1NnRVNnY8SCf1ALuWnvreqSkvdq/LIYf3vhn8K4Ffo6i9M2Oict1DeQNlsgDMyHpJ8nnJGLBucyb+TfwH+x3oOAHicXc3LCgEBAEbhz1iSJJckZcFOiQU7JMb9njuv44G8INMsnc1fp/6OQMz37RBNwj+92AaSUtIysnLyCopKyiqqauoamlraOrrRo29gaGRsIjQ1M7ewtLK2sbWzj2pHJ2cXVzd3D08vnx/UUA4kAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCMyBmAfMYAAXwAGV4nGNgYGBkAILbCqeqQfTTpte1MBoAT2IH4AAA')format("woff");}.ff5{font-family:ff5;line-height:0.915000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff6;src:url('data:application/font-woff;base64,d09GRgABAAAAAB8kAA4AAAAAL/AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAfCAAAABoAAAAcpiahdkdERUYAAB7sAAAAHAAAAB4AJwBdT1MvMgAAAbgAAABGAAAAVlWb/qpjbWFwAAACmAAAAOsAAAGiNr6Ex2N2dCAAAAOEAAAABAAAAAQAIQJ5Z2FzcAAAHuQAAAAIAAAACP//AANnbHlmAAAEOAAAGGQAACcQVd09wWhlYWQAAAFEAAAANAAAADYsTxq2aGhlYQAAAXgAAAAfAAAAJATOASFobXR4AAACAAAAAJUAAAC2D9wH7WxvY2EAAAOIAAAAsAAAALCNN5eCbWF4cAAAAZgAAAAfAAAAIACeAINuYW1lAAAcnAAAAakAAAL6zcenCnBvc3QAAB5IAAAAnAAAANAIkAk7eJxjYGRgYGBiZPs4M3JfPL/NVwZ55hdAEYanTa9rYfT/P/+lmSSZtgG5HAxMIFEApQgO5XicY2BkYGDa9l8aSPL+//P/C5MkA1AEBbAAAJONBfEAeJxjYGRgYAhnCGJgZQABJiBmZACJOTDogQQAFMEBIgB4nGNgZOJlnMDAysDA1MW0h4GBoQdCMz5gMGRkAooysHIygEEDAwMzAxIISHNNAVIKCsJM2/5LA1VuY3gK5DOC5ADCtQqRAAB4nCWOMQrCUBBEH8EuCRjFqN8ISuQTJYiEBH9SW5hGW6/gKTxROg/hKWy8hqAj7jJ/h9k/w3ohS1Re+Ac3UnVCx4UDljuOBw0FV0py5norzUrqb2eFnBljMoYYOS0xZxZE4k5KLIehxwBf/57KWksvCGhZsWejzIATO0Y0n7d4LWRKODIVm9CXz+jOmpewxX0B51UTzwAAAHicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMCgzKDGYMZgx+DJEMAQwRDLEM9Qy7BbQfj/f6AqBQYlBlUGDQYLBgcGH4YghmigbCJE9v/j/4/+P/z/4P/9//f+3/l/+//N/zf+X/8/64Ez1EacgJGNAa6EkQlIMKErADmdhZWBjZ2Bg5OLm4eXj19AUEhYRFSMQVxCUkpaRpZBTl5BUUlZRVVNnYFBQ1NLW4dBV0/fwNDImIHBxNSMwZzBwtLK2sbWzt7B0cnZxdXN3cPTy9vH188/IDAoOAS/+0gBoVA6jER9ALiiMxoAACECeQAAACoAKgAqACoAVACiAPYBaAGYAcYCDgIsAk4CYAJ2ApYCugLmAyYDdgO0A/YENgR4BLwE4gUSBTgFVAV6Bb4GAgY+BnwGpgbyBzYHggfYB/oILAiQCN4JJAlSCa4KDApICnoKugsUC2ALhAuiC8YL2AwgDFoMjgzIDP4NOg2oDeIODg5IDpQOuA8eD1YPeA+0D/YQMhCMEMwRCBFGEawR9BJMEowS1BLmEzQTdhOIeJyNWglwHNWZ7tdztObqY6a7Z3qOHs2hmWldY82h0eWRLOu2JUuWZGzLEiZe2xhfEGOIL8DYEBIqGEyyxVUkhhQhlYLEBhuWSlEbUrWwsJVNwAEnWbLmCMHZ2sRQQFhij/Z/r3tGkm1SUdW8fv169N7330cPRVMRikK19EOUiWKoxuOISnecYMzU/2aOWy3/1XHCRMOUOm7Cyxa8fIKxogsdJxBezwoRIZkVYhFk+/Dll+mHLm6K0KspiqZuRQPoW/QOykF5YXfGGoumUaI5m5E5NDdHd7vokErD4ObVZ+bN6cJ/xOKvhfy+sHGl8J4x2OkcvYHKU60UFRfryLaJfK4Qq0yiuXZkjPph2fI1g7+fTcaYLDqXXs4zIU7kN+uXZDrd5F6aTg9zpggnm9jNxjWRTi9yd9+82b35XN9eTWIt+/Sx72jfHk1WdpGh7+jRo5SFis0+BdhOAb0BwNkAGCmPqKPCAAoigwyMCN+7RWs0kWvOoFwiapVEOdNM4RlMfpWpiWfx531r6c8OHytZkeDycmIuM5TJDJXeFWVREiXkg0ES6UUtw8vb4KMx3MXhkMQyHH08LF389+uHh68fRntDtbWhsKaV6A5N69AokHBw9lP0J5BLC9VDjQE/CRcZOZsp5LIZFUkYc9JAmimigoFfEhnZ21yINqI88Ba+mMw10jEM3dtsSiQTSRb+VQUuoz+lwh2Kvz4VtQRNNj7T0NbeurTQE0Nq1BQs1i6q3yi0BtudLJda53Rxf6WtvNMT4nvMQkC1J8Qqv5RG96qPdNa1tYZpnqsd6utb3bG4PlJjmhjpW7aysHJL47rCwzTHqjTXz3hUsT7VVlheetbblJFr41GhJk4h6qnZp9FJkEWYoixEBkmgomgiZLCIYWlguFel0UlWEK+uGatb3JO1C6yVsXeOBcevclRZm22e4dyNRwYOr+5WPTbGYWHq9m5vmT7eXmVxwP6rYf/1sH8Q84816cwqAmca6aTBL6+M1pN9ec67btRRvaKV53h8GMoYu3Jc8Zk11T1f2ZCwc+Q4UHHYu4dai16hbVQTRdUQWSSSgDoKBzAwFFEnMo4II7hmQC4FGDik0nDkKx7WHpi0mbpN+1M2xrZtu8/D2tht5F7ZxhQaHeybTonPWpIra2tXJgciNtZiaW93eZySrbO85ubazUFfFaPjSVBj6APaQ3ngDnQFoCxGxL7g8BDKog/S9/Tdk8YDmuw7kk4fIYP+v8/O7kZrqQOUaNCC2dRcmDMKtHZDzCkG2zm73R+PhqJNysA60SlWiUVTLKjUtOA9WhCHTqNJCsMRY5FoLhtBp9Oll9JpVIQT+/B3XoGhF85xzJ1Dtu+NB5Qa/Cn6EvEAfOC7bWCnr4PsOCy7hTaJXq8qnXLJnFiFhvCFvt/qvjgSlFirmz4RlCjigzJgP78lfk3CO8ydxlQsGf32llWTt+JP76qvrpq4aQI13Xnq5F3wObD1m3dft+ORRwDHFvjvF2CfIMZch4hs25EA+xEmwY6SgA0SvZD6W4pzOaey+UhNj2YX1SmwG1VVWY5GT9SrIZqZ8mkXP6c5nec5GM7AvvU6LyKwXSdqzucSYKyMLM0DDKoDxpCFc/ENOsP7Sk9p3Nu7pru1JQ42IPChnatmDm73/bPvzzQveB2aTwizrhfWX9XZXxtzSKLiVbo3bl29+Rp5v+jmWEkk59cDf87C+a3zZEHOws4B4wBasRNpxkQSWATVHCgrfBOd3XP1zC3+hOIUVqWWrBzrbQSalXRHpHZpdjRsC0SDG9eMb6nTssWnB68f6/b6/G6PMxxY1rRoGFyDaDeZAtF8NB22uUXF5813jbfVrvB7J7H8QgDyL/ROKknV6pyXdLdXEUFe1wgPngMeIoSkYEJ/SY0UAUXqWSyN4gUfb3vfxnqCCj8Cq0///mV1G/ZKWCzbeJ/sQps4K6+UvkdzApouPa7LBnhzBuJXeqGeYt+q8waYAcvAHgEeRAxcEtHNM7fPjN8Q4oWAq3p111Rv20St081xNO9DLozqfHP35I4Xx29a2+mXfZLH1TnWnp/McJzLhew+ASN7MfQ1TH8eMLwF8lGpOgNFI11hPaGcaIqh0bqHx+jQW/smUv2dNce2Lu0Gwdj5ZN+N9q7J8V29y9pbV1TFV7es/NnqG6uX3jJ534nFtbICErHzeze23TTZNr4kXefZMYr101TRDxmyjvp5fCgQpSgrQNI4GqzJOzdFZw9Mr7tltL29e/fTu5d0tI+Oj7S2DY/uGGXHu5dMXLX/qqeHdu4cap4QPP11ndes76rrE4WJc6mOjlRte/snTcuWL8oNDs7jQTXVaNgw4UFFEnMuSqWBCUkDAOHCA5sbOgMO4IBNru/fUoU5cMuqRG+xZoRXovnWVcvaO4ZRy5Fn5bjKYS4IDuHgDHBh9Y3q0ltt2XS4brSzbbyH+BLit9CPjRxpnkYIV/Ri5Q+63nBnpWfKfo0mvnaI7KUu3Msz53kv39IyFXCKYt4VrY4F1MTcxvcOTotO3h7MJxR/PEP8MHji03R9xZcnaxK5Qo2hvi4ko9Oyy86XnnHLaJC3u2Rf6R0U9k3xHvuvXHHuP+0e3sOdPMkRuhPUz9EH6Bj4dG7Oq8tl7/5BQ+mhhixam82Wnsg2oE3oWF/fA+DoF2CgRMZi0NWAdLK8FsBQeo4cjsKld3wYEBpGPfOO92A8BEP97Begh1uo+Jw18rCJILJ0mXXeityxO07kKrfo7M7OrQ8/vOUn4UUNUtuqyY6oGugd3b9vZUfaLiZammPR5nw8OuorPouqnimdWby2XrzhqoldYv+RbVvuq7N/86bRFR1to3o8CQBzPwJ/pOnWYHhH8MmQqRIHwCLimgCCp0jDiteT8cpJB0If1W1ysRznkb2PeWUPx7GuTXWCtWaPmefjAmfeU2MVftjdrao0y3Isfe21NFxYWhVtNO10CyaT233xUxPzY9RW+jewS6yB74Jv8oFdaoQj5FgISTFymWeZxGc2u40JendmxWcpLRDQUu+OzLQ3tfetzbQe2LykS2pr/eatHT/o2qyG0bmwenVH46DArvqf6OJXe0r/PbH8XT1epcAW3wdbrFvgE71FOg+XEKRXCDvEZCOq2CAWBnp/9+SGI0e+MthqtZqcUC8IPMubaPtAunfr1r7alRa6OvZk3/ZTX7/z1CKHCzJo7W4Xyzrszvae+7dtv791SQjzHnIa9Aeg2U2kcDnFDCZRwGb/h33rf6Fpsqxpv1i/r3ftivXrV6xFDfuPY9LU8L8cWP9gyXsfoccPw2ewZ+tc/DV2BIcuGwQlIIeSjMhbXsrHpEi+HIw/g2C8W9NUVdPQboUD8ryOTw+ZOAjDNM/7HIeQg6xBTNa5K/gGgUBJzL+meFySOA03cuydXrJGcOFc9U+AK0ty1i/HMC8azsMtwf/i8764aw7DXTkceB7StEgEUB5QOPSRDuHNeRDeJEGRcEnwkXwS5H0e5F3A/IFDsYJjlZ8nelQR/AKxx8rFBzrP8TzNVwt04+DU4cNTS3JQTmAVCJscvbHF11xdrCvaajG4m7XzEI+fBCTwl8fa0BDUVSE00H50x7b7V4xifBiXbMht6TwrxMnApekBYQnJDYzonM3H5qoivKKnbZ+lbsYIlNMKAYKTBkXB44JlMldIQoeBvPtuOYcAhsGI7159Va92WLXkJUkeolbA8CJg9WKsl6iYgQC9qJXe07Rt20A0IXIFKahYU8KwD+xRDXt8CHvE5vR0IXn6RhWN/BA08i6Mv6YGj49pWstHFRWsAMab97KsCysdogQY/gZnDMzLcbNCjKUZvbBpNCVjwnz2ZoUyK71ub7a5ExVpggR0AX8P/S21MsW5RWRpqqddssdhkZDXr5gR5J/6EzxpSdqnGcSIS62MJLYYq5AwgxNEb/sePGSWOWuRHlixki/FwCfqD87hma90LhLteJV3OfAasJulKrZzHugo6PUyic7gk0wxoaIcOmyhogqy15OdryrofEoRFJ5zW59HRPTXVUSf6vF6q2AVsxWv0j1qyRRgTbyAPinVlIUPCGF0eUtO9DtdNfT40QL2dJrUEYuIZZsBgjlXNAMyK5PTDYjBSRzJvwvN6LTZ7c21Z7JtOa/bjOdt2URTY8DnsNG9TkdzR1fe5nDacl1L8lUO1DQyPRJXrFYlPjL9yPQKmJqcQo3WP9J0VzqpBOsab78nm6yO1jUTLNj3nSUxpBpHaCuJDwudCWZNOXCc3TJxABzcQd3PnR2vGey+7rpu9OnRHc+HVd2t/WHd8k90OuXZT2k77N0BFbKRgWBWgxgSl+fwc5wnUQuqcUlU6WwGxxTaOJ62N9Tm/S4rbXNUN41caqXHJ7enGmKsDVmcdg+KxB4d6BoY6JqO9zTKTS1+r98efHOhqW5cWjOsBCPefr8/wjYAmpXdb87l/Dt0v4JRY7+2GBGzgmAue/XUP41I/ksi3zz3Z9bdXxjhr6IzW8avXcxwxNdxPI1M9Y39Ld07d3X0bhmbLFisnAM/Uc0mi+jPRXI9jdGxrnxo0RN9Wxv9onYY3J7T6WgPhnvq1vgCwupc91fSbt5FHgQFd50it6eiGbubk4O5Siz7GHheNz9mXK7zUvkZKVrAV3xMHMNhEh+ewkPuDrLCK+jrc2ECu7OybufJ0qDCQ5BAlBlkXQXnxiv2BrGhrD7EL5GIUFmiqzR15wM7DV0abKgfIlO6N1x6Ymr//im0FutT6UfLJiaH0GSY+Hv37OfoCzij1qDNhPM+bNRlCyZUQXKVbS54KpHnC94jHza7ecHN85bDsofXNmm8W77GZUHWyLDsxvd0LziPi3918yaT4AY6DBdT2pePJ+8AsHAP5ztmP6cRnN+Jz4+ZiD7TyRhLeprgWqLzIopHlrJFGuc9XlBjgqii4DRKDFjiEQYFQqAQBZM9FLcMoBptBfEvuSpEB3y0Xa228W43jRBXT9R7hQZe5uKnMYXe/Q3R/zkjxmiHGiZB5sYiHzx0nVn2ot6JdbJ/FxrG6k30IWD4wdb5/jzJLLQ9T7IiKGCgtzDHzzrEeMDsz2vXpjiO27AOojieupzyHV/zanjKssP9HM+lroVc64ZveTW9zfHSSxVTq3onTCZHj+KlsHq29FfA9fvZp9B79CkcDy0YSALXz5fE4/dSJxWO953EbHngARjzkDPRz+m18cUbwJ0u6A2RvmGyXFlAefO6yEls6SSDL2gZs4iVAvQzrB0uF4dZ+F8N/rexjMF6pYggocb552M8tfrx9BE86vlRy+wadHr2u7jfZb6033UNbneRHtQXNIOep2qojJFFlVu2zQXSRGCRpOdzOZLcgbEk87hBi0uZIk0znOCe9LatHpp6/Bs9HTLLWVGQ8/jv27BBSqZ+uHV/W0M+7nabwqC11YnR5r5hOptFyGxVJJ88OLP4TNXghClTo9YJVV4e43FCLYVziQCVKns5I6ur+PwQmusogHcjtfSH+8a7MySPa0hpgwrXPDi6q3e4kB7qyBcmz8zcluVBIVgXuohzx1NNB9d1z/TUDzZMrcN8GoQzXwcexAkH9JoNu069gZ2LRUmXF9OLm9Kv87GhRdO3KrmZxd/xe+pQR7o3wk539QctLBvbbovUqYem4oP99YOS0mSLtzTJPdMdbBWmLQ68poC2ULlfBAfN5ar5SnEkYB7PlYjNNKUNBp3NA6M37h3vzuoENqQe6k4XJoeb873hsKi2HFw3c1vDo5i6kumO/rqedb3dM1NwZgFo+yXQFtSzM0Kd0aKBeQRHckKWEd3RL8XkUOP6O29ZM73R6nLYS286r24f8WPS+q196dyoY7sjpgUPPX9oz5SLZ1BxCGj7al/bYAH4iP3fSaiD60kFhGUGnAuh7JzxSAtSzHY9TKGTgWqJEbw14l6sy3s3alrpI03buDGl/dN013q6QfRJbrPJFQukiVd5DSeeKK+G88V+0gcKzQbQRfQC1COd1Ei5Y5EstyiTVglHRhlnguSlhN6Z0j+Y8fP7U5jdHv11BGM0ii4qnMNnjij+9b35GityOKUqqW8KCvO7XrpryCtWw3J9ur0m/mxLKtmKP9uiA5nG1mq3tunoJnRYlHi3ia2rXzqjcC4ZquaQp7O6c2K8a0VDWEuGtOYlV6uxyOFUR3stfEo/VxOcyez010fzeaybTqw4oDMNFT+Juaar/pUSImIc+BFNpR7U4IBE44p6LfXdlFavK05+5PZ67AzD76W1vp7j4UpF9UL+3g/1/Ajz8GV6mpJwh7PmEpHp+kmX3zm9rJV+o2l7btC0exRui3ZPqDYUqsXbozyuJEvP0Sa8QmrkRbNBdAPsW41t20LedszvWhbmorAsNZcPuN7mT3ZrdwfcQgCp/uaA//aU9ihEfnJQvdSYTfmXS4oi2kzmRKyAHiSkGEcC/3Bn/QLwr21hnJG+PNuWhMKCwoXxgope0G5KcR755tEmUqjioYlMlyjcY6SKgeI1tu87YU2vDh4eGluYbQMrvveAXtbsegnHB8D1xpXqrrlOMXojVXoupR3UCb5db9UbwiqZ9Ppt9gIw1oxOYpnN0VdWkAX10BUXhbl602vYgkqT79BmbZnGcy63J9KEk5MFN6s1SF7wpNrpYlEynffWFMMp1gxLepw91xgf7HyG5CsL73CBlMczmmXjuVykoPIfl2sjoutAS/0/qOvS31X1oPNKqg5uwxMkmk5TreAb3wDfWEW5SY2hv2Dwzr18eWPPk3v2PJkb2zE2ev0oyr9w8LaZ6UO/WbpmzdLeDRt0W3HORtGHgDlc6UAnr1ioSF8Ss+YB9rOXRa1fYMy0Rw27lQUxCyiejdIKnBvFPUfLvC7DXEAhMczQJdOCeKKkfkA0uDA6vue2VUNZxLAurwPr86NL84vXjLe0Dv0r0d23Og6umz5YcHOCRRIvvkFz6MZk85rpnqXTU0bd/0fAUFvxuWVJgUJfZlfEM6k0+qMiuH1o8uqd4Ob/hmGMjeFxh8L1bwhpbgbd7PH53TcMHwjr5pPXzSc65pI8up4MgNxeA7l1k4hm0jMWow4qF0GQADea9Te13gXdP50NYUjDXrMpWl/DSM6p4FLH7TKHNnR1+dLhQFwrRhTGlxxY1Flv9RkNQWSdWVK8pufYAb66JuhOJLRroM5w8WtSqicgMGYr4/Fpflcg6ndLkoabZQ6noyXqrYUqEGNWAPPP6Fr8lqAGaxp+86nrt9E1KzskvbosGg/AC/xsZu/o6pR2FSl7vo9Z9X2TKxrgqyMmqNwE+pZi35Kln6jhlaTuWYm59WfWE+JssaCDdbEuw7Zw7oF+XIkjeptsnsMV9HPpMjDDz0PqAUdmeu/RowdE4SAXSSnlJCQMiT6X+BqiiFP6mBdkO+Opr/41uX0OzvXNXkCfwLmaXn9VSqNLWl8BNK/zhT5JqbssIgcEeay7VOxdd2O6g9u3B/EV36B71dKPoHCleR5NlPtbpRdRt+52Cc08nH0Bzu6dX5dBopOMWRmiDbRRohlASH/cky3qv/eAejrrwagqfZcLnODpMJlFQXVaEqAQXtYd4tw2E93hEXDPfBfuobOuphwyaSZHSBFYnwVlmvRV/BDdh4u3n7Auh+A4HK1duUi2OO0ONKq302kuCE/fZO+zyr7MRAjVkgXiHI16CWgpfFm91I4Kf69a8pJqaXcK0vU1q0QBmKhpqf03pTS8xgvLhwRj7au3pYwYtm8f8djhY9+GfAvuN27E92H128dwPQ+xHMu1WJaree4dJNNcwD8uyF0mZczS5s5LRf2wmQmGs8F42id6fJZsyOqxMuZ7whWxK9MeqNbcAwtk3+pwZ6Ohpojo83lkU8FRkGSTHW0sa8L5HBPN/XqeLuDfJf0O8JLMm4kY743RJQ0Hkh8yaK55/ju5dAeoIcOhlv8r9x0myELpFeTSm5YxKyihy8mhlJ+YYKPC6wulMwmjaY4g1jwF8f4U7plbjIYMmBp4TMIz4BcgwGpn/GyGAUcKCSy4LSjSM+gNUKC1BZ9ior8edVf1JxQHEn8CCuWu2usx0S1tFm/HomgOaFddtQH5ibwlDC7LoYTXjlg3AhN4NlW15HAmUt11jBd8TgR43gM8GuBhMB7wA7mMhLS+vng6Tf8ondZ9RhlzwfDvYDQAyHitDLCLZuJ0C5h7YEu6TkKSDQmEjEG7q/owUs8JJ8u7q2rbghxtDikAdnFThGedU4SgO6Oo6RKwyOaQXM4TjFjLhruOCQLsoeq0+aUf5K0k7jZSY+ht2gP5HekoccavL+b9pEVmrriK3nb81sHYXNxPf8q5bIzjLfaxSxdQRnD81CZwguvxx11wsb3A8pet/CO/J/l/Wlq7bnicnVLBTiJBEH09AnGNMd42m3ioo2Yzk2FUEvWmERPioAEhXhttYAJOmwFD+Aj/xHj3W/YX9iP20dPrAW9OZ6peVb+qrqpuADt4h0L59T+xwqb66XGAmoo83sBv9epxBbvqj8dV7ARbHtewG5yRqSo/aL25qBVW5Fc9DrCtxOMN9NWxxxWI+vC4ij311+MaJPiFC1g8Y4kCGUYYYw5BgpjrECFXiU/oHZAlOEdE2YLGAyaMXWBGndGnkePR7UVIHavt9kvmirFPO3eZDE/SmGJIyzp5R989dQ9dXKJDKbiivqHnltYBM+LCPi+LbDSeSxLHh2FIeSKDpZxH0tIPE7uYTTLR+aO0ojSStl3Qmcm+zWVgxno6FDuUO3Mvve5lpytXnZvebfeAea9ZcOqKs6izXVynqc1tnWjVQ4EnVy3atnjS1E3HnTtdcGzGDS1ipOCU/3q+kI0Y8l6YRDOiZDXor/sRJ7TQtPm8aYuRkSSK5VT+VxF2zOhlqgu6GmGdXSeNrzWvn4H16NVbNNyY8S7KeyhLjnFEjL4pZhknxaPjI/lO/n+IDn3lAAAAeJxdzlsvwgEAQPFfGctQbiVLZHLNJhqFLdZcQhekkFy+SF/Ioy+Y/3rsvJztPB1hQwZ914FCRnkd1rAx4yZETJoybUZUzKw58xYsiktYkrQsZUXaqjUZ6zZkbdqybceuPTn7DuQdOlJw7ERRyakz58ouXKq4Ck5u3Kq6c+9BTV1D06Mnz1petHWCrzfvuj70fPry7cevv397YhPLAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwjAgZgHzGAAHUACFeJxjYGBgZACC2wqnqkH006bXtTAaAE9iB+AAAA==')format("woff");}.ff6{font-family:ff6;line-height:0.923000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff7;src:url('data:application/font-woff;base64,d09GRgABAAAAAAhEAA0AAAAACvwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAIKAAAABoAAAAcpiaheEdERUYAAAgMAAAAHAAAAB4AJwAVT1MvMgAAAaQAAABBAAAAVlXmXsZjbWFwAAACDAAAAFgAAAFKEnUh7mdhc3AAAAgEAAAACAAAAAj//wADZ2x5ZgAAAoQAAAOiAAAERLbidsRoZWFkAAABMAAAADMAAAA2LDga22hoZWEAAAFkAAAAHQAAACQE5AEfaG10eAAAAegAAAAjAAAAKAVFAUNsb2NhAAACZAAAACAAAAAgBYAGlG1heHAAAAGEAAAAHgAAACAAVAA0bmFtZQAABigAAAGpAAAC7lcTooZwb3N0AAAH1AAAADAAAABAACUAsHicY2BkYGBgYmT7t2PKlHh+m68M3MwvgCIMT5te18Fpuf9sjF+Y3gG5HAxMIFEAmMMOMAB4nGNgZGBgevefDUgKMwAB4xcGRgZUwAoAUD4DBwAAAHicY2BkYGDgZzBkYGYAASYgZmQAiTmA+QwACNwAiQAAeJxjYGR8xjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBgsmd79ZwOqfMfwC6YGAPcsC1cAAAB4nGOUYAADRl8QwcDAJMxgzaDFEMOgA4RyDBpgGggBJ74CjQB4nGNgYGBmgGAZBkYGEHAB8hjBfBYGDSDNBqQZGZgYFBgs//8H8hUY9P/////4/1WoeiBgZGOAcxiZgAQTAypghFiBBFhY2dg5OLm4eXj5GIYFAABOhgmQAAAAAAAAAAAAAAAmAGAAfAC2APQBEgFCAXwBmgHcAiJ4nFWTy08bVxTG75mxZ4INE+zOGBdcu+PBM37QwZ5n/MBjGwwGF0MhbWKJIBqIiJM+SQkFVSWtwiJSImVRVU0TNavKahfpLpWyrNq0Uf4AVqg7hBSpqyir1OmdoUTtaHR1Nud83/199yBA+RcU7BJ/IQ4hYGlgSCEq6poJRVJVArDr7twiCeoY5elxw+q/FbFLdT9v0i4P2eOhusm2UyFEoOSLJ3BAfI+Oo5gzjRKikj3MUJW+AK3Jrijj4ti+MKiKacCBmNv+NCsruUvr+eFTBOUPZSqZkJ8iOJ8lNKJBqH41vdma/+6H+ZXW3Dd8vJ5W+/vVdD3O75QU+XQJ4Q/QAj4eYk0GoQToqo+i9SJhqj4VHnbu7GinEsZcOLBjwXOOsIAOh/7+9rBvCB97uE90+opg2j+ha6IQpWgJOw5wLEPQDBzHbo08wF7ndO9yd1fdKw1GT5YKZXZYv7X6mU8MBo+NeW6vUUHqlypzxttV9sbiE9Lo3HQtf3e7GdEzwQCtd10DWxPz2ceaCYRiLIYjSqbNwsCqKdANbOFIvwiOAYoOA+x/sVRYS/UMfmhmq+Vyo0bq+dwbQ81Qgr9oza4VzOL8/be21HR5WG0UzPmKG7oaQ8lM2sgN55sl5UzIv2hnE8b3fUrcRB6bVEzgBJ3XAWMSfBQJT8+/0zkA7/L5n+FRu92uQLvThMv5zm+HrOLY9x7ujfzf90tcgo/neM5mBnvXzuYvxMRXm0ogmRqw4oOWbxLOdZ6krfmNxwtXNbmQyjD8qPz2uCTB5eqj+JfY2xGXfiTZCjRDCFEZD7ffDeco2LNpDVccxQWc17NfZnlLTEyNxdvrWcM0Z895ZldqSwtbxXFg37NiA3+2qmx/kJ+88e7t31mL227NXl+5t5h1cz+dSDpZPMOaN1EvviBDcoLmN/F4HAMP+1KtLi9eXf8cZ/oYHhBT8Ytf/7r6I2QuwTTmQb70yyEepRwm9s4YpozzM45yIx02HIvtGq9oolMq2PeVB1caFf3NjXsbdaM8s1AtjIxNmScmYeqjqfoH9ftzm5tzuUXW19DHW61xbcbHLoJbKZUUfaTYeVaenCyPTkz8h1kEpe1ds1fNtKVMxnW4wUVCVcIkrUkyXmkaq/c58nffb1hReaRy1uPyCmLh9dpShQtVE5FsPjWwBNAdVKKWGAnxWxMwc+cPOSd+8rG7O8T23li+MMr1DfjT9S2il3rNGIkZQydnk9rCP2RT6yMAAHiclVLBTttAEH1rklSVqtBLbwXNEVrZMgZFhWMighQ1AcUJ4rqBTWIleJEdFOUP+jGISz+ln8CP8LJeVWpu9cozb96+nZ0ZG0ATr1Contu/WOGD+uJxgIb67vEevqlfHtewr/54XEczUB43sB/EVKraR0Yv7tQWKzRV3eMAn9SBx3sYqcTjGg7Vb4/r+KrePG7gMPiMDiyesEGBDDPMsYIgQcx1ipCrwudkJ1QJ2ohoe9C4x4Jn1yjpM3IaOR7cXoS+Uw3cfqXcKo4Y5y6T4U0aS0wZWWdH5O7ox0hxiSGt4Ir+mswNo2NmRMc+bYpsNl9JEsenYUh7LpONtCPp6fuFXZeLTHT+IL2oH8nArklmcmRzmZi5Xk7FTmVk7mScXg5TuRpej2/SY+b9yYJT10CJHwz7qc5Lgm0DBR5dqRjY4lHTd10XK+cLzsy4iUWckuCC77/JQvZgqHpmCk19pWmRP/HTTRiha/NV1xYzI0kUy4X4EsKhmT0vdUGmFZ6w36S1W+3uBdg5uv0FDfmSn6Aaf1VsjDNi3JqizDggXhufyX8nfwebKHwtAAAAeJxtw7ENgCAAALCKB5gIgoKjb3urEmaaVDB8r8fM1i+C1S5KDllxulTN/QNuGwLVAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQj4gZgHzGAAEOAA9eJxjYGBgZACC2wqnqkH006bXdTAaAE9sB+IAAA==')format("woff");}.ff7{font-family:ff7;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff8;src:url('data:application/font-woff;base64,d09GRgABAAAAABhYAA0AAAAAIjQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAYPAAAABoAAAAcpiahfkdERUYAABggAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABIAAAAVnXoGRdjbWFwAAAC5AAAAOUAAAGiEcv+wGdhc3AAABgYAAAACAAAAAj//wADZ2x5ZgAABHwAABE7AAAYuBd9Oo9oZWFkAAABMAAAADQAAAA2LYoa4WhoZWEAAAFkAAAAIAAAACQGVQLjaG10eAAAAewAAAD1AAABWKwtE4psb2NhAAADzAAAAK4AAACuDpMI9G1heHAAAAGEAAAAHgAAACAAnQBMbmFtZQAAFbgAAAGsAAAC+r/NfRxwb3N0AAAXZAAAALIAAADgaLG9HnicY2BkYGBgYmT7ZvrFKJ7f5isDN/MLoAjD06bXjTD6/+H/bMwLmd4BuRwMTCBRAJmoDvx4nGNgZGBgevefjYGBecP/w/+vMS9kAIqggDAAquIHPHicY2BkYGAIY/BkYGUAASYgZmQAiTmA+QwAEt8A6gAAeJxjYGTMZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1DQgUGBAQYC0lxTgJTCb2amd//ZgCrfMfwC8hlBcgAEWgyDeJxNkD8vQ1EYxn/ve7qo5C5CGi2RaCIpBotcm1oMInJFB8tNi0jEd2DhS/QTSAzEYLKxWkwdO5pMjZXnnGtwkt953n9Pzh9rkJbtxw1Cl9xuOBC5TdgOU9JZBupPJ52kekcc/2mkJVb+5RWa9yEtMfArdvyDvvcofUsMlb9Raqa0ER1/Vm+BMlxypnrfx+TyVHorXWXN72j7Q/Jm4ZHMT3WXJc7FnI3Z9BqH9qKZGm3psm3QjHdTXvDFntV/Xu2TI8VFmKeIdfUXoy95evJf6y0XzKTeu864J5MSY3tK7yT9wyhxEup8R3yXpjcqwjrNX0p4QTcAAAB4nGNgYGBmgGAZBkYGEJgD5DGC+SwMDWBaACjCw6DAoMpgxRDOEM0Qy1ClIKwgqSCroKT67Dfz//9AVSBZDQZHhiigbCJYVgYsy/D////H/+//v/v/+v+r/6/8v/jA8oHJA6MHereyWYOgNuIEjGwMcCWMTECCCV0BxOlAlzKwsrFzcHJx8/Dy8QsICgmLiIqJQ9RISEpJy8jKySsoKimrqKqpa2hqaevo6jEw6BswGALljYxNTM3MLSytrG1s7ewdHJ2cXVzd3D08vbzxOw4ZBBCv1IfBz5/BF8YLDiGkHgDiQS96AAAAAAAAAAAAAAAAAABsAJAAtAEOATABQAFOAVoBegG4AdACEgJSAm4CoALiAv4DRAOGA5gDvAPuBCIEQgRiBHwErgTGBNIE8AUKBRwFSgVkBYoFrAXiBggGRgZiBoAGnAbUBvIHBAcUB0YHcAeWB8IH7ggSCHIIkgikCMQI3AjoCRoJOglgCYwJvAnSChwKOgpYCnIKogq6CuYLBgsUCyQLPgtYC2YLgAu+C+wMFAxcAAB4nH1YCXRbVXp+/5P9JFuyZFmbV1mLLVmWbcV6kp5sWbId75YjW5I3eYnXkAUIZMKQeEicPSSBQFhmpulkGdowpE1oU5xJGHBzSDgc8LB0oMMwMy0Npz1QmFOYaQPDsPi5/31PXpJJ6yO/9d7/fve737/cR6VS/oXXJDL6MyqdyqGKKB/VSlGgZSw2r8fHuvXFWikwVrzjgNxqlt+Ax2a1KCU6rVHCun233K2Jbe7p9nMxaJbxkTSFTCGFGXm6TPHd5HOeshcwGVqVXKHSyZkCO7x48z1d1HPf1r7erVtHGMV8ZqZClkX/IVMx//fJpxD0d0vU+ZzN7s/LpOP8MzfdUvgHVOcCAx04Ly1FpVptag8XknAsI2UIROgIvuTKLKnI1gT7nWUFRVWFX1+Axh9PO9u4nKz+qV1nhn48MVgk2vGjHa9oB8lQSqRWH+fzeiokdlYP3put6IMvfX2rFf0F0U4duGEG7YQEfq0WF+h1WoFaDycVz75aqKDt5MJdCEmadVopJ54ZFRhpgx5m9Aq5blimUyr0stEsuUIvV91tDhkkSn22avw2j+GiWpNZt12jzlJnabY3ZGjUGQpZIMuUQadlqTXyptu+WZz7s/TbdAulwTut1azWWrxqs8XDmtUet05tpt8285+U8B+bzZBdAgZQLl1nm838x6KNsYV91EUqTjEUxUmtnNXLXix15OTEYXpnnLyXU1dBS31DSZBfs9cMWv5LSLtaLfbFI+mL71jSMR6PL63Ji8ilinCZFKhHVCi8mMqfY1QyRSr0kBP929SMb2NahSw1Q/J3WgXBRFOlC7+DOfonuKY2wYISrJYKIMxzIUAjBj2daa+QWC1ELgY96+ZgriQ7wZkCtRqLLX/IXZbIr4homLRcZ16XSa0ujHUVQvMP+zzV2ury+CN/0R3yuTwJ/j+B9qvUJfp13AO7g5vvFPlI4OEsjo1QHOBl1YzU6+NYNQtn+cs72a59Ae3Oalqmp6tTg/NPYvtSbH8V2zuF9rUQkngFX6OlNjuqRdSGEqTiD50vAHCV37JjjbGgRB1pMK8qzEpTp0JKWmrFk6PftZpMac3p0i2au5ls5lLdjpbCQr/PGBrMqXRZslOBUUjP7Bywh4tNaTVpzOZMEDEv8lVKfADZtnNGpIl4Ae0EhB8CARMjtQv0oValRoC5qcSOqNy0yedvkOdytpZwSnlVoHRVr66ocH11+E4/549djE5tqKn0xWr0ZS5jkIH0Na7ySr/b56nur3MPF6iHxfXKRxDv0ccwRikRgVVn9Zq9GuTMqmYk8N5EJ//l/ODEeXjp3LlzQeSxH3bU8i8jbjvivor9TEncNhF4kkJGalWbdWadIJurewYCkyazvrdSpik35dU4SqqVq6GT/6oiGLnn9bX7fGV+h4fOKmx0xSPlFthS95Zj301ayqXKhFGIL1dIBOc16IRRiH2px06udYyOBEjOB3MF1kA831tdmn/qbo71elrXpzWuax6KGSyhQBPQadme4pAt+9+qO+2Nma726ejJV7UB3c774kcnOhyhtTWKTENpS1nIsbg+XyCGY4I/YBC2ZmpwLFwZM8xZG9rLuz+dwtW+AqfpTvuG469tgi5IhRb0qkXsBspKuRY5QuhcBSxGH7KSEoEtnRYdwadZcQ1z2/t7pzqrQ8F7Y11bgiF/tLuhimsk/5I17lWRVs7Tjiu8PRYa1mrj5S0bNrSUx7WaIZCwq+s93vp6/kZLa0trY3vbCh5ziNJBVBkZhCPOSTwT8Rhp5HGlXyKEH9zRXFtYUVU3IjMNuJqH6mvjRfV19l6AdL3bErQXIKFVLdB56tUKr+2BrSXOoxN3NjcYWx41qKU5ntWlVRXxiKNmSNSZEG9gFpmRUpQGI446GXXisDHON8aTWqSn6UvYQk1RZqvdLLUCq5HY7FaGOCA9PdTBv7+mHVL7WwYLJMB4c5S5b7xBX+IjAHG9+clWWwuOIiFj0eNoR0npqUKRe7N6iXKbx+YEHUqInPGxjx5/dBP/p083HlvbGr13433x6fvGDj0Qfex4dOtseAt9aUMz152VMf6byaYvfx6I8Z+tEXSxeuELOkxfE/QvCNNuyyQ8GvQGjB62FfHNx9HhQFFxw4GRtWtHDvgcTrfS6bCzo02NjU2jq63FXHlRmnzjRijZtFEm08aMCkVv3/em+noVchtyMopzOY5zkRFOQJiJmWh+EfvxmV38V8Dsnuk9sun48U1HoOeRV+lL//T4vp/Mv3Aaca7F/qX0DMkzDkCfxAXH2aNvqoV4RpfyHrhyGTV8BNr5S2/jxTQ9Uw+fBvl5oJL9ldg/A2+W+6J308oL2HgfVPDvJOAC/R34Jsi/gg2T3PQucvP/MONFCdC9k5tFZqpcngpVWZnTLzLTVLv/HVulyItcmRMrVmWKvOieDiZxrUNe5EQpaoKIxSNLr0vw5xIJ6EmQ6aA03gYXlZwHdRnbC/lOzV5OJPAmGX/342XmUvzVC1EMs8b+ka6+bqU7Yq7UZ0Dv9+P9pWG/LteWlU4bxdhA1uahRQwSqY5gABboh4a+ONDTA3cO85/DXYf/A1Echa38Z4s44Ab2YYT1wEBbDDf4OxOVIKcvzR+hhTaTKGIG2+QIc7NjdSKxEi8gkzRo9AbWx2lYCYOqd6w60PZknQwiWywnc6SgiO79Dn0XMPfv4s/AgbOO+SfpS338eFOh5x2IL2OeQNsZAmbRpsaAOOiJHV80QEQ4wEeH5x9D2LmH6XtQg/6F39HP0G9gjtCjjcxkJGPdKwMW/czPdu184fnd06P7BxMH9g0N7IfP+Z//8p9P/OjX/Im9f/XUvof/4QKV1HMzjp9OFIl6Rhlb1exKRTcfWvtM4qt1h6Jj0aNH4yPwX93b+Ov0pe2x+ij/vhAn/Av7BDyZlFmwITVY7UugiCVElUlA1YKdNSC05o5t63sr3AK+n/UeGB48eHAoI18qW5fovAMSfU/XnJrKIkh//aMHz5/n/+dsCi15dOMwtYh3o8CXXmDMKsIloYRbgrwxMXuq9783PT68JjHefexYzxgE+ZfpS/eEg+OGS1yY/7Zd4L4MtXYDcZes1BqmejsWSGKN5HOjjwicGoxAfnq4sXt0arNqdFt9tFRXXO+tLfBNvxZXdQyv7rLqilwdtWbvP/ZMN0WjXZ6qoixVZkZeYVVzZJu7q67VVWnMUsk1+dZqHBtLbno/fUHIY4If4zySmYzefxA9OZEYwONBepS+B+aP0fdCvahXXPsozl+9lMNQtMKK4wUdfeyO9d9PjDU0TkY+ueuJJ+6CN3n3yPoNa+Et0hcrCvph0T/SgIRyUbr0w/zvh/jfDz/rYyBt8ADqvh21VnfMuOpj6E32kzyF/dDNkspnpHhGnSa1rzFCIZAryVOv921dhWVq3WT09d6oq5iG1NaB6HhBkSQFmLZBYhse+1s3e51/Gsf46Jm/VPu/BT9/bt1RjbbqGxBrYT/iXIXjqYQ6EJK06IAtZulVvAz2HEJmXoMP+V0mkI466QiEHPMzoq/egfVyOtbLUrIXUrMkBkD6mTNDQ19LPg5++7jQRr/AUC+IbQzJzPcCtjjzdVCyOYga82GNcRzeRIWZiMa8i6WCUEpJxTpU6hUdDeub4+Hgxmr/ye3u4mgzE441j0Te5GyuQkuRK+qsbaCd3qB7tXMsfDKU3mS0ajRi/o3hGB8IOTFnUX1CvFryGKlOSPofbO5oDUXCrYmm4UjM22i3hriB6xMPVlUgfb8KHB7p6w68X9cjxpIitHkacRvEOG8T3M8grUAGlSCihdPtiaEdUxMVdWWKkhqHuyF3TaivqYQ9cuVYVk59bpY/7Gwf9SE+Yus5AV/eSg4wbahZiXcpzuD0n4vUx1sn17d3rQ5HbAFuIOorNZk9tQ+Ojx3iwDb/7mtcd6K3J98oztuKdk8hxixh3mZSo3KGZeN6AS0jhVP863RPTXcj09o3MH1/fGBVSVVaY5mzRfEvbaP+es+RibEjbSFPXajZL84dUcIgfZXMHYQ9QwGQxbeSxRVNw6C9NCPXrNuyOdzePtJSVEZvVaeqrLnbqvlp2Fs90D4mx2yUv+CGD+FVqpziqGbRFmO1i/tXO845AG5jytJu1oY/0bqPZYQ4R0jReJwgfCEQVvBDR5aClaeYhxvcDnl1vzrH73Bm7xke2lOXW2BeW8+VtHf/tbfYwnGW4kcfHNCbVDJI1IYScAhdppxrGC1Q6r00o8lnzVWdnf56m6nf4fQ3jphMv7nL477XzfNNSnV2WoqlrIzwEMXDDK6bVshVHlJBMgWQVJYOZiIg19jzPJWRsL/3MFiVGrMucyDwBapprvUkrk8Y2TxDPyrWhSQzk23siXBYhkl89nsJsoYLLy+w1PPYRkVyhmE5S9MYgkgN8XzYHarWmUrTtfnqcCIRaOi0BAtTMkwGGtACUN3CHieZp+1inuZYKbwXO9HV1Pr6wNkP4kcRkO8X58W1xTlRJ5ZrBUQj1gr4nJ7DtbIk50on57p8xerEtXHr6LlIqtppZt2Lp9bq/sl8/zByoMkv0iIFyxfXWtfEYieXxoYZHOPP+NTdwmdrVf8KPuFaS8dJoncj6v1d1Ltc8ErtrWkxqZF39wwm9u4eGtgT6a7293RXBeL/OnbwwPjEI0cH4n293T1Dw2LMCMEHiEXwyeWYoVsRM5JbhQ9Q48FIuGW4ORHprFpdkm5lq/uvTx6s+gM9XVlzZG3TRPWcVuUaF32yCO0+h3YzSYRPXeHrmPC8bHIHuezuDd0t45s7rKvz0sJhr6uqv7MqVJx+7fPgodHJg4W58kb+lYeL20fbm9dVZYgcxvDQgvbTyZ4Nkuxx0NI+Gm6uuwfLvbHwr+Da4Ahg23zkawPyxQrfoBalJXyEEj8YhXBTKSRl8nXLQBKPMQU2rHK2dfUr2mJrlWpMspZcs8pXaOdyVeEmRV2kR6Eq1OucFXmSFFm6jNndXGwqa6xsUmUrFSkSKZMhdwSKce9Cm+ptIaU+Q86kyLKyU1LS1ZocAb8GMXXQAaJ2Ele9QkxhdRhfdFoSUzva2uLdfU1Hj7KVjjzbXpBX79pV/XXcLOgH+87gPitrOYquSNgwE27YFHBFCirZpsiqQDCA2/CfFpuqvGAR8y5cwb5yMe+K+boW4Mr5/vORsSIGZJ5OmOUb8X9+3OI69Itkjj+BffKEPnaSq1WAfQ1i38UzfeJwfxvu2VIcoc7DHZ7KVEgtq2qud+DZUUds/mmk3PXgWzD77N+4ao7Ovnu4pOzgL8l8CCFviJiI71o5rOiI774R/8FjsWuz8SMHY5dnZz987+mn3xO4Uy6wwhyyCR6yv3UBCRVQiztjg5FGMBq48tt8r6nYypTY0hUGRdG1Tp/MXCEByV6Ynf+kqVxWn5mSlzcAszuzug4am4B8VhS+kzyOdtW31gjCV6HH+SMgj2CV8BDcwf+xBy+ecEACAnb+bPI7D0V9Djegculb3A0+A258HhS/xcFH1EVxT6BZ+R2PniQf8mjyHu4X3mcIe2ecP2sQTxfjpOU14QgfxbA9/hMfG8c+25b6iFYN4umngvFry0PEkt8L/0hN0Vr4oYgRd3ha/t/BOAVGYm/5nVx8i+mHZB+32KqkpremphfbvkDONaKfoyboe4Uc6fw/s2TqTY9vnzhBt/Tg9nm0YekBrSdpFVESPc7h2CSvFJCaFwMLxgHpTYMLH5FwbJiLx1PC4dP344Br/HnmfFN28RQ9GZ9vg1lxlMH2UXljVpFzKjkveAVt60hNAbe1qCF1oO0me6fDYdi7ZKxBjcb4RlyhFIGn60msOVTlLWhvsmu/PYv09cUJrPGb8oXh5s3FCn1u5hTB0FNXZF6eDm1oH01vJONfVjMqS872JJHhUWSO+l9As1agAHicnVLBTttAEH1rkohWFeJWVephjkGVLcfQSMANlCBFJKCYRFw3sEmsBC+yg6J8RP8Ecedb+gv9iL6stz2kt3rlmTezb2ZnZhfAAd6gUH3jv1hhX332OEBDRR7v4Zv64XENh+qnx3UcBB89buAwOCdT1T7QenVRW6zIr3sc4JMSj/cwVt89rkHUu8d1fFW/PG5Agi+4hMUzNiiQYYY5VhAkiLmOEXJV+JTeCVmCC0SUPWg8YMHYNUrqjD6NHI9uL0LfsQZuv2JuGU3auctkeJLGElNa1sk7+u6pR0jRwZBScEV9Q88trSNmxKV93hTZbL6SJI6Pw5DyVCYbuYikpx8Wdl0uMtH5o/SifiQDu6Yzk6bNZWLmejkVO5U7cy+jtDNM5Wp4M7pNj5j3mgWnroESLbaL636q87JFtO2hwJOrFgNbPGnqrmtk5XTBsRk3tIiRgjP+u/lCNmLIe2ESzYiK1aa/5Uec0ELX5quuLWZGkiiWM/lTRTg0s5elLuhqhy12nbT/rXn3DOxGb9+i4UbJu6juoSo5xgkxxqYoM06KR8cn8j/5fwNy7n3FeJxtzjdLAwEAQOHv7jIEYze2qJst9t5AcdDYe49xEXIgBONg/oCL/0cUV/1lejj74K2PJ/THz4th/3GZGAhF0jLqNWjUpFmLVm2y2nXo1KVbTo9effoNGDSU9PJGjBozbsKkKdNmzJozb8GiJctWrFqzbsOmgi3bduzas+/AoSPHTpw6c+4iObly7UbRrZI7bz69+/AahEHky3eQqqs+lR/va5VK+TmM4yiOH34BnV0b3QAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwlAgZgHzGAAHRQCEeJxjYGBgZACC2wqnqkH006bXjTAaAE+KB+gAAA==')format("woff");}.ff8{font-family:ff8;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff9;src:url('data:application/font-woff;base64,d09GRgABAAAAABKEAA0AAAAAGUAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAASaAAAABoAAAAcpiahfkdERUYAABJMAAAAHAAAAB4AJwBDT1MvMgAAAagAAABKAAAAVlXpGSNjbWFwAAACvAAAANsAAAGqJnSNB2dhc3AAABJEAAAACAAAAAj//wADZ2x5ZgAABBQAAAvxAAAQgNqs6lBoZWFkAAABMAAAADQAAAA2LV8a4WhoZWEAAAFkAAAAIgAAACQGPwJUaG10eAAAAfQAAADGAAAA8nKWEhtsb2NhAAADmAAAAHwAAAB8brBydm1heHAAAAGIAAAAHgAAACAAggBNbmFtZQAAEAgAAAGqAAAC+sDGZzJwb3N0AAARtAAAAI0AAAC08Q7knnicY2BkYGBgYmRTb9qzLZ7f5isDN/MLoAjD06bXjTD6//z/bMyzmN4BuRwMTCBRAIvMDpt4nGNgZGBgevefjYGBOfv//P/OzLMYUhhEGZCBDQCcCQaXAAB4nGNgZGBgsGXwYmBmAAEmIGZkAIk5gPkMABAnANAAAHicY2BkPMA4gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEMGhgYGB0YECAgzTUFSCn8ZmJ6958NqPIdwy8gnxEkBwCI3g5uAAB4nB2OMQ/BUBSFz71NF3ZppLGYJCYRYWk3YjBUMElDooO0P8DWiT9hkJiIRZjFYmCwmIyMJoudUy/58r177rsvVyz8j7TIh+xwlClcYhgphJJBnb0yPWTfTKxz2Boj0hsG2oWvNfjMfc3BN0KM9MT8QWIyI0VUdI2VbjHh7FKeaKqJthzg0g7tSAkB/xfWHt7wJP1dyAud5G5k4SU5+1W6QFzpcT5GXsYIWPflyn02iGgQkT1s7nSW+5+LNvjOQoDgByiNMAcAAHicY2BgYGaAYBkGRgYQWALkMYL5LAwdQFqOQQAowsegwKDEoMmgz2DF4MjgxuDJEMAQxlClIKkg+5vp/3+gOpC8BoM2WN4ZKO/DEMSQCJSX+c3w////x/8f/b/7/87/S//P/D/9/+T/4/+P/d/zQO6BDKsV1F48gJGNAa6IkQlIMKErAHmBBcxkZWNg5+Dk4kZI8kAoXgY+fgFBBgYhBgZhEVExcQYJSSlpGYQyWTl5BUUlZRVVNXUNTS1tHV09fQNDI2MTUzNCziMTWFgymMPY1jaEVAMA45srEAAAAAAAAAAAAAAAABYAOgBeAIwAnACqALYA1gDqAQ4BQgFkAYYBogGuAcAB7gIKAjQCWAKAAsIC4AMCAx4DVgOCA6oD2AQEBCwEmgS6BMwE8AUIBRQFTAVuBZgFxgX6BhIGXAZ+BqAGvAbsBwQHLgdOB2AHfAeYB94IEghAeJx9WAlwG+UV3vfrWFmHZUuyJB+RJa0txWdiraO1rci3fEhBdiTbsRzHZ0jqYMhBmwOIk8kdgwMhnikhBAotbdoACaSYacctJS2FDCFQ7h4ZoJRwtKW0NKUEvO77d23H6ZR6tNIe//ve947/vbdmCPM0PAaXyHlGwbAMA5yZN+MBhmgw2osHPnSIfwQHg3/AVE2r4c/kE8bMMCrOY/YLlUTg1ayaTQYHAVvwWCinydWW5wyuCzVyFpXRY79yCkLfvbVsgEtfccvIw93fGVyZgzgKxDkl4+SiMGE5v4BgUEy8vBXWOZdJIMN1MyCpwWNX7t9JQRJbZ0CspyifG6YfVWhII5NOcTiXQu0WzC53MQh+3mX2+1iFy+cAhVrpEj9ayi5kl4ofanVaonSBXboEG15esYgfuvAOaJMsYHe5xA9BS7Ebpnczv2bijJphBJYTOIH/cSivNN0Uh5HtcXxeyjwDzcyX6Dcm1yW4ICh+roekZyqobD96i8riM54Kxk3xOL2vmlaTTrTbiBdqFtSc24N2g5/3WUkHaKbe0xo1WgIaskA6+Z3K8FXMoteoDIrHLHqGUFwwweRsrARegQdAPDXegypgKC7Wox7CZOHXCJnAVakM4+K8LpYDXgcegaOhYslIt0u8uDUMRzutOToAXUeeNe/8eTIhRgHa0rKONnqapHgPT18mF8hZJluKE9L1ekzoW5/NamM9Xg/nRjSblfehEaS9zrOwdm9zU/U3N+/xewsKs3O8OaW9nR2lPr631uOtKspJ0g0NwcJ1QxqNJbbAoO/o/MeKDr3Og3z7GEYByFdD+UIycC6zy2dl/Z4CUPA+P3nXcXGH+MU4qHfu35y1Zt3R246uOwnth54jEy/dvfv7Uz99ALn2oM2nyBmaU3lgRovdKM26WBdFCADJF0uPwM+Tn1Lb1aM+CBvECeE3eD5CztTAX4PiFMxgPIgYBurdOXnO7CJHTuPa3Uug2CC+Upc4AqfJJvgyKD6Li2U5iCB/Kd5m/qnEeAKvZDxql1rixCv4XPhMvGE8sa8EdGRiapTgmtVo+724Jp1GyuxVG0HBKTBSqJa3ma023i+gpDq6B0ht5KXm2iyAPdHxjcZQEu647S9sIsOg3LpD/B7sfYybGicTK8SBWjf/KtAcRb+SzxHbQLEVXgnTbOPNPBm87ZCH4tw25oG9Ubh0cOowhj/jIFlP86dv+mNFKtYEHWOT44F5Wgm8FBLOjZlgpVH51PnBju1jLvf7O0du35w1sDJxItOxqrvrR5A49tqr9x176607dj304O47Hj/NMHKMyS+Qi5ZGCDExtMhmfpRPmR7q+UEwMf7F9TcNJLcuH6sci2+Ev7RtEd8mE1tjNcvFi/EZnHOSTVbJKm4GBvNamIMaSmy7v65j/O/rbkkxbIzv1Mfa7iq7q30jbtJfkon1keCAbUKIiF+F0Uf+6Y9JL9q6EHOcWuoVqHGC31sM9EMN92G2S2bbHEA/VpJpurd/W6+zZUvNgE7vTnVX+spt+cbUbz/f7Kzuru3VarNMzqKm8vS8n7WPhJYvby0tzzEZUwyZ2eUN0S2+1uqmRXyWyagzZ3FSvTiBOWAlp6W6IOUd2oQKC0BwKTT71DZ1Ym9ib5c6Xb0vmfSR9TB1F9kANXJN3or830d/pM7w90jpItmAcd5te3zN2s32gcSgJVJXf4tlMPrR8JEjw/Ci6Otd+40euCBhPIT6nYihY5gk4BS82crStFM4xZXd21ddZwewHbyACRvGHKm+M1t4FzqkmDZPX4ZL8CJjZ9w0FgJWiGKCDqsCmicsLRVWIwhywgh+OBrRNA5l5yerVckntybpPbmtyzVtsYZwynrDS0b1Ys8izpOzKNNTkFJVRwqWBH21Bf2R45XakIMzm6m+GNajHOSZLFV8KVosRl/hn01NI0iZaUwbXdZcoo2OR6rbE6HqQXP1kvrSRWlVwvDbg/vLi9GKNwIHe1e0BS5Wt8t97TJ8hnbYpD4ym+w2thhms12AE+2J7l6L5Z7B4qXeDHd5XnO30VhWuWL5Qn60t+ewKb0mwzQUCvf5Kc9K5Nkg8cyc9YuMaUOywtwWQo88EdVF401NaWl7wi1CVeRX+RkBYdhsqvLneb2lVfsH+g8I4Jl6/XmhLdHRnuWQseE95GqSfOCScNirCma3KEb4BUP10jg6uKOrP80yHu9yZtarhMKCDvvvm/vKakpHB/tHm4NLqisbyqgPrsevv5FnpB2PCMnECDxLNxe2GBka3uHyDZm5WaqMjfqbYpFYWB+2pNzc6C4kN6eqjFzGlgpxBHZVdIX7dVgJYdpHAvAcU8QITLOMqea8dJ9i1ND+APgchJ2tLQJthDMm+Hk1tSGZxtLsLyYFgGzYNLnolC006Ut1Srs+eVMd7zIqdRWdWUVRTqu/e1X3Br0qb6FFm+TBpzfXlDmXt71iz89119oLudxOVeaSBaldGR5TErAtVZWDcEChhMKyur4FxrQlamvV4vKWlrL08jRnYWFeoVDf63T+drjUt8EnivZsncKUkaoGd2GhvOeWY5DNGN8UqWb70TIjzOQhC2eilbaB0pC+FNOvrqnjgAu4tV2By5h055qOM9K+QXlYRO6U+zjtGHS8uC/SE3EnzAmYvCXBkOkHpnmowzVGWi9tc5UJJy55+cnkbl+Qd6fna9McdtWNkQwUDdS1uIPZSoPTRgBBJK5tqDBb3ts4Ccg8BZ6FN2PDA47QeNPA513n34mPIT3/y4/ItsHiq73svsh4ROpleF9RgPGUdroZZzWYMXveKc/6pfj5WHIuWqkErcfFhwyl80/7mlIinYO68KpRDgWycizomqsnZ5uui8WOX/Ux6jNd62O2klzr5L4mY5KzdeGsm+Fsoy7TM+PnMtyH6bhXpD6W+3V9TJl2fGViTVra/d1dg/2m2oqytSZTdXlg7R/69+0dGDw01hVf0dHW3r1KxsybriQc8pL29tUaxM6rQWrbbBWKhEv46P6INt7TEBgwVpTX8QVK1l5acePbq/eVf0pGSpaO9oQGK86ZUxYNIHYVYlObUxgHnbCv1g1sOjjsCf75peNgtLS1rTFkSbt9GRewqo2RQw42d1H5cArqCfr0Z/8ZPNC3el92hq5efPaO3HBfuOH6cr2cEzH8OoF6tFInnomcAEfD30opivQ1WNo2wB7SH3kDzq7spXMRhzXnCfRjydwcKEgccF7HD1JU8XKPZNUOgh0yGxwK2G0sK2luac2oae0xKvUOm8mVvsBQpGcd+Z4iiz5clSG0tBuUWkd6el6BValgWdjZmOMsrC8JmTONrJJVG3R5gezFmalq4qzxVJrsRo1KY7Jj77Bn0HqFnO4lAZoftGYLUp3iWaxZrBrLdSzWFMsob9OvyAxljunHlqSuxsayC3QVO3ZUXIm7ZD90Y36k4jxtulql5zVPOBPRtg4F3PrGaIPGWsLHdMHo4kAwAC3ik7nO8iXglmZkTIosxLimd1YByRL/1RmN5qcQMLfeCpNiPR5TiQLf3pdl3VTuCsphFmG799LZ3EjlbbL87C+58kGnRaMCQ8O6loJlKQYVpIb7Gyx6JeibbqSw/+7yLd53ASYffaSw7PDk6wfyXIdfo/g0WdNlXrjv8Q3Gy9vovj8fv+knsc/ujK/9YexPk5Pvv/nww29KfGCal+ywUjuulhvs5TOczGjSkwVVzhy3Jser1S8wCatbsvI1YHoWJqc+ChVpalKUmZldMLn96cYQVFJMfA+BTxAzlc6/AsyMNCxIEzncLY4mQVsUB+vb9bBGIz7ajqdH8iABAa94gubd8zhdNMnzM8jvYOCXX8LIavoWRvcjriFaaY00taPnWN4m/0Bm3ESXn5Z/4FIMhfCQ5M6hnG5OTka3zSgRZCWn5+mKzerDPqlQSn2y4Gs7peqa2/+/eeJb4PwHm76mo9bN3SBW2mDxT0G5kFXIhfaRBbNvhOb/IiPNrsiFRPAd8R5sMic3z+rvL0t3GdOz7UVJGdvI6vhUM0zKGleG+3T1ppyCbcyszSSBetLozAH/E136r8HWa5FtLgm5BlsI7JrDrUtFXLEeXc8w/wEVWHtFAAAAeJydUs1K41AU/m5siyMi7oYBF2epDAlp1IK6U6xQbCuNLW4TTdvQmqtJpfQhfBNx77PMK8xDzJebOy7qzlxyznfO/c5vAmAH71ContEnVthUPy120FCexRv4rV4trmFX/bG4jh1ny+IGdp0zMlXtB603E1ViRX7dYgfbSizewEgdW1yDqA+L69hTfy1uQJxfuIDGE1bIkWKCKRYQBPB5DuHyVPiE3pgswTk8yg4i3GPG2CUK6pS+CBkezJ2HrmH1zH3FLBn7tDOTKWGlCHOMaWkjb+m7ox4ixCUGlIIr6j49N7QOmBEX+mmVp5PpQgLfP3RdyhOJV3LuSSe6n+llMUslyh6k43U96eklnans60ziZBrNx6LHcpvcyTC8HIRyNegPb8ID5r1mw6EZoECT4+K6G0ZZ0SQqZ8jxaLpFT+ePEXXbDLIwOufaErM0j5GCU77r+VyOETNBime8GHbJatHftCsOaKGts0Vb55NEAs+XU/nfhduP5+nzS0JXy21y6qD1tef1GliPLv/FhO0WpFTfoWrZxxExRklepNwUS/tH8p38/wBv332/AAB4nG3LPU7CAABA4a8F4oABZXczoImJbY0iAwuRAv7gvwLCAVjYvABngnAxdujQkZe8vOkJ2W0zly4cop0ZCBWUlB2rqDpxqubMubpG9l26ci0SS9y4dafpXsuDrlRP38CjJ89eDL168+7Dpy/ffvwaGZv4MzWzsbIOwqAQFI/+F/O0E0V547zJHpt3GG4AAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCGyBmAfMYAAYyAGt4nGNgYGBkAILbCqeqQfTTpteNMBoAT4oH6AAA')format("woff");}.ff9{font-family:ff9;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffa;src:url('data:application/font-woff;base64,d09GRgABAAAAAB50AA0AAAAALGwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAeWAAAABoAAAAcpiahgEdERUYAAB48AAAAHAAAAB4AJwBRT1MvMgAAAaQAAABDAAAAVlWZXmVjbWFwAAACeAAAAOEAAAGynmc+9Wdhc3AAAB40AAAACAAAAAj//wADZ2x5ZgAAA/QAABfrAAAj0DPIRG1oZWFkAAABMAAAADMAAAA2LMoawWhoZWEAAAFkAAAAIAAAACQFawEGaG10eAAAAegAAACQAAAAoBJvDzhsb2NhAAADXAAAAJgAAACYIn0rjG1heHAAAAGEAAAAHgAAACAAkABSbmFtZQAAG+AAAAGrAAAC8co/zlpwb3N0AAAdjAAAAKUAAADIJ6nHc3icY2BkYGBgYmRLdF8VGs9v85WBm/kFUIThadPrJjjN/V+GaSbTNiCXg4EJJAoAW6kMcgB4nGNgZGBg2vZfBkjyMjD8L2GayZDCIMmADFgBbCkEdHicY2BkYGDwZvBnYGYAASYgZmQAiTmA+QwAEh4A4wAAeJxjYGTcxjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMNQybfsvA1S5jeEJTA0AUnYMpwB4nCXMMavBcRTG8c/fKjO5XYVR13KnO6q7SZRIkdykazKgbGRQWMzK5q14ATazzeI9+OEM3zrP95wnSnlNVHmCWMLVTcNd2cTeykXR2MyPimQwI//q2iF/2p6qnIyhtIGmlLyOrE87RwtnH+FramljbuvLr1ZwbX9OvtXCTdxaV98hbLXQ+OZKISo9AJ+LHK14nGNgYGBmgGAZBkYGEFgD5DGC+SwME4C0AhCyAGllBk0GOwYXBncGT4YAhiCGEIZwhmiGWIZ4hmqG2v//wSo1GLQZHMEqfMEqwqAqEkEq/j/+f///vf93/t/6f/P/tf9X/1/5f/n/hf/n/5/7f/b/GajteAEjGwNcGSMTkGBCVwD0CgsrG4jJzsHAycXNw8vHLyAoJCwiKiYuISklLcPAICsnr8DAoMigBPKTiqoagzrQ2ZpaQJ42gw6DLoOevoGhkbGJqZm5haWVtY2tnb2Do5Ozi6ubuwfQXwMOADzbNREAAAAAAAAAAAAAAAAAADIAbAC+AOwBFgFAAWIBdAGKAaoB1gIGAlwCqgMUA1oDqAP4BD4EiASuBN4FBAUgBUYFiAXMBhIGRgaWBroHFgdcB5QHxggcCFQIlAjsCQ4JMAlCCYwJwgn4CkYKiArgCy4LfgvMDBYMdgyoDQwNZA2KDdgOFg5eDrgO8g9ID4gP7BBWELYRFBFmEcIR6HichVkJkBzldZ7/75npmen7nqPn6Ll7zt25d3d29tQeWh3LSru6LyRYHUggTiGbyxjCLQHGgG8LuwzYGBcxFKHichwSl4/YTlIpQlLlctlxUuCKXZD4CFDazd/HzK4EqZSqZrp7Vv/73nvfe+/7/3ZAxy8dDvBDeMrBOyLoCqNhIl5vNIUOrFZkScREdyKertca6A787UEnSVJZDMy5VM4tBe5OSHwoLvMhWFz5GkVBlcXAohzAQpzr4vtKzC8pMcXhcEDHW2AGhk0bKWQDN2yky6A2AhqmEeVDT8DyGOaifDQDAEx7cqL8jTHMSRHWPZERZdj3E5/XQ+O4y/OjapB2sj/zebzm7Y8rQdqFbC4iw1fAw44Bx7DDkRTzALc8aSZ6F/HaELA/LbMMqK5dVYz/U80k8CoMlbZVfQFaKh2xvsKlcrPZKpe2VyiZEd2ZI/a3Wio3ms25I80jb0/dExFY383W59RjU/eEJRpnjtlfU4899pgDOH67+k24D77iCDscLjPQGYSr4zQR0EacUGxk8BzNiRNSf2FyftMAydEe3Lf7ztZxquEVxhPbrpp+YHn3QEzwegiXu/bZz86dX/KimAPH3Oo3wWto7SC6EWmn5XIH1GsZO51o5desNWnWf+9DV4osbZgBT1srcgRLb/79jefmOYrgkCFjzRscV8AqFBwhZGEtoiPgshjCaunTaV+IEZ3xe0ulJzMeFV1qnwSLU59JSrSb/rOpz8XNb2PNp1dvAocdtzlEhyNlk63ZaK5j3eE78gwXmNQwPKTqsZDeN32j7JU8wjCIC8FS2ljjHsBADSw6cANXQovXqhrUSit/VSqBUWR1yvibf0YfS8iOb81OA62+lA/LWrEWmQ4VwoGIHjdjV1p9AZ5BsWOM2OHARmVyE54hV1wMx4gkuEizjAgf93EXZwSJ9nHwNU52mHy/fvUPKE6nHKQdfWD8/w6ilIzX0ok4DSRRrlY6AFb3PPLQpl3nZsbmJyv5/qvGi4XK0XFwYfmHt92yeOSHd54+MDF/9XNL4ztv+LqJ6xb08XfwhCNq+JAH8ToKu4DQIVeaHWgkIIKWxrFqBbyuf5DNHVxuVDWakmPjUYqlGAy7a1tW01QNfD6tEhKAeH9BpAgnZC6umusPINwdhLttrG/UZAahxbsGgEkfE7/1zO4RNMTdOKJTtdIwIMChQHFTvm96LBwjPMFENqJPV248Ml0PDm/m8FA80T7S3HZSX5huLpdKM+1IapzBQ4mvMI3hYtgfk1R2UcsX5b4tnVqbH69LqtQZKR7a3LelnVQKLadfGK76TaybEdYZhHXAiDCyb1SMmSebhWIEGCFGgO1AVRpd8MYfWuSCMxMjrb23DE3vrUqSgNElTd8xUx7I5vT01qsHKmp7mHBRfPz24/P7wS/L+yL902OHslNDUwFGZt244g9O9iWHwrEdpXiJzkYYUi0eXkDYlNU4hAjbnBlHZC3TK5V0N6QG/0ZAx2mXjRFTvKJEMMWItP0IeVGtmH8AYT1PMmTWq1KiM92mU7kJjsIp3ut0ybX9V+wIeUOUKM01hvanCwQOw0HWS9Iiw7t9kKdV1eeheJZXXPBLcYF2MZ8VMJ/PIxIexolRyT3X/vmyKtCe+a9vXVoiMAg8nolEMShQWEj3zjgJl2jEe9GM92FHZV39mDDxCOKbFdtuZzWmh1aRjBZhgqe/dnz2QDDI+RVXMCn7Nt2R79s+TKEqck5gNEkBSs/9qdQcnV1868pHZwdiGZkPMkLIh52aTQ/USd7npgFN01DVXgvsMerrFMIyh+KbdDTW0KACsANno0CA3Ib9CMRrJWjcuCUxgjjbgMwXD0/ucYuVVN/dk6P1kF8ReDqy+Ynw5PbCZJzd4OYKsdaVnNfNZcLTN71z5Mndh6TGvqOFgdm6piZDZIAiP7m9Gq/1y15/KjBaTipcLBu40eTlMsL2NMJWN3sHxGxwwG5qGROVxUCUfoRGsZqxUT0Gfvg08fMpn0pKfDFcWqDYYEximNINaYJg4/hWl5siNDg8GIrxHKWMBrw+OgEXCGLlrZX3siznnTgztP8slILcyCjrVXH6cZ/HFYnIQTkQ9rkRPsyxDeHbiPApjoSjvC6XzRLoZtSNR0DGyKfb7FMNfN015C6c2HL45Mb04BNXbt571XCxTY/2jV05Xh6+qtVpz56aaE6d/smmhxbGNyxLZDM7dmau1V5kmbFfp4uzxXRx5q1Me1+r0Npr9sk9CEsLYUk7alafNANTwnrUMqOCAJag9QivmUBMxsGWr1Ys3z5BioWIX1UEmRWS0w/FphYKEwn2mSPjOyd3zNyKEWImuPkoeCU2/3hraA54uUQgHFc4mabu2FXVqv3K1U/s3HPz9XM4F1H4wwiTMScugBcdhEM2O0uP6di6qXEhH/ZHC6oS22SPD3Crmo/Jaj6y8kpvkEBztllrRT56LUQK27W1JTefTdCcMhiW/Zgeba4t/PzmW2UvTwQamMq6Q0Vz7jlacAcsOCQ7j5mUsWbKDp4LTfj/lGiKXnmb94M7WA8lB1aef0fcw4i+f6B4mfqZh0Off/ESZWA96HgdToEvoxnKrE1RuTtNpworTxWrYA9dXflqtQCOgi9PTT2FBitwbEUYNAsD4rvL9itlqwzFJUPNv3KXaRwsvSMaeIDCg8o684IBiEYYUNDA+/BaxIdcb8Kh9ockmznYjHtjxJhlgx5g6CMjZDDwfuHqnODS4YUKy3GFq/OAdxUcqx6JZTmG8nI8dysFzqPB58fh0aOQojRVwTHIMSyELHfxXUh9GwyAle+b9YEyBSdRn/Oj7mLVR3fQJqwx0iuQEmYIRKM8StC6gtwndr2TzcXPiln97Ynp3a1MS0CUS/pvqyzP7KigdqLeP3DH+J4fz34CDeG3VW2qOryX8w3+0kUEePpHi7+hAlHhV9vMPnIU1cZZVBv96MYeWPW1OuyYcksyh7StLZROV4LhcMHFob7Qn9/7bGdQac6yxtwdOlDbfnj/U/PTFZzAWJZhMPCiQIQBTfa1fn7H5AF2pIqm7XA7d+eBw9890+/hnCLvc3kNbiAVA0dQTGQzQ6hOuyGJG00DxcRqsXmAmapmZOn8lh/oufBZUWD1N/KjcWYal2qZg2cPjp4eBU8e+s6thvdGHtIjE3Ux106vKFc/hXy+Cvm8A/k8aM9NY5403Zd6aE13Q3+geBht3VZTjaadH1hkebGIqxnXwPjc7l2Pzk3qGI0xEQZL4eEE5mLigfrpTbX+8lIwns3dkv0vloEvq8ny2f2H//rjJZfg5A23n4iEZR+lJpTl5xZHd++cVjWEbwnFYR7FQTGiYHorGQXSYwcaenA+d8PZq7K5lX/TzQsdRHQ4ra0oqmal3MgtUjDwEbTOhL1Oj93mQm4GGKPf2BClh0Hi0l9tDioRKFWRfmgYDj+SE86iaaovZHP8zSAqnPEoOJrumMcHbrGfC2dLObUviAGCAEL1KK/3WajMYtDAm8PRn1IsAIHs7ntUdiVlP0ZwcR7c9nQ0u+OlCMKdQLjvRrj7bdw0SjnqzRksYYbi8kJRhGqPIfDuXPQuYwvnY3gPhG1wM6fnjmf12Fn0na37sTa4SRI49AjhuvgeQ0Mn5SXAuyuZbuB8oRUG/IuBzJwde+05xhqcTJnar8Z3FQDM2FLVGLUWPcB/xHYePzgz49d2nDowOztDD5RGtwwH2Uaps7V9cq6YPAMSg/N9yfbgypuu/K/Keqg83/fzUiZSsTQ9sgoXkO8BqwbcZsV/2Gfc0JtmL1g4f+XHS0o2d5eeS51Vsvpbc3Mzrdbx9rHZI+DN7ede7fq1OJNt/X6/aSOMfEohG03HaFc5GuOhiZj+f5iTLOlrKBukFA3vsR6AhFTXSCXIUcz89gaK8i12tF+dXpoeSFMsodAulo5vaLVm6jMbDh6iy2U3lwqpxbZ34I0uurnB6iE1XaKaQ7JQZT1gW6L6xlaDw+cQ4HsQVmMDZlRj8zIOrNc4hhbE4UlcTTB3ny3ouRey+tDZT7JOlklgopMkaXCfjoFfq+p4t07GWVJ1+a5ANFAx0uyHz6z+D3wY2ctb3ANm58vUsXqXYYZtWeJEHCnoNdo9nFNW/mhMghgFUNfj9GU9pwAnwNvPsiyL7gy6/TdqAWxkA/iMZhHfJ6385e4o4D4GrrD5Bhx3IPuPI/ttqwMmLGGHBnjGrFcjAkK6BwRz41VLz6HiRcq+2uymDD7OsvSPyaSfcCIYpF7zSwENDkRyW7O5WJbAAbc1IAUJknK6naD1cV5HP8BpNKou/iEh+B/ZHgPJhev6lQAFPTCIsK5c2BetP1NTIMueu5J9EkyoFt6/R3vYB9EeVjTOFqxJKnRAFx4SHG/mXtaxb7k48WU998WvPKpXNBUy8LuiV9UunnaYa4RWXwBvoDXQbHeZtb6eeyilKApIvhv//5nzurFc3VTp8BxKojE5HOZeaBf49uoXjb2501YT4Nvlle+Vy2DkkLE1R7y/cfV9GAUvIy5VzYlr9P0SyPT0Emr85lzDbJqj8d/Vp8YurwGjIqX1+TOMs96uTtyLqhgTgqJzzCkprMtN04mvBILlQ+6AWD503jsmNxTJW982fezVrJc1tkMrH7Ce8BxP+65P1z69wCTTn0KY7lp9H7xr64CedmuuOc+ARnc/b0tj8O65pdYmz7YBPbdPx3K12tDGDclw41gs3jgKpGMvLW3UYmBONcL8tfTuyUL9kW3J9sNGjO5H/nPI/2TP+0xve7VuMyP1doPccKC8bUGvf+FQfUJVOD/HxMZvXr6uSvpIZaOU9DDZ6pajzzezobgkBEj+3vkTJa9i9bHbkS0d+ZVDXeYjY91cy+//GW/98ninUVVfoWM3/L8Rf9r0f6XxoYgb2B6w45BwFNZj68XC2CQjFq4FwkKFup0VkWC0IpW/cLAx5cklB6/TaPfVVkgWosHCgUDku2ZoMFkqzp/46lCRjdeZIC5cg0LzR8G/YcDia3FVhUPwmGNknWKv18zdo92BMWv/ll6/S+kSowOMkxLjBA8ORUTO74yGeBdGbdFzO0ZokRzv62+HJSboJqnB1MBgVp9wOjHodPH+QmRwEMYCEYXzUMAlKgRSHCufma8nZrKarIki48X+CWxQNUFxkYQopyRWt/I5ifCKKGZ5I58uGlvbLFnIOnAEXF5IDFhP2y+71f7t1UC0PxiWeAVyofRQlMbUWm1g0yNLQ2lMQqV0GJF4OR5tLm+Ry5Uo5gsjBeJnPW7oT8re06ml2aPfLNO8UUy7UkMPzutNk9c7ba4Ndc+TzC0PCibtxGn4kQXVnWUNk3VQ56IDWqJIDOhqORMOs6grcgjO7UWTbrnyWH+7RdJckkC6jkqc9xUbejklhj+/N9Rq7BnoR/pfoN00+JPJumczzXrjcxFKKmVIwotidw7V+G/gTit23Z0wElVWvteOiRA4uA7VJYfiv9k7obc821wRqco6aS5u3PL+mBzxV0nMiUAVopwohxEXziev788I0k8ZdyhXoUg1eX0lzRfb84PuUH/O6/GCu6VQgOUjsr03VmEYYdONkwTXeiw2EqELE679hDfXQ7uHPTq3bOW0NOnd7UyFOqLTTZPxa2YLbWeni6sydnrUyKYTB87FLDjBuON9BZ8HV7Wb6jma/VMXFXAcsvM5vS6fCEUG/1B3xLGGvRmxk15HQDHcQi/bPQXqjNqMZ4dcZ6xzrdutzrkpPrA4rcUbnF9xFhtACQadyy6RSClWjvFCK18rUBJewY3TrF52V/6RH92TT26X+QDr5LAG8IeCmLqFkXCRXiQIH8L/Nyjfv0D4tfV8FC7td0aDM6CDX7CRwURps/PEHj13p45d7wxJeD6IhxLnvYVmrr+PZsELluFB2s0I2J6g2T+qKEZDqB5nbUYZpxlNM1UG6a00Xn4/As2jW+MkSFkrAkWGUZpzeiWWEkohKaMFg6SXIMVEkg1dcst4sx7Z5aWAXhrmq51En+4nghohAw8dkxL1u/VsrDO4s5jM8yp+f/mAunbrvq8YvhDFaCLebvf39d8y4echZvXBeSPXyI+eEk13/cB7/e9yDjYvdaCXZv9oTssRA7HBvlTax4go1VMYRUhOp5uh42gPWhkQmuOleo3zan4ryfTYdDEpaV8q5nbPPqUHzTQrJBloShzlU73jUqPZbPXVn+gnWDO3EOmz98F7CC9h7c7WyuCSEf3eEzs7Wz+1a2hhMpkePJlODp4E/DXf2Dd17MUdG9OdBxdygw+jtYjVOPjA7Kktey00hS7R31YgLncbXz8kwQf3zit5DvYVs7kn9VzyLCaJosuFPBapcG3AP9Ssj23oTUmgHn9V5LDXTfn7FolHNvOkT/WNyo16fWlsnS65bzUOAwhb1FDCri6g5roWb53KG28BsPWu/zb3fT033VevtTadW2znfR7aR3DO+1v6WFekfAfZ/l56aeOJb9UVjmJJN33xX8Gr63TKfsSJCWS7f50iSn8EIXpn7B3MONs0JcuExnN+Xq60+7JZiwOTzjAlet0uSoy7+UAxFOv3NeaGFsG8FpZ5hfFv2/gFI/MuBvCMJxZWAyKjYmpZj2qBwbrJ0cMo5+93Oeq2X1SszWRjD4h2p5aCsMNi5tKGbW4NlYgT/Hs2NrDzOQ31QzY0OZpTAlxCEAbTQpJLbapumA3zOMv65FJfROZzVVEtR5RHY2Ni/FA8FKRFVpLJLEOJlNNJELSa43OFcDmrqi6B4X0MS2iEyHkxNy9nTcyfQ5h/h/SF3ps4dgNa9+bRUhlrAwf87uRMeXACqYh9KU+EFpyacTnqTMbaHFJbROJ87OZWBgRU7dNJFDD6XqQdVhhPvJYivJ51tdyxahl3xzPu9QVt8djeO1uV230T29OAmFHIOOcNH/EXmqWRho9IBTAnS8WD47lYkazmZgt5X4iUnBNOThAxzEP5Eued0RJXy+fbQ80nVYLf6fN5VWZ8QyEjxR/sG3j2hQTLuZmVdxmPOk94KWev7/gR1qK5z4LrYF6aYBNWB0mdMjAeQb9c2DPY3tL0SFyBwdX4YiddIWpTyeEo53TKtA6OBo7df3hipPq47PHr1YCauKE/JYTvz23YecMOkiNYRjLtH0T2NyP7MyhWhhB3d/fgBoiMfRIVwcxDqPWBMo5s3HbXa/TesiLCQba0eTKabPGpjF/EWZpXIUu7SIWjuSDdaSYruEIizQw5N0sNlONZL0KbKZ043WoRgVqyr0/J6UIYYgEnwQMfl/BrpdlkfOL8jyIcAQQVn5A2lIKjx++sBnmPl5Emiy9d2r+3dM+G3ZdJ1oYpdNKXSAi7eXfDbta26ae8psiWZ1rp3FBfI4qEhewOCiVvHgv51WHGUDvx5enBRLmVHyRFEuf8kjugBmgixIT84WEKtXYycT5zbT4/lI7H/GyAkWOJF71UIFYueL0eNXsqn68X5DCJGS+ApACbu6ZNBaP9us/jtX1SYQj5NG0rorWy7r0pWMcWm9VwPV8w652L8QC8Itw2XxyiBMqNgHqC1b1sn9Y/XaU4KUUaUyjOa4NavF/W68FCOMwQAubiKERwavMDjbwUJhBKPyOd3ORvjzYf0Hxyf4bwelWi1MgUs/LAtcVOvLjQLM+SJGvQvMstY38z3nsvuO79qvGv+3qolw/ZGqH2+8HuayIjD5y+o5LIR7m0QsiJRio9vEPguaggZb0oD2Ri21C0FBdZHCfJeGxbezEcUdO82mHNJF1QNm2ISHFOpWZT6doWwePjEyGkQFXtYEQKkF6XSvTvqs1GXAyy5zWCDxz3rL4APwZfMd63usS1mmjap7D1mnkcaZ6I0phRCmbQ8d5LN/CDgpyfylMur9NDREshb1p7jM+p38ul+yfCPizHTKTN33yRUtCrVzQXW4gLeUVD7RYygsc4Vph9/jQajkyAJZ/vRCJZ69e8m+Ld0OJ8HmHUEEZ772aMJRRLvPu+ulFFcBHIpkkSk/429EoE2gVtQIUaR1yRinKU24dBiiSH7sux5AN+IIa4sTTh8tK+cDFI6HkpO1skVQQ4TGmgxvCQZdSGkqbdtTjdQYIWK8Mt14yqgRKbVbRWyksJbuSGky3GydJ1adzwysQNxsAMeB2eMt84WaAx++wMNA2ygteB2xd3IzdYn+bS3JLsYmU46mMj1wpYiGUjeODFUBgo3P8CnwDZmwB4nJVSTU/bQBB9a5KolVBA6qEXhOYISLYcByLBMRFBRDhE+UBcneAkVoIXOZai/Ib+lapHfgo/ob+jz+ttpcIJrzzz5u2b2dmxAdTxCwrl8/APK3xR3y12UFOexXs4Uz8sruBAvVlcRd2pWFzDgdOkUlW+MvppsgqscKiqFjvYV2LxHsbqwuIKjtWrxVUcqd8W13DsfEMHGi/YIUOCBZbIIQjgczXhcpX4kuyUKkEbHm0PEWZYMXeLDX1CLkKKJ7PnITSqvtkvlYXihHFqKsU8KcIac0ba2DG5R/oJRrjGkFZwQ39PZsDolBXR0S+7LFkscwl8v+m6tJcy3Unbk140W+ntZpVIlD5Jzws96estyUROdCrTeBmt56LnMo4fZTK6Ho7kZng/GYxOWfeODYemOY0Gr4u7MNSpbhAVd8jwbLpFX2fPEX3XaHPjM44tNkPzmCm44vu+notbqosSCYdRalpkG3bAASN0dZp3dbaIJfB8uZK/Pbi3ebROZmRaboNXDlofG/7/ALxLLf7CmI1uuFt+gbJZH+fEeIizTcIZ8Vj/XD5d/A9Z03rQAHicbc3JSkIBAEDR4yvbFNmolZUFZiAiakTUIiSas9IGzSbaiASRhLbsy/qqNm7tfYAX7voIGPz1fwc/jgzrIjwiMGJU1JhxEybFTJk2Y9aceXEJCxYtSVq2YlXKmnVpGzI2ZeUUFJVs2bZj1559ZQcOQ/XYiVNnzkOr4tKVa1U1N27duVfX8KDp0ZNnL169RYLY13en1+q+f7Y/Wvlet/gPLMgZ9gAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIvIGYB8xgABswAeXicY2BgYGQAgtsKp6pB9NOm100wGgBPlAfqAAA=')format("woff");}.ffa{font-family:ffa;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffb;src:url('data:application/font-woff;base64,d09GRgABAAAAAB+0AA0AAAAAMNgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAfmAAAABoAAAAcpiahgEdERUYAAB98AAAAHAAAAB4AJwBiT1MvMgAAAaQAAABEAAAAVlWY/lRjbWFwAAAChAAAANwAAAGKDhTYLWdhc3AAAB90AAAACAAAAAj//wADZ2x5ZgAABBwAABj5AAAn/L/HYlRoZWFkAAABMAAAADQAAAA2LD4awWhoZWEAAAFkAAAAHwAAACQE0QEeaG10eAAAAegAAACcAAAAwg/qCMRsb2NhAAADYAAAALoAAAC6ubGwOm1heHAAAAGEAAAAHgAAACAAowBTbmFtZQAAHRgAAAGnAAAC7lwvsX5wb3N0AAAewAAAALEAAADq0l8qJ3icY2BkYGBgYmQ7mR3pFM9v85WBm/kFUIThadPrJhj9/9d/GSY5pm1ALgcDE0gUAH8eDg14nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAHicY2BkYGCIYQhgYGUAASYgZmQAiTmA+QwAFDAA9wAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCpJM2/7LAFVuY3jCAFUDAPggCzd4nB2NPQ4BURSFP6opECbC+JkCMVFMMRFiotCQEInaEqzCinQKW5gFaERnGxo+3s05977z3jm3FPE/pcOPoFzlzpmR1efCkQ1jruQULMk4MSMllqf2VC7+r2Ox0tFkQp0WHZWQPWvaqjXvuWqor+uekIpqxtPfuT1gy5A5icmBrowG88/beSESeuxMCIjMjk0YqL/Ezd2PLwvvFrF4nGNgYGBmgGAZBkYGEGgB8hjBfBaGDCAtxiAAFGFjUGZQY7BnCGCIYIhmiGWIZ6hVkPz/HyivwKDKoMHgyBDEEAUWT1SQ+P///+P/j/4//P/g//3/9/7f/X/n/+0HjlDzsQBGNga4JCMTkGBCVwB0IgsrGwM7BwMnFzcPLx+/gKCQsIiomLiEpJS0jKycvAKDopKyiqqauoamlraOrp6+AYOhkbGJqZk5g4UlgxWDNYONrZ29g6OTs4urm7uHp5e3j6+ff0BgUHBIaFh4BC6XUQYio4hXCwDv4S0FAAAAAAAAAAAAAAAwAFgArgEQAX4BqgHYAh4CQAJiAnYCjAKsAtAC9gM8A44DwgQGBEQEdgS2BPIFGAVIBXIFkgW4BgQGRgaCBsAG6Ac4B3wHyggICCoIWgicCMgJJAloCawJ2gouCpAKyAr6CzwLjgvUDBQMMgxQDGQMqgzkDSgNYg2YDdAOPg54DqQO3g8eDz4Png/YD/wQOBB2EKwRBBE8EXgRqhH+EkYSnhLeEyQTOBOAE6gT0BP+AAB4nJVaCXQc5X3fb1a7s9pj7tnZ+9TuSjPSrvZe3adlWdZlHT4kyzcYG9vYwQZiMLENIU7CYfJScpEXXkiagxAgYEhayCt5SUNf8hIXTHGDG3BKIKEEaEhDi+N1/983u9IKTF5rWTPffCt9//v3P0YGyvCcwYDaqH0G0eCFlWSWaYaKJFEKGXPdKBNAnGSOxHOFDGoz1SGjGBeNiKJdIie6AmogoFJ5/x75AZl3OHhhJTK5fCaT7+IF/EnAAP8owxE0jO6A820Gp8Eg0uZoJIXihWzGqdDm6vKcA4WCRgcV4rnAIw6qu7Kkup9tiD0T9LhclTs+Lwpc/p7abugw9BgMMUlDwG80Es8Xo4uLSD7Xgao3fD6LstV7Rsa/ks0konQW/T69yk6ZeZZzMluqi2g608x3ZdLDbF2EcxmZLZV7QzrTwndnHtjCb/lJbJvTKTi5w5VbLH5HPHZIc3n2kQs83nEHyG4yRC89CLw+bqgH3UYNaUMXaACrMw/6dBYlGpmxPuCxiDB7QlXVuSSKMEiWAijTjQz6E34o/HN6NA3/XzWX37KxJjPnNCHB5mWUDNkv/5vVDl/kglyLa6q1OD7WBt8JC3Nxym1CTs7MUg8F5Yv/tH9sbP8YOiyFWCYsk2uZagwzTBhfsP2MBt+l/0Kvg/3yhn7DGPYQUJ+ZdmYzhWIuC/4hSyBCoiJGNypi4UAW2KadSgE/dqBMohMlwThmWVIKxiRKYOHgCPS6Gsg1SFqCkVDAaOXTybautv7iYIzOmn3dyVQqVRJz7ragOqO+W0czVtHH9dNMmzUsudwaujP0yemGks8Vpni2afXg4Iau7pb6HD25ZnBiutQy2968tuXeOn8oa7R6JK45XiyOlb8nb5NDWjBUwrIhwwNgn1NgHw8YC4sRT+hCEP5BSuDXqTjRKVaQtkUnh+JXyQLr2JDSpubFvE1ck732zo/v61gr2rj6jg3rt8092snq566Dc7fCuSSiaAbpyikUC/kcIUEowMFblx1ZxznkrdFJlMaHSlbWWjnUwZntdiCmnz1omEPPUPXgTeD9JJqAV3D1YsWVelBCN0EQwR3cnS7q9mARUHxGYm2ujcYh4x5rPSspu3crEkvzO5c29kovMDJbjE9o2kS81ywzTntbySEzcn1XbFLTJmOVvQ4r8BIzTKLXKNGg6H4hS9FIF9LjLg/O4Qcx0WvpT8Vjn06nPx2PfSqN0pUlvuryfO/SITRv+JhBqsija0pfYMbR/I4oI3m7HHV2X0ODL5r2jMzLdme91EY1+DyxdnxGCdnRGbQO4gz4iIaBgWw4g86ky/+YTqN2TDUewz/3U7gMAS3bEi1CYijmdcfxd49+i8HPtoMNnwUbssSGqDZO0bOW8t873IxiQStYhVGokxbu4pRf5i0c9V2/rONeK8TNOYJ7MsHVRWp0Lo4DwZkpoHMfW7f2KP4emdk/M3VwCqVve/zUCfg+suvEiV17vvgF4GMn/PZTcI5LRzuiXN6MlYwdCvCMByU/pf5FVTekitHYCtUqhzaooVAojL7UFApSps1O9eJFXdc5uJyFsyq+gxXVg7BTQmjSTrmGSVliKHBcOpvrpkiUo7O8u/yIxv5h01xvotPh8PNccP/s5qOy6nLaP+c9j2gOMgCluvkw53hmfLZ7KBZ2SLLH5enfvnd9tKfN7bTdpDjAl1nGgXlpBv28DLy0L7eFTJtZhNEFuCLSFjCo6Dy+n0U6gNDLN27afJNXEr3IaKLi27vXjK5UVXekMSzkerMrwxavKHm3z03vnlQHHhrZP9nncntF2mEx5lalW0bDso0ymu3hrlDSa+NEr8eZ753pWN8mzug29AOjb1EHDGFDg659Wc8fuofrHiF2IwA4JzZDlDeit9SRTlV9TFU7/9vL1p+HmPJ7+BH14ReeCe0Mh8KhnaJLcaAdEHSe8v1otvwAsQvo4izktNbL6CKAdGWA+PBJEuV5+CxM2JCJM569ZdP0fr8AGqAsiO2LdG8YKE2pdpHjKd6DbKr6Rr539pofTl831+1xYeFtKOCfaMtNZVieZVCdTwiHvu+9AcubAT5+BTbxG9QKJ0lqEc6JtMRTCsSJCZwT7tCvjsw0reqN3X/1UK9HdddzkaEDtp5vHhoZaW8bU3qai2ueXn8wtOLI7F2P9jY5vT6Bs3HXby1eN1ta09scHe6aWPKHaw0hEi20maIl3cejEs7rSdSFCG4qENkv0+yGI8aRzvyGCxW/owTeQ6NBleq31bPryhfuzaTvvuPwjoq/tTgYloNcVvU5J1BRa3RdBLXilIyTVgAlFgNUWQrVl2/euHBkpphZfei7h1ZnCrPrV+9bPbZ7jFlz85qZG2YeWn3NNatL0xyzorV369be1kGWm3ol0d6eaGpre6d11arWzPBwjX69hsYaTCCuTBLq4gadS+j6dRL1fmHX2ApQrEVuGtxp7Z2eOXT0u4dn6Oh0aRZrGBXvfKxHxXrlrdzhTaDX9Qc/O9Mo7hnvKq3pw3YluIceAixSlmMRf1kUrH6jayrr8qkqLlIEr1eTswLLzxKX0Juoc9mRpnkfIznTTCTQ4A3Flg7+zKpNsl2qd+dQo+KJ5TGWG3LoDJXC1SK2TzwRi+eKMbB8kejJgZzojIupp8sPOxU0QLN1RofLVX4NeZQ5zomMLzCN7GmTCcm8yD/2KKfHcczwD+g1dD/kB7E2Q8hLueK1VPneVB6tz+fL38yn0I4UOhKLxZ+K63mjyhPkKINEmypytiAiuVMxoTNK+WF7ncNlR7HyqwpmD02ioUb2hTrgo/7JRzmJ8IZ56YYDf0FdZWgmaIyrAz+SKiVCN1XsNn4Q6gJGqloZ/qJnoNkoij6H2dmTtlsZ81D/qJ+A3MLWjrWNTuPXSFWO/qMz2jCicizDOINKpKvLR5vtDos3HLITmMuscgdUsTxTU6f7gJu3AeuiwFk104DWoU4mRV4F9Cpop4jZTAqXqYmomUZvq3tVTnTKX5SdIgdrVbjOJLutbtl0naB+p9VsRsjcBhmJY6lNmyiWAxik6hWOUy6++5VXqWDUWijrtSboF/0GcNAFiNtE7F9NeHpRUROhBIsLQmWBfrMw+WdN83g07Tfjm/L5nt7NrYXDO/o65GLxEze1f7P3qnAInQ+HtnQ2rRaEtX8Idf54sPzS1Mg5PS82Qly+AnGpLcNfBcNNxTiJpLEaj91GnHbRK9fN7Ljzzu0rSw6ODQH8hOvoiOZzDFy1c4VFSAQ9FBWNfWt4zxO3ffyJpE9QPw0Q5NY6FMvJPbvvphyuTMSj6x1cFP0WZBZwFYo+KLEZi4hz/G9v3PJLTZNlTfvllhtH1k3MbxxFLTc9ogv2gxef/Fw5iGWBuEF/Jv3RYo6vnAZ+7iTiEDCNylmCp4Gq/0HQRuVwXu/6ZPRnyPeHNM3v1zR0yM1TQkSg3rzZyAk62gqc8WZUR3ZxzidM8O4xkBLwtvATRcT3zfhRVF4c0reJrt1weR34y2Jp/yovNbl2kX8ZfhfT/OPxWk6OZzXty5oWCgGvN7l59EaFjdPL2DgdxkXR+VCYd+PaFWz+Nti8DesJaMqVIKwxP7Vo/iSVSKJFQK60lhn0Ns+ywIHEtw7M33rrfE/OYmFt2BnsLE0hS3dT58JCR6pEN6rqDdpbLEd9DTjhpVZc42mCw068wmS3WNoGT+65+uS6vnCI6EiAy3u6jmJL5cYHFAIskDIgm695wq7ynnpYVV2nXSq5V25Lj7g4PHcOVyPYauHQj38cCodD2H2A9ghcfgS0FUz7fe5TPf9HWvnXmrZnD6g7Qu6hxbPgFGQYAN2+BGeE9b6AX1614Rii8lUJ0Euaf+eK0Y0eWfLQ/rzdHXNNqeoPNKo/VL5icLwrI3u9Imd1mti4F30uhI8kWewtOD+zqJ9sgv4w9fBidW2O0iL4GNRoY1rjiTmIpCv1gMK3nzVqc6o7fM/XRYHD4vzngaNLGroEROGmWJ8qn6NYoieMl78DHoIfiLNFQyzG0u8glk6oakODqn5d04qvLw8brLQVDhb+OeBcaLtRGc7tr0VhPsoiMi1JRPklOMYf4FAhOBFETiVb6EEEoIkz459EZW1K4wUR+Xoc7Y5BwYREgde38KLdI1v6cHfj6bDInvbKtg7V6LmtT8fjp9td5RaM2WTrPF6xyk+7QuGJxxQW75WDWCF6XL8DfKerNtfjOGEEli9jmQBSRCW76ATvqC4Hy3OcRB9rReCoe3S/XcmySzvYIyyiZDTyAtpxe1mrmgeey/fejp7HwUMZSuB7ZyCufYYkQZg64KIu110H6GKGsiqJIqSvV/A4pVhAZ+oEJdeRybbnFKEOr9uz8XTS67LVUyO2+twNGavdXp++KWOxo/T4wniD22x2N4wv3LswAUujnY81rRxP35JMQDXT8onbc7FgKJ4nuI5x+GWSy3BMY1y/nIM6qwns5V2zhwFqb9UR9/xscGXflVf2oXc+s//hqpyvzq1+W88ZwqX/oqxwdgFXEyRjJbAbgLbjH0IGh52CHScAoJaHQKQqhClrSi367Gaq3hZIrV5CjEdn906FGECxOls9jxpi96/oWbGid3N8sBWqYbfiqfeervJ15cC6nCsqeDIud5hRw0gY7ztd6TdJX7PPMFjlEvtEpY4HB3AqlUYvEYknkvrcYlnWxXs66irkC53dNb2j28RzGGM56LaMrWp/vrdRo4YtPQV/Ytd97ZUPrXYHJV6b7k9GLdunGhu/sfJqTZHUYwzDOuy2Dr+7Xw12MjzFKMFUqX87/uw4QDHFMte1x0NZC+USWjO6DDgr/xF0najNV8s9Wq7uk84MctQfSYAfgaz0sKZlj5An6MVuqUlN5aCuvoL+POrhISthegawrR3oRRexE6BzGa7gfmRxh7Jr/gNfPFBxneH1w2SFQ+WBjTfdtBHNEmh/aHh6ehitwehJ8suld0l+0XSZokbSYVEJYxVNCH6IGFCKYnUPvceLzmN1Is8zdsFad9Qp8toujRflTQ4KwGlIJs/UAGDCxf/heQrRPEPVVaGjfKToSX0S+fAz4cF+6V3KADyUSEVOOEiQyaDe5iaMNSIDJ3gIkAEPJixVZTfEh5BJFILWuqzRmDNag7xURw2hmDqpaYpmN6Kk2dpppVsQMjpUl6ZNYgy5eNHOMAr9ps/7Ju1iHAxFERU9shDT/sUmCLYX1KbdqBvARMd4nGfyyyri5QVxYpHPqFJc0p+GaKiR0Vvabo1nHfOzLMepV6uq8+hBpwZ7zUO9TGVnzwkn5M8QVAff/z4FtSR4hekcLlVuu01/PFe+ALy0Ai/ngZemar7BpIrofc6HOaPRUhV3HjLP18DrrWjg3aobjuDn8lPIUk1DOJhY9OslVyQb5ciqxbIN6P/q0oNQIz+OOygTFj6OBxE1Nccr6uNu8OHHVfWee9QM1FjUKTcfCl/8KKmvHwRrVX73gzU9ylR/D5/RhPMi9QlcTpLe69JudObSKTzbM11mtneAjPbIvO0CRaMnDA36FIUU7dX2nnRUUqXFyuIqGIAnka9MoYvdiKI5QVjnKqwf3vSNW/s6vb6U6A2Uop5tV4oN2nc2Hy81pxu8jjDYKJKYbB9aTbWkjQWP7InYjfN9z9GjoyjVEFR5h0/HZ8ulC6TGJX2+jny6lRbDFliozAIB3wDtSJ//+o2zvRlilGZVHXXzpcHpa0dGc6lVXenS1NmFo60MtgeD3sW6eTR5fK5vrrd5qGX9HNbTSqD5LMivS29cFDZg1DvJBH6nE4lGGErvYijSxTxrcTf0NW485slu6ZK9rX6XV2L9EM4Ak9aWgRA71+uKybSp3hvba1aifvnYxoZVQ83IwgRlySsrdB0CY6adffN2xW51YtkjYIc6kN2veyrxlKWaOr9odB5boDJFAkCj6tRRvyO/cs2hG2f607r8zep9/c2lqdGrBkMhyZc/unHhqPp5LHvZcnyoqW+uv29uA9F3HmQ/DbJ7DREiPVU7x0TRMJ5SYXH1Ip5Gp8XESGrLiZvnF65gGKZ8jtmSW+0CGUdNXbnkpGOvLdroO74wd8sNGwXe2Nfb5vxIW29Pux4Hcbicgv5dJd0a6DXCGP2V90okLSwvBQkb6JQv4qEcvF9gDqnqoSs0rfyGpl2xVdW2bOrdSqlOl0tEFtYvJwGIniOJoSUUzvQNQU/sv+RDF9HfGYqGHsNEZeKSqE5rE7iScWaduKAyVWd0eGZXeQ2jYB2Y8RQLdCzmkkYNVZy+gC5CnFm8Ls+2oaRmstski7zSJqViyaB84kcnVlJWmxjcNpRraemIxR8vjZZKo1/1RHoSsc5Ycvvwqm3oqOCKUI7GZP9mVz2n2AFsTVY5kPL3TU/3jTdTXFSMRJpy/Zv90eh3JtvaJtvKF11hrh4ZM/5wNqvr0gLGw77SUtvnVELiclUMCRr8EXjLPdDveRtaJsFVvqqqzbrHtK+6pVnF1ftLLfGB/gerFQrvfiJz8t/12MT9zc+pzQYZT3dj77OW7peL05afa+XnoCI6oGl3u/ld2mfIbIX0Oi3EDZ+kDJUJCsYfPzoI54ZwzJuID+ouqEikziku5WynXKhSuJZPjGZvB78IIpOdlXIez3GQB+oEQqrJ39EZH3N6FLcZB1pDAX0W031SJ4oMPMhyYVkfRPLT5StAvliTUWkFvPICdKW8KB0Ya9W0ezWtFW79bv7zYXhS1ej1dwdVvRP47KrVS5os/+1d+GH/U0Af8iJ6AejLH6ZJ9IJa/p6qHteFOq6Glo6xGNCl97D90WPYJtU+rmr+pRx7ma3axgdKgoqjByjyM+AbK9U4lIFpPI2qWc7hIRVehO0OloqnMu6m9mAjUwdbmK9Xm0NDnQ/r46mlNWl7SANEMY5IJhMuBPg/UGyN/wL//0f/DZCJ/Yf7ryQaL+fALXhqx+sOTBmKgHXPA9bVV96YLU6MF6EUPX/424fh/8hEIT85vm/87MZjxzYuHD++tm/t2r6BLVuqOSqCXgfeg/q8D4PJ5f3mQ/JUDd8u4QOZ6hnMOWULh1jPsjwFJdulCBUAugFcfZoWtbaUIirdAXYf42KCALJUQPs2OGlpbPajx9atKOjzn1bt6/359vVriqVVPwSKp0vH5heOZkUe1y0X/xVtasqsm+vvnV+n2wu/j30NaCcqOAplZtVU7/deAjUBCr3mESzQb05suQZA+10oIaG03O/mV2z3Nwk0Oii5zTK/d/z68CIoBMcZpwi0hsFOPwM79VYzEq5GKr1PtfGpND3dRt2B3zdrxNWuE/2MaZhqH89YvbitERmzd1N/x66pDlfOpMRHMv1xi4I/iEKjxjeFejr3jJT8xZuFRAvgrjqP+x1hMuHNclDKRTM2d4NXEkW1D558NlayhpwJ1s4KEdy/A79PU+pixRJfepNLasmqR+stJHn1iJ6e7+2cnlG1aVK0fEVVv2K0hz3+JIKG8VhpfGD4d6HwJClaHGvCoVcYIcDFwpFK7OA6AT20GDugCvPS62MMH4RQN1W7RSJnFIdvZvCkDvlGR9jHhRKuaskQgkBlojdcICDzDstJ9bSg+p/V8RroukDOPwHdymxKb32WtxveKkX0J82/zyyD8jjJvA86q+s0zbNzpwcv0J3QM0CbA8pH42SI8wwqVeZ3HND4C9Bor+2v4ok4npZXxyK1rYKYLRQrfqFkq90N+gvUpO1GgbFDelCg13U6xCDDCMZ2QeDUj2paJoNMikNwewS7G1qdjKZ9VEV3QY1aflQQKFd61tswkVLwtGRMbyTKL4XGUh5382YBhUl/g99vvgl8Fj+8vyku9TfA+fs6HJxE3lSvVzmen5oQeQ6WauP1BxpVvMdxKwZ4Tt/be2Ojqvc4Bw8SVA1/+WSYPC8s6Lyd/DLutSGHYtt0kDcjZtAbWqzkFBrrqAfFQXWJeBVP8U+RSQIefVX30Z+cppa/USaysaRb5r2ITntp0Qwp9JMpk9zyEQcLTXWjI1SfMiNTIq3hvRZ0l9tMlQcG1mRDkkd2iXVpR0GWobPdTNGuEMWyioWKTro+5pKvv4cyu3U7Yx96Efj9//VkL4InfgmigkGlN6o9GY4SBjzIUNOTSQ7U6NFbsFaPvlE+G6/tyYrQVz0PfVWWVBwYOiBqc9DI47TZbYQ1DlNMP4qLVInG8/8ApWTQ8xzrWJvuMzk7Uw2xVIfT1F5Y72C5RLLdaSqVyHYGrOMKrryP4dwMAnRj3LzjvsGAD9sL2RXOcd9AKDAIHys2BLycB16ayd864T4tAt0h4AVqjkN/FkmnqW+k0x/gGVXZ0l9sV1lekoG8713i+UMYrREFpf86n6FamXR+HkcfQXPUt/DfV2BOAHazAar68o10i2hOmqAcTned1x1piSSbrHaZOiFaU+vsCLkFWgx1FVomkh6p8vcsqBmtJXM/HPtU5ZUoYH20+i4drdUPqTkVvU1OcCw7VT/vLBpGeTLPJPzR+A95opAi8kn8GqwLdaMiPjNP0Uap3lFP11OIMkJVrfBm3kMN1HODc/bmeqOxjrUpRmlSopN2C69QbsP/AiNr4FcAAAB4nJVSy07jQBCsMUnQSihw2duC+shDtoxBkeAIIkgRDigPxHUCk8RK8CAnKMof8DGrvfApfAI/QmU8Wonc8Mjd1TU1Pd1tA6jjHxTK5/4/VthUvz0OUFNHHm/gUL15XMG2+vC4inqgPK5hO4ipVJVfjP66UyusUFdVjwNsqV2PN9BTiccV7Kl3j6v4oz49rmEv2MElLF6wRIEMI4wxhyBBzHWCkKvEZ2QHVAkuENG2oPGICc8uMKPPyGnkeHJ7EVKnarv9UrlS7DPOXSbDmzSmGDKyzvbIPdD30cUVOrSCa/pbMneMDpgRl/ZlWWSj8VySOD4JQ9ozGSzlIpKWfpzYxWySic6fpBWlkbTtgmQm+zaXgRnr6VDsUHrmQfrdq05Xrju3/bvuAfPesODUFWfZKm7S1OaWYNVAgWdXKtq2eNb0TSecO19wZsZNLOKUBOd8vycL2YOh6pUpNPWlpkH+2E83YYSmzedNW4yMJFEs5+JLCDtm9DrVBZlGeMx+k8Z6tesXYO3o6hc05Gf8BOX4y2JjnBLj3hSzjAPitfGp/Dj5F7RifFUAeJxtztdKggEAgNHj38Bo2LK9KduaRbYoor1tWdn0RiIII7TH6HXq8Uq67sB3/wn8+fm06T/35UICFSpVqRZWo1adeg0iGjVp1qJVVJt2HTp16dajV59+AwYNGTYiZtSYcRMmTZkWlzAjadaceSkLFi1ZtmLVmnUbtmzbsWvPvgOHjhw7kXbqzLkLlzKuXLuRdeuufPrg0ZOcL9+hIPL+8VbKF18Kz6/5eKmY/AV/WBpsAAAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwmggZgHzGAAHhwCKeJxjYGBgZACC2wqnqkH006bXTTAaAE+UB+oAAA==')format("woff");}.ffb{font-family:ffb;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffc;src:url('data:application/font-woff;base64,d09GRgABAAAAAB38AA0AAAAALTwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAd4AAAABoAAAAcpiahhkdERUYAAB3EAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABBAAAAVlWYXw5jbWFwAAACeAAAANUAAAGKb01o/2dhc3AAAB28AAAACAAAAAj//wADZ2x5ZgAABAAAABd/AAAklB+rSRRoZWFkAAABMAAAADQAAAA2LDEax2hoZWEAAAFkAAAAHQAAACQEwwE1aG10eAAAAegAAACOAAAAtg3UCG9sb2NhAAADUAAAAK4AAACudWNr6m1heHAAAAGEAAAAHgAAACAAmwBPbmFtZQAAG4AAAAGnAAAC7lktsHxwb3N0AAAdKAAAAJQAAADOCFYIcnicY2BkYGBgYmTLi+i5EM9v85WBm/kFUIThadPrVhj9//d/GSYBpm1ALgcDE0gUAIvwDll4nGNgZGBg2vZfBkgK//8NJAUYgCIogBUAaZED/AAAAHicY2BkYGAIY/BhYGYAASYgZmQAiTmA+QwAEvwA6wAAeJxjYGTiYZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgy1TNv+ywBVbmN4AlMDALBCClIAAAB4nB2LvQnCABSEv2gZi2CCGKIBLQJKioCIiY2VoIVYO4FjuJClM2QAW0vHsNDPPLifx90FY7oLTn+CXsyTGxPuXNhT8KChpeLKmpJcXqml3HZZIXb2RywYkuoKEs66nIjMNBWJu4w+MQOmfhUv+40acmBuurQfuqtMt9+PfiNyju5DEekzZtS8qX8/HxRGAAB4nGNgYGBmgGAZBkYGEGgB8hjBfBaGDCAtxiAAFGFjUGJQY9BjsGfwZIhmiGWIZyhgqP3/HyivABTXYDBgcGTwBosnMhT9////8f8H/+//v/f/7v87/2//v/X/5v8bUPOxAEY2BrgkIxOQYEJXAHQiCyuQwcbAzsHJxc3Dy8DHLyAoJCwiKiYuISklLSPLICevoKikrKKqxqCuoamlraOrp29gaGRsYmpmzmDBYMlgZW1ja2fv4Ojk7OLq5u7hyeDl7ePr5x8QGBQcEorLZfQDAOk2LAIAAAAAAAAAAAAAAAAAACwAXADAAO4BHAFeAYABpAG4Ac4B8gIcAl4CrgLgAx4DWAOIA8oEDAQyBGQEjASsBNYFGAVcBZoF2AYIBlQGlAbaBxAHLgd0B6AH/gg+CH4IrAkUCWQJyAn+CiwKbgrGCvwLNgt2C5ILrgvCDBAMSgyGDMAM9g0mDZANxg3wDiYOYg6ADtgPDg8wD2wPnBAAEDIQZhCSEOYRJhF2EbYR9BIIEkoAAHiclVoJkBvVme7XLalHZ19qtW6NpJF6Zrql0eicy5qZnvFcHo/va3wf2I7NYRtsAz4IBocQIA5JbSCpbMhuNqlkCzAhHGHZYmsTitraDYEl2RSGYs2SxFQWAlTCsWyIvP973ZoZ22xqt+yRup+k91/f//3//ySKpl6iKDREX0PxVBCuGL8PpfKowmTrqFSMI9rvSGXL1SIadPt8cc7rRmG5xSmHUCKfSOTpXONHosgwoogmIq12R6Jh01tb9VaKoqlb0Dj6Cn0d5aWiFCWxjjRs24XK1VIxoLA+ev7udY5J+DgGcXFRiv+QQwwX5fGdJMbpRS+oHOf9aTAUVp73+uCS+5dgOERRFENFL36I3gO981QvtRhW/BpiHWygVKzWykXZD/JU+MtWytUafgBBsp8NKOSuH6nlPEqnHLJfqTJZlYUL+GQdofe0aDmS0DOcQNcLhZ5672jP4vZ6dChfKOz19SoDCW3VC4zoE2PcSEunmuWUsL9dQmeNz00WqjE5lW5fYhgbBkr1+rIVo8tW9azYl9zW+ZdMPFlyRtu0bKU23niyPt0RzsR6gxIoTSHqwYsPoafoJ6gYRdmx1nmmXGdMbR1YrzitBNBTAu8uL16kaYsWl9284FuX6/Kmp6pC2SMljPW3f+m29UZC8gjOvtXr9rRNbt6UdpO9N8Deu829Kb+PIe6oo1odVcpqVjXdEqfRbmtblvXMLs3n1nGmNHSTtW+Lm22pP7L2qvWre10CkQh7L6Zm0fO0k8pRVAbr3YUUf6pSY02nDyJr+wS4uiizNTMAHAJjnle8zvAmZoLZGmzxKuE9e0OKlxV3zy9cK70sSlztBk27occniQFvreaVRck1sGCl1ws6ZKkZ9DYtUwoYC/GX/enUIggrDnClXCrGAMLo7eIX1OxdxeJdavYLRdRtXeJH0/+PXTyMdlB3UAFsh48m2teqNQs7oDXakerK+bxytMfvamltyyQypUT7YjUgewNOqZfuCEfb+2GfXuRG59B6yol1SSdBiVKyiM4VG88Wi2gAS1azWN5z8LAU5LktvzWlLFVjkXb8N2I+qZBDBcD4G4BxJ+XHuzrIm4sBtpxNmYitojdOPXwK/k+vPrR6ZX/fKtT9uccfvwP+ju+94/N7rr7/fmLjHnj4CewToag28FMK/CM0k6PO4NjIQgn9RG/o+oauHj8vunk5neTdcnKDYRjovnbZ4xMRsoudSUVrmH6rwMNrsKcVf2zwIMLIykJesQF5gW0AZR9iSwA9YBQZvSaGGmd16ee1wdlBdcDri4tC68G12249yN2unmeENpHWwkKS5x/Jry8OjLXFPAElHIwa265Zt2ePdz+8wAEREB108M8F0KFngS9BHOvgEHYO6ALGYiPhH1GM6DWvloONI3Th2I5tJ6KdEcTY6ez24eVLxzu1SGEgpg4Vx1tbou2x3RtW79fTPZVHpg4sHQ5GYhLrdTJdU136dDLgZmyhdCGRD3t4fzSi1AZXDWjTwcg67COaioOS79OH4Dlpel4uFS3/V0ygSXXUj0AVoZQWGPS+NjmgaU9o2sDHEd75KyfnT4TEyTte/k9jt2HsliBP0C6OBfd9G61sPGzFAXzwGr2T0i/1gR9MM10AVhPyrQhgdRLLlwngXju9ddXBeDbm8Q6l6rOjtRU5r8gLtBhCXk17uzy89sAzqw6vHwqFIwG/JxJbViutKHl5zoPcYcF4MnwU7CuB7PPg/xhkoik9T8/5lthHwAD6OCzIFtH5k2vVCUP9ztUjoxE97BJah2/w1v/2yPTSa5ctufYf118fH7ll7ZlHh/RANOoXPb4DuyuHz9wwM6hNbKEWxPx6zGmIUCQLtFMWa2mzci1CZVy5FMi9C56DlTqa3rf9EwIqWhQjLBrXaINzHzx89z2l7ruQfZ+JJs3LcTxF6koTUwrETCNWmXmSZyzHYtCoTXOqytwVunDymZMr+tzxYvLII0cmyn0rNi65dgn859bcuGb1zavPTh44MFldzTO+RDkxtH3HYH5U4Ff9JtvXl1V7e98vjo8XCxMTBDdNvyZwdqGFUbWQXWuCOE6z5TydnqOD81/fPzUJfrXRjKyO7nWBZ29d3z4+mFnrVKpqz5rpnsoKVLvnsXoe+5flbAx386bK4dXrr0+MnGT5XL1z6UDvTB10IDyFzgJPKQt0gNAKn8pazT+037puPD3PY5hjV5K9EpfuJVnXkKBN5Mxvad8a8/kD3Xw02ZKNpbPzO39tepvsldxKGcXC7pjaS3DRS5XQObpAySYSob5lsuVaxuIfLwqgcwrHeLjG04qCxvxOTgk2LqBwcFYIIOR6gW/nXvAEBJl77IcciUGW+gf0Nvob4F5pIaPL89z+dqHx9UIVzVarje9WC2h3AZ3IZtVnVJPnm/oQ77F2H0qzxNIcMm1X7FijxpMOL8RACaJw40JQ4bxeNKmgbtn3ks2GLHVkIeB8icc6DcJev6D3Um042zH6Y01n1umFDDfn37n27Rfjn5GCcS8bGq22jo1MxZ0xyR/beNWhnd8hjRx6e1GmNstHObk13NY/EOOVYCruFuRIONg9OdXIW10d1gG6OfQhcFrWZH5CsJBxaprF5D53L9Vp3D8qEjx0oayadrDoQ32fLkqS/5t+SRLxtT9wo00QJEHw244G/OLD3R4a2fqTySTH0xs30jyXTPIcTTslAfeYf/qI5h6+0CfU/hvnKdRr9CbwXgAwZeapVdjS+HFBohLWhTzNM+YVenPL8o90PRjU9V/NbB3oqk1u76oe29dTl22cosdOHR9Y9L2hvQY6b2xdlJ/kPWveTAz8ePhDVzAdkV4dIljrgPz8LeRn5yU1XMHEAxGBUAMRqVaDiftKGpdY9NsbV1915syu0X7exyWBjXjBRrsW50b37B5zx7tSNN2W/f7E/idP3/6kHuO0O4GS3B5vzTizf++9rFxVI6b/RVDgLctunEsa6ddNw7Hnse0stlrAtr51YvuLHo7XJEkD6n5xx/HpDTObNs1sQLnjP8D+Reexr586sfUvGsl7iG3QXaNPYP9as65bPgXEB4hxhGTTslXOm0uVtJysNCv8J1Cirte0SETT0NGQSItAv++etFi4TWBOIjtZgzqP/SyGpsBYoOHSswEJP2/Ct1LgnGEuE70w7t4FvfLY6j+jxVyFbSotw8ewsN+fmlfgVEHXv65p8TgoeCIkoncs+T+7RP4LhqkdkZ+FmH8AMS+RPhFEkzhXPjX6C2JfrZl4RB9ApYGgZ0tDm06f3lSveHkfBkHK5jZSA5s3Deh9Le2adrP2LsTj2yC/Lf/4Haef6AibSIiN9Z3Zv+/MylED64K7wQb4Qpvv5y63HESSfqMydw0dXkM/ouvyi7JOnq2nuVto9V59lZhs/PjHhtFIEruXkd5xJ2bBNv8lcDD3hK7x17q+d6+uoyh+Nswd4NMmlj6Az1bmmKJaUllL0ctRi9WtEWWJa1nMHOgDfYnuFz+/UdL1XfM43qXr0k8z2npgE/m+7wqiiClDeufALcY8po1Gw8Ds8feN12gedMG92DugS/wyXDedgzkUyqmM3gHw3qHryaSu/5Wul99CLB/lWWRhFQwz3C6OZTmXOWNhYqZh35GFbCg4aJbMREB8wiW8KFh2FwMJFFBK0DLTTYvxG2laX66LooBm7d5QjBv3OBCYZ67hi75ogDUEB0r2OmTe12ctm4yJfsY2fuMKqq+1xRsFQp548Ty+EpV/LicP/kAUabzWSNI80R0oBX0EuufM+ZlUdmAuBmt9OZowl4PC5h36CPASEgSZ/ZwrgQBAe008jXH8/BK902i4Yj5GlND10c2NPAEG3DXuiW5GLxnAZb2QU+dIr6WRCdWWytvKdVsxzrBlM4fwBKyQTrZWRedsYrDcv7u/ooi2+csJp6s42F9xuj3O4qLhgtOFbvnGppm2kMMRapvZPH/518dzWizcUTh5d6ktkeoognyMzwuXcOkVSWRyKakbF/avOQaMdsoktjfW7J8eN3bvNsbR9ycPPEyMu25KX/LulMnTvdDzYNuy1CSp1TABgQsDBAkwCuLDCctY22XG9iMym2PhSpxRiOWOltaEItt9Ka/s9SVEb6Z0mRds0y3Owshwt9PZ0qIPKzIrpH2c02GDt/hiDgZ1HyyPVL25rCvkkJ3hHhVd5p3NS492FdKtetctR7t0NedO2WSby9HiTIb8K/PYHv/FD2kefFWi+q2qp2IkA1yyn+Y2XH4D2Nw49AEV4Efa8iPNd+mFiNRCu9zx/JJ5Knp0zXX5tgTfgmxuJ48y2e8uHly8eHB7+0gmWB0IBcLOsEnHu0e0KTmYDYwFg60+rRXxM0M/m5+DrqHGm9o58GFA2TzGAj+SYUjFp055mpxNXMbYNpOxEwhHCb32mTW76u4oZmgBBjM606PJ1aFWIdHVnmvT/J37v9XnkAiBJ+20XQp3J4tGvnVioifc/b3x/R0d2i1eH+/1etNdEjuk6XHe43K53EF/5+Dojs6QAC9zXITzt4f8vZlkwckLgUiZuiQnMwvr3MJslOcGnapZ3j4i5e04lLQHdb1wnNxJIXR6QV0D0gLflcy7qbBg1TQGYsqBrNYF+Z+tLGBFPNdY9zSnRQ7NLL3eyoCJ9RP4Cuf4Q1tuPrYZrQJqPDu2cuUYWkFqlATxuGjWKOJixsfAdKgyTf4jlIcZpVqTmmvooij5T9ncojfsFd22U35oE/dogiRNpOzIlh6XJEHbo9MG0PqfPvEJLEKs4KNtNMeTRrHx+p3tmS+hKL4n9nnAPgfo0N/MQAYf8AAI1DTcWGSnNq3FytQRbtWUOA1pJ5l+oB0xhw0tpm1+Me62lwAMZbsnKkp2ejGT0ZZpWqDQQiM653DHW920EkIM1xHQ4AXaiNmQ3dUAGPj8rrfisXecks/rQ7/nwVVf7st2veiSgvS2W5Nth1GF+CxGzgt2UmqzrkO1bAZeUq2wpJVaU2NWKqH3MfduWpPT92qa/9bDfszFnWNDObwsXXeXH+rxE09A9G1Q2m+/HUp84xNqYQ/RYcaeWXA0waTny7CCIzTYrNbQQYj3Wjl7rwiioBp7I4MsYo2QF8oz4fyfP2oYj6KcgUtNz52x2N0VXIKwzILVs3c0azDetYYugzQulyya7ybfhIL8AKSTE43/VxPcy/B94ynkbPaRuJ/2on+fhzgscL5GamyuhQT5r158CPr2JyiBomyEh/GZyFx39FvtRyFRDP1I0+67T4C2j/4hlPw/HSP9/kOoZn7OfsWcgWrWZzT8+Xb4DH2aNI0wA148hs5d/Cd8Jmj/lDPBreRIkJzz/ZH2oidhnqhZ3WXz8BqmKDLV+ZCMV80V3IhDa6lWYBX3mLU6TXuhDViv9Kyb2lbftblreCDmdtlQHGgl0dMW2bFXVDvPbj7dqxUzosjgwKTUFb3aYMzbWUTI5ggGo3Ik5WVmR/6VXTqFctmYJjmDZOZ0X/wjeg9iFsaoNJnV6rWbHoghPGqy5OAP6JScQ7x3cs1wN4lNh6ZNhcQ+Y/Xh6elKfmqgVF398ubPdnl9HO/zog/BUz/I3bpxaHZIW5xbv8GM0wTI/CX4o2PBmSyZJ2lzuFXLKgjz0ab1eLb6JZ9a0r311lB5+2Ak3ZuIBKQosnFtGISzg+OKM5q92tnaGT+1MT05lmO8qYgcDckuxKTK3YHh2Zpi1uwUxIEFW2NYMsnAPL2gw680Qy6UVPOckxhLs9oUL7J0dWzVkRNrBsumxR2HDb1n1dJSebFhOGCuL9+6ccstHV8Fexuu20Y6h2ZPbViPZVYsW6NUaoG15rEFhDyJm58arlQqOUtDv5TUJYVdn//spi17ANeNc57NvUuDLMdlZ3yfKS5zX+1Oq9HbNm46dXQLdHu9YzWu5dCNo1ZtgXkVPU3vpdLNUxg1hc/ICfyL/oU9MdEAPR0T+Rg9e1TTjm7X9cbvdX37dk3ftm1oF90eCAcDk3mj8W/ALZrRbYzBTB6/GKUZ9BTVTQ1QSywZavMwWMVfZqAS+d88ha2RM0LTu/MgIl6VyMBOEA4uZkJiyhmTQjsnujvsdMAvHKJXXnXns3eqrUF/686Jqp7vb2t/qkfN9vRk1Z79kdSQ2lbLlnZ+eSc6KYbSjLs9Z2wNejx2PkIjZnpoeNWq4cyIGO9sa22vGFtjqdTt7T09y3t6G88qSWhCUHeitVTCPoMun2Cic8GsZUH9iqYnhjBK4QWAxFc1LRlJ5VcAGr6paR0mKFqig8nbO4CSz+faRoYftObLJ1r8gXv/A7CAZ63n6R0w44cvnbYs1M0d5zyvN17R9cPX6PoXQ+JV21vx+YxBAgHweoamFpzXFC7G0FHYM4Y7CjvBl+nvgEySZy6N5XJz96OSOl08E5cCPncoXA6HT+j6N0MiOShSE4v6M8uCYcGTYFJtVfRlEPiMJY3UFKiEZJ5omz8ZYj+lOxRqc00GmwB/Ie0wnmUOzuR0/X5dz8HTUEi8P6ppXwM/3ojujRmkntw7MWk5rfG9ewzjAP0UltsHDy+DXPFTvYZe1ht/p+snTDNOGM0NXDgnLv4RdHaix6hRa34rwyRIotsc265YuHSOUyzsxmnyDtqpjWsqgMcPvcr81XroYvz4ojXryHYVw5nBRIfPBgvJpHFhaqz/LO5Z5q9wN4M0fBVNdncna3HhLZozc5jgEfTt+D/gUf6zcIxyV8JRM/whE40YOzXgpleBm8gZaOaK75+A5189/uDxYw8fm15+9fJl1y4DYv/s5k233bZmaO3aodEtW8z6kULvgb5x65QOiOAKPACv/y8lZIG6eOq+oow8Zxi000Cs6Lu0iJjz/u9AbnKe60wXXYoPs3ih30UkPoamrtqnaY2Grk9P6/o1IXFmc1lHh+SwHN634rCVXvGZDrL/JPjmBfDNJGFt5vKBw/z+CRrevK1CvtDFGJkbNuDthNkU8u3uC2xQnSpMl9wRPFD4eDsT3VofVArxeCZTT4TJq4MdzgB+tY1GNr6jNT8gDhq5TEHKn/RF1ZicTGoboCVqcblWZGJCiGftDlZSOiLecDoiiqJWhzao1eURXVLAEwy4W1jJlzbxFAI7nqM7cU0wzzLxN6gEVNbJGgmW7CcjONSE52aNRWtWa/oqUt2/pWnfmornEAxsp2rLR6d+bSwHNaAwLTfemMnGLRluXFfRWfwtEcGs6aq5DCUzYnXBAgbslGrPjX/FpE3Gm4y2j1t11TBiqZs+xgn8B87nd3aWXyKk17TlY5ATtXpa8jMDlZmjmogpAn2sRQ44AnyUDzgOwBRzg6Ype/cqcIHOGo3HRPJdEZqGLv2nqGzgMx7Qn4Z9++ZmGVylVXKqbZ32zs01eJAo4a9V8Q8doHluThG0KPD9jOjzxkUPrkEhj5TgeJ7p5wVRP6JpXQVkD7EOr+ALS56gDeW7NO2Ijr6Iz2seh6Yt2LEl2Lq2U7GBalO4oTYab4TWBUXZHtZnEihmWJj/A+hZuJR/55isH9UWThHzGrNKCf1Bv0ETeG7lMg4Uul7XMzcdyuqwlhsd8fGCdgOsXHc8a9LwoUNEg2+cMYzZWXJ55ht4doVag/1fNb+dAD+huW5GYav4hwdZ8JR1uoF/4TA3X1hr6GPZoX/Nv7ya6QrLUgQ5y1HIWubunEPOX5eX2GxfHmaqbKmTFeEefVFpoRtD/WvKrdCOKJKtx7OWsbegbTQbTCaDDuYrN0nSka8yLQFzHsRc8Dro9/+bP14HeN2HUY363m7OH6vxfeM5RM3PHwJ06JmgOW50WQuNV9ML548emCNegTkih+cP4AHINfLtHf6xAjgH7nCK+dM+BpiCxcftwA/oFX1decgu9+U6c7W2oHu4vFZvz/cF7NUqLOYFIxSfeMDLh33JFOdS5Acm40EDeYKc94HF8ejYA14u6EEg+1cguwCyzVkkBZNPqSijAv4dSLJYpL9TLF6qIzlnJ5NHjMQS6mCdwRqaSsPUjHsIrCIhO/RKvpJV3D3lLbkFynXk1paHGEHIVDXUnSTqjSaiV6hHTPBxEusDFf4HN2RlrwB4nJVSy07jQBCsMUlWSCjsZW8L6iMP2TIGRQtHEEGKcEB5IK4TmCRWggc5QVH+YD8GcdlP2U/gR6iMR0jkhkfurq6p7ulpG0Adb1Aon7tPrPBD/fI4QE0deryBA/XX4wq21X+Pq6gHyuMatoOYSlXZZPTqslZYoa6qHgfYUjseb6CnEo8r2FX/PK7it3r3uIbd4CcuYPGMJQpkGGGMOQQJYq5jhFwlPiU7oEpwjoi2BY0HTJi7wIw+I6eR49HtRUidqu32S+VKscc4d5UMT9KYYsjIOtsjd0/fRxeX6NAKruhvyNwy2mdFXNjnZZGNxnNJ4vg4DGlPZbCU80ha+mFiF7NJJjp/lFaURtK2C5KZ7NlcBmasp0OxQ+mZe+l3Lztduerc9G+7+6x7zYZT15zFH4ZpanNLsLpAgSfXKtq2eNL0TSecO19wZsZNLOKUBGd8vxYLeQdD1QtLaOpLTYP8kZ9uwghNm8+bthgZSaJYzsS3EHbM6GWqCzKN8Ij3TRrr3a4fgLXU1S9oyM/4Ccrxl83GOCHGnSlmGQfEY+MT+XbxD694fE0AeJxtzlsvggEAgOFHdGFRjJBEWTkPUTnFrOnkUGiIkv5XP1bfXHu29/4V8ud35Np/3oMmhEyaEjYtYsasqJg58xYsiluybEXCqqQ1Kes2pGVsysrZsm3Hrj37Dhw6cizvxKmCopIz5y5culIOHm7cqrhTVVPX0HTvwaMnLW3PXrzqeAu+PnR9+tLT923gx3AMbIcSyAAAAAH//wACeJxjYGRgYOABYjEgZmJgBMJQIGYB8xgAB0UAhHicY2BgYGQAgtsKp6pB9NOm160wGgBPsgfwAAA=')format("woff");}.ffc{font-family:ffc;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffd;src:url('data:application/font-woff;base64,d09GRgABAAAAAB+cAA0AAAAAMMAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAfgAAAABoAAAAcpiahjEdERUYAAB9kAAAAHAAAAB4AJwBiT1MvMgAAAaQAAABEAAAAVlWY/lRjbWFwAAACiAAAANUAAAGC4rcrgGdhc3AAAB9cAAAACAAAAAj//wADZ2x5ZgAABBwAABj6AAAn/L/HYlRoZWFkAAABMAAAADQAAAA2LD4azWhoZWEAAAFkAAAAHwAAACQE0QEeaG10eAAAAegAAACeAAAAwg2dCxBsb2NhAAADYAAAALoAAAC6uFGuBG1heHAAAAGEAAAAHgAAACAAowBTbmFtZQAAHRgAAAGnAAAC7lwvsX5wb3N0AAAewAAAAJsAAADaCSQJSnicY2BkYGBgYmTb+e1LVTy/zVcGbuYXQBGGp02vO2D0/1//ZZjkmLYBuRwMTCBRALnND2d4nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAHicY2BkYGCIYQhgYGUAASYgZmQAiTmA+QwAFDAA9wAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCpJM2/7LAFVuY3jCAFUDAPggCzd4nB2NPQrCQBSEv1htoaKLaPxJESXBIsUiBpcUNgqKYJ0jeApPZJfCK+QANmLnNWx0zD5m3u68N7NBSHOC85+g1eHBlYVqxpMbJXsSKjw1BY4LazIi8Uo9E9fNNBG28gxY0mPIWIrlxI6R1K7eXqqVb6KfLG2pjpe2vbrhwJycVMlGLkef/PvRfSOkTDkqwRAqO1JCLP0t3Kl+bvEWsQAAeJxjYGBgZoBgGQZGBhCoAfIYwXwWhgQgLcIgABRhYVBmsGcIYIhgiGaIZYhnqFWQ/P8fKKvAoMrgyBDEEAUWTVSQ+P///+P/j/4//P/g//3/9/7f/X/ngRPUZAzAyMYAl2JkAhJM6AqATmNhZWNg5+Dk4ubh5eMXEBQSFhEVE5eQlJKWkZWTV1BkUFJWUVVT19DU0tbR1dM3MGQwMjYxNTO3YLC0YrBmsGGwtbN3cHRydnF1c/fw9PL28fXzDwgMCg4JDQuPiMTuLkpBVDTxagEbuCslAAAAAAAAAAAAAAAAAAAwAFgArgEQAX4BrAHYAgYCTAJuApACpAK6AtoC/gMkA2oDvAPwBDQEcgSkBOQFIAVGBXYFoAXABeYGMgZ0BrAG7gcWB2YHqgf4CDYIWAiICMoI9glSCZYJ2goIClwKvgr2CygLagu8DAIMQgxgDH4MkgzYDRINVg2QDcYN/g5sDqYO0g8MD0wPbA/MEAYQKhBmEKQQ2hEyEWoRphHYEiwSdBLMEwwTUhNmE64T1hP+AAB4nJVaCXQb5Z3XN7I0sqS5ZzQ6rNuS7Blbsm75PuMkjq/4yOHEuSEkJCEpCdBAaBIoTVuO0NelF33llXZ7UAoUAu0u9C197ZZ97WuzEJZsyRbSpdCyFNjSLbukUfb/fSPZMoS+3TjSfPNJ/v7373+MTZTpOZMJtVP7TJLJByvZqtAsFUmiFDLnelAmgHjZGonnChnUbqlDZikumRFFuyVecge0QECj8v49ygOKwDCCuBxZ3A0WS8PFC/iTgAn+UaYjaAW6A853mFwmk0Rbo5EUiheyGZdKW6vLcwwKBc0MFRL4wCMM1VNZUj3PNsaeCXrd7soVnxcFLn9PbTd1mnpNppisI+A3Gonni9GFRSSf60TVCz6fQ9nqNaPgX8lmElE6i36fXumkrALHu9gt1UU0nWkRujPpFVxdhHeb2S2Va2M60yr0ZB7YImz5SWybyyW6+MOVSyx+Rzx2SHd795E3uL3jDpDdYopeehB4fdxUD7qNmtKmbtAAVmce9OkqyjSyYn3AbRFh9sSqqnNJFGGRIgdQpgeZjDt8U/jn9Gga/r9qLb/l4CxW3mVBosPHqhmyX/43uxN+yBtyL6yptuL4WDu8Ejb24pTHgly8laMeCioX/2n/2Nj+MXRYDnFsWCHvZaopzLJh/IbtZzY1XPov9DrYL28aMI1hDwH1WWlXNlMo5rLgH4oMIiQqYvSgIhYOZIFt2qUW8G0nyiS6UBKMY1VktWBOogQWDo5Ar2uBXKOsJ1gZBcx2IZ1s724fKA7F6Ky1oSeZSqVKUs7THtRmtHfraNYuNfADNNtuD8tuj47uDH1yurHU4A5TAte8amhofXdPa32Onlw9NDFdap3taFnTem+dP5Q1270y3xIvFsfK31O2KSE9GCph2ZDpLPhmHmRrwHKBVIrMoWgiac4Di7l4NwJxQBT4Cm2W65l6up5ClJmqo1TBKnipwXp+aM7ZUm8213EO1SxPynTSaRNUyoPPfgBsfwps7wVHwCqKJwwFEd0ALdCFS3WhU5wob4tODsevUkSOWZ/SpzZIeYe0OnvtnR/f17lGcvD1nevXbZt7tIszeF4L526Fc0m00iwyFF8oFvI5QoJQgIO3LjmyjmeUrdFJlMaHynbOXjmU4a1OJxAzzh4yzaFnqHrwVIgsEqnAK4RRseKmvShhmDeI4AqhRBcNW3MIKD4jcw73RvOweY+9npPV3btVmaOFnYsbe+UXWIUrxid0fSLeZ1VYl7O9xCisUt8dm9T1yVhlr9MOvMRMk+g1SjKphs8pcjTSjYyYzoPj+UFM9Fr6U/HYp9PpT8djn0qjdGWJ3w15vnfpENpg+phJrshjaMpYYMbRhh1RVvZ1M3XOhsbGhmjaO7JBcbrq5XaqscEb68BnlJATnUFrIYaBj2gYGMiGM+hMuvyP6TTqwFTjMfy9n8LbMNByLNIiJIZjPk8cv3qNSwy+2wE2fBZsyBEboloMQM/ayn/PeFjVhpZxKqtSJ238xSm/Ith46rt+xcDUNojJcwRTFYLZC9ToXBwHmStTQOc+tnbNUfwamdk/M3VwCqVve/zUCXgd2XXixK49X/wC8LETfvspOMdtIClRrmDFSsYOBVgpgJKf0v6iaetTxWhsmWZXQuu1UCgURl9qDgUpy2aXdvGioescvJ2Fsyq+gxXVi7BTQtjTLqWGSUVmKXBcOpvroQiCoLOCp/yIzv1h01xfooth/AIf3D+7+aiiuV3Oz/nOI5qH7EJpHiHMM8+Mz/YMx8KMrHjd3oHte9dFe9s9LsdNKgO+zLEM5qUF9PMy8NKx1BYKbeUQRi7gikhbwIBl8Ph+FukAQi/fuGnzTT5Z8iGzhYpv71k9ulzTPJGmsJjryy4P23yS7Ns+N717Uht8aGT/ZL/b45NoxmbOrUy3joYVB2W2OsPdoaTPwUs+ryvfN9O5rl2aMWzoB0bfog6YwqZGQ/uKkZsMDzc8QupBAJ4ubIaoYEZvaSNdmvaYpnX9t4+rPw8x5fcKI9rDLzwT2hkOhUM7JbfKoB0QdN7y/Wi2/ACxC+jiLOTLtsvoIoAMZYD48EkS5QX4LEzYUIgznr1l0/R+vwgaoGyI64/0rB8sTWlOiRcowYscmvZGvm/2mh9OXzfX43Vj4R0o4J9oz01lOIFjUV2DGA5933cDljcDfPwKbOI3aRVOktRCqiDSEk8pECcmqYJwh351ZKZ5ZV/s/quH+7yap56PDB9w9H7z0MhIR/uY2ttSXP30uoOhZUdm73q0r9nlaxB5B3/91uJ1s6XVfS3RFd0Ti/5wrSlEooW2UrRs+HhUxjVDEnUjgpsqRPbLNLf+iHmkK7/+QsXvKFHw0mhIowYc9dza8oV7M+m77zi8o+JvrQzL8ZAnqz7nAipaja6LoFac7nFCDOC0UglQdTFUX7554/yRmWJm1aHvHlqVKcyuW7Vv1djuMXb1zatnbph5aNU116wqTfPssra+rVv72oY4fuqVREdHorm9/Z22lSvbMitW1OjXZ2qqwQTiyiRZL2zQuYShXxdR7xd2jS0DxdqU5qGd9r7pmUNHv3t4ho5Ol2axhlHxzsd6NaxXwc4f3gR6XXfwszNN0p7x7tLqfmxXgnvoIcAidSkWCZdFweoLXVNZl09VcZEieL2KnBVYepa0iN5EnUuOtGxoYGVXmo0EGn2h2OLBn1m5SXHK9Z4calK9sTzGclMOnaFSuBLF9oknYvFcMQaWLxI9MciFzrjZerr8sEtFgzRXZ2bc7vJryKvO8S5kfoFt4k5bLEgRJOGxR3kjjmOmf0CvofshP0i1GUJZzBWvpcr3pvJoXT5f/mY+hXak0JFYLP5U3MgbVZ4gR5lk2lKRsxURyV2qBZ1Ryw876xi3E8XKr6qYPTSJhpu4F+qAj/onH+VlwhvmpQcO/AV1lamFoDGuDvxIrpQIPVSxx/xBqAuYqWrV+YvewRazJDUwVldv2mlnrcMDo34CcvNbO9c0ucxfIxU/+o+uaOOIxnMs6wqqke7uBtrqZGy+cMhJYC6z0hPQpPJMTQ+A66u3AeuiwFk104DWoQYnBWQF9Cpop0rZTAqXwImolUZva3s1XnIpX1RcEg9rTbzOonjsHsVynah9p81qRcjaDhmJ56hNmyiOBxik6lWeVy+++5VXqWDUXigbdSzoF/0GcNANiNtM7F9NeEZRUROhBIsLYmWBfjM/+Wdd93p1/Tfjm/L53r7NbYXDO/o7lWLxEzd1fLPvqnAInQ+HtnQ1rxLFNX8Idf14qPzS1Mg5Iy82QVy+AnGpL8FfFcNNxThQcFbjsceM0y565bqZHXfeuX15ieG5EMBPuI6O6A3M4FU7l9nERNBLUdHYt1bseeK2jz+RbBC1TwMEefRO1XZyz+67KcadiXgNvYOLot+CzCKuQtEHJbZiEXGO/+2NW36p64qi67/ccuPI2okNG0dR602PGIL94MUnP1cOYlkgbtCfSe+1kOMrp4Gfu4g4BEyjSpbgaaDqfxC0USWcNzpKBf0Z8v0hXff7dR0d8giUGBGpN28286KBtiJvvhnVkV2c8wkTgmcMpAS8LfxElfB1M76V1BeHjW2ia1x4vw78ZbG0f5WXmly7wL8Cv4tp/vF4LSfHs7r+ZV0PhYDXmzwCeqPCxuklbJwO46LofCgseHDtCjZ/G2zejvUENJVKENaYn1owf5JKJNECIFfa1gx6W+A44EAW2gY33Hrrht6czcY5sDM4OZpCtp7mrvn5zlSJbtK0G/S3OJ76GnAiyG24xtNFxkm8wuK02dqHTu65+uTa/nCI6EiEt/cMHcUWy40PKARYIGVANl9zh13lPe2wprlPuzVyrVwWb3FxeO4crkaw1cKhH/84FA6HsPsA7RF4+xHQVjHt97lP9fwf6eVf6/qePaDuCLmGFs6CU5BpEHT7EpwRNvoCYWnVhmOIylclQC/p/p3LRjd6FdlL+/NOT8w9pWk/0KmBUPmKofHujOLzSbzdZeHiPvS5ED6SZLG34PzMgn6yCfrD1CNI1bU1SkvgY1CjjelNJ+Ygkq40Agpfftakz2me8D1fl0Qei/OfB44uaugSEIWLan+qfI7iiJ4wXv4OeAh+IM4WDLEQS7+DWDqhaY2NmvZ1XS++vjRssNKWMRz8Y+BcaOlRGc4dqEVhIcohMolJRIVFOMYf4FAhOBFELjVb6EUEoIkz42+isj6lC6KEGnqZDmZItCBJFIwtvOjwKrZ+3N14O22Kt6OybUA1em7r0/H46Q53uRVjNtk6j1ec+tPuUHjiMZXDe+UgVogR1+8A3+mqzY04TpiB5ctYJoBUSc0uOME7mpvhBJ6X6WNtCBx1j+G3yzlucQd7hE2SzWZBRDtuL+tV88B9+d7b0fM4eChTCXzvDJkXJAnC1AEXdbmeOkAXK5RVSRQhfb2KRzXFAjpTJ6q5zky2I6eKdXjdkY2nkz63o54acdTnbsjYnc769E0ZmxOlx+fHGz1Wq6dxfP7e+QlYmp1CrHn5ePqWZAKqmdZP3J6LBUPxPMF1jMMvk1yGYxrj+uUc1FVNYC/vmj0MUHurgbjnZ4PL+6+8sh+985n9D1flfHVu1dtGzhAv/Rdlh7MLuJogGSuB3QC0Hf8QMjjsVOw4AQC1PAQiVSFM2VNascFppeodgdSqRcR4dHbvVIgFFKtz1AuoMXb/st5ly/o2x4faoBr2qN563+kqX1cOrs25o6I34/aEWS2MxPH+05V+k/Q1+0xDVS6xT1TqeHAAl1pp9BKReCJpzC2WZF28Z6CuSn7Q2V3TO3osAo8xloduy9ymDeT7mnRqha234E/suq+j8qHdyVDStemBZNS2faqp6RvLr9ZVWTvGshzjdHT6PQNasIsVKFYNpkoD2/FnxwGKKY69riMeytoot9iWMWTAWfmPoOtEbb5a6tFKdZ90ZpCj/kgC/AhkpYd1PXuE3EEvdktNaioHDfUVjPtRrwBZCdMzgW2dQC+6gJ0AnUtwBfcjCzuUU/cf+OKBiuusWLeCrHCoPLDxpps2olkC7Q+tmJ5egVZj9CT55dK7JL/ohkxRM+mwqIS5iiYEPyQMKEWpuofeEyTXsTpJEFinaK876pIEfZcuSMomhgJwGlbIPTUImHDxfwSBQrTAUnVV6CgfKXpTn0QN+J7w4Lz0LmUCHkqkIiccJMjU0WhzE+YakYETPATIgAcTlqqym+LDyCKJQXtd1mzOme1BQa6jhlFMm9R1VXeaUdJq77LTrQiZGc2t65MYQy5edLKsSr/Z4HuTdrMMS1FERY/Mx/R/cYii4wWteTfqATAxMB7nmfySinhpQZxY4DOqFhf1pyMaamT0lr5bFzhmwyzH89rVmuY6etClw17LcB9b2dlzwgX5MwTVwfe/T0EtCV5hOYdLldtuM27PlS8AL23Ay3ngpbmabzCpInqf82HOaLRYxZ2HzPM18Ho7Gny36oYj+L78FLJV0xAOJg79etEVyUY5snKhbAP6v7r0INTIj+MOyoKFj+NBRE3N8Yr2uAd8+HFNu+ceLQM1FnXKI4TCFz9K6usHwVqV3/1gTY8y1d/DZzTjvEh9ApeTpPe6tBuduXQKz/Ysl5ntHSCjPTJvu0DR6AlTozFFIUV7tb0nHZVcabGyuAoG4EnkKxPuYg+iaF4U17oL61Zs+sat/V2+hpTkC5Si3m1XSo36dzYfL7WkG31MGGwUSUx2DK+iWtPmglfxRpzmDf3P0aOjKNUY1ASmwcBn26ULpMYlfb6BfIaVFsIWWKjMAgHfAO1In//6jbN9GWKUFk0b9QiloelrR0ZzqZXd6dLU2fmjbSy2B4vexbp5NHl8rn+ur2W4dd0c1tNyoPksyG9Ib14QNmA2OskEfl4UiUZYyuhiKNLFPGvzNPY3bTzmzW7pVnxtfrdP5vwQzgCT9tbBEDfX544ptKXeF9trVaN+5djGxpXDLcjGBhXZp6h0HQJjpl39G5yq0+7CskfADnUgu9/wVOIpizV1fsHoArZAZYoEgEbVaaN+Jr989aEbZwbShvwt2n0DLaWp0auGQiG5IX904/xR7fNY9rLt+HBz/9xA/9x6ou88yH4aZPeZIkR6qnaOiaJhPKXC4hpFPI1OS4mR1JYTN2+Yv4Jl2fI5dktulRtkHLV055KTzF5HtKnh+PzcLTdsFAVzf1+76yPtfb0dRhzE4e0U9O8a6dZArxHW7K88syJpYWkpSNhApxoiXooR/CJ7SNMOXaHr5Td0/Yqtmr5lU99WSnO53RKycX4lCUD0HEkMraFwpn8YemL/pQZ0Ef2dqWjqNU1UJi6J6rQ2gSsZV9aFCypLdUaHZ3aVRzwq1oEVT7FAx1IuadZRxekL6CLEmc3n9m4bTuoWp0O2KcsdciqWDConfnRiOWV3SMFtw7nW1s5Y/PHSaKk0+lVvpDcR64olt69YuQ0dFd0RimlKDmx21/OqE8DWYlcCKX//9HT/eAvFR6VIpDk3sNkfjX5nsr19sr180R3m65E54w9ns4YubWA87CuttX1OJSQuV8WQoMEfgbfcA/2er7F1Elzlq5rWYnhMx8pbWjRcvb/UGh8ceLBaoQieJzIn/92ITdzf/JzabFLwdDf2PmsZfrkwbfm5Xn4OKqIDun63R9ilf4bMVkiv00rc8EnKVJmgYPzxo4NwbgjHvIX4oOGCqkzqnOJiznYphSqFa4XEaPZ28Isgsjg5Oef1Hgd5oE4gpJr9nV3xMZdX9VhxoDUW0Gcx3ScNosgkgCwXlvRBJD9dvgIUijUZlVbBKy9AVypI8oGxNl2/V9fb4DLgET4fhjtNi15/d1AzOoHPrly1qMny396Fb/Y/BfQhL6IXgL7yYZpEL2jl72nacUOo41po8RibCV16D9sfPYZtUu3jquZfzLGX2aptfKAkqDh6gCLfAd9YrsWhDEzjaVTNcg4PqfAi7GQ4Kp7KeJo7gk1sHWxhvl5tCQ13PWyMpxbXpO0hDRDFMpFMJlwICH+guBr/Bf7/j/4bIBP7D/dfWTJfzoFb8dROMByYMhUB654HrKuvPDFbmBgvQCl6/vC3D8P/kYlCfnJ83/jZjceObZw/fnxN/5o1/YNbtlRzVAS9DrwHjXkfBpPL+82H5Kkavt3iBzLVM5hzyhEOcd4leQpKtksRKgB0A7j6tCxobTFFVLoD7D7mhQQBZKmA/m1w0tLY7EePrV1WMOY/bfrXB/Id61YXSyt/CBRPl45tmD+alQRct1z8V7SpObN2bqBvw1rDXvh57GtAO1HBUSgzq6Z6v/cSqAlQ6DWvaIN+c2LLNQDa70IJCaXlfo+wbLu/WaTRQdljVYS949eHF0AhOM66JKC1Auz0M7BTXzUj4Wqk0vtUG59K09NjNhz4fbNGXO260M/YxqmO8Yzdh9saibX6Ng107prqdOcsanwkMxC3qfiDKDRqQnOot2vPSMlfvFlMtALuahtwvyNOJnxZHkq5aMbhafTJkqT1w12Dg5PtIVeCc3JiBPfvwO/TlLZQscQXn+SSWrLq0UYLSR49oqc39HVNz2j6NClavqJpXzE7w15/EkHDeKw0Prjid6HwJClamNXh0CusGOBj4UgldnCdgB5aiB1QhXXx8TGGD0Koh6rdIpEzisM3M3TSgHwzE27gQwl3tWQIQaCy0RsuEJB5h+PlelrU/M8aeA103SDnn4BuZTZltD5L2w1flSL6k+7fZ1VAebxs3Qed1XW67t2504sX6E7oGaDNAeWjcTLEeQaVKvM7Hmj8BWh01PZX8UQcT8urY5HaVkHKFooVv1Cz1e4G/QVq0g6zyDohPajQ67oYKciyorlDFHnto7qeySCLyoger+j0QKuT0fWPauguqFHLj4oi5U7P+honUiqelowZjUT5pdBYyutp2SyiMOlv8PPNN4HP4of3N8XF/gY4f1+Hg5PIm9r1Gi8IUxOSwMNSa7r+QJOG93h+2aDAG3t7b2zSjB7n4EGCquEvnwyT+/l5g7eTX8a9NuRQbJtO4289QG9ooZJTaayjXhQH1SXiVTzF3yKTBDz6qu6jP7ksrX+jTmRjSY8i+BCd9tGSFVLoJ1MWpfUjDAdNdRMTqk9ZkSWR1vFeK7rLY6XKg4OrsyHZq7ilujRTUBTobDdTtDtEcZxqo6KT7o+5levvoawew87Yh14Efv9/PdmL4IlfgqhgUemNak+Go4QFDzLV9GQyg5q8RgvW5jU2ymfjtT1ZEfqq56GvypKKA0MHRG0OGnmcNnvMsMZhiulHcZEq03j+H6DUDHqe55g16X6LqyvVGEt1uiwdhXUMxyeSHS5LqUS2M2Add3D5fSzvYRGgG+sRmPuGAg3YXsip8sx9g6HAEHysOhDwch54aSF/R4X7tAh0h4AXqCUO/Vkknaa+kU5/gGdUZct4sF1leVEG8rx3kecPYbRGFJT+63yGamUy+HkcfQTNUd/Cf1+BOQHYzQao6sM30i2iOXmCYlyeOp8n0hpJNtudCnVCsqfWOhHyiLQU6i60TiS9cuXvWVALWkPmfjj2qcojUcD6aPVZOlpjHFJzKnqbnMAsORWO+19cC+BXAAB4nJVSy07jQBCsMUnQSihw2duC+shDtoxBkeAIIkgRDigPxHUCk8RK8CAnKMof8DGrvfApfAI/QmU8Wonc8Mjd1TU1Pd1tA6jjHxTK5/4/VthUvz0OUFNHHm/gUL15XMG2+vC4inqgPK5hO4ipVJVfjP66UyusUFdVjwNsqV2PN9BTiccV7Kl3j6v4oz49rmEv2MElLF6wRIEMI4wxhyBBzHWCkKvEZ2QHVAkuENG2oPGICc8uMKPPyGnkeHJ7EVKnarv9UrlS7DPOXSbDmzSmGDKyzvbIPdD30cUVOrSCa/pbMneMDpgRl/ZlWWSj8VySOD4JQ9ozGSzlIpKWfpzYxWySic6fpBWlkbTtgmQm+zaXgRnr6VDsUHrmQfrdq05Xrju3/bvuAfPesODUFWfZKm7S1OaWYNVAgWdXKtq2eNb0TSecO19wZsZNLOKUBOd8vycL2YOh6pUpNPWlpkH+2E83YYSmzedNW4yMJFEs5+JLCDtm9DrVBZlGeMx+k8Z6tesXYO3o6hc05Gf8BOX4y2JjnBLj3hSzjAPitfGp/Dj5F7RifFUAeJxtztkyAgAAQNFTySD7vmQdVNZiIpmMKSSFbKEUP+R39HlqPDsz9/0K+vP7reA/H90CgkJ6hPXq029AxKAhw0aMGjNuwqQp02bMmjNvQdSiJctWrFqzbsOmmLiELdt27NqzLynlwKG0I8cyTmSdyjlzLu/CpStF10pulFXcunOv6sGjJ89e1Lx6866u0X1tavn05Ue7A+edFG4AAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwmggZgHzGAAHhwCKeJxjYGBgZACC2wqnqkH006bXHTAaAE/QB/YAAA==')format("woff");}.ffd{font-family:ffd;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffe;src:url('data:application/font-woff;base64,d09GRgABAAAAABHMAA0AAAAAF9QAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAARsAAAABoAAAAcpiahjEdERUYAABGUAAAAHAAAAB4AJwA+T1MvMgAAAaQAAABEAAAAVlXm/r9jbWFwAAACnAAAAMUAAAGSsZ5q7mdhc3AAABGMAAAACAAAAAj//wADZ2x5ZgAAA9gAAAufAAAPdCt6fiZoZWFkAAABMAAAADQAAAA2LQIa72hoZWEAAAFkAAAAIAAAACQFzQKXaG10eAAAAegAAACxAAAA4GppC5Zsb2NhAAADZAAAAHIAAAByaTBlXG1heHAAAAGEAAAAHgAAACAAfQBJbmFtZQAAD3gAAAGpAAAC7loVo4hwb3N0AAARJAAAAGgAAACSBacFr3icY2BkYGBgYmQzON1UFc9v85WBm/kFUIThadPrDhj9/+B/NmZppndALgcDE0gUAINEDih4nGNgZGBgevefjYGBuen/wf/XmKUZgCIowAIAnCYGaHicY2BkYGCwYHBjYGYAASYgZmQAiTmA+QwADzwAxwAAeJxjYGT8xjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABM2C/B4nGOUYAADRl8QAUQTGAKB2JJZnsGSUY4hiTGcgRtIJzMxMVgCsSYQRwGxNhTLArE6El8brHYdQxLTRAYnJl+GeKa1DE7MTQxpTNYMekz7GFSZDgPF1jPwMb5jMGMSZghmPMmgAqRVgLQyoxWDDNhMYYZAhq8M3oxC/w8yfmMIBbKDmA0YAkHiQHk5sL54IO5ikGUsZhAGiTPeYuADms8HpBlAbMb9DLJAP/wHABTsIVUAAAB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGDQZDBnsGJwZnBn8GUIA8pVKSj9/w9UocCgwaDNYMngxOAGlAlmSGQoAsn8f/z/zv/b/2/9v/z/4v8z/4//3/t/zwNRqC1YASMbA1yakQlIMKErgDgVBFhYGdjYOTi5uHl4+fgFBIUYhEWgMqJiDAziEmCmJJiUkpaRRZghJ6+gqKSsoqqmrqGppa2jy6Cnb2BoZGxiaobbYejAnHilpAIAG+4kjgAAAAAAAAAAAAAAAAAAIABAAGQAdACCAI4AsgDuAQYBMgF2AZQBwgIIAiQCaAJ6Aq4C4gL6AywDWAOWA6wDygPmBB4ESARuBJgExAToBUgFaAV6BZoFsgW+BfIGEgY4BmAGdga6BtgG+AcUB0YHXgeMB6wHugAAeJx9VwtsU+cVvud3YidxXjf2tRMnNr6+8SO24yS+tm9sJ877/XLixAl5EYcQHi1vtrJuFMqrXSRQJyhj7aCooLI1VVttLVLVaAy2CSoK2iYN6DbRqQ9Vq7RoG0PVquVm596bUNpJk+Lre+N7zv9953zn/OengOpf1kCSLFIFFJXO+SAYKBD43DS9RQXJhtEtm8YbitZEOHNJacT67+6l+YvUco+pdCJ19q0z0+MOigIqjPYxxd6uV2u4WFrAp3LyFoDYo8aF6OzLi48aF3YvKfYXyKeknzJK9hxL6zlbkGZtwQDP0gHez9Csn3zKiR8zBvEjjgMLYwAz9yWjPBgYsHCc+BH6mV5+mnqHSlJqihI0nMAF+Xe8nmJTEg7sT0rraKnLYKaWKBWuwwZZMIuLUHA5Rkm/rcerZIu/8ZJhMpmkFGxquI7cdPig10Au4WyOYEBAvrzfANfTxfMqlVaTkZMOE8oNuUvy/pPMyNBkZ5E81avSDUURqmz5c7hLLlD5lEv2pOZsTslRCN0YDZqAL42zadSM3pLO+0NCCO56hG/viJT7q7f5k0WhBFHTJZXWYUsepGfqi73FbE2+EVrOJB6b7b/w6mCqsmzsJbasq5I3PR7YZeZafGFbobeyAfGP4mpv47oIogyCPK3mgn6Bp3l4W5w/IPQdamIOxEA0xhqWXpD5evByC98vkd8XYiQYcHA2tcYpAWX06jxAfFGAW+KGdyorPPEGvq3A5z+1fm/Xugvb1IXqheY33FX9nrrh5oHIuadGGyd7ngfZL/K/jX7LZY1gEJ0hwSL5Qv8eCIaEmEpeKRc0zhgoa2lQQbf3jce2OTLSLI9Fq5tijV1Wg0Mo0kbdhZUNeqd1U23vtppAXc/b/U+GfF69O9xXExpqICRtjddOeyuyq1zhqvDa+sBYMTOB9DAPZgTzCTlOZVF5iIRjuCAbBIwHRyM1+GRmUPwHkNTMz+Bw7cWLFxvgFXEU9gb+MiNxcCKHW2hrXuHgA+dDDpg9jmYZlpHiBLeOTPLjrpzS4hFvsC/m7LW1w6h4vyIW331j8pDHQUcrynsGh9r7YE/zdddBCddqfIqpCqWKJP8YfHRnZOQMrCrFKT0xakZSCgrltsVeM+RsbXS9vKM6GAr1zmS0z9qrze5hg60+0gaQllVQ5C6qKzV9GIm7mqztx6Z/fE1fxxzcOMCVN010umrHarX5OYW+0lIm7KEUDSw/QCzHqRx8UBOGy9fhipgkFm6nDoze/y6m+dcwTzoeE2+8BXFqGbqU2H7FoVzSuCRxwSDJORcUtYckuVsIcvCpFLkbpd/h9gube6NsebRmvdY0GmmtqDDbY2sdLQ2OMYAMA19aY2dNXDTcDr1nrlVUO7Y+aeU7Wqer+8qakQ9Dq5nKZm+gfCjuDo1JOORahgWsZQ1F6bCa6ZWKTsJsUmzGwlZR0/jiHnKJysWuY1XyydIPZaeSRMkgNJ10g/8PkT0ntoqLX2w5OdGd2L3zifiBb6V2mvb1n3gxsXuhaye5tKk1NKjLnoZMvvGfPeJnkX7xfrcUy8blB2SMXJHXUK9WvZRUg1HjkFK5GgUhJJCxWrunfi6VujoneDzBfJ/TFUy1trS0purL7OHy0kzt5i0nTv4+Q6MfsWqzhwa/s3doKDvbIedsHfJhyc+xx1HAOTkUIkujIAmb+JsNBPG9KbhKtpIHDeI1fGkF18ZVXP8HVRBDRzZu2imjilb6hLwKrzeioGpqPPKBo0rGpNUWjzjy8xRM+rMNMqZZDHQxxriIoliO5tQaFedUOZx4S/NGncHIhwQdryoeAH3LXDe7rTkHBvYWHInlgLb/6F6yqW1ePDcIptdDS6fJpXJx/kzQ91tIol/f8ucEyPtSJ7V/pTIswgrwkRUmFkAmUqHoDWvAAgQOzezbnr/hifqBiGNwjb2OcR6c9XQ62fyeVEN/jXtD/abLyf0twwPdAU9DNpOhdZQEI3178/Pp4YbW8rJoVmHeDpmTHeN8mrxJZcpxRiYa7CDkdM3NqZu1ZDfZQpZOksdJq5ITxLke+dOrPS9I87RexkrzZP2pzVtenJpubplN/PXxEye2wvuif3LD7CTclGxzcZ1zaIv5zAQOeF2BHC5yTvxsSvxsw5ObMyEvtY9cWuokl8Rb4hcVzYtQjdoPYe2+gi4MElKWC8rLYuEpLUrp4pqgLZcwEhDs7/BKvHFTNPqjw1Vlg63q3kTndCKvKhkJuXxWmiaOqoS3pknlrqoNtHmnO58PpGXbCs2cLstEKzWfwPUWEWceZXrY2RnMLy2tpJEXZeQaX9zeV9lBJ+KdE20TicFgs8tWXz324fpnnLoKZHAnMjc5NFD9x9gAci9Fn/MyB1mbjoDc+jQ+UPKJsGE+PjK1f99sIFae46zxdbb11g132ivnfvGcrqjVpN/Y1D7JK/gkX5cRX46EbyUestJpXhV0PHQYgsuJ5qGO2U1dycZ4whENjw0IEac2UPfs1WcFcCzd+U1gYDgxGJDSQnEr+AokZdtZaQsQjCuBlmpIQaqBefEqScYSneqe4cmnvzM86XfV5LQ7fS05f2qZCrZUza1PzXXFfE18s1/pu7jnwgzWJPIGeSs0A89I1YI1qLiGmTK3nnPs2h7v6prucHjJdjrDye6JiQfhqdhI1zSqBXubedkP9+EaduEw1aL4kqqZkWsFCUfBb0nDJ3mSWflI3kO8nDAlJNj6PGDDTVFvwOzdN5fH0kyp5oAnMzJOmwW3p/DwLw/VF5ltqWbB25n8SdBRKkifsWcnbU5Cxr83BofT0km6t7xpypyrDxCNzsyz4b64UFdm9ZQ7KkKNKav1fICvEvAjvt/I5ufb3B45Dv14uYI508t9IyDtFWozrIiKgSsJ0OrKSgL+RDyy9hjYcgpYff5I5F8oo/faz2J+pO1onpxQ+j/u7Lw0Cr4cj2dOTcHCE1OSLpavLPPUZXwnV5pajQ+7SAywNKWed7k7VFdrtJXlltjiU1PRxritYU26zUIo2R6oIXmOkOuT5ZwaWfICr4FPki/1d3TfXPfavfhxBFR96zUltwN4fRnfVymIEA0+KFzJPcxV6Te4PsKaUXLjZ8i9h8xXv3si4xvMdeOPROGRu6tt3QMDZ6mvYorr/E9MmW/EFD0e+7qPs5LmLaj5j1HzWmVKf6h2w6OSgY+PTI4fPTKx7nBiKBpOJmqjg39OHT0yPXPs+Nr+ocGB/vExpWfEYBGx5FKFqx2cWUHysGVIHWNHT19NIt411Tqa6A83uex7Rz6cORr+O3mqMjq3rnWdcDeWkrkl8BJHf1n4LRWN7EuAeNtsvLNxJ+yHie4/wNWxSYLvmpHHLuQhz6HSNK+knQRwmMM/JBVTYbg1cs3gJmIhRgPsYoVgydpETvuwlnEUcpbCcJXJZXVFTLm9bTltnUlricluc+ZXPe2Olmi9HX5VltlnzUzT0kZXlT1UlEusrc6ooSQjXZNJ57plzDrEkSRR6Vwh9bigXOM8g/XO6KUGl+zsTQ6NdD73XMDvNtm/D1Rs//7Y4rBVziXaXsH5Rid3NGm4+trOAlfi7GxliE+Y/Xx7otJsCddBn3ip1ILHFnZlb4EbaI9nAlBxKt4ob8UYsRtvTrw50F+dRtLDOY2wIDbDwu9OsI6Ttp9Sq3vSG2hXLNs5cVBwctggVj3oVr7IG8fGutNzswFU5TWJY/Eabxqkz3a2ONSg2Sx5/YIWYmr3aaTwqx+Ut0Hk3lOuKHQoOpUuH+AaK3XFCU7eKNXVByM/PDF87crwsWeGF95999M758/fUTAt8zKXIglTLqq6AuQyrgMVj+OyMQZI614Bx+ry/IVqpzsrpzDbfn2wIz+kUtW1wsLSojuoS89oodNMprWwcNF1sLICj7iyb+mscAZ90/JZCFaGYGblBHRGPADZPTgLH4Pt4oNBvDnlgQTUlYmvKzSoZWoPYeGUct6UZjHxHtj2gI36L07RYOkAeJyVUsFO20AQfWuSVJWq0As3QHOEVraMQZHgCCJIEQkoThDXDWwSK8Eb2UFR/qAfU/XST+kn8CO8rFeVyA2vPPPm7dvZmbEBNPEHCtXz8B8rfFF7HgdoqJ8e7+CH+uVxDbvqn8d1NAPlcQO7QUylqn1l9Nud2mCFpqp7HOCbOvB4BwOVeFzDofrrcR376s3jBg6D77iCxQJrFMgwwRRLCBLEXKcIuSp8TnZEleASEW0HGk+Y8ewKJX1GTiPHs9uL0HWqntuvlBvFEePcZTK8SWOOMSPr7IDcI/0QKa7RpxXc0N+RuWd0zIy4sot1kU2mS0ni+DQMac9ltJbLSDr6aWZX5SwTnT9LJ+pG0rMrkpkc2VxGZqrnY7FjGZhHGabX/VRu+nfD+/SYeW9ZcOoaKNkqbrupzkuCTQMFXlyp6NniRdO3XRdL5wvOzLiJRZyS4ILvx2QhezBUvTKFpr7StMif+OkmjNC2+bJti4mRJIrlQnwJYd9MXue6INMKT9hv0tqudvsCbB3d/IKGfMlPUI2/KjbGGTEeTFFmHBCvjc/k08nfAaASfDUAAAB4nG3MuQ4BAQAA0WeVxH2HkoRK5eit+xY336P1x2zUJplyRuDH563lH4PImEBcQlJKWkZWTl5BUUlZRVVNXUMzerR1dPX0o3JoJDQ2MTUzt7C0sraxtbN3cHRydnF1c/fw9PoCpgoNVgAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJzIGYB8xgABfsAZnicY2BgYGQAgtsKp6pB9NOm1x0wGgBP0Af2AAA=')format("woff");}.ffe{font-family:ffe;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:fff;src:url('data:application/font-woff;base64,d09GRgABAAAAAAawAA0AAAAACfQAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGlAAAABoAAAAcpiahjkdERUYAAAZ4AAAAHAAAAB4AJwAQT1MvMgAAAaQAAABGAAAAVlVmgkZjbWFwAAACEAAAAF8AAAFqThBJxWdhc3AAAAZwAAAACAAAAAj//wADZ2x5ZgAAAogAAAHdAAACqEVxvUNoZWFkAAABMAAAADIAAAA2LgwarmhoZWEAAAFkAAAAIAAAACQGRgPMaG10eAAAAewAAAAjAAAAJhdzAY1sb2NhAAACcAAAABYAAAAWAnQBzG1heHAAAAGEAAAAHQAAACAATgAvbmFtZQAABGgAAAG+AAADTjuk55Zwb3N0AAAGKAAAAEgAAABZj98KLnicY2BkYGBgYjgSp3HPPZ7f5isDN/MLoAjD06bXnXDa/H8583qmGiCXA6gWCACHJQ2lAAB4nGNgZGBgqvlfzsDA/IIBCJjXM6QwSDIgA04AZzsEGXicY2BkYGDgYtBhYGIAARDJyAAScwDzGQAHwQB+AAAAeJxjYGTuYJzAwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGVmgAEQKwHGCUhzTQFSCkrZTDX/y4Eqaxg6gXxGkBwAT4IMeQAAeJxjlGAAA0ZfBgbmF0DMxTAZSJsDaQsgDgayLRgsAE2wBRUAeJxjYGBgZoBgGQZGBhBIAfIYwXwWBg8gzcfAwcDEwMagwHBdcZKSjVKKUvb//0BxBD/r////j//r3iu+e+ru4rvzoOYgAUY2BrggIxOQYEJXAHHC4ALsVDUNAJYnFF0AAAAAAAAAAAAAAAAwAFwAjgDEAQ4BVAAAeJxtkbFv01AQxu/O5D3bz8+xbCehJW1jhyZBroqaOHYFQ8VSIUSpKpKNv6FsYakqdWDuwB8SiaEja8rYgYEJJhbUpVIkQLLDixUhpOQNp7vf8H3f3QOED2DQCH9CHeChz8LHyFnY6scH2G7FSXcL06Rb9ctYo5Fw5fW1dCw5mUjLkZ8X/baqilu6IScFmg+OqqAeQjqbamOcwQM1+dxW8hGG/SQNwrgXtNrxU+zWNrGmjfWTU5sMV6yNMlGp0HS0JlyD7NMTJIc2LgaGvBx2hpfSGFxsKN19eE83+BYaysRnzbC9i83QJj7v+3HSm6v2ukmqOrp58+Jw+OwwqkZRnTi3F2NvoGnCxldHZy+f7DjhwaOS2yj64+frKi3B69k7uqIzuD932S5cUN0mRSVarfhc4qZWx2axCl1ZOhPZF8+jHVHSLTe7I8nucQqyb0FIW0e6xZDp0jKRMUu3+e9fGjH2sdOBwmt/9kkbUwIViABK/sIq+edlYHU1pXNfN7M7lwsqWyUuvVzg1MO9VXTXZ9gwpM4ZBkwYwsxv81tTrKT/ZfKgXezP1c/FqVFEUAeeJ1pmdM5F9mPdw2kuPMlLFpVd3Ftmf5Rf/tUXJnromcqW5d+LEEsQ4C+9BH9ZAAAAeJytUstq20AUPaPYhkJJF110U8rdFBKKhCxTQ7KMiUNN5AQrLt6OY9kWtjVBUjD+g3xMKf2n/kiPRtMuvGg3ldDcc899zD0zAnCK71Bonq9/sMIb9dFhDx01cPgEkfrhcAvvvLcOt3HqfXG4Q/6Fmar1it43W1VjhQ+q7bCH1+qzwydYqJHDLQTqp8NtvPc+OdxB4M0wgMETDiiQYYU1KggihHx78Pk2+ILsnFmCKwRcR9B4xIa1e5S0GTmNHAsbCxDbrLGNN5l1xhn93HZKuZPGFkt6xq4P5Ga0UyS4xoSr4Ib2jsw9vXN2xMA8HYpsta4kCsOe73O9kPlBrgIZ6ceN2ZebTHS+kFEQBzI2e5KZnJlc5ulab5dilvKQzmSaXE8SuZncTe+Tc/a95cAxB6o4VkKZO45oOF6JLsXjNo51tU4Ou7nZll0StbCCWbUEjE2x07RDq66ytuBZpvYkAzYQXPL7+yY+taaseiajWd/U9Ml33S1E9DA0eTU0xSqVKAjlUo5G8yfp6nmrC0b6fpfnE/X/pe5442O1v1vWv3LKeMmrbK6xEVf/KMJgWpQZD5pjhT35b5v+AjbglOUAAHicY2BiYPj/8dvu/00MGgzYABcQMzIwMTAzfGBkYmRmmMLIwsjKlVhUlF9elJmeUcJenJmbmZNYxF6al2lkZOYIpZ0A31YSmwAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJOIGYB8xgABAEAOHicY2BgYGQAgtsKp6pB9NOm150wGgBP2gf4AAA=')format("woff");}.fff{font-family:fff;line-height:0.773000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff10;src:url('data:application/font-woff;base64,d09GRgABAAAAAATAAA0AAAAABtgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEpAAAABoAAAAcpiahmkdERUYAAASIAAAAGwAAAB4AJwALT1MvMgAAAZwAAAA/AAAAVlVXVldjbWFwAAAB8AAAAEYAAAFKzKIgqGdhc3AAAASAAAAACAAAAAj//wADZ2x5ZgAAAkQAAADSAAAA4MubV/JoZWFkAAABMAAAADAAAAA2LgwbnWhoZWEAAAFgAAAAGQAAACQHQgPuaG10eAAAAdwAAAAUAAAAFAcqAD5sb2NhAAACOAAAAAwAAAAMACgAmG1heHAAAAF8AAAAHQAAACAASQBDbmFtZQAAAxgAAAFGAAACZKcJF/pwb3N0AAAEYAAAAB4AAAA0TLakpHicY2BkYGBgZHBUn3LxWTy/zVcGbuYXQBGGp02v+5Fp5hfMkUCKg4EJxAMAeG4MXnicY2BkYGCOZAAC5hdQkpEBFbACADPuAjoAAAB4nGNgZGBgYGVwYGBiAAEQycgAEnMA8xkACS4AjQAAAHicY2Bk/MI4gYGVgYGpi2kPAwNDD4RmfMBgyMgEFGVgZWaAAUYBBgQISHNNAVIKz8KZI0F8CMnACCIA6SYJUgAB9AA+AAAAAAFNAAAAAQAAA+gAAHicY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUnoX//w/kg+n/jyXXQtUDASMbA5zDyAQkmBhQASPEiuEMACjNCjEAAAAAABQAFAAUABQAcHicHcsxCsJAEIXhmSxMJAHDxmw6hRg3lopuYiEaIUewskkRW3ttPIC9d7C38BxWNmIlgmcQWVwzxcCD/wML5gB4YStgYANMxjxmPOL7zyfH3dx6fF9s9T0BWGCOvU0nITdCBBRH3STlKhtHozYGZpHgQWhWNkOVTXEUtripugNEMi9J1QT7Sd2HzC8LPSzKssAD53or01TiVSqn0Ws4N+E13UofqUk5EW7WjvCw7QlcnmtxLUq/5yuph392tl0X7/rpidrQgsg2qHI6QsAPxO4tjgAAeJyNkD1Ow0AQhd/mT4JIiAKlnorOxnbhIlRWoqShChIlYMkrJ1LijdZRopTcAHEKREHFAag4F8+blUhBEVur+Wbn7+0AuMAnFA7fDZ49K/Tx7rmFLr49t3Gtrjx30Ff3nru4VC+ee7z/YKbqnNF7dFUNKwzw6rmFc3x5buMOP547GKhbz12IevLc4/0bRjBYYw+LBUrMsYFgjBxbaNKUVKFgXJAgQowUITnDkr8cVdXO07SatqkumImRWe/topxvZJxvtUzzqthLEsVpKNlyKS5Ui9W1tltdsGBCPRX7Zdi5bgYrWkxMtcl2ujYrOjN32yjDzKzy6q+qsZaKtNMbUrFgyPN/10MsRcB3Be59CT03a2JsqSUJIxnK0Wx6aRAHSZSkp0l9cOuouaYmVziiWWLorTBB23phKomiOOSRk9r+AvZ2Z2sAAHicY2BiwA9YgZiRgYmBmZGJvTQv09XM1BwAC8ICSwAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAeJxjYGBgZACC2wqnqkH006bX/TAaAFAWCAQAAA==')format("woff");}.ff10{font-family:ff10;line-height:0.857000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff11;src:url('data:application/font-woff;base64,d09GRgABAAAAAATEAA0AAAAABzAAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEqAAAABoAAAAcpiahnkdERUYAAASMAAAAGwAAAB4AJwALT1MvMgAAAaQAAABGAAAAVlQDXshjbWFwAAACAAAAAEYAAAFKAaMGKGdhc3AAAASEAAAACAAAAAj//wADZ2x5ZgAAAlQAAABSAAAAYKELuVhoZWFkAAABMAAAADMAAAA2LV8av2hoZWEAAAFkAAAAIAAAACQEswOcaG10eAAAAewAAAAUAAAAFAWgAJxsb2NhAAACSAAAAAwAAAAMAAAAMG1heHAAAAGEAAAAHQAAACAASAAhbmFtZQAAAqgAAAG2AAADQtz+SpZwb3N0AAAEYAAAACEAAAAs/5n30XicY2BkYGBgYjji264pEc9v85WBm/kFUIThadPriXB6zv+fTHMZfwO5HEC1QAAAgf0OcQB4nGNgZGBg/P3/JwMDsxUDEDDNZUhhkGRABqwAcsoEVHicY2BkYGBgZZBjANEMDExAzAhmO4D5DAAFxQBqAAAAeJxjYGScyziBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAMIFhAEpLmmACkFhuuMv///ZGBg/M3ADuQzguQAXfcNcgAAARgAAAAAAAABTQAAAAEAAAM6AJx4nGNgYGBmgGAZBkYGEHAB8hjBfBYGDSDNBqQZGZgYFBiu//8P5IPp/4//60LVAwEjGwOcw8gEJJgYUAEjxIrhDACz5gnLAAAAAAAAAAAAAAAAADB4nGNgZJjz/yfTXMbfDLIMDCoibEr6jOxsSmom9ozqaqYmZkbyjOZmxkZiIvyM4kxzeUV4L18CEryXL/OC2Jd5OblAHCmE0BWoEESeAQAUVRetAAB4nK1Sy2rbQBQ9o9iGkOJlV1lc2k0CkZBlME1WJSE2mMgOVlyyHSWyLWxrgqRgvOgXJeSP+i89kqaFlpJVNejec9+PGQBdvEGh+b79xgpd9dliBx311eID9NSLxS18dI4sbqPr/PLpUP+dnqp1SOm1jqqwwrFqW+zggwosPkCsRha3cKZ+WNzGsfPJ4g7OnCmuYPCEPXKkWGKFEoIAPk8fLk+Dz6mN6SW4hEc6hsYD1ozdoSBPqdPI8FjbPIS116S2N56VxwnlrM6UsJLGBgtKpqZ31N2TzxHhGjNSwYh8Ss0tpVNmxJV52ufpclVK4Pt91yU9l3gvl56M9cPa7Ip1Kjp7lLEXejIxOypTOTGZxMlKbxZiFnKX3Ms8up5FMppN57fRKfPesOGQDZVsK+KYW7Zo2F6BLzSGoS5X0X4bm01BuZoqp0vVPyYm32ryYT1aWfOci0zqNXpcneCC/3sVXI6ZMOaZsmZ0EzGgvmcvIKCEocnKocmXiQSeLxfyZ1/uLFk+b3ROw8DtcTPB4P25/q6Kf+erXnBCc8EbbG6vGat6H0Jjkhcp98uW/L78n4o/AYCJk00AAHicY2BiYPj/8dvu/3MZVBiwAVYgZmRgYmBm+AAAy9QGXwAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAHicY2BgYGQAgtsKp6pB9NOm1xNhNABQKggIAAA=')format("woff");}.ff11{font-family:ff11;line-height:0.514000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff12;src:url('data:application/font-woff;base64,d09GRgABAAAAAASUAA0AAAAABrgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEeAAAABoAAAAcpiahnkdERUYAAARcAAAAGwAAAB4AJwALT1MvMgAAAaQAAAA/AAAAVlStXttjbWFwAAAB+AAAAEwAAAFKAJ0Kq2dhc3AAAARUAAAACAAAAAj//wADZ2x5ZgAAAlAAAAA8AAAAPDwqdYloZWFkAAABMAAAADMAAAA2Lg8bvGhoZWEAAAFkAAAAIAAAACQGBwLUaG10eAAAAeQAAAAUAAAAFAU8AKlsb2NhAAACRAAAAAwAAAAMAAAAHm1heHAAAAGEAAAAHQAAACAASAATbmFtZQAAAowAAAGoAAAC7j/8sZ9wb3N0AAAENAAAAB8AAAAs/5wAXXicY2BkYGBgYmTzO3BqRjy/zVcGbuYXQBGGp02vJ8LplQwMzI5M64FcDgYmkCgAdSoMfgB4nGNgZGBgWs8ABEzXGBj+T2V2ZEhhEGVABqwAWegD4XicY2BkYGBgZRBgANEMDExAzAhmO4D5DAAEZwBcAAAAeJxjYGTMZpzAwMrAwNTFtIdBlqEHRP+fy/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMIQwrQfxISREDQAf0QozAAEYAAAAAAAAAU0AAAABAAAC1gCpeJxjYGBgZoBgGQZGBhBwAfIYwXwWBg0gzQakGRmYGBQYQv7/B/LB9P/H/zdA1QMBIxsDnMPIBCSYGFABI8QKUgELGXoGCgAAIa0JTAAAAAAAAAAAAAAAHgABAKkAAANBAq8ADwAAASMiJisBAyMTIyIGKwE3IQMykAYYBl6DZYNeBhgGkA8CiQJpAf2WAmoBRgAAAHiclVLRSuNQED03tl0Eqb74pjKP6pIQoxT1UbFCsa00rfiaaNqG1lxNKqV/sB+z7Iuf4ifsj+zJzUWwb5uQmTPnnpk7MwRAE3+gUD0PX1jhh9q12EFD/bR4A8fql8U1bKtPi+toOsriBrYdn0pV22T022SVWKGp6hY72FL7Fm9gqAKLazhQHxbXsaf+WtzAgbODa2i8YoUcKSaYYgFBAJ/vKVy+Fb4gG1MluIJH20GEJ8yYu0RBn5KLkOHZnHnoGlXPnFfKUnHIODOVEt4UYY4xI23skNwj/QghbjCgFdzS98ncMzpiRVzr11WeTqYLCXz/1HVpLyReyZUnnehpppfFLJUoe5aO1/Wkp5ckUznUmcTJNJqPRY9lmDzKKLwZhHI76I/uwyPWvWPDoRmgwDnDbhhlBUE5QI4X0yp6On+J6NtmioXxOXeWmI153JLgkt/3Yi4niJme4g3vRltqWuRP7HYDRmjrbNHW+SSRwPPlUmwLbj+ep2/vCZmWe8J5g9Z6t+sXYC21/AUTNlpQUa2/atbHGTEekrxIuSBe65/Jfxf/B5gufCd4nGNgYmD4/wWI5zKoMGADrEDMyMDEwMxgDgCMBQP4AAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAHicY2BgYGQAgtsKp6pB9NOm1xNhNABQKggIAAA=')format("woff");}.ff12{font-family:ff12;line-height:0.687000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff13;src:url('data:application/font-woff;base64,d09GRgABAAAAAAS4AA0AAAAABxwAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEnAAAABoAAAAcpiahoEdERUYAAASAAAAAGwAAAB4AJwALT1MvMgAAAaQAAABDAAAAVlRDXhVjbWFwAAAB/AAAAEsAAAFKAG0Kw2dhc3AAAAR4AAAACAAAAAj//wADZ2x5ZgAAAlQAAABMAAAATE204D9oZWFkAAABMAAAADMAAAA2LS8awWhoZWEAAAFkAAAAIAAAACQE7QNLaG10eAAAAegAAAAUAAAAFAVwAFNsb2NhAAACSAAAAAwAAAAMAAAAJm1heHAAAAGEAAAAHQAAACAASAAYbmFtZQAAAqAAAAG0AAADQuADbhhwb3N0AAAEVAAAACEAAAAs/373BHicY2BkYGBgYjjyYUb/rXh+m68M3MwvgCIMT5teT4LTwf9vMG1jkgFyOYBqgQAAxYQPIAB4nGNgZGBgkvl/g4GBmYsBCJi2MaQwSDIgA1YAUVcDPnicY2BkYGBgZRBlANEMDExAzAhmO4D5DAAE5ABhAAAAeJxjYGRsZZzAwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGVmgAFGBiQQkOaaAqQUGGyYZP7fAKqUYdCAqQEAMVALAQABGAAAAAAAAAFNAAAAAQAAAwoAU3icY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUGGz+/wfywfT/x/9PQNUDASMbA5zDyAQkmBhQASPEClyABY/cUAEABsUJNAAAAAAAAAAAAAAAACYAAQBT/9gCtgIcABQAAAUUBiMiJwEmNDcBNjMyFhUUBw0BFgK2DAgFDf3WExMCKg0FCAwT/fMCDRMUCAwHAQUJGgkBBQcMCAwK+PgKeJytUstq20AUPaPYhtLgZVZZXNpNApGQZDAkq5IQm5jIDnYcsh07si3saIKsYLzoF7X0j/ovPRpNCy0lq2jQvee+HzMA2vgBhfp7+IMV2uqzwx5a6ovDB4jUN4cbOPI+OtxE2/vt06L+Kz1V4wOl7zaqwgrHqumwh0MVO3yAmeo73MCZ+ulwE8feJ4dbOPNGuILBC/YokGGJFUoIYoQ8Hfg8NT6ndkYvwSUC0gE05lgzdocteUadRo4nawuQWK+htdeelccJ5dxmSllJY4MFJWPpPXWP5FNMcI0xqaBPPqLmjtIpM+LKvOyLbLkqJQ7Dju+TnstsL5eBDPR8bXbbdSY6f5JBkAQyNDsqMzkxuczSld4sxCzkPn2U6eR6PJH+eDS9m5wy7y0bTthQybZuSKvWMrYdcXTcJokuVzel3mTziHI1VYFn64ShKZ41ec+OVlpecJGpXWPAeMEF/7cq+BwzZcwrdZrRdUSX+shdQEwJPZOXPVMsU4mDUC7k7778cbp83eiChq4fcTNx9+25/q2K/+erXnBK85aB9e3VY1XvQ2hMi23G/bKlsCPvU/EX+SCP/XicY2BiYPj/8dvu/00MGgzYACsQMzIwMTAzyAMAx9YFdwAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAHicY2BgYGQAgtsKp6pB9NOm15NgNABQNAgKAAA=')format("woff");}.ff13{font-family:ff13;line-height:0.580000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff14;src:url('data:application/font-woff;base64,d09GRgABAAAAAB5gAA0AAAAALFwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAeRAAAABoAAAAcpiahrkdERUYAAB4oAAAAHAAAAB4AJwBRT1MvMgAAAaQAAABDAAAAVlWZXmVjbWFwAAACdAAAAOYAAAGyrodODWdhc3AAAB4gAAAACAAAAAj//wADZ2x5ZgAAA/QAABfwAAAj0DPIRG1oZWFkAAABMAAAADMAAAA2LMoa72hoZWEAAAFkAAAAIAAAACQFawEGaG10eAAAAegAAACMAAAAoBNdDkpsb2NhAAADXAAAAJgAAACYHusoDG1heHAAAAGEAAAAHgAAACAAkABSbmFtZQAAG+QAAAGrAAAC8co/zlpwb3N0AAAdkAAAAJAAAAC4BsX+PnicY2BkYGBgYmTrEFf7HM9v85WBm/kFUIThadPrmXCa+78M00ymbUAuBwMTSBQAYjcMsQB4nGNgZGBg2vZfBkjyMjD8L2GayZDCIMmADFgBbCkEdHicY2BkYGDwZvBnYGYAASYgZmQAiTmA+QwAEh4A4wAAeJxjYGTcxjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMNQybfsvA1S5jeEJTA0AUnYMpwB4nCXMP4vBcQAG8M/PKjPRKYxiucmobNIpkSKR5CYDynYyKGcxK5u34gXcdrPN4j344hmeev5GKS9EjScRS7i6aUdVd3ULR1v/yuZWKhqS2mamWnrBf6ZDX/KyvqVNdKQU9OV8ODhb+5MJq6WNXz/2Smq6IesZufjUDJ24nYGxU1DN8PjmreIDjm0crXicY2BgYGaAYBkGRgYQWAPkMYL5LAwTgLQCELIAaWUGTQY7BhcGdwZPhgCGIIYQhnCGaIZYhniGaoba///BKtUZtBkcwSp8wSrCoCoSQSr+P/7/4P/9/3f/3/5/6//1/9f+X/1/5f/F/xf+n/9/7v9ZqO14ASMbA1wZIxOQYEJXAPQKCytQFQM7BycDFzcPLx+/gKCQsIiomLiEpJS0jCwDg5y8giIDgxLQPwwMKqpq6gwaQI9paQN5Ogy6DHoM+gaGRsYmpmbmFpZW1ja2dvYOjk7OLq5u7h6eDF6E3UhrAAB/mzVoAAAAAAAAAAAAAAAAADIAbAC+AOQBEgE8AWYBiAGaAbAB0AH8AiwCggLQAzoDgAPOBB4EZASuBNQFBAUqBUYFbAWuBfIGOAZsBrwG4Ac8B4IHugfsCEIIegi6CRIJNAlWCWgJsgnoCh4KbAquCwYLVAukC/IMPAycDM4NMg2KDbAN/g48DoQO3g8YD24PrhASEHwQ3BE6EYwR6HichVoJkCPlddb/t6SW1Peto3W07tY5o1szGu1cO8fOHsPszux9sQuzBwssN2tzGUO4dwFjwLcXuwzYGBcxFKHichwSl4/YTlIpQlLlctlxUuCKXZD4CFA7k78PzWgXUqmtktQtzf++99733vv+v9cBHb90OMAP4dUO3hFBnzAaJuL1RlPowmpFlkRMdCfi6Xqtga7A3x5ykiSVxcCcS+XcUuDuhMSH4jIfgsWVr1EUVFkMLMoBLMS5LryvxPySElMcDgd0vAVmYNi0kUI2cMNGugxqG0DDNKJ86A5YHsNclI9mAIBpT06UvzGGOSnCuiYyogwHfuLzemgcd3l+VA3STvZnPo/XvPxxJUi7kM1FZPgyeMTRdow4HEkxD3DLk2Zi7UO8NgzsV8ssA6rrnyrG31QzCbwKQ6XtVV+AlkpHrbdwqdxstsqlHRVKZkR35qj9rpbKjWZz7mjz6NtT90QE1neT9Tr12NQ9YYnGmeP229Rjjz3mAGAMzIDXUVxkFBU3TqPIYCj6KApd0DRggNeB2xd3I+isT3Npbkl2sTIc9bGRawQsxLIRPPBiKAwUzgEcv139JtwPX3GEHQ6XmbQM8rHrNL0xVoYozjJ4jubECWmwMDm/uU1ytAf37bmzdYJqeIXxxPYrph9Y3tOOCV4P4XLXPvvZuXNLXpQ/4Jhb/SZ4Da0dRBci7bTC1wX1WsamBlr5NWtNmvXf+9DlIksbZsDT1oocwdJbfn/D2XmOIjhkyFjzesdlsAoFRwhZWM/OBnBJPmC19Om0L8SIzvi9pdKTGY+KPmqfBItTn0lKtJv+s6nPxc13Y82nV28ERxy3OUSHI2UTt9lo9jH4yB15hgtMahgeUvVYSB+YvkH2Sh5hBMSFYCltrHEPYKAGFh24gSuhxWtVDWqllb8qlcAosjpl/Oaf0csSsuNbt9NAqy/lw7JWrEWmQ4VwIKLHzdiVVl+At6DYMUbscGCjMnkObyFXXAzHiCS4QLOMCB/3cRdmBIn2cfA1DpHCqJ3rVv+A4nS1g7SjD4y/7yJ6yngtnYjTQBLlaqULYHXvIw9t3n12Zmx+spIfvGK8WKgcGwfnl394282LR3945+mDE/NXPrc0vuv6r5u4bkYvfwdPOqKGD3mAaDcMBLdBv0azC40ERNDSOFatgNf1D7K5Q8uNqkZTcmw8SrEUg2F3bc9qmqqBz6dVQgIQHyyIFOGEzIVVc/02wt1FuDvG+kZ9ZxBavGcAmPQx8Vv37H5DQ9yNIzpVKw0DAhwOFDfnB6bHwjHCE0xkI/p05Yaj0/XgyBYOD8UTnaPN7af0henmcqk004mkxhk8lPgK0xgphv0xSWUXtXxRHtjarXX48bqkSt0NxcNbBrZ2kkqh5fQLI1W/iXULwjqDsLaNCCP7RsWYebJZKEaAEWIE2A5UpdEDb/zQIhecmdjQ2nfz8PS+qiQJGF3S9J0z5XY2p6e3XdmuqJ0RwkXx8dtPzB8AvyzvjwxOjx3OTg1PBRiZdeOKPzg5kBwOx3aW4iU6G2FItXhkAWFTVuMQImxzZhyRtcxaqaR7ITX4h5qG0y4bI6Z4RYlgihFp+xbyoloxfwBhPU8yZNarUqIz3aFTuQmOwine63TJtQOX7Qx5Q5QozTWGD6QLBA7DQdZL0iLDu32Qp1XV56F4lldc8EtxgXYxnxUwn88jEh7GiVHJvdf8+bIq0J75r29bWiIwCDyeiUQxKFBYSPfOOAmXaMR70Yz3EUelr35MmHgE8c2Kba9LG5NIq0hGizDB0187MXswGOT8iiuYlH2b78gP7BihUBU5JzCapACl5/5Uao7OLr51+aOz7VhG5oOMEPJhV8+m23WS97lpQNM0VLXXAnuN+roaYZlD8U06GutoUAHYgbNRIEBuw34E4rUSNC7ckhhBnG1A5otHJve6xUpq4O7J0XrIrwg8HdnyRHhyR2Eyzm50c4VY63LO6+Yy4ekb3zn65J7DUmP/sUJ7tq6pyRAZoMhP7qjGa4Oy158KjJaTChfLBm4webmMsD2NsNXN3gExGxywm1rGRGUxEKUfoVGsZmxUj4EfPk38fMqnkhJfDJcWKDYYkximdH2aINg4vs3lpggNjgyFYjxHKaMBr49OwAWCWHlr5b0sy3knbhk+cAZKQW7DKOtVcfpxn8cVichBORD2uRE+zLEd4duE8CmOhKPcl8tmCfQy6sYjIGPk0232qQbe9xly509uPXJqU3roicu37LtipNihRwfGLh8vj1zR6nZmr55oTp3+yeaHFsY3LktkMzt2y1yrs8gyY79OF2eL6eLMW5nO/lahtc/sk3sRlhbCknbUrD5pBqaErVHLjAoCWILWLbxmAjEZB1u+WrF8+wQpFiJ+VRFkVkhOPxSbWihMJNhnjo7vmtw5cytGiJnglmPgldj8463hOeDlEoFwXOFkmrpjd1WrDipXPrFr703XzeFcROGPIEzGnDgPXnQQ5oTvYzrWNzXO58P+aEFVYpvt8QFuVfMxWc1HVl5ZGyTQnG3WWpGPXguRwnZtfcktZxI0pwyFZT+mR5vrCz+/5VbZyxOBBqay7lDRnHuOFtwJCw7JzmMmZayZsoPnQhP+PyWaolfe5v3gDtZDyYGV598R9zKi7x8oXqZ+5uHQ61+8RBlYDzleh1Pgy2iGMutTVO5N06nCylPFKthLV1e+Wi2AY+DLU1NPocEKHNsQBs3CgPjusv1K2SpDcclQ86/cZRoHS++IBh6g8KDSZ14wANEIAwoaeB9eg/iQW5twqP0h+WcONuPaGDFm2aAbGHrJCBkMvF+4Mie4dHi+wnJc4co84F0Fx6pHYlmOobwcz91KgXNo8PlxeOwYpChNVXAMcgwLIctdeBdS3wZtsPJ9sz5QpuAk6nN+1F2s+ugN2oQ1RtYKpIQZYtMojxK0PkHuE7vfyebiZ8Ss/vbE9J5WpiUgyiX9t1WWZ3ZWUDtR72/fMb73x7OfQEP4bVWbqo7s43xDv3QRAZ7+0eJvqEBU+NV2s48cQ7VxBtXGILqwB1Z9vQ67ptySzCFtawul25NgOFxwcagvDOb3PdsdUpqzrDF3hw/Wdhw58NT8dAUnMJZlGAy8KBBhQJMDrZ/fMXmQ3VBF03akk7vz4JHv3jLo4Zwi73N5DW4gFQM3oJjIZoZQnfZCEjeaBoqJ1WLzADNVzYalc1t/oOfCZ0SB1d/Ij8aZaVyqZQ6dOTR6ehQ8efg7txreG3lIb5ioi7lOekW58ink8xXI553I5yF7bhrzpOm+2ENruhv6A8XDaOu2mmo07fzAIsuLRVzNuNrjc3t2Pzo3qWM0xkQYLIWHE5iLiQfqpzfXBstLwXg2d3P2v1gGvqwmy2cOHPnrj5dcgpM33H4iEpZ9lJpQlp9bHN2za1rVEL4lFId5FAfFiILprWQUyBo70NCD87nrz1yRza38m25+0EFEh9PaiqJqVsqN3CIFAx9B60zY66yx21zIzQBj9Bubq/QISFz8rc1BJQKlKtIPDcPhR3LCGTRN9YVsjr8JRIVbPAqOpjvm8YGb7fvCmVJOHQhigCCAUD3G6wMWKrMYNPDmSPSnFAtAILvnHpVdSdm3EVycB7c9Hc3ufCmCcCcQ7rsR7kEbN41SjnpzBkuYobi0UBShusYQeHcuepexHfQxvAfCDriJ03MnsnrsDHrP1v1YB9woCRy6hXBdeI+hoZPyEuDdlUwvcL7QCgP+xUBmzo599hxjDU6mTO1X43sKAGZsqWqMWose4D9iu04cmpnxazuvPjg7O0O3S6NbR4Jso9Td1jk1V0zeAhJD8wPJztDKm678r8p6qDw/8PNSJlKxND2yCheQ7wGrBtxmxX/YZ9zQm2YvWDh3+cdLSjZ3l55LnVGy+ltzczOt1onO8dmj4M0dZ1/t+bU4k239/oBpI4x8SiEbTcdoTzka46GJmP5/mJMs6WsoG6QUDe+xNQAJqa6RSpCjmPkdDRTlm+1ovzq9NN1OUyyh0C6Wjm9stWbqMxsPHabLZTeXCqnFjrf9Rg/d3FD1sJouUc1hWaiyHrA9UX1jm8HhswjwPQirsQEzqrF5CQf6NY6hBXF4ClcTzN1nCnruhaw+fOaTrJNlEpjoJEka3Kdj4NeqOt6rk3GWVF2+yxANVIw0++Ezq/8DH0b28hb3gNn5MnWs3mOYYVuWOBFHCnqddg/nlJU/GpMgRgHU9Th9Wc8pwAnwzrMsy6Irg27/jVoAG9kIPqNZxPdJK3+5Jwq4j4HLbL4Bxx3I/uPIfsfqgAlL2KEBnjHr1YiAkF4DgrnxqqXnUPEiZV9t9lIGH2dZ+sdk0k84EQxSr/mlgAbbkdy2bC6WJXDAbQtIQYKknG4naH2c19EXcBqNqgt/SAj+R3bEQHLh2kElQEEPDCKsK+f3R+vP1BTIsmcvZ58EE6qF9+/RHvZBtIcVjbMFa5IKXdCDhwTHm7mXdexbLk58Wc998SuP6hVNhQz8ruhVtQunHeYaodUXwBtoDTTbXWat93MPpRRFAcl34++fOacby9VNlQ7PoiQak8Nh7oV2g2+vftHYmzttNQG+XV75XrkMNhw2tuaI9zesvg+j4GXEpao5cY2+XwKZNb2EGr851zCb5mj89/SpsctrwKhIaQP+DOOsd6oT96IqxoSg6BxzSgrrctN04iuBYPmwOyCWD5/zjskNRfLWt08ffzXrZY3t0MoHrCc8x9O+69K1Ty8wyfSnEKa7Vt8H79o6YE27NdedZ0Cjt5+3pTF49+xSa7Nne1vP7dexXK02vGljMtw4Hos3jgHp+EtLm7QYmFONMH8tvWeyUH9ke7LzsBGj+5H/HPI/ueZ9Zm171beZkdZ2g9xIoLx9Qa9/4XB9QlU4P8fExm9avrZK+khlk5T0MNnq1mPPN7OhuCQESP7e+ZMlr2L1sduRLR35lUNd5iNj3VzP7/8Zb/3SeKdRVV+mY9f/vxF/2vR/pfGhiBvYHrDjkHAU+rGtxcLYJCMWrgfCQoW6nRWRYLQilb9wqDHlySWHrtVo95VWSBaiwcLBQOS7ZmgwWSrOn/zqcJGN15kgLlyFQvNHwb+xbfG1uKrCYXjcsaFPsddr5u7R7sCYtX9L9+9SesToAuOkxDjBg8MRkfM7oyHehVFb9dzODbRIjg8MdsISE3ST1FCqPZTVJ5xODDpdvL8QGRqCsUBE4TwUcIkKgRTHymfm64mZrCZrosh4sX8CG1VNUFwkIcopidWtfE4ivCKKWd7Ip8s4jOxtlixkXbgBXFpIDOin7Zfd6uCOaiA6GAxLvAK5UHo4SmNqrdbe/MjScBqTUCkdQSRejkeby1vlciWK+cJIgfhZjxv6k7L3dGpp9tg3yzRvFNPu1PCD83rT5PUum2vDvfMkc8uDgkk7cRp+ZEH1ZlnDZB3UuWhbSxSJtq6WM+Ewi7oih+DcXjTpliuPDXZaJM0lCaTrqMQ5X7Ghl1Ni+PP7Qq3G3vYg0v8C7abBn0zWPZtp1hufi1BSKUMSXhS7s6jGfwN3WbHr7YSRqLLyvX5MhMDBPlQXHbD/Zt+E3vJsd0WkKuukubhxyftjcsRfJTEnAlWIcqIcRlw4l7xuMCNIP2XcoVyFItXkdZU0X+zMD7lDgzmvxwvulkIBlo/I9t5YhWGETTdOElz9WGwkQg8mXP8Kb/ZDu4c9Nrds5bQ06d3jTIW6otNNk/GrZgsdZ7eHqzJ2etTIphMHzsUsOMm44wMFnwdXtRvrOZr9Uw8VcBy28zndl0+EIoN/qDviWMPejNhJryOgGG6hl+2eAnVGbcazw65brHOt263OuTneXpzW4g3OrziLDaAEg85ll0ikFCvHeKGVrxUoCa/gxmnWWnZX/pEf3ZtP7pD5AOvksAbwh4KYupWRcJFeJAgfwv83KN+/QPi1fj4KF/c7o8EZ0MEv2MhQorTFeXKvnrtTx65zhiQ8H8RDiXPeQjM3OECz4AXL8BDtZgRsb9DsH1UUo2FUj7M2o4zTjKaZKoP0Vhovvd4AzaNb4yRIWS8CRYZRmnN6JZYSSiEpowWDpJcgxUSSDV10yXizHtnlpYBeGuGr3cSA7ieCGiEDDx2TEvW79WysO7SrmMzzKn5/+aC6fum+rxg+H8VoIt7pDA4M3jzh5yFm9cF5I9fIjzUlmu75ga/1v0s52LzYgbU0+0dzWo5ox4YGUmkfI6JUT2EUITmdboaOoz1opS00x0v1GufV/FaS6bHpYlLSvlTM7Zl9Sg+aaVZIMtCUOMqneselRrPZGqg/MUiwZm4h0mfvg/cQXsLana2XwUUj+r0ndnW3fWr38MJkMj10Kp0cOgX4q76xf+r4izs3pbsPLuSGHkZrEatx8IHZU1v2WmgKXaS/rUBc6jbePyTBB/fOK3kODhSzuSf1XPIMJomiy4U8Fqlwre0fbtbHNq5NSaCeeFXksNdN+fsWiUe28KRP9Y3KjXp9aaxPl9y3GocBhC1qKGFXD1Czr8Vbp/LGUwCs3/Xf5r6v56YH6rXW5rOLnbzPQ/sIznl/Sx/riZTvINvfSy9tOvmtusJRLOmmL/wreLVPpxxAnJhAtgf7FFH6IwixdsbexYyzTVOyTGg85+flSmcgm7U4MOkMU6LX7aLEuJsPFEOxQV9jbngRzGthmVcY//ZNXzAy72IAz3hiYTUgMiqmlvWoFhiqmxw9gnL+fo+jbvtBxfpMNvaAaHdqKQg7LGYubdjm1lCJOMG/Z2PtXc9pqB+yocnRnBLgEoIwlBaSXGpzdeNsmMdZ1ieXBiIyn6uKajmiPBobE+OH46EgLbKSTGYZSqScToKg1RyfK4TLWVV1CQzvY1hCI0TOi7l5OWti/hzC/DukL/S1iWM3oL6nmJbKWB844HenZspDE0hF7E95IrTg1IyPo85krMMhtUUkzsVuamVAQNU+nUQBo+9F2mGF8cRrKcLr6avlrlXLuDuecfcXtMVje+9sVW7vqe6aBsSMQsY5b/iov9AsbWj4iFQAc7JUPDieixXJam62kPeFSMk54eQEEcM8lC9xzhktcbV8vjPcfFIl+F0+n1dlxjcWMlL8wYH2sy8kWM7NrLzLeNR5wks51/qOH2Etmvss2Afz4gSbsLpI6pSBcQv65cLeoc7WpkfiCgyuxhe76QpRm0qORDmnU6Z1cCxw/P4jExuqj8sev14NqInrB1NC+P7cxl3X7yQ5gmUk0/4hZH8Lsj+DYmUIcXdvD26AyNgnURHMPITqD5RxZOO2u15j7SkrIhxkS1smo8kWn8r4RZyleRWytItUOJoL0t1msoIrJNLMkHOzVLscz3oR2kzp5OlWiwjUkgMDSk4XwhALOAke+LiEXyvNJuMT534U4QggqPiEtLEUHD1xZzXIe7yMNFl86eL+vbV3Nuy+RLI2TKGTvkhC2M27F3aztk0/5XVFtjzTSueGBxpRJCxkd1AoefNYyK+OMIbaiS9PDyXKrfwQKZI455fcATVAEyEm5A+PUKi1k4lzmWvy+eF0POZnA4wcS7zopQKxcsHr9ajZq/P5ekEOk5jxAEgKsLmrOlQwOqj7PF7bJxWGkE/TtiJaL+u1JwV9bLFZDfv5glnPXIwb4BXhtvniMCVQbgTUE6zuYwe0wekqxUkp0phCcV4b0uKDsl4PFsJhhhAwF0chglNbHmjkpTCBUPoZ6dRmf2e0+YDmkwczhNerEqVGppiV29cUu/HiQrM8S5KsQfMet4z9zfjac8G+56vGv97jobV8yNYItZ8P9h4TGXng9J2VRD7KpRVCTjRS6ZGdAs9FBSnrRXkgE9uHo6W4yOI4ScZj2zuL4Yia5tUuaybpvLJ5Y0SKcyo1m0rXtgoeH58IIQWqaociUoD0ulRicHdtNuJikD2vEXzguGf1Bfgx+IrxvNUlrtdE0z6FrdfM40jzRJTGjFIwg46vPXQDPyjI+ak85fI6PUS0FPKmtcf4nPq9XHpwIuzDcsxE2vzOFykFvXpFc7GFuJBXNNRuISN4jGOF2edPo+HIBFjy+W4kkrW+zbsp3g0tzucRRg1htPdu1n/PgHjveXWjiuAikE2TJCb9beiVCLQL2oAKNY64LBXlKLcPgxRJDt+XY8kH/EAMcWNpwuWlfeFikNDzUna2SKoIcJjSQI3hIcuoDSVNu2txuosELVaGW68aVQMlNqtorZSXEtzIDSdbjJOla9O44RWC/b/tK9mbeJyVUk1P20AQfWuSqJVQQOqhF4TmCEi2HAciwTERQUQ4RPlAXJ3gJFaCFzmWovyG/pWqR34KP6G/o8/rbaXCCa888+btm9nZsQHU8QsK5fPwDyt8Ud8tdlBTnsV7OFM/LK7gQL1ZXEXdqVhcw4HTpFJVvjL6abIKrHCoqhY72Fdi8R7G6sLiCo7Vq8VVHKnfFtdw7HxDBxov2CFDggWWyCEI4HM14XKV+JLslCpBGx5tDxFmWDF3iw19Qi5Ciiez5yE0qr7ZL5WF4oRxairFPCnCGnNG2tgxuUf6CUa4xpBWcEN/T2bA6JQV0dEvuyxZLHMJfL/purSXMt1J25NeNFvp7WaVSJQ+Sc8LPenrLclETnQq03gZreei5zKOH2Uyuh6O5GZ4PxmMTln3jg2HpjmNBq+LuzDUqW4QFXfI8Gy6RV9nzxF912hz4zOOLTZD85gpuOL7vp6LW6qLEgmHUWpaZBt2wAEjdHWad3W2iCXwfLmSvz24t3m0TmZkWm6DVw5aHxv+/wC8Sy3+wpiNbrhbfoGyWR/nxHiIs03CGfFY/1w+XfwPWdN60AB4nG3NSUqCAQCA0efUIqMy0yxtEFJBXDggYYuIKE2tHDItG/AincxTuXFr/wH64Fs/YTar9XLz68F/9YNDwiKiYrZsi9uxa8++hANJh1LSjmQcO5GVc+rMuQt5lwqKSsoqqmrqGpqutFy7cevOfeC2dTzq6gXak2cvBoZGxl5NvJmaefdh7tOXbz8Wf6MPE/gAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCLyBmAfMYAAbMAHl4nGNgYGBkAILbCqeqQfTTptczYTQAUHoIGAAA')format("woff");}.ff14{font-family:ff14;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff15;src:url('data:application/font-woff;base64,d09GRgABAAAAABLIAA0AAAAAHJAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAASrAAAABoAAAAcpiahvEdERUYAABKQAAAAHAAAAB4AJwAvT1MvMgAAAagAAABBAAAAVlZ4YYZjbWFwAAACSAAAAM4AAAGyybq/a2dhc3AAABKIAAAACAAAAAj//wADZ2x5ZgAAA2wAAA0GAAAUlKju9+ZoZWFkAAABMAAAADQAAAA2LGYavGhoZWEAAAFkAAAAIQAAACQEwwFRaG10eAAAAewAAABaAAAAXAiIBQ9sb2NhAAADGAAAAFQAAABUW/RhAm1heHAAAAGIAAAAHgAAACAAbgBSbmFtZQAAEHQAAAGyAAADMGol4yZwb3N0AAASKAAAAF8AAAB0A/uOa3icY2BkYGBgYmQ7mdgrE89v85WBm/kFUIThadPrBTD6/8v/SkzhTPlALgcDE0gUAIRfDjR4nGNgZGBgyv+vBCR5/7/8v5MpnCGFQZABGbACAJFgBhYAAAB4nGNgZGBg0GTwZ2BmAAEmIGZkAIk5gPkMAA6IAMEAAHicY2Bk/M+0h4GVgYGpC0iLM/SA6P+bGB8wGDIyAUUZOJgZYICRAQkEpLmmACkFhiqm/P9KQJX5DPdgagB3tgyrAAAAeJxjlGAAA0ZfEMHAwMTLcJlBg2EOQypDHoMpgxlDJ4MMgzRDABAbMKQzyDHYMiQxRAPFPRm0GPgZ/BjEGKwYmIEsr/8vGRQZXBjCGLwZQhl8GXgZVADVsQuaAAB4nGNgYGBmgGAZBkYGEFgD5DGC+SwME4C0AhCyAGlFBjUGXQZjBnsGRwZXhgCGEIZ4hjSGTIYChnKGqv//wSrVGHQYDKEq/BmCgSoSGTIYshmKGCr/////+P/9/7f+X/9/5v/p/yf+7/+/9//m/5v+b/y/4f/6/+ugtuMFjGwMcGWMTECCCV0B0CsgtzKwgrls7ECCg5MLSQU3Aw+Q5IXz+fgZGAQEEfJCDMIiomLiEgySUgzSMrJy8goMikrKKqpqDOoahB1IBwAAGqwsjQAAAAAAAAAAAAAAAAAyAKgAzADoARgBYAG4AggCTgKsAvQDMgOQA9QD8AQ6BHwEugUCBT4FiAXaBhgGdgakBxIHZAeKB9YIGAh8CMQJDglSCaIJ/gpKeJyVWHlsHNd5n/feHHvMPbOz1+wsd3f24JLcXe5SuxRXXFIiReqgTpJSLOqILFtGLB+ychiF7RqSjQAtEAWOEzdIDbR/uGhTFC0a5EBQo/mjQNLLQIGgQGsXCRKkrlu0QFvAQuymy37vzZBLWUbTEtidmTfDeb/3+37f7/vecpj7Iceh38JPcQaXhTOiolKxgXrWAHfaHobLYqU3QG0Hvb4QNb24oeOWkE9GRdWOnhMqrSzPV1oubgzf9C2iq+hCNi/ycfe/76UKhVSyUODgj3C17fdxC+boc8vcSZhFnECSKDmdNry6M4c8LNFpq2IJJuv22gPUo5MCAPZYsguX3T4CPNVuqShKYrJLKlUVbsIrcENspk9XM4WxtIKsBBLiEQFLh5r9yeXF/b1YtIFyviTL8qmJUpXntWcipdJhXxKaF2KyJtyLpPScKOFD826m5AiSmq6iu+VXlwrtlpzhI0Z88sTi4tb8QiNbFM8eO3JiaqG4/mj5VPdF7JexaBxeqpampxaG35k5Xih4xgIsjXt9+1fQk9yvcTbHlemq6Iq6PbY0uiQHPap8ztcszJc6DhHcgsBPjpXrY8cupdVMJFFHlbxbm4P3PIoiWEEXOYXyVSrQoHQ7BaAEx6Tu8C9l0yZSF3XhiNp1Ylvw4ej8T8HX94FrF+YHntn/9ZEFABiQbqctEcos+jOx8b6ia0RsnVnc16xKwuRiW8+UI+tnFE0tl4lhVNBLxbKPpQ23NVSIybH37+M4FsupYH0BsAUEb67Q2DhSsGi2VogeRKkTnKOfCgl3+C06JbHff0GNrs37AyNG+LJl5gT59vkrNzXrudSr3l8RO5ONi62cRUzDVL/90PrcQT+nWUk34y4/9uRDj18xbyRTTt5geLqgrTzgmdvle2dqD44UVkACHe0FKB8ACaRyyhc+eeWZuFBMOGmejytH/f75iDRYnKJ4+WKzXZuUhG5juchj3rfsLB/99IXNrai2Xq//8bFbG0sZ10vY8YyzPDW5ArBTuutNe+MpRU7m3Ex3+Vz//Gz6LFAHyuCwjz/F1bg2jawkaigEw38cPA+LoyTExdjxmyoRktkxOULEdPnodBbzBw4uF0USoIrcuNY95afwe7u5id5bqOw/b+TMdNHIdOqzac1M5rOKmnTddPuEnfPHhodHyYqpbtAQP81VufpIQZCR1RLQJKk4lBQIyaKQklY76VTjCH0gtq9plKuMJ3ypkEvwxDa0a4qpEz4Zzf+FnJlzcMGL2F+LX2PiSqro3DmkJg2DEFNPxQn6IKdquWGEj/4h4oe/oLEFR8KH8TVuca/WQMylnWxwgDwMVIEAS6HOxHCoBwO9AaEjEuYExx2+qOg6EacTa4lA9ugJVxNkIji2ZWAk/di7KZkZeqrBmJWRxZvF96OYj1kaHaRypCnxFkS3bLurumZoCXny2wVHs+UtzdDT+b/uy4ouwSjl8TTosgC6zHHTwKsqAWYyECGgvCh1qw3EjAysLFQptm0tYea99nSlM9cyhXjGznv7D3Qq01MpiyfXHZ5v9Ob2marjEDIxd2BGtdCNz5xcrZcMWELGP3np9csn/bRIZMOvr754p1FyspOV51+t+q5XbQMeymUXuMyD8jiQHFhwYLAjjyiFJ5ATNGvgfhePKy9s3sqGjL3wEQbf3rhwRZqdv1K+Mn8Kff34029QbkYs3Tw2vvKjwxDHFnBRAy4Wwhyt0q8FRGuMIybEpMMoaKIwTZNgUhBFAlHcN8N4cvLIQ0kH3ZOf37zci9t6OeLQIJkGksYrg86qpD7yRL8bjT9/9kTLzMHdIG76E80jolDKHR9Mp2u/f+TJmmO2buuaLluxGS8zqJ61s8aFfcuP1Gqt23GInWp9Zp/vTUVNzXFnAr97DHg7D7xNUNZwIDXyAHNSeAvggyolvEJEp0JV9czahKKrRGx+PaBsYu2WFN6T+WQOvZDTBPSvIB8qpmGHEQgf9NZkMLaas2yakpy3fRV9f/tbtB4I99UDMPLeffXgs6NyAHGf3/4Qm+hNrsg1d9gPixE1m9BpgHBIJYcuq9oLC2tvgLHG57wzicWza6ei8h98nu/OTAtlM5Hm1S8/uh4rqr6iab8nX31WFBrjbd+w+EpayZXWZ1dOkYlx4qbd1KlPDt4SibF+jK8XsmVdshWK6WHA5AGnLje+F1O3t0eCGqKgJFZVNEQBdbGqvbrRr0WhYGB0xpcZoatAYLa/eObKw/HZzsQJSZbGW52Lb1++Uyuqjozeo3K03d+u3Ll04BPztdXxjc0grluAIQa8MASEMULDShgjvWpRxSELrA9B72Fn4nT78uOaWFl8bN7KN3IWz5ecltSePFxN8LEj/aV81ILsN25FS5NjL1/0j69M4Yied1JuDxVmGvbgfNeIYpOuv0tjAusvcI3QYyujDiHZ25OHJAhJUFsDEiKwZlfFsOSruv6ljf54Yg8TjJUvxqV2vXMxHpttt9YqFcOZunPpyu3SnYCKYYoYdw9X5zcX589vBBo5CniiwIXHlUdssNoIVlqgDhXSUA2AoHdxpnmmefUZXXvtwuV1nVi6Pvwn/sTMSiFqGsDBQdIdb6zbt2S/7r186dLLz20lbNJd6OoxbL7Ub8+3ghhAhcEpqIXTzJFABUUN7aRWmGMfNf0+CssitqHi+eJpsGlFV4jYuNncClJs+PPAprbCgekLUvzxQ3KqauNq0q0vV2iCDX+6m2oe5WVi8RiJe4BJA0wxiM3sff1TL9ThKPHxRyyT6TV4AJTT+IpsUAxeSTKL9fVYtsSgNH8zIusiFlulNV/W6ACT74Glz6d8eIK2XaZe+du6vzj4HYoNi7rCzFSHwL1R//LbhOmH9tA/xJchfyoU5X0c4b3K2dO//w0Q85OAmKea16MUhjD96zD7zGWA1tvtF8LOD/oOQ4E6N/wBMdG/7zYIiHMAwBTws3B/d7CXmgeqCRlJOnhGSjKeeLH1adZfpTKnT8drgVG+FkSxthZeL0KV7v6GAVZDpMZrskFv5m8/kYXHGFZg/uXF5ZFxBvV5+CfP0XXQi8e/udO7Qo+IfgzYsw+wdl++oX8Qm8PvyYyrz609G2TX12h2PRvEKKhwO9lksncT4MVG3+WO79ENtMWs0Gv01btkwWjlgcGOVQw2ObT40Y+H2BNYF1tHZU0lUtUXUCyW68ay0FyJU0epfvik7YuS5u2DQRsGN6nqeNdreg4vTOfLpDY5bTZnx8oiwhXPYdB9/I47Ji/t/10tGdL3Tt07NMcuTT2pIQ/Oku7kZHG/Z/xM43ZyAtb2f86JHRH+v1Ki6Ydnq66Gf0lKeOxg2GFKQE4cC/08SndeHCtrQS8RWic4Z2zslY3N62OvbJ4jsQOd9kOxeP/6Q2j2zTu3//SldwZn1+cXL16k79r+5+0a9mC9ZdqjB/Xpf22WPr5QVb2SYrAVMim1Sht+oKnVjI7nDn1Mxfqj3f7pHv3WzereqoWgXnB4EnDVmV+CYFT0sXmH95ZQXOULtTRZux63HgkNMjisNlfpHhgLrRugbXJqa66EPutkUyb+1MqtkTuGRqAuTTCdL29/iD4EnlfCSkErN/Q9tNEO+7gGrjZ4Vk33NHI7JQwaOR79jKQa5/YfnbSy5YjOOrWEgpWt/oKAzbqbLE7M5k2BWBOfODBXVVK+FGfPpGWCitP9ARE6D2tuu5C4k6hPuYVC6zJru60zxSzIV+SFqJ2uZ43SRNYwmsu0rUtYiUzWdmUTS3Y2rD3nYB3/gSe4FotwsbKARgWGBPsIWmaYW0HbDh4XtKvo7+M3fvWIXDlJDUlsnZDDThMh+auMTrH51bJyWPUKcJowLRO9dPDI0sq7NKBHKBjYLhxhnP5kKeKlIRSqTfEcZ/r9Jq2FLMdYR8RA7Tq6aDsUyAjpjmEByuZqlcwMDh6Va7tZBEGdxN6YXW+LhR3lubowQytPpZLO71/+T5ZFYGIfaCkjNlX+89DTfhB62ub2L/AcYJoIfrMJfxyqkpGbM36yI5RQl2fFZuoNJe9ouklmU1RqUvNWyIzeuquHmmND6G55+N20QgwTrdK5GS/Dd1GGncBXEKsTgGMJcMwEfQLD0URh70pC4/QQ3ZwmWS+bR3srDj7IZ7NPRxK5Ykyt2emxvIaEbIIX2jc1QxFhm1rBfbOQ1UVxvQIjBG6ohoq+mFKH30vZiVcutlN2Ch1UU5ARRYP8/HYmM3P8XpAhDJ+yXWQ8DXZ42ttBEQmSYoB7v5y1H0Ws6UOlyrhIxpJOkiCB55HWsKRkAp9J30+kMnv7ASKPqt58dV/JcV1HiMC/FrOxqSmCro6I/S8k7CEWcT74SQ5w052BKBUoHNA5oruZ0mg7w36ek9Dubhr9o5Qb3o0rGo9x1Ean/46wPTRkQITuaNbiMr0Ts4ff+Bd+tH0el7BkqppiIMvUdbq1mXJtNqTqw3/L7e6cuf8BXQPyVgAAeJytks9O20AQxr81CSo9oB4qLu1hThVI2LINjQQSlyCCFMUEJQRxtcFJrFhecIyiPErfoeJFeKLe+LxewSXcasuzv/m7M5MA2MULFJrn9p0Vvqoflh20lG95C4H6Y7mFPfXPchu7jmd5G3vOgpGqtUPtr8mqWeG7alt28EX9sryFRP223MKherXcxk/nm+VtHDpnOIfGI9YokWGGOSoIQvh8j+DybfiE1oRRgi48yj5i3GPB3BWWPDPaYhR4MD4PkYm6Mv4mso7Yp16YSilvipFjSk0beUPbHc8JxrjAiFJwyXNIyzW1A1bEuX5cl9lsXkno+0euS3kiyVq6nvTj+4VeLReZxMWD9L3Ikyu9ojGTfV1Iks7jfCp6KjfpnUzGF6OxXI6Gk+vxAesO2HBkmtPkCgFHxiCKdKEHVUDu0pFzOnR1TtkzsZU5S64tNUvzmCU45bepnvteZMgF5FzIE55NZp3RoT+w6w6poaeLqqfLWSqh58upfHTj1j0Mkzx7ek7p6LgB9xB2Nk/x2a3YXK/+v6YcacnA5rdqxvJxTMZtWi4zbpMt+cfyf258Axm6izAAAHicbcw9DsEAAIDRp7qYalAHkA61krCL+gkp2lCE60g6u6u1eoB+yVs/Ac2v/jYfha6mrZ5AX2ggMjQSG5tIpGbmFpZW1jIbWzt7B0e5k7NLey1d3VTuHp5e3n8hYw3uAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEINIGYB8xgABVYAV3icY2BgYGQAgtsKp6pB9NOm1wtgNABQwAgmAAA=')format("woff");}.ff15{font-family:ff15;line-height:0.845000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff16;src:url('data:application/font-woff;base64,d09GRgABAAAAAAWUAA0AAAAACCwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFeAAAABoAAAAcpiahwEdERUYAAAVcAAAAHAAAAB4AJwANT1MvMgAAAaAAAAA8AAAAVlPeXoxjbWFwAAAB9AAAAFoAAAFaBzkMJ2dhc3AAAAVUAAAACAAAAAj//wADZ2x5ZgAAAmAAAAEYAAABWGIQ4GhoZWFkAAABMAAAADMAAAA2LDAbEGhoZWEAAAFkAAAAHAAAACQDxwITaG10eAAAAdwAAAAYAAAAGASaAFZsb2NhAAACUAAAABAAAAAQAGYA5G1heHAAAAGAAAAAHQAAACAASwA1bmFtZQAAA3gAAAG3AAADKjJvsnNwb3N0AAAFMAAAACEAAAAw/9EA3HicY2BkYGBgYmST2vliXjy/zVcGbuYXQBGGp02vF8FpNQYGxqeMD4FcDgYmkCgAdW4M2QB4nGNgZGBgfMgABEy8IJLxKQMjAypgBQAuSAHfeJxjYGRgYGBnMGJgYgABEMnIABJzAPMZAAgGAIEAAAB4nGNgZOxinMDAysDA1MW0h4GBoQdCMz5gMGRkAooysDIzwAAjAxIISHNNAVIKDHmMD8GSDxFqAMKpCRUBGAAAAAAAAAFNAAAAAQAAAg0AJgAnADB4nGNgYGBmgGAZBkYGEAgB8hjBfBYGCyDNxcDBwASECgyJDCkMef//A8Xg7P+P/y/+v/D/DKheKGBkY4ALMDIBCSYGVMAIsZIiwMLAwArnsFFqGtUBACCMDmgAAAAAAAAAAAAAAAAAOABmAKx4nGNgYlBjYGB8yviQQYlBlYFBVUSbUcnUxMxYXZndSBTCsWM0FrZjtGY0EhMXNpJj1GdkZ3yq5aklJMy3mU8VyBAU4KtgF5FilxZhq+ATEJzp5i4nJ88jrKcvJy/Hx8/EWC8iKCjyr5GJv/blSwYmBnWgfXcZbzCIMMiC7GOD2SGopMdoagKyht1ETZtR0NjIjPFuecxOkPlAY7V2xpa5hnnHxPiEvkzoBBscx8TPJzchwS3336JMBiBgZDAAEreBZhsCaRE+RmVBETZloLHqzMqCQJcj/AO3S1wYwWa8LSAgICzJJyDBvowRyNRy1xIAAy1jHQGYCOMuoM3/+qX5mQQFGIv+rQA5AeEY5X99jBEgBgBnNDuMeJylUsFq20AQfavYhkIJPeTQQ6FzdKBSZSUYYuihMXHARE6w45BTYZ2sZWFHayQH48/pvfRf+j299Hm1lFKaU7Vo5s3bmdmZ2QVwiO9QqL+731jhtXrvcYCW6nl8gI/qq8cNHKmfHjdxGEQet3AUZPRUjVe0vrmoPVZ4q5oeB8z/weMDfFGfPW6grX543MS74I3HLbSDT+jDYo0dSuTIsMAGggQx1wlCrhqfkZ3RS3COiHIIjQcsGbtFRZ2T0yjw6PYipM5r5PZrz71Hm3bhMhmepLHCnJZ18pbcPfUUE1xgTCm4pL4mc0PrmBnRt+tdmWeLjSRxfBKGlGcy28l5JEP9sLTbapmLLh5lGKWRjOyWZC5tW8jMLPRqLnYut+ZeppOL8UQux9fTm8kx816x4NQVZzkQzYFU6LBtXKWpLWxfr6sOrX0/JZ5c5RjZ8klTD1zcxumSIzRugBGjBT3+L+UO2Zyh/zOTaUbW3l3yHT/2hBYGttgMbJkZSaJYevJnReHYZM8rXZLuhh1OI+m+3Mvf5+Ffmfbv1XCz4n3Vd1W3EuOUGHemrHJOk6XEp/K/Z/0Cb0+KXgB4nGNgYgCD/7UMrgzYADsQMzIwMTAzuDC4MwQCAEh/Aq0AAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCNiBmAfMYAAPgADV4nGNgYGBkAILbCqeqQfTTpteLYDQAUNQIKgAA')format("woff");}.ff16{font-family:ff16;line-height:0.481000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff17;src:url('data:application/font-woff;base64,d09GRgABAAAAAAU8AA0AAAAAB8AAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFIAAAABoAAAAcpiahwkdERUYAAAUEAAAAHAAAAB4AJwAMT1MvMgAAAaQAAABEAAAAVlRrgkdjbWFwAAACAAAAAEcAAAFSIaspMGdhc3AAAAT8AAAACAAAAAj//wADZ2x5ZgAAAlgAAACzAAAAyHlFGHBoZWFkAAABMAAAADEAAAA2Liga42hoZWEAAAFkAAAAIAAAACQF5ARiaG10eAAAAegAAAAYAAAAGA2MAHJsb2NhAAACSAAAAA4AAAAOAGQALG1heHAAAAGEAAAAHQAAACAASQApbmFtZQAAAwwAAAG2AAADQt/+T5Zwb3N0AAAExAAAADYAAABBON2473icY2BkYGBgYjhyXsynMZ7f5isDN/MLoAjD06bXi+G05f8vzCeZQFwOBjAFAJEODf0AAAB4nGNgZGBgYvj/hYGBhYUBCJhPMqQwSDIgAzYAUiEDTnicY2BkYGBgY1BjANEMDExAzAhmO4D5DAAGqABzAAAAeJxjYGTezjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMQJwA4wSkuaYAKQUlGyaG/19AKhl4oGoYAFBOC38BGAAAAAAAAAFNAAAEBAAABAQAOQMfADl4nGNgYGBmgGAZBkYGEPAB8hjBfBYGAyDNAYRMQFpBcZKSzf//CNb/x/eK7p6E6gIDRjYGOJcRpIeJARUwQqwazgAAbDoMHgAAAAAAAAAAAAAAACwAZAAAeJxjYGSw/P+F+SQTA4M0AwODCDsfIzubNqOSqZm5opKJsaKauok1o5G4HKM480nOoEIBJi4hHqmyP79FRZlZy6R4hLiYBAqDGJkEWKQaQ7n4+kK1Qvv4uEIbpRiA5jI0MD1lLGFQZWBgFGFTVlJT12NUVuJjZgeyTU3MjI3EgMYaG9kxmwPZTE/j/PT9TIw8NfgU1BXEmZh4+TEEGAP8mgwMdLXZRZWs1SSUkTkMAKdOIiwAeJytUstq20AUPaPYhtDiZVZZXNpNApGQZTAkq5IQG0xkBysO2Y4S2Ra2NUFSMF70ixLyR/2XHknTQkvJqhp077nvxwyALt6h0Hz3v7FCV3212EFHfbP4AD31anELR84ni9voOr98OtR/p6dqHVJ6q6MqrHCs2hY7+KwCiw8Qq5HFLZypHxa3cex8sbiDM2eKKxg8Y48cKZZYoYQggM/Th8vT4HNqY3oJLuGRjqHxiDVjdyjIU+o0MjzVNg9h7TWp7Y1n5XFCOaszJaykscGCkqnpHXUP5HNEuMaMVDAin1JzS+mUGXFlnvd5ulyVEvh+33VJzyXey6UnY/24NrtinYrOnmTshZ5MzI7KVE5MJnGy0puFmIXcJQ8yj65nkYxm0/ltdMq8N2w4ZEMl24o45pYtGrZXcHDchKEuV9F+G5tNQbmaKqdL1T8mJt9q8mE9WlnznItM6jV6XJ3ggv9HFVyOmTDmhbJmdBMxoL5nLyCghKHJyqHJl4kEni8X8mdf7ixZvmx0TsPA7XEzweDjuf6uin/nq15wQnPBG2xurxmreh9CY5IXKffLlvy+/J+KPwGGi5NVAAB4nGNgYmD4//Hb7v8TGNQYsAE2IGZkYGJgZmRiZOZKLCrKLy/KTM8oYS/OzM3MSSwCAIHyDLcAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJWIGYB8xgAA9UANHicY2BgYGQAgtsKp6pB9NOm14thNABQ3ggsAAA=')format("woff");}.ff17{font-family:ff17;line-height:0.524000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff18;src:url('data:application/font-woff;base64,d09GRgABAAAAAAbkAA0AAAAACTwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGyAAAABoAAAAcpiahwkdERUYAAAasAAAAHAAAAB4AJwART1MvMgAAAagAAABDAAAAVlWDXo5jbWFwAAACGAAAAG0AAAFyGFkIdGdhc3AAAAakAAAACAAAAAj//wADZ2x5ZgAAAqAAAAIvAAACaGU1tbtoZWFkAAABMAAAADMAAAA2LNwbGWhoZWEAAAFkAAAAIQAAACQFggHpaG10eAAAAewAAAAsAAAALBChAZhsb2NhAAACiAAAABgAAAAYAh4Com1heHAAAAGIAAAAHgAAACAAUABLbmFtZQAABNAAAAGoAAAC7kL+sqFwb3N0AAAGeAAAACsAAAA4AFoBOnicY2BkYGBgYmRbk2DuE89v85WBm/kFUIThadPrxXCa6b8R0xambUAuBwMTSBQAYD8MxAB4nGNgZGBg2vbfCEiuZ2D4P5NpC0MKgygDMuAGAINNBW4AAAB4nGNgZGBg4GbwYGBmAAEmIGZkAIk5gPkMAAqvAJwAAHicY2BkPM44gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEGGBmQQECaawqQUmAoYtr23wiochvDOZgaAFq/DLoAARgAAAAAAAABTQAAAAEAAAKvAB0CTQBfAckAPgICAAICEwBRAgIAOAFfAFN4nGNgYGBmgGAZBkYGEMgB8hjBfBaGACAtAIQgeQUGRwY3hlSGdIZ8hqL//1FE8kAi/x//P/x///+F/xf8n/V/BtQ0FMDIxgAXZmQCEkzoCiBOwQtYQAQrfjVsDOwQBgcnAwMXIRPpCgBrIhXeAAAAAAAAAAAAAAAAAAAaADQAYgDOAPIBHAE0eJxNkktvElEUgM+5IzPyHt7YUmRmeGgp2A50phRFkRKq1rQ4CpoCHS2ppombLpqYmLhRF5qaNEbdGZvGH2BsulY2pFGXxkT9C8aNbAcv1IWLc5KT+zjf+e4FAmMAZJvsAwcWAEFKCJyEGSsh26uS8W1zEd80jk0edLtk31jAdeMlACCs0DN75D1YaSElJE7gBEbyCOSt9kvMomo3Dkr6c+yQu6RXNLp0IxAo9Hv4G7+AG0YBYgLrz8gqx0piXC1gRg74OSVNJJHl8LvRsRcLWs1cr7faPu+relMaKaNHPM6nteCPsj5dnnqyqj+9dHoyKgfMczIwQPoymccuTMAMVChTXBI5L73SgZKYYDk2j3KYoRVtpqiHMWyqZDglPmg6oFE8lCCJIutE1i8rpBxKFZDhzY7NOTlhZ6yzDV/0/MngUduLDxs2x7zbbIkFrXRRiVdrn6zj8WjRNswjptB0mG+JaRPLaffb+PCIiZgmUiV9zOXKEn40l8gtLqnnTkSS6dgppaRHIrvZzJRKw/gcCFsYgefF8eTQc5WKE+lc3sHLeAo4NOREyUO5MzKHH7UCQxg+FsqWbVlNv+y80NwSUbS7BS9/ffYPdioLrwfuZ/o9kqDurRCg7gdWDgX4/x+fuH07rca6z7fbXFlbc5XyuTsu19kz+ds/bz5+dKu99exG9drVK9XGMgzZNJreUTb6a9CB/6BU3Kncc6WW9Ive2gY+wObCV+wst8hfGNd8rgB4nJVSTUvrUBA9N7YVQaqbt3vKLP0gIUYp6FKxQrGtNK24TTRtQ2uuJpXSf+CPebyNP8Wf8P7IO7m5CHZnQmbOnHtm7swQAE38hUL13H9hhU31y2IHDXVs8QaO1LvFNeyoT4vraDrK4gZ2HJ9KVdti9MdklVihqeoWO9hWexZvYKgCi2vYVx8W1/Fb/bO4gX1nF1fQeMEKOVJMMMUCggA+31O4fCt8TjamSnAJj7aDCI+YMXeJgj4lFyHDkznz0DWqnjmvlKXigHFmKiW8KcIcY0ba2CG5B/oRQlxjQCu4oe+TuWN0yIq40i+rPJ1MFxL4/qnr0p5LvJJLTzrR40wvi1kqUfYkHa/rSU8vSaZyoDOJk2k0H4seyzB5kFF4PQjlZtAf3YWHrHvLhkMzQMFRcdsNo6wgKAfI8WxaRU/nzxF920yxMD7nzhKzMY9bElzw+17M5QQx01O84s1oS02L/IndbsAIbZ0t2jqfJBJ4vlyIbcHtx/P09S0h03JPOG/QWu92/QKspZa/YMJGCyqq9VfN+jgjxn2SFykXxGv9M/lx8f+dGHwveJxjYGJg+P8FiCcwqDFgA9xAzMjAxMDMoMKgyeDB4MUQyBDEEAoAwmAFkwAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCLiBmAfMYAAQMADl4nGNgYGBkAILbCqeqQfTTpteLYTQAUN4ILAAA')format("woff");}.ff18{font-family:ff18;line-height:0.900000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff19;src:url('data:application/font-woff;base64,d09GRgABAAAAAA8IAA0AAAAAFTwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAO7AAAABoAAAAcpiah0EdERUYAAA7QAAAAHAAAAB4AJwAkT1MvMgAAAagAAABCAAAAVlcTYdFjbWFwAAACWAAAAMUAAAG6Vep0OWdhc3AAAA7IAAAACAAAAAj//wADZ2x5ZgAAA2AAAAloAAANYOh3haFoZWFkAAABMAAAADQAAAA2LhIbM2hoZWEAAAFkAAAAIgAAACQG8gLZaG10eAAAAewAAABqAAAAdDOoBW9sb2NhAAADIAAAAD4AAAA+LTop2m1heHAAAAGIAAAAHgAAACAAYwBfbmFtZQAADMgAAAGwAAADGLFRkkBwb3N0AAAOeAAAAE4AAABeAvQDcnicY2BkYGBgYmRbwh4iEM9v85WBm/kFUIThadPrVTD6//P/bCysTO+AXA4GJpAoAGOEDZV4nGNgZGBgevefjYGB+dL/5/8bWVgZUhhEGZCBDACmiwbQAAB4nGNgZGBgkGOIYWBmAAEmIGZkAIk5gPkMAA6kAMMAAHicY2Bk/M60h4GVgYGpC0jLMvSA6P9zGR8wGDIyAUUZOJgZYICRAQkEpLmmACkFhkqmd//ZgCrfMfyCqQEAfsYNkQAAeJxjlGAAA0ZfEAFERgzOjPkMlkxqDJFAnADEFkx3GXSBOIH5EkMCYziDGmP4/+dMvAyWjC8ZlBn/M5gD1bAwGTI4ArU7MSczOILYQDEZIC3BWMLgxLiMQYNxCkMY4xeGUgZpBmYAycMSPwAAeJxjYGBgZoBgGQZGBhDYAuQxgvksDDOAtBKDApDFBCR1GQwZTBmcGHwZohliGRIZkhlSGTIZChhKGMoYKv//B6pVYNBhMACqcURRk86Qy1AEVFPx////x/9v/L/2//L/E//3/d/4f8P/tf/X/F/9f9X/5f+X/V/6fwnUDQQAIxsDXCEjE5BgQlcA8RIMsLAyMLCxAxkcSIKcXAg2N4puHgZeIMnHwM8gwCAoJAxki4iKiTNISEoxSDPIyBLjQtoDAI+fLckAAAAAAAAAAAAAAAAAACwARACMAMABEgFSAZ4B8AISAjoCkgLWAxYDmgPYBAwEaASmBNYFGgVQBbAF7gYeBmQGsAAAeJyFVmuQI1UV7nO7+3Yn/cqru5PuTk+SznSSSSaTx0wyO7OTcRl2YXcZWBgWZoGCLRV0cV2eiyAWYPEDLJSHhZZF8UNRLIuifCJC+UOFBYHilyJ/rC2llKJKcUFlLUQ347mdzEBtoSaZ5N6umnO+853vPDjgVja+yr3D3ck5HNenBuhQhyloQr+3DKVwGQawCB1L+r2o7IrHDVWmMoFkzM3JYkKMpVczouBmtDVV5EXRN1oyPpGkDMcBt437BRyCGKdw3CStQ4mZRFPwUbn1nGKkBKn1XOv1Mkklyhy+CHdg40/kCvIyV+Ta+O96LCg1+QH0B7Tj8zpIvX4vKEmUvbudfo+sUClh2LlSrb291NpZyQhxORZT3Hx7/oKDOytpMR671xPEs88J03Ze0M5ZLWfg4vzEYHKh3PQc1avs7K1PT9Xa6/O7qvl89az+JTPuF5qfvGHbDXdu+8zRRcR/EFG8i3gmGP6gOMafpkF06iKeLvLCdzs+wGtya/gHJZHEoM490pmJTtMHd6XMvCrdviueSJWjQImgRT9zekk/9ThJcYyneYz7EvIk10c/OrCo+5Ft2+p2BngOMezoOfT66QF0i+hV5+vICPon+dxDn62uVN04QEeRqeBc7jcdU5aStL6jpaUtTU0C7KCOA1ZBk3lRtZLHimH46d3Hb77VngiyvLCkqetpuz0xsXjFYlIisVQSOl7Kz2haUnpY+1yUm2n8ehox5rnJrWzOQFHazGsfWGp9sNNWhQ/7AeqIPEUrPTtLiT7888BulxVV44kEa7n2up40yRr5ccADpBpHXddImwevqRJNlVVyWZ3PZE59S38ZcrZTW32FaYNnuSDvov8sV+E6jCceExIyOphbHvmRrEqvyVhhpPGbR/KCtvfju8PhCTch3k4d9x/Z6vndCUW9dM9jn6cpfyafPDp9o57r1yoF2Sz2vdRt3QcefmZ5f6CYLrnINUk62N1dWE1433fDtEJ+DZo5M3y9PJfTyFvcSCOCiLhmo9whGYgpoBI/yhdSUQn4zecRViTI7PbGF1TPHWLOc/MGPQKpy55NBQUrYwrzBQJH2PMx6LWOvDQByYtfSJazF+Z12nJNyyFi+ODw+byObEH+8fqpf7nmCHJteOwJuXIPnOkZlsMwhhsUjpMTXJrjRPoBKCx5qF5Iyq27EMHPada7qyXJrbkn51qvli2Hv9s1y+V/fwdtbLyBNh5CGzbH2VE842IINqvakl5BxHeN6hotjA7M7kvIImqeX2ffDBHT07aNk6QGv+Ua3PYt5pYBSyvsD4TuSPN468/2B6zWOr5oQF8XJBrVBPwRfU2ibWHXVcvLamzXuVe1LEmxKpetyqJKZKKk1tYT1owzpSTUx1KGt61RoTTvi3o570XsZc5bn68teUkSNForVEnOy7JUAKpaQbv0yMVANLPm+Q2Ip0IuqtEA8foRXoY2gsaqz/bJ6FZpYsJ1IunEJ6w7dTsmhVcgnj1n/1+6s39rbwtikkhsnsZpLNdqlmd9IyYKgpQo5db2qjTOdyRZCf56Uk+JoiQvUk3JmU5/upK1Z5wJfT6ujXtkH3E0EEeRq7IeSYKiDpseLWyNIzRIIrB7b5bxSCzBTBnDtwVCM43C2j6NSgREANW8cP/NVzvZB286vHonnQw/UQbBtPhsqemZC/GYXeOxoYa33nLjbddfXt1evpvVobDRIUfgN9w8t4e7FBGw0MPAiijIYGe2rUVYAJ/SMSnYGcLRH/azCGNGGkA44gpYMkm6F2L2GXBfwII9THRRDmctPXhxX00AMaF2Wq7XcacsT1NA9N+7di60JXV3OiaXq6ngxQPTOwaaAG+JfL6YK6Xj4ubBF+cHNybSWZGPO04lY3wZvqIJSm35UQfigm2pRJDVhJ2v2Pe6meX8khs0pir1fY8GgZQuHfJqWdV3c6Of4bedLG9ZyZwR42Gkhx2YjN1Y95UP1D0T7Xh+btUYmw8DwuKGIWq2ippdjKVK9fO1GXYdF/gkFvUC6JULmqu9RKRPSIfllaXjmzVtOcMTmcnqyirTwBkI4ELyDc5gk6l/mrv+Zi2N7y+zSkE3qzTnsoppUzvf9TVRwOddvLeYC7jay1jOsZxt59LM2VaM/K2Y66X/HuOHhmzAaDb6RBpNyNY4VIw8mLpgK/LTruciESUkIg5uc3bJKk7bsPfwiA9EmK6WzhgcP/14LUPbqeWLYrJe+hijZzM3iPv/5gaB/u/cvA/JmNzf+pDcjAGYYSPyTTgP6/NTWJ8UJyXOyQLjAQU/20SF8+PuMCCk1xlmu3Pv/P2nEk2EgxnXliUqCnKy7IRzE9prb7753omJ0qxnWu5coeB6LcfTvIVptJ/dGJA9GFth1IkELDLpNAVEzLN9KSgZQC22RZDtNF6dvWL7zqDCIvMS9CYmBydF915U3+7qovjF4lXdelcQjbR/zRtueP5cvfN0JL6Gl8m4C267tVwwHym+rRlqknHMNPh8hAO7ECCED+OWj7h9SpD1+Sv1yliIjNMCcqpBrtcq6KogwD1pCYSdO558n9EdYdeSVGOkw+rGSXgVOV2J9jDsKnRANvejfq9JKvgZNRgcE1Jm3JCjCYILiU9sCx4r/GBhFkRDMxSJaAaRY5TWD5yn8HE3bQSFqlbV/B/1q6DEtXhMAFUDKUbl6T1nK4I9UXSdMBF+6Wu4R1Eq46sUioa8s2fYuPRKcsZoLN6nCjwVce4TvwxafKadysaoKJnJBuK/CPEfI6tcjeFn2JZhc2z2t8iKpnE03kahwe3Cvv7cIb+XGU1SO4UZm0CJpg6wGX2gE1PSYVsWce2byViJ+0+x6brGynitXH6zU/Qlx0ffR1GUfXiJc5HIjMSz8Y9Lydx4WXNHXcIHMht7zm7vbos1oNWslRMh+Kaa901F0+C7fGJ439QUXCepnm7ow19B084QbZQbtEsqaL/xga1Q2loQloElhkU4gbvryKmEZYjh/U4MGpqqiWddZ6Wz9biqENB+ea1MhKCRTseWrxaTfl1RFEK0n9wiWxbE4vffkVMwQTHl2ScU2ZKMw9cIBrurP3xGj7DwG90o1habSxLgiogqeH+TZrOIH8OxLanLRMQQETIHseE/5fzcefUzZZAJrwmiG+SmMpqUuBInZcUpm2qDgrz3I0ImtKS4TuF7VB+GxmSvrPNnSYZgeq6te/B1RXTc7s9m/AeuF2wQGEf/Abcm+Rl4nKVSy07bUBA91ySIblAXSN2wmGVoZccxKBIsgwhSREgUk4hVJQecxIrlC3ZQlK/gRxC/0O/pT1Q9vr7NgseqvvLMmbnzOmMD2McrFKpnssUKe+qbxQ5q6rvFO2iqZ4trOFC/La5j3zm0eBcHzpiRqvaF1ovJKrHCV1W32GF9sXgHP1XT4hoa6pfFdRyqPxbvouH8wDk0HrBBjgRzLLCCIIDPcwyXp8Kn9E4ZJejAo+whwh2WzF2joE7oi5Dh3tx56Juoa3NfRZYRDdqZqRSzU4QUM1rayBv6bqnHCHGBEaXgknpAz5DWESviXD9s8mS+WEng+8euS3kq0410POlFd0u9LpaJRNm99Ly+J9d6TWciDZ3JNF5E6Uz0TG7iWxmHF6NQLkeD8TA8Yt0rDhwaAgVapIurfhhlRYuow/lS8kJHp5RdQ2FldM6FxWZdHnMEZ3zfVnK3BQaknXINj3gyWWV0m/ctu+SAFro6W3V1Po8l8Hw5k39zuGX3wTRNHp9iuttui9yD9vvJP+uHjyqVf2dMGgXDqi9TUfFxQoxJnBcJd8dR/BP5315/AXtrhW94nG3MMQ5DYACA0Vc9QCUMJlPtTiAGEVEDlbYRLtZ72vkP4Eve+ok49uBvdlUe3ETuHmKJVOapUKrUGq1O72UwmrzD5ePrZ7HaTtwXCmUAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJZIGYB8xgABN0ATHicY2BgYGQAgtsKp6pB9NOm16tgNABRJAg6AAA=')format("woff");}.ff19{font-family:ff19;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1a;src:url('data:application/font-woff;base64,d09GRgABAAAAABHIAA0AAAAAF9QAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAARrAAAABoAAAAcpiah2kdERUYAABGQAAAAHAAAAB4AJwA+T1MvMgAAAaQAAABEAAAAVlXm/r5jbWFwAAACmAAAAMUAAAGSsZ5q7mdhc3AAABGIAAAACAAAAAj//wADZ2x5ZgAAA9QAAAufAAAPdCt6fiZoZWFkAAABMAAAADQAAAA2LQIbPWhoZWEAAAFkAAAAIAAAACQFzQKXaG10eAAAAegAAACvAAAA4GpEC5Zsb2NhAAADYAAAAHIAAAByaTBlXG1heHAAAAGEAAAAHgAAACAAfQBJbmFtZQAAD3QAAAGpAAAC7loVo4hwb3N0AAARIAAAAGgAAACSBacFr3icY2BkYGBgYmQzFG10iee3+crAzfwCKMLwtOn1ehj9/+B/NmZppndALgcDE0gUAGE4DYp4nGNgZGBgevefjYGBuen/wf/XmKUZgCIowAIAnCYGaHicY2BkYGCwYHBjYGYAASYgZmQAiTmA+QwADzwAxwAAeJxjYGT8yjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABLjC+94nGOUYAADRl8QAUT9DIFAbMksz2DJKMuQxBjGwA2kk5kYGSyBWBOIo4BYG4plgVgdia8NVruWIYlpAoMTkw9DPJDtxNzEkMZkzaDHtI9BlekQUGwdAx/jWwYzJiGGYMYTDCpAWgVIKzNaMciAzRRiCGT4yuDNKPj/IOM3hlAgO4jZgCEQJA6UlwPriwfiLgZZxmIGYZA4400GPqD5fECaAcRm3McgC/TDfwAEDSEwAHicY2BgYGaAYBkGRgYQ6AHyGMF8FoYCIC3BIAAU4WBQYNBkMGewYnBmcGfwZQgDylUpKP3/D1ShwKDBoM1gyeDE4AaUCWZIZCgCyfx//P/O/9v/b/2//P/i/zP/j//f+3/PA1GoLVgBIxsDXJqRCUgwoSuAOBUEWFgZ2Ng5OLm4eXj5+AUEhRiERaAyomIMDOISYKYkmJSSlpFFmCEnr6CopKyiqqauoamlraPLoKdvYGhkbGJqhtth6MCceKWkAgAb7iSOAAAAAAAAAAAAAAAAAAAgAEAAZAB0AIIAjgCyAO4BBgEyAXYBlAHCAggCJAJoAnoCrgLiAvoDLANYA5YDrAPKA+YEHgRIBG4EmATEBOgFSAVoBXoFmgWyBb4F8gYSBjgGYAZ2BroG2Ab4BxQHRgdeB4wHrAe6AAB4nH1XC2xT5xW+53diJ3FeN/a1Eyc2vr7xI7bjJL62b2wnzvv9cuLECXkRhxAeLW+2sm4UyqtdJFAnKGPtoKigsjVVW20tUtVoDLYJKgraJg3oNtGpD1WrtGgbQ9Wq5Wbn3ptQ2kmT4ut743vO/33nfOf856eA6l/WQJIsUgUUlc75IBgoEPjcNL1FBcmG0S2bxhuK1kQ4c0lpxPrv7qX5i9Ryj6l0InX2rTPT4w6KAiqM9jHF3q5Xa7hYWsCncvIWgNijxoXo7MuLjxoXdi8p9hfIp6SfMkr2HEvrOVuQZm3BAM/SAd7P0KyffMqJHzMG8SOOAwtjADP3JaM8GBiwcJz4EfqZXn6aeodKUmqKEjScwAX5d7yeYlMSDuxPSutoqctgppYoFa7DBlkwi4tQcDlGSb+tx6tki7/xkmEymaQUbGq4jtx0+KDXQC7hbI5gQEC+vN8A19PF8yqVVpORkw4Tyg25S/L+k8zI0GRnkTzVq9INRRGqbPlzuEsuUPmUS/ak5mxOyVEI3RgNmoAvjbNp1Izeks77Q0II7nqEb++IlPurt/mTRaEEUdMlldZhSx6kZ+qLvcVsTb4RWs4kHpvtv/DqYKqybOwltqyrkjc9Hthl5lp8YVuht7IB8Y/iam/jugiiDII8reaCfoGneXhbnD8g9B1qYg7EQDTGGpZekPl68HIL3y+R3xdiJBhwcDa1xikBZfTqPEB8UYBb4oZ3Kis88Qa+rcDnP7V+b9e6C9vUheqF5jfcVf2euuHmgci5p0YbJ3ueB9kv8r+NfstljWAQnSHBIvlC/x4IhoSYSl4pFzTOGChraVBBt/eNx7Y5MtIsj0Wrm2KNXVaDQyjSRt2FlQ16p3VTbe+2mkBdz9v9T4Z8Xr073FcTGmogJG2N1057K7KrXOGq8Nr6wFgxM4H0MA9mBPMJOU5lUXmIhGO4IBsEjAdHIzX4ZGZQ/AeQ1MzP4HDtxYsXG+AVcRT2Bv4yI3FwIodbaGte4eAD50MOmD2OZhmWkeIEt45M8uOunNLiEW+wL+bstbXDqHi/IhbffWPykMdBRyvKewaH2vtgT/N110EJ12p8iqkKpYok/xh8dGdk5AysKsUpPTFqRlIKCuW2xV4z5GxtdL28ozoYCvXOZLTP2qvN7mGDrT7SBpCWVVDkLqorNX0YibuarO3Hpn98TV/HHNw4wJU3TXS6asdqtfk5hb7SUibsoRQNLD9ALMepHHxQE4bL1+GKmCQWbqcOjN7/Lqb51zBPOh4Tb7wFcWoZupTYfsWhXNK4JHHBIMk5FxS1hyS5Wwhy8KkUuRul3+H2C5t7o2x5tGa91jQaaa2oMNtjax0tDY4xgAwDX1pjZ01cNNwOvWeuVVQ7tj5p5Ttap6v7ypqRD0Ormcpmb6B8KO4OjUk45FqGBaxlDUXpsJrplYpOwmxSbMbCVlHT+OIeconKxa5jVfLJ0g9lp5JEySA0nXSD/w+RPSe2iotfbDk50Z3YvfOJ+IFvpXaa9vWfeDGxe6FrJ7m0qTU0qMuehky+8Z894meRfvF+txTLxuUHZIxckddQr1a9lFSDUeOQUrkaBSEkkLFau6d+LpW6Oid4PMF8n9MVTLW2tLSm6svs4fLSTO3mLSdO/j5Dox+xarOHBr+zd2goO9sh52wd8mHJz7HHUcA5ORQiS6MgCZv4mw0E8b0puEq2kgcN4jV8aQXXxlVc/wdVEENHNm7aKaOKVvqEvAqvN6Kgamo88oGjSsak1RaPOPLzFEz6sw0yplkMdDHGuIiiWI7m1BoV51Q5nHhL80adwciHBB2vKh4AfctcN7utOQcG9hYcieWAtv/oXrKpbV48Nwim10NLp8mlcnH+TND3W0iiX9/y5wTI+1IntX+lMizCCvCRFSYWQCZSoegNa8ACBA7N7Nuev+GJ+oGIY3CNvY5xHpz1dDrZ/J5UQ3+Ne0P9psvJ/S3DA90BT0M2k6F1lAQjfXvz8+nhhtbysmhWYd4OmZMd43yavEllynFGJhrsIOR0zc2pm7VkN9lClk6Sx0mrkhPEuR7506s9L0jztF7GSvNk/anNW16cmm5umU389fETJ7bC+6J/csPsJNyUbHNxnXNoi/nMBA54XYEcLnJO/GxK/GzDk5szIS+1j1xa6iSXxFviFxXNi1CN2g9h7b6CLgwSUpYLysti4SktSunimqAtlzASEOzv8Eq8cVM0+qPDVWWDrereROd0Iq8qGQm5fFaaJo6qhLemSeWuqg20eac7nw+kZdsKzZwuy0QrNZ/A9RYRZx5letjZGcwvLa2kkRdl5Bpf3N5X2UEn4p0TbROJwWCzy1ZfPfbh+mecugpkcCcyNzk0UP3H2AByL0Wf8zIHWZuOgNz6ND5Q8omwYT4+MrV/32wgVp7jrPF1tvXWDXfaK+d+8ZyuqNWk39jUPskr+CRflxFfjoRvJR6y0mleFXQ8dBiCy4nmoY7ZTV3JxnjCEQ2PDQgRpzZQ9+zVZwVwLN35TWBgODEYkNJCcSv4CiRl21lpCxCMK4GWakhBqoF58SpJxhKd6p7hyae/Mzzpd9XktDt9LTl/apkKtlTNrU/NdcV8TXyzX+m7uOfCDNYk8gZ5KzQDz0jVgjWouIaZMreec+zaHu/qmu5weMl2OsPJ7omJB+Gp2EjXNKoFe5t52Q/34Rp24TDVoviSqpmRawUJR8FvScMneZJZ+UjeQ7ycMCUk2Po8YMNNUW/A7N03l8fSTKnmgCczMk6bBben8PAvD9UXmW2pZsHbmfxJ0FEqSJ+xZydtTkLGvzcGh9PSSbq3vGnKnKsPEI3OzLPhvrhQV2b1lDsqQo0pq/V8gK8S8CO+38jm59vcHjkO/Xi5gjnTy30jIO0VajOsiIqBKwnQ6spKAv5EPLL2GNhyClh9/kjkXyij99rPYn6k7WienFD6P+7svDQKvhyPZ05NwcITU5Iulq8s89RlfCdXmlqND7tIDLA0pZ53uTtUV2u0leWW2OJTU9HGuK1hTbrNQijZHqgheY6Q65PlnBpZ8gKvgU+SL/V3dN9c99q9+HEEVH3rNSW3A3h9Gd9XKYgQDT4oXMk9zFXpN7g+wppRcuNnyL2HzFe/eyLjG8x1449E4ZG7q23dAwNnqa9iiuv8T0yZb8QUPR77uo+zkuYtqPmPUfNaZUp/qHbDo5KBj49Mjh89MrHucGIoGk4maqODf04dPTI9c+z42v6hwYH+8TGlZ8RgEbHkUoWrHZxZQfKwZUgdY0dPX00i3jXVOproDze57HtHPpw5Gv47eaoyOreudZ1wN5aSuSXwEkd/WfgtFY3sS4B422y8s3En7IeJ7j/A1bFJgu+akccu5CHPodI0r6SdBHCYwz8kFVNhuDVyzeAmYiFGA+xihWDJ2kRO+7CWcRRylsJwlclldUVMub1tOW2dSWuJyW5z5lc97Y6WaL0dflWW2WfNTNPSRleVPVSUS6ytzqihJCNdk0nnumXMOsSRJFHpXCH1uKBc4zyD9c7opQaX7OxNDo10PvdcwO822b8PVGz//tjisFXOJdpewflGJ3c0abj62s4CV+LsbGWIT5j9fHui0mwJ10GfeKnUgscWdmVvgRtoj2cCUHEq3ihvxRixG29OvDnQX51G0sM5jbAgNsPC706wjpO2n1Kre9IbaFcs2zlxUHBy2CBWPehWvsgbx8a603OzAVTlNYlj8RpvGqTPdrY41KDZLHn9ghZiavdppPCrH5S3QeTeU64odCg6lS4f4BordcUJTt4o1dUHIz88MXztyvCxZ4YX3n330zvnz99RMC3zMpciCVMuqroC5DKuAxWP47IxBkjrXgHH6vL8hWqnOyunMNt+fbAjP6RS1bXCwtKiO6hLz2ih00ymtbBw0XWwsgKPuLJv6axwBn3T8lkIVoZgZuUEdEY8ANk9OAsfg+3ig0G8OeWBBNSVia8rNKhlag9h4ZRy3pRmMfEe2PaAjfovTtFg6QB4nJVSwU7bQBB9a5JUlarQCzdAc4RWtoxBkeAIIkgRCShOENcNbBIrwRvZQVH+oB9T9dJP6SfwI7ysV5XIDa888+bt29mZsQE08QcK1fPwHyt8UXseB2ionx7v4If65XENu+qfx3U0A+VxA7tBTKWqfWX0253aYIWmqnsc4Js68HgHA5V4XMOh+utxHfvqzeMGDoPvuILFAmsUyDDBFEsIEsRcpwi5KnxOdkSV4BIRbQcaT5jx7AolfUZOI8ez24vQdaqe26+UG8UR49xlMrxJY44xI+vsgNwj/RAprtGnFdzQ35G5Z3TMjLiyi3WRTaZLSeL4NAxpz2W0lstIOvppZlflLBOdP0sn6kbSsyuSmRzZXEZmqudjsWMZmEcZptf9VG76d8P79Jh5b1lw6hoo2Spuu6nOS4JNAwVeXKno2eJF07ddF0vnC87MuIlFnJLggu/HZCF7MFS9MoWmvtK0yJ/46SaM0Lb5sm2LiZEkiuVCfAlh30xe57og0wpP2G/S2q52+wJsHd38goZ8yU9Qjb8qNsYZMR5MUWYcEK+Nz+TTyd8BoBJ8NQAAAHicbcy5DgEBAADRZ5XEfYeShErl6K37Fjffo/XHbNQmmXJG4MfnreUfg8iYQFxCUkpaRlZOXkFRSVlFVU1dQzN6tHV09fSjcmgkNDYxNTO3sLSytrG1s3dwdHJ2cXVz9/D0+gKmCg1WAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQnMgZgHzGAAF+wBmeJxjYGBgZACC2wqnqkH006bX62E0AFFWCEQAAA==')format("woff");}.ff1a{font-family:ff1a;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1b;src:url('data:application/font-woff;base64,d09GRgABAAAAABv4AA0AAAAAKsAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAb3AAAABoAAAAcpiah4EdERUYAABvAAAAAHAAAAB4AJwBST1MvMgAAAaQAAABCAAAAVlcTnDtjbWFwAAACxAAAANsAAAGa/FM7eGdhc3AAABu4AAAACAAAAAj//wADZ2x5ZgAABDwAABU4AAAhtPoCdNZoZWFkAAABMAAAADQAAAA2LdUbQ2hoZWEAAAFkAAAAIAAAACQGoAMyaG10eAAAAegAAADZAAABLqJPDztsb2NhAAADoAAAAJoAAACaI4sbGm1heHAAAAGEAAAAHgAAACAAkgBtbmFtZQAAGXQAAAGaAAAC2VSExQxwb3N0AAAbEAAAAKYAAADRFNxhRXicY2BkYGBgYmRj2H7tXjy/zVcGbuYXQBGGp02vN8Ho/zv/szF/Y3oH5HIwMIFEAah/D8N4nGNgZGBgevefjYGBhe//zv+XmL8xAEVQgDcAoDQG13icY2BkYGDwYchiYGEAASYgZmQAiTmA+QwAFPMBAAAAeJxjYGScyLSHgZWBgakLSDMw9EBoxgcMhoxMQFEGDmYGGGB0YECAgDTXFCCl8JuZ6d1/NqDKdwy/QGpAcgAEIAw3AAB4nDWOvQ4BQRSFz51RohDFWkEUBIVkG5qdjkZIVBSrEHqVaCQStdYDaFSeQOMd9LbfB9Ap1pkRk/nmzP05d0Y8uCUTe3BvsJMbZsSoJgZ6DiMB5sxnrTJn5IQ+tUutU2ukYeM/tk8fsFQxOiRSDxjtU49kjcjeZYSF+jAeMH7+csSwN3KsEdDbcj0xypk8PHVhPYe2CviHhG8GaEiKmkxR5bslxiFS9KSa3lUBQ96NXiG0efdP+pxnS/+VvjOKtiZv+CqBR7VU5MXeI2eOfui9mz9G9wvNsjILAAAAeJxjYGBgZoBgGQZGBhCYAuQxgvksDBVAWopBACjCxaDIoM9gwWDFYMfgxuDJEMAQzhDFUPWb+f9/oBoFBg0GQ7CcI4MHgzdDEFAu8TfD////H/+/+//O/9v/b/y/9v/q/yv/L/+/+P80qxvULhyAkY0BroCRCUgwoSsAOpkFwmRlY+fg5OLmYeDl4xcQFBIWYRAFiooxMIhLSEpJyzDIyjHIKygqKaswqKqpa2hqMTBoQzTq6OrpGxgaGZuYmplbWFpZ29ja2Ts4Ojm7uOJzGpWAuwchFQAtrCvjAAAAAAAAAAAAAAAAPABuAJ4A8gEUAUABUgFsAYwBtAH2AkICegLKAxgDSgOUA8ID6gQmBGYEpgTWBQ4FPAVwBYoFvgXiBjIGZgaeBs4HDAdkB5AHwgf4CF4IlAjgCSgJZAmuCeoKJAqOCsYK9AswC2wLhgvUDAwMOgx0DKwM3A0sDWANlA3ADhIOTg6SDr4PJA+CD84QWBCAENoAAHiclVkJlFxVma57X72ltvfq7bW82teuru6urrXpTnen0+lOB0jI2kkgiBLEJAQCTERiFAMiMCKbjo6IowhBB2dkE3A4c1BZ9BBwmVHRQ0Qho8wwChGGTcB+mf/eV1XdaYLLOcmr91513X///u+/14VdF7lcrjfx/a6Qq+hyqRqn8yLqRel+VOhHDfhXb46gqiFrHLzMjyLnUX+T4xGvDfoEHiEW8R5lleLRrIylwSWm4q8Ub0w+qwnIzTL/Eoo9WJM4bm5/VNejmahuREAics0e5dB5+Igr4XKxzuKFvFxvtsYQCIgjXeNFRtcM00Dn+SVFCkjf3bE14BMVr0fgovmByMoR/4seNyvegWpffGu13404jhGSY+d/dfv9v5gJuKiMUZCx0ZGR07iOYY16a4xp1EFe2ziQsfEdi4PQoF/67ludxd18auz827bf94uVAZbKhfWXoyw6DOufAMI0LpMeQAn6mW80xxFPb+rjiMqpVRNoAJFPQ+ck1KI3moRA9uGUFpTPstwJQ08wyHq/Imqp1CeuSL7La3SvmQlu/biqRCKKjD++NZgxk75SyZs6/mvHD1czEbzDpYJXtExK1tINOZWu11JyvarLKSbSsF/eYL/UaKDgBiShbPc+2GjYLzm+3HT0c65Dro+7oi5XC/Tu+JIErLUgMQ556oIg+b0e3ssxPibs4bVVqhBVxfV+FrwYl4SkAK80ntecdf2uh9Ag8rh4ohusWR9BaLDyvUrle8gzM9OWDVciWyKyj03EQ4JKF6NChPZDJ/bPQ2wkEhseOcFoIeJ39Dxn3+lLKCEOrSUf+FFB+tO+dFgWJOYT6bAjswWx3Ih/4AqT34PIBigmc/BRa5LgQYbKtSramPlhJjOUXp6YLnmDkoSrGVTXdQM1BbgkBZ9HsL/grNcPlyOwXpnmYiZFbRhHTUjETJqnydNsZ4WIIFUlVGtVTUNHRzTLvt3SvN85c6g5m2Q9vKeqtJqzOy/NZXOeIebyW5bXeb1CiktQvT/YcWp9zW7Vv3Syt3zlGaVVxZxQwR9Fbk+G6JBCCtoJOjSJTRkSvla9BkJqVaJG26/jRI8FWoHbxphaFQrSQDu/UVqV83gYvjFTjlh9SZFlQwXZ1JNLcpyb5TTWF05Vrc+t3oZuvDIcYXt4rlTKF4uszxfADJbNXDhU5vgQ68YBVfZ/YCKjg28wqU/MAQYlXTnqnV4o/3aYM1SnlkphwSA+NwpyhmMwZ4ZLmmXF1MMxVfi1oCkrLa0U1f8DiTc/Zqk7CM7sMCJhXUI3SoIetS/QNDRbsQ8RP+SO/g5icb9r2IlFuh/ggPieeGKMqfczYLsIovtxAyCplqJ4JGJQi6bPkY99uDjTn5FyXo7n+t4TL+k+hHh/RF2a9cpGQAzyRgQZhslgQZcfzeTP3farvR82E5kQ4x4N+DeroUpiLFkJqSMyjwUtiKqWEpTlQEDmvxj4CPFHP+j3BsQp7Wo5yEV0ZBtBokiMRK6QpxryoA6u97szaU7X4pgoj94wssO7KidXMkEPQslc3eNnvfH8mUkf5+5Z+8inkNsrW1q1j1Pylh5XfO4XJmeLE4nyzAkbelLoYs2r5KJ8cKNVPXGLfWRpomJGvKdO5VqtmCdsDNA8Pvoa6PYtEjOoK8yQ2qAp0srwoJdTmCwoit4QfuSu9MdUJlTaOn77dJPXoz3jyFI1Bl8e8dpz9ncKRsSqf2zPP02TBA2kJKTIkA9M137JFXPViQcyUHctkOKkYaGedwyujmEVopUmnSLOOOY/99t9u37+5K591yXOi7ul3JKcxLiRR8nWM4oHYY+SiYThDj9x+PBVmezuRx7Znc3ct2SgMmLFs1IwG7MPR6ySLst6bzQSixc1UVKLJD0dDEKPg04J2iePQaHF7XEBKs3foTO7r+xdx2DVe49+nYnhk1w6sbWLVR7kNA4TGUwsPHet1yPKYTw+91BY8XtEvDv8tu6zn+RUn+ZHKlICql/h7Z/7QNcSKHwP5LflypIViWoDKMVzFMagljBtsaZqFJh8IQPtCN9TaKZMX9r+fUEczBbYn/JhRdwsKmH+p+yzZ/AcEqyZaDSUeO/uYpQP4K2axjCaNncg8AQKa7Hsup+5aNxOA7lfBrlRV97VRySLDAE6UkREIgtVTaIHdURipTo3+Ms9Q6ubMfuIpenR16XwCb3NbPik6bu+dtMH94jhejZm3XHJDTc9XDu5YLJ6FM9aGtRaNDeSG14VjN39vp+igD5gP3fpHyjmv4avwA8T+8GPtGxI86WwClBKn/sRAbYgKfUWBVwdX8GN9BZXfOu0rVtPv2/o1IagYh/L5NZUz2u2Wq1zl2ULVQ77hwV32u879bS77znt1KDm9p7jZdLxpRP2nybG/YEC9pEcIfY/DfZLrrjDCNrGA4KYBg+Z2otkYjl++ovfsP9I7EXCnRunrmfDfZvH9l86uqk/zKLZL/2bY+aOTTf3Dq8ZzM69nho4eZjkCVl/Pf5mGyUXrG7EiLRCRk+R/gHf6OOUROH10Dy2U0F/H1Mjyd8PIj6qm2H7zU/fpKtB2jXwekszIkJKYh7Qopb6Q4wZw3R6FpFXB3lta2B92p/m8bkjXsf1SOK/ep8naz+vWTUqcS8QwX2w7PfIsm/Pi5pf+9vgq0wb8cliKXl+WVJHMZRqUzQdfxuWjan2I+3V4R6N0lcVAvXIa79OJcwSCUeOtGkmyNkK1z/QmHS4Q2d1/Q/za1Xmf9zW7UH4TbqjW4Hh9UU/lhH5BDhi8YNBdUk6+OxuzUqT5dKg2jI9N5r222/GNI+Oyjv+eX55+wVU0XSv7422HAPkGMfE01m+VY1jHRsQv9vaOr4Z1AW8QNG5Z9xCMOBz1mEugnWaC3yZ4XhGZKCF0Ro/1rFQ+SbQmE5TZS7SrCgo7R/Zz0tGMBk0JH7PlA/BWyJ6fVXeP8EhzwmX+5KhDW2HY7Z8rf39oMJjzCtBFLu9f+7tjmo99qMHQsVPouWWRKIwH+tU159osUaoJi+I9OlV3X6xIx8eAN+oiiC6iPW5VzqSinO/x4FOrDHU/++g/n4AXBJwDwVTSRn+Q4Nk0yJgT5ytjrnx0/Zd9t1oDTrlM4gPWIWx1aMFKwBTzMKHWfsf0C50kX3JUGpZbytpmqlW70Q6amWn+0ey4XB2ZGDa1an3S8Eu1emGx9YFMYYnrMop+Usv2/v5dr69dfHlV7e27PtwoRWX3ejXO7c/3bFn53lLl9lvS2Yu2V3/GpqHvRRN24MZs8h5BFj5FhEF9dnE1/j9gZGAX+IPQEZWiMCXgpHhvlYu/CV1aO1ll21oxEURY68fJew3O5KREIgXJ4pX5+8aGjo8AjEbBF/mwJdjbY40gPo5Ms1QmlRt1AtkQsQEXseAeJiEIUmIc6gJzG0JFEc4t3/PiSs5TtRVTfRgye3l/JuPJKRcpdo7EhoaXDfTc9ZalSdfuOWx0z80ZL139Y7HLjjXxJgTPF4PjFnCJsV/yvvyCTHg8/sT4ZHVy7YUxKKX48g3wdFNuRJnKBeTHIPpFd+L7yLzCQJPZQpdH/HgM9KZHaC6N6goj9FAHFSUIBhfBpi62DQYZu456owoA/gntIEKchf8cHMHC6CftUlhu+1T6tzN3JsLw+umC83TtzZpwS5dPzuhWcWY+tzYexpJr17bcRK6mWLA1nVr1q1FtzqZi4jO+CGnPoBTMYRp0jjnydDhdGqz3bbxQ+wzfESWtpLm/CxbaEpyhL+F1+pX8hFFKhTwTYw0d6umQ39W8RkSE4U+bU/ow19AfwcvQVYIsOJ1kDW5WFaBIkbnsTAvuQbDrCPc6AIHA0/M6+4DrClLM6JssmcD0fZrOzh4XibB8wF3Txrec7M9AkJaeDP9IhwVdpmAJOZOt6gGvHoPvpEV5w6ohE2oaO+qFSMr7L26QXXfqsaI6t+9serbsA3NgPJy1D5nQ6pvPfpkEJKGznjgt+1dnG7PVC2UYUmQ2gEHPpWjULodoLQBcxTambHfVmEJJY7uTwa99ufReFBSeWeEMgLoT4S3KxEzFAkFbM5NSDzUYg/w3kPol5BnQ12UHW1TtTG21h2Y6LRPeQXfEN26RkcKdEizcjG1efb42nh5aXPcEhOF05ZyrA/z3uCqTY9fJVnNQqIQZ8VUWKf4qp2yeSg+GDd8HMoM9E1yviFZEPjkl2/ZhHBA77HiZeRV8hTzXsM+2keBKWc1kQUVFjVRUqBxN+/MNTJVCPuQICV7p8uT/WigSDAC1BOs5bkCRcArkU8rxmr5xECyz/DhP6bDrWI1aVYLnd7zvx49YiSrxUYpkWpYRsZ+q2DGmik6W72GDoKfSt3JhdB2Qr+0Lv/q8HXqJgMdFPSpjS/+3+CSQsjPAEbE6/2xkuHHoEQpvn4c3nBVgfdlXn5NVHxevRLwhXXNGszHo4lGPDTkDRTAD0TuK9QPC7qgMzeR+FTNDpNgGnmigaPAGEKvQIlGjOaJPRPFeACSVRDjpWWlE+s0Ylcl+6kHqD+SluaB4GjRYRNMb4aCcrhJ3fIbErG5N15OmFYzNUYcoogkZxKg0zPgi5Sr0EalVNztmE0dwrX3iMgzT4kpeiYoS/ZLiA1GKskNkz6OdzNur3ryxosv33vRrvfvZoqtD/DIDTUSSvfHtGGvx0z6BY8nv2/vnksufM/k1FWkLghf+yh+yNXjSKWYLOIYqlVhFujiIt0Kq5HoEPRGH0Wc3xPrNWNeplapVMB8Swuq+tAj2VjYi88lOzqWPxQUz52x7yClgtZhWc6u+RrHehTg/uGjVWygJ101QJbVzv4CiAUjST7qmmm0GxVNATLNtQc603EGZCfujrFNMhqkRWgpMB4YAU7oqScOrhnAulitFApT+UpYeev8kVJ2MhodPLilMTwa4Bj+KUZMhCth57p9356gon3m0+izAbcvv+y2iJ8J6X7E+YxUNXVtVB2Pj0Yzm3O9a27LZHg1sz0cjfnLVXq1v1NlDGOa+HEJXF6FnCos4FWkzrkYWswGa6TIDB29SgE/lO6dhJt2XSFvYmX/qimHqKrF9OTorxbwwSNarji5ivZ7yFzXQfwVZ8ZczFYX73w9TCNEBfBqrBZXOmwYQrOTrPxo2DTDqtNj8NEHjtZcz8LaUcIlTM0ZMcdQe9Njvqc1Fol59rMD23w8y2HByuhRL6ZlMS8v+Y2U6LZUwa1AbgTQT4i4BYKRawp8+DL4sDg/iYronWy65bBpCdFcfDlbMZTAZUJC0CyFGKnH1OvN3HBa+sIdbtYwPMGv8zF++wIv3n6Frgvidb/lfEx77xeuDx+f9y/w3LG8H+LN5CGHh/9MvI8XfqgsCvk0l3UmT0MfypSWH3vjjAZqoW/0Y8HmLpoQECu1J7Vs7FeLb88nKlV7Yqlt20hytHMRdCv+pVwEZch+3fFykYjntfxo7p3J2BYoWnmTyKPYhTnALt7ZPXdgHKrUnSZdLc6QJsK9+sqrr1yFOJFsyZgBDmGf3jtWMnzo8AsvvHUkYvVHLH/ACg9EI8l00zIMq5l2ePoYNKAnXTGCUDmnZy3OiCaRBohIzwAABkjDSpSnylN9ncKKGKOb7rvqA7UsL5vxC/5HbveoB2hIy5YGOP3SLamXpIBfpv1hDL0CMi1SzeyC/k02/45pD3WHwtaqtDXE1NrKxuqeEPefJ5dp7n8iYqTOP7v+aeLAh0ey1RWN2MuTNNvtH30/HjYPfLWTf+gskJekkwEvoneP01mc2NrUzskkhChYLsfFAIuuVgHqpybun4/PRL5m8F6ZrE96y6cgPkNOdLq0gzirUe+Sc3hRjTPt3kvtAlIXx6aBPnX3cOukAIKGKwxvWZ2IGrlUWR78ZrOMVEnxkUbsHVo5Y6XSVrRXrVzzeTmkcCvckjDV1KK8mxc0qTxynZ8Dps5CS/YODCohD8fyutxL7ddAvw/iVa68sxeTSZO9XCCVja71pBlRftTuh+iDJ9UbO7RKxdSjiZi6pVLZoqmFHsAezi0MaEbw+rkZuoGwfuaFgWwcmJNF6gLkvIoed3a6FrKyY0l6F89IVUAUB85cf4oehejqPbUWDTOtiMjGJauQRRHllz2R6caL3fMqQtSfAjlhhzc7uwJdgh5FdJZGT7EfEgdXDoofYoshw+LZbdv4cFwvojtY0b6uVEIXiKwliaL9E9RvanRd4OP4x7BuDR4YZ8KDwBX47nFVgelw7zHsnDxQaeQG//gcIZRYrpgix57AIfeIJ5SyZMXkdqJgIKDFQ8IasWS5xbweEdwb13ojOVWW0B32/qjKAUP5cQsN/DxlMOCU/YEAViP2c/03vY83paBo/wylcwpun6OBjojsfXYwHDgjctTrnG8RBRPk4KCD4gY6lCmTIfTsWTkY6s16v/SP3kxZ1fyzpwDB6s14b7jFZxjI471+f8RrCP5H7vUJBi/tOkeQDI//nodFIjd2tEZ93teeVZg2eWg3LdRqttohgPQxa8Q/ThBuZbXSit7lQK8DDJ9Kh7OiwPMPsoVINmJuYBEuFxkpbxTRnXzAzku5ZlZkpgXJrVtRMyyjm/3uSLT277X4DRe6TVprcHkA9IjSWkvRTdQM7/CnFNkDYmotsuP9QMX+fsX/au4GVdUrqAi3/TdqmpbLlZQgamCsyHm4s5/AjEz7PfA0fCflaSf/DUyNffc/7HC5S9pcLu5l6pXKYJfLPUq4HBp8x7cx9dG/guX1L/oWGsjvHPoH/I/YEgBbCHeZbu+GLKARzCJ4z7+rfTFKlMHANFiHA7Q26QVRRenlscoJXZu+Eg0rPOI4npWXLcFnELWKlI/fTjXcSa6VY6xZdxvv9ig1r0fwpkcvbMfBD7oXyHmL6y9rliGqqYssQsuPpxSnxlNL/jivOXr8OKoQx/qioxfaZ9OttVkHdNxEL2a87dOlrh1/o1ePp3Sh+8D9+SRjxo/r+IOVIWrjLRFTbTs9mRr5b7hj+VAuoYxU2n9AnHB3MmIIfykiL9zGugWlTlIrMXrhrfDJJ9Lx3cd4ae1XnSwjtUgq5SnnXDZLapEey0JnqXXQEbg4eqpi/6ZSWT0wUCn3zRhB0dB0ZnpmZga7AzMI8ldUguLcvzrnsu2zponOWSBqdI8C8fypKEANEfDOc1HaXMlp156PjJxT88PA5j1xW6pH4QrjZY3ncULVLV8iVt5QEzhesHgp07ciHy6Pl5O7Jlc8sePi3pJnyued1kvF+OQkrykGgxjkFgP5sVJxpc9f9HCMkbSg6DOT/eeMyFtc/w9f6n1jeJyVUs1Kw0AQ/ra2ogeLN0EU5tgKiWmUgh5brFBsLY0tXlNN29CSlaRQevR1RHwMn8An8Qn8ulkV9WSWzHwzO/PNDwugjBco5N/wCytsqT2LCyiqI4s3UFGPFhexo14tLqGs3i3exE7hkJGquE3r2WStscKuKllcIL9YvIGeOra4iH31ZHEJB+rN4k3sFxSa0HjACiliTDDFAgIfHs8JHJ4cn9E7YpSgAZeyjRB3mDF3iYw6pi9Egntz56JjorrmPo9cR1RoJ4YpYqUQc4xpaSNv6LulHiDABfqUgkvqa3p6tKpkRFM/rNJ4Ml2I73knjkN5JqOVNFxph3czvcxmsYTJvbTdjitdvaQzlopOZBRNw/lY9FhuolsZBBf9QC7714NeUCXvFRsOzAAZahwXV50gTLIaUYP9zTkXGnpO2TIjLIxOubDIrMtljuCc/28m54sgv6/TU7Nr9WmhpZNFS6eTSHzXk3P5rOys69GuOzWO6df/NvlNjR9J6zcXsbmMO8/3nTfo4ZQYwyjNYm6E5bxT+QftBxoadE0AAHicbc7JSkJxAEbx3/9eo0U2GKkNtAgyjSIzMS1o15xNNk/bm0GLtj5Kb2NPppdo2YGPs/yOyC+Dbzf+o50uiMQyxmSNmzBpSs50iORDrGjWnHkLFi1ZVrKirGLVmnUbqjbVbKlr2NbUsmPXnn0HDh05duLUWfp07sKlK9c6ac2tO/cePHry7MWrt5DR9xNGzCiMvn/2vrq1+p8bUZLESfIxBIi1GIMAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJvIGYB8xgABtcAenicY2BgYGQAgtsKp6pB9NOm15tgNABRdAhKAAA=')format("woff");}.ff1b{font-family:ff1b;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1c;src:url('data:application/font-woff;base64,d09GRgABAAAAABhYAA0AAAAAIjQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAYPAAAABoAAAAcpiaiBEdERUYAABggAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABIAAAAVnXoGRdjbWFwAAAC5AAAAOUAAAGiEcv+wGdhc3AAABgYAAAACAAAAAj//wADZ2x5ZgAABHwAABE7AAAYuBd9Oo9oZWFkAAABMAAAADQAAAA2LYobZ2hoZWEAAAFkAAAAIAAAACQGVQLjaG10eAAAAewAAAD1AAABWKwtE4psb2NhAAADzAAAAK4AAACuDpMI9G1heHAAAAGEAAAAHgAAACAAnQBMbmFtZQAAFbgAAAGsAAAC+r/NfRxwb3N0AAAXZAAAALIAAADgaLG9HnicY2BkYGBgYmT7ZvpJKp7f5isDN/MLoAjD06bXR2D0/8P/2ZgXMr0DcjkYmECiAKFSD2h4nGNgZGBgevefjYGBecP/w/+vMS9kAIqggDAAquIHPHicY2BkYGAIY/BkYGUAASYgZmQAiTmA+QwAEt8A6gAAeJxjYGTMZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1DQgUGBAQYC0lxTgJTCb2amd//ZgCrfMfwC8hlBcgAEWgyDeJxNkL1KA0EUhb97J40K24gS3CiCASFqYSNrpzYWIrJiCpslURHEd9AqL5EnECwUCys7bW2sUqa0sgq2embWwoFvzv07zI81ScsO4wZhl8IGHInCJuyEKekcffVnkk5SvSNO/zTSEqv/8hrN+5CW6PsNe/5Bz7tUvi2Gyt+oNFPZiI4/q7dIFa65UL3nYwp5ah1I11j3O9r+kLxZeCTzc91lmUsxb2O2vMGxvWimQVu6Ypvk8W7KS744sOmfV/vkRHEZFihjXf2l6Euervy3essVs6n3rjPuyaTE2J7SO0n/MEqc6X++I75P7s2asEH+C0zQQTcAAAB4nGNgYGBmgGAZBkYGEJgD5DGC+SwMDWBaACjCw6DAoMpgxRDOEM0Qy1ClIKwgqSCroKT67Dfz//9AVSBZDQZHhiigbCJYVgYsy/D////H/+//v/v/+v+r/6/8v/jA8oHJA6MHereyWYOgNuIEjGwMcCWMTECCCV0BxOlAlzKwsrFzcHJx8/Dy8QsICgmLiIqJQ9RISEpJy8jKySsoKimrqKqpa2hqaevo6jEw6BswGALljYxNTM3MLSytrG1s7ewdHJ2cXVzd3D08vbzxOw4ZBBCv1IfBz5/BF8YLDiGkHgDiQS96AAAAAAAAAAAAAAAAAABsAJAAtAEOATABQAFOAVoBegG4AdACEgJSAm4CoALiAv4DRAOGA5gDvAPuBCIEQgRiBHwErgTGBNIE8AUKBRwFSgVkBYoFrAXiBggGRgZiBoAGnAbUBvIHBAcUB0YHcAeWB8IH7ggSCHIIkgikCMQI3AjoCRoJOglgCYwJvAnSChwKOgpYCnIKogq6CuYLBgsUCyQLPgtYC2YLgAu+C+wMFAxcAAB4nH1YCXRbVXp+/5P9JFuyZFmbV1mLLVmWbcV6kp5sWbId75YjW5I3eYnXkAUIZMKQeEicPSSBQFhmpulkGdowpE1oU5xJGHBzSDgc8LB0oMMwMy0Npz1QmFOYaQPDsPi5/31PXpJJ6yO/9d7/fve737/cR6VS/oXXJDL6MyqdyqGKKB/VSlGgZSw2r8fHuvXFWikwVrzjgNxqlt+Ax2a1KCU6rVHCun233K2Jbe7p9nMxaJbxkTSFTCGFGXm6TPHd5HOeshcwGVqVXKHSyZkCO7x48z1d1HPf1r7erVtHGMV8ZqZClkX/IVMx//fJpxD0d0vU+ZzN7s/LpOP8MzfdUvgHVOcCAx04Ly1FpVptag8XknAsI2UIROgIvuTKLKnI1gT7nWUFRVWFX1+Axh9PO9u4nKz+qV1nhn48MVgk2vGjHa9oB8lQSqRWH+fzeiokdlYP3put6IMvfX2rFf0F0U4duGEG7YQEfq0WF+h1WoFaDycVz75aqKDt5MJdCEmadVopJ54ZFRhpgx5m9Aq5blimUyr0stEsuUIvV91tDhkkSn22avw2j+GiWpNZt12jzlJnabY3ZGjUGQpZIMuUQadlqTXyptu+WZz7s/TbdAulwTut1azWWrxqs8XDmtUet05tpt8285+U8B+bzZBdAgZQLl1nm838x6KNsYV91EUqTjEUxUmtnNXLXix15OTEYXpnnLyXU1dBS31DSZBfs9cMWv5LSLtaLfbFI+mL71jSMR6PL63Ji8ilinCZFKhHVCi8mMqfY1QyRSr0kBP929SMb2NahSw1Q/J3WgXBRFOlC7+DOfonuKY2wYISrJYKIMxzIUAjBj2daa+QWC1ELgY96+ZgriQ7wZkCtRqLLX/IXZbIr4homLRcZ16XSa0ujHUVQvMP+zzV2ury+CN/0R3yuTwJ/j+B9qvUJfp13AO7g5vvFPlI4OEsjo1QHOBl1YzU6+NYNQtn+cs72a59Ae3Oalqmp6tTg/NPYvtSbH8V2zuF9rUQkngFX6OlNjuqRdSGEqTiD50vAHCV37JjjbGgRB1pMK8qzEpTp0JKWmrFk6PftZpMac3p0i2au5ls5lLdjpbCQr/PGBrMqXRZslOBUUjP7Bywh4tNaTVpzOZMEDEv8lVKfADZtnNGpIl4Ae0EhB8CARMjtQv0oValRoC5qcSOqNy0yedvkOdytpZwSnlVoHRVr66ocH11+E4/549djE5tqKn0xWr0ZS5jkIH0Na7ySr/b56nur3MPF6iHxfXKRxDv0ccwRikRgVVn9Zq9GuTMqmYk8N5EJ//l/ODEeXjp3LlzQeSxH3bU8i8jbjvivor9TEncNhF4kkJGalWbdWadIJurewYCkyazvrdSpik35dU4SqqVq6GT/6oiGLnn9bX7fGV+h4fOKmx0xSPlFthS95Zj301ayqXKhFGIL1dIBOc16IRRiH2px06udYyOBEjOB3MF1kA831tdmn/qbo71elrXpzWuax6KGSyhQBPQadme4pAt+9+qO+2Nma726ejJV7UB3c774kcnOhyhtTWKTENpS1nIsbg+XyCGY4I/YBC2ZmpwLFwZM8xZG9rLuz+dwtW+AqfpTvuG469tgi5IhRb0qkXsBspKuRY5QuhcBSxGH7KSEoEtnRYdwadZcQ1z2/t7pzqrQ8F7Y11bgiF/tLuhimsk/5I17lWRVs7Tjiu8PRYa1mrj5S0bNrSUx7WaIZCwq+s93vp6/kZLa0trY3vbCh5ziNJBVBkZhCPOSTwT8Rhp5HGlXyKEH9zRXFtYUVU3IjMNuJqH6mvjRfV19l6AdL3bErQXIKFVLdB56tUKr+2BrSXOoxN3NjcYWx41qKU5ntWlVRXxiKNmSNSZEG9gFpmRUpQGI446GXXisDHON8aTWqSn6UvYQk1RZqvdLLUCq5HY7FaGOCA9PdTBv7+mHVL7WwYLJMB4c5S5b7xBX+IjAHG9+clWWwuOIiFj0eNoR0npqUKRe7N6iXKbx+YEHUqInPGxjx5/dBP/p083HlvbGr13433x6fvGDj0Qfex4dOtseAt9aUMz152VMf6byaYvfx6I8Z+tEXSxeuELOkxfE/QvCNNuyyQ8GvQGjB62FfHNx9HhQFFxw4GRtWtHDvgcTrfS6bCzo02NjU2jq63FXHlRmnzjRijZtFEm08aMCkVv3/em+noVchtyMopzOY5zkRFOQJiJmWh+EfvxmV38V8Dsnuk9sun48U1HoOeRV+lL//T4vp/Mv3Aaca7F/qX0DMkzDkCfxAXH2aNvqoV4RpfyHrhyGTV8BNr5S2/jxTQ9Uw+fBvl5oJL9ldg/A2+W+6J308oL2HgfVPDvJOAC/R34Jsi/gg2T3PQucvP/MONFCdC9k5tFZqpcngpVWZnTLzLTVLv/HVulyItcmRMrVmWKvOieDiZxrUNe5EQpaoKIxSNLr0vw5xIJ6EmQ6aA03gYXlZwHdRnbC/lOzV5OJPAmGX/342XmUvzVC1EMs8b+ka6+bqU7Yq7UZ0Dv9+P9pWG/LteWlU4bxdhA1uahRQwSqY5gABboh4a+ONDTA3cO85/DXYf/A1Echa38Z4s44Ab2YYT1wEBbDDf4OxOVIKcvzR+hhTaTKGIG2+QIc7NjdSKxEi8gkzRo9AbWx2lYCYOqd6w60PZknQwiWywnc6SgiO79Dn0XMPfv4s/AgbOO+SfpS338eFOh5x2IL2OeQNsZAmbRpsaAOOiJHV80QEQ4wEeH5x9D2LmH6XtQg/6F39HP0G9gjtCjjcxkJGPdKwMW/czPdu184fnd06P7BxMH9g0N7IfP+Z//8p9P/OjX/Im9f/XUvof/4QKV1HMzjp9OFIl6Rhlb1exKRTcfWvtM4qt1h6Jj0aNH4yPwX93b+Ov0pe2x+ij/vhAn/Av7BDyZlFmwITVY7UugiCVElUlA1YKdNSC05o5t63sr3AK+n/UeGB48eHAoI18qW5fovAMSfU/XnJrKIkh//aMHz5/n/+dsCi15dOMwtYh3o8CXXmDMKsIloYRbgrwxMXuq9783PT68JjHefexYzxgE+ZfpS/eEg+OGS1yY/7Zd4L4MtXYDcZes1BqmejsWSGKN5HOjjwicGoxAfnq4sXt0arNqdFt9tFRXXO+tLfBNvxZXdQyv7rLqilwdtWbvP/ZMN0WjXZ6qoixVZkZeYVVzZJu7q67VVWnMUsk1+dZqHBtLbno/fUHIY4If4zySmYzefxA9OZEYwONBepS+B+aP0fdCvahXXPsozl+9lMNQtMKK4wUdfeyO9d9PjDU0TkY+ueuJJ+6CN3n3yPoNa+Et0hcrCvph0T/SgIRyUbr0w/zvh/jfDz/rYyBt8ADqvh21VnfMuOpj6E32kzyF/dDNkspnpHhGnSa1rzFCIZAryVOv921dhWVq3WT09d6oq5iG1NaB6HhBkSQFmLZBYhse+1s3e51/Gsf46Jm/VPu/BT9/bt1RjbbqGxBrYT/iXIXjqYQ6EJK06IAtZulVvAz2HEJmXoMP+V0mkI466QiEHPMzoq/egfVyOtbLUrIXUrMkBkD6mTNDQ19LPg5++7jQRr/AUC+IbQzJzPcCtjjzdVCyOYga82GNcRzeRIWZiMa8i6WCUEpJxTpU6hUdDeub4+Hgxmr/ye3u4mgzE441j0Te5GyuQkuRK+qsbaCd3qB7tXMsfDKU3mS0ajRi/o3hGB8IOTFnUX1CvFryGKlOSPofbO5oDUXCrYmm4UjM22i3hriB6xMPVlUgfb8KHB7p6w68X9cjxpIitHkacRvEOG8T3M8grUAGlSCihdPtiaEdUxMVdWWKkhqHuyF3TaivqYQ9cuVYVk59bpY/7Gwf9SE+Yus5AV/eSg4wbahZiXcpzuD0n4vUx1sn17d3rQ5HbAFuIOorNZk9tQ+Ojx3iwDb/7mtcd6K3J98oztuKdk8hxixh3mZSo3KGZeN6AS0jhVP863RPTXcj09o3MH1/fGBVSVVaY5mzRfEvbaP+es+RibEjbSFPXajZL84dUcIgfZXMHYQ9QwGQxbeSxRVNw6C9NCPXrNuyOdzePtJSVEZvVaeqrLnbqvlp2Fs90D4mx2yUv+CGD+FVqpziqGbRFmO1i/tXO845AG5jytJu1oY/0bqPZYQ4R0jReJwgfCEQVvBDR5aClaeYhxvcDnl1vzrH73Bm7xke2lOXW2BeW8+VtHf/tbfYwnGW4kcfHNCbVDJI1IYScAhdppxrGC1Q6r00o8lnzVWdnf56m6nf4fQ3jphMv7nL477XzfNNSnV2WoqlrIzwEMXDDK6bVshVHlJBMgWQVJYOZiIg19jzPJWRsL/3MFiVGrMucyDwBapprvUkrk8Y2TxDPyrWhSQzk23siXBYhkl89nsJsoYLLy+w1PPYRkVyhmE5S9MYgkgN8XzYHarWmUrTtfnqcCIRaOi0BAtTMkwGGtACUN3CHieZp+1inuZYKbwXO9HV1Pr6wNkP4kcRkO8X58W1xTlRJ5ZrBUQj1gr4nJ7DtbIk50on57p8xerEtXHr6LlIqtppZt2Lp9bq/sl8/zByoMkv0iIFyxfXWtfEYieXxoYZHOPP+NTdwmdrVf8KPuFaS8dJoncj6v1d1Ltc8ErtrWkxqZF39wwm9u4eGtgT6a7293RXBeL/OnbwwPjEI0cH4n293T1Dw2LMCMEHiEXwyeWYoVsRM5JbhQ9Q48FIuGW4ORHprFpdkm5lq/uvTx6s+gM9XVlzZG3TRPWcVuUaF32yCO0+h3YzSYRPXeHrmPC8bHIHuezuDd0t45s7rKvz0sJhr6uqv7MqVJx+7fPgodHJg4W58kb+lYeL20fbm9dVZYgcxvDQgvbTyZ4Nkuxx0NI+Gm6uuwfLvbHwr+Da4Ahg23zkawPyxQrfoBalJXyEEj8YhXBTKSRl8nXLQBKPMQU2rHK2dfUr2mJrlWpMspZcs8pXaOdyVeEmRV2kR6Eq1OucFXmSFFm6jNndXGwqa6xsUmUrFSkSKZMhdwSKce9Cm+ptIaU+Q86kyLKyU1LS1ZocAb8GMXXQAaJ2Ele9QkxhdRhfdFoSUzva2uLdfU1Hj7KVjjzbXpBX79pV/XXcLOgH+87gPitrOYquSNgwE27YFHBFCirZpsiqQDCA2/CfFpuqvGAR8y5cwb5yMe+K+boW4Mr5/vORsSIGZJ5OmOUb8X9+3OI69Itkjj+BffKEPnaSq1WAfQ1i38UzfeJwfxvu2VIcoc7DHZ7KVEgtq2qud+DZUUds/mmk3PXgWzD77N+4ao7Ovnu4pOzgL8l8CCFviJiI71o5rOiI774R/8FjsWuz8SMHY5dnZz987+mn3xO4Uy6wwhyyCR6yv3UBCRVQiztjg5FGMBq48tt8r6nYypTY0hUGRdG1Tp/MXCEByV6Ynf+kqVxWn5mSlzcAszuzug4am4B8VhS+kzyOdtW31gjCV6HH+SMgj2CV8BDcwf+xBy+ecEACAnb+bPI7D0V9Djegculb3A0+A258HhS/xcFH1EVxT6BZ+R2PniQf8mjyHu4X3mcIe2ecP2sQTxfjpOU14QgfxbA9/hMfG8c+25b6iFYN4umngvFry0PEkt8L/0hN0Vr4oYgRd3ha/t/BOAVGYm/5nVx8i+mHZB+32KqkpremphfbvkDONaKfoyboe4Uc6fw/s2TqTY9vnzhBt/Tg9nm0YekBrSdpFVESPc7h2CSvFJCaFwMLxgHpTYMLH5FwbJiLx1PC4dP344Br/HnmfFN28RQ9GZ9vg1lxlMH2UXljVpFzKjkveAVt60hNAbe1qCF1oO0me6fDYdi7ZKxBjcb4RlyhFIGn60msOVTlLWhvsmu/PYv09cUJrPGb8oXh5s3FCn1u5hTB0FNXZF6eDm1oH01vJONfVjMqS872JJHhUWSO+l9As1agAHicnVLBTttAEH1rkohWFeJWVephjkGVLcfQSMANlCBFJKCYRFw3sEmsBC+yg6J8RP8Ecedb+gv9iL6stz2kt3rlmTezb2ZnZhfAAd6gUH3jv1hhX332OEBDRR7v4Zv64XENh+qnx3UcBB89buAwOCdT1T7QenVRW6zIr3sc4JMSj/cwVt89rkHUu8d1fFW/PG5Agi+4hMUzNiiQYYY5VhAkiLmOEXJV+JTeCVmCC0SUPWg8YMHYNUrqjD6NHI9uL0LfsQZuv2JuGU3auctkeJLGElNa1sk7+u6pR0jRwZBScEV9Q88trSNmxKV93hTZbL6SJI6Pw5DyVCYbuYikpx8Wdl0uMtH5o/SifiQDu6Yzk6bNZWLmejkVO5U7cy+jtDNM5Wp4M7pNj5j3mgWnroESLbaL636q87JFtO2hwJOrFgNbPGnqrmtk5XTBsRk3tIiRgjP+u/lCNmLIe2ESzYiK1aa/5Uec0ELX5quuLWZGkiiWM/lTRTg0s5elLuhqhy12nbT/rXn3DOxGb9+i4UbJu6juoSo5xgkxxqYoM06KR8cn8j/5fwNy7n3FeJxtzjdLAwEAQOHv7jIEYze2qJst9t5AcdDYe49xEXIgBONg/oCL/0cUV/1lejj74K2PJ/THz4th/3GZGAhF0jLqNWjUpFmLVm2y2nXo1KVbTo9effoNGDSU9PJGjBozbsKkKdNmzJozb8GiJctWrFqzbsOmgi3bduzas+/AoSPHTpw6c+4iObly7UbRrZI7bz69+/AahEHky3eQqqs+lR/va5VK+TmM4yiOH34BnV0b3QAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwlAgZgHzGAAHRQCEeJxjYGBgZACC2wqnqkH006bXR2A0AFIoCG4AAA==')format("woff");}.ff1c{font-family:ff1c;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
.m0{transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-ms-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-webkit-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);}
.m1{transform:none;-ms-transform:none;-webkit-transform:none;}
.v0{vertical-align:0.000000px;}
.ls0{letter-spacing:0.000000px;}
.sc_{text-shadow:none;}
.sc0{text-shadow:-0.015em 0 transparent,0 0.015em transparent,0.015em 0 transparent,0 -0.015em transparent;}
@media screen and (-webkit-min-device-pixel-ratio:0){
.sc_{-webkit-text-stroke:0px transparent;}
.sc0{-webkit-text-stroke:0.015em transparent;text-shadow:none;}
}
.ws0{word-spacing:0.000000px;}
._41{margin-left:-9.022504px;}
._5{margin-left:-5.537550px;}
._7{margin-left:-3.844782px;}
._3{margin-left:-1.900950px;}
._b{width:1.090311px;}
._0{width:3.073600px;}
._3c{width:4.351795px;}
._11{width:6.240614px;}
._31{width:9.732380px;}
._26{width:11.078411px;}
._d{width:12.510544px;}
._c{width:14.055322px;}
._f{width:15.079127px;}
._8{width:16.199369px;}
._1b{width:17.275051px;}
._9{width:18.346366px;}
._21{width:19.506386px;}
._e{width:20.673031px;}
._6{width:21.691454px;}
._2d{width:23.659554px;}
._12{width:25.034189px;}
._10{width:26.625917px;}
._52{width:27.797566px;}
._2f{width:29.664415px;}
._4{width:31.241700px;}
._a{width:32.422412px;}
._15{width:33.771608px;}
._1{width:36.288314px;}
._20{width:38.335826px;}
._2{width:40.911750px;}
._63{width:45.944966px;}
._24{width:47.800940px;}
._1c{width:50.817358px;}
._38{width:53.057461px;}
._14{width:56.093951px;}
._45{width:75.413090px;}
._37{width:86.681115px;}
._29{width:88.228786px;}
._47{width:94.541569px;}
._2e{width:100.423260px;}
._40{width:102.176682px;}
._19{width:106.029372px;}
._5f{width:107.348182px;}
._28{width:109.150246px;}
._3b{width:113.555044px;}
._2b{width:115.090436px;}
._18{width:122.766582px;}
._34{width:126.240105px;}
._35{width:127.461924px;}
._36{width:131.118580px;}
._27{width:135.015636px;}
._3a{width:141.992846px;}
._33{width:149.192852px;}
._5b{width:150.635520px;}
._62{width:153.827558px;}
._1a{width:156.241002px;}
._4e{width:160.785485px;}
._5d{width:162.299744px;}
._43{width:169.948034px;}
._17{width:172.978212px;}
._4d{width:179.650790px;}
._3f{width:186.504466px;}
._2c{width:191.839826px;}
._39{width:196.101982px;}
._4c{width:198.444365px;}
._2a{width:212.761286px;}
._5a{width:244.782720px;}
._61{width:247.938893px;}
._4a{width:257.802006px;}
._5e{width:266.517274px;}
._60{width:295.209754px;}
._23{width:301.983850px;}
._32{width:309.512985px;}
._1d{width:321.768877px;}
._5c{width:357.759360px;}
._3e{width:390.311737px;}
._13{width:414.247680px;}
._48{width:434.043268px;}
._25{width:444.889866px;}
._46{width:452.389634px;}
._4b{width:527.805332px;}
._44{width:584.195714px;}
._49{width:734.348160px;}
._56{width:791.296430px;}
._55{width:861.879930px;}
._16{width:922.236338px;}
._1e{width:958.292279px;}
._3d{width:987.858602px;}
._22{width:993.874473px;}
._57{width:1007.453248px;}
._4f{width:1017.268394px;}
._30{width:1092.954091px;}
._42{width:1144.971240px;}
._54{width:1234.565970px;}
._1f{width:1236.945128px;}
._59{width:1266.223339px;}
._58{width:1303.236638px;}
._51{width:1309.570433px;}
._53{width:1420.803789px;}
._50{width:1432.758989px;}
.fcd{color:rgb(16,136,110);}
.fc0{color:rgb(35,55,59);}
.fc1{color:rgb(250,250,250);}
.fc2{color:rgb(255,255,255);}
.fc8{color:rgb(102,102,102);}
.fc3{color:rgb(173,34,49);}
.fc4{color:rgb(156,102,0);}
.fc5{color:rgb(61,122,122);}
.fcb{color:rgb(171,92,31);}
.fce{color:transparent;}
.fc7{color:rgb(0,0,255);}
.fca{color:rgb(186,33,33);}
.fc9{color:rgb(0,128,0);}
.fc6{color:rgb(176,0,64);}
.fcc{color:rgb(57,75,79);}
.fs8{font-size:23.910400px;}
.fs5{font-size:31.880400px;}
.fs7{font-size:35.865600px;}
.fs4{font-size:39.850400px;}
.fs6{font-size:43.636400px;}
.fs3{font-size:47.820800px;}
.fs2{font-size:57.384800px;}
.fs1{font-size:82.650000px;}
.fs0{font-size:99.148400px;}
.y152{bottom:-57.144000px;}
.y261{bottom:-9.666000px;}
.y0{bottom:-0.500000px;}
.y2e3{bottom:4.021000px;}
.y50{bottom:4.063000px;}
.y22e{bottom:4.357000px;}
.y19e{bottom:4.876000px;}
.y8c{bottom:4.978000px;}
.y13f{bottom:5.112000px;}
.y14f{bottom:5.381000px;}
.y319{bottom:5.432000px;}
.y1c1{bottom:5.448000px;}
.y1e4{bottom:5.464000px;}
.y269{bottom:5.548000px;}
.y1b4{bottom:5.776000px;}
.y300{bottom:6.294000px;}
.y26b{bottom:6.387000px;}
.y256{bottom:6.389000px;}
.y18b{bottom:6.392000px;}
.y239{bottom:6.398000px;}
.y2bd{bottom:6.608000px;}
.y328{bottom:6.649000px;}
.y48{bottom:6.767000px;}
.yb7{bottom:6.808000px;}
.y6c{bottom:7.813000px;}
.y2b4{bottom:8.053000px;}
.y157{bottom:8.111000px;}
.y2a7{bottom:8.239000px;}
.y176{bottom:8.376000px;}
.y1d6{bottom:8.382000px;}
.y12c{bottom:8.410000px;}
.y16b{bottom:9.017000px;}
.y200{bottom:9.317000px;}
.y278{bottom:9.433000px;}
.y244{bottom:9.491000px;}
.y331{bottom:9.591000px;}
.ye8{bottom:9.877000px;}
.y181{bottom:9.919000px;}
.y27d{bottom:10.049000px;}
.y7e{bottom:10.538000px;}
.y164{bottom:10.936000px;}
.y223{bottom:11.240000px;}
.y1ac{bottom:12.694000px;}
.y134{bottom:12.759000px;}
.y151{bottom:12.923000px;}
.y2ae{bottom:12.938000px;}
.y13{bottom:13.018000px;}
.ya0{bottom:13.303000px;}
.y291{bottom:13.457000px;}
.y96{bottom:15.185000px;}
.y122{bottom:15.708000px;}
.y322{bottom:16.047000px;}
.y268{bottom:16.158000px;}
.yc2{bottom:16.913000px;}
.y238{bottom:17.282000px;}
.y14e{bottom:17.984000px;}
.y12{bottom:18.172000px;}
.y260{bottom:18.557000px;}
.y6b{bottom:18.697000px;}
.y20b{bottom:18.811000px;}
.y18a{bottom:18.995000px;}
.y47{bottom:19.369000px;}
.y22d{bottom:19.939000px;}
.y156{bottom:20.714000px;}
.y2ff{bottom:20.890000px;}
.y24f{bottom:20.968000px;}
.y1d5{bottom:20.985000px;}
.y7d{bottom:21.422000px;}
.y16a{bottom:21.620000px;}
.y288{bottom:21.863000px;}
.y277{bottom:22.036000px;}
.y180{bottom:22.522000px;}
.yf2{bottom:22.542000px;}
.y196{bottom:23.065000px;}
.y163{bottom:23.539000px;}
.y1ff{bottom:23.912000px;}
.y1ab{bottom:25.297000px;}
.y25{bottom:25.331000px;}
.y290{bottom:26.059000px;}
.y121{bottom:26.592000px;}
.y267{bottom:26.769000px;}
.y2fb{bottom:26.871000px;}
.yd5{bottom:27.106000px;}
.y100{bottom:27.524000px;}
.y237{bottom:28.166000px;}
.y150{bottom:28.504000px;}
.y2ad{bottom:28.520000px;}
.y109{bottom:28.993000px;}
.y2e{bottom:29.396000px;}
.y6a{bottom:29.581000px;}
.y147{bottom:29.780000px;}
.yb6{bottom:29.948000px;}
.y2d2{bottom:30.030000px;}
.y95{bottom:30.766000px;}
.y330{bottom:31.150000px;}
.y21c{bottom:31.513000px;}
.y46{bottom:31.972000px;}
.y7c{bottom:32.306000px;}
.yc1{bottom:32.495000px;}
.y1e3{bottom:32.590000px;}
.y2c8{bottom:34.006000px;}
.y243{bottom:34.044000px;}
.y25f{bottom:34.138000px;}
.y169{bottom:34.222000px;}
.y20a{bottom:34.393000px;}
.y8b{bottom:34.612000px;}
.y1c0{bottom:34.970000px;}
.y11{bottom:35.582000px;}
.y162{bottom:36.141000px;}
.y2ee{bottom:36.510000px;}
.y24e{bottom:36.550000px;}
.y1bd{bottom:37.128000px;}
.y287{bottom:37.444000px;}
.y307{bottom:37.476000px;}
.y1aa{bottom:37.899000px;}
.yd4{bottom:37.990000px;}
.yf1{bottom:38.123000px;}
.y195{bottom:38.647000px;}
.y112{bottom:39.004000px;}
.y236{bottom:39.050000px;}
.y9f{bottom:39.238000px;}
.y1ca{bottom:39.874000px;}
.y13e{bottom:40.181000px;}
.y69{bottom:40.465000px;}
.yb5{bottom:40.832000px;}
.y22c{bottom:40.984000px;}
.y175{bottom:41.221000px;}
.y2bc{bottom:41.610000px;}
.y12b{bottom:41.984000px;}
.y2de{bottom:42.450000px;}
.y2fa{bottom:42.452000px;}
.y39{bottom:42.888000px;}
.y6{bottom:43.061000px;}
.yff{bottom:43.105000px;}
.y2a1{bottom:43.107000px;}
.y7b{bottom:43.190000px;}
.y327{bottom:43.448000px;}
.y1e2{bottom:43.474000px;}
.y321{bottom:43.584000px;}
.y21b{bottom:44.116000px;}
.y24{bottom:44.534000px;}
.y108{bottom:44.574000px;}
.y1b3{bottom:45.262000px;}
.y146{bottom:45.361000px;}
.y2d1{bottom:45.612000px;}
.y32f{bottom:46.731000px;}
.y8a{bottom:47.215000px;}
.y19d{bottom:47.506000px;}
.y318{bottom:47.519000px;}
.y242{bottom:47.792000px;}
.y2ac{bottom:48.086000px;}
.y120{bottom:48.360000px;}
.y161{bottom:48.744000px;}
.yd3{bottom:48.874000px;}
.y155{bottom:49.352000px;}
.y2c7{bottom:49.588000px;}
.y25e{bottom:49.720000px;}
.y235{bottom:49.934000px;}
.y209{bottom:49.974000px;}
.y1a9{bottom:50.502000px;}
.y1bf{bottom:50.552000px;}
.y276{bottom:50.757000px;}
.ye7{bottom:51.255000px;}
.y68{bottom:51.349000px;}
.yb4{bottom:51.467000px;}
.y58{bottom:51.968000px;}
.y2ed{bottom:52.091000px;}
.y24d{bottom:52.131000px;}
.y1c9{bottom:52.477000px;}
.y1bc{bottom:52.710000px;}
.y10{bottom:52.992000px;}
.y215{bottom:53.062000px;}
.y22b{bottom:53.587000px;}
.y7a{bottom:54.074000px;}
.y194{bottom:54.228000px;}
.y1e1{bottom:54.358000px;}
.y2dd{bottom:55.053000px;}
.y13d{bottom:55.762000px;}
.y299{bottom:55.862000px;}
.yc0{bottom:56.046000px;}
.y1fe{bottom:56.280000px;}
.y21a{bottom:56.470000px;}
.y94{bottom:56.783000px;}
.y2b3{bottom:57.003000px;}
.y189{bottom:57.052000px;}
.y1b{bottom:57.079000px;}
.y45{bottom:57.177000px;}
.y2bb{bottom:57.192000px;}
.y12a{bottom:57.566000px;}
.y38{bottom:58.470000px;}
.y9e{bottom:58.486000px;}
.y2a0{bottom:58.689000px;}
.y1eb{bottom:58.847000px;}
.y286{bottom:59.003000px;}
.y2d{bottom:59.085000px;}
.y320{bottom:59.165000px;}
.y4f{bottom:59.186000px;}
.y11f{bottom:59.245000px;}
.y255{bottom:59.710000px;}
.y5{bottom:59.736000px;}
.yd2{bottom:59.758000px;}
.y89{bottom:59.817000px;}
.ycc{bottom:59.890000px;}
.y317{bottom:60.122000px;}
.y266{bottom:60.629000px;}
.y234{bottom:60.818000px;}
.y1b2{bottom:60.843000px;}
.y111{bottom:60.959000px;}
.y2d0{bottom:61.193000px;}
.y160{bottom:61.347000px;}
.y222{bottom:61.381000px;}
.y241{bottom:61.541000px;}
.ya8{bottom:61.547000px;}
.yf0{bottom:61.675000px;}
.y154{bottom:61.954000px;}
.y67{bottom:62.233000px;}
.y174{bottom:62.646000px;}
.y305{bottom:62.710000px;}
.y1a8{bottom:62.856000px;}
.y2ab{bottom:63.668000px;}
.y23{bottom:63.737000px;}
.ycd{bottom:63.849000px;}
.y14d{bottom:64.011000px;}
.y79{bottom:64.958000px;}
.y1c8{bottom:65.080000px;}
.y2c6{bottom:65.169000px;}
.y1e0{bottom:65.242000px;}
.y25d{bottom:65.301000px;}
.y214{bottom:65.665000px;}
.y22a{bottom:65.940000px;}
.y107{bottom:66.133000px;}
.y275{bottom:66.338000px;}
.yfe{bottom:66.657000px;}
.y2dc{bottom:67.655000px;}
.y298{bottom:68.215000px;}
.y32e{bottom:68.290000px;}
.y326{bottom:68.992000px;}
.y44{bottom:69.780000px;}
.ybf{bottom:69.795000px;}
.y193{bottom:69.810000px;}
.y11e{bottom:70.129000px;}
.yf{bottom:70.402000px;}
.ye6{bottom:70.458000px;}
.y57{bottom:70.538000px;}
.yd1{bottom:70.642000px;}
.y188{bottom:70.801000px;}
.y19c{bottom:71.217000px;}
.y13c{bottom:71.344000px;}
.y233{bottom:71.453000px;}
.y30f{bottom:71.751000px;}
.y1fd{bottom:71.862000px;}
.y219{bottom:72.061000px;}
.y93{bottom:72.365000px;}
.y88{bottom:72.420000px;}
.y2b2{bottom:72.584000px;}
.y1f1{bottom:72.616000px;}
.y2fe{bottom:72.977000px;}
.y66{bottom:73.117000px;}
.y24c{bottom:73.167000px;}
.y1bb{bottom:73.746000px;}
.y15f{bottom:73.949000px;}
.y29f{bottom:74.270000px;}
.y1ea{bottom:74.429000px;}
.y1a{bottom:74.489000px;}
.y153{bottom:74.557000px;}
.y285{bottom:74.585000px;}
.y4e{bottom:74.767000px;}
.y173{bottom:75.248000px;}
.y254{bottom:75.291000px;}
.ydb{bottom:75.330000px;}
.y208{bottom:75.518000px;}
.y2ec{bottom:75.608000px;}
.y78{bottom:75.842000px;}
.y28f{bottom:75.852000px;}
.y17f{bottom:76.066000px;}
.y1df{bottom:76.126000px;}
.y1b1{bottom:76.425000px;}
.y2a6{bottom:76.616000px;}
.y221{bottom:76.963000px;}
.yef{bottom:77.257000px;}
.y1c7{bottom:77.682000px;}
.y9d{bottom:77.734000px;}
.y168{bottom:77.959000px;}
.yb3{bottom:78.155000px;}
.y213{bottom:78.268000px;}
.y304{bottom:78.292000px;}
.y1a7{bottom:78.447000px;}
.y2ba{bottom:78.726000px;}
.y145{bottom:78.875000px;}
.y229{bottom:79.539000px;}
.y14c{bottom:79.593000px;}
.y2cf{bottom:79.739000px;}
.y274{bottom:79.927000px;}
.y2f9{bottom:79.951000px;}
.y129{bottom:80.594000px;}
.y25c{bottom:80.883000px;}
.y11d{bottom:81.013000px;}
.yd0{bottom:81.526000px;}
.y170{bottom:81.550000px;}
.y106{bottom:81.715000px;}
.y133{bottom:82.327000px;}
.y43{bottom:82.383000px;}
.yac{bottom:82.738000px;}
.y110{bottom:82.914000px;}
.y22{bottom:82.940000px;}
.ybe{bottom:83.543000px;}
.y32d{bottom:83.872000px;}
.y65{bottom:84.002000px;}
.y265{bottom:84.181000px;}
.ye5{bottom:84.206000px;}
.y19b{bottom:84.966000px;}
.y87{bottom:85.023000px;}
.y2aa{bottom:85.202000px;}
.y316{bottom:85.327000px;}
.y2f4{bottom:85.810000px;}
.y2db{bottom:85.891000px;}
.y240{bottom:86.223000px;}
.y207{bottom:86.402000px;}
.y15e{bottom:86.552000px;}
.y31f{bottom:86.702000px;}
.y77{bottom:86.726000px;}
.y1de{bottom:87.010000px;}
.yfd{bottom:87.160000px;}
.y30e{bottom:87.332000px;}
.y335{bottom:87.437000px;}
.y1fc{bottom:87.443000px;}
.y1d3{bottom:87.481000px;}
.y218{bottom:87.643000px;}
.ye{bottom:87.811000px;}
.y172{bottom:87.851000px;}
.y2c{bottom:87.921000px;}
.y92{bottom:87.946000px;}
.y37{bottom:87.999000px;}
.y1f0{bottom:88.197000px;}
.y2eb{bottom:88.210000px;}
.y17e{bottom:88.669000px;}
.y24b{bottom:88.749000px;}
.y232{bottom:88.788000px;}
.y56{bottom:89.108000px;}
.y297{bottom:89.261000px;}
.y1ba{bottom:89.327000px;}
.y187{bottom:89.530000px;}
.y284{bottom:90.166000px;}
.y212{bottom:90.621000px;}
.y253{bottom:90.873000px;}
.y192{bottom:91.344000px;}
.y28e{bottom:91.433000px;}
.y306{bottom:91.897000px;}
.y19{bottom:91.899000px;}
.ycf{bottom:92.410000px;}
.y26a{bottom:92.544000px;}
.y144{bottom:92.624000px;}
.y128{bottom:93.197000px;}
.y167{bottom:93.540000px;}
.y2b1{bottom:93.620000px;}
.y2b9{bottom:94.308000px;}
.y1f6{bottom:94.457000px;}
.y325{bottom:94.537000px;}
.y64{bottom:94.886000px;}
.y42{bottom:94.985000px;}
.y273{bottom:95.509000px;}
.y2f8{bottom:95.533000px;}
.y9c{bottom:96.981000px;}
.y206{bottom:97.037000px;}
.ya7{bottom:97.053000px;}
.yd9{bottom:97.144000px;}
.ybd{bottom:97.291000px;}
.y105{bottom:97.296000px;}
.y228{bottom:97.477000px;}
.y76{bottom:97.610000px;}
.y86{bottom:97.625000px;}
.yb2{bottom:97.881000px;}
.y1dd{bottom:97.894000px;}
.y132{bottom:97.909000px;}
.y315{bottom:97.930000px;}
.ye4{bottom:97.954000px;}
.y1b0{bottom:97.959000px;}
.yab{bottom:98.320000px;}
.y2f3{bottom:98.413000px;}
.y2c5{bottom:98.683000px;}
.yee{bottom:98.791000px;}
.y15d{bottom:99.155000px;}
.y27c{bottom:99.543000px;}
.yfc{bottom:99.762000px;}
.y1d2{bottom:100.083000px;}
.y10f{bottom:100.209000px;}
.y1d4{bottom:100.354000px;}
.y171{bottom:100.454000px;}
.y2ea{bottom:100.813000px;}
.y13b{bottom:100.873000px;}
.y1a6{bottom:101.012000px;}
.y17d{bottom:101.022000px;}
.yda{bottom:101.103000px;}
.y23f{bottom:101.804000px;}
.y1e9{bottom:101.965000px;}
.y21{bottom:102.143000px;}
.y31e{bottom:102.283000px;}
.y25b{bottom:102.417000px;}
.y2ce{bottom:102.767000px;}
.y11c{bottom:102.781000px;}
.y1c6{bottom:102.888000px;}
.y334{bottom:103.019000px;}
.yce{bottom:103.045000px;}
.y217{bottom:103.224000px;}
.y186{bottom:103.279000px;}
.y2a5{bottom:103.553000px;}
.y36{bottom:103.580000px;}
.y29e{bottom:103.799000px;}
.y309{bottom:103.877000px;}
.y24a{bottom:104.330000px;}
.yd{bottom:105.221000px;}
.y32c{bottom:105.406000px;}
.y63{bottom:105.770000px;}
.y127{bottom:105.800000px;}
.y2a9{bottom:106.238000px;}
.y2fd{bottom:106.492000px;}
.y2b{bottom:107.124000px;}
.y41{bottom:107.588000px;}
.y31{bottom:107.625000px;}
.y55{bottom:107.679000px;}
.y205{bottom:107.921000px;}
.y4d{bottom:108.281000px;}
.y220{bottom:108.484000px;}
.y75{bottom:108.495000px;}
.y19a{bottom:108.677000px;}
.y1dc{bottom:108.778000px;}
.y2b0{bottom:109.202000px;}
.y18{bottom:109.308000px;}
.y91{bottom:109.481000px;}
.y1f5{bottom:110.038000px;}
.y314{bottom:110.533000px;}
.y2f2{bottom:111.015000px;}
.ybc{bottom:111.040000px;}
.y272{bottom:111.090000px;}
.y283{bottom:111.725000px;}
.y15c{bottom:111.757000px;}
.y231{bottom:111.976000px;}
.y143{bottom:112.350000px;}
.yfb{bottom:112.365000px;}
.y1d1{bottom:112.437000px;}
.ya6{bottom:112.635000px;}
.y191{bottom:112.878000px;}
.y211{bottom:112.913000px;}
.y28d{bottom:112.992000px;}
.y296{bottom:113.286000px;}
.y2e9{bottom:113.415000px;}
.y131{bottom:113.490000px;}
.y1a5{bottom:113.615000px;}
.y11b{bottom:113.665000px;}
.y2b8{bottom:113.874000px;}
.y17c{bottom:114.098000px;}
.y2c4{bottom:114.265000px;}
.y14b{bottom:115.099000px;}
.y27b{bottom:115.124000px;}
.y2cd{bottom:115.370000px;}
.y1c5{bottom:115.490000px;}
.y226{bottom:115.533000px;}
.ycb{bottom:115.648000px;}
.y1ef{bottom:115.734000px;}
.y9b{bottom:116.229000px;}
.y13a{bottom:116.454000px;}
.y2da{bottom:116.488000px;}
.y62{bottom:116.654000px;}
.y30d{bottom:116.861000px;}
.y4{bottom:117.135000px;}
.y23e{bottom:117.386000px;}
.ye3{bottom:117.392000px;}
.y1e8{bottom:117.547000px;}
.yb1{bottom:117.607000px;}
.y31d{bottom:117.865000px;}
.y1f2{bottom:117.936000px;}
.y126{bottom:118.402000px;}
.y204{bottom:118.806000px;}
.y104{bottom:118.831000px;}
.yd8{bottom:118.958000px;}
.y1fb{bottom:118.965000px;}
.y185{bottom:118.995000px;}
.y74{bottom:119.379000px;}
.y29d{bottom:119.381000px;}
.y1db{bottom:119.662000px;}
.y249{bottom:119.912000px;}
.y324{bottom:120.081000px;}
.y40{bottom:120.191000px;}
.y4c{bottom:120.635000px;}
.ya2{bottom:121.063000px;}
.y20{bottom:121.346000px;}
.y303{bottom:121.769000px;}
.y2a8{bottom:121.819000px;}
.y16f{bottom:121.878000px;}
.y1b9{bottom:122.161000px;}
.y199{bottom:122.425000px;}
.yc{bottom:122.631000px;}
.y85{bottom:122.831000px;}
.y313{bottom:122.886000px;}
.y264{bottom:123.314000px;}
.y2f1{bottom:123.369000px;}
.yed{bottom:123.812000px;}
.y21f{bottom:124.066000px;}
.y230{bottom:124.330000px;}
.y11a{bottom:124.549000px;}
.y2af{bottom:124.783000px;}
.ybb{bottom:124.788000px;}
.yfa{bottom:124.968000px;}
.y90{bottom:125.062000px;}
.y210{bottom:125.515000px;}
.y295{bottom:125.640000px;}
.y2e8{bottom:125.769000px;}
.y1d0{bottom:125.846000px;}
.y1a4{bottom:125.969000px;}
.y142{bottom:126.098000px;}
.y54{bottom:126.249000px;}
.y2a{bottom:126.327000px;}
.yca{bottom:126.532000px;}
.y271{bottom:126.672000px;}
.y17{bottom:126.718000px;}
.y252{bottom:126.853000px;}
.y32b{bottom:126.940000px;}
.y61{bottom:127.538000px;}
.y10e{bottom:127.746000px;}
.y2cc{bottom:127.973000px;}
.y1c4{bottom:128.093000px;}
.y225{bottom:128.136000px;}
.ya5{bottom:128.216000px;}
.y30{bottom:128.248000px;}
.y190{bottom:128.459000px;}
.y1af{bottom:128.957000px;}
.y130{bottom:129.072000px;}
.y2d9{bottom:129.090000px;}
.y2a4{bottom:129.097000px;}
.y2b7{bottom:129.456000px;}
.ye2{bottom:129.995000px;}
.y73{bottom:130.263000px;}
.y1da{bottom:130.547000px;}
.y14a{bottom:130.681000px;}
.y125{bottom:131.005000px;}
.y1ee{bottom:131.315000px;}
.y30c{bottom:132.443000px;}
.y3f{bottom:132.793000px;}
.y282{bottom:133.010000px;}
.y2f7{bottom:133.032000px;}
.y25a{bottom:133.914000px;}
.y17b{bottom:134.148000px;}
.y35{bottom:134.292000px;}
.y203{bottom:134.387000px;}
.y28c{bottom:134.551000px;}
.y4b{bottom:134.870000px;}
.y29c{bottom:134.962000px;}
.y84{bottom:135.433000px;}
.y23d{bottom:135.931000px;}
.y15b{bottom:136.963000px;}
.y2c3{bottom:136.993000px;}
.y302{bottom:137.350000px;}
.y2e7{bottom:137.375000px;}
.yc9{bottom:137.416000px;}
.yf9{bottom:137.570000px;}
.y2f{bottom:137.727000px;}
.y1b8{bottom:137.743000px;}
.y2e2{bottom:137.934000px;}
.y20f{bottom:138.118000px;}
.y135{bottom:138.248000px;}
.y60{bottom:138.422000px;}
.y312{bottom:138.478000px;}
.yba{bottom:138.536000px;}
.yb0{bottom:138.689000px;}
.y263{bottom:138.895000px;}
.y3{bottom:139.153000px;}
.yec{bottom:139.393000px;}
.yaa{bottom:139.804000px;}
.y141{bottom:139.847000px;}
.y2fc{bottom:140.006000px;}
.y227{bottom:140.489000px;}
.y333{bottom:140.518000px;}
.y1f{bottom:140.549000px;}
.y2cb{bottom:140.575000px;}
.y166{bottom:140.643000px;}
.y1c3{bottom:140.696000px;}
.y9a{bottom:141.109000px;}
.y72{bottom:141.147000px;}
.y1d9{bottom:141.431000px;}
.y248{bottom:141.446000px;}
.y1a3{bottom:141.560000px;}
.y2d8{bottom:141.693000px;}
.y270{bottom:142.253000px;}
.y251{bottom:142.434000px;}
.ye1{bottom:142.597000px;}
.y16e{bottom:143.303000px;}
.y22f{bottom:143.383000px;}
.y124{bottom:143.608000px;}
.y18f{bottom:144.041000px;}
.y16{bottom:144.128000px;}
.y1ae{bottom:144.539000px;}
.y103{bottom:144.848000px;}
.y184{bottom:145.012000px;}
.y2b6{bottom:145.037000px;}
.y1e7{bottom:145.084000px;}
.y53{bottom:145.292000px;}
.y3e{bottom:145.396000px;}
.y29{bottom:145.530000px;}
.y323{bottom:145.625000px;}
.y139{bottom:145.984000px;}
.y119{bottom:146.317000px;}
.yd7{bottom:146.405000px;}
.y31c{bottom:146.584000px;}
.y1f4{bottom:146.656000px;}
.y294{bottom:146.686000px;}
.y17a{bottom:146.751000px;}
.y83{bottom:148.036000px;}
.yc8{bottom:148.300000px;}
.y198{bottom:148.340000px;}
.y32a{bottom:148.499000px;}
.y2f6{bottom:148.614000px;}
.y2e1{bottom:148.818000px;}
.y5f{bottom:149.306000px;}
.yb{bottom:149.475000px;}
.y259{bottom:149.495000px;}
.y15a{bottom:149.565000px;}
.y2c2{bottom:149.596000px;}
.y10d{bottom:149.701000px;}
.y2f0{bottom:149.729000px;}
.y34{bottom:149.873000px;}
.yc3{bottom:149.912000px;}
.y202{bottom:149.969000px;}
.y1be{bottom:149.993000px;}
.yf8{bottom:150.173000px;}
.y20e{bottom:150.472000px;}
.y1fa{bottom:150.487000px;}
.y8f{bottom:150.606000px;}
.y2a3{bottom:150.631000px;}
.y27a{bottom:151.742000px;}
.y4a{bottom:151.844000px;}
.y71{bottom:152.031000px;}
.y1d8{bottom:152.066000px;}
.y2d6{bottom:152.173000px;}
.yaf{bottom:152.438000px;}
.y311{bottom:152.896000px;}
.y2ca{bottom:153.178000px;}
.y1ce{bottom:153.865000px;}
.y2d7{bottom:154.047000px;}
.y247{bottom:154.048000px;}
.y224{bottom:154.088000px;}
.y262{bottom:154.477000px;}
.yeb{bottom:154.975000px;}
.ye0{bottom:155.200000px;}
.y1ed{bottom:155.340000px;}
.ya9{bottom:155.386000px;}
.ya1{bottom:155.434000px;}
.y21e{bottom:155.587000px;}
.y123{bottom:155.961000px;}
.y30b{bottom:155.995000px;}
.y12f{bottom:156.086000px;}
.y332{bottom:156.100000px;}
.y28b{bottom:156.110000px;}
.y118{bottom:157.202000px;}
.y281{bottom:157.318000px;}
.y23c{bottom:157.465000px;}
.y140{bottom:157.580000px;}
.y3d{bottom:157.999000px;}
.y179{bottom:159.104000px;}
.yc7{bottom:159.185000px;}
.y1b7{bottom:159.226000px;}
.y2e0{bottom:159.453000px;}
.y1e{bottom:159.752000px;}
.y216{bottom:159.931000px;}
.y5e{bottom:160.190000px;}
.y102{bottom:160.429000px;}
.y183{bottom:160.594000px;}
.y82{bottom:160.639000px;}
.y1e6{bottom:160.665000px;}
.y2e6{bottom:161.141000px;}
.y26f{bottom:161.461000px;}
.y15{bottom:161.537000px;}
.yb9{bottom:162.088000px;}
.y31b{bottom:162.165000px;}
.y159{bottom:162.168000px;}
.y2c1{bottom:162.199000px;}
.y1f3{bottom:162.237000px;}
.yf7{bottom:162.776000px;}
.y70{bottom:162.915000px;}
.ya4{bottom:163.723000px;}
.y329{bottom:164.081000px;}
.y1a2{bottom:164.125000px;}
.y29b{bottom:164.491000px;}
.y16d{bottom:164.727000px;}
.y28{bottom:164.733000px;}
.y2d5{bottom:164.776000px;}
.y258{bottom:165.077000px;}
.y2ef{bottom:165.310000px;}
.y2c9{bottom:165.532000px;}
.y201{bottom:165.550000px;}
.y18e{bottom:165.575000px;}
.y1c2{bottom:165.652000px;}
.y149{bottom:166.188000px;}
.y1cd{bottom:166.468000px;}
.y2b5{bottom:166.571000px;}
.y1cf{bottom:166.738000px;}
.ya{bottom:166.884000px;}
.y279{bottom:167.323000px;}
.ydf{bottom:167.803000px;}
.y117{bottom:168.086000px;}
.y99{bottom:169.037000px;}
.y1f9{bottom:169.216000px;}
.yc6{bottom:170.069000px;}
.yea{bottom:170.556000px;}
.y3c{bottom:170.601000px;}
.y1ec{bottom:170.922000px;}
.y5d{bottom:171.074000px;}
.y21d{bottom:171.169000px;}
.y30a{bottom:171.576000px;}
.y10c{bottom:171.657000px;}
.y12e{bottom:171.667000px;}
.y28a{bottom:171.692000px;}
.yae{bottom:172.163000px;}
.y2df{bottom:172.305000px;}
.y1d7{bottom:172.389000px;}
.y308{bottom:172.619000px;}
.y280{bottom:172.899000px;}
.y197{bottom:173.022000px;}
.y23b{bottom:173.047000px;}
.y81{bottom:173.241000px;}
.y293{bottom:173.699000px;}
.y178{bottom:174.173000px;}
.y2c0{bottom:174.801000px;}
.yf6{bottom:175.378000px;}
.y138{bottom:175.513000px;}
.y101{bottom:176.011000px;}
.y8e{bottom:176.150000px;}
.y52{bottom:176.291000px;}
.y2a2{bottom:176.648000px;}
.y1a1{bottom:176.728000px;}
.y26e{bottom:177.043000px;}
.y2{bottom:177.056000px;}
.y2d4{bottom:177.378000px;}
.y20d{bottom:177.495000px;}
.y250{bottom:178.414000px;}
.y1cc{bottom:178.821000px;}
.y14{bottom:178.947000px;}
.y1d{bottom:178.955000px;}
.y116{bottom:178.970000px;}
.y246{bottom:179.254000px;}
.ya3{bottom:179.305000px;}
.y33{bottom:179.402000px;}
.y29a{bottom:180.073000px;}
.yde{bottom:180.405000px;}
.y257{bottom:180.658000px;}
.y301{bottom:180.827000px;}
.yc5{bottom:180.953000px;}
.yd6{bottom:181.111000px;}
.y310{bottom:181.132000px;}
.y1ad{bottom:181.156000px;}
.y182{bottom:181.630000px;}
.y148{bottom:181.769000px;}
.y5c{bottom:181.959000px;}
.y2e5{bottom:182.700000px;}
.y1f8{bottom:182.965000px;}
.y3b{bottom:183.204000px;}
.y27{bottom:183.936000px;}
.y9{bottom:184.294000px;}
.y98{bottom:184.619000px;}
.y6f{bottom:184.683000px;}
.y1e5{bottom:184.690000px;}
.y1b6{bottom:185.243000px;}
.yb8{bottom:185.640000px;}
.y80{bottom:185.844000px;}
.yad{bottom:185.912000px;}
.y2f5{bottom:186.113000px;}
.y18d{bottom:186.611000px;}
.y49{bottom:186.750000px;}
.y158{bottom:187.124000px;}
.y2bf{bottom:187.155000px;}
.y12d{bottom:187.249000px;}
.yf5{bottom:187.981000px;}
.y27f{bottom:188.481000px;}
.y23a{bottom:188.628000px;}
.y10b{bottom:188.952000px;}
.y1a0{bottom:189.082000px;}
.y292{bottom:189.281000px;}
.y31a{bottom:189.702000px;}
.y2d3{bottom:189.732000px;}
.y115{bottom:189.854000px;}
.y137{bottom:191.094000px;}
.yc4{bottom:191.588000px;}
.ye9{bottom:191.592000px;}
.y245{bottom:191.607000px;}
.y165{bottom:191.732000px;}
.y16c{bottom:191.784000px;}
.y51{bottom:191.872000px;}
.y1cb{bottom:192.230000px;}
.y26d{bottom:192.624000px;}
.ydd{bottom:192.759000px;}
.y5b{bottom:192.843000px;}
.y20c{bottom:193.077000px;}
.y289{bottom:193.226000px;}
.y6e{bottom:195.318000px;}
.y1f7{bottom:196.713000px;}
.y177{bottom:197.211000px;}
.y1{bottom:197.678000px;}
.y1c{bottom:198.158000px;}
.y7f{bottom:198.197000px;}
.y97{bottom:200.200000px;}
.yf4{bottom:200.584000px;}
.y114{bottom:200.738000px;}
.y1b5{bottom:200.825000px;}
.y8d{bottom:201.694000px;}
.y8{bottom:201.704000px;}
.y18c{bottom:202.193000px;}
.y26{bottom:203.139000px;}
.y32{bottom:203.427000px;}
.y5a{bottom:203.727000px;}
.y10a{bottom:204.533000px;}
.y19f{bottom:204.673000px;}
.y2be{bottom:206.168000px;}
.y136{bottom:206.676000px;}
.y2e4{bottom:206.724000px;}
.y27e{bottom:206.792000px;}
.y6d{bottom:207.174000px;}
.y3a{bottom:208.160000px;}
.y26c{bottom:208.206000px;}
.ydc{bottom:210.153000px;}
.y113{bottom:211.373000px;}
.yf3{bottom:212.937000px;}
.y59{bottom:214.362000px;}
.y7{bottom:236.149000px;}
.h12{height:21.901835px;}
.hf{height:22.124998px;}
.ha{height:23.910300px;}
.hd{height:24.890726px;}
.h10{height:26.899200px;}
.h9{height:27.576477px;}
.hc{height:27.656178px;}
.h13{height:27.752750px;}
.h6{height:29.887800px;}
.h11{height:30.283662px;}
.hb{height:32.727300px;}
.he{height:33.091994px;}
.h5{height:33.187635px;}
.h7{height:35.865600px;}
.h4{height:40.456284px;}
.h8{height:43.038600px;}
.h3{height:58.268250px;}
.h2{height:74.361300px;}
.h0{height:255.118000px;}
.h1{height:255.500000px;}
.w0{width:453.543000px;}
.w1{width:454.000000px;}
.x0{left:0.000000px;}
.x4{left:10.667000px;}
.x2e{left:16.597000px;}
.x1{left:28.346000px;}
.x2a{left:29.376000px;}
.x1a{left:31.335000px;}
.x5{left:34.488000px;}
.xb{left:36.225000px;}
.x30{left:38.309000px;}
.x10{left:41.049000px;}
.x27{left:42.468000px;}
.x37{left:43.588000px;}
.xf{left:45.283000px;}
.xd{left:47.176000px;}
.x36{left:49.316000px;}
.x6{left:50.486000px;}
.x2c{left:51.909000px;}
.xc{left:53.153000px;}
.x9{left:55.397000px;}
.x12{left:57.985000px;}
.x38{left:60.770000px;}
.x15{left:62.219000px;}
.x32{left:64.238000px;}
.x16{left:66.005000px;}
.x2b{left:69.637000px;}
.x3d{left:70.712000px;}
.x1b{left:71.983000px;}
.x45{left:73.704000px;}
.x19{left:74.787000px;}
.x2f{left:77.793000px;}
.x20{left:82.881000px;}
.x42{left:88.122000px;}
.x35{left:89.406000px;}
.x21{left:93.907000px;}
.x14{left:96.092000px;}
.x17{left:98.957000px;}
.x1c{left:102.849000px;}
.x8{left:106.772000px;}
.x3c{left:109.763000px;}
.x41{left:117.786000px;}
.x1d{left:119.785000px;}
.x11{left:121.497000px;}
.x22{left:125.776000px;}
.x34{left:127.973000px;}
.x1e{left:136.722000px;}
.x18{left:138.153000px;}
.x1f{left:153.658000px;}
.x2{left:158.505000px;}
.xa{left:170.858000px;}
.x39{left:173.715000px;}
.x3e{left:186.676000px;}
.x3a{left:191.525000px;}
.x40{left:200.798000px;}
.x33{left:202.333000px;}
.x3f{left:205.506000px;}
.x3b{left:210.354000px;}
.x31{left:216.640000px;}
.x23{left:224.174000px;}
.x28{left:227.573000px;}
.x43{left:228.590000px;}
.xe{left:230.762000px;}
.x2d{left:240.177000px;}
.x29{left:241.695000px;}
.x24{left:243.004000px;}
.x44{left:247.419000px;}
.x25{left:261.833000px;}
.x26{left:280.662000px;}
.x3{left:378.705000px;}
.x13{left:424.403000px;}
.x7{left:428.637000px;}
@media print{
.v0{vertical-align:0.000000pt;}
.ls0{letter-spacing:0.000000pt;}
.ws0{word-spacing:0.000000pt;}
._41{margin-left:-12.030006pt;}
._5{margin-left:-7.383400pt;}
._7{margin-left:-5.126375pt;}
._3{margin-left:-2.534600pt;}
._b{width:1.453748pt;}
._0{width:4.098134pt;}
._3c{width:5.802394pt;}
._11{width:8.320819pt;}
._31{width:12.976506pt;}
._26{width:14.771215pt;}
._d{width:16.680726pt;}
._c{width:18.740429pt;}
._f{width:20.105503pt;}
._8{width:21.599159pt;}
._1b{width:23.033401pt;}
._9{width:24.461821pt;}
._21{width:26.008515pt;}
._e{width:27.564042pt;}
._6{width:28.921939pt;}
._2d{width:31.546072pt;}
._12{width:33.378918pt;}
._10{width:35.501222pt;}
._52{width:37.063421pt;}
._2f{width:39.552553pt;}
._4{width:41.655600pt;}
._a{width:43.229883pt;}
._15{width:45.028811pt;}
._1{width:48.384419pt;}
._20{width:51.114435pt;}
._2{width:54.549000pt;}
._63{width:61.259954pt;}
._24{width:63.734586pt;}
._1c{width:67.756477pt;}
._38{width:70.743282pt;}
._14{width:74.791934pt;}
._45{width:100.550787pt;}
._37{width:115.574820pt;}
._29{width:117.638381pt;}
._47{width:126.055426pt;}
._2e{width:133.897680pt;}
._40{width:136.235576pt;}
._19{width:141.372496pt;}
._5f{width:143.130910pt;}
._28{width:145.533661pt;}
._3b{width:151.406725pt;}
._2b{width:153.453915pt;}
._18{width:163.688776pt;}
._34{width:168.320140pt;}
._35{width:169.949233pt;}
._36{width:174.824773pt;}
._27{width:180.020849pt;}
._3a{width:189.323794pt;}
._33{width:198.923802pt;}
._5b{width:200.847360pt;}
._62{width:205.103411pt;}
._1a{width:208.321336pt;}
._4e{width:214.380646pt;}
._5d{width:216.399658pt;}
._43{width:226.597379pt;}
._17{width:230.637616pt;}
._4d{width:239.534387pt;}
._3f{width:248.672621pt;}
._2c{width:255.786434pt;}
._39{width:261.469309pt;}
._4c{width:264.592486pt;}
._2a{width:283.681714pt;}
._5a{width:326.376960pt;}
._61{width:330.585190pt;}
._4a{width:343.736008pt;}
._5e{width:355.356365pt;}
._60{width:393.613005pt;}
._23{width:402.645133pt;}
._32{width:412.683980pt;}
._1d{width:429.025170pt;}
._5c{width:477.012480pt;}
._3e{width:520.415650pt;}
._13{width:552.330240pt;}
._48{width:578.724357pt;}
._25{width:593.186487pt;}
._46{width:603.186179pt;}
._4b{width:703.740443pt;}
._44{width:778.927619pt;}
._49{width:979.130880pt;}
._56{width:1055.061906pt;}
._55{width:1149.173241pt;}
._16{width:1229.648451pt;}
._1e{width:1277.723038pt;}
._3d{width:1317.144803pt;}
._22{width:1325.165964pt;}
._57{width:1343.270998pt;}
._4f{width:1356.357859pt;}
._30{width:1457.272122pt;}
._42{width:1526.628319pt;}
._54{width:1646.087959pt;}
._1f{width:1649.260170pt;}
._59{width:1688.297786pt;}
._58{width:1737.648851pt;}
._51{width:1746.093911pt;}
._53{width:1894.405052pt;}
._50{width:1910.345318pt;}
.fs8{font-size:31.880533pt;}
.fs5{font-size:42.507200pt;}
.fs7{font-size:47.820800pt;}
.fs4{font-size:53.133867pt;}
.fs6{font-size:58.181867pt;}
.fs3{font-size:63.761067pt;}
.fs2{font-size:76.513067pt;}
.fs1{font-size:110.200000pt;}
.fs0{font-size:132.197867pt;}
.y152{bottom:-76.192000pt;}
.y261{bottom:-12.888000pt;}
.y0{bottom:-0.666667pt;}
.y2e3{bottom:5.361333pt;}
.y50{bottom:5.417333pt;}
.y22e{bottom:5.809333pt;}
.y19e{bottom:6.501333pt;}
.y8c{bottom:6.637333pt;}
.y13f{bottom:6.816000pt;}
.y14f{bottom:7.174667pt;}
.y319{bottom:7.242667pt;}
.y1c1{bottom:7.264000pt;}
.y1e4{bottom:7.285333pt;}
.y269{bottom:7.397333pt;}
.y1b4{bottom:7.701333pt;}
.y300{bottom:8.392000pt;}
.y26b{bottom:8.516000pt;}
.y256{bottom:8.518667pt;}
.y18b{bottom:8.522667pt;}
.y239{bottom:8.530667pt;}
.y2bd{bottom:8.810667pt;}
.y328{bottom:8.865333pt;}
.y48{bottom:9.022667pt;}
.yb7{bottom:9.077333pt;}
.y6c{bottom:10.417333pt;}
.y2b4{bottom:10.737333pt;}
.y157{bottom:10.814667pt;}
.y2a7{bottom:10.985333pt;}
.y176{bottom:11.168000pt;}
.y1d6{bottom:11.176000pt;}
.y12c{bottom:11.213333pt;}
.y16b{bottom:12.022667pt;}
.y200{bottom:12.422667pt;}
.y278{bottom:12.577333pt;}
.y244{bottom:12.654667pt;}
.y331{bottom:12.788000pt;}
.ye8{bottom:13.169333pt;}
.y181{bottom:13.225333pt;}
.y27d{bottom:13.398667pt;}
.y7e{bottom:14.050667pt;}
.y164{bottom:14.581333pt;}
.y223{bottom:14.986667pt;}
.y1ac{bottom:16.925333pt;}
.y134{bottom:17.012000pt;}
.y151{bottom:17.230667pt;}
.y2ae{bottom:17.250667pt;}
.y13{bottom:17.357333pt;}
.ya0{bottom:17.737333pt;}
.y291{bottom:17.942667pt;}
.y96{bottom:20.246667pt;}
.y122{bottom:20.944000pt;}
.y322{bottom:21.396000pt;}
.y268{bottom:21.544000pt;}
.yc2{bottom:22.550667pt;}
.y238{bottom:23.042667pt;}
.y14e{bottom:23.978667pt;}
.y12{bottom:24.229333pt;}
.y260{bottom:24.742667pt;}
.y6b{bottom:24.929333pt;}
.y20b{bottom:25.081333pt;}
.y18a{bottom:25.326667pt;}
.y47{bottom:25.825333pt;}
.y22d{bottom:26.585333pt;}
.y156{bottom:27.618667pt;}
.y2ff{bottom:27.853333pt;}
.y24f{bottom:27.957333pt;}
.y1d5{bottom:27.980000pt;}
.y7d{bottom:28.562667pt;}
.y16a{bottom:28.826667pt;}
.y288{bottom:29.150667pt;}
.y277{bottom:29.381333pt;}
.y180{bottom:30.029333pt;}
.yf2{bottom:30.056000pt;}
.y196{bottom:30.753333pt;}
.y163{bottom:31.385333pt;}
.y1ff{bottom:31.882667pt;}
.y1ab{bottom:33.729333pt;}
.y25{bottom:33.774667pt;}
.y290{bottom:34.745333pt;}
.y121{bottom:35.456000pt;}
.y267{bottom:35.692000pt;}
.y2fb{bottom:35.828000pt;}
.yd5{bottom:36.141333pt;}
.y100{bottom:36.698667pt;}
.y237{bottom:37.554667pt;}
.y150{bottom:38.005333pt;}
.y2ad{bottom:38.026667pt;}
.y109{bottom:38.657333pt;}
.y2e{bottom:39.194667pt;}
.y6a{bottom:39.441333pt;}
.y147{bottom:39.706667pt;}
.yb6{bottom:39.930667pt;}
.y2d2{bottom:40.040000pt;}
.y95{bottom:41.021333pt;}
.y330{bottom:41.533333pt;}
.y21c{bottom:42.017333pt;}
.y46{bottom:42.629333pt;}
.y7c{bottom:43.074667pt;}
.yc1{bottom:43.326667pt;}
.y1e3{bottom:43.453333pt;}
.y2c8{bottom:45.341333pt;}
.y243{bottom:45.392000pt;}
.y25f{bottom:45.517333pt;}
.y169{bottom:45.629333pt;}
.y20a{bottom:45.857333pt;}
.y8b{bottom:46.149333pt;}
.y1c0{bottom:46.626667pt;}
.y11{bottom:47.442667pt;}
.y162{bottom:48.188000pt;}
.y2ee{bottom:48.680000pt;}
.y24e{bottom:48.733333pt;}
.y1bd{bottom:49.504000pt;}
.y287{bottom:49.925333pt;}
.y307{bottom:49.968000pt;}
.y1aa{bottom:50.532000pt;}
.yd4{bottom:50.653333pt;}
.yf1{bottom:50.830667pt;}
.y195{bottom:51.529333pt;}
.y112{bottom:52.005333pt;}
.y236{bottom:52.066667pt;}
.y9f{bottom:52.317333pt;}
.y1ca{bottom:53.165333pt;}
.y13e{bottom:53.574667pt;}
.y69{bottom:53.953333pt;}
.yb5{bottom:54.442667pt;}
.y22c{bottom:54.645333pt;}
.y175{bottom:54.961333pt;}
.y2bc{bottom:55.480000pt;}
.y12b{bottom:55.978667pt;}
.y2de{bottom:56.600000pt;}
.y2fa{bottom:56.602667pt;}
.y39{bottom:57.184000pt;}
.y6{bottom:57.414667pt;}
.yff{bottom:57.473333pt;}
.y2a1{bottom:57.476000pt;}
.y7b{bottom:57.586667pt;}
.y327{bottom:57.930667pt;}
.y1e2{bottom:57.965333pt;}
.y321{bottom:58.112000pt;}
.y21b{bottom:58.821333pt;}
.y24{bottom:59.378667pt;}
.y108{bottom:59.432000pt;}
.y1b3{bottom:60.349333pt;}
.y146{bottom:60.481333pt;}
.y2d1{bottom:60.816000pt;}
.y32f{bottom:62.308000pt;}
.y8a{bottom:62.953333pt;}
.y19d{bottom:63.341333pt;}
.y318{bottom:63.358667pt;}
.y242{bottom:63.722667pt;}
.y2ac{bottom:64.114667pt;}
.y120{bottom:64.480000pt;}
.y161{bottom:64.992000pt;}
.yd3{bottom:65.165333pt;}
.y155{bottom:65.802667pt;}
.y2c7{bottom:66.117333pt;}
.y25e{bottom:66.293333pt;}
.y235{bottom:66.578667pt;}
.y209{bottom:66.632000pt;}
.y1a9{bottom:67.336000pt;}
.y1bf{bottom:67.402667pt;}
.y276{bottom:67.676000pt;}
.ye7{bottom:68.340000pt;}
.y68{bottom:68.465333pt;}
.yb4{bottom:68.622667pt;}
.y58{bottom:69.290667pt;}
.y2ed{bottom:69.454667pt;}
.y24d{bottom:69.508000pt;}
.y1c9{bottom:69.969333pt;}
.y1bc{bottom:70.280000pt;}
.y10{bottom:70.656000pt;}
.y215{bottom:70.749333pt;}
.y22b{bottom:71.449333pt;}
.y7a{bottom:72.098667pt;}
.y194{bottom:72.304000pt;}
.y1e1{bottom:72.477333pt;}
.y2dd{bottom:73.404000pt;}
.y13d{bottom:74.349333pt;}
.y299{bottom:74.482667pt;}
.yc0{bottom:74.728000pt;}
.y1fe{bottom:75.040000pt;}
.y21a{bottom:75.293333pt;}
.y94{bottom:75.710667pt;}
.y2b3{bottom:76.004000pt;}
.y189{bottom:76.069333pt;}
.y1b{bottom:76.105333pt;}
.y45{bottom:76.236000pt;}
.y2bb{bottom:76.256000pt;}
.y12a{bottom:76.754667pt;}
.y38{bottom:77.960000pt;}
.y9e{bottom:77.981333pt;}
.y2a0{bottom:78.252000pt;}
.y1eb{bottom:78.462667pt;}
.y286{bottom:78.670667pt;}
.y2d{bottom:78.780000pt;}
.y320{bottom:78.886667pt;}
.y4f{bottom:78.914667pt;}
.y11f{bottom:78.993333pt;}
.y255{bottom:79.613333pt;}
.y5{bottom:79.648000pt;}
.yd2{bottom:79.677333pt;}
.y89{bottom:79.756000pt;}
.ycc{bottom:79.853333pt;}
.y317{bottom:80.162667pt;}
.y266{bottom:80.838667pt;}
.y234{bottom:81.090667pt;}
.y1b2{bottom:81.124000pt;}
.y111{bottom:81.278667pt;}
.y2d0{bottom:81.590667pt;}
.y160{bottom:81.796000pt;}
.y222{bottom:81.841333pt;}
.y241{bottom:82.054667pt;}
.ya8{bottom:82.062667pt;}
.yf0{bottom:82.233333pt;}
.y154{bottom:82.605333pt;}
.y67{bottom:82.977333pt;}
.y174{bottom:83.528000pt;}
.y305{bottom:83.613333pt;}
.y1a8{bottom:83.808000pt;}
.y2ab{bottom:84.890667pt;}
.y23{bottom:84.982667pt;}
.ycd{bottom:85.132000pt;}
.y14d{bottom:85.348000pt;}
.y79{bottom:86.610667pt;}
.y1c8{bottom:86.773333pt;}
.y2c6{bottom:86.892000pt;}
.y1e0{bottom:86.989333pt;}
.y25d{bottom:87.068000pt;}
.y214{bottom:87.553333pt;}
.y22a{bottom:87.920000pt;}
.y107{bottom:88.177333pt;}
.y275{bottom:88.450667pt;}
.yfe{bottom:88.876000pt;}
.y2dc{bottom:90.206667pt;}
.y298{bottom:90.953333pt;}
.y32e{bottom:91.053333pt;}
.y326{bottom:91.989333pt;}
.y44{bottom:93.040000pt;}
.ybf{bottom:93.060000pt;}
.y193{bottom:93.080000pt;}
.y11e{bottom:93.505333pt;}
.yf{bottom:93.869333pt;}
.ye6{bottom:93.944000pt;}
.y57{bottom:94.050667pt;}
.yd1{bottom:94.189333pt;}
.y188{bottom:94.401333pt;}
.y19c{bottom:94.956000pt;}
.y13c{bottom:95.125333pt;}
.y233{bottom:95.270667pt;}
.y30f{bottom:95.668000pt;}
.y1fd{bottom:95.816000pt;}
.y219{bottom:96.081333pt;}
.y93{bottom:96.486667pt;}
.y88{bottom:96.560000pt;}
.y2b2{bottom:96.778667pt;}
.y1f1{bottom:96.821333pt;}
.y2fe{bottom:97.302667pt;}
.y66{bottom:97.489333pt;}
.y24c{bottom:97.556000pt;}
.y1bb{bottom:98.328000pt;}
.y15f{bottom:98.598667pt;}
.y29f{bottom:99.026667pt;}
.y1ea{bottom:99.238667pt;}
.y1a{bottom:99.318667pt;}
.y153{bottom:99.409333pt;}
.y285{bottom:99.446667pt;}
.y4e{bottom:99.689333pt;}
.y173{bottom:100.330667pt;}
.y254{bottom:100.388000pt;}
.ydb{bottom:100.440000pt;}
.y208{bottom:100.690667pt;}
.y2ec{bottom:100.810667pt;}
.y78{bottom:101.122667pt;}
.y28f{bottom:101.136000pt;}
.y17f{bottom:101.421333pt;}
.y1df{bottom:101.501333pt;}
.y1b1{bottom:101.900000pt;}
.y2a6{bottom:102.154667pt;}
.y221{bottom:102.617333pt;}
.yef{bottom:103.009333pt;}
.y1c7{bottom:103.576000pt;}
.y9d{bottom:103.645333pt;}
.y168{bottom:103.945333pt;}
.yb3{bottom:104.206667pt;}
.y213{bottom:104.357333pt;}
.y304{bottom:104.389333pt;}
.y1a7{bottom:104.596000pt;}
.y2ba{bottom:104.968000pt;}
.y145{bottom:105.166667pt;}
.y229{bottom:106.052000pt;}
.y14c{bottom:106.124000pt;}
.y2cf{bottom:106.318667pt;}
.y274{bottom:106.569333pt;}
.y2f9{bottom:106.601333pt;}
.y129{bottom:107.458667pt;}
.y25c{bottom:107.844000pt;}
.y11d{bottom:108.017333pt;}
.yd0{bottom:108.701333pt;}
.y170{bottom:108.733333pt;}
.y106{bottom:108.953333pt;}
.y133{bottom:109.769333pt;}
.y43{bottom:109.844000pt;}
.yac{bottom:110.317333pt;}
.y110{bottom:110.552000pt;}
.y22{bottom:110.586667pt;}
.ybe{bottom:111.390667pt;}
.y32d{bottom:111.829333pt;}
.y65{bottom:112.002667pt;}
.y265{bottom:112.241333pt;}
.ye5{bottom:112.274667pt;}
.y19b{bottom:113.288000pt;}
.y87{bottom:113.364000pt;}
.y2aa{bottom:113.602667pt;}
.y316{bottom:113.769333pt;}
.y2f4{bottom:114.413333pt;}
.y2db{bottom:114.521333pt;}
.y240{bottom:114.964000pt;}
.y207{bottom:115.202667pt;}
.y15e{bottom:115.402667pt;}
.y31f{bottom:115.602667pt;}
.y77{bottom:115.634667pt;}
.y1de{bottom:116.013333pt;}
.yfd{bottom:116.213333pt;}
.y30e{bottom:116.442667pt;}
.y335{bottom:116.582667pt;}
.y1fc{bottom:116.590667pt;}
.y1d3{bottom:116.641333pt;}
.y218{bottom:116.857333pt;}
.ye{bottom:117.081333pt;}
.y172{bottom:117.134667pt;}
.y2c{bottom:117.228000pt;}
.y92{bottom:117.261333pt;}
.y37{bottom:117.332000pt;}
.y1f0{bottom:117.596000pt;}
.y2eb{bottom:117.613333pt;}
.y17e{bottom:118.225333pt;}
.y24b{bottom:118.332000pt;}
.y232{bottom:118.384000pt;}
.y56{bottom:118.810667pt;}
.y297{bottom:119.014667pt;}
.y1ba{bottom:119.102667pt;}
.y187{bottom:119.373333pt;}
.y284{bottom:120.221333pt;}
.y212{bottom:120.828000pt;}
.y253{bottom:121.164000pt;}
.y192{bottom:121.792000pt;}
.y28e{bottom:121.910667pt;}
.y306{bottom:122.529333pt;}
.y19{bottom:122.532000pt;}
.ycf{bottom:123.213333pt;}
.y26a{bottom:123.392000pt;}
.y144{bottom:123.498667pt;}
.y128{bottom:124.262667pt;}
.y167{bottom:124.720000pt;}
.y2b1{bottom:124.826667pt;}
.y2b9{bottom:125.744000pt;}
.y1f6{bottom:125.942667pt;}
.y325{bottom:126.049333pt;}
.y64{bottom:126.514667pt;}
.y42{bottom:126.646667pt;}
.y273{bottom:127.345333pt;}
.y2f8{bottom:127.377333pt;}
.y9c{bottom:129.308000pt;}
.y206{bottom:129.382667pt;}
.ya7{bottom:129.404000pt;}
.yd9{bottom:129.525333pt;}
.ybd{bottom:129.721333pt;}
.y105{bottom:129.728000pt;}
.y228{bottom:129.969333pt;}
.y76{bottom:130.146667pt;}
.y86{bottom:130.166667pt;}
.yb2{bottom:130.508000pt;}
.y1dd{bottom:130.525333pt;}
.y132{bottom:130.545333pt;}
.y315{bottom:130.573333pt;}
.ye4{bottom:130.605333pt;}
.y1b0{bottom:130.612000pt;}
.yab{bottom:131.093333pt;}
.y2f3{bottom:131.217333pt;}
.y2c5{bottom:131.577333pt;}
.yee{bottom:131.721333pt;}
.y15d{bottom:132.206667pt;}
.y27c{bottom:132.724000pt;}
.yfc{bottom:133.016000pt;}
.y1d2{bottom:133.444000pt;}
.y10f{bottom:133.612000pt;}
.y1d4{bottom:133.805333pt;}
.y171{bottom:133.938667pt;}
.y2ea{bottom:134.417333pt;}
.y13b{bottom:134.497333pt;}
.y1a6{bottom:134.682667pt;}
.y17d{bottom:134.696000pt;}
.yda{bottom:134.804000pt;}
.y23f{bottom:135.738667pt;}
.y1e9{bottom:135.953333pt;}
.y21{bottom:136.190667pt;}
.y31e{bottom:136.377333pt;}
.y25b{bottom:136.556000pt;}
.y2ce{bottom:137.022667pt;}
.y11c{bottom:137.041333pt;}
.y1c6{bottom:137.184000pt;}
.y334{bottom:137.358667pt;}
.yce{bottom:137.393333pt;}
.y217{bottom:137.632000pt;}
.y186{bottom:137.705333pt;}
.y2a5{bottom:138.070667pt;}
.y36{bottom:138.106667pt;}
.y29e{bottom:138.398667pt;}
.y309{bottom:138.502667pt;}
.y24a{bottom:139.106667pt;}
.yd{bottom:140.294667pt;}
.y32c{bottom:140.541333pt;}
.y63{bottom:141.026667pt;}
.y127{bottom:141.066667pt;}
.y2a9{bottom:141.650667pt;}
.y2fd{bottom:141.989333pt;}
.y2b{bottom:142.832000pt;}
.y41{bottom:143.450667pt;}
.y31{bottom:143.500000pt;}
.y55{bottom:143.572000pt;}
.y205{bottom:143.894667pt;}
.y4d{bottom:144.374667pt;}
.y220{bottom:144.645333pt;}
.y75{bottom:144.660000pt;}
.y19a{bottom:144.902667pt;}
.y1dc{bottom:145.037333pt;}
.y2b0{bottom:145.602667pt;}
.y18{bottom:145.744000pt;}
.y91{bottom:145.974667pt;}
.y1f5{bottom:146.717333pt;}
.y314{bottom:147.377333pt;}
.y2f2{bottom:148.020000pt;}
.ybc{bottom:148.053333pt;}
.y272{bottom:148.120000pt;}
.y283{bottom:148.966667pt;}
.y15c{bottom:149.009333pt;}
.y231{bottom:149.301333pt;}
.y143{bottom:149.800000pt;}
.yfb{bottom:149.820000pt;}
.y1d1{bottom:149.916000pt;}
.ya6{bottom:150.180000pt;}
.y191{bottom:150.504000pt;}
.y211{bottom:150.550667pt;}
.y28d{bottom:150.656000pt;}
.y296{bottom:151.048000pt;}
.y2e9{bottom:151.220000pt;}
.y131{bottom:151.320000pt;}
.y1a5{bottom:151.486667pt;}
.y11b{bottom:151.553333pt;}
.y2b8{bottom:151.832000pt;}
.y17c{bottom:152.130667pt;}
.y2c4{bottom:152.353333pt;}
.y14b{bottom:153.465333pt;}
.y27b{bottom:153.498667pt;}
.y2cd{bottom:153.826667pt;}
.y1c5{bottom:153.986667pt;}
.y226{bottom:154.044000pt;}
.ycb{bottom:154.197333pt;}
.y1ef{bottom:154.312000pt;}
.y9b{bottom:154.972000pt;}
.y13a{bottom:155.272000pt;}
.y2da{bottom:155.317333pt;}
.y62{bottom:155.538667pt;}
.y30d{bottom:155.814667pt;}
.y4{bottom:156.180000pt;}
.y23e{bottom:156.514667pt;}
.ye3{bottom:156.522667pt;}
.y1e8{bottom:156.729333pt;}
.yb1{bottom:156.809333pt;}
.y31d{bottom:157.153333pt;}
.y1f2{bottom:157.248000pt;}
.y126{bottom:157.869333pt;}
.y204{bottom:158.408000pt;}
.y104{bottom:158.441333pt;}
.yd8{bottom:158.610667pt;}
.y1fb{bottom:158.620000pt;}
.y185{bottom:158.660000pt;}
.y74{bottom:159.172000pt;}
.y29d{bottom:159.174667pt;}
.y1db{bottom:159.549333pt;}
.y249{bottom:159.882667pt;}
.y324{bottom:160.108000pt;}
.y40{bottom:160.254667pt;}
.y4c{bottom:160.846667pt;}
.ya2{bottom:161.417333pt;}
.y20{bottom:161.794667pt;}
.y303{bottom:162.358667pt;}
.y2a8{bottom:162.425333pt;}
.y16f{bottom:162.504000pt;}
.y1b9{bottom:162.881333pt;}
.y199{bottom:163.233333pt;}
.yc{bottom:163.508000pt;}
.y85{bottom:163.774667pt;}
.y313{bottom:163.848000pt;}
.y264{bottom:164.418667pt;}
.y2f1{bottom:164.492000pt;}
.yed{bottom:165.082667pt;}
.y21f{bottom:165.421333pt;}
.y230{bottom:165.773333pt;}
.y11a{bottom:166.065333pt;}
.y2af{bottom:166.377333pt;}
.ybb{bottom:166.384000pt;}
.yfa{bottom:166.624000pt;}
.y90{bottom:166.749333pt;}
.y210{bottom:167.353333pt;}
.y295{bottom:167.520000pt;}
.y2e8{bottom:167.692000pt;}
.y1d0{bottom:167.794667pt;}
.y1a4{bottom:167.958667pt;}
.y142{bottom:168.130667pt;}
.y54{bottom:168.332000pt;}
.y2a{bottom:168.436000pt;}
.yca{bottom:168.709333pt;}
.y271{bottom:168.896000pt;}
.y17{bottom:168.957333pt;}
.y252{bottom:169.137333pt;}
.y32b{bottom:169.253333pt;}
.y61{bottom:170.050667pt;}
.y10e{bottom:170.328000pt;}
.y2cc{bottom:170.630667pt;}
.y1c4{bottom:170.790667pt;}
.y225{bottom:170.848000pt;}
.ya5{bottom:170.954667pt;}
.y30{bottom:170.997333pt;}
.y190{bottom:171.278667pt;}
.y1af{bottom:171.942667pt;}
.y130{bottom:172.096000pt;}
.y2d9{bottom:172.120000pt;}
.y2a4{bottom:172.129333pt;}
.y2b7{bottom:172.608000pt;}
.ye2{bottom:173.326667pt;}
.y73{bottom:173.684000pt;}
.y1da{bottom:174.062667pt;}
.y14a{bottom:174.241333pt;}
.y125{bottom:174.673333pt;}
.y1ee{bottom:175.086667pt;}
.y30c{bottom:176.590667pt;}
.y3f{bottom:177.057333pt;}
.y282{bottom:177.346667pt;}
.y2f7{bottom:177.376000pt;}
.y25a{bottom:178.552000pt;}
.y17b{bottom:178.864000pt;}
.y35{bottom:179.056000pt;}
.y203{bottom:179.182667pt;}
.y28c{bottom:179.401333pt;}
.y4b{bottom:179.826667pt;}
.y29c{bottom:179.949333pt;}
.y84{bottom:180.577333pt;}
.y23d{bottom:181.241333pt;}
.y15b{bottom:182.617333pt;}
.y2c3{bottom:182.657333pt;}
.y302{bottom:183.133333pt;}
.y2e7{bottom:183.166667pt;}
.yc9{bottom:183.221333pt;}
.yf9{bottom:183.426667pt;}
.y2f{bottom:183.636000pt;}
.y1b8{bottom:183.657333pt;}
.y2e2{bottom:183.912000pt;}
.y20f{bottom:184.157333pt;}
.y135{bottom:184.330667pt;}
.y60{bottom:184.562667pt;}
.y312{bottom:184.637333pt;}
.yba{bottom:184.714667pt;}
.yb0{bottom:184.918667pt;}
.y263{bottom:185.193333pt;}
.y3{bottom:185.537333pt;}
.yec{bottom:185.857333pt;}
.yaa{bottom:186.405333pt;}
.y141{bottom:186.462667pt;}
.y2fc{bottom:186.674667pt;}
.y227{bottom:187.318667pt;}
.y333{bottom:187.357333pt;}
.y1f{bottom:187.398667pt;}
.y2cb{bottom:187.433333pt;}
.y166{bottom:187.524000pt;}
.y1c3{bottom:187.594667pt;}
.y9a{bottom:188.145333pt;}
.y72{bottom:188.196000pt;}
.y1d9{bottom:188.574667pt;}
.y248{bottom:188.594667pt;}
.y1a3{bottom:188.746667pt;}
.y2d8{bottom:188.924000pt;}
.y270{bottom:189.670667pt;}
.y251{bottom:189.912000pt;}
.ye1{bottom:190.129333pt;}
.y16e{bottom:191.070667pt;}
.y22f{bottom:191.177333pt;}
.y124{bottom:191.477333pt;}
.y18f{bottom:192.054667pt;}
.y16{bottom:192.170667pt;}
.y1ae{bottom:192.718667pt;}
.y103{bottom:193.130667pt;}
.y184{bottom:193.349333pt;}
.y2b6{bottom:193.382667pt;}
.y1e7{bottom:193.445333pt;}
.y53{bottom:193.722667pt;}
.y3e{bottom:193.861333pt;}
.y29{bottom:194.040000pt;}
.y323{bottom:194.166667pt;}
.y139{bottom:194.645333pt;}
.y119{bottom:195.089333pt;}
.yd7{bottom:195.206667pt;}
.y31c{bottom:195.445333pt;}
.y1f4{bottom:195.541333pt;}
.y294{bottom:195.581333pt;}
.y17a{bottom:195.668000pt;}
.y83{bottom:197.381333pt;}
.yc8{bottom:197.733333pt;}
.y198{bottom:197.786667pt;}
.y32a{bottom:197.998667pt;}
.y2f6{bottom:198.152000pt;}
.y2e1{bottom:198.424000pt;}
.y5f{bottom:199.074667pt;}
.yb{bottom:199.300000pt;}
.y259{bottom:199.326667pt;}
.y15a{bottom:199.420000pt;}
.y2c2{bottom:199.461333pt;}
.y10d{bottom:199.601333pt;}
.y2f0{bottom:199.638667pt;}
.y34{bottom:199.830667pt;}
.yc3{bottom:199.882667pt;}
.y202{bottom:199.958667pt;}
.y1be{bottom:199.990667pt;}
.yf8{bottom:200.230667pt;}
.y20e{bottom:200.629333pt;}
.y1fa{bottom:200.649333pt;}
.y8f{bottom:200.808000pt;}
.y2a3{bottom:200.841333pt;}
.y27a{bottom:202.322667pt;}
.y4a{bottom:202.458667pt;}
.y71{bottom:202.708000pt;}
.y1d8{bottom:202.754667pt;}
.y2d6{bottom:202.897333pt;}
.yaf{bottom:203.250667pt;}
.y311{bottom:203.861333pt;}
.y2ca{bottom:204.237333pt;}
.y1ce{bottom:205.153333pt;}
.y2d7{bottom:205.396000pt;}
.y247{bottom:205.397333pt;}
.y224{bottom:205.450667pt;}
.y262{bottom:205.969333pt;}
.yeb{bottom:206.633333pt;}
.ye0{bottom:206.933333pt;}
.y1ed{bottom:207.120000pt;}
.ya9{bottom:207.181333pt;}
.ya1{bottom:207.245333pt;}
.y21e{bottom:207.449333pt;}
.y123{bottom:207.948000pt;}
.y30b{bottom:207.993333pt;}
.y12f{bottom:208.114667pt;}
.y332{bottom:208.133333pt;}
.y28b{bottom:208.146667pt;}
.y118{bottom:209.602667pt;}
.y281{bottom:209.757333pt;}
.y23c{bottom:209.953333pt;}
.y140{bottom:210.106667pt;}
.y3d{bottom:210.665333pt;}
.y179{bottom:212.138667pt;}
.yc7{bottom:212.246667pt;}
.y1b7{bottom:212.301333pt;}
.y2e0{bottom:212.604000pt;}
.y1e{bottom:213.002667pt;}
.y216{bottom:213.241333pt;}
.y5e{bottom:213.586667pt;}
.y102{bottom:213.905333pt;}
.y183{bottom:214.125333pt;}
.y82{bottom:214.185333pt;}
.y1e6{bottom:214.220000pt;}
.y2e6{bottom:214.854667pt;}
.y26f{bottom:215.281333pt;}
.y15{bottom:215.382667pt;}
.yb9{bottom:216.117333pt;}
.y31b{bottom:216.220000pt;}
.y159{bottom:216.224000pt;}
.y2c1{bottom:216.265333pt;}
.y1f3{bottom:216.316000pt;}
.yf7{bottom:217.034667pt;}
.y70{bottom:217.220000pt;}
.ya4{bottom:218.297333pt;}
.y329{bottom:218.774667pt;}
.y1a2{bottom:218.833333pt;}
.y29b{bottom:219.321333pt;}
.y16d{bottom:219.636000pt;}
.y28{bottom:219.644000pt;}
.y2d5{bottom:219.701333pt;}
.y258{bottom:220.102667pt;}
.y2ef{bottom:220.413333pt;}
.y2c9{bottom:220.709333pt;}
.y201{bottom:220.733333pt;}
.y18e{bottom:220.766667pt;}
.y1c2{bottom:220.869333pt;}
.y149{bottom:221.584000pt;}
.y1cd{bottom:221.957333pt;}
.y2b5{bottom:222.094667pt;}
.y1cf{bottom:222.317333pt;}
.ya{bottom:222.512000pt;}
.y279{bottom:223.097333pt;}
.ydf{bottom:223.737333pt;}
.y117{bottom:224.114667pt;}
.y99{bottom:225.382667pt;}
.y1f9{bottom:225.621333pt;}
.yc6{bottom:226.758667pt;}
.yea{bottom:227.408000pt;}
.y3c{bottom:227.468000pt;}
.y1ec{bottom:227.896000pt;}
.y5d{bottom:228.098667pt;}
.y21d{bottom:228.225333pt;}
.y30a{bottom:228.768000pt;}
.y10c{bottom:228.876000pt;}
.y12e{bottom:228.889333pt;}
.y28a{bottom:228.922667pt;}
.yae{bottom:229.550667pt;}
.y2df{bottom:229.740000pt;}
.y1d7{bottom:229.852000pt;}
.y308{bottom:230.158667pt;}
.y280{bottom:230.532000pt;}
.y197{bottom:230.696000pt;}
.y23b{bottom:230.729333pt;}
.y81{bottom:230.988000pt;}
.y293{bottom:231.598667pt;}
.y178{bottom:232.230667pt;}
.y2c0{bottom:233.068000pt;}
.yf6{bottom:233.837333pt;}
.y138{bottom:234.017333pt;}
.y101{bottom:234.681333pt;}
.y8e{bottom:234.866667pt;}
.y52{bottom:235.054667pt;}
.y2a2{bottom:235.530667pt;}
.y1a1{bottom:235.637333pt;}
.y26e{bottom:236.057333pt;}
.y2{bottom:236.074667pt;}
.y2d4{bottom:236.504000pt;}
.y20d{bottom:236.660000pt;}
.y250{bottom:237.885333pt;}
.y1cc{bottom:238.428000pt;}
.y14{bottom:238.596000pt;}
.y1d{bottom:238.606667pt;}
.y116{bottom:238.626667pt;}
.y246{bottom:239.005333pt;}
.ya3{bottom:239.073333pt;}
.y33{bottom:239.202667pt;}
.y29a{bottom:240.097333pt;}
.yde{bottom:240.540000pt;}
.y257{bottom:240.877333pt;}
.y301{bottom:241.102667pt;}
.yc5{bottom:241.270667pt;}
.yd6{bottom:241.481333pt;}
.y310{bottom:241.509333pt;}
.y1ad{bottom:241.541333pt;}
.y182{bottom:242.173333pt;}
.y148{bottom:242.358667pt;}
.y5c{bottom:242.612000pt;}
.y2e5{bottom:243.600000pt;}
.y1f8{bottom:243.953333pt;}
.y3b{bottom:244.272000pt;}
.y27{bottom:245.248000pt;}
.y9{bottom:245.725333pt;}
.y98{bottom:246.158667pt;}
.y6f{bottom:246.244000pt;}
.y1e5{bottom:246.253333pt;}
.y1b6{bottom:246.990667pt;}
.yb8{bottom:247.520000pt;}
.y80{bottom:247.792000pt;}
.yad{bottom:247.882667pt;}
.y2f5{bottom:248.150667pt;}
.y18d{bottom:248.814667pt;}
.y49{bottom:249.000000pt;}
.y158{bottom:249.498667pt;}
.y2bf{bottom:249.540000pt;}
.y12d{bottom:249.665333pt;}
.yf5{bottom:250.641333pt;}
.y27f{bottom:251.308000pt;}
.y23a{bottom:251.504000pt;}
.y10b{bottom:251.936000pt;}
.y1a0{bottom:252.109333pt;}
.y292{bottom:252.374667pt;}
.y31a{bottom:252.936000pt;}
.y2d3{bottom:252.976000pt;}
.y115{bottom:253.138667pt;}
.y137{bottom:254.792000pt;}
.yc4{bottom:255.450667pt;}
.ye9{bottom:255.456000pt;}
.y245{bottom:255.476000pt;}
.y165{bottom:255.642667pt;}
.y16c{bottom:255.712000pt;}
.y51{bottom:255.829333pt;}
.y1cb{bottom:256.306667pt;}
.y26d{bottom:256.832000pt;}
.ydd{bottom:257.012000pt;}
.y5b{bottom:257.124000pt;}
.y20c{bottom:257.436000pt;}
.y289{bottom:257.634667pt;}
.y6e{bottom:260.424000pt;}
.y1f7{bottom:262.284000pt;}
.y177{bottom:262.948000pt;}
.y1{bottom:263.570667pt;}
.y1c{bottom:264.210667pt;}
.y7f{bottom:264.262667pt;}
.y97{bottom:266.933333pt;}
.yf4{bottom:267.445333pt;}
.y114{bottom:267.650667pt;}
.y1b5{bottom:267.766667pt;}
.y8d{bottom:268.925333pt;}
.y8{bottom:268.938667pt;}
.y18c{bottom:269.590667pt;}
.y26{bottom:270.852000pt;}
.y32{bottom:271.236000pt;}
.y5a{bottom:271.636000pt;}
.y10a{bottom:272.710667pt;}
.y19f{bottom:272.897333pt;}
.y2be{bottom:274.890667pt;}
.y136{bottom:275.568000pt;}
.y2e4{bottom:275.632000pt;}
.y27e{bottom:275.722667pt;}
.y6d{bottom:276.232000pt;}
.y3a{bottom:277.546667pt;}
.y26c{bottom:277.608000pt;}
.ydc{bottom:280.204000pt;}
.y113{bottom:281.830667pt;}
.yf3{bottom:283.916000pt;}
.y59{bottom:285.816000pt;}
.y7{bottom:314.865333pt;}
.h12{height:29.202446pt;}
.hf{height:29.499997pt;}
.ha{height:31.880400pt;}
.hd{height:33.187635pt;}
.h10{height:35.865600pt;}
.h9{height:36.768636pt;}
.hc{height:36.874903pt;}
.h13{height:37.003667pt;}
.h6{height:39.850400pt;}
.h11{height:40.378215pt;}
.hb{height:43.636400pt;}
.he{height:44.122658pt;}
.h5{height:44.250180pt;}
.h7{height:47.820800pt;}
.h4{height:53.941712pt;}
.h8{height:57.384800pt;}
.h3{height:77.691000pt;}
.h2{height:99.148400pt;}
.h0{height:340.157333pt;}
.h1{height:340.666667pt;}
.w0{width:604.724000pt;}
.w1{width:605.333333pt;}
.x0{left:0.000000pt;}
.x4{left:14.222667pt;}
.x2e{left:22.129333pt;}
.x1{left:37.794667pt;}
.x2a{left:39.168000pt;}
.x1a{left:41.780000pt;}
.x5{left:45.984000pt;}
.xb{left:48.300000pt;}
.x30{left:51.078667pt;}
.x10{left:54.732000pt;}
.x27{left:56.624000pt;}
.x37{left:58.117333pt;}
.xf{left:60.377333pt;}
.xd{left:62.901333pt;}
.x36{left:65.754667pt;}
.x6{left:67.314667pt;}
.x2c{left:69.212000pt;}
.xc{left:70.870667pt;}
.x9{left:73.862667pt;}
.x12{left:77.313333pt;}
.x38{left:81.026667pt;}
.x15{left:82.958667pt;}
.x32{left:85.650667pt;}
.x16{left:88.006667pt;}
.x2b{left:92.849333pt;}
.x3d{left:94.282667pt;}
.x1b{left:95.977333pt;}
.x45{left:98.272000pt;}
.x19{left:99.716000pt;}
.x2f{left:103.724000pt;}
.x20{left:110.508000pt;}
.x42{left:117.496000pt;}
.x35{left:119.208000pt;}
.x21{left:125.209333pt;}
.x14{left:128.122667pt;}
.x17{left:131.942667pt;}
.x1c{left:137.132000pt;}
.x8{left:142.362667pt;}
.x3c{left:146.350667pt;}
.x41{left:157.048000pt;}
.x1d{left:159.713333pt;}
.x11{left:161.996000pt;}
.x22{left:167.701333pt;}
.x34{left:170.630667pt;}
.x1e{left:182.296000pt;}
.x18{left:184.204000pt;}
.x1f{left:204.877333pt;}
.x2{left:211.340000pt;}
.xa{left:227.810667pt;}
.x39{left:231.620000pt;}
.x3e{left:248.901333pt;}
.x3a{left:255.366667pt;}
.x40{left:267.730667pt;}
.x33{left:269.777333pt;}
.x3f{left:274.008000pt;}
.x3b{left:280.472000pt;}
.x31{left:288.853333pt;}
.x23{left:298.898667pt;}
.x28{left:303.430667pt;}
.x43{left:304.786667pt;}
.xe{left:307.682667pt;}
.x2d{left:320.236000pt;}
.x29{left:322.260000pt;}
.x24{left:324.005333pt;}
.x44{left:329.892000pt;}
.x25{left:349.110667pt;}
.x26{left:374.216000pt;}
.x3{left:504.940000pt;}
.x13{left:565.870667pt;}
.x7{left:571.516000pt;}
}
</style>
<script>
/*
Copyright 2012 Mozilla Foundation
Copyright 2013 Lu Wang <coolwanglu@gmail.com>
Apachine License Version 2.0
*/
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
</script>
<script>
(function(){/*
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
pdf2htmlEX.Viewer=Viewer;})();
</script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar">
<div id="outline">
<ul><li><a class="l" href="#pf6" data-dest-detail='[6,"XYZ",28.346,255.118,null]'>I/O Operations</a><ul><li><a class="l" href="#pfa" data-dest-detail='[10,"XYZ",28.346,228.21,null]'>printf</a></li><li><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",28.346,212.909,null]'>Memory Mapped I/O</a></li><li><a class="l" href="#pf10" data-dest-detail='[16,"XYZ",28.346,228.21,null]'>Speed Up Raw Data Loading</a></li></ul></li><li><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",28.346,255.118,null]'>Memory Optimizations</a><ul><li><a class="l" href="#pf13" data-dest-detail='[19,"XYZ",28.346,203.33,null]'>Heap Memory</a></li><li><a class="l" href="#pf14" data-dest-detail='[20,"XYZ",28.346,179.411,null]'>Stack Memory</a></li><li><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",28.346,228.21,null]'>constexpr vs. static constexpr</a></li><li><a class="l" href="#pf16" data-dest-detail='[22,"XYZ",28.346,228.21,null]'>Cache Utilization</a></li><li><a class="l" href="#pf1a" data-dest-detail='[26,"XYZ",28.346,228.21,null]'>Memory Alignment</a></li><li><a class="l" href="#pf1f" data-dest-detail='[31,"XYZ",28.346,228.21,null]'>Memory Prefetch</a></li></ul></li><li><a class="l" href="#pf21" data-dest-detail='[33,"XYZ",28.346,255.118,null]'>Arithmetic Types</a><ul><li><a class="l" href="#pf23" data-dest-detail='[35,"XYZ",28.346,228.21,null]'>Data Types</a></li><li><a class="l" href="#pf24" data-dest-detail='[36,"XYZ",28.346,228.21,null]'>Arithmetic Operations</a></li><li><a class="l" href="#pf29" data-dest-detail='[41,"XYZ",28.346,228.21,null]'>Conversion</a></li><li><a class="l" href="#pf2a" data-dest-detail='[42,"XYZ",28.346,228.21,null]'>Floating-Point</a></li><li><a class="l" href="#pf2c" data-dest-detail='[44,"XYZ",28.346,228.21,null]'>Compiler Intrinsic Functions</a></li><li><a class="l" href="#pf32" data-dest-detail='[50,"XYZ",28.346,228.21,null]'>Value in a Range</a></li><li><a class="l" href="#pf34" data-dest-detail='[52,"XYZ",28.346,228.21,null]'>Lookup Table</a></li></ul></li><li><a class="l" href="#pf37" data-dest-detail='[55,"XYZ",28.346,255.118,null]'>Control Flow</a><ul><li><a class="l" href="#pf39" data-dest-detail='[57,"XYZ",28.346,183.273,null]'>Branches</a></li><li><a class="l" href="#pf3c" data-dest-detail='[60,"XYZ",28.346,214.113,null]'>Branch Hints - [[likely]] / [[unlikely]]</a></li><li><a class="l" href="#pf3d" data-dest-detail='[61,"XYZ",28.346,228.21,null]'>Signed/Unsigned Integers</a></li><li><a class="l" href="#pf3e" data-dest-detail='[62,"XYZ",28.346,228.21,null]'>Loops</a></li><li><a class="l" href="#pf3f" data-dest-detail='[63,"XYZ",28.346,228.21,null]'>Loop Hoisting</a></li><li><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",28.346,228.21,null]'>Loop Unrolling</a></li><li><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",28.346,228.21,null]'>Assertions</a></li><li><a class="l" href="#pf43" data-dest-detail='[67,"XYZ",28.346,228.21,null]'>Compiler Hints - [[assume]]/std::unreachable()</a></li><li><a class="l" href="#pf44" data-dest-detail='[68,"XYZ",28.346,199.45,null]'>Recursion</a></li></ul></li><li><a class="l" href="#pf46" data-dest-detail='[70,"XYZ",28.346,255.118,null]'>Functions</a><ul><li><a class="l" href="#pf47" data-dest-detail='[71,"XYZ",28.346,228.21,null]'>Function Call Cost</a></li><li><a class="l" href="#pf48" data-dest-detail='[72,"XYZ",28.346,228.21,null]'>Argument Passing</a></li><li><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",28.346,228.21,null]'>Function Inlining</a></li><li><a class="l" href="#pf51" data-dest-detail='[81,"XYZ",28.346,228.21,null]'>Pure Functions</a></li><li><a class="l" href="#pf53" data-dest-detail='[83,"XYZ",28.346,228.21,null]'>Constant Functions</a></li><li><a class="l" href="#pf54" data-dest-detail='[84,"XYZ",28.346,228.21,null]'>Pointers Aliasing</a></li></ul></li><li><a class="l" href="#pf58" data-dest-detail='[88,"XYZ",28.346,255.118,null]'>Object-Oriented Programming</a></li><li><a class="l" href="#pf5f" data-dest-detail='[95,"XYZ",28.346,255.118,null]'>Std Library and Other Language Aspects</a></li></ul></div>
</div>
<div id="page-container">
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Mo<span class="_ _0"></span>dern<span class="_ _1"> </span>C++</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Programming</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls0 ws0">24.<span class="_ _2"> </span>Perf<span class="_ _3"></span>ormance<span class="_ _4"> </span>Optimiza<span class="_ _5"></span>tion<span class="_ _4"> </span>I<span class="_ _0"></span>I</div><div class="t m0 x2 h4 y4 ff2 fs2 fc0 sc0 ls0 ws0">Code<span class="_ _6"> </span>Optimiza<span class="_ _7"></span>tion</div><div class="t m0 x1 h5 y5 ff3 fs3 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>ederico<span class="_ _8"> </span>Busato</div><div class="t m0 x3 h6 y6 ff4 fs4 fc0 sc0 ls0 ws0">2026-01-06</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y8 ff1 fs4 fc2 sc0 ls0 ws0">1<span class="_ _a"> </span><span class="fs2 fc0">I/O<span class="_ _6"> </span>Op<span class="_ _b"></span>erations</span></div><div class="t m0 x6 h9 y9 ff5 fs4 fc0 sc0 ls0 ws0">printf</div><div class="t m0 x6 h6 ya ff4 fs4 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _c"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _c"> </span>I/O</div><div class="t m0 x6 h6 yb ff4 fs4 fc0 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _c"> </span>Up<span class="_ _d"> </span>Ra<span class="_ _3"></span>w<span class="_ _c"> </span>Data<span class="_ _d"> </span>Loading</div><div class="t m0 x5 h8 yc ff1 fs4 fc2 sc0 ls0 ws0">2<span class="_ _a"> </span><span class="fs2 fc0">Memo<span class="_ _3"></span>ry<span class="_ _6"> </span>Optimizations</span></div><div class="t m0 x6 h6 yd ff4 fs4 fc0 sc0 ls0 ws0">Heap<span class="_ _d"> </span>Memory</div><div class="t m0 x6 h6 ye ff4 fs4 fc0 sc0 ls0 ws0">Stack<span class="_ _d"> </span>Memory</div><div class="t m0 x6 h6 yf ff6 fs4 fc0 sc0 ls0 ws0">constexpr<span class="_ _d"> </span><span class="ff4">vs.<span class="_ _9"> </span></span>static<span class="_"> </span>constexpr</div><div class="t m0 x6 h6 y10 ff4 fs4 fc0 sc0 ls0 ws0">Cache<span class="_ _d"> </span>Utilization</div><div class="t m0 x6 h6 y11 ff4 fs4 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _c"> </span>Alignment</div><div class="t m0 x6 h6 y12 ff4 fs4 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _c"> </span>Prefetch</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">1/93</div><a class="l" href="#pf6" data-dest-detail='[6,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:197.121000px;width:102.826000px;height:16.145000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfa" data-dest-detail='[10,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:181.140000px;width:33.374000px;height:10.123000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:163.397000px;width:91.130000px;height:11.821000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf10" data-dest-detail='[16,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:146.541000px;width:123.176000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:118.845000px;width:151.843000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf13" data-dest-detail='[19,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:102.288000px;width:60.495000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf14" data-dest-detail='[20,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:84.878000px;width:62.294000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:67.191000px;width:151.680000px;height:10.175000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf16" data-dest-detail='[22,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:51.996000px;width:73.281000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1a" data-dest-detail='[26,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:32.649000px;width:81.694000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1f" data-dest-detail='[31,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:15.239000px;width:73.917000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y14 ff1 fs4 fc2 sc0 ls0 ws0">3<span class="_ _a"> </span><span class="fs2 fc0">Arithmetic<span class="_ _6"> </span>T<span class="_ _5"></span>yp<span class="_ _b"></span>es</span></div><div class="t m0 x6 h6 y15 ff4 fs4 fc0 sc0 ls0 ws0">Data<span class="_ _d"> </span>T<span class="_ _3"></span>ypes</div><div class="t m0 x6 h6 y16 ff4 fs4 fc0 sc0 ls0 ws0">Arithmetic<span class="_ _d"> </span>Op<span class="_ _b"></span>erations</div><div class="t m0 x6 h6 y17 ff4 fs4 fc0 sc0 ls0 ws0">Conversion</div><div class="t m0 x6 h6 y18 ff4 fs4 fc0 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint</div><div class="t m0 x6 h6 y19 ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _d"> </span>Intrinsic<span class="_ _c"> </span>F<span class="_ _3"></span>unctions</div><div class="t m0 x6 h6 y1a ff4 fs4 fc0 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _c"> </span>in<span class="_ _d"> </span>a<span class="_ _c"> </span>Range</div><div class="t m0 x6 h6 y1b ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _d"> </span>T<span class="_ _3"></span>able</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">2/93</div><a class="l" href="#pf21" data-dest-detail='[33,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:175.161000px;width:115.119000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf23" data-dest-detail='[35,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:158.604000px;width:49.895000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf24" data-dest-detail='[36,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:141.194000px;width:94.534000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf29" data-dest-detail='[41,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:125.722000px;width:47.239000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2a" data-dest-detail='[42,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:106.375000px;width:61.436000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2c" data-dest-detail='[44,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:88.965000px;width:118.750000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf32" data-dest-detail='[50,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:71.555000px;width:73.156000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf34" data-dest-detail='[52,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:54.146000px;width:58.807000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y1c ff1 fs4 fc2 sc0 ls0 ws0">4<span class="_ _a"> </span><span class="fs2 fc0">Control<span class="_ _6"> </span>Flo<span class="_ _3"></span>w</span></div><div class="t m0 x6 h6 y1d ff4 fs4 fc0 sc0 ls0 ws0">Branches</div><div class="t m0 x6 h6 y1e ff4 fs4 fc0 sc0 ls0 ws0">Branch<span class="_ _d"> </span>Hints<span class="_ _c"> </span>-<span class="_ _d"> </span><span class="ff5">[[likely]]<span class="_"> </span>/<span class="_"> </span>[[unlikely]]</span></div><div class="t m0 x6 h6 y1f ff4 fs4 fc0 sc0 ls0 ws0">Signed/Unsigned<span class="_ _d"> </span>Integers</div><div class="t m0 x6 h6 y20 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>ops</div><div class="t m0 x6 h6 y21 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _d"> </span>Hoisting</div><div class="t m0 x6 h6 y22 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _d"> </span>Unrolling</div><div class="t m0 x6 h6 y23 ff4 fs4 fc0 sc0 ls0 ws0">Assertions</div><div class="t m0 x6 h6 y24 ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _d"> </span>Hints<span class="_ _c"> </span>-<span class="_ _d"> </span><span class="ff5">[[assume]]/std::unreachable()</span></div><div class="t m0 x6 h6 y25 ff4 fs4 fc0 sc0 ls0 ws0">Recursion</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">3/93</div><a class="l" href="#pf37" data-dest-detail='[55,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:195.335000px;width:86.536000px;height:13.782000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf39" data-dest-detail='[57,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:177.958000px;width:39.795000px;height:8.912000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3c" data-dest-detail='[60,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:156.598000px;width:197.592000px;height:11.069000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3d" data-dest-detail='[61,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:137.062000px;width:108.385000px;height:11.821000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3e" data-dest-detail='[62,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:118.413000px;width:26.594000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3f" data-dest-detail='[63,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:99.210000px;width:60.439000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:80.007000px;width:63.747000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:62.741000px;width:44.029000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf43" data-dest-detail='[67,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:41.601000px;width:225.958000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf44" data-dest-detail='[68,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:24.335000px;width:42.161000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y26 ff1 fs4 fc2 sc0 ls0 ws0">5<span class="_ _a"> </span><span class="fs2 fc0">F<span class="_ _3"></span>unctions</span></div><div class="t m0 x6 h6 y27 ff4 fs4 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _c"> </span>Call<span class="_ _d"> </span>Cost</div><div class="t m0 x6 h6 y28 ff4 fs4 fc0 sc0 ls0 ws0">Argument<span class="_ _d"> </span>Passing</div><div class="t m0 x6 h6 y29 ff4 fs4 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _c"> </span>Inlining</div><div class="t m0 x6 h6 y2a ff4 fs4 fc0 sc0 ls0 ws0">Pure<span class="_ _d"> </span>Functions</div><div class="t m0 x6 h6 y2b ff4 fs4 fc0 sc0 ls0 ws0">Constant<span class="_ _d"> </span>Functions</div><div class="t m0 x6 h6 y2c ff4 fs4 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _c"> </span>Aliasing</div><div class="t m0 x5 h8 y2d ff1 fs4 fc2 sc0 ls0 ws0">6<span class="_ _a"> </span><span class="fs2 fc0">Object-Oriented<span class="_ _6"> </span>Programming</span></div><div class="t m0 x5 h8 y2e ff1 fs4 fc2 sc0 ls0 ws0">7<span class="_ _a"> </span><span class="ff5 fs2 fc0">Std<span class="_ _6"> </span><span class="ff1">Lib<span class="_ _3"></span>ra<span class="_ _3"></span>ry<span class="_ _e"> </span>and<span class="_ _e"> </span>Other<span class="_ _e"> </span>Language<span class="_ _6"> </span>Asp<span class="_ _b"></span>ects</span></span></div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">4/93</div><a class="l" href="#pf46" data-dest-detail='[70,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:200.316000px;width:64.888000px;height:13.782000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf47" data-dest-detail='[71,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:182.940000px;width:79.535000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf48" data-dest-detail='[72,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:161.800000px;width:77.598000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:142.597000px;width:71.870000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf51" data-dest-detail='[81,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:125.331000px;width:64.702000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf53" data-dest-detail='[83,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:106.128000px;width:82.800000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf54" data-dest-detail='[84,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:84.988000px;width:71.676000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf58" data-dest-detail='[88,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:55.299000px;width:201.724000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf5f" data-dest-detail='[95,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:25.611000px;width:270.846000px;height:14.744000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf6" class="pf w0 h0" data-page-no="6"><div class="pc pc6 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y2f ff1 fs0 fc0 sc0 ls0 ws0">I/O<span class="_ _1"> </span>Op<span class="_ _0"></span>erations</div><a class="l" href="#pf6" data-dest-detail='[6,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:130.534000px;width:176.211000px;height:26.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf7" class="pf w0 h0" data-page-no="7"><div class="pc pc7 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Operations</div><div class="t m0 x9 h8 y30 ff1 fs2 fc3 sc0 ls0 ws0">I/O<span class="_ _e"> </span>Op<span class="_ _0"></span>erations<span class="_ _e"> </span>a<span class="_ _3"></span>re<span class="_ _e"> </span>o<span class="_ _3"></span>rders<span class="_ _e"> </span>of<span class="_ _e"> </span>magnitude<span class="_ _6"> </span>slo<span class="_ _3"></span>w<span class="_ _3"></span>er<span class="_ _e"> </span>than</div><div class="t m0 xa h8 y31 ff1 fs2 fc3 sc0 ls0 ws0">memo<span class="_ _3"></span>ry<span class="_ _e"> </span>accesses</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">5/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf8" class="pf w0 h0" data-page-no="8"><div class="pc pc8 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Streams</div><div class="t m0 x1 hb y32 ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>general,<span class="_ _c"> </span>input/output<span class="_ _8"> </span>operations<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>one<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>most<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive</div><div class="t m0 xb hb y33 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff6">endl<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _10"> </span><span class="ff6">ostream<span class="_ _10"> </span></span>only<span class="_ _c"> </span>when<span class="_ _f"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>strictly<span class="_ _c"> </span>necessary<span class="_ _c"> </span>(p<span class="_ _3"></span>refer<span class="_ _10"> </span><span class="ff6">\n<span class="_ _d"> </span></span>)</span></div><div class="t m0 xb hb y34 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Disable<span class="_ _c"> </span><span class="ff9">synchronization<span class="_ _f"> </span></span>with<span class="_ _10"> </span><span class="ff6">printf/scanf<span class="_ _d"> </span></span>:</span></div><div class="t m0 xc hc y35 ff6 fs4 fc0 sc0 ls0 ws0">std::ios_base::sync_with_stdio(false)</div><div class="t m0 xb hb y36 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Disable<span class="_ _c"> </span>IO<span class="_ _f"> </span><span class="ff9">flushing<span class="_ _9"> </span></span>when<span class="_ _f"> </span>mixing<span class="_ _10"> </span><span class="ff6">istream/ostream<span class="_ _10"> </span></span>calls:</span></div><div class="t m0 xc hc y37 ff6 fs4 fc0 sc0 ls0 ws0">&lt;istream_obj&gt;.tie(nullptr);</div><div class="t m0 xb hb y38 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Increase<span class="_ _c"> </span>IO<span class="_ _f"> </span><span class="ff9">buffer<span class="_ _c"> </span>size<span class="_ _0"></span></span>:</span></div><div class="t m0 xc hc y39 ff6 fs4 fc0 sc0 ls0 ws0">file.rdbuf()-&gt;pubsetbuf(buffer_var,<span class="_"> </span>buffer_size);</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">6/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf9" class="pf w0 h0" data-page-no="9"><div class="pc pc9 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Streams<span class="_ _8"> </span>-<span class="_ _9"> </span>Example</div><div class="t m0 x1 hd y3a ffa fs7 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _12"> </span><span class="fc5">&lt;iostream&gt;</span></div><div class="t m0 x1 hd y3b ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc7">main<span class="fc0">()<span class="_ _9"> </span>{</span></span></div><div class="t m0 xd hd y3c ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>ifstream<span class="_ _9"> </span>fin;</div><div class="t m0 xd hd y3d ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>--------------------------------------------------------</div><div class="t m0 xd hd y3e ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>ios_base<span class="fc8">::</span>sync_with_stdio(<span class="fc9">false</span>);<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>sync<span class="_ _e"> </span>disable</span></div><div class="t m0 xd hd y3f ffb fs7 fc0 sc0 ls0 ws0">fin.tie(<span class="ff5 fc9">nullptr</span>);<span class="_ _13"> </span><span class="ffa fc5">//<span class="_ _9"> </span>flush<span class="_ _9"> </span>disable</span></div><div class="t m0 xe hd y40 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>buffer<span class="_ _9"> </span>increase</div><div class="t m0 xd hd y41 ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_"> </span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">BUFFER_SIZE<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>1024<span class="_ _e"> </span>*<span class="_ _9"> </span>1024</span>;<span class="_ _14"> </span><span class="ffa fc5">//<span class="_ _9"> </span>1<span class="_ _9"> </span>MB</span></span></span></div><div class="t m0 xd hd y42 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_"> </span><span class="ffb fc0">buffer[BUFFER_SIZE];</span></div><div class="t m0 xd hd y43 ffb fs7 fc0 sc0 ls0 ws0">fin.rdbuf()<span class="fc8">-&gt;</span>pubsetbuf(buffer,<span class="_ _9"> </span>BUFFER_SIZE);</div><div class="t m0 xd hd y44 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>--------------------------------------------------------</div><div class="t m0 xd hd y45 ffb fs7 fc0 sc0 ls0 ws0">fin.open(filename);<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>Note:<span class="_ _e"> </span>open()<span class="_ _9"> </span>after<span class="_ _9"> </span>optimizations</span></div><div class="t m0 xd hd y46 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>IO<span class="_ _9"> </span>operations</div><div class="t m0 xd hd y47 ffb fs7 fc0 sc0 ls0 ws0">fin.close();</div><div class="t m0 x1 hd y48 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">7/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pfa" class="pf w0 h0" data-page-no="a"><div class="pc pca w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 he y7 ff5 fs3 fc1 sc0 ls0 ws0">printf</div><div class="t m0 xb hb y49 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff6">printf<span class="_ _10"> </span><span class="ff4">is<span class="_ _c"> </span>faster<span class="_ _c"> </span>than<span class="_ _10"> </span></span>ostream<span class="_ _10"> </span><span class="ff4">(see<span class="_ _f"> </span></span>speed<span class="_"> </span>test<span class="_"> </span>link<span class="ff4">)</span></span></div><div class="t m0 xb hb y4a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _10"> </span><span class="ff6">printf<span class="_ _10"> </span></span>call<span class="_ _c"> </span>with<span class="_ _c"> </span>a<span class="_ _f"> </span>simple<span class="_ _c"> </span>format<span class="_ _c"> </span>string<span class="_ _c"> </span>ending<span class="_ _f"> </span>with<span class="_ _10"> </span><span class="ff6">\n<span class="_ _10"> </span></span>is<span class="_ _c"> </span>converted<span class="_ _c"> </span>to<span class="_ _f"> </span>a</span></div><div class="t m0 xc hb y4b ff6 fs6 fc0 sc0 ls0 ws0">puts()<span class="_ _10"> </span><span class="ff4">call</span></div><div class="t m0 x6 hd y4c ffb fs7 fc0 sc0 ls0 ws0">printf(<span class="fca">&quot;Hello<span class="_ _9"> </span>World<span class="ff5 fcb">\n</span>&quot;</span>);</div><div class="t m0 x6 hd y4d ffb fs7 fc0 sc0 ls0 ws0">printf(<span class="fca">&quot;%s<span class="ff5 fcb">\n</span>&quot;</span>,<span class="_ _9"> </span>string);</div><div class="t m0 xb hb y4e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">No<span class="_ _c"> </span>optimization<span class="_ _f"> </span>if<span class="_ _c"> </span>the<span class="_ _f"> </span>string<span class="_ _c"> </span>is<span class="_ _f"> </span>not<span class="_ _c"> </span>ending<span class="_ _c"> </span>with<span class="_ _10"> </span><span class="ff6">\n<span class="_ _10"> </span></span>or<span class="_ _c"> </span>one<span class="_ _c"> </span>or<span class="_ _c"> </span>mo<span class="_ _3"></span>re<span class="_ _10"> </span><span class="ff6">%<span class="_ _10"> </span></span>a<span class="_ _3"></span>re</span></div><div class="t m0 x6 hb y4f ff4 fs6 fc0 sc0 ls0 ws0">detected<span class="_ _c"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>format<span class="_ _c"> </span>string</div><div class="t m0 xb hd y50 ffb fs7 fcc sc0 ls0 ws0">www.ciselant.de/projects/gcc_printf/gcc_printf.html</div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">8/93</div><a class="l" href="https://github.com/fmtlib/fmt#speed-tests"><div class="d m1" style="border-style:none;position:absolute;left:228.032000px;bottom:180.341000px;width:87.902000px;height:16.930000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://www.ciselant.de/projects/gcc_printf/gcc_printf.html"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:-0.714000px;width:242.067000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pfb" class="pf w0 h0" data-page-no="b"><div class="pc pcb w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _9"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _9"> </span>I/O</div><div class="t m0 x1 hb y51 ff4 fs6 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span><span class="ff1">memory-mapped<span class="_ _8"> </span>file<span class="_ _c"> </span></span>is<span class="_ _f"> </span>a<span class="_ _c"> </span>segment<span class="_ _f"> </span>of<span class="_ _c"> </span>virtual<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>that<span class="_ _c"> </span>has<span class="_ _f"> </span>b<span class="_ _b"></span>een<span class="_ _c"> </span>assigned<span class="_ _f"> </span>a</div><div class="t m0 x1 hb y52 ff4 fs6 fc0 sc0 ls0 ws0">direct<span class="_ _c"> </span>byte-fo<span class="_ _3"></span>r-b<span class="_ _3"></span>yte<span class="_ _f"> </span>co<span class="_ _3"></span>rrelation<span class="_ _f"> </span>with<span class="_ _c"> </span>some<span class="_ _f"> </span>p<span class="_ _b"></span>ortion<span class="_ _c"> </span>of<span class="_ _c"> </span>a<span class="_ _c"> </span>file</div><div class="t m0 x1 hb y53 ff1 fs6 fc0 sc0 ls0 ws0">Benefits:</div><div class="t m0 xb hb y54 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Orders<span class="_ _c"> </span>of<span class="_ _f"> </span>magnitude<span class="_ _c"> </span>faster<span class="_ _f"> </span>than<span class="_ _c"> </span>system<span class="_ _f"> </span>calls</span></div><div class="t m0 xb hb y55 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Input<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>“cached”<span class="_ _f"> </span>in<span class="_ _c"> </span>RAM<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>(page/file<span class="_ _c"> </span>cache)</span></div><div class="t m0 xb hb y56 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _c"> </span>file<span class="_ _f"> </span>requires<span class="_ _c"> </span>disk<span class="_ _f"> </span>access<span class="_ _c"> </span>only<span class="_ _f"> </span>when<span class="_ _c"> </span>a<span class="_ _c"> </span>new<span class="_ _f"> </span>page<span class="_ _c"> </span>b<span class="_ _0"></span>ounda<span class="_ _3"></span>ry<span class="_ _c"> </span>is<span class="_ _c"> </span>crossed</span></div><div class="t m0 xb hb y57 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Memo<span class="_ _3"></span>ry-mapping<span class="_ _f"> </span>may<span class="_ _c"> </span>b<span class="_ _3"></span>ypass<span class="_ _c"> </span>the<span class="_ _f"> </span>page/sw<span class="_ _3"></span>ap<span class="_ _f"> </span>file<span class="_ _c"> </span>completely</span></div><div class="t m0 xb hb y58 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Load<span class="_ _c"> </span>and<span class="_ _f"> </span>sto<span class="_ _3"></span>re<span class="_ _f"> </span><span class="ff9">raw<span class="_ _9"> </span></span>data<span class="_ _c"> </span>(no<span class="_ _c"> </span>parsing/conversion)</span></div><div class="t m0 x7 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">9/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pfc" class="pf w0 h0" data-page-no="c"><div class="pc pcc w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _9"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _9"> </span>I/O<span class="_ _8"> </span>-<span class="_ _9"> </span>Example<span class="_ _16"> </span>1/2</div><div class="t m0 x1 hf y59 ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>if<span class="_ _f"> </span>!defined(__linux__)</div><div class="t m0 xf hf y5a ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>error<span class="_ _f"> </span>It<span class="_ _9"> </span>works<span class="_ _8"> </span>only<span class="_ _8"> </span>on<span class="_ _8"> </span>linux</div><div class="t m0 x1 hf y5b ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>endif</div><div class="t m0 x1 hf y5c ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _6"> </span><span class="fc5">&lt;fcntl.h&gt;<span class="_ _17"> </span>//::open</span></div><div class="t m0 x1 hf y5d ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _6"> </span><span class="fc5">&lt;sys/mman.h&gt;<span class="_ _18"> </span>//::mmap</span></div><div class="t m0 x1 hf y5e ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _6"> </span><span class="fc5">&lt;sys/stat.h&gt;<span class="_ _18"> </span>//::open</span></div><div class="t m0 x1 hf y5f ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _6"> </span><span class="fc5">&lt;sys/types.h&gt;<span class="_ _19"> </span>//::open</span></div><div class="t m0 x1 hf y60 ffa fs5 fc4 sc0 ls0 ws0">#<span class="_ _11"> </span>include<span class="_ _6"> </span><span class="fc5">&lt;unistd.h&gt;<span class="_ _1a"> </span>//::lseek</span></div><div class="t m0 x1 hf y61 ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>usage:<span class="_ _1b"> </span>./exec<span class="_ _8"> </span>&lt;file&gt;<span class="_ _1b"> </span>&lt;byte_size&gt;<span class="_ _8"> </span>&lt;mode&gt;</div><div class="t m0 x1 hf y62 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc7">main<span class="fc0">(</span></span>int<span class="_"> </span><span class="ffc fc0">argc,<span class="_ _1b"> </span></span>char<span class="ffc fc8">*<span class="_ _8"> </span><span class="fc0">argv[])<span class="_ _1b"> </span>{</span></span></div><div class="t m0 x10 hf y63 ff5 fs5 fc6 sc0 ls0 ws0">size_t<span class="_"> </span><span class="ffc fc0">file_size<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>std<span class="fc8">::</span>stoll(argv[<span class="fc8">2</span>]);</span></div><div class="t m0 x10 hf y64 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_ _1c"> </span><span class="ffc fc0">is_read<span class="_ _1c"> </span><span class="fc8">=<span class="_ _8"> </span></span>std<span class="fc8">::</span>string(argv[<span class="fc8">3</span>])<span class="_ _1b"> </span><span class="fc8">==<span class="_ _1b"> </span><span class="fca">&quot;READ&quot;</span></span>;</span></div><div class="t m0 x10 hf y65 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">fd<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>is_read<span class="_ _1b"> </span><span class="fc8">?<span class="_ _8"> </span>::</span>open(argv[<span class="fc8">1</span>],<span class="_ _1b"> </span>O_RDONLY)<span class="_ _1b"> </span><span class="fc8">:</span></span></div><div class="t m0 x11 hf y66 ffc fs5 fc8 sc0 ls0 ws0">::<span class="fc0">open(argv[</span>1<span class="fc0">],<span class="_ _8"> </span>O_RDWR<span class="_ _1b"> </span></span>|<span class="_ _1b"> </span><span class="fc0">O_CREAT<span class="_ _8"> </span></span>|<span class="_ _1b"> </span><span class="fc0">O_TRUNC,<span class="_ _1b"> </span>S_IRUSR<span class="_ _8"> </span></span>|<span class="_ _1b"> </span><span class="fc0">S_IWUSR);</span></div><div class="t m0 x10 hf y67 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(fd<span class="_ _8"> </span><span class="fc8">==<span class="_ _1b"> </span>-1</span>)</span></div><div class="t m0 x12 hf y68 ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::open&quot;</span>)<span class="_ _1d"> </span><span class="ffa fc5">//<span class="_ _8"> </span>try<span class="_ _1b"> </span>to<span class="_ _8"> </span>get<span class="_ _1b"> </span>the<span class="_ _8"> </span>last<span class="_ _1b"> </span>byte</span></div><div class="t m0 x10 hf y69 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(<span class="fc8">::</span>lseek(fd,<span class="_ _8"> </span></span>static_cast<span class="ffc fc8">&lt;</span><span class="fc6">off_t<span class="ffc fc8">&gt;<span class="fc0">(file_size<span class="_ _1b"> </span></span>-<span class="_ _1b"> </span>1<span class="fc0">),<span class="_ _8"> </span>SEEK_SET)<span class="_ _1b"> </span></span>==<span class="_ _1b"> </span>-1<span class="fc0">)</span></span></span></div><div class="t m0 x12 hf y6a ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::lseek&quot;</span>)</div><div class="t m0 x10 hf y6b ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(<span class="fc8">!</span>is_read<span class="_ _8"> </span><span class="fc8">&amp;&amp;<span class="_ _1b"> </span>::</span>write(fd,<span class="_ _1b"> </span><span class="fca">&quot;&quot;</span>,<span class="_ _8"> </span><span class="fc8">1</span>)<span class="_ _1b"> </span><span class="fc8">!=<span class="_ _1b"> </span>1</span>)<span class="_ _8"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>try<span class="_ _8"> </span>to<span class="_ _1b"> </span>write</span></span></div><div class="t m0 x12 hf y6c ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::write&quot;</span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">10/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pfd" class="pf w0 h0" data-page-no="d"><div class="pc pcd w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _1b"> </span>Mapp<span class="_ _0"></span>ed<span class="_ _8"> </span>I/O<span class="_ _1b"> </span>Example<span class="_ _1e"> </span>2/2</div><div class="t m0 x1 hf y59 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">mm_mode<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>(is_read)<span class="_ _1b"> </span><span class="fc8">?<span class="_ _8"> </span></span>PROT_READ<span class="_ _1b"> </span><span class="fc8">:<span class="_ _1b"> </span></span>PROT_WRITE;</span></div><div class="t m0 x1 hf y5b ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Open<span class="_ _1b"> </span>Memory<span class="_ _8"> </span>Mapped<span class="_ _1b"> </span>file</div><div class="t m0 x1 hf y5c ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">mmap_ptr<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span></span>static_cast<span class="ffc fc8">&lt;</span><span class="fc6">char<span class="ffc fc8">*&gt;<span class="fc0">(</span></span></span></div><div class="t m0 x14 hf y5d ffc fs5 fc8 sc0 ls0 ws0">::<span class="fc0">mmap(<span class="ff5 fc9">nullptr</span>,<span class="_ _8"> </span>file_size,<span class="_ _1b"> </span>mm_mode,<span class="_ _1b"> </span>MAP_SHARED,<span class="_ _8"> </span>fd,<span class="_ _1b"> </span></span>0<span class="fc0">)<span class="_ _1b"> </span>);</span></div><div class="t m0 x1 hf y5f ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(mmap_ptr<span class="_ _8"> </span><span class="fc8">==<span class="_ _1b"> </span></span>MAP_FAILED)</span></div><div class="t m0 xf hf y60 ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::mmap&quot;</span>);</div><div class="t m0 x1 hf y61 ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Advise<span class="_ _1b"> </span>sequential<span class="_ _8"> </span>access</div><div class="t m0 x1 hf y62 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(<span class="fc8">::</span>madvise(mmap_ptr,<span class="_ _8"> </span>file_size,<span class="_ _1b"> </span>MADV_SEQUENTIAL)<span class="_ _1b"> </span><span class="fc8">==<span class="_ _8"> </span>-1</span>)</span></div><div class="t m0 xf hf y63 ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::madvise&quot;</span>);</div><div class="t m0 x1 hf y65 ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>MemoryMapped<span class="_ _1b"> </span>Operations</div><div class="t m0 x1 hf y66 ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>read<span class="_ _1b"> </span>from/write<span class="_ _8"> </span>to<span class="_ _1b"> </span>&quot;mmap_ptr&quot;<span class="_ _8"> </span>as<span class="_ _1b"> </span>a<span class="_ _8"> </span>normal<span class="_ _1b"> </span>array:<span class="_ _8"> </span>mmap_ptr[i]</div><div class="t m0 x1 hf y68 ffa fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Close<span class="_ _1b"> </span>Memory<span class="_ _8"> </span>Mapped<span class="_ _1b"> </span>file</div><div class="t m0 x1 hf y69 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(<span class="fc8">::</span>munmap(mmap_ptr,<span class="_ _8"> </span>file_size)<span class="_ _1b"> </span><span class="fc8">==<span class="_ _1b"> </span>-1</span>)</span></div><div class="t m0 xf hf y6a ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::munmap&quot;</span>);</div><div class="t m0 x1 hf y6b ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffc fc0">(<span class="fc8">::</span>close(fd)<span class="_ _8"> </span><span class="fc8">==<span class="_ _1b"> </span>-1</span>)</span></div><div class="t m0 xf hf y6c ffc fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::close&quot;</span>);</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">11/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pfe" class="pf w0 h0" data-page-no="e"><div class="pc pce w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _1b"> </span>Pa<span class="_ _3"></span>rsing<span class="_ _1f"> </span>1/2</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">Consider<span class="_ _c"> </span>using<span class="_ _c"> </span>optimized<span class="_ _f"> </span>(low-level)<span class="_ _c"> </span>numeric<span class="_ _c"> </span>conversion<span class="_ _c"> </span>routines:</div><div class="t m0 x1 hf y6e ff5 fs5 fc9 sc0 ls0 ws0">template<span class="ffc fc8">&lt;</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">N,<span class="_ _8"> </span></span>unsigned<span class="_ _1b"> </span><span class="ffc fc0">MUL,<span class="_ _1b"> </span></span>int<span class="_"> </span><span class="ffc fc0">INDEX<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0&gt;</span></span></span></div><div class="t m0 x1 hf y6f ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">fastStringToIntStr<span class="ffc fc0">;</span></span></div><div class="t m0 x1 hf y70 ff5 fs5 fc9 sc0 ls0 ws0">inline<span class="_"> </span><span class="fc6">unsigned<span class="_"> </span><span class="ffc fc7">fastStringToUnsigned<span class="fc0">(</span></span></span>const<span class="_"> </span><span class="fc6">char<span class="ffc fc8">*<span class="_ _1b"> </span><span class="fc0">str,<span class="_ _8"> </span></span></span>int<span class="_ _1b"> </span><span class="ffc fc0">length)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 xf hf y71 ff5 fs5 fc9 sc0 ls0 ws0">switch<span class="ffc fc0">(length)<span class="_ _8"> </span>{</span></div><div class="t m0 x15 hf y72 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_"> </span><span class="ffc fc8">10<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;10</span>,<span class="_ _1b"> </span><span class="fc8">1000000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y73 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">9<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>9</span>,<span class="_ _8"> </span><span class="fc8">100000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y74 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">8<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>8</span>,<span class="_ _8"> </span><span class="fc8">10000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y75 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">7<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>7</span>,<span class="_ _8"> </span><span class="fc8">1000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y76 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">6<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>6</span>,<span class="_ _8"> </span><span class="fc8">100000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y77 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">5<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>5</span>,<span class="_ _8"> </span><span class="fc8">10000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y78 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">4<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>4</span>,<span class="_ _8"> </span><span class="fc8">1000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y79 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">3<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>3</span>,<span class="_ _8"> </span><span class="fc8">100&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7a ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">2<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>2</span>,<span class="_ _8"> </span><span class="fc8">10&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7b ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _15"> </span><span class="ffc fc8">1<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _1b"> </span><span class="ffc fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _1b"> </span>1</span>,<span class="_ _8"> </span><span class="fc8">1&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7c ff5 fs5 fc9 sc0 ls0 ws0">default<span class="ffc fc8">:<span class="_ _8"> </span></span>return<span class="_"> </span><span class="ffc fc8">0<span class="fc0">;</span></span></div><div class="t m0 xf hf y7d ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hf y7e ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">12/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pff" class="pf w0 h0" data-page-no="f"><div class="pc pcf w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _1b"> </span>Pa<span class="_ _3"></span>rsing<span class="_ _1f"> </span>2/2</div><div class="t m0 x1 hd y7f ff5 fs7 fc9 sc0 ls0 ws0">template<span class="ffb fc8">&lt;</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">N,<span class="_ _9"> </span></span>unsigned<span class="_"> </span><span class="ffb fc0">MUL,<span class="_ _9"> </span></span>int<span class="_"> </span><span class="ffb fc0">INDEX<span class="fc8">&gt;</span></span></span></div><div class="t m0 x1 hd y80 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">fastStringToIntStr<span class="_"> </span><span class="ffb fc0">{</span></span></div><div class="t m0 xd hd y81 ff5 fs7 fc9 sc0 ls0 ws0">static<span class="_"> </span>inline<span class="_"> </span><span class="fc6">unsigned<span class="_"> </span><span class="ffb fc7">aux<span class="fc0">(</span></span></span>const<span class="_"> </span><span class="fc6">char<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">str)<span class="_ _9"> </span>{</span></span></span></div><div class="t m0 x16 hd y82 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span>static_cast<span class="ffb fc8">&lt;</span><span class="fc6">unsigned<span class="ffb fc8">&gt;<span class="fc0">(str[INDEX]<span class="_ _9"> </span></span>-<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">0</span>&apos;</span><span class="fc0">)<span class="_ _e"> </span></span>*<span class="_ _1b"> </span><span class="fc0">MUL<span class="_ _20"> </span></span>+</span></span></div><div class="t m0 x17 hd y83 ffb fs7 fc0 sc0 ls0 ws0">fastStringToIntStr<span class="fc8">&lt;</span>N<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span>1</span>,<span class="_ _e"> </span>MUL<span class="_ _1b"> </span><span class="fc8">/<span class="_ _21"> </span>10</span>,<span class="_ _9"> </span>INDEX<span class="_ _9"> </span><span class="fc8">+<span class="_ _21"> </span>1&gt;::</span>aux(str);</div><div class="t m0 xd hd y84 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hd y85 ffb fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 x1 hd y86 ff5 fs7 fc9 sc0 ls0 ws0">template<span class="ffb fc8">&lt;</span><span class="fc6">unsigned<span class="_"> </span><span class="ffb fc0">MUL,<span class="_ _9"> </span></span>int<span class="_"> </span><span class="ffb fc0">INDEX<span class="fc8">&gt;</span></span></span></div><div class="t m0 x1 hd y87 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">fastStringToIntStr<span class="ffb fc8">&lt;1<span class="fc0">,<span class="_ _9"> </span>MUL,<span class="_ _9"> </span>INDEX</span>&gt;<span class="_ _21"> </span><span class="fc0">{</span></span></span></div><div class="t m0 xd hd y88 ff5 fs7 fc9 sc0 ls0 ws0">static<span class="_"> </span>inline<span class="_"> </span><span class="fc6">unsigned<span class="_"> </span><span class="ffb fc7">aux<span class="fc0">(</span></span></span>const<span class="_"> </span><span class="fc6">char<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">str)<span class="_ _9"> </span>{</span></span></span></div><div class="t m0 x16 hd y89 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span>static_cast<span class="ffb fc8">&lt;</span><span class="fc6">unsigned<span class="ffb fc8">&gt;<span class="fc0">(str[INDEX]<span class="_ _9"> </span></span>-<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">0</span>&apos;</span><span class="fc0">);</span></span></span></div><div class="t m0 xd hd y8a ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hd y8b ffb fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 xb h10 y8c ffe fs7 fcc sc0 ls0 ws0">F<span class="_ _3"></span>aster<span class="_ _d"> </span>parsing:<span class="_ _f"> </span><span class="ffb">lemire.me/blog/tag/simd-swar-parsing</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">13/93</div><a class="l" href="https://lemire.me/blog/tag/simd-swar-parsing/"><div class="d m1" style="border-style:none;position:absolute;left:95.184000px;bottom:0.201000px;width:171.457000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf10" class="pf w0 h0" data-page-no="10"><div class="pc pc10 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _1b"> </span>Up<span class="_ _1b"> </span>Raw<span class="_ _8"> </span>Data<span class="_ _9"> </span>Loading<span class="_ _22"> </span>1/2</div><div class="t m0 xb hb y8d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Ha<span class="_ _3"></span>rd<span class="_ _f"> </span>disk<span class="_ _c"> </span>is<span class="_ _f"> </span>orders<span class="_ _c"> </span>of<span class="_ _c"> </span>magnitude<span class="_ _c"> </span>slow<span class="_ _3"></span>er<span class="_ _c"> </span>than<span class="_ _c"> </span>RAM</span></div><div class="t m0 xb hb y8e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>arsing<span class="_ _c"> </span>is<span class="_ _c"> </span>faster<span class="_ _f"> </span>than<span class="_ _c"> </span>data<span class="_ _f"> </span>reading</span></div><div class="t m0 xb hb y8f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>arsing<span class="_ _c"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>avoided<span class="_ _c"> </span>by<span class="_ _c"> </span>using<span class="_ _c"> </span><span class="ff9">binary<span class="_ _9"> </span></span>sto<span class="_ _3"></span>rage<span class="_ _f"> </span>and<span class="_ _10"> </span><span class="ff6">mmap</span></span></div><div class="t m0 xb hb y90 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Decreasing<span class="_ _c"> </span>the<span class="_ _f"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>ha<span class="_ _3"></span>rd<span class="_ _f"> </span>disk<span class="_ _c"> </span>accesses<span class="_ _f"> </span>improves<span class="_ _c"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span><span class="fff">→</span></span></div><div class="t m0 x6 hb y91 ff1 fs6 fc0 sc0 ls0 ws0">comp<span class="_ _3"></span>ression</div><div class="t m0 x1 hb y92 ff1 fs6 fc0 sc0 ls0 ws0">LZ4<span class="_ _c"> </span><span class="ff4">is<span class="_ _c"> </span>lossless<span class="_ _f"> </span>compression<span class="_ _c"> </span>algo<span class="_ _3"></span>rithm<span class="_ _c"> </span>providing<span class="_ _c"> </span><span class="ff9">extremely<span class="_ _c"> </span>fast<span class="_ _f"> </span>decomp<span class="_ _3"></span>ression<span class="_ _f"> </span><span class="ff4">up<span class="_ _f"> </span>to</span></span></span></div><div class="t m0 x1 hb y93 ff4 fs6 fc0 sc0 ls0 ws0">35%<span class="_ _c"> </span>of<span class="_ _1b"> </span><span class="ff6">memcpy<span class="_ _f"> </span></span>and<span class="_ _c"> </span>go<span class="_ _b"></span>o<span class="_ _b"></span>d<span class="_ _f"> </span>compression<span class="_ _c"> </span>ratio</div><div class="t m0 x1 h11 y94 ff6 fs6 fc0 sc0 ls0 ws0">github.com/lz4/lz4</div><div class="t m0 x1 hb y95 ff4 fs6 fc0 sc0 ls0 ws0">Another<span class="_ _c"> </span>alternative<span class="_ _c"> </span>is<span class="_ _f"> </span><span class="ff1">Facebo<span class="_ _b"></span>ok<span class="_ _8"> </span>zstd</span></div><div class="t m0 x1 h11 y96 ff6 fs6 fc0 sc0 ls0 ws0">github.com/facebook/zstd</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">14/93</div><a class="l" href="https://github.com/lz4/lz4"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:53.363000px;width:105.083000px;height:11.992000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/facebook/zstd"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:11.764000px;width:139.447000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf11" class="pf w0 h0" data-page-no="11"><div class="pc pc11 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _1b"> </span>Up<span class="_ _1b"> </span>Raw<span class="_ _8"> </span>Data<span class="_ _9"> </span>Loading<span class="_ _22"> </span>2/2</div><div class="t m0 x1 hb y97 ff4 fs6 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>erformance<span class="_ _c"> </span>compa<span class="_ _3"></span>rison<span class="_ _f"> </span>of<span class="_ _c"> </span>different<span class="_ _f"> </span>metho<span class="_ _b"></span>ds<span class="_ _c"> </span>for<span class="_ _c"> </span>a<span class="_ _c"> </span>file<span class="_ _c"> </span>of<span class="_ _f"> </span>4.8<span class="_ _c"> </span>GB<span class="_ _f"> </span>of<span class="_ _c"> </span>integers.<span class="_ _21"> </span>They<span class="_ _f"> </span>a<span class="_ _3"></span>re</div><div class="t m0 x1 hb y98 ff4 fs6 fc0 sc0 ls0 ws0">explicit<span class="_ _c"> </span>values<span class="_ _c"> </span>in<span class="_ _f"> </span>a<span class="_ _c"> </span>text<span class="_ _f"> </span>file<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>case<span class="_ _c"> </span>of<span class="_ _9"> </span><span class="ff6">ifstream<span class="_ _c"> </span></span>and<span class="_ _f"> </span><span class="ff6">memory<span class="_"> </span>mapped</span>,<span class="_ _c"> </span>while<span class="_ _c"> </span>binary</div><div class="t m0 x1 hb y99 ff4 fs6 fc0 sc0 ls0 ws0">values<span class="_ _c"> </span>for<span class="_ _c"> </span>LZ4</div><div class="t m0 x18 h6 y9a ff1 fs4 fc0 sc0 ls0 ws0">Load<span class="_ _c"> </span>Metho<span class="_ _b"></span>d<span class="_ _23"> </span>Exec.<span class="_ _21"> </span>Time<span class="_ _24"> </span>Sp<span class="_ _b"></span>eedup</div><div class="t m0 x19 h6 y9b ff6 fs4 fc0 sc0 ls0 ws0">ifstream<span class="_"> </span>+<span class="_"> </span>parsing<span class="_ _25"> </span><span class="ff4">102<span class="_ _26"> </span>667<span class="_ _d"> </span>ms<span class="_ _27"> </span>1.0x</span></div><div class="t m0 x19 h6 y9c ff6 fs4 fc0 sc0 ls0 ws0">memory<span class="_"> </span>mapped<span class="_"> </span>+<span class="_"> </span>parsing<span class="_"> </span>(first<span class="_"> </span>run)<span class="_ _28"> </span><span class="ff4">30<span class="_ _26"> </span>235<span class="_ _d"> </span>ms<span class="_ _27"> </span>3.4x</span></div><div class="t m0 x19 h6 y9d ff6 fs4 fc0 sc0 ls0 ws0">memory<span class="_"> </span>mapped<span class="_"> </span>+<span class="_"> </span>parsing<span class="_"> </span>(second<span class="_"> </span>run)<span class="_ _29"> </span><span class="ff4">22<span class="_ _26"> </span>509<span class="_ _d"> </span>ms<span class="_ _27"> </span>4.5x</span></div><div class="t m0 x19 h6 y9e ff6 fs4 fc0 sc0 ls0 ws0">memory<span class="_"> </span>mapped<span class="_"> </span>+<span class="_"> </span>lz4<span class="_"> </span>(first<span class="_"> </span>run)<span class="_ _2a"> </span><span class="ff4">3<span class="_ _26"> </span>914<span class="_ _d"> </span>ms<span class="_ _2b"> </span>26.2x</span></div><div class="t m0 x19 h6 y9f ff6 fs4 fc0 sc0 ls0 ws0">memory<span class="_"> </span>mapped<span class="_"> </span>+<span class="_"> </span>lz4<span class="_"> </span>(second<span class="_"> </span>run)<span class="_ _2c"> </span><span class="ff4">1<span class="_ _26"> </span>261<span class="_ _d"> </span>ms<span class="_ _2b"> </span>81.4x</span></div><div class="t m0 x1 h6 ya0 ff4 fs4 fc0 sc0 ls0 ws0">NOTE:<span class="_ _d"> </span>the<span class="_ _c"> </span>size<span class="_ _d"> </span>of<span class="_ _c"> </span>the<span class="_ _d"> </span>Lz4<span class="_ _c"> </span>comp<span class="_ _3"></span>ressed<span class="_ _c"> </span>file<span class="_ _d"> </span>is<span class="_ _c"> </span>1,8<span class="_ _d"> </span>GB</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">15/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf12" class="pf w0 h0" data-page-no="12"><div class="pc pc12 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 ya1 ff1 fs0 fc0 sc0 ls0 ws0">Memo<span class="_ _7"></span>ry</div><div class="t m0 x8 h2 ya2 ff1 fs0 fc0 sc0 ls0 ws0">Optimizations</div><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:149.618000px;width:241.993000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:115.247000px;width:158.930000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf13" class="pf w0 h0" data-page-no="13"><div class="pc pc13 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Heap<span class="_ _1b"> </span>Memo<span class="_ _3"></span>ry</div><div class="t m0 xb hb ya3 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Dynamic<span class="_ _c"> </span>heap<span class="_ _f"> </span>allo<span class="_ _b"></span>cation<span class="_ _c"> </span>is<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive<span class="_ _0"></span><span class="ff4">:<span class="_ _9"> </span>implementation<span class="_ _f"> </span>dep<span class="_ _b"></span>endent<span class="_ _c"> </span>and<span class="_ _f"> </span>interact</span></span></div><div class="t m0 x6 hb ya4 ff4 fs6 fc0 sc0 ls0 ws0">with<span class="_ _c"> </span>the<span class="_ _c"> </span>op<span class="_ _0"></span>erating<span class="_ _c"> </span>system</div><div class="t m0 xb hb ya5 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Many<span class="_ _c"> </span>small<span class="_ _c"> </span>heap<span class="_ _f"> </span>allo<span class="_ _b"></span>cations<span class="_ _c"> </span>are<span class="_ _c"> </span>mo<span class="_ _3"></span>re<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive<span class="_ _c"> </span>than<span class="_ _c"> </span>one<span class="_ _f"> </span>large<span class="_ _c"> </span>memo<span class="_ _3"></span>ry<span class="_ _c"> </span>allo<span class="_ _b"></span>cation</span></div><div class="t m0 x6 h6 ya6 ff4 fs4 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>default<span class="_ _c"> </span>page<span class="_ _d"> </span>size<span class="_ _c"> </span>on<span class="_ _d"> </span>Linux<span class="_ _c"> </span>is<span class="_ _d"> </span>4<span class="_ _c"> </span>KB.<span class="_ _d"> </span>Fo<span class="_ _3"></span>r<span class="_ _c"> </span>smaller/multiple<span class="_ _d"> </span>sizes,<span class="_ _c"> </span>C++<span class="_ _d"> </span>uses<span class="_ _c"> </span>a</div><div class="t m0 x6 h6 ya7 ff4 fs4 fc0 sc0 ls0 ws0">sub-allo<span class="_ _b"></span>cato<span class="_ _3"></span>r</div><div class="t m0 xb hb ya8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Allo<span class="_ _b"></span>cations<span class="_ _c"> </span>within<span class="_ _f"> </span>the<span class="_ _c"> </span>page<span class="_ _f"> </span>size<span class="_ _c"> </span>is<span class="_ _f"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>la<span class="_ _3"></span>rger<span class="_ _f"> </span>allo<span class="_ _b"></span>cations<span class="_ _9"> </span><span class="ff4">(sub-allo<span class="_ _b"></span>cato<span class="_ _3"></span>r)</span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">16/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf14" class="pf w0 h0" data-page-no="14"><div class="pc pc14 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stack<span class="_ _1b"> </span>Memo<span class="_ _3"></span>ry</div><div class="t m0 xb hb ya9 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Stack<span class="_ _c"> </span>memory<span class="_ _c"> </span>is<span class="_ _c"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>heap<span class="_ _c"> </span>memory<span class="ff4">.<span class="_ _9"> </span>The<span class="_ _f"> </span>stack<span class="_ _c"> </span>memory<span class="_ _c"> </span>p<span class="_ _3"></span>rovides<span class="_ _f"> </span>high</span></span></div><div class="t m0 x6 hb yaa ff4 fs6 fc0 sc0 ls0 ws0">lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _3"></span>,<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>small<span class="_ _f"> </span>(cache<span class="_ _c"> </span>fit),<span class="_ _f"> </span>and<span class="_ _c"> </span>its<span class="_ _c"> </span>size<span class="_ _f"> </span>is<span class="_ _c"> </span>known<span class="_ _c"> </span>at<span class="_ _c"> </span>compile-time.</div><div class="t m0 xb hb yab ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff5">static<span class="_ _10"> </span><span class="ff4">stack<span class="_ _c"> </span>allo<span class="_ _b"></span>cations<span class="_ _c"> </span>produce<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _f"> </span>it<span class="_ _c"> </span>avoids<span class="_ _f"> </span>filling<span class="_ _c"> </span>the<span class="_ _f"> </span>stack</span></span></div><div class="t m0 x6 hb yac ff4 fs6 fc0 sc0 ls0 ws0">each<span class="_ _c"> </span>time<span class="_ _c"> </span>the<span class="_ _f"> </span>function<span class="_ _c"> </span>is<span class="_ _f"> </span>reached.</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">17/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf15" class="pf w0 h0" data-page-no="15"><div class="pc pc15 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">constexpr<span class="_ _1b"> </span><span class="ff1">vs.<span class="_ _2d"> </span></span>static<span class="_"> </span>constexpr</div><div class="t m0 x1a hb y6d ff5 fs6 fc0 sc0 ls0 ws0">constexpr<span class="_ _10"> </span><span class="ff4">and<span class="_ _10"> </span></span>static<span class="_"> </span>constexpr<span class="_ _10"> </span><span class="ff4">va<span class="_ _3"></span>riables<span class="_ _c"> </span>could<span class="_ _f"> </span>produce<span class="_ _c"> </span>very<span class="_ _f"> </span>different<span class="_ _c"> </span>co<span class="_ _b"></span>de.</span></div><div class="t m0 xb h6 yad ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Stack-lo<span class="_ _b"></span>cal<span class="_ _12"> </span><span class="ff5">constexpr<span class="_ _12"> </span></span>variable<span class="_ _d"> </span>can<span class="_ _d"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>slightly<span class="_ _d"> </span>faster<span class="_ _c"> </span>than<span class="_ _12"> </span><span class="ff5">static<span class="_"> </span>constexpr<span class="_ _12"> </span></span>for</span></div><div class="t m0 x6 h6 yae ff4 fs4 fc0 sc0 ls0 ws0">sizes<span class="_ _d"> </span>less<span class="_ _c"> </span>than<span class="_ _10"> </span>136144<span class="_ _d"> </span>bytes<span class="_ _d"> </span>.</div><div class="t m0 xb h6 yaf ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Larger<span class="_ _d"> </span>data,<span class="_ _d"> </span>such<span class="_ _c"> </span>as<span class="_ _d"> </span>greater<span class="_ _c"> </span>than<span class="_ _d"> </span><span class="fff"></span>2KB,<span class="_ _c"> </span>cop<span class="_ _3"></span>ying<span class="_ _c"> </span>into<span class="_ _d"> </span>the<span class="_ _c"> </span>stack<span class="_ _d"> </span>b<span class="_ _b"></span>ecomes<span class="_ _c"> </span>very<span class="_ _d"> </span>exp<span class="_ _b"></span>ensive,</span></div><div class="t m0 x6 h6 yb0 ff4 fs4 fc0 sc0 ls0 ws0">making<span class="_ _12"> </span><span class="ff5">static<span class="_"> </span>constexpr<span class="_ _12"> </span></span>much<span class="_ _c"> </span>faster.</div><div class="t m0 xb h6 yb1 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff5">static<span class="_"> </span>constexpr<span class="_ _12"> </span><span class="ff4">is<span class="_ _d"> </span>faster<span class="_ _c"> </span>with<span class="_ _d"> </span>low<span class="_ _3"></span>er<span class="_ _c"> </span>optimization<span class="_ _d"> </span>options<span class="_ _c"> </span>(<span class="_ _26"> </span><span class="ff6">-O0<span class="_ _d"> </span></span>,<span class="_ _12"> </span><span class="ff6">-O1<span class="_ _d"> </span></span>).</span></span></div><div class="t m0 xb h6 yb2 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff6">clang<span class="_ _d"> </span><span class="ff4">and<span class="_ _c"> </span></span>msvc<span class="_ _d"> </span><span class="ff4">are<span class="_ _d"> </span>generally<span class="_ _c"> </span>emits<span class="_ _d"> </span>identical<span class="_ _c"> </span>code<span class="_ _c"> </span>in<span class="_ _d"> </span>b<span class="_ _b"></span>oth<span class="_ _c"> </span>cases.</span></span></div><div class="t m0 xb h6 yb3 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff5">constexpr<span class="_ _12"> </span><span class="ff4">variable<span class="_ _d"> </span>with<span class="_ _d"> </span>dynamic<span class="_ _c"> </span>indexing<span class="_ _d"> </span>produces<span class="_ _c"> </span>very<span class="_ _d"> </span>inefficient<span class="_ _c"> </span>code<span class="_ _c"> </span>with<span class="_ _d"> </span>GCC.</span></span></div><div class="t m0 x1 hf yb4 ffa fs5 fc5 sc0 ls0 ws0">//constexpr<span class="_ _2e"> </span>int<span class="_ _8"> </span>array[]<span class="_ _1b"> </span>=<span class="_ _8"> </span>{1,2,3,4,5,6,7,8,9};<span class="_ _1b"> </span>//<span class="_ _8"> </span>bad<span class="_ _1b"> </span>performance<span class="_ _8"> </span>with<span class="_ _1b"> </span>GCC</div><div class="t m0 x1 hf yb5 ff5 fs5 fc9 sc0 ls0 ws0">static<span class="_"> </span>constexpr<span class="_"> </span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">array[]<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span></span>{<span class="fc8">1</span>,<span class="fc8">2</span>,<span class="fc8">3</span>,<span class="fc8">4</span>,<span class="fc8">5</span>,<span class="fc8">6</span>,<span class="fc8">7</span>,<span class="fc8">8</span>,<span class="fc8">9</span>};</span></span></div><div class="t m0 x1 hf yb6 ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffc fc0">array[index];</span></div><div class="t m0 xb hd yb7 ffb fs7 fcc sc0 ls0 ws0">C++<span class="_ _9"> </span>Weekly<span class="_ _9"> </span>-<span class="_ _21"> </span>Ep<span class="_ _9"> </span>315<span class="_ _21"> </span>-<span class="_ _9"> </span>constexpr<span class="_ _21"> </span>vs<span class="_ _9"> </span>static<span class="_ _9"> </span>constexpr</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">18/93</div><a class="l" href="https://www.youtube.com/watch?v=IDQ0ng8RIqs"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:2.030000px;width:242.067000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf16" class="pf w0 h0" data-page-no="16"><div class="pc pc16 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Cache<span class="_ _1b"> </span>Utilization</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Maximize<span class="_ _f"> </span>cache<span class="_ _8"> </span>utilization<span class="ff4">:</span></div><div class="t m0 xb hb yb8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Maximize<span class="_ _c"> </span>spatial<span class="_ _f"> </span>and<span class="_ _c"> </span>temp<span class="_ _b"></span>oral<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _f"> </span>(see<span class="_ _c"> </span>next<span class="_ _f"> </span>examples)</span></div><div class="t m0 xb hb yb9 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>small<span class="_ _f"> </span>data<span class="_ _c"> </span>types</span></div><div class="t m0 xb hb yba ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>or<span class="_ _c"> </span>basic<span class="_ _c"> </span>set<span class="_ _f"> </span>query<span class="_ _c"> </span>and<span class="_ _f"> </span>insertion:</span></div><div class="t m0 x12 h6 ybb ff8 fs4 fc0 sc0 ls0 ws0">◦<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _12"> </span><span class="ff6">std::vector&lt;bool&gt;<span class="_ _12"> </span></span>over<span class="_ _c"> </span>a<span class="_ _d"> </span><span class="ff9">dynamic<span class="_ _8"> </span></span>arra<span class="_ _3"></span>y<span class="_ _c"> </span>of<span class="_ _12"> </span><span class="ff6">bool</span></span></div><div class="t m0 x12 h6 ybc ff8 fs4 fc0 sc0 ls0 ws0">◦<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _12"> </span><span class="ff6">std::bitset<span class="_ _12"> </span></span>over<span class="_ _12"> </span><span class="ff6">std::vector&lt;bool&gt;<span class="_ _12"> </span></span>if<span class="_ _c"> </span>the<span class="_ _d"> </span>data<span class="_ _c"> </span>size<span class="_ _d"> </span>is<span class="_ _c"> </span>known<span class="_ _d"> </span>in</span></div><div class="t m0 x1b h6 ybd ff4 fs4 fc0 sc0 ls0 ws0">advance<span class="_ _d"> </span>or<span class="_ _d"> </span>b<span class="_ _b"></span>ounded.<span class="_ _1b"> </span><span class="ff9">Fixed-size<span class="_ _8"> </span></span>a<span class="_ _3"></span>rray<span class="_ _d"> </span>of<span class="_ _12"> </span><span class="ff6">bool<span class="_ _12"> </span></span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>alw<span class="_ _3"></span>ays<span class="_ _d"> </span>replaced<span class="_ _d"> </span>by</div><div class="t m0 x19 hc ybe ff6 fs4 fc0 sc0 ls0 ws0">std::bitset</div><div class="t m0 x12 h6 ybf ff8 fs4 fc0 sc0 ls0 ws0">◦<span class="_ _6"> </span><span class="ff4">Rememb<span class="_ _b"></span>er<span class="_ _d"> </span>that<span class="_ _c"> </span>common<span class="_ _d"> </span>std<span class="_ _c"> </span>algorithms<span class="_ _d"> </span>could<span class="_ _d"> </span>not<span class="_ _c"> </span>be<span class="_ _c"> </span>optimized<span class="_ _d"> </span>for<span class="_ _d"> </span>these<span class="_ _c"> </span>containers,</span></div><div class="t m0 x1b h6 yc0 ff4 fs4 fc0 sc0 ls0 ws0">e.g.<span class="_ _2f"> </span><span class="ff6">std::count_if<span class="_ _26"> </span></span>,<span class="_ _10"> </span><span class="ff6">std::find</span></div><div class="t m0 xb hb yc1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span><span class="ff9">stack<span class="_ _9"> </span></span>data<span class="_ _c"> </span>structures<span class="_ _f"> </span><span class="ff9">instead<span class="_ _9"> </span></span>of<span class="_ _f"> </span>heap<span class="_ _c"> </span>data<span class="_ _f"> </span>structures,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span><span class="ff6">std::vector</span></span></div><div class="t m0 x6 hb yc2 ff4 fs6 fc0 sc0 ls0 ws0">vs.<span class="_ _4"> </span><span class="ff6">static_vector<span class="_ _2d"> </span><span class="ff10 fs8"></span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">19/93</div><a class="l" href="https://github.com/volt-software/Ichor/blob/dev/include/ichor/stl/StaticVector.h"><div class="d m1" style="border-style:none;position:absolute;left:66.259000px;bottom:11.106000px;width:91.432000px;height:16.327000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf17" class="pf w0 h0" data-page-no="17"><div class="pc pc17 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Spatial<span class="_ _1b"> </span>Lo<span class="_ _b"></span>cality<span class="_ _8"> </span>Example<span class="_ _30"> </span>1/2</div><div class="t m0 x1 hb y6d ff6 fs6 fc0 sc0 ls0 ws0">A,<span class="_"> </span>B,<span class="_"> </span>C<span class="_ _c"> </span><span class="ff4">matrices<span class="_ _c"> </span>of<span class="_ _f"> </span>size<span class="_ _c"> </span><span class="ff9">N<span class="_ _c"> </span><span class="fff">×<span class="_ _31"> </span></span>N</span></span></div><div class="t m0 x1a h11 yc3 ff6 fs6 fc0 sc0 ls0 ws0">C<span class="_"> </span>=<span class="_"> </span>A<span class="_"> </span>*<span class="_"> </span>B</div><div class="t m0 x1c hf yc4 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">i<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>i<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>i<span class="fc8">++</span>)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 x1d hf yc5 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">j<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>j<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>j<span class="fc8">++</span>)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 x1e hf yc6 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">sum<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span>0</span>;</span></div><div class="t m0 x1e hf yc7 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">k<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>k<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>k<span class="fc8">++</span>)</span></span></div><div class="t m0 x1f hf yc8 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i][k]<span class="_ _1b"> </span><span class="fc8">*<span class="_ _8"> </span></span>B[k][j];<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>row<span class="_ _1b"> </span><span class="ff11">×<span class="_ _8"> </span></span>column</span></div><div class="t m0 x1e hf yc9 ffc fs5 fc0 sc0 ls0 ws0">C[i][j]<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>sum;</div><div class="t m0 x1d hf yca ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1c hf ycb ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1a h11 ycc ff6 fs6 fc0 sc0 ls0 ws0">C<span class="_"> </span>=<span class="_"> </span>A<span class="_"> </span>*<span class="_"> </span>B</div><div class="t m0 x20 h12 ycd ff12 fs5 fc0 sc0 ls0 ws0">T</div><div class="t m0 x1c hf yce ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">i<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>i<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>i<span class="fc8">++</span>)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 x1d hf ycf ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">j<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>j<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>j<span class="fc8">++</span>)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 x1e hf yd0 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">sum<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span>0</span>;</span></div><div class="t m0 x1e hf yd1 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">k<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>k<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>k<span class="fc8">++</span>)</span></span></div><div class="t m0 x1f hf yd2 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i][k]<span class="_ _1b"> </span><span class="fc8">*<span class="_ _8"> </span><span class="fc3">B[j][k]</span></span>;<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>row<span class="_ _1b"> </span><span class="ff11">×<span class="_ _8"> </span></span>row</span></div><div class="t m0 x1e hf yd3 ffc fs5 fc0 sc0 ls0 ws0">C[i][j]<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>sum;</div><div class="t m0 x1d hf yd4 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1c hf yd5 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">20/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf18" class="pf w0 h0" data-page-no="18"><div class="pc pc18 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Spatial<span class="_ _1b"> </span>Lo<span class="_ _b"></span>cality<span class="_ _8"> </span>Example<span class="_ _30"> </span>2/2</div><div class="t m0 x1 hb yd6 ff1 fs6 fc0 sc0 ls0 ws0">Benchma<span class="_ _3"></span>rk:</div><div class="t m0 x16 h11 yd7 ff5 fs6 fc0 sc0 ls0 ws0">N<span class="_ _32"> </span><span class="ff6">64<span class="_ _33"> </span>128<span class="_ _33"> </span>256<span class="_ _33"> </span>512<span class="_ _34"> </span>1024</span></div><div class="t m0 x16 hb yd8 ff6 fs6 fc0 sc0 ls0 ws0">A<span class="_"> </span>*<span class="_"> </span>B<span class="_ _35"> </span><span class="ff13">&lt;<span class="_ _c"> </span><span class="ff4">1<span class="_ _c"> </span>ms<span class="_ _36"> </span>5<span class="_ _c"> </span>ms<span class="_ _28"> </span>29<span class="_ _c"> </span>ms<span class="_ _37"> </span>141<span class="_ _c"> </span>ms<span class="_ _38"> </span>1,030<span class="_ _c"> </span>ms</span></span></div><div class="t m0 x16 h11 yd9 ff6 fs6 fc0 sc0 ls0 ws0">A<span class="_"> </span>*<span class="_"> </span>B</div><div class="t m0 x21 h12 yda ff12 fs5 fc0 sc0 ls0 ws0">T</div><div class="t m0 x22 hb yd9 ff13 fs6 fc0 sc0 ls0 ws0">&lt;<span class="_ _c"> </span><span class="ff4">1<span class="_ _c"> </span>ms<span class="_ _36"> </span>2<span class="_ _c"> </span>ms<span class="_ _36"> </span>6<span class="_ _c"> </span>ms<span class="_ _28"> </span>48<span class="_ _c"> </span>ms<span class="_ _37"> </span>385<span class="_ _c"> </span>ms</span></div><div class="t m0 x16 hb ydb ff6 fs6 fc0 sc0 ls0 ws0">Speedup<span class="_ _39"> </span><span class="ff4">/<span class="_ _3a"> </span>2.5x<span class="_ _3a"> </span>4.8x<span class="_ _3a"> </span>2.9x<span class="_ _3a"> </span>2.7x</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">21/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf19" class="pf w0 h0" data-page-no="19"><div class="pc pc19 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>emporal-Locality<span class="_ _8"> </span>Example</div><div class="t m0 x1 hb ydc ff1 fs6 fc0 sc0 ls0 ws0">Sp<span class="_ _b"></span>eeding<span class="_ _8"> </span>up<span class="_ _f"> </span>a<span class="_ _8"> </span>random-access<span class="_ _8"> </span>function</div><div class="t m0 x1 hd ydd ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _3b"> </span><span class="ffa fc5">//<span class="_ _9"> </span>V1</span></span></span></div><div class="t m0 xd hd yde ffb fs7 fc0 sc0 ls0 ws0">out_array[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>in_array[hash(i)];</div><div class="t m0 x23 hd ydd ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">K<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>K<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>K<span class="_ _21"> </span><span class="fc8">+=<span class="_ _9"> </span></span>CACHE)<span class="_ _9"> </span>{<span class="_ _21"> </span><span class="ffa fc5">//<span class="_ _9"> </span>V2</span></span></span></div><div class="t m0 x24 hd yde ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></span></div><div class="t m0 x25 hd ydf ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>hash(i);</span></div><div class="t m0 x25 hd ye0 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _9"> </span></span>K<span class="_ _21"> </span><span class="fc8">&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>K<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span></span>CACHE)</span></div><div class="t m0 x26 hd ye1 ffb fs7 fc0 sc0 ls0 ws0">out_array[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>in_array[x];</div><div class="t m0 x24 hd ye2 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x23 hd ye3 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1a h6 ye4 ff6 fs4 fc0 sc0 ls0 ws0">V1<span class="_ _26"> </span><span class="ff4">:<span class="_ _9"> </span>436<span class="_ _c"> </span>ms,<span class="_ _12"> </span></span>V2<span class="_ _26"> </span><span class="ff4">:<span class="_ _1b"> </span>336<span class="_ _c"> </span>ms<span class="_ _d"> </span><span class="fff">→<span class="_ _c"> </span></span>1.3x<span class="_ _d"> </span>sp<span class="_ _b"></span>eedup<span class="_ _c"> </span>(temp<span class="_ _b"></span>oral<span class="_ _d"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _c"> </span>imp<span class="_ _3"></span>rovement)</span></div><div class="t m0 x1 h6 ye5 ff4 fs4 fc0 sc0 ls0 ws0">..<span class="_ _1b"> </span>but<span class="_ _c"> </span>it<span class="_ _d"> </span>needs<span class="_ _c"> </span>a<span class="_ _d"> </span>careful<span class="_ _d"> </span>evaluation<span class="_ _d"> </span>of<span class="_ _10"> </span><span class="ff6">CACHE<span class="_ _26"> </span></span>,<span class="_ _c"> </span>and<span class="_ _d"> </span>it<span class="_ _c"> </span>can<span class="_ _d"> </span>even<span class="_ _c"> </span>decrease<span class="_ _d"> </span>the<span class="_ _c"> </span>performance<span class="_ _d"> </span>for</div><div class="t m0 x1 h6 ye6 ff4 fs4 fc0 sc0 ls0 ws0">other<span class="_ _d"> </span>sizes</div><div class="t m0 x1 h6 ye7 ff4 fs4 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>re-sorted<span class="_ _12"> </span><span class="ff6">hash(i)<span class="_ _26"> </span></span>:<span class="_ _9"> </span>135<span class="_ _d"> </span>ms<span class="_ _c"> </span><span class="fff">→<span class="_ _d"> </span></span>3.2x<span class="_ _c"> </span>sp<span class="_ _b"></span>eedup<span class="_ _d"> </span>(spatial<span class="_ _c"> </span>lo<span class="_ _b"></span>cality<span class="_ _d"> </span>imp<span class="_ _3"></span>rovement)</div><div class="t m0 xb hd ye8 ffb fs7 fcc sc0 ls0 ws0">lemire.me/blog/2019/04/27</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">22/93</div><a class="l" href="https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:5.099000px;width:119.676000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1a" class="pf w0 h0" data-page-no="1a"><div class="pc pc1a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _1b"> </span>Alignment</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _8"> </span>alignment<span class="_ _c"> </span><span class="ff4">refers<span class="_ _f"> </span>to<span class="_ _c"> </span>placing<span class="_ _f"> </span>data<span class="_ _c"> </span>in<span class="_ _f"> </span>memory<span class="_ _c"> </span>at<span class="_ _c"> </span>addresses<span class="_ _c"> </span>that<span class="_ _f"> </span>confo<span class="_ _3"></span>rm<span class="_ _f"> </span>to</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">certain<span class="_ _c"> </span>b<span class="_ _b"></span>oundaries,<span class="_ _c"> </span>t<span class="_ _3"></span>ypically<span class="_ _f"> </span>p<span class="_ _b"></span>o<span class="_ _3"></span>wers<span class="_ _c"> </span>of<span class="_ _c"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>(e.g.,<span class="_ _f"> </span>1,<span class="_ _c"> </span>2,<span class="_ _c"> </span>4,<span class="_ _f"> </span>8,<span class="_ _c"> </span>16<span class="_ _f"> </span>bytes,<span class="_ _c"> </span>etc.)</div><div class="t m0 x1 h6 yea ff9 fs4 fc0 sc0 ls0 ws0">Note<span class="_ _0"></span><span class="ff4">:<span class="_ _8"> </span>Fo<span class="_ _3"></span>r<span class="_ _c"> </span>multidimensional<span class="_ _d"> </span>data,<span class="_ _c"> </span>alignment<span class="_ _d"> </span>only<span class="_ _c"> </span>means<span class="_ _d"> </span>that<span class="_ _c"> </span>the<span class="_ _d"> </span>start<span class="_ _d"> </span>address<span class="_ _d"> </span>of<span class="_ _c"> </span>the<span class="_ _d"> </span>data<span class="_ _c"> </span>is</span></div><div class="t m0 x1 h6 yeb ff4 fs4 fc0 sc0 ls0 ws0">aligned,<span class="_ _d"> </span>not<span class="_ _c"> </span>that<span class="_ _d"> </span>all<span class="_ _c"> </span>sta<span class="_ _3"></span>rt<span class="_ _c"> </span>offsets<span class="_ _d"> </span>for<span class="_ _d"> </span>all<span class="_ _c"> </span>dimensions<span class="_ _d"> </span>are<span class="_ _d"> </span>aligned.,<span class="_ _d"> </span>e.g.<span class="_ _9"> </span>for<span class="_ _d"> </span>a<span class="_ _d"> </span>2D<span class="_ _c"> </span>matrix,<span class="_ _d"> </span>if</div><div class="t m0 x1a h6 yec ff6 fs4 fc0 sc0 ls0 ws0">row[0][0]<span class="_ _12"> </span><span class="ff4">is<span class="_ _d"> </span>aligned<span class="_ _c"> </span>doesnt<span class="_ _c"> </span>imply<span class="_ _d"> </span>that<span class="_ _12"> </span></span>row[1][0]<span class="_ _12"> </span><span class="ff4">has<span class="_ _c"> </span>the<span class="_ _d"> </span>same<span class="_ _d"> </span>property<span class="_ _7"></span>.<span class="_ _1b"> </span>Also<span class="_ _c"> </span>the<span class="_ _d"> </span>strides</span></div><div class="t m0 x1 h6 yed ff4 fs4 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>et<span class="_ _3"></span>ween<span class="_ _d"> </span>rows<span class="_ _d"> </span>need<span class="_ _d"> </span>to<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _d"> </span>multiple<span class="_ _c"> </span>of<span class="_ _d"> </span>the<span class="_ _c"> </span>alignment</div><div class="t m0 x1 hb yee ff1 fs6 fc0 sc0 ls0 ws0">Data<span class="_ _f"> </span>alignment<span class="_ _f"> </span><span class="ff4">is<span class="_ _c"> </span>classified<span class="_ _f"> </span>in:</span></div><div class="t m0 xb hb yef ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Internal<span class="_ _8"> </span>alignment<span class="_ _c"> </span><span class="ff4">for<span class="_ _c"> </span>struct/class<span class="_ _c"> </span>la<span class="_ _3"></span>yout<span class="_ _c"> </span>optimization<span class="_ _c"> </span><span class="fff">→<span class="_ _f"> </span></span>reducing<span class="_ _c"> </span>memory</span></span></div><div class="t m0 x6 hb yf0 ff4 fs6 fc0 sc0 ls0 ws0">fo<span class="_ _b"></span>otp<span class="_ _3"></span>rint,<span class="_ _f"> </span>optimizing<span class="_ _c"> </span>memory<span class="_ _c"> </span>bandwidth,<span class="_ _c"> </span>and<span class="_ _f"> </span>minimizing<span class="_ _c"> </span>cache-line<span class="_ _c"> </span>misses</div><div class="t m0 xb hb yf1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">External<span class="_ _8"> </span>alignment<span class="_ _c"> </span><span class="ff4">across<span class="_ _c"> </span>several<span class="_ _f"> </span>elements<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>same<span class="_ _f"> </span>type<span class="_ _c"> </span><span class="fff">→<span class="_ _f"> </span></span>minimizing</span></span></div><div class="t m0 x6 hb yf2 ff4 fs6 fc0 sc0 ls0 ws0">cache-line<span class="_ _c"> </span>misses,<span class="_ _c"> </span>vectorization<span class="_ _c"> </span>(SIMD<span class="_ _c"> </span>instructions)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">23/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1b" class="pf w0 h0" data-page-no="1b"><div class="pc pc1b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Internal<span class="_ _1b"> </span>Structure<span class="_ _1b"> </span>Alignment</div><div class="t m0 x1 hd yf3 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">A1<span class="_"> </span><span class="ffb fc0">{</span></span></div><div class="t m0 x27 hd yf4 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x1;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>0</span></span></div><div class="t m0 x27 hd yf5 ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y1;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>8!!<span class="_ _9"> </span>(not<span class="_ _21"> </span>1)</span></span></div><div class="t m0 x27 hd yf6 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x2;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>16</span></span></div><div class="t m0 x27 hd yf7 ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y2;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>24</span></span></div><div class="t m0 x27 hd yf8 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x3;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>32</span></span></div><div class="t m0 x27 hd yf9 ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y3;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>40</span></span></div><div class="t m0 x27 hd yfa ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x4;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>48</span></span></div><div class="t m0 x27 hd yfb ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y4;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>56</span></span></div><div class="t m0 x27 hd yfc ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x5;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>64<span class="_ _21"> </span>(65<span class="_ _9"> </span>bytes)</span></span></div><div class="t m0 x1 hd yfd ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x28 hd yf3 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">A2<span class="_"> </span><span class="ffb fc0">{<span class="_ _14"> </span><span class="ffa fc5">//<span class="_ _9"> </span>internal<span class="_ _21"> </span>alignment</span></span></span></div><div class="t m0 x29 hd yf4 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x1;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>0</span></span></div><div class="t m0 x29 hd yf5 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x2;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>1</span></span></div><div class="t m0 x29 hd yf6 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x3;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>2</span></span></div><div class="t m0 x29 hd yf7 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x4;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>3</span></span></div><div class="t m0 x29 hd yf8 ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _14"> </span><span class="ffb fc0">x5;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span>offset<span class="_ _9"> </span>4</span></span></div><div class="t m0 x29 hd yf9 ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y1;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>8</span></span></div><div class="t m0 x29 hd yfa ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y2;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>16</span></span></div><div class="t m0 x29 hd yfb ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y3;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>24</span></span></div><div class="t m0 x29 hd yfc ff5 fs7 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffb fc0">y4;<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>offset<span class="_ _21"> </span>32<span class="_ _9"> </span>(40<span class="_ _21"> </span>bytes)</span></span></div><div class="t m0 x28 hd yfd ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2a hb yfe ff1 fs6 fc0 sc0 ls0 ws0">(1)<span class="_ _6"> </span><span class="ff4">W<span class="_ _3"></span>e<span class="_ _f"> </span>are<span class="_ _c"> </span>w<span class="_ _3"></span>asting<span class="_ _c"> </span>40%<span class="_ _f"> </span>of<span class="_ _c"> </span>memory<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>(<span class="_ _26"> </span><span class="ff6">A1<span class="_ _d"> </span></span>)</span></div><div class="t m0 x2a hb yff ff1 fs6 fc0 sc0 ls0 ws0">(2)<span class="_ _6"> </span><span class="ff4">Considering<span class="_ _c"> </span>an<span class="_ _f"> </span><span class="ff9">a<span class="_ _3"></span>rray<span class="_ _c"> </span>of<span class="_ _c"> </span>structures<span class="_ _9"> </span><span class="ff4">(</span>A<span class="_ _3"></span>oS<span class="_ _3c"></span><span class="ff4">)<span class="_ _c"> </span>and<span class="_ _c"> </span>a<span class="_ _f"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>of<span class="_ _c"> </span>64<span class="_ _f"> </span>bytes<span class="_ _c"> </span>(x64</span></span></span></div><div class="t m0 x6 hb y100 ff4 fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>ro<span class="_ _b"></span>cessors),<span class="_ _c"> </span>every<span class="_ _c"> </span>access<span class="_ _f"> </span>to<span class="_ _10"> </span><span class="ff6">A1<span class="_ _10"> </span></span>involves<span class="_ _c"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>(<span class="fff"><span class="ff1">2x<span class="_ _8"> </span>slow<span class="_ _3"></span>er<span class="ff4">)</span></span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">24/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1c" class="pf w0 h0" data-page-no="1c"><div class="pc pc1c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1b"> </span>Structure<span class="_ _1b"> </span>Alignment<span class="_ _3d"> </span>1/3</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>addiction<span class="_ _c"> </span>to<span class="_ _f"> </span>internal<span class="_ _c"> </span>lay<span class="_ _3"></span>out<span class="_ _c"> </span>problems,<span class="_ _c"> </span>even<span class="_ _c"> </span>the<span class="_ _f"> </span>structure<span class="_ _10"> </span><span class="ff6">A2<span class="_ _10"> </span></span>intro<span class="_ _b"></span>duces<span class="_ _c"> </span>overhead<span class="_ _c"> </span>if</div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>rganized<span class="_ _c"> </span>in<span class="_ _f"> </span>an<span class="_ _c"> </span>arra<span class="_ _3"></span>y<span class="_ _7"></span>.<span class="_ _21"> </span>Loads<span class="_ _c"> </span>lead<span class="_ _c"> </span>to<span class="_ _c"> </span>one<span class="_ _f"> </span>or<span class="_ _d"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>dep<span class="_ _b"></span>ending<span class="_ _f"> </span>on<span class="_ _c"> </span>the</div><div class="t m0 x1 hb y101 ff4 fs6 fc0 sc0 ls0 ws0">alignment<span class="_ _c"> </span>at<span class="_ _c"> </span>a<span class="_ _f"> </span>sp<span class="_ _b"></span>ecific<span class="_ _f"> </span>index,<span class="_ _c"> </span>e.g.</div><div class="t m0 xf hb y102 ff6 fs6 fc0 sc0 ls0 ws0">index<span class="_"> </span>0<span class="_ _c"> </span><span class="fff">→<span class="_ _c"> </span><span class="ff4">one<span class="_ _f"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>load</span></span></div><div class="t m0 xf hb y103 ff6 fs6 fc0 sc0 ls0 ws0">index<span class="_"> </span>1<span class="_ _c"> </span><span class="fff">→<span class="_ _c"> </span><span class="ff4">tw<span class="_ _3"></span>o<span class="_ _c"> </span>cache<span class="_ _f"> </span>line<span class="_ _c"> </span>loads</span></span></div><div class="t m0 x1 hb y104 ff4 fs6 fc0 sc0 ls0 ws0">It<span class="_ _c"> </span>is<span class="_ _c"> </span>p<span class="_ _0"></span>ossible<span class="_ _c"> </span>to<span class="_ _c"> </span>fix<span class="_ _c"> </span>the<span class="_ _f"> </span>structure<span class="_ _c"> </span>alignment<span class="_ _f"> </span>in<span class="_ _c"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>wa<span class="_ _3"></span>ys:</div><div class="t m0 xb hb y105 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Memo<span class="_ _3"></span>ry<span class="_ _8"> </span>padding<span class="_ _f"> </span><span class="ff4">refers<span class="_ _c"> </span>to<span class="_ _f"> </span>manually<span class="_ _c"> </span>intro<span class="_ _0"></span>ducing<span class="_ _c"> </span>extra<span class="_ _c"> </span>b<span class="_ _3"></span>ytes<span class="_ _f"> </span>at<span class="_ _c"> </span>the<span class="_ _f"> </span>end<span class="_ _c"> </span>of<span class="_ _f"> </span>the</span></span></div><div class="t m0 x6 hb y106 ff4 fs6 fc0 sc0 ls0 ws0">data<span class="_ _c"> </span>structure<span class="_ _c"> </span>to<span class="_ _f"> </span>enforce<span class="_ _c"> </span>memo<span class="_ _3"></span>ry<span class="_ _c"> </span>alignment.</div><div class="t m0 x6 h6 y107 ff4 fs4 fc0 sc0 ls0 ws0">e.g.<span class="_ _1b"> </span>add<span class="_ _c"> </span>a<span class="_ _12"> </span><span class="ff6">char<span class="_ _12"> </span></span>a<span class="_ _3"></span>rray<span class="_ _d"> </span>of<span class="_ _c"> </span>size<span class="_ _d"> </span>24<span class="_ _c"> </span>to<span class="_ _d"> </span>the<span class="_ _c"> </span>structure<span class="_ _12"> </span><span class="ff6">A2</span></div><div class="t m0 xb hb y108 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Align<span class="_ _8"> </span>k<span class="_ _3"></span>eywo<span class="_ _3"></span>rd<span class="_ _f"> </span>or<span class="_ _f"> </span>attribute<span class="_ _c"> </span><span class="ff4">allows<span class="_ _c"> </span>sp<span class="_ _b"></span>ecifying<span class="_ _c"> </span>the<span class="_ _f"> </span>alignment<span class="_ _c"> </span>requirement<span class="_ _f"> </span>of<span class="_ _c"> </span>a</span></span></div><div class="t m0 x6 hb y109 ff4 fs6 fc0 sc0 ls0 ws0">t<span class="_ _3"></span>yp<span class="_ _b"></span>e<span class="_ _f"> </span>or<span class="_ _c"> </span>an<span class="_ _c"> </span>object<span class="_ _c"> </span>(next<span class="_ _f"> </span>slide)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">25/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1d" class="pf w0 h0" data-page-no="1d"><div class="pc pc1d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1b"> </span>Structure<span class="_ _1b"> </span>Alignment<span class="_ _3d"> </span>2/3</div><div class="t m0 xb hb y10a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Explicit<span class="_ _1b"> </span><span class="ff4">alignment/padding<span class="_ _f"> </span>for<span class="_ _c"> </span><span class="ff1">va<span class="_ _3"></span>riable<span class="_ _8"> </span>/<span class="_ _8"> </span>struct<span class="_ _8"> </span>decla<span class="_ _3"></span>ration<span class="_ _f"> </span><span class="fff">→<span class="_ _c"> </span><span class="ff4">affects</span></span></span></span></span></div><div class="t m0 xc h11 y10b ff6 fs6 fc0 sc0 ls0 ws0">sizeof(T)</div><div class="t m0 x2b hb y10c ff4 fs6 fcd sc0 ls0 ws0">C++11<span class="_"> </span><span class="fc0">:<span class="_ _4"> </span><span class="ff6">alignas(N)</span></span></div><div class="t m0 x2c hb y10d ff4 fs6 fc0 sc0 ls0 ws0">GCC/Clang<span class="_"> </span>:<span class="_ _4"> </span><span class="ff6">__attribute__((aligned(N)))</span></div><div class="t m0 x19 hb y10e ff4 fs6 fc0 sc0 ls0 ws0">MSV<span class="_ _3"></span>C<span class="_"> </span>:<span class="_ _4"> </span><span class="ff6">__declspec(align(N))</span></div><div class="t m0 xb hb y10f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Explicit<span class="_ _1b"> </span><span class="ff4">alignment<span class="_ _f"> </span>for<span class="_ _c"> </span><span class="ff1">p<span class="_ _b"></span>ointers</span></span></span></div><div class="t m0 x2b hb y110 ff4 fs6 fcd sc0 ls0 ws0">C++20<span class="_"> </span><span class="fc0">:<span class="_ _4"> </span><span class="ff6">std::assume_aligned&lt;N&gt;(ptr)<span class="_ _10"> </span></span>(<span class="_ _26"> </span><span class="ff6">&lt;memory&gt;<span class="_ _d"> </span></span>)</span></div><div class="t m0 x2b hb y111 ff4 fs6 fcd sc0 ls0 ws0">C++17<span class="_"> </span><span class="fc0">:<span class="_ _21"> </span>aligned<span class="_ _10"> </span><span class="ff6">new<span class="_ _10"> </span></span>o<span class="_ _3"></span>r<span class="_ _10"> </span><span class="ff6">std::aligned_alloc(align,<span class="_"> </span>size)</span></span></div><div class="t m0 x2c hb y112 ff4 fs6 fc0 sc0 ls0 ws0">GCC/Clang<span class="_"> </span>:<span class="_ _4"> </span><span class="ff6">__builtin_assume_aligned(ptr,<span class="_"> </span>N)</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">26/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1e" class="pf w0 h0" data-page-no="1e"><div class="pc pc1e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1b"> </span>Structure<span class="_ _1b"> </span>Alignment<span class="_ _3d"> </span>3/3</div><div class="t m0 x1 hf y113 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">alignas<span class="ffc fc0">(<span class="fc8">16</span>)<span class="_ _8"> </span>S1<span class="_ _1b"> </span>{<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>C++11</span></span></span></div><div class="t m0 xf hf y114 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">x,<span class="_ _8"> </span>y;</span></div><div class="t m0 x1 hf y115 ffc fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 x1 hf y116 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">__attribute__<span class="ffc fc0">((aligned(<span class="fc8">16</span>)))<span class="_ _8"> </span>S2<span class="_ _1b"> </span>{<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>compiler-specific<span class="_ _1b"> </span>attribute</span></span></span></div><div class="t m0 xf hf y117 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">x,<span class="_ _8"> </span>y;</span></div><div class="t m0 x1 hf y118 ffc fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 x1 hf y119 ff5 fs5 fc9 sc0 ls0 ws0">constexpr<span class="_"> </span>auto<span class="_"> </span><span class="ffc fc0">DefaultAlilgn<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span></span>__STDCPP_DEFAULT_NEW_ALIGNMENT__;</span></div><div class="t m0 x1 hf y11a ffc fs5 fc0 sc0 ls0 ws0">S1<span class="_ _8"> </span>s;<span class="_ _1d"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>16B<span class="_ _8"> </span>alignment</span></div><div class="t m0 x1 hf y11b ff5 fs5 fc9 sc0 ls0 ws0">alignas<span class="ffc fc0">(<span class="fc8">16</span>)<span class="_ _8"> </span></span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">var[<span class="fc8">3</span>];<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>16B<span class="_ _8"> </span>alignment</span></span></span></div><div class="t m0 x1 hf y11c ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr1<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span></span>new<span class="_"> </span><span class="ffc fc0">S1[<span class="fc8">10</span>];<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>Warning!<span class="_ _1b"> </span>no<span class="_ _8"> </span>aligment<span class="_ _1b"> </span>guarantee</span></span></div><div class="t m0 x1 hf y11d ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr2<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span></span>new<span class="_"> </span><span class="fc6">int<span class="ffc fc0">[<span class="fc8">100</span>];<span class="_ _3e"> </span><span class="ffa fc5">//<span class="_ _8"> </span>alignment:<span class="_ _1b"> </span>max(4B,<span class="_ _8"> </span>DefaultAlilgn)</span></span></span></div><div class="t m0 x1 hf y11e ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr3<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>std<span class="fc8">::</span>aligned_alloc(<span class="fc8">8</span>,<span class="_ _1b"> </span><span class="fc8">4</span>);<span class="_ _3f"> </span><span class="ffa fc5">//<span class="_ _8"> </span>C++17,<span class="_ _1b"> </span>alignment:<span class="_ _8"> </span>max(8B,<span class="_ _1b"> </span>DefaultAlilgn)</span></span></div><div class="t m0 x1 hf y11f ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr4<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>__builtin_assume_aligned(ptr2,<span class="_ _1b"> </span><span class="fc8">16</span>);<span class="_ _8"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>compiler-specific<span class="_ _8"> </span>attribute</span></span></div><div class="t m0 x1 hf y120 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr5<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>std<span class="fc8">::</span>assume_aligned<span class="fc8">&lt;16&gt;</span>(ptr2);<span class="_ _40"> </span><span class="ffa fc5">//<span class="_ _8"> </span>C++20</span></span></div><div class="t m0 x1 hf y121 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffc fc0">ptr<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span></span>new<span class="_"> </span><span class="ffc fc0">(</span>sizeof<span class="ffc fc0">(</span><span class="fc6">int<span class="ffc fc0">),<span class="_ _1b"> </span>std<span class="fc8">::</span>align_val_t{<span class="fc8">8</span>});<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>C++17,<span class="_ _1b"> </span>max(8B,<span class="_ _8"> </span>DefaultAlilgn)</span></span></span></div><div class="t m0 x1 hf y122 ffc fs5 fc8 sc0 ls0 ws0">::<span class="ff5 fc9">operator<span class="_"> </span></span><span class="fc7">delete<span class="_ _8"> </span><span class="fc0">(ptr,<span class="_ _1b"> </span>std</span></span>::<span class="fc0">align_val_t{</span>8<span class="fc0">});</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">27/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf1f" class="pf w0 h0" data-page-no="1f"><div class="pc pc1f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _1b"> </span>Prefetch</div><div class="t m0 x1a hb y6d ff6 fs6 fc0 sc0 ls0 ws0">__builtin_prefetch<span class="_ _10"> </span><span class="ff4">is<span class="_ _c"> </span>used<span class="_ _c"> </span>to<span class="_ _f"> </span><span class="ff9">minimize<span class="_ _c"> </span>cache-miss<span class="_ _f"> </span>latency<span class="_ _21"> </span></span>b<span class="_ _3"></span>y<span class="_ _f"> </span>moving<span class="_ _c"> </span>data<span class="_ _f"> </span>into<span class="_ _c"> </span>a</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">cache<span class="_ _c"> </span>b<span class="_ _b"></span>efore<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>accessed.<span class="_ _21"> </span>It<span class="_ _f"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>used<span class="_ _c"> </span>not<span class="_ _f"> </span>only<span class="_ _c"> </span>for<span class="_ _c"> </span>imp<span class="_ _3"></span>roving<span class="_ _f"> </span><span class="ff9">spatial<span class="_ _c"> </span>lo<span class="_ _b"></span>cality</span>,<span class="_ _c"> </span>but</div><div class="t m0 x1 hb y101 ff4 fs6 fc0 sc0 ls0 ws0">also<span class="_ _c"> </span><span class="ff9">temp<span class="_ _b"></span>oral<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y</span></div><div class="t m0 x1 hd y123 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></span></div><div class="t m0 xd hd y124 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffb fc0">data<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>array[i];</span></div><div class="t m0 xd hd y125 ffb fs7 fc0 sc0 ls0 ws0">__builtin_prefetch(array<span class="_ _9"> </span><span class="fc8">+<span class="_ _9"> </span></span>i<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span>1</span>,<span class="_ _21"> </span><span class="fc8">0</span>,<span class="_ _9"> </span><span class="fc8">1</span>);<span class="_ _21"> </span><span class="ffa fc5">//<span class="_ _9"> </span>2nd<span class="_ _9"> </span>argument,<span class="_ _21"> </span><span class="ff14">&apos;</span>0<span class="ff14">&apos;<span class="_ _9"> </span></span>means<span class="_ _21"> </span>read-only</span></div><div class="t m0 x2d hd y126 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>3th<span class="_ _9"> </span>argument,<span class="_ _21"> </span><span class="ff14">&apos;</span>1<span class="ff14">&apos;<span class="_ _9"> </span></span>means</div><div class="t m0 x2d hd y127 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>temporal<span class="_ _9"> </span>locality=1,<span class="_ _21"> </span>default=3</div><div class="t m0 xd hd y128 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>do<span class="_ _9"> </span>some<span class="_ _21"> </span>computation<span class="_ _9"> </span>on<span class="_ _21"> </span><span class="ff14">&apos;</span>data<span class="ff14">&apos;</span>,<span class="_ _9"> </span>e.g.<span class="_ _21"> </span>CRC</div><div class="t m0 x1 hd y129 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y12a ff4 fs6 fc0 sc0 ls0 ws0">Alternatively<span class="_ _7"></span>,<span class="_ _10"> </span><span class="ff6">-fprefetch-loop-arrays<span class="_ _10"> </span></span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>used<span class="_ _c"> </span>to<span class="_ _c"> </span>emit<span class="_ _f"> </span>prefetching</div><div class="t m0 x1 hb y12b ff4 fs6 fc0 sc0 ls0 ws0">instructions</div><div class="t m0 xb hd y12c ffb fs7 fcc sc0 ls0 ws0">The<span class="_ _9"> </span>pros<span class="_ _9"> </span>and<span class="_ _21"> </span>cons<span class="_ _9"> </span>of<span class="_ _21"> </span>explicit<span class="_ _9"> </span>software<span class="_ _21"> </span>prefetching</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">28/93</div><a class="l" href="https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:3.633000px;width:237.360000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf20" class="pf w0 h0" data-page-no="20"><div class="pc pc20 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Multi-Threading<span class="_ _1b"> </span>and<span class="_ _1b"> </span>Caches</div><div class="t m0 x1 hb y12d ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span><span class="ff1">CPU/threads<span class="_ _8"> </span>affinit<span class="_ _3"></span>y<span class="_ _f"> </span><span class="ff4">controls<span class="_ _c"> </span>how<span class="_ _c"> </span>a<span class="_ _c"> </span>process<span class="_ _f"> </span>is<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>and<span class="_ _c"> </span>executed<span class="_ _f"> </span>over</span></span></div><div class="t m0 x1 hb y12e ff4 fs6 fc0 sc0 ls0 ws0">multiple<span class="_ _c"> </span>cores<span class="_ _c"> </span>(including<span class="_ _c"> </span>so<span class="_ _b"></span>ckets).<span class="_ _9"> </span>It<span class="_ _c"> </span>affects<span class="_ _f"> </span>the<span class="_ _c"> </span>process<span class="_ _f"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span>due<span class="_ _c"> </span>to</div><div class="t m0 x1 hb y12f ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _3"></span>re-to-core<span class="_ _c"> </span>communication<span class="_ _c"> </span>and<span class="_ _c"> </span>cache<span class="_ _f"> </span>line<span class="_ _c"> </span>invalidation<span class="_ _f"> </span>overhead</div><div class="t m0 x1 hb y130 ff4 fs6 fc0 sc0 ls0 ws0">Maximizing<span class="_ _c"> </span>threads<span class="_ _c"> </span><span class="ff9">“clustering”<span class="_ _9"> </span></span>on<span class="_ _f"> </span>a<span class="_ _c"> </span>single<span class="_ _f"> </span>co<span class="_ _3"></span>re<span class="_ _f"> </span>can<span class="_ _c"> </span>p<span class="_ _b"></span>otentially<span class="_ _f"> </span>lead<span class="_ _c"> </span>to<span class="_ _f"> </span>higher<span class="_ _c"> </span>cache</div><div class="t m0 x1 hb y131 ff4 fs6 fc0 sc0 ls0 ws0">hits<span class="_ _c"> </span>rate<span class="_ _c"> </span>and<span class="_ _f"> </span>faster<span class="_ _c"> </span>communication.<span class="_ _21"> </span>On<span class="_ _f"> </span>the<span class="_ _c"> </span>other<span class="_ _f"> </span>hand,<span class="_ _c"> </span>if<span class="_ _f"> </span>the<span class="_ _c"> </span>threads<span class="_ _f"> </span>w<span class="_ _3"></span>ork</div><div class="t m0 x1 hb y132 ff4 fs6 fc0 sc0 ls0 ws0">indep<span class="_ _b"></span>endently/almost<span class="_ _c"> </span>indep<span class="_ _b"></span>endently<span class="_ _7"></span>,<span class="_ _f"> </span>namely<span class="_ _c"> </span>they<span class="_ _f"> </span>show<span class="_ _c"> </span>high<span class="_ _c"> </span>lo<span class="_ _b"></span>cality<span class="_ _c"> </span>on<span class="_ _c"> </span>their<span class="_ _c"> </span>wo<span class="_ _3"></span>rking</div><div class="t m0 x1 hb y133 ff4 fs6 fc0 sc0 ls0 ws0">set,<span class="_ _c"> </span>mapping<span class="_ _c"> </span>them<span class="_ _f"> </span>to<span class="_ _c"> </span>different<span class="_ _f"> </span>cores<span class="_ _c"> </span>can<span class="_ _c"> </span>imp<span class="_ _3"></span>rove<span class="_ _f"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>erformance</div><div class="t m0 xb hd y134 ffb fs7 fcc sc0 ls0 ws0">C++11<span class="_ _9"> </span>threads,<span class="_ _9"> </span>affinity<span class="_ _21"> </span>and<span class="_ _9"> </span>hyper-threading</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">29/93</div><a class="l" href="https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:7.982000px;width:204.409000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf21" class="pf w0 h0" data-page-no="21"><div class="pc pc21 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y135 ff1 fs0 fc0 sc0 ls0 ws0">Arithmetic<span class="_ _1"> </span>T<span class="_ _41"></span>yp<span class="_ _0"></span>es</div><a class="l" href="#pf21" data-dest-detail='[33,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:132.432000px;width:197.451000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf22" class="pf w0 h0" data-page-no="22"><div class="pc pc22 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ha<span class="_ _3"></span>rdw<span class="_ _3"></span>are<span class="_ _8"> </span>Notes</div><div class="t m0 xb hb y136 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Instruction<span class="_ _c"> </span>throughput<span class="_ _f"> </span>greatly<span class="_ _c"> </span>dep<span class="_ _b"></span>ends<span class="_ _f"> </span>on<span class="_ _c"> </span>processor<span class="_ _c"> </span>mo<span class="_ _b"></span>del<span class="_ _c"> </span>and<span class="_ _f"> </span>cha<span class="_ _3"></span>racteristics,</span></div><div class="t m0 x6 h6 y137 ff4 fs4 fc0 sc0 ls0 ws0">e.g.,<span class="_ _d"> </span>there<span class="_ _c"> </span>is<span class="_ _d"> </span>no<span class="_ _c"> </span>ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _c"> </span>support<span class="_ _d"> </span>for<span class="_ _d"> </span>integer<span class="_ _d"> </span>division<span class="_ _c"> </span>on<span class="_ _d"> </span>GPUs.<span class="_ _9"> </span>This<span class="_ _c"> </span>operation<span class="_ _c"> </span>is</div><div class="t m0 x6 h6 y138 ff4 fs4 fc0 sc0 ls0 ws0">translated<span class="_ _d"> </span>to<span class="_ _10"> </span>100<span class="_ _c"> </span>instructions<span class="_ _d"> </span>for<span class="_ _d"> </span>64-bit<span class="_ _c"> </span>operands</div><div class="t m0 xb hb y139 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors<span class="_ _c"> </span>p<span class="_ _3"></span>rovide<span class="_ _f"> </span>sepa<span class="_ _3"></span>rated<span class="_ _f"> </span>units<span class="_ _c"> </span>for<span class="_ _c"> </span>floating-p<span class="_ _b"></span>oint<span class="_ _c"> </span>computation<span class="_ _f"> </span>(<span class="ff6">FPU</span>)</span></div><div class="t m0 xb hb y13a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">A<span class="_ _3"></span>ddition<span class="ff4">,<span class="_ _f"> </span></span>subtraction<span class="ff4">,<span class="_ _c"> </span>and<span class="_ _f"> </span></span>bitwise<span class="_ _c"> </span>operations<span class="_ _9"> </span><span class="ff4">are<span class="_ _c"> </span>computed<span class="_ _c"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>the<span class="_ _c"> </span><span class="ff6">ALU</span>,<span class="_ _f"> </span>and<span class="_ _c"> </span>they</span></span></div><div class="t m0 x6 hb y13b ff4 fs6 fc0 sc0 ls0 ws0">have<span class="_ _c"> </span>very<span class="_ _c"> </span>similar<span class="_ _c"> </span>throughput</div><div class="t m0 xb hb y13c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>mo<span class="_ _b"></span>dern<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessors,<span class="_ _c"> </span><span class="ff9">multiplication<span class="_ _f"> </span></span>and<span class="_ _c"> </span><span class="ff9">addition<span class="_ _8"> </span></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>computed<span class="_ _c"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>same</span></div><div class="t m0 x6 hb y13d ff4 fs6 fc0 sc0 ls0 ws0">ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _c"> </span>comp<span class="_ _b"></span>onent<span class="_ _c"> </span>for<span class="_ _c"> </span>decreasing<span class="_ _c"> </span>circuit<span class="_ _c"> </span>area<span class="_ _c"> </span><span class="fff">→<span class="_ _c"> </span></span>multiplication<span class="_ _c"> </span>and<span class="_ _c"> </span>addition<span class="_ _c"> </span>can</div><div class="t m0 x6 hb y13e ff4 fs6 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>e<span class="_ _c"> </span>fused<span class="_ _f"> </span>in<span class="_ _c"> </span>a<span class="_ _f"> </span>single<span class="_ _c"> </span>op<span class="_ _b"></span>eration<span class="_ _10"> </span><span class="ff6">fma<span class="_ _10"> </span></span>(floating-p<span class="_ _b"></span>oint)<span class="_ _c"> </span>and<span class="_ _10"> </span><span class="ff6">mad<span class="_ _10"> </span></span>(integer)</div><div class="t m0 xb hd y13f ffb fs7 fcc sc0 ls0 ws0">uops.info:<span class="_ _20"> </span>Latency,<span class="_ _1b"> </span>Throughput,<span class="_ _21"> </span>and<span class="_ _9"> </span>Port<span class="_ _21"> </span>Usage<span class="_ _9"> </span>Information</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">30/93</div><a class="l" href="https://uops.info/table.html"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.335000px;width:279.726000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf23" class="pf w0 h0" data-page-no="23"><div class="pc pc23 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Data<span class="_ _1b"> </span>T<span class="_ _7"></span>yp<span class="_ _b"></span>es</div><div class="t m0 xb hb y136 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">32-bit<span class="_ _8"> </span>integral<span class="_ _f"> </span>vs.<span class="_ _6"> </span>floating-p<span class="_ _b"></span>oint<span class="ff4">:<span class="_ _21"> </span>in<span class="_ _f"> </span>general,<span class="_ _c"> </span>integral<span class="_ _f"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>es<span class="_ _f"> </span>are<span class="_ _c"> </span>faster,<span class="_ _c"> </span>but<span class="_ _c"> </span>it</span></span></div><div class="t m0 x6 hb y137 ff4 fs6 fc0 sc0 ls0 ws0">dep<span class="_ _b"></span>ends<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>processor<span class="_ _c"> </span>cha<span class="_ _3"></span>racteristics</div><div class="t m0 xb hb y140 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">32-bit<span class="_ _8"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>es<span class="_ _8"> </span>are<span class="_ _f"> </span>faster<span class="_ _8"> </span>than<span class="_ _f"> </span>64-bit<span class="_ _8"> </span>types</span></div><div class="t m0 x12 h6 y141 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">64-bit<span class="_ _d"> </span>integral<span class="_ _d"> </span>types<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _d"> </span>slightly<span class="_ _c"> </span>slo<span class="_ _3"></span>wer<span class="_ _d"> </span>than<span class="_ _d"> </span>32-bit<span class="_ _d"> </span>integral<span class="_ _d"> </span>types.<span class="_ _9"> </span>Mo<span class="_ _b"></span>dern<span class="_ _d"> </span>processors</span></div><div class="t m0 x1b h6 y142 ff4 fs4 fc0 sc0 ls0 ws0">widely<span class="_ _d"> </span>supp<span class="_ _b"></span>ort<span class="_ _d"> </span>native<span class="_ _c"> </span>64-bit<span class="_ _d"> </span>instructions<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>most<span class="_ _d"> </span>op<span class="_ _b"></span>erations,<span class="_ _c"> </span>otherwise<span class="_ _d"> </span>they<span class="_ _c"> </span>require</div><div class="t m0 x1b h6 y143 ff4 fs4 fc0 sc0 ls0 ws0">multiple<span class="_ _d"> </span>op<span class="_ _b"></span>erations</div><div class="t m0 x12 h6 y144 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Single<span class="_ _d"> </span>precision<span class="_ _d"> </span>floating-p<span class="_ _b"></span>oints<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _c"> </span>up<span class="_ _d"> </span>to<span class="_ _c"> </span>three<span class="_ _d"> </span>times<span class="_ _c"> </span>faster<span class="_ _d"> </span>than<span class="_ _c"> </span>double<span class="_ _d"> </span>precision</span></div><div class="t m0 x1b h6 y145 ff4 fs4 fc0 sc0 ls0 ws0">floating-p<span class="_ _b"></span>oints</div><div class="t m0 xb hb y146 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Small<span class="_ _8"> </span>integral<span class="_ _f"> </span>types<span class="_ _8"> </span>are<span class="_ _f"> </span>slo<span class="_ _3"></span>wer<span class="_ _f"> </span>than<span class="_ _8"> </span>32-bit<span class="_ _8"> </span>integer<span class="ff4">,<span class="_ _c"> </span>but<span class="_ _c"> </span>they<span class="_ _f"> </span>require<span class="_ _c"> </span>less</span></span></div><div class="t m0 x6 hb y147 ff4 fs6 fc0 sc0 ls0 ws0">memo<span class="_ _3"></span>ry<span class="_ _f"> </span><span class="fff">→<span class="_ _c"> </span></span>cache/memory<span class="_ _c"> </span>efficiency</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">31/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf24" class="pf w0 h0" data-page-no="24"><div class="pc pc24 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Arithmetic<span class="_ _1b"> </span>Op<span class="_ _b"></span>erations<span class="_ _42"> </span>1/3</div><div class="t m0 xb hb y148 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Arithmetic<span class="_ _c"> </span><span class="ff1">increment/decrement<span class="_ _10"> </span><span class="ff6">x++<span class="_ _d"> </span></span></span>/<span class="_ _26"> </span><span class="ff6">x--<span class="_ _10"> </span></span>has<span class="_ _f"> </span>the<span class="_ _c"> </span>same<span class="_ _f"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span>of</span></div><div class="t m0 xc hb y149 ff6 fs6 fc0 sc0 ls0 ws0">x<span class="_"> </span>+=<span class="_"> </span>1<span class="_ _26"> </span><span class="ff4">/<span class="_ _d"> </span></span>x<span class="_"> </span>-=<span class="_"> </span>1</div><div class="t m0 xb hb y14a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Arithmetic<span class="_ _c"> </span><span class="ff1">comp<span class="_ _b"></span>ound<span class="_ _8"> </span>op<span class="_ _b"></span>erators<span class="_ _c"> </span></span>(<span class="_ _d"> </span><span class="ff6">a<span class="_"> </span>*=<span class="_"> </span>b<span class="_ _26"> </span></span>)<span class="_ _c"> </span>has<span class="_ _f"> </span>the<span class="_ _c"> </span>same<span class="_ _f"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>of</span></div><div class="t m0 x6 hb y14b ff4 fs6 fc0 sc0 ls0 ws0">assignment<span class="_ _c"> </span>+<span class="_ _c"> </span>op<span class="_ _0"></span>eration<span class="_ _c"> </span>(<span class="_ _26"> </span><span class="ff6">a<span class="_"> </span>=<span class="_"> </span>a<span class="_"> </span>*<span class="_"> </span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span><span class="ff1">*</span></div><div class="t m0 xb hb y14c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Prefer<span class="_ _8"> </span>p<span class="_ _3"></span>refix<span class="_ _8"> </span>increment/decrement<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff6">++var<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>ostfix<span class="_ _f"> </span>op<span class="_ _b"></span>erator</span></span></div><div class="t m0 x6 hb y14d ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _26"> </span><span class="ff6">var++<span class="_ _d"> </span></span>)<span class="_ _c"> </span><span class="ff1">*</span></div><div class="t m0 xb h10 y14e ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="ffe">the<span class="_ _26"> </span>compiler<span class="_ _d"> </span>automatically<span class="_ _d"> </span>applies<span class="_ _d"> </span>such<span class="_ _d"> </span>optimization<span class="_ _d"> </span>whenever<span class="_ _d"> </span>possible.<span class="_ _8"> </span>This<span class="_ _d"> </span>is<span class="_ _d"> </span>not<span class="_ _d"> </span>ensured<span class="_ _d"> </span>fo<span class="_ _3"></span>r</span></div><div class="t m0 x1 h10 y14f ffe fs7 fcc sc0 ls0 ws0">object<span class="_ _d"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>es</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">32/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf25" class="pf w0 h0" data-page-no="25"><div class="pc pc25 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Arithmetic<span class="_ _1b"> </span>Op<span class="_ _b"></span>erations<span class="_ _42"> </span>2/3</div><div class="t m0 xb hb y148 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Keep<span class="_ _8"> </span>nea<span class="_ _3"></span>r<span class="_ _8"> </span>constant<span class="_ _8"> </span>values/va<span class="_ _3"></span>riables<span class="_ _f"> </span><span class="fff">→<span class="_ _c"> </span><span class="ff4">the<span class="_ _f"> </span>compiler<span class="_ _c"> </span>can<span class="_ _f"> </span>merge<span class="_ _c"> </span>their<span class="_ _f"> </span>values.</span></span></span></div><div class="t m0 x6 hb y149 ff4 fs6 fc0 sc0 ls0 ws0">Floating-p<span class="_ _b"></span>oint<span class="_ _c"> </span>values<span class="_ _f"> </span>requires<span class="_ _c"> </span>more<span class="_ _c"> </span>attention<span class="_ _c"> </span>due<span class="_ _c"> </span>to<span class="_ _f"> </span>non-asso<span class="_ _b"></span>ciativity</div><div class="t m0 xb hb y14a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>op<span class="_ _b"></span>erations<span class="_ _f"> </span>on<span class="_ _c"> </span><span class="ff5">unsigned<span class="_"> </span>types<span class="_ _f"> </span></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>on<span class="_ _c"> </span><span class="ff5">signed<span class="_"> </span>types<span class="_ _f"> </span></span>b<span class="_ _b"></span>ecause</span></div><div class="t m0 x6 hb y14b ff4 fs6 fc0 sc0 ls0 ws0">they<span class="_ _c"> </span>dont<span class="_ _c"> </span>have<span class="_ _f"> </span>to<span class="_ _c"> </span>deal<span class="_ _f"> </span>with<span class="_ _c"> </span>negative<span class="_ _f"> </span>numb<span class="_ _b"></span>ers,<span class="_ _c"> </span>e.g.<span class="_ _a"> </span><span class="ff6">x<span class="_"> </span>/<span class="_"> </span>2<span class="_"> </span><span class="fff">→<span class="_ _2d"> </span></span>x<span class="_"> </span>»<span class="_"> </span>1</span></div><div class="t m0 xb hb y14c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>op<span class="_ _b"></span>erations<span class="_ _f"> </span>on<span class="_ _c"> </span><span class="ff5">signed<span class="_"> </span>types<span class="_ _f"> </span></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>on<span class="_ _c"> </span><span class="ff5">unsigned<span class="_"> </span>types<span class="_ _f"> </span></span>b<span class="_ _b"></span>ecause</span></div><div class="t m0 x6 hb y14d ff4 fs6 fc0 sc0 ls0 ws0">they<span class="_ _c"> </span>can<span class="_ _c"> </span>exploit<span class="_ _f"> </span><span class="ff9">undefined<span class="_ _c"> </span>b<span class="_ _0"></span>ehavio<span class="_ _3"></span>r<span class="ff4">,<span class="_ _c"> </span>see<span class="_ _c"> </span>next<span class="_ _f"> </span>slide</span></span></div><div class="t m0 xb hb y150 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">logic<span class="_ _8"> </span>op<span class="_ _b"></span>erations<span class="_ _10"> </span><span class="ff6">||<span class="_ _10"> </span></span></span>to<span class="_ _c"> </span><span class="ff1">bitwise<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _10"> </span><span class="ff6">|<span class="_ _10"> </span></span></span>to<span class="_ _c"> </span>take<span class="_ _c"> </span>advantage<span class="_ _c"> </span>of</span></div><div class="t m0 x6 hb y151 ff4 fs6 fc0 sc0 ls0 ws0">sho<span class="_ _3"></span>rt-circuiting</div><div class="t m0 xb hd y152 ffb fs7 fcc sc0 ls0 ws0"><span class="fce sc0">Is</span><span class="_ _9"> </span><span class="fce sc0">if(A</span><span class="_ _9"> </span><span class="fce sc0">|</span><span class="_ _21"> </span><span class="fce sc0">B)</span><span class="_ _9"> </span><span class="fce sc0">always</span><span class="_ _21"> </span><span class="fce sc0">faster</span><span class="_ _9"> </span><span class="fce sc0">than</span><span class="_ _21"> </span><span class="fce sc0">if(A</span><span class="_ _9"> </span><span class="fce sc0">||</span><span class="_ _9"> </span><span class="fce sc0">B)?</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">33/93</div><a class="l" href="https://stackoverflow.com/questions/71039947/is-ifa-b-always-faster-than-ifa-b"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:-61.921000px;width:204.409000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf26" class="pf w0 h0" data-page-no="26"><div class="pc pc26 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Arithmetic<span class="_ _1b"> </span>Op<span class="_ _b"></span>erations<span class="_ _42"> </span>3/3</div><div class="t m0 x2e hd yf3 ff5 fs7 fc6 sc0 ls0 ws0">bool<span class="_"> </span><span class="ffb fc7">mainGuT<span class="fc0">(</span></span>uint32_t<span class="_"> </span><span class="ffb fc0">i1,<span class="_ _9"> </span></span>uint32_t<span class="_"> </span><span class="ffb fc0">i2,<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _21"> </span><span class="ff15">if<span class="_ _9"> </span>i1,<span class="_ _21"> </span>i2<span class="_ _9"> </span>are<span class="_ _21"> </span>int32_t,<span class="_ _9"> </span>the<span class="_ _9"> </span>code</span></span></span></div><div class="t m0 x2f hd yf4 ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_"> </span><span class="ffb fc8">*<span class="fc0">block)<span class="_ _9"> </span>{<span class="_ _43"> </span><span class="ffa fc5">//<span class="_ _9"> </span><span class="ff15">uses<span class="_ _9"> </span>half<span class="_ _21"> </span>of<span class="_ _9"> </span>the<span class="_ _21"> </span>instructions!!</span></span></span></span></div><div class="t m0 x5 hd yf5 ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_"> </span><span class="ffb fc0">c1,<span class="_ _9"> </span>c2;</span></div><div class="t m0 x5 hd yf6 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>1<span class="_ _44"> </span>//<span class="_ _9"> </span><span class="ff15">why?<span class="_ _9"> </span></span>if<span class="_ _21"> </span><span class="ff15">i1,<span class="_ _9"> </span>i2<span class="_ _21"> </span></span>are<span class="_ _9"> </span><span class="ff15">uint32_t<span class="_ _21"> </span></span>the<span class="_ _9"> </span>compiler</div><div class="t m0 x5 hd yf7 ffb fs7 fc0 sc0 ls0 ws0">c1<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>block[i1],<span class="_ _21"> </span>c2<span class="_ _9"> </span><span class="fc8">=<span class="_ _21"> </span></span>block[i2];<span class="_ _45"> </span><span class="ffa fc5">//<span class="_ _9"> </span>must<span class="_ _9"> </span>copy<span class="_ _21"> </span>them<span class="_ _9"> </span>into<span class="_ _21"> </span>32-bit<span class="_ _9"> </span>registers<span class="_ _21"> </span>to</span></div><div class="t m0 x5 hd yf8 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(c1<span class="_ _9"> </span><span class="fc8">!=<span class="_ _9"> </span></span>c2)<span class="_ _21"> </span></span>return<span class="_"> </span><span class="ffb fc0">(c1<span class="_ _9"> </span><span class="fc8">&gt;<span class="_ _21"> </span></span>c2);<span class="_ _45"> </span><span class="ffa fc5">//<span class="_ _9"> </span>ensure<span class="_ _9"> </span>wrap-around<span class="_ _21"> </span>behavior<span class="_ _9"> </span>before<span class="_ _21"> </span>passing</span></span></div><div class="t m0 x5 hd yf9 ffb fs7 fc0 sc0 ls0 ws0">i1<span class="fc8">++</span>,<span class="_ _9"> </span>i2<span class="fc8">++</span>;<span class="_ _46"> </span><span class="ffa fc5">//<span class="_ _9"> </span>them<span class="_ _9"> </span>to<span class="_ _21"> </span>the<span class="_ _9"> </span>subscript<span class="_ _21"> </span>operator<span class="_ _9"> </span>(size_t)</span></div><div class="t m0 x5 hd yfb ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>2<span class="_ _44"> </span>//<span class="_ _9"> </span><span class="ff15">On<span class="_ _9"> </span>the<span class="_ _21"> </span>other<span class="_ _9"> </span>hand,<span class="_ _21"> </span>int32_t<span class="_ _9"> </span>overflow<span class="_ _21"> </span>is</span></div><div class="t m0 x5 hd yfc ffb fs7 fc0 sc0 ls0 ws0">c1<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>block[i1],<span class="_ _21"> </span>c2<span class="_ _9"> </span><span class="fc8">=<span class="_ _21"> </span></span>block[i2];<span class="_ _45"> </span><span class="ffa fc5">//<span class="_ _9"> </span><span class="ff15">undefined<span class="_ _9"> </span>behavior<span class="_ _21"> </span>and<span class="_ _9"> </span>the<span class="_ _21"> </span>compiler<span class="_ _9"> </span>can</span></span></div><div class="t m0 x5 hd yfd ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(c1<span class="_ _9"> </span><span class="fc8">!=<span class="_ _9"> </span></span>c2)<span class="_ _21"> </span></span>return<span class="_"> </span><span class="ffb fc0">(c1<span class="_ _9"> </span><span class="fc8">&gt;<span class="_ _21"> </span></span>c2);<span class="_ _45"> </span><span class="ffa fc5">//<span class="_ _9"> </span><span class="ff15">assume<span class="_ _9"> </span>it<span class="_ _21"> </span>never<span class="_ _9"> </span>happens</span></span></span></div><div class="t m0 x5 hd y153 ffb fs7 fc0 sc0 ls0 ws0">i1<span class="fc8">++</span>,<span class="_ _9"> </span>i2<span class="fc8">++</span>;</div><div class="t m0 x5 hd y154 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>...<span class="_ _9"> </span>continue<span class="_ _21"> </span>repeating<span class="_ _9"> </span>the<span class="_ _3b"> </span>//<span class="_ _9"> </span>the<span class="_ _21"> </span>code<span class="_ _9"> </span>is<span class="_ _9"> </span>also<span class="_ _21"> </span>optimal<span class="_ _9"> </span>with<span class="_ _21"> </span><span class="ff15">size_t<span class="_ _9"> </span></span>on<span class="_ _21"> </span>64-bit</div><div class="t m0 x2e hd y155 ffb fs7 fc0 sc0 ls0 ws0">}<span class="_ _14"> </span><span class="ffa fc5">//<span class="_ _47"> </span>code<span class="_ _9"> </span>multiple<span class="_ _9"> </span>times<span class="_ _43"> </span>//<span class="_ _9"> </span>arch<span class="_ _21"> </span>because<span class="_ _9"> </span><span class="ff15">block<span class="_ _21"> </span></span>cannot<span class="_ _9"> </span>be<span class="_ _21"> </span>larger<span class="_ _9"> </span>than<span class="_ _9"> </span>it</span></div><div class="t m0 xb hd y156 ffb fs7 fcc sc0 ls0 ws0">Garbage<span class="_ _9"> </span>In,<span class="_ _9"> </span>Garbage<span class="_ _21"> </span>Out:<span class="_ _20"> </span>Arguing<span class="_ _9"> </span>about<span class="_ _9"> </span>Undefined<span class="_ _21"> </span>Behavior<span class="_ _9"> </span>with<span class="_ _9"> </span>Nasal<span class="_ _21"> </span>Daemons,</div><div class="t m0 x30 hd y157 ffb fs7 fcc sc0 ls0 ws0">Chandler<span class="_ _9"> </span>Carruth,<span class="_ _9"> </span>CppCon<span class="_ _21"> </span>2016</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">34/93</div><a class="l" href="https://www.youtube.com/watch?v=yG1OZ69H_-o"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:17.725000px;width:391.471000px;height:11.657000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.youtube.com/watch?v=yG1OZ69H_-o"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:3.334000px;width:148.468000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf27" class="pf w0 h0" data-page-no="27"><div class="pc pc27 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Arithmetic<span class="_ _1b"> </span>Op<span class="_ _b"></span>erations<span class="_ _1b"> </span>-<span class="_ _9"> </span>Integer<span class="_ _1b"> </span>Multiplication</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">Integer<span class="_ _c"> </span>multiplication<span class="_ _c"> </span>requires<span class="_ _f"> </span>double<span class="_ _c"> </span>the<span class="_ _f"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>bits<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>op<span class="_ _0"></span>erands</div><div class="t m0 x1 hd y158 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span><span class="ff15">32-bit<span class="_ _9"> </span>platforms</span></div><div class="t m0 x1 hd y159 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc7">f1<span class="fc0">(</span></span>int<span class="_"> </span><span class="ffb fc0">x,<span class="_ _9"> </span></span>int<span class="_"> </span><span class="ffb fc0">y)<span class="_ _9"> </span>{</span></div><div class="t m0 xd hd y15a ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _9"> </span></span>y;<span class="_ _48"> </span><span class="ffa fc5">//<span class="_ _9"> </span>efficient,<span class="_ _9"> </span>everything<span class="_ _21"> </span>is<span class="_ _9"> </span>32-bit</span></span></div><div class="t m0 x1 hd y15b ffb fs7 fc0 sc0 ls0 ws0">}<span class="_ _49"> </span><span class="ffa fc5">//<span class="_ _9"> </span>can<span class="_ _9"> </span>overflow</span></div><div class="t m0 x1 hd y15c ff5 fs7 fc6 sc0 ls0 ws0">int64_t<span class="_"> </span><span class="ffb fc7">f2<span class="fc0">(</span></span>int64_t<span class="_"> </span><span class="ffb fc0">x,<span class="_ _9"> </span></span>int64_t<span class="_"> </span><span class="ffb fc0">y)<span class="_ _9"> </span>{<span class="_ _3b"> </span><span class="ffa fc5">//<span class="_ _9"> </span>not<span class="_ _21"> </span>efficient,<span class="_ _9"> </span>the<span class="_ _21"> </span>compiler<span class="_ _9"> </span>emulated</span></span></div><div class="t m0 xd hd y15d ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _9"> </span></span>y;<span class="_ _48"> </span><span class="ffa fc5">//<span class="_ _9"> </span>64-bit<span class="_ _9"> </span>operations<span class="_ _21"> </span>with<span class="_ _9"> </span>32-bit</span></span></div><div class="t m0 x1 hd y15e ffb fs7 fc0 sc0 ls0 ws0">}<span class="_ _49"> </span><span class="ffa fc5">//<span class="_ _9"> </span>instructions</span></div><div class="t m0 x31 hd y15f ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>same<span class="_ _9"> </span>for<span class="_ _21"> </span>f2(int<span class="_ _9"> </span>x,<span class="_ _21"> </span>int64_t<span class="_ _9"> </span>y)</div><div class="t m0 x1 hd y160 ff5 fs7 fc6 sc0 ls0 ws0">int64_t<span class="_"> </span><span class="ffb fc7">f3<span class="fc0">(</span></span>int<span class="_"> </span><span class="ffb fc0">x,<span class="_ _9"> </span></span>int<span class="_"> </span><span class="ffb fc0">y)<span class="_ _9"> </span>{</span></div><div class="t m0 xd hd y161 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _9"> </span></span></span>static_cast<span class="ffb fc8">&lt;</span><span class="fc6">int64_t<span class="ffb fc8">&gt;<span class="fc0">(y);<span class="_ _21"> </span><span class="ffa fc5">//<span class="_ _9"> </span>efficient!!<span class="_ _21"> </span>the<span class="_ _9"> </span>compiler<span class="_ _21"> </span>knows<span class="_ _9"> </span>that</span></span></span></span></div><div class="t m0 x1 hd y162 ffb fs7 fc0 sc0 ls0 ws0">}<span class="_ _49"> </span><span class="ffa fc5">//<span class="_ _9"> </span>the<span class="_ _9"> </span>inputs<span class="_ _21"> </span>are<span class="_ _9"> </span>32-bit<span class="_ _21"> </span>and<span class="_ _9"> </span>the</span></div><div class="t m0 x31 hd y163 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>multiplication<span class="_ _9"> </span>requires<span class="_ _21"> </span>64-bit,</div><div class="t m0 x31 hd y164 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>so<span class="_ _9"> </span>no<span class="_ _21"> </span>emulation<span class="_ _9"> </span>is<span class="_ _21"> </span>needed</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">35/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf28" class="pf w0 h0" data-page-no="28"><div class="pc pc28 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Arithmetic<span class="_ _1b"> </span>Op<span class="_ _b"></span>erations<span class="_ _1b"> </span>-<span class="_ _9"> </span>P<span class="_ _3"></span>ow<span class="_ _3"></span>er-of-T<span class="_ _5"></span>wo<span class="_ _8"> </span>Multiplication/Division/Mo<span class="_ _b"></span>dulo</div><div class="t m0 xb hb y165 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>shift<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff1">p<span class="_ _0"></span>o<span class="_ _3"></span>w<span class="_ _3"></span>er-of-t<span class="_ _3"></span>wo<span class="_ _f"> </span>multiplications<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff6">a<span class="_"> </span><span class="fff">≪<span class="_ _2d"> </span></span>b<span class="_ _26"> </span></span>)<span class="_ _c"> </span>and<span class="_ _f"> </span></span>divisions</span></span></div><div class="t m0 x6 hb y8e ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _26"> </span><span class="ff6">a<span class="_"> </span><span class="fff">≫<span class="_ _2d"> </span></span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span>only<span class="_ _c"> </span>for<span class="_ _c"> </span>run-time<span class="_ _c"> </span>values<span class="_ _c"> </span><span class="ff1">*</span></div><div class="t m0 xb hb y166 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>bitwise<span class="_ _c"> </span><span class="ff16">and<span class="_ _c"> </span></span>(<span class="_ _d"> </span><span class="ff6">a<span class="_"> </span>%<span class="_"> </span>b<span class="_"> </span><span class="fff">→<span class="_ _2d"> </span></span>a<span class="_"> </span>&amp;<span class="_"> </span>(b<span class="_"> </span>-<span class="_"> </span>1)<span class="_ _26"> </span></span>)<span class="_ _c"> </span>for<span class="_ _c"> </span><span class="ff1">p<span class="_ _b"></span>ow<span class="_ _3"></span>er-of-t<span class="_ _3"></span>w<span class="_ _3"></span>o<span class="_ _8"> </span>mo<span class="_ _b"></span>dulo</span></span></div><div class="t m0 x6 hb y90 ff4 fs6 fc0 sc0 ls0 ws0">op<span class="_ _b"></span>erations<span class="_ _c"> </span>only<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>run-time<span class="_ _c"> </span>values<span class="_ _f"> </span><span class="ff1">*</span></div><div class="t m0 xb hb y167 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Constant<span class="_ _8"> </span>multiplication<span class="_ _f"> </span>and<span class="_ _8"> </span>division<span class="_ _f"> </span><span class="ff4">can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>heavily<span class="_ _c"> </span>optimized<span class="_ _f"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler,</span></span></div><div class="t m0 x6 hb y168 ff4 fs6 fc0 sc0 ls0 ws0">even<span class="_ _c"> </span>for<span class="_ _c"> </span>non-trivial<span class="_ _c"> </span>values</div><div class="t m0 xb h10 y169 ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="ffe">the<span class="_ _26"> </span>compiler<span class="_ _d"> </span>automatically<span class="_ _d"> </span>applies<span class="_ _d"> </span>such<span class="_ _d"> </span>optimizations<span class="_ _d"> </span>if<span class="_ _2d"> </span><span class="ffb">b<span class="_ _12"> </span></span>is<span class="_ _26"> </span>known<span class="_ _d"> </span>at<span class="_ _26"> </span>compile-time.<span class="_ _1b"> </span>Bit<span class="_ _3"></span>wise</span></div><div class="t m0 x1 h10 y16a ffe fs7 fcc sc0 ls0 ws0">op<span class="_ _b"></span>erations<span class="_ _d"> </span>mak<span class="_ _3"></span>e<span class="_ _d"> </span>the<span class="_ _d"> </span>co<span class="_ _b"></span>de<span class="_ _d"> </span>ha<span class="_ _3"></span>rder<span class="_ _d"> </span>to<span class="_ _d"> </span>read</div><div class="t m0 x1 hd y16b ffb fs7 fcc sc0 ls0 ws0">Ideal<span class="_ _9"> </span>divisors:<span class="_ _20"> </span>when<span class="_ _9"> </span>a<span class="_ _9"> </span>division<span class="_ _21"> </span>compiles<span class="_ _9"> </span>down<span class="_ _21"> </span>to<span class="_ _9"> </span>just<span class="_ _9"> </span>a<span class="_ _21"> </span>multiplication</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">36/93</div><a class="l" href="https://lemire.me/blog/2021/04/28/ideal-divisors-when-a-division-compiles-down-to-just-a-multiplication/?amp&amp;__twitter_impression=true"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:4.240000px;width:336.214000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf29" class="pf w0 h0" data-page-no="29"><div class="pc pc29 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Conversion</div><div class="t m0 x32 h10 y16c ff1 fs7 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>rom<span class="_ _4a"> </span>T<span class="_ _7"></span>o<span class="_ _4b"> </span>Cost</div><div class="t m0 x10 h10 y16d ffb fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _4c"> </span>Unsigned<span class="_ _4d"> </span><span class="ffe">no<span class="_ _d"> </span>cost,<span class="_ _26"> </span>bit<span class="_ _d"> </span>representation<span class="_ _26"> </span>is<span class="_ _d"> </span>the<span class="_ _d"> </span>same</span></div><div class="t m0 x10 h10 y16e ffb fs7 fc0 sc0 ls0 ws0">Unsigned<span class="_ _4e"> </span>Larger<span class="_ _9"> </span>Unsigned<span class="_ _24"> </span><span class="ffe">no<span class="_ _d"> </span>cost,<span class="_ _d"> </span>register<span class="_ _d"> </span>extended</span></div><div class="t m0 x10 h10 y16f ffb fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _4c"> </span>Larger<span class="_ _9"> </span>Signed<span class="_ _37"> </span><span class="ffe">1<span class="_ _26"> </span>clo<span class="_ _b"></span>ck-cycle,<span class="_ _d"> </span>register<span class="_ _d"> </span>+<span class="_ _d"> </span>sign<span class="_ _26"> </span>extended</span></div><div class="t m0 x10 hd y170 ffb fs7 fc0 sc0 ls0 ws0">Integer<span class="_ _4d"> </span>Floating-point</div><div class="t m0 x33 h10 y171 ffe fs7 fc0 sc0 ls0 ws0">4-16<span class="_ _d"> </span>clock-cycles</div><div class="t m0 x33 h10 y172 ffe fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _d"> </span><span class="ff17">→<span class="_ _26"> </span></span>Floating-p<span class="_ _b"></span>oint<span class="_ _d"> </span>is<span class="_ _d"> </span>faster<span class="_ _d"> </span>than</div><div class="t m0 x33 h10 y173 ffe fs7 fc0 sc0 ls0 ws0">Unsigned<span class="_ _d"> </span><span class="ff17">→<span class="_ _26"> </span></span>Floating-p<span class="_ _b"></span>oint<span class="_ _d"> </span>(except<span class="_ _d"> </span><span class="ffb">AVX512</span></div><div class="t m0 x33 h10 y174 ffe fs7 fc0 sc0 ls0 ws0">instruction<span class="_ _d"> </span>set<span class="_ _26"> </span>is<span class="_ _d"> </span>enabled)</div><div class="t m0 x10 h10 y175 ffb fs7 fc0 sc0 ls0 ws0">Floating-point<span class="_ _24"> </span>Integer<span class="_ _4c"> </span><span class="ffe">fast<span class="_ _d"> </span>if<span class="_ _c"> </span></span>SSE2<span class="ffe">,<span class="_ _d"> </span>slow<span class="_ _26"> </span>otherwise<span class="_ _d"> </span>(50-100<span class="_ _d"> </span>clo<span class="_ _b"></span>ck-cycles)</span></div><div class="t m0 xb h10 y176 ffb fs7 fcc sc0 ls0 ws0">Optimizing<span class="_ _9"> </span>software<span class="_ _9"> </span>in<span class="_ _21"> </span>C++<span class="ffe">,<span class="_ _d"> </span><span class="ff18">Agner<span class="_ _d"> </span>F<span class="_ _3"></span>og</span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">37/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2a" class="pf w0 h0" data-page-no="2a"><div class="pc pc2a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint<span class="_ _1b"> </span>Division</div><div class="t m0 x1 hb y177 ff1 fs6 fc0 sc0 ls0 ws0">Multiplication<span class="_ _f"> </span>is<span class="_ _8"> </span>much<span class="_ _8"> </span>faster<span class="_ _8"> </span>than<span class="_ _8"> </span>division*</div><div class="t m0 x1 hd y178 ffb fs7 fc0 sc0 ls0 ws0">not<span class="_ _9"> </span>optimized:</div><div class="t m0 x1 hd y179 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>&quot;value&quot;<span class="_ _9"> </span>is<span class="_ _21"> </span>floating-point<span class="_ _9"> </span>(dynamic)</div><div class="t m0 x1 hd y17a ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 xd hd y17b ffb fs7 fc0 sc0 ls0 ws0">A[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>B[i]<span class="_ _21"> </span><span class="fc8">/<span class="_ _9"> </span></span>value;</div><div class="t m0 x1 hd y17c ffb fs7 fc0 sc0 ls0 ws0">optimized:</div><div class="t m0 x1 hd y17d ffb fs7 fc0 sc0 ls0 ws0">div<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>1.0<span class="_ _21"> </span>/<span class="_ _9"> </span></span>value;<span class="_ _45"> </span><span class="ffa fc5">//<span class="_ _21"> </span>div<span class="_ _9"> </span>is<span class="_ _9"> </span>floating-point</span></div><div class="t m0 x1 hd y17e ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 xd hd y17f ffb fs7 fc0 sc0 ls0 ws0">A[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>B[i]<span class="_ _21"> </span><span class="fc8">*<span class="_ _9"> </span></span>div;</div><div class="t m0 xb h10 y180 ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="ffe">Multiplying<span class="_ _26"> </span>by<span class="_ _d"> </span>the<span class="_ _26"> </span>inverse<span class="_ _d"> </span>is<span class="_ _d"> </span>not<span class="_ _d"> </span>the<span class="_ _d"> </span>same<span class="_ _d"> </span>as<span class="_ _d"> </span>the<span class="_ _26"> </span>division</span></div><div class="t m0 x27 h10 y181 ffe fs7 fcc sc0 ls0 ws0">see<span class="_ _d"> </span><span class="ffb">lemire.me/blog/2019/03/12</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">38/93</div><a class="l" href="https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/"><div class="d m1" style="border-style:none;position:absolute;left:57.090000px;bottom:5.142000px;width:119.676000px;height:12.000000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2b" class="pf w0 h0" data-page-no="2b"><div class="pc pc2b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint<span class="_ _1b"> </span>FMA</div><div class="t m0 x1 hb y177 ff4 fs6 fc0 sc0 ls0 ws0">Mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors<span class="_ _c"> </span>allo<span class="_ _3"></span>w<span class="_ _f"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rming<span class="_ _10"> </span><span class="ff6">a<span class="_"> </span>*<span class="_"> </span>b<span class="_"> </span>+<span class="_"> </span>c<span class="_ _10"> </span></span>in<span class="_ _f"> </span>a<span class="_ _c"> </span>single<span class="_ _f"> </span>op<span class="_ _b"></span>eration,<span class="_ _c"> </span>called<span class="_ _f"> </span><span class="ff1">fused</span></div><div class="t m0 x1 hb y182 ff1 fs6 fc0 sc0 ls0 ws0">multiply-add<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff6">std::fma<span class="_ _10"> </span></span>in<span class="_ _c"> </span><span class="fcd">C++11</span>).<span class="_ _21"> </span>This<span class="_ _c"> </span>implies<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _c"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>and<span class="_ _c"> </span>accuracy</span></div><div class="t m0 x1 hb y183 ff4 fs6 fc0 sc0 ls0 ws0">CPU<span class="_ _c"> </span>processors<span class="_ _c"> </span>perform<span class="_ _c"> </span>computations<span class="_ _c"> </span>with<span class="_ _f"> </span>a<span class="_ _c"> </span>larger<span class="_ _c"> </span>register<span class="_ _c"> </span>size<span class="_ _c"> </span>than<span class="_ _f"> </span>the<span class="_ _c"> </span>original<span class="_ _c"> </span>data</div><div class="t m0 x1 hb y184 ff4 fs6 fc0 sc0 ls0 ws0">t<span class="_ _3"></span>yp<span class="_ _b"></span>e<span class="_ _f"> </span>(e.g.<span class="_ _21"> </span>48-bit<span class="_ _c"> </span>for<span class="_ _c"> </span>32-bit<span class="_ _c"> </span>floating-p<span class="_ _b"></span>oint)<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>p<span class="_ _b"></span>erforming<span class="_ _c"> </span>this<span class="_ _c"> </span>op<span class="_ _b"></span>eration</div><div class="t m0 x1 hb y185 ff4 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>b<span class="_ _b"></span>ehavior:</div><div class="t m0 xb h6 y186 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">GCC<span class="_ _d"> </span>9<span class="_ _c"> </span>and<span class="_ _d"> </span>ICC<span class="_ _c"> </span>19<span class="_ _d"> </span>produce<span class="_ _c"> </span>a<span class="_ _d"> </span>single<span class="_ _c"> </span>instruction<span class="_ _d"> </span>for<span class="_ _12"> </span><span class="ff6">std::fma<span class="_ _12"> </span></span>and<span class="_ _d"> </span>for<span class="_ _12"> </span><span class="ff6">a<span class="_"> </span>*<span class="_"> </span>b<span class="_"> </span>+<span class="_"> </span>c<span class="_ _12"> </span></span>with</span></div><div class="t m0 xc hc y187 ff6 fs4 fc0 sc0 ls0 ws0">-O3<span class="_"> </span>-march=native</div><div class="t m0 xb h6 y188 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Clang<span class="_ _d"> </span>9<span class="_ _c"> </span>and<span class="_ _d"> </span>MSVC<span class="_ _d"> </span>19.*<span class="_ _c"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>duce<span class="_ _c"> </span>a<span class="_ _d"> </span>single<span class="_ _c"> </span>instruction<span class="_ _d"> </span>for<span class="_ _12"> </span><span class="ff6">std::fma<span class="_ _12"> </span></span>but<span class="_ _d"> </span>not<span class="_ _c"> </span>fo<span class="_ _3"></span>r</span></div><div class="t m0 xc hc y189 ff6 fs4 fc0 sc0 ls0 ws0">a<span class="_"> </span>*<span class="_"> </span>b<span class="_"> </span>+<span class="_"> </span>c</div><div class="t m0 xb hd y18a ffb fs7 fcc sc0 ls0 ws0">FMA:<span class="_ _9"> </span>solve<span class="_ _9"> </span>quadratic<span class="_ _21"> </span>equation</div><div class="t m0 x5 hd y18b ffb fs7 fcc sc0 ls0 ws0">FMA:<span class="_ _9"> </span>extended<span class="_ _9"> </span>precision<span class="_ _21"> </span>addition<span class="_ _9"> </span>and<span class="_ _21"> </span>multiplication<span class="_ _9"> </span>by<span class="_ _21"> </span>constant</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">39/93</div><a class="l" href="https://marc-b-reynolds.github.io/math/2020/01/10/Quadratic.html"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:16.006000px;width:138.506000px;height:11.657000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://marc-b-reynolds.github.io/math/2020/01/09/ConstAddMul.html"><div class="d m1" style="border-style:none;position:absolute;left:34.324000px;bottom:1.615000px;width:298.555000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2c" class="pf w0 h0" data-page-no="2c"><div class="pc pc2c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Intrinsic<span class="_ _1b"> </span>Functions<span class="_ _4f"> </span>1/5</div><div class="t m0 x1 hb y18c ff1 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _f"> </span>intrinsics<span class="_ _f"> </span><span class="ff4">are<span class="_ _c"> </span>highly<span class="_ _c"> </span>optimized<span class="_ _c"> </span>functions<span class="_ _f"> </span>directly<span class="_ _c"> </span>provided<span class="_ _c"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler</span></div><div class="t m0 x1 hb y18d ff4 fs6 fc0 sc0 ls0 ws0">instead<span class="_ _c"> </span>of<span class="_ _c"> </span>external<span class="_ _f"> </span>libra<span class="_ _3"></span>ries</div><div class="t m0 x1 hb y18e ff9 fs6 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>dvantages:</div><div class="t m0 xb hb y18f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Directly<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>to<span class="_ _c"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>functionalities<span class="_ _c"> </span>if<span class="_ _f"> </span>available</span></div><div class="t m0 xb hb y190 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Inline<span class="_ _c"> </span>expansion</span></div><div class="t m0 xb hb y191 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Do<span class="_ _d"> </span>not<span class="_ _c"> </span>inhibit<span class="_ _d"> </span>high-level<span class="_ _c"> </span>optimizations,<span class="_ _d"> </span>and<span class="_ _c"> </span>they<span class="_ _d"> </span>are<span class="_ _d"> </span>p<span class="_ _b"></span>ortable<span class="_ _d"> </span>contra<span class="_ _3"></span>ry<span class="_ _c"> </span>to<span class="_ _d"> </span><span class="ff6">asm<span class="_ _c"> </span></span>co<span class="_ _b"></span>de</span></div><div class="t m0 x1 hb y192 ff9 fs6 fc0 sc0 ls0 ws0">Dra<span class="_ _3"></span>wbacks:</div><div class="t m0 xb hb y193 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>ortabilit<span class="_ _3"></span>y<span class="_ _c"> </span>is<span class="_ _f"> </span>limited<span class="_ _c"> </span>to<span class="_ _f"> </span>a<span class="_ _c"> </span>sp<span class="_ _b"></span>ecific<span class="_ _f"> </span>compiler</span></div><div class="t m0 xb hb y194 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>intrinsics<span class="_ _f"> </span>do<span class="_ _c"> </span>not<span class="_ _f"> </span>w<span class="_ _3"></span>ork<span class="_ _c"> </span>on<span class="_ _c"> </span>all<span class="_ _c"> </span>platforms</span></div><div class="t m0 xb hb y195 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>same<span class="_ _f"> </span>instricics<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>non-optimal<span class="_ _c"> </span>instruction<span class="_ _f"> </span>sequence</span></div><div class="t m0 x6 hb y196 ff4 fs6 fc0 sc0 ls0 ws0">dep<span class="_ _b"></span>ending<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">40/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2d" class="pf w0 h0" data-page-no="2d"><div class="pc pc2d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Intrinsic<span class="_ _1b"> </span>Functions<span class="_ _4f"> </span>2/5</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">Most<span class="_ _c"> </span>compilers<span class="_ _c"> </span>provide<span class="_ _c"> </span>intrinsics<span class="_ _c"> </span><span class="ff1">bit-manipulation<span class="_ _8"> </span>functions<span class="_ _f"> </span></span>for<span class="_ _c"> </span><span class="ff6">SSE4.2<span class="_ _c"> </span></span>or<span class="_ _c"> </span><span class="ff6">ABM</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">(A<span class="_ _3"></span>dvanced<span class="_ _f"> </span>Bit<span class="_ _c"> </span>Manipulation)<span class="_ _f"> </span>instruction<span class="_ _c"> </span>sets<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>Intel<span class="_ _c"> </span>and<span class="_ _f"> </span>AMD<span class="_ _c"> </span>processors</div><div class="t m0 x1 hb y197 ff4 fs6 fc0 sc0 ls0 ws0">GCC<span class="_ _c"> </span>examples:</div><div class="t m0 x4 h6 y198 ff5 fs4 fc0 sc0 ls0 ws0">__builtin_popcount(x)<span class="_ _15"> </span><span class="ff4">count<span class="_ _d"> </span>the<span class="_ _c"> </span>numb<span class="_ _b"></span>er<span class="_ _d"> </span>of<span class="_ _c"> </span>one<span class="_ _d"> </span>bits</span></div><div class="t m0 xb h6 y199 ff5 fs4 fc0 sc0 ls0 ws0">__builtin_clz(x)<span class="_ _15"> </span><span class="ff4">(<span class="ff6">count<span class="_"> </span>leading<span class="_"> </span>zeros</span>)<span class="_ _d"> </span>counts<span class="_ _c"> </span>the<span class="_ _d"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _d"> </span>zero<span class="_ _c"> </span>bits<span class="_ _d"> </span>following<span class="_ _d"> </span>the</span></div><div class="t m0 x34 h6 y19a ff4 fs4 fc0 sc0 ls0 ws0">most<span class="_ _d"> </span>significant<span class="_ _c"> </span>one<span class="_ _d"> </span>bit</div><div class="t m0 xb h6 y19b ff5 fs4 fc0 sc0 ls0 ws0">__builtin_ctz(x)<span class="_ _15"> </span><span class="ff4">(<span class="ff6">count<span class="_"> </span>trailing<span class="_"> </span>zeros</span>)<span class="_ _d"> </span>counts<span class="_ _c"> </span>the<span class="_ _d"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _d"> </span>zero<span class="_ _c"> </span>bits<span class="_ _d"> </span>preceding</span></div><div class="t m0 x34 h6 y19c ff4 fs4 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>least<span class="_ _c"> </span>significant<span class="_ _d"> </span>one<span class="_ _c"> </span>bit</div><div class="t m0 xb h6 y19d ff5 fs4 fc0 sc0 ls0 ws0">__builtin_ffs(x)<span class="_ _15"> </span><span class="ff4">(<span class="ff6">find<span class="_"> </span>first<span class="_"> </span>set</span>)<span class="_ _d"> </span>index<span class="_ _c"> </span>of<span class="_ _d"> </span>the<span class="_ _c"> </span>least<span class="_ _d"> </span>significant<span class="_ _c"> </span>one<span class="_ _d"> </span>bit</span></div><div class="t m0 xb hd y19e ffb fs7 fcc sc0 ls0 ws0">gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">41/93</div><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.099000px;width:218.531000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2e" class="pf w0 h0" data-page-no="2e"><div class="pc pc2e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Intrinsic<span class="_ _1b"> </span>Functions<span class="_ _4f"> </span>3/5</div><div class="t m0 xb hb y19f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compute<span class="_ _c"> </span><span class="ff6">integer<span class="_"> </span>log2</span></span></div><div class="t m0 x6 hd y1a0 ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_"> </span><span class="fc6">unsigned<span class="_"> </span><span class="ffb fc7">log2<span class="fc0">(</span></span>unsigned<span class="_"> </span><span class="ffb fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x2b hd y1a1 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc8">31<span class="_ _9"> </span>-<span class="_ _9"> </span><span class="fc0">__builtin_clz(x);</span></span></div><div class="t m0 x6 hd y1a2 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y1a3 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Check<span class="_ _c"> </span>if<span class="_ _f"> </span>a<span class="_ _c"> </span>numb<span class="_ _b"></span>er<span class="_ _f"> </span>is<span class="_ _c"> </span>a<span class="_ _f"> </span><span class="ff6">power<span class="_"> </span>of<span class="_"> </span>2</span></span></div><div class="t m0 x6 hd y1a4 ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_"> </span><span class="fc6">bool<span class="_"> </span><span class="ffb fc7">is_power2<span class="fc0">(</span></span>unsigned<span class="_"> </span><span class="ffb fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x2b hd y1a5 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc0">__builtin_popcount(x)<span class="_ _9"> </span><span class="fc8">==<span class="_ _9"> </span>1</span>;</span></div><div class="t m0 x6 hd y1a6 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y1a7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Bit<span class="_ _c"> </span>search<span class="_ _c"> </span>and<span class="_ _c"> </span>clear</span></div><div class="t m0 x6 hd y1a8 ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_"> </span><span class="fc6">int<span class="_"> </span><span class="ffb fc7">bit_search_clear<span class="fc0">(</span></span>unsigned<span class="_"> </span><span class="ffb fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x2b hd y1a9 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">pos<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>__builtin_ffs(x);<span class="_ _21"> </span><span class="ffa fc5">//<span class="_ _9"> </span>range<span class="_ _21"> </span>[0,<span class="_ _9"> </span>31]</span></span></div><div class="t m0 x2b hd y1aa ffb fs7 fc0 sc0 ls0 ws0">x<span class="_ _3b"> </span><span class="fc8">&amp;=<span class="_ _1b"> </span></span><span class="ff17"></span>(<span class="fc8">1u<span class="_ _21"> </span>&lt;&lt;<span class="_ _9"> </span></span>pos);</div><div class="t m0 x2b hd y1ab ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb fc0">pos;</span></div><div class="t m0 x6 hd y1ac ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">42/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf2f" class="pf w0 h0" data-page-no="2f"><div class="pc pc2f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Intrinsic<span class="_ _1b"> </span>Functions<span class="_ _4f"> </span>4/5</div><div class="t m0 x1 hb y18c ff1 fs6 fc0 sc0 ls0 ws0">Example<span class="_ _f"> </span>of<span class="_ _8"> </span>intrinsic<span class="_ _8"> </span>p<span class="_ _b"></span>ortabilit<span class="_ _3"></span>y<span class="_ _f"> </span>issue:</div><div class="t m0 x1a hb y1ad ff5 fs6 fc0 sc0 ls0 ws0">__builtin_popcount()<span class="_ _10"> </span><span class="ff4">GCC<span class="_ _c"> </span>produces<span class="_ _10"> </span><span class="ff6">__popcountdi2<span class="_ _10"> </span></span>instruction<span class="_ _c"> </span>while<span class="_ _f"> </span>Intel</span></div><div class="t m0 x1 hb y18e ff4 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>(ICC)<span class="_ _c"> </span>produces<span class="_ _f"> </span>13<span class="_ _c"> </span>instructions</div><div class="t m0 x1a hb y1ae ff5 fs6 fc0 sc0 ls0 ws0">_mm_popcnt_u32<span class="_ _10"> </span><span class="ff4">GCC<span class="_ _c"> </span>and<span class="_ _c"> </span>ICC<span class="_ _f"> </span>produce<span class="_ _10"> </span><span class="ff6">popcnt<span class="_ _10"> </span></span>instruction,<span class="_ _c"> </span>but<span class="_ _f"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>ava<span class="_ _b"></span>ilable<span class="_ _c"> </span>only</span></div><div class="t m0 x1 hb y1af ff4 fs6 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessor<span class="_ _c"> </span>with<span class="_ _c"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff6">SSE4.2<span class="_ _f"> </span></span>instruction<span class="_ _c"> </span>set</div><div class="t m0 x1 hb y1b0 ff1 fs6 fc0 sc0 ls0 ws0">Mo<span class="_ _3"></span>re<span class="_ _8"> </span>advanced<span class="_ _8"> </span>usage</div><div class="t m0 xb hb y1b1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compute<span class="_ _c"> </span>CRC:<span class="_ _10"> </span><span class="ff6">_mm_crc32_u32</span></span></div><div class="t m0 xb hb y1b2 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">AES<span class="_ _c"> </span>cryptography:<span class="_ _4"> </span><span class="ff6">_mm256_aesenclast_epi128</span></span></div><div class="t m0 xb hb y1b3 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Hash<span class="_ _c"> </span>function:<span class="_ _4"> </span><span class="ff6">_mm_sha256msg1_epu32</span></span></div><div class="t m0 xb hd y1b4 ffb fs7 fcc sc0 ls0 ws0">software.intel.com/sites/landingpage/IntrinsicsGuide/</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">43/93</div><a class="l" href="https://software.intel.com/sites/landingpage/IntrinsicsGuide/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.999000px;width:251.482000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf30" class="pf w0 h0" data-page-no="30"><div class="pc pc30 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Intrinsic<span class="_ _1b"> </span>Functions<span class="_ _4f"> </span>5/5</div><div class="t m0 x1 hb y1b5 ff9 fs6 fc0 sc0 ls0 ws0">Using<span class="_ _c"> </span>intrinsic<span class="_ _c"> </span>instructions<span class="_ _f"> </span>is<span class="_ _c"> </span>extremely<span class="_ _f"> </span>dangerous<span class="_ _c"> </span>if<span class="_ _f"> </span>the<span class="_ _c"> </span>target<span class="_ _c"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessor<span class="_ _c"> </span>do<span class="_ _b"></span>es<span class="_ _c"> </span>not</div><div class="t m0 x1 hb y1b6 ff9 fs6 fc0 sc0 ls0 ws0">natively<span class="_ _c"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>such<span class="_ _c"> </span>instructions</div><div class="t m0 x1 hb y1b7 ff4 fs6 fc0 sc0 ls0 ws0">Example:</div><div class="t m0 x1a hb y1b8 ff9 fs6 fc0 sc0 ls0 ws0">“If<span class="_ _8"> </span>you<span class="_ _8"> </span>run<span class="_ _8"> </span>co<span class="_ _b"></span>de<span class="_ _1b"> </span>that<span class="_ _8"> </span>uses<span class="_ _1b"> </span>the<span class="_ _1b"> </span>intrinsic<span class="_ _8"> </span>on<span class="_ _1b"> </span>ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _8"> </span>that<span class="_ _1b"> </span>do<span class="_ _b"></span>esnt<span class="_ _1b"> </span>supp<span class="_ _b"></span>ort<span class="_ _f"> </span>the<span class="_ _2f"> </span><span class="ffa">lzcnt</span></div><div class="t m0 x1a hb y1b9 ff9 fs6 fc0 sc0 ls0 ws0">instruction,<span class="_ _c"> </span>the<span class="_ _c"> </span>results<span class="_ _f"> </span>are<span class="_ _c"> </span>unp<span class="_ _3"></span>redictable”<span class="_ _c"> </span>-<span class="_ _f"> </span>MSVC</div><div class="t m0 x1 hb y1ba ff4 fs6 fc0 sc0 ls0 ws0">on<span class="_ _c"> </span>the<span class="_ _c"> </span>contrary<span class="_ _7"></span>,<span class="_ _c"> </span>GNU<span class="_ _c"> </span>and<span class="_ _f"> </span>clang<span class="_ _10"> </span><span class="ff6">__builtin_*<span class="_ _10"> </span></span>instructions<span class="_ _c"> </span>are<span class="_ _c"> </span>alw<span class="_ _3"></span>ays<span class="_ _c"> </span>w<span class="_ _3"></span>ell-defined.</div><div class="t m0 x1 hb y1bb ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>instruction<span class="_ _c"> </span>is<span class="_ _f"> </span>translated<span class="_ _c"> </span>to<span class="_ _f"> </span>a<span class="_ _c"> </span>non-optimal<span class="_ _f"> </span>op<span class="_ _b"></span>eration<span class="_ _c"> </span>sequence<span class="_ _f"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>wo<span class="_ _3"></span>rst<span class="_ _c"> </span>case</div><div class="t m0 x1 hb y1bc ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>instruction<span class="_ _c"> </span>set<span class="_ _f"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>checked<span class="_ _c"> </span>at<span class="_ _c"> </span><span class="ff9">run-time<span class="_ _1b"> </span></span>(e.g.<span class="_ _21"> </span>with<span class="_ _10"> </span><span class="ff6">__cpuid</span></div><div class="t m0 x1 hb y1bd ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>on<span class="_ _c"> </span>MSV<span class="_ _3"></span>C),<span class="_ _c"> </span>o<span class="_ _3"></span>r,<span class="_ _c"> </span>when<span class="_ _c"> </span>available,<span class="_ _c"> </span>by<span class="_ _d"> </span>using<span class="_ _c"> </span>compiler-time<span class="_ _c"> </span>macro<span class="_ _c"> </span>(e.g.<span class="_ _4"> </span><span class="ff6">__AVX__<span class="_ _26"> </span></span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">44/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf31" class="pf w0 h0" data-page-no="31"><div class="pc pc31 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">A<span class="_ _3"></span>utomatic<span class="_ _1b"> </span>Compiler<span class="_ _1b"> </span>Function<span class="_ _8"> </span>T<span class="_ _7"></span>ransfo<span class="_ _3"></span>rmation</div><div class="t m0 x1a hb y18c ff6 fs6 fc0 sc0 ls0 ws0">std::abs<span class="_ _10"> </span><span class="ff4">can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>recognized<span class="_ _f"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _c"> </span>and<span class="_ _f"> </span>transfo<span class="_ _3"></span>rmed<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re</span></div><div class="t m0 x1 hb y18d ff4 fs6 fc0 sc0 ls0 ws0">instruction</div><div class="t m0 x1 hb y18e ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>a<span class="_ _c"> </span>similar<span class="_ _c"> </span>w<span class="_ _3"></span>ay<span class="_ _7"></span>,<span class="_ _c"> </span><span class="fcd">C++20<span class="_ _c"> </span></span>p<span class="_ _3"></span>rovides<span class="_ _f"> </span>a<span class="_ _c"> </span>p<span class="_ _b"></span>ortable<span class="_ _c"> </span>and<span class="_ _c"> </span>efficient<span class="_ _c"> </span>wa<span class="_ _3"></span>y<span class="_ _c"> </span>to<span class="_ _c"> </span>express<span class="_ _c"> </span>bit<span class="_ _c"> </span>op<span class="_ _b"></span>erations</div><div class="t m0 x1a h11 y1be ff6 fs6 fc0 sc0 ls0 ws0">&lt;bit&gt;</div><div class="t m0 x35 hb y190 ff6 fs6 fc0 sc0 ls0 ws0">rotate<span class="_"> </span>left<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::rotl</div><div class="t m0 x20 hb y191 ff6 fs6 fc0 sc0 ls0 ws0">rotate<span class="_"> </span>right<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::rotr</div><div class="t m0 x36 hb y105 ff6 fs6 fc0 sc0 ls0 ws0">count<span class="_"> </span>leading<span class="_"> </span>zero<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countl_zero</div><div class="t m0 x9 hb y106 ff6 fs6 fc0 sc0 ls0 ws0">count<span class="_"> </span>leading<span class="_"> </span>one<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countl_one</div><div class="t m0 x37 hb y107 ff6 fs6 fc0 sc0 ls0 ws0">count<span class="_"> </span>trailing<span class="_"> </span>zero<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countr_zero</div><div class="t m0 x36 hb y1bf ff6 fs6 fc0 sc0 ls0 ws0">count<span class="_"> </span>trailing<span class="_"> </span>one<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countr_one</div><div class="t m0 x38 hb y1c0 ff6 fs6 fc0 sc0 ls0 ws0">population<span class="_"> </span>count<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::popcount</div><div class="t m0 xb hd y1c1 ffb fs7 fcc sc0 ls0 ws0">Why<span class="_ _9"> </span>is<span class="_ _9"> </span>the<span class="_ _21"> </span>standard<span class="_ _9"> </span>&quot;abs&quot;<span class="_ _21"> </span>function<span class="_ _9"> </span>faster<span class="_ _21"> </span>than<span class="_ _9"> </span>mine?</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">45/93</div><a class="l" href="https://stackoverflow.com/questions/66023408/why-is-the-standard-abs-function-faster-than-mine"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.671000px;width:246.775000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf32" class="pf w0 h0" data-page-no="32"><div class="pc pc32 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _1b"> </span>in<span class="_ _1b"> </span>a<span class="_ _9"> </span>Range</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Checking<span class="_ _f"> </span>if<span class="_ _8"> </span>a<span class="_ _8"> </span>non-negative<span class="_ _8"> </span>value<span class="_ _8"> </span><span class="ff19">x<span class="_ _21"> </span></span>is<span class="_ _f"> </span>within<span class="_ _8"> </span>a<span class="_ _8"> </span>range<span class="_ _8"> </span><span class="ff19">[A,<span class="_ _8"> </span>B]<span class="_ _21"> </span></span>can<span class="_ _8"> </span>b<span class="_ _b"></span>e<span class="_ _8"> </span>optimized<span class="_ _8"> </span>if</div><div class="t m0 x1 hb ye9 ff19 fs6 fc0 sc0 ls0 ws0">B<span class="_ _1b"> </span><span class="ff1">&gt;<span class="_ _8"> </span></span>A<span class="_ _f"> </span><span class="ff4">(useful<span class="_ _c"> </span>when<span class="_ _f"> </span>the<span class="_ _c"> </span>condition<span class="_ _f"> </span>is<span class="_ _c"> </span>rep<span class="_ _b"></span>eated<span class="_ _f"> </span>multiple<span class="_ _c"> </span>times)</span></div><div class="t m0 x1 hd y1c2 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _9"> </span></span>A<span class="_ _21"> </span><span class="fc8">&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">&lt;=<span class="_ _9"> </span></span>B)</span></div><div class="t m0 x1 hd y1c3 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span><span class="ff15">STEP<span class="_ _9"> </span>1</span>:<span class="_ _21"> </span>subtract<span class="_ _9"> </span><span class="ff15">A</span></div><div class="t m0 x1 hd y1c4 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span></span>A<span class="_ _21"> </span><span class="fc8">&gt;=<span class="_ _9"> </span></span>A<span class="_ _21"> </span><span class="fc8">-<span class="_ _9"> </span></span>A<span class="_ _21"> </span><span class="fc8">&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _9"> </span><span class="fc8">-<span class="_ _21"> </span></span>A<span class="_ _9"> </span><span class="fc8">&lt;=<span class="_ _21"> </span></span>B<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span></span>A)</span></div><div class="t m0 x1 hd y1c5 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>--&gt;</div><div class="t m0 x1 hd y1c6 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span></span>A<span class="_ _21"> </span><span class="fc8">&gt;=<span class="_ _9"> </span>0<span class="_ _21"> </span>&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">-<span class="_ _9"> </span></span>A<span class="_ _9"> </span><span class="fc8">&lt;=<span class="_ _21"> </span></span>B<span class="_ _9"> </span><span class="fc8">-<span class="_ _21"> </span></span>A)<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>B<span class="_ _21"> </span>-<span class="_ _9"> </span>A<span class="_ _21"> </span>is<span class="_ _9"> </span>precomputed</span></span></div><div class="t m0 x1 hd y1c7 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span><span class="ff15">STEP<span class="_ _9"> </span>2</span></div><div class="t m0 x1 hd y1c8 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _14"> </span>-<span class="_ _9"> </span>convert<span class="_ _21"> </span>&quot;x<span class="_ _9"> </span>-<span class="_ _21"> </span>A<span class="_ _9"> </span>&gt;=<span class="_ _9"> </span>0&quot;<span class="_ _21"> </span>--&gt;<span class="_ _9"> </span>(unsigned)<span class="_ _21"> </span>(x<span class="_ _9"> </span>-<span class="_ _21"> </span>A)</div><div class="t m0 x1 hd y1c9 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _14"> </span>-<span class="_ _9"> </span>&quot;B<span class="_ _21"> </span>-<span class="_ _9"> </span>A&quot;<span class="_ _21"> </span>is<span class="_ _9"> </span>always<span class="_ _9"> </span>positive</div><div class="t m0 x1 hd y1ca ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">((</span><span class="fc6">unsigned<span class="ffb fc0">)<span class="_ _9"> </span>(x<span class="_ _9"> </span><span class="fc8">-<span class="_ _21"> </span></span>A)<span class="_ _9"> </span><span class="fc8">&lt;=<span class="_ _21"> </span></span>(</span>unsigned<span class="ffb fc0">)<span class="_ _9"> </span>(B<span class="_ _21"> </span><span class="fc8">-<span class="_ _9"> </span></span>A))</span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">46/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf33" class="pf w0 h0" data-page-no="33"><div class="pc pc33 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _1b"> </span>in<span class="_ _1b"> </span>a<span class="_ _9"> </span>Range<span class="_ _1b"> </span>Examples</div><div class="t m0 x1 hb y1cb ff4 fs6 fc0 sc0 ls0 ws0">Check<span class="_ _c"> </span>if<span class="_ _c"> </span>a<span class="_ _f"> </span>value<span class="_ _c"> </span>is<span class="_ _f"> </span>an<span class="_ _c"> </span>upp<span class="_ _0"></span>ercase<span class="_ _c"> </span>letter:</div><div class="t m0 x1 hd y1cc ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...</span></div><div class="t m0 x1 hd y1cd ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">A</span>&apos;<span class="_ _21"> </span></span>&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">&lt;=<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">Z</span>&apos;</span></span>)</span></div><div class="t m0 xd hd y1ce ffb fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x39 h13 y1cf fff fs6 fc0 sc0 ls0 ws0">→</div><div class="t m0 x3a hd y1cc ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...</span></div><div class="t m0 x3a hd y1cd ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">A</span>&apos;<span class="_ _21"> </span></span>&lt;=<span class="_ _9"> </span><span class="ffd fca">&apos;<span class="ffb">Z</span>&apos;</span></span>)</span></div><div class="t m0 x3b hd y1ce ffb fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x1 hb y1d0 ff4 fs6 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span>more<span class="_ _c"> </span>general<span class="_ _c"> </span>case:</div><div class="t m0 x1 hd y1d1 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...</span></div><div class="t m0 x1 hd y1d2 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _9"> </span>-10<span class="_ _21"> </span>&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">&lt;=<span class="_ _9"> </span>30</span>)</span></div><div class="t m0 xd hd y1d3 ffb fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x39 h13 y1d4 fff fs6 fc0 sc0 ls0 ws0">→</div><div class="t m0 x3a hd y1d1 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...</span></div><div class="t m0 x3a hd y1d2 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_"> </span><span class="ffb fc0">((</span><span class="fc6">unsigned<span class="ffb fc0">)<span class="_ _9"> </span>(x<span class="_ _9"> </span><span class="fc8">+<span class="_ _21"> </span>10</span>)<span class="_ _9"> </span><span class="fc8">&lt;=<span class="_ _21"> </span>40</span>)</span></span></div><div class="t m0 x3b hd y1d3 ffb fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 xb h10 y1d5 ffe fs7 fcc sc0 ls0 ws0">The<span class="_ _d"> </span>compiler<span class="_ _26"> </span>applies<span class="_ _d"> </span>this<span class="_ _d"> </span>optimization<span class="_ _d"> </span>only<span class="_ _d"> </span>in<span class="_ _d"> </span>some<span class="_ _d"> </span>cases</div><div class="t m0 xb h10 y1d6 ffe fs7 fcc sc0 ls0 ws0">(tested<span class="_ _d"> </span>with<span class="_ _26"> </span>GCC/Clang<span class="_ _d"> </span>9<span class="_ _d"> </span><span class="ffb">-O3</span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">47/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf34" class="pf w0 h0" data-page-no="34"><div class="pc pc34 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _1b"> </span>T<span class="_ _7"></span>able</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _8"> </span>table<span class="_ _f"> </span>(LUT)<span class="_ _f"> </span><span class="ff4">is<span class="_ _c"> </span>a<span class="_ _f"> </span><span class="ff9">memoization<span class="_ _f"> </span></span>technique<span class="_ _f"> </span>which<span class="_ _c"> </span>allows<span class="_ _c"> </span>replacing<span class="_ _c"> </span><span class="ff9">runtime</span></span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">computation<span class="_ _c"> </span>with<span class="_ _c"> </span>precomputed<span class="_ _c"> </span>values</div><div class="t m0 x1 h6 y1d7 ff4 fs4 fc0 sc0 ls0 ws0">Example:<span class="_ _1b"> </span>a<span class="_ _c"> </span>function<span class="_ _d"> </span>that<span class="_ _c"> </span>computes<span class="_ _d"> </span>the<span class="_ _c"> </span>loga<span class="_ _3"></span>rithm<span class="_ _c"> </span>base<span class="_ _d"> </span>10<span class="_ _c"> </span>of<span class="_ _d"> </span>a<span class="_ _c"> </span>number<span class="_ _c"> </span>in<span class="_ _d"> </span>the<span class="_ _c"> </span>range<span class="_ _d"> </span>[1-100]</div><div class="t m0 x1 hf y1d8 ff5 fs5 fc9 sc0 ls0 ws0">template<span class="ffc fc8">&lt;</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">SIZE,<span class="_ _8"> </span></span></span>typename<span class="_ _1b"> </span><span class="fc7">Lambda<span class="ffc fc8">&gt;</span></span></div><div class="t m0 x1 hf y1d9 ff5 fs5 fc9 sc0 ls0 ws0">constexpr<span class="_"> </span><span class="ffc fc0">std<span class="fc8">::</span>array<span class="fc8">&lt;</span></span><span class="fc6">float<span class="ffc fc0">,<span class="_ _8"> </span>SIZE<span class="fc8">&gt;<span class="_ _1b"> </span></span>build(Lambda<span class="_ _1b"> </span>lambda)<span class="_ _8"> </span>{</span></span></div><div class="t m0 xf hf y1da ffc fs5 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>array<span class="fc8">&lt;<span class="ff5 fc6">float</span></span>,<span class="_ _8"> </span>SIZE<span class="fc8">&gt;<span class="_ _1b"> </span></span>array{};</div><div class="t m0 xf hf y1db ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">i<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>i<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>SIZE;<span class="_ _1b"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x15 hf y1dc ffc fs5 fc0 sc0 ls0 ws0">array[i]<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>lambda(i);</div><div class="t m0 xf hf y1dd ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffc fc0">array;</span></div><div class="t m0 x1 hf y1de ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hf y1df ff5 fs5 fc6 sc0 ls0 ws0">float<span class="_"> </span><span class="ffc fc0">log10(</span>int<span class="_"> </span><span class="ffc fc0">value)<span class="_ _1b"> </span>{</span></div><div class="t m0 xf hf y1e0 ff5 fs5 fc9 sc0 ls0 ws0">constexpr<span class="_"> </span>auto<span class="_"> </span><span class="ffc fc0">lamba<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span></span>[](</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">i)<span class="_ _1b"> </span>{<span class="_ _1b"> </span></span></span>return<span class="_"> </span><span class="ffc fc0">std<span class="fc8">::</span>log10f((</span><span class="fc6">float<span class="ffc fc0">)<span class="_ _1b"> </span>i);<span class="_ _8"> </span>};</span></span></div><div class="t m0 xf hf y1e1 ff5 fs5 fc9 sc0 ls0 ws0">static<span class="_"> </span>constexpr<span class="_"> </span>auto<span class="_"> </span><span class="ffc fc0">table<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span></span>build<span class="fc8">&lt;100&gt;</span>(lambda);</span></div><div class="t m0 xf hf y1e2 ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffc fc0">table[value];</span></div><div class="t m0 x1 hf y1e3 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hd y1e4 ffb fs7 fcc sc0 ls0 ws0">Make<span class="_ _9"> </span>your<span class="_ _9"> </span>lookup<span class="_ _21"> </span>table<span class="_ _9"> </span>do<span class="_ _21"> </span>more</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">48/93</div><a class="l" href="https://commaok.xyz/post/lookup_tables/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.687000px;width:143.213000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf35" class="pf w0 h0" data-page-no="35"><div class="pc pc35 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _1b"> </span>Optimizations</div><div class="t m0 x1 hb y1e5 ff1 fs6 fc0 sc0 ls0 ws0">Collection<span class="_ _f"> </span>of<span class="_ _8"> </span>low-level<span class="_ _f"> </span>implementations/optimization<span class="_ _8"> </span>of<span class="_ _8"> </span>common<span class="_ _f"> </span>op<span class="_ _0"></span>erations:</div><div class="t m0 xb hb y1e6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Bit<span class="_ _8"> </span>T<span class="_ _7"></span>widdling<span class="_ _f"> </span>Hacks</span></div><div class="t m0 x36 h11 y1e7 ff6 fs6 fc0 sc0 ls0 ws0">graphics.stanford.edu/<span class="fff"></span>seander/bithacks.html</div><div class="t m0 xb hb y1e8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">The<span class="_ _8"> </span>Aggregate<span class="_ _f"> </span>Magic<span class="_ _8"> </span>Algorithms</span></div><div class="t m0 x36 h11 y1e9 ff6 fs6 fc0 sc0 ls0 ws0">aggregate.org/MAGIC</div><div class="t m0 xb hb y1ea ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Hack<span class="_ _3"></span>ers<span class="_ _8"> </span>Delight<span class="_ _8"> </span>Bo<span class="_ _b"></span>ok</span></div><div class="t m0 x36 h11 y1eb ff6 fs6 fc0 sc0 ls0 ws0">www.hackersdelight.org</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">49/93</div><a class="l" href="https://graphics.stanford.edu/~seander/bithacks.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:141.663000px;width:256.750000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://aggregate.org/MAGIC/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:98.545000px;width:110.811000px;height:11.992000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://www.hackersdelight.org/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:55.427000px;width:127.993000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf36" class="pf w0 h0" data-page-no="36"><div class="pc pc36 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _1b"> </span>Information</div><div class="t m0 x1 hb y1ec ff1 fs6 fc0 sc0 ls0 ws0">The<span class="_ _f"> </span>same<span class="_ _8"> </span>instruction/op<span class="_ _b"></span>eration<span class="_ _8"> </span>may<span class="_ _f"> </span>take<span class="_ _c"> </span>different<span class="_ _8"> </span>clo<span class="_ _0"></span>ck-cycles<span class="_ _c"> </span>on<span class="_ _8"> </span>different</div><div class="t m0 x1 hb y1ed ff1 fs6 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>rchitectures/CPU<span class="_ _8"> </span>type</div><div class="t m0 xb hb y1ee ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Agner<span class="_ _8"> </span>F<span class="_ _3"></span>og<span class="_ _8"> </span>-<span class="_ _8"> </span>Instruction<span class="_ _8"> </span>tables<span class="_ _c"> </span><span class="ff4">(latencies,<span class="_ _c"> </span>throughputs)</span></span></div><div class="t m0 x36 h11 y1ef ff6 fs6 fc0 sc0 ls0 ws0">www.agner.org/optimize/instruction_tables.pdf</div><div class="t m0 xb hb y1f0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Latency<span class="_ _7"></span>,<span class="_ _f"> </span>Throughput,<span class="_ _8"> </span>and<span class="_ _8"> </span>Po<span class="_ _3"></span>rt<span class="_ _f"> </span>Usage<span class="_ _8"> </span>Information</span></div><div class="t m0 x36 h11 y1f1 ff6 fs6 fc0 sc0 ls0 ws0">uops.info/table.html</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">50/93</div><a class="l" href="http://www.agner.org/optimize/instruction_tables.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:112.313000px;width:259.719000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://uops.info/table.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:69.195000px;width:116.538000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf37" class="pf w0 h0" data-page-no="37"><div class="pc pc37 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y135 ff1 fs0 fc0 sc0 ls0 ws0">Control<span class="_ _1"> </span>Flo<span class="_ _7"></span>w</div><a class="l" href="#pf37" data-dest-detail='[55,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:137.252000px;width:148.064000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf38" class="pf w0 h0" data-page-no="38"><div class="pc pc38 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Control<span class="_ _1b"> </span>Flo<span class="_ _3"></span>w</div><div class="t m0 x3c h8 y1f2 ff1 fs2 fc3 sc0 ls0 ws0">Computation<span class="_ _e"> </span>is<span class="_ _e"> </span>faster<span class="_ _6"> </span>than<span class="_ _e"> </span>decision</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">51/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf39" class="pf w0 h0" data-page-no="39"><div class="pc pc39 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branches<span class="_ _50"> </span>1/2</div><div class="t m0 x1 hb y1f3 ff1 fs6 fc0 sc0 ls0 ws0">Pip<span class="_ _b"></span>elines<span class="_ _c"> </span><span class="ff4">are<span class="_ _c"> </span>an<span class="_ _c"> </span>essential<span class="_ _f"> </span>element<span class="_ _c"> </span>in<span class="_ _f"> </span>mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors.<span class="_ _9"> </span>Some<span class="_ _c"> </span>processors<span class="_ _c"> </span>have<span class="_ _c"> </span>up<span class="_ _f"> </span>to</span></div><div class="t m0 x1 hb y1f4 ff4 fs6 fc0 sc0 ls0 ws0">20<span class="_ _c"> </span>pip<span class="_ _b"></span>eline<span class="_ _f"> </span>stages<span class="_ _c"> </span>(14/16<span class="_ _f"> </span>t<span class="_ _3"></span>ypically)</div><div class="t m0 x1 hb y1f5 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>downside<span class="_ _c"> </span>to<span class="_ _c"> </span>long<span class="_ _c"> </span>pip<span class="_ _b"></span>elines<span class="_ _f"> </span>includes<span class="_ _c"> </span>the<span class="_ _f"> </span>danger<span class="_ _c"> </span>of<span class="_ _9"> </span><span class="ff1">pip<span class="_ _b"></span>eline<span class="_ _8"> </span>stalls<span class="_ _c"> </span></span>that<span class="_ _f"> </span>w<span class="_ _3"></span>aste<span class="_ _f"> </span>CPU</div><div class="t m0 x1 hb y1f6 ff4 fs6 fc0 sc0 ls0 ws0">time,<span class="_ _c"> </span>and<span class="_ _c"> </span>the<span class="_ _f"> </span>time<span class="_ _c"> </span>it<span class="_ _f"> </span>takes<span class="_ _c"> </span>to<span class="_ _c"> </span>reload<span class="_ _c"> </span>the<span class="_ _f"> </span>pip<span class="_ _b"></span>eline<span class="_ _c"> </span>on<span class="_ _f"> </span><span class="ff1">conditional<span class="_ _8"> </span>b<span class="_ _3"></span>ranch<span class="_ _f"> </span><span class="ff4">op<span class="_ _b"></span>erations</span></span></div><div class="t m0 x1 hb y145 ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _26"> </span><span class="ff6">if<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff6">while<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff6">for<span class="_ _26"> </span></span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">52/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3a" class="pf w0 h0" data-page-no="3a"><div class="pc pc3a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branches<span class="_ _50"> </span>2/2</div><div class="t m0 xb hb y1f7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">switch<span class="_ _10"> </span></span>statements<span class="_ _c"> </span>to<span class="_ _c"> </span>multiple<span class="_ _10"> </span><span class="ff5">if</span></span></div><div class="t m0 x15 h6 y1f8 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>If<span class="_ _d"> </span>the<span class="_ _c"> </span>compiler<span class="_ _d"> </span>do<span class="_ _b"></span>es<span class="_ _c"> </span>not<span class="_ _d"> </span>use<span class="_ _c"> </span>a<span class="_ _d"> </span>jump-table,<span class="_ _c"> </span>the<span class="_ _d"> </span>cases<span class="_ _c"> </span>are<span class="_ _d"> </span>evaluated<span class="_ _d"> </span>in<span class="_ _c"> </span>o<span class="_ _3"></span>rder<span class="_ _c"> </span>of</div><div class="t m0 x1b h6 y1f9 ff4 fs4 fc0 sc0 ls0 ws0">app<span class="_ _b"></span>ea<span class="_ _3"></span>rance<span class="_ _c"> </span><span class="fff">→<span class="_ _d"> </span></span>the<span class="_ _c"> </span>most<span class="_ _d"> </span>frequent<span class="_ _c"> </span>cases<span class="_ _d"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _d"> </span>placed<span class="_ _c"> </span>b<span class="_ _b"></span>efo<span class="_ _3"></span>re</div><div class="t m0 x15 h6 y1fa ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>Some<span class="_ _d"> </span>compilers<span class="_ _d"> </span>(e.g.<span class="_ _1b"> </span><span class="ff6">clang</span>)<span class="_ _d"> </span>a<span class="_ _3"></span>re<span class="_ _d"> </span>able<span class="_ _d"> </span>to<span class="_ _d"> </span>translate<span class="_ _d"> </span>a<span class="_ _d"> </span>sequence<span class="_ _d"> </span>of<span class="_ _2d"> </span><span class="ff6">if<span class="_ _12"> </span></span>into<span class="_ _26"> </span>a<span class="_ _12"> </span><span class="ff6">switch</span></div><div class="t m0 xb hb y1fb ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>general,<span class="_ _f"> </span>a<span class="_ _c"> </span><span class="ff9">branch<span class="_ _c"> </span></span>has<span class="_ _f"> </span>negligible<span class="_ _c"> </span>effect<span class="_ _c"> </span>on<span class="_ _f"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>if<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>not<span class="_ _c"> </span>taken</span></div><div class="t m0 xb hb y1fc ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Not<span class="_ _c"> </span>all<span class="_ _f"> </span>control<span class="_ _c"> </span>flow<span class="_ _c"> </span>instructions<span class="_ _c"> </span>(or<span class="_ _c"> </span>b<span class="_ _3"></span>ranches)<span class="_ _c"> </span>are<span class="_ _c"> </span>translated<span class="_ _c"> </span>into<span class="_ _10"> </span><span class="ff6">jump</span></span></div><div class="t m0 x36 hb y1fd ff4 fs6 fc0 sc0 ls0 ws0">instructions.<span class="_ _21"> </span>If<span class="_ _c"> </span>the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>branch<span class="_ _c"> </span>is<span class="_ _c"> </span>small,<span class="_ _c"> </span>the<span class="_ _f"> </span>compiler<span class="_ _c"> </span>could<span class="_ _f"> </span>optimize<span class="_ _c"> </span>it<span class="_ _f"> </span>in<span class="_ _c"> </span>a</div><div class="t m0 x36 hb y1fe ff4 fs6 fc0 sc0 ls0 ws0">conditional<span class="_ _c"> </span>instruction,<span class="_ _c"> </span>e.g.<span class="_ _a"> </span><span class="ff6">ccmovl</span></div><div class="t m0 x30 h10 y1ff ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">Branch<span class="_ _9"> </span>predictor:<span class="_ _20"> </span>How<span class="_ _9"> </span>many<span class="_ _9"> </span>ifs<span class="_ _21"> </span>are<span class="_ _9"> </span>too<span class="_ _21"> </span>many?</span></div><div class="t m0 x30 h10 y200 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">Is<span class="_ _9"> </span>this<span class="_ _21"> </span>a<span class="_ _9"> </span>branch?</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">53/93</div><a class="l" href="https://blog.cloudflare.com/branch-predictor/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:20.923000px;width:223.238000px;height:10.033000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://bartwronski.com/2021/01/18/is-this-a-branch/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:8.320000px;width:82.018000px;height:7.373000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3b" class="pf w0 h0" data-page-no="3b"><div class="pc pc3b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ha<span class="_ _3"></span>rdw<span class="_ _3"></span>are<span class="_ _8"> </span>Features<span class="_ _8"> </span>to<span class="_ _1b"> </span>Mitigate<span class="_ _9"> </span>Branch<span class="_ _1b"> </span>Overhead</div><div class="t m0 xb hb y136 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Branch<span class="_ _8"> </span>p<span class="_ _3"></span>rediction<span class="ff4">:<span class="_ _21"> </span>technique<span class="_ _c"> </span>to<span class="_ _f"> </span>guess<span class="_ _c"> </span>which<span class="_ _f"> </span>wa<span class="_ _3"></span>y<span class="_ _c"> </span>a<span class="_ _c"> </span>branch<span class="_ _c"> </span>tak<span class="_ _3"></span>es.<span class="_ _21"> </span>It<span class="_ _f"> </span>requires</span></span></div><div class="t m0 x36 hb y137 ff4 fs6 fc0 sc0 ls0 ws0">ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _c"> </span>supp<span class="_ _b"></span>ort,<span class="_ _d"> </span>and<span class="_ _f"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>generically<span class="_ _c"> </span>based<span class="_ _c"> </span>on<span class="_ _c"> </span>dynamic<span class="_ _c"> </span>history<span class="_ _c"> </span>of<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>executing</div><div class="t m0 xb hb y201 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Branch<span class="_ _8"> </span>p<span class="_ _3"></span>redication<span class="ff4">:<span class="_ _21"> </span>a<span class="_ _c"> </span>conditional<span class="_ _f"> </span>branch<span class="_ _c"> </span>is<span class="_ _c"> </span>substituted<span class="_ _c"> </span>by<span class="_ _c"> </span>a<span class="_ _c"> </span>sequence<span class="_ _c"> </span>of</span></span></div><div class="t m0 x36 hb y202 ff4 fs6 fc0 sc0 ls0 ws0">instructions<span class="_ _c"> </span>from<span class="_ _c"> </span>b<span class="_ _0"></span>oth<span class="_ _c"> </span>paths<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _3"></span>ranch.<span class="_ _21"> </span>Only<span class="_ _f"> </span>the<span class="_ _c"> </span>instructions<span class="_ _f"> </span>asso<span class="_ _b"></span>ciated<span class="_ _c"> </span>to<span class="_ _f"> </span>a</div><div class="t m0 x36 hb y203 ff9 fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>redicate<span class="_ _1b"> </span><span class="ff4">(b<span class="_ _b"></span>o<span class="_ _b"></span>olean<span class="_ _f"> </span>value),<span class="_ _c"> </span>that<span class="_ _c"> </span>represents<span class="_ _c"> </span>the<span class="_ _c"> </span>direction<span class="_ _f"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _3"></span>ranch,<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>actually</span></div><div class="t m0 x36 hb y204 ff4 fs6 fc0 sc0 ls0 ws0">executed</div><div class="t m0 x36 hf y205 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">x<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>(condition)<span class="_ _1b"> </span><span class="fc8">?<span class="_ _8"> </span></span>A[i]<span class="_ _1b"> </span><span class="fc8">:<span class="_ _1b"> </span></span>B[i];</span></div><div class="t m0 x36 hf y206 ffc fs5 fc0 sc0 ls0 ws0">P<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>(condition)<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>P:<span class="_ _1b"> </span>predicate</span></div><div class="t m0 x36 hf y207 ffc fs5 fc0 sc0 ls0 ws0">P<span class="_ _8"> </span>x<span class="_ _1b"> </span>=<span class="_ _1b"> </span>A[i];</div><div class="t m0 x36 hf y208 ffc fs5 fc8 sc0 ls0 ws0">!<span class="fc0">P<span class="_ _8"> </span>x<span class="_ _1b"> </span></span>=<span class="_ _1b"> </span><span class="fc0">B[i];</span></div><div class="t m0 xb hb y209 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Sp<span class="_ _b"></span>eculative<span class="_ _8"> </span>execution<span class="ff4">:<span class="_ _21"> </span>execute<span class="_ _c"> </span>b<span class="_ _b"></span>oth<span class="_ _f"> </span>sides<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>conditional<span class="_ _f"> </span>b<span class="_ _3"></span>ranch<span class="_ _f"> </span>to<span class="_ _c"> </span>b<span class="_ _b"></span>etter</span></span></div><div class="t m0 x36 hb y20a ff4 fs6 fc0 sc0 ls0 ws0">utilize<span class="_ _c"> </span>the<span class="_ _c"> </span>computer<span class="_ _f"> </span>resources<span class="_ _c"> </span>and<span class="_ _f"> </span>commit<span class="_ _c"> </span>the<span class="_ _f"> </span>results<span class="_ _c"> </span>asso<span class="_ _b"></span>ciated<span class="_ _f"> </span>to<span class="_ _c"> </span>the<span class="_ _f"> </span>branch</div><div class="t m0 x36 hb y20b ff4 fs6 fc0 sc0 ls0 ws0">tak<span class="_ _3"></span>en</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">54/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3c" class="pf w0 h0" data-page-no="3c"><div class="pc pc3c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branch<span class="_ _1b"> </span>Hints<span class="_ _1b"> </span>-<span class="_ _1b"> </span><span class="ff5">[[likely]]<span class="_"> </span>/<span class="_"> </span>[[unlikely]]</span></div><div class="t m0 x1 hb y20c ff4 fs6 fcd sc0 ls0 ws0">C++20<span class="_ _10"> </span><span class="ff6 fc7">[[likely]]<span class="_ _10"> </span></span><span class="fc0">and<span class="_ _10"> </span><span class="ff6 fc7">[[unlikely]]<span class="_ _10"> </span></span>p<span class="_ _3"></span>rovide<span class="_ _c"> </span>a<span class="_ _f"> </span>hint<span class="_ _c"> </span>to<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>to<span class="_ _c"> </span>optimize</span></div><div class="t m0 x1 hb y20d ff4 fs6 fc0 sc0 ls0 ws0">a<span class="_ _c"> </span>conditional<span class="_ _c"> </span>statement,<span class="_ _f"> </span>such<span class="_ _c"> </span>as<span class="_ _10"> </span><span class="ff6">while<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff6">for<span class="_ _26"> </span></span>,<span class="_ _10"> </span><span class="ff6">if</span></div><div class="t m0 x1 hd y20e ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span>300</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></div><div class="t m0 xd hd y20f ffb fs7 fc0 sc0 ls0 ws0">[[unlikely]]<span class="_ _9"> </span><span class="ff5 fc9">if<span class="_"> </span></span>(rand()<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span>10</span>)</div><div class="t m0 x3d hd y210 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffb">false<span class="fc0">;</span></span></div><div class="t m0 x1 hd y211 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hd y212 ff5 fs7 fc9 sc0 ls0 ws0">switch<span class="_"> </span><span class="ffb fc0">(value)<span class="_ _9"> </span>{</span></div><div class="t m0 x30 hd y213 ffb fs7 fc0 sc0 ls0 ws0">[[likely]]<span class="_ _14"> </span><span class="ff5 fc9">case<span class="_"> </span><span class="ffd fca">&apos;<span class="ffb">A</span>&apos;</span></span>:<span class="_ _9"> </span><span class="ff5 fc9">return<span class="_"> </span></span><span class="fc8">2</span>;</div><div class="t m0 x30 hd y214 ffb fs7 fc0 sc0 ls0 ws0">[[unlikely]]<span class="_ _9"> </span><span class="ff5 fc9">case<span class="_"> </span><span class="ffd fca">&apos;<span class="ffb">B</span>&apos;</span></span>:<span class="_ _9"> </span><span class="ff5 fc9">return<span class="_"> </span></span><span class="fc8">4</span>;</div><div class="t m0 x1 hd y215 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">55/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3d" class="pf w0 h0" data-page-no="3d"><div class="pc pc3d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Signed/Unsigned<span class="_ _1b"> </span>Integers</div><div class="t m0 xb hb y136 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">signed<span class="_ _8"> </span>integer<span class="_ _c"> </span></span>for<span class="_ _c"> </span><span class="ff1">lo<span class="_ _0"></span>op<span class="_ _f"> </span>indexing</span>.<span class="_ _21"> </span>The<span class="_ _c"> </span>compiler<span class="_ _c"> </span>optimizes<span class="_ _f"> </span>more</span></div><div class="t m0 x36 hb y137 ff4 fs6 fc0 sc0 ls0 ws0">aggressively<span class="_ _c"> </span>such<span class="_ _c"> </span>lo<span class="_ _0"></span>ops<span class="_ _c"> </span>because<span class="_ _f"> </span>integer<span class="_ _c"> </span>overflow<span class="_ _c"> </span>is<span class="_ _c"> </span>not<span class="_ _f"> </span>defined.<span class="_ _21"> </span>Unsigned<span class="_ _c"> </span>lo<span class="_ _b"></span>op</div><div class="t m0 x36 hb y138 ff4 fs6 fc0 sc0 ls0 ws0">indexing<span class="_ _c"> </span>generates<span class="_ _c"> </span>complex<span class="_ _f"> </span>intermediate<span class="_ _c"> </span>expressions,<span class="_ _c"> </span>esp<span class="_ _b"></span>ecially<span class="_ _c"> </span>for<span class="_ _c"> </span>nested<span class="_ _c"> </span>lo<span class="_ _b"></span>ops,</div><div class="t m0 x36 hb y216 ff4 fs6 fc0 sc0 ls0 ws0">that<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>could<span class="_ _c"> </span>not<span class="_ _f"> </span>solve</div><div class="t m0 xb hb y203 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">32-bit<span class="_ _8"> </span>signed<span class="_ _f"> </span>integer<span class="_ _f"> </span></span>or<span class="_ _c"> </span><span class="ff1">64-bit<span class="_ _8"> </span>integer<span class="_ _f"> </span></span>for<span class="_ _c"> </span><span class="ff1">any<span class="_ _8"> </span>op<span class="_ _b"></span>eration<span class="_ _8"> </span>that<span class="_ _8"> </span>is</span></span></div><div class="t m0 x36 hb y204 ff1 fs6 fc0 sc0 ls0 ws0">translated<span class="_ _f"> </span>to<span class="_ _8"> </span>64-bit<span class="ff4">.<span class="_ _21"> </span>The<span class="_ _f"> </span>most<span class="_ _c"> </span>common<span class="_ _f"> </span>is<span class="_ _c"> </span><span class="ff9">arra<span class="_ _3"></span>y<span class="_ _c"> </span>indexing<span class="ff4">.<span class="_ _21"> </span>The<span class="_ _c"> </span>subscript</span></span></span></div><div class="t m0 x36 hb y217 ff4 fs6 fc0 sc0 ls0 ws0">op<span class="_ _b"></span>erato<span class="_ _3"></span>r<span class="_ _f"> </span>implicitly<span class="_ _c"> </span>defines<span class="_ _f"> </span>its<span class="_ _c"> </span>parameter<span class="_ _c"> </span>as<span class="_ _10"> </span><span class="ff6">size_t<span class="_ _26"> </span></span>.<span class="_ _21"> </span>Any<span class="_ _f"> </span>indexing<span class="_ _c"> </span>op<span class="_ _b"></span>eration<span class="_ _f"> </span>with</div><div class="t m0 x36 hb y218 ff4 fs6 fc0 sc0 ls0 ws0">32-bit<span class="_ _c"> </span>unsigned<span class="_ _c"> </span>integer<span class="_ _f"> </span>requires<span class="_ _c"> </span>the<span class="_ _f"> </span>compiler<span class="_ _c"> </span>to<span class="_ _f"> </span>enforce<span class="_ _c"> </span>wrap-a<span class="_ _3"></span>round<span class="_ _c"> </span>b<span class="_ _b"></span>ehavior,</div><div class="t m0 x36 hb y219 ff4 fs6 fc0 sc0 ls0 ws0">e.g.<span class="_ _21"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>moving<span class="_ _c"> </span>the<span class="_ _c"> </span>variable<span class="_ _c"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>32-bit<span class="_ _c"> </span>register</div><div class="t m0 x36 hd y21a ff5 fs7 fc6 sc0 ls0 ws0">unsigned<span class="_"> </span><span class="ffb fc0">v<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...;</span></div><div class="t m0 x36 hd y21b ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>some<span class="_ _9"> </span>operations<span class="_ _21"> </span>on<span class="_ _9"> </span>v</div><div class="t m0 x36 hd y21c ffb fs7 fc0 sc0 ls0 ws0">array[v];</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">56/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3e" class="pf w0 h0" data-page-no="3e"><div class="pc pc3e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>ops</div><div class="t m0 xb hb y49 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">squa<span class="_ _3"></span>re<span class="_ _8"> </span>brack<span class="_ _3"></span>ets<span class="_ _c"> </span><span class="ff4">syntax<span class="_ _10"> </span><span class="ff6">[]<span class="_ _10"> </span></span>over<span class="_ _c"> </span>p<span class="_ _b"></span>ointer<span class="_ _f"> </span>a<span class="_ _3"></span>rithmetic<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>for<span class="_ _c"> </span>a<span class="_ _3"></span>rray</span></span></span></div><div class="t m0 x36 hb y21d ff4 fs6 fc0 sc0 ls0 ws0">access<span class="_ _c"> </span>to<span class="_ _c"> </span>facilitate<span class="_ _f"> </span>compiler<span class="_ _c"> </span>lo<span class="_ _0"></span>op<span class="_ _c"> </span>optimizations<span class="_ _c"> </span>(e.g.<span class="_ _21"> </span>p<span class="_ _b"></span>olyhedral<span class="_ _c"> </span>lo<span class="_ _b"></span>op</div><div class="t m0 x36 hb y21e ff4 fs6 fc0 sc0 ls0 ws0">transfo<span class="_ _3"></span>rmations)</div><div class="t m0 xb hb y21f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Range-based<span class="_ _9"> </span><span class="ff4">lo<span class="_ _b"></span>op<span class="_ _c"> </span>could<span class="_ _f"> </span>provide<span class="_ _c"> </span>mino<span class="_ _3"></span>r<span class="_ _c"> </span>p<span class="_ _0"></span>erfo<span class="_ _3"></span>rmance<span class="_ _c"> </span>improvements<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>small<span class="_ _f"> </span>lo<span class="_ _b"></span>ops</span></span></div><div class="t m0 x36 hb y220 ff4 fs6 fc0 sc0 ls0 ws0">that<span class="_ _c"> </span>iterate<span class="_ _c"> </span>over<span class="_ _f"> </span>a<span class="_ _c"> </span>container<span class="_ _f"> </span><span class="ff1b">1</span></div><div class="t m0 xb hb y221 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">On<span class="_ _c"> </span>the<span class="_ _f"> </span>other<span class="_ _c"> </span>hand,<span class="_ _f"> </span><span class="ff9">range-based<span class="_ _c"> </span>lo<span class="_ _b"></span>ops<span class="_ _9"> </span></span>and<span class="_ _c"> </span><span class="ff9">iterators<span class="_ _1b"> </span></span>could<span class="_ _c"> </span>inhibit<span class="_ _f"> </span>many</span></div><div class="t m0 x36 hb y222 ff4 fs6 fc0 sc0 ls0 ws0">optimizations<span class="_ _c"> </span>such<span class="_ _c"> </span>as<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>unrolling<span class="_ _c"> </span>and<span class="_ _f"> </span>vecto<span class="_ _3"></span>rization</div><div class="t m0 xb h10 y223 ff1b fs7 fcc sc0 ls0 ws0">1<span class="_ _d"> </span><span class="ffb">The<span class="_ _9"> </span>Little<span class="_ _9"> </span>Things:<span class="_ _20"> </span>Everyday<span class="_ _9"> </span>efficiencies</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">57/93</div><a class="l" href="https://codingnest.com/the-little-things-everyday-efficiencies/amp/?__twitter_impression=true"><div class="d m1" style="border-style:none;position:absolute;left:41.339000px;bottom:6.463000px;width:194.993000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf3f" class="pf w0 h0" data-page-no="3f"><div class="pc pc3f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _1b"> </span>Hoisting</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>Hoisting<span class="ff4">,<span class="_ _c"> </span>also<span class="_ _f"> </span>called<span class="_ _c"> </span><span class="ff9">lo<span class="_ _b"></span>op-invariant<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>motion</span>,<span class="_ _c"> </span>consists<span class="_ _f"> </span>of<span class="_ _c"> </span>moving<span class="_ _f"> </span>statements</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _f"> </span>exp<span class="_ _3"></span>ressions<span class="_ _f"> </span>outside<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _b"></span>o<span class="_ _b"></span>dy<span class="_ _c"> </span>of<span class="_ _f"> </span>a<span class="_ _c"> </span>lo<span class="_ _0"></span>op<span class="_ _c"> </span><span class="ff9">without<span class="_ _c"> </span>affecting<span class="_ _c"> </span>the<span class="_ _f"> </span>semantics<span class="_ _1b"> </span></span>of<span class="_ _f"> </span>the</div><div class="t m0 x1 hb y101 ff4 fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram</div><div class="t m0 x1 hd y224 ffb fs7 fc0 sc0 ls0 ws0">Base<span class="_ _9"> </span>case:</div><div class="t m0 x1 hd y225 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span>100</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 xd hd y226 ffb fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span></span>y;</div><div class="t m0 x3e hd y224 ffb fs7 fc0 sc0 ls0 ws0">Better:</div><div class="t m0 x3e hd y227 ffb fs7 fc0 sc0 ls0 ws0">v<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span></span>y;</div><div class="t m0 x3e hd y225 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span>100</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x3f hd y226 ffb fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>v;</div><div class="t m0 x1 hb y228 ff4 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _c"> </span>hoisting<span class="_ _f"> </span>is<span class="_ _c"> </span>also<span class="_ _f"> </span>imp<span class="_ _b"></span>o<span class="_ _3"></span>rtant<span class="_ _f"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>evaluation<span class="_ _c"> </span>of<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>conditions</div><div class="t m0 x1 hd y229 ffb fs7 fc0 sc0 ls0 ws0">Base<span class="_ _9"> </span>case:</div><div class="t m0 x1 hd y22a ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>&quot;x&quot;<span class="_ _9"> </span>never<span class="_ _21"> </span>changes</div><div class="t m0 x1 hd y22b ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>f(x);<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x27 hd y22c ffb fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>y;</div><div class="t m0 x3e hd y229 ffb fs7 fc0 sc0 ls0 ws0">Better:</div><div class="t m0 x3e hd y22a ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">limit<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>f(x);</span></div><div class="t m0 x3e hd y22b ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>limit;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x40 hd y22c ffb fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>y;</div><div class="t m0 x1 hb y22d ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>the<span class="_ _c"> </span>wo<span class="_ _3"></span>rst<span class="_ _c"> </span>case,<span class="_ _10"> </span><span class="ff6">f(x)<span class="_ _10"> </span></span>is<span class="_ _f"> </span>evaluated<span class="_ _c"> </span>at<span class="_ _f"> </span>every<span class="_ _c"> </span>iteration<span class="_ _f"> </span>(esp<span class="_ _b"></span>ecially<span class="_ _c"> </span>when<span class="_ _f"> </span>it<span class="_ _c"> </span>b<span class="_ _b"></span>elongs<span class="_ _f"> </span>to</div><div class="t m0 x1 hb y22e ff4 fs6 fc0 sc0 ls0 ws0">another<span class="_ _c"> </span>translation<span class="_ _c"> </span>unit)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">58/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf40" class="pf w0 h0" data-page-no="40"><div class="pc pc40 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _1b"> </span>Unrolling<span class="_ _51"> </span>1/2</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span><span class="ff4">(o<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff1">unwinding<span class="_ _b"></span></span>)<span class="_ _c"> </span>is<span class="_ _f"> </span>a<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>transformation<span class="_ _c"> </span>technique<span class="_ _c"> </span>which<span class="_ _c"> </span>optimizes</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>removing<span class="_ _c"> </span>(or<span class="_ _c"> </span>reducing)<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>iterations</div><div class="t m0 x1 hb yea ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>optimization<span class="_ _c"> </span>produces<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>at<span class="_ _f"> </span>the<span class="_ _c"> </span>exp<span class="_ _b"></span>ense<span class="_ _f"> </span>of<span class="_ _c"> </span>binary<span class="_ _c"> </span>size</div><div class="t m0 x1 h6 y22f ff4 fs4 fc0 sc0 ls0 ws0">Example:</div><div class="t m0 x1 hd y230 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 xd hd y231 ffb fs7 fc0 sc0 ls0 ws0">sum<span class="_ _9"> </span><span class="fc8">+=<span class="_ _9"> </span></span>A[i];</div><div class="t m0 x1 h6 y232 ff4 fs4 fc0 sc0 ls0 ws0">can<span class="_ _d"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>rewritten<span class="_ _d"> </span>as:</div><div class="t m0 x1 hf y233 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffc fc0">i<span class="_ _1b"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _1b"> </span>i<span class="_ _1b"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _1b"> </span>i<span class="_ _1b"> </span><span class="fc8">+=<span class="_ _8"> </span>8</span>)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 xf hf y234 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i];</div><div class="t m0 xf hf y235 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i<span class="_ _1b"> </span><span class="fc8">+<span class="_ _8"> </span>1</span>];</div><div class="t m0 xf hf y236 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i<span class="_ _1b"> </span><span class="fc8">+<span class="_ _8"> </span>2</span>];</div><div class="t m0 xf hf y237 ffc fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _1b"> </span></span>A[i<span class="_ _1b"> </span><span class="fc8">+<span class="_ _8"> </span>3</span>];</div><div class="t m0 xf hf y238 ffc fs5 fc0 sc0 ls0 ws0">...</div><div class="t m0 x1 hf y239 ffc fs5 fc0 sc0 ls0 ws0">}<span class="_ _8"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>we<span class="_ _8"> </span>suppose<span class="_ _1b"> </span>N<span class="_ _8"> </span>is<span class="_ _1b"> </span>a<span class="_ _8"> </span>multiple<span class="_ _1b"> </span>of<span class="_ _8"> </span>8</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">59/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf41" class="pf w0 h0" data-page-no="41"><div class="pc pc41 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _1b"> </span>Unrolling<span class="_ _51"> </span>2/2</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span>can<span class="_ _8"> </span>make<span class="_ _f"> </span>your<span class="_ _c"> </span>co<span class="_ _0"></span>de<span class="_ _f"> </span>b<span class="_ _b"></span>etter/faster:</div><div class="t m0 x5 hb y23a ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Imp<span class="_ _3"></span>rove<span class="_ _f"> </span>instruction-level<span class="_ _c"> </span>parallelism<span class="_ _c"> </span>(ILP)</span></div><div class="t m0 x5 hb y23b ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Allo<span class="_ _3"></span>w<span class="_ _f"> </span>vector<span class="_ _c"> </span>(SIMD)<span class="_ _c"> </span>instructions</span></div><div class="t m0 x5 hb y23c ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Reduce<span class="_ _c"> </span>control<span class="_ _f"> </span>instructions<span class="_ _c"> </span>and<span class="_ _f"> </span>b<span class="_ _3"></span>ranches</span></div><div class="t m0 x1 hb y23d ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span>can<span class="_ _8"> </span>make<span class="_ _f"> </span>your<span class="_ _c"> </span>co<span class="_ _0"></span>de<span class="_ _f"> </span>w<span class="_ _3"></span>orse/slo<span class="_ _3"></span>w<span class="_ _3"></span>er:</div><div class="t m0 x10 hb y23e ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Increase<span class="_ _c"> </span>compile-time/binary<span class="_ _c"> </span>size</span></div><div class="t m0 x10 hb y23f ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Require<span class="_ _c"> </span>more<span class="_ _c"> </span>instruction<span class="_ _c"> </span>deco<span class="_ _b"></span>ding</span></div><div class="t m0 x10 hb y240 ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>more<span class="_ _c"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>and<span class="_ _c"> </span>instruction<span class="_ _f"> </span>cache</span></div><div class="t m0 x1 hb y241 ff1 fs6 fc0 sc0 ls0 ws0">Unroll<span class="_ _f"> </span>directive<span class="_ _f"> </span><span class="ff4 fs4">The<span class="_ _c"> </span><span class="ff6">Intel</span>,<span class="_ _d"> </span><span class="ff6">IBM</span>,<span class="_ _c"> </span><span class="ff6">Arm</span>,<span class="_ _d"> </span><span class="ff6">Nvidia</span>,<span class="_ _c"> </span><span class="ff6">clang</span>,<span class="_ _d"> </span>and<span class="_ _c"> </span><span class="ff6">GCC<span class="_ _d"> </span></span>compilers<span class="_ _c"> </span>p<span class="_ _3"></span>rovide<span class="_ _c"> </span>the</span></div><div class="t m0 x1 h6 y242 ff4 fs4 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>reprocessing<span class="_ _c"> </span>directive<span class="_ _12"> </span><span class="ff6">#pragma<span class="_"> </span>unroll<span class="_ _12"> </span></span>(<span class="_ _d"> </span><span class="ff6">#pragma<span class="_"> </span>GCC<span class="_"> </span>unroll<span class="_ _12"> </span></span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>GCC)<span class="_ _d"> </span>to<span class="_ _c"> </span>insert<span class="_ _d"> </span>ab<span class="_ _b"></span>ove</div><div class="t m0 x1 h6 y243 ff4 fs4 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>to<span class="_ _d"> </span>force<span class="_ _d"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>unrolling.<span class="_ _1b"> </span>The<span class="_ _d"> </span>compiler<span class="_ _c"> </span>already<span class="_ _d"> </span>applies<span class="_ _c"> </span>the<span class="_ _d"> </span>optimization<span class="_ _c"> </span>in<span class="_ _d"> </span>most<span class="_ _c"> </span>cases</div><div class="t m0 xb hd y244 ffb fs7 fcc sc0 ls0 ws0">Why<span class="_ _9"> </span>are<span class="_ _9"> </span>unrolled<span class="_ _21"> </span>loops<span class="_ _9"> </span>faster?</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">60/93</div><a class="l" href="https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:4.714000px;width:143.213000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf42" class="pf w0 h0" data-page-no="42"><div class="pc pc42 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Assertions</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">Some<span class="_ _c"> </span>compilers<span class="_ _c"> </span>(e.g.<span class="_ _21"> </span><span class="ff6">clang</span>)<span class="_ _f"> </span>use<span class="_ _c"> </span>assertions<span class="_ _f"> </span>for<span class="_ _c"> </span>optimization<span class="_ _c"> </span>purp<span class="_ _b"></span>oses:<span class="_ _21"> </span>most<span class="_ _c"> </span>likely</div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _b"></span>de<span class="_ _c"> </span>path,<span class="_ _f"> </span>not<span class="_ _c"> </span>p<span class="_ _b"></span>ossible<span class="_ _f"> </span>values,<span class="_ _c"> </span>etc.<span class="_ _21"> </span><span class="ff1b">3</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">61/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf43" class="pf w0 h0" data-page-no="43"><div class="pc pc43 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1b"> </span>Hints<span class="_ _1b"> </span>-<span class="_ _1b"> </span><span class="ff5">[[assume]]/std::unreachable()</span></div><div class="t m0 x1 hb y6d ff4 fs6 fcd sc0 ls0 ws0">C++23<span class="_ _c"> </span><span class="fc0">allows<span class="_ _c"> </span>defining<span class="_ _c"> </span>an<span class="_ _c"> </span><span class="ff9">assumption<span class="_ _f"> </span></span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>that<span class="_ _c"> </span>is<span class="_ _f"> </span>alwa<span class="_ _3"></span>ys<span class="_ _c"> </span>true</span></div><div class="t m0 x1 hd y245 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>...;</span></div><div class="t m0 x1 hd y246 ffb fs7 fc0 sc0 ls0 ws0">[[assume(x<span class="_ _9"> </span><span class="fc8">&gt;<span class="_ _9"> </span>0</span>)]];<span class="_ _21"> </span><span class="ffa fc5">//<span class="_ _9"> </span>the<span class="_ _21"> </span>compiler<span class="_ _9"> </span>assume<span class="_ _21"> </span>that<span class="_ _9"> </span><span class="ff14">&apos;</span>x<span class="ff14">&apos;<span class="_ _9"> </span></span>is<span class="_ _21"> </span>positive</span></div><div class="t m0 x1 hd y247 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">y<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>x<span class="_ _21"> </span><span class="fc8">/<span class="_ _9"> </span>2</span>;<span class="_ _47"> </span><span class="ffa fc5">//<span class="_ _9"> </span>the<span class="_ _21"> </span>operation<span class="_ _9"> </span>is<span class="_ _21"> </span>translated<span class="_ _9"> </span>in<span class="_ _9"> </span>a<span class="_ _21"> </span>single<span class="_ _9"> </span>shift<span class="_ _21"> </span>as<span class="_ _9"> </span>for</span></span></div><div class="t m0 x41 hd y248 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>the<span class="_ _9"> </span>unsigned<span class="_ _21"> </span>case</div><div class="t m0 x1 hb y249 ff4 fs6 fcd sc0 ls0 ws0">C++23<span class="_ _c"> </span><span class="fc0">also<span class="_ _c"> </span>provides<span class="_ _10"> </span><span class="ff6">std::unreachable()<span class="_ _10"> </span></span>(<span class="_ _26"> </span><span class="ff6">&lt;utility&gt;<span class="_ _d"> </span></span>)<span class="_ _c"> </span>for<span class="_ _c"> </span>ma<span class="_ _3"></span>rking<span class="_ _c"> </span>unreachable</span></div><div class="t m0 x1 hb y24a ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _b"></span>de</div><div class="t m0 x1 h10 y24b ffe fs7 fc0 sc0 ls0 ws0">Compilers<span class="_ _d"> </span>p<span class="_ _3"></span>rovide<span class="_ _d"> </span>non-p<span class="_ _b"></span>ortable<span class="_ _26"> </span>instructions<span class="_ _d"> </span>for<span class="_ _26"> </span>previous<span class="_ _26"> </span>C++<span class="_ _d"> </span>standards:<span class="_ _52"> </span><span class="ffb">__builtin_assume()</span></div><div class="t m0 x1 h10 y24c ffe fs7 fc0 sc0 ls0 ws0">(<span class="ffb">clang</span>),<span class="_ _2d"> </span><span class="ffb">__builtin_unreachable()<span class="_ _12"> </span></span>(<span class="ffb">gcc</span>),<span class="_ _2d"> </span><span class="ffb">__assume()<span class="_ _2d"> </span></span>(<span class="ffb">msvc</span>)</div><div class="t m0 x1 hb y24d ff4 fs6 fc0 sc0 ls0 ws0">Note:<span class="_ _21"> </span>sometimes<span class="_ _c"> </span>user-provided<span class="_ _c"> </span>info<span class="_ _3"></span>rmation<span class="_ _c"> </span>leads<span class="_ _f"> </span>to<span class="_ _c"> </span>wo<span class="_ _3"></span>rse<span class="_ _c"> </span>optimization,<span class="_ _f"> </span>see</div><div class="t m0 x1 hb y24e ff6 fs6 fc0 sc0 ls0 ws0">@llvm.assume<span class="_"> </span>blocks<span class="_"> </span>optimization<span class="_ _d"> </span><span class="ff10 fs8"><span class="_ _c"> </span></span><span class="ff4">and<span class="_ _c"> </span></span>Refined<span class="_"> </span>Input,<span class="_"> </span>Degraded<span class="_"> </span>Output:</div><div class="t m0 x1 h11 y24f ff6 fs6 fc0 sc0 ls0 ws0">The<span class="_"> </span>Counterintuitive<span class="_"> </span>World<span class="_"> </span>of<span class="_"> </span>Compiler<span class="_"> </span>Behavior<span class="_ _d"> </span><span class="ff10 fs8"></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">62/93</div><a class="l" href="https://discourse.llvm.org/t/llvm-assume-blocks-optimization/71609/8"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:33.129000px;width:194.273000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://dl.acm.org/doi/pdf/10.1145/3656404"><div class="d m1" style="border-style:none;position:absolute;left:243.418000px;bottom:33.129000px;width:182.775000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://dl.acm.org/doi/pdf/10.1145/3656404"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:17.548000px;width:280.182000px;height:10.951000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf44" class="pf w0 h0" data-page-no="44"><div class="pc pc44 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Recursion<span class="_ _53"> </span>1/2</div><div class="t m0 x1 hb y250 ff1 fs6 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>void<span class="_ _8"> </span>run-time<span class="_ _8"> </span>recursion<span class="_ _c"> </span><span class="ff4">(very<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive).<span class="_ _21"> </span>Prefer<span class="_ _c"> </span><span class="ff9">iterative<span class="_ _1b"> </span></span>algorithms<span class="_ _c"> </span>instead</span></div><div class="t m0 x1 hb y251 ff1 fs6 fc0 sc0 ls0 ws0">Recursion<span class="_ _f"> </span>cost:<span class="_ _21"> </span><span class="ff4">The<span class="_ _f"> </span>program<span class="_ _c"> </span>must<span class="_ _c"> </span>sto<span class="_ _3"></span>re<span class="_ _f"> </span>all<span class="_ _c"> </span>variables<span class="_ _c"> </span>(snapshot)<span class="_ _c"> </span>at<span class="_ _c"> </span>each<span class="_ _f"> </span>recursion</span></div><div class="t m0 x1 hb y252 ff4 fs6 fc0 sc0 ls0 ws0">iteration<span class="_ _c"> </span>on<span class="_ _c"> </span>the<span class="_ _c"> </span>stack,<span class="_ _c"> </span>and<span class="_ _c"> </span>remove<span class="_ _c"> </span>them<span class="_ _c"> </span>when<span class="_ _c"> </span>the<span class="_ _c"> </span>control<span class="_ _c"> </span>return<span class="_ _c"> </span>to<span class="_ _c"> </span>the<span class="_ _c"> </span>caller<span class="_ _c"> </span>instance</div><div class="t m0 x1 hb y253 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span><span class="ff1">tail<span class="_ _c"> </span>recursion<span class="_ _c"> </span></span>optimization<span class="_ _c"> </span>avoids<span class="_ _c"> </span>maintaining<span class="_ _c"> </span>caller<span class="_ _c"> </span>stack<span class="_ _c"> </span>and<span class="_ _c"> </span>pass<span class="_ _c"> </span>the<span class="_ _d"> </span>control<span class="_ _c"> </span>to</div><div class="t m0 x1 hb y254 ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>next<span class="_ _c"> </span>iteration.<span class="_ _9"> </span>The<span class="_ _c"> </span>optimization<span class="_ _c"> </span>is<span class="_ _c"> </span>p<span class="_ _b"></span>ossible<span class="_ _c"> </span>only<span class="_ _c"> </span>if<span class="_ _c"> </span>all<span class="_ _c"> </span>computation<span class="_ _c"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>executed</div><div class="t m0 x1 hb y255 ff4 fs6 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>efo<span class="_ _3"></span>re<span class="_ _f"> </span>the<span class="_ _c"> </span>recursive<span class="_ _f"> </span>call</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">63/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf45" class="pf w0 h0" data-page-no="45"><div class="pc pc45 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Recursion<span class="_ _53"> </span>2/2</div><div class="t m0 xb h10 y256 ffe fs7 fcc sc0 ls0 ws0">Via<span class="_ _d"> </span><span class="ffb">Twitter<span class="_ _9"> </span>-<span class="_ _9"> </span>Jan<span class="_ _21"> </span>Wildeboer</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">64/93</div><a class="l" href="https://twitter.com/jwildeboer/status/1218865157864067077?s=09"><div class="d m1" style="border-style:none;position:absolute;left:50.580000px;bottom:1.612000px;width:110.261000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf46" class="pf w0 h0" data-page-no="46"><div class="pc pc46 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y135 ff1 fs0 fc0 sc0 ls0 ws0">F<span class="_ _7"></span>unctions</div><a class="l" href="#pf46" data-dest-detail='[70,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:137.252000px;width:110.662000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf47" class="pf w0 h0" data-page-no="47"><div class="pc pc47 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _1b"> </span>Call<span class="_ _1b"> </span>Cost</div><div class="t m0 x1 hb y18c ff1 fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _8"> </span>call<span class="_ _8"> </span>metho<span class="_ _b"></span>ds:</div><div class="t m0 x2c hb y257 ff1 fs6 fc0 sc0 ls0 ws0">Direct<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>unction<span class="_ _f"> </span>address<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _c"> </span>at<span class="_ _c"> </span>compile-time</span></div><div class="t m0 xf hb y258 ff1 fs6 fc0 sc0 ls0 ws0">Indirect<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>unction<span class="_ _f"> </span>address<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _c"> </span>only<span class="_ _c"> </span>at<span class="_ _c"> </span>run-time</span></div><div class="t m0 x9 hb y259 ff1 fs6 fc0 sc0 ls0 ws0">Inline<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>function<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>is<span class="_ _f"> </span>fused<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>caller<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>(same<span class="_ _f"> </span>translation<span class="_ _c"> </span>unit<span class="_ _f"> </span>o<span class="_ _3"></span>r</span></div><div class="t m0 x42 hb y25a ff4 fs6 fc0 sc0 ls0 ws0">Link-time-optimization)</div><div class="t m0 x1 hb y25b ff1 fs6 fc0 sc0 ls0 ws0">Direct/Indirect<span class="_ _f"> </span>function<span class="_ _8"> </span>call<span class="_ _8"> </span>cost:</div><div class="t m0 xb hb y25c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>caller<span class="_ _f"> </span>pushes<span class="_ _c"> </span>the<span class="_ _f"> </span>a<span class="_ _3"></span>rguments<span class="_ _f"> </span>on<span class="_ _c"> </span>the<span class="_ _f"> </span>stack<span class="_ _c"> </span>in<span class="_ _f"> </span>reverse<span class="_ _c"> </span>order</span></div><div class="t m0 xb hb y25d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Jump<span class="_ _c"> </span>to<span class="_ _f"> </span>function<span class="_ _c"> </span>address</span></div><div class="t m0 xb hb y25e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>caller<span class="_ _f"> </span>clea<span class="_ _3"></span>rs<span class="_ _f"> </span>(p<span class="_ _b"></span>op)<span class="_ _c"> </span>the<span class="_ _f"> </span>stack</span></div><div class="t m0 xb hb y25f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>function<span class="_ _f"> </span>pushes<span class="_ _c"> </span>the<span class="_ _f"> </span>return<span class="_ _c"> </span>value<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>stack</span></div><div class="t m0 xb hb y260 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Jump<span class="_ _c"> </span>to<span class="_ _f"> </span>the<span class="_ _c"> </span>caller<span class="_ _f"> </span>address</span></div><div class="t m0 xb hd y261 ffb fs7 fcc sc0 ls0 ws0"><span class="fce sc0">The</span><span class="_ _9"> </span><span class="fce sc0">True</span><span class="_ _9"> </span><span class="fce sc0">Cost</span><span class="_ _21"> </span><span class="fce sc0">of</span><span class="_ _9"> </span><span class="fce sc0">Calls</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">65/93</div><a class="l" href="https://hbfs.wordpress.com/2008/12/30/the-true-cost-of-calls/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:-14.443000px;width:105.554000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf48" class="pf w0 h0" data-page-no="48"><div class="pc pc48 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _1b"> </span>P<span class="_ _3"></span>assing<span class="_ _54"> </span>1/4</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span><span class="ff1">optimal<span class="_ _8"> </span>w<span class="_ _3"></span>ay<span class="_ _c"> </span><span class="ff4">to<span class="_ _c"> </span>pass<span class="_ _f"> </span>and<span class="_ _c"> </span>return<span class="_ _c"> </span>arguments<span class="_ _c"> </span>(<span class="ff9">by-value<span class="_ _b"></span></span>)<span class="_ _c"> </span>to/from<span class="_ _f"> </span>functions<span class="_ _c"> </span>is<span class="_ _f"> </span>in</span></span></div><div class="t m0 x1 hb ye9 ff9 fs6 fc0 sc0 ls0 ws0">registers<span class="ff4">.<span class="_ _21"> </span>It<span class="_ _c"> </span>also<span class="_ _c"> </span>avoid<span class="_ _f"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>ointer<span class="_ _f"> </span>aliasing<span class="_ _c"> </span>p<span class="_ _0"></span>erfo<span class="_ _3"></span>rmance<span class="_ _c"> </span>issue.<span class="_ _21"> </span>The<span class="_ _c"> </span>following<span class="_ _c"> </span>conditions</span></div><div class="t m0 x1 hb y101 ff4 fs6 fc0 sc0 ls0 ws0">must<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>satisfied:</div><div class="t m0 xb hb y262 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>object<span class="_ _f"> </span>is<span class="_ _c"> </span><span class="ff1">trivially<span class="_ _8"> </span>copy<span class="_ _3"></span>able<span class="ff4">:<span class="_ _9"> </span><span class="fs4">No<span class="_ _c"> </span>user-p<span class="_ _3"></span>rovided<span class="_ _c"> </span>copy/m<span class="_ _3"></span>ove/default<span class="_ _c"> </span>constructors,</span></span></span></span></div><div class="t m0 x36 h6 y263 ff4 fs4 fc0 sc0 ls0 ws0">destructo<span class="_ _3"></span>r,<span class="_ _c"> </span>and<span class="_ _d"> </span>cop<span class="_ _3"></span>y/move<span class="_ _d"> </span>assignment<span class="_ _d"> </span>op<span class="_ _b"></span>erators,<span class="_ _d"> </span>no<span class="_ _d"> </span>virtual<span class="_ _d"> </span>functions,<span class="_ _d"> </span>apply<span class="_ _c"> </span>recursively<span class="_ _d"> </span>to</div><div class="t m0 x36 h6 y264 ff4 fs4 fc0 sc0 ls0 ws0">base<span class="_ _d"> </span>classes<span class="_ _c"> </span>and<span class="_ _d"> </span>non-static<span class="_ _c"> </span>data<span class="_ _d"> </span>memb<span class="_ _b"></span>ers</div><div class="t m0 xb hb yfc ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Linux/Unix<span class="_ _c"> </span>(<span class="ff6">SystemV<span class="_"> </span>x86-64<span class="_"> </span>ABI</span>):<span class="_ _f"> </span>data<span class="_ _c"> </span>types<span class="_ _f"> </span><span class="fff">≤<span class="_ _c"> </span><span class="ff1">16<span class="_ _8"> </span>bytes<span class="_ _c"> </span></span></span>(8B<span class="_ _c"> </span><span class="fff">×<span class="_ _c"> </span></span>2),<span class="_ _f"> </span>max<span class="_ _f"> </span><span class="ff1">6</span></span></div><div class="t m0 x36 hb y265 ff1 fs6 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>rguments</div><div class="t m0 xb hb y266 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Windo<span class="_ _3"></span>ws<span class="_ _f"> </span>(<span class="ff6">x64<span class="_"> </span>ABI</span>):<span class="_ _c"> </span>data<span class="_ _f"> </span>types<span class="_ _c"> </span><span class="fff">≤<span class="_ _f"> </span><span class="ff1">8<span class="_ _8"> </span>b<span class="_ _3"></span>ytes<span class="ff4">,<span class="_ _f"> </span>max<span class="_ _f"> </span></span>4<span class="_ _8"> </span>arguments</span></span></span></div><div class="t m0 x30 h10 y267 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">when<span class="_ _9"> </span>are<span class="_ _21"> </span>structs/classes<span class="_ _9"> </span>passed<span class="_ _9"> </span>and<span class="_ _21"> </span>returned<span class="_ _9"> </span>in<span class="_ _21"> </span>registers?</span></div><div class="t m0 x30 h10 y268 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">System<span class="_ _9"> </span>V<span class="_ _21"> </span>ABI<span class="_ _9"> </span>-<span class="_ _9"> </span>X86-64<span class="_ _21"> </span>Calling<span class="_ _9"> </span>Convention</span></div><div class="t m0 x30 h10 y269 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">x64<span class="_ _9"> </span>calling<span class="_ _21"> </span>convention<span class="_ _9"> </span>-<span class="_ _9"> </span>Parameter<span class="_ _21"> </span>Passing</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">66/93</div><a class="l" href="https://stackoverflow.com/questions/42411819/c-on-x86-64-when-are-structs-classes-passed-and-returned-in-registers"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:23.780000px;width:275.019000px;height:10.211000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://wiki.osdev.org/System_V_ABI#x86-64"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:13.170000px;width:190.286000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170#parameter-passing"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:2.559000px;width:199.701000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf49" class="pf w0 h0" data-page-no="49"><div class="pc pc49 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _1b"> </span>P<span class="_ _3"></span>assing<span class="_ _1b"> </span>-<span class="_ _9"> </span>A<span class="_ _3"></span>ctive<span class="_ _1b"> </span>Objects<span class="_ _55"> </span>2/4</div><div class="t m0 xb hb y49 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">If<span class="_ _c"> </span>the<span class="_ _f"> </span>p<span class="_ _3"></span>revious<span class="_ _f"> </span>conditions<span class="_ _c"> </span>are<span class="_ _c"> </span>not<span class="_ _c"> </span>satisfied,<span class="_ _c"> </span>the<span class="_ _f"> </span>object<span class="_ _c"> </span>is<span class="_ _f"> </span>passed<span class="_ _c"> </span><span class="ff1">by-reference</span>.<span class="_ _9"> </span>In</span></div><div class="t m0 x36 hb y21d ff4 fs6 fc0 sc0 ls0 ws0">addition,<span class="_ _c"> </span>objects<span class="_ _c"> </span>that<span class="_ _f"> </span>are<span class="_ _c"> </span>not<span class="_ _c"> </span><span class="ff9">trivially-cop<span class="_ _3"></span>yable<span class="_ _8"> </span><span class="ff4">could<span class="_ _c"> </span>b<span class="_ _0"></span>e<span class="_ _c"> </span>expensive<span class="_ _f"> </span>to<span class="_ _c"> </span>pass</span></span></div><div class="t m0 x36 hb y21e ff9 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-value<span class="_ _1b"> </span><span class="ff4">(copied).</span></div><div class="t m0 xb hb y21f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>ass<span class="_ _f"> </span><span class="ff1">by-reference<span class="_ _c"> </span></span>and<span class="_ _c"> </span><span class="ff1">b<span class="_ _3"></span>y-p<span class="_ _b"></span>ointer<span class="_ _f"> </span><span class="ff4">intro<span class="_ _0"></span>duce<span class="_ _c"> </span>one<span class="_ _c"> </span>level<span class="_ _c"> </span>of<span class="_ _c"> </span>indirection</span></span></span></div><div class="t m0 xb hb y26a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>ass<span class="_ _f"> </span><span class="ff1">by-reference<span class="_ _c"> </span></span>is<span class="_ _c"> </span>mo<span class="_ _3"></span>re<span class="_ _f"> </span>efficient<span class="_ _c"> </span>than<span class="_ _f"> </span>pass<span class="_ _c"> </span><span class="ff1">by-pointer<span class="_ _f"> </span></span>b<span class="_ _0"></span>ecause<span class="_ _c"> </span>it<span class="_ _c"> </span>facilitates</span></div><div class="t m0 x36 hb y221 ff4 fs6 fc0 sc0 ls0 ws0">va<span class="_ _3"></span>riable<span class="_ _f"> </span>elimination<span class="_ _c"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler,<span class="_ _c"> </span>and<span class="_ _f"> </span>the<span class="_ _c"> </span>function<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>do<span class="_ _0"></span>es<span class="_ _c"> </span>not<span class="_ _c"> </span>require</div><div class="t m0 x36 hb y222 ff4 fs6 fc0 sc0 ls0 ws0">checking<span class="_ _c"> </span>for<span class="_ _12"> </span><span class="ff6">NULL<span class="_ _10"> </span></span>p<span class="_ _b"></span>ointer</div><div class="t m0 xb hd y26b ffb fs7 fcc sc0 ls0 ws0">Three<span class="_ _9"> </span>reasons<span class="_ _9"> </span>to<span class="_ _21"> </span>pass<span class="_ _9"> </span>std::string_view<span class="_ _21"> </span>by<span class="_ _9"> </span>value</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">67/93</div><a class="l" href="https://quuxplusone.github.io/blog/2021/11/09/pass-string-view-by-value/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:1.610000px;width:223.238000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4a" class="pf w0 h0" data-page-no="4a"><div class="pc pc4a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _1b"> </span>P<span class="_ _3"></span>assing<span class="_ _1b"> </span>-<span class="_ _9"> </span>A<span class="_ _3"></span>ctive<span class="_ _1b"> </span>Objects<span class="_ _55"> </span>3/4</div><div class="t m0 x9 hb y26c ff9 fs6 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>ccording<span class="_ _26"> </span>to<span class="_ _26"> </span>Rome,<span class="_ _26"> </span>&quot;A<span class="_ _d"> </span>seasoned<span class="_ _26"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _d"> </span>engineer<span class="_ _26"> </span>w<span class="_ _3"></span>as<span class="_ _26"> </span>lo<span class="_ _0"></span>oking<span class="_ _31"> </span>through<span class="_ _26"> </span>Stro-</div><div class="t m0 x30 hb y26d ff9 fs6 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>elight<span class="_ _c"> </span>data<span class="_ _c"> </span>and<span class="_ _c"> </span>discovered<span class="_ _c"> </span>that<span class="_ _c"> </span>b<span class="_ _3"></span>y<span class="_ _c"> </span>filtering<span class="_ _c"> </span>on<span class="_ _c"> </span>a<span class="_ _c"> </span>pa<span class="_ _3"></span>rticular<span class="_ _12"> </span><span class="ffa">std::vector<span class="_ _12"> </span></span>function</div><div class="t m0 x30 hb y26e ff9 fs6 fc0 sc0 ls0 ws0">call<span class="_ _26"> </span>(using<span class="_ _d"> </span>the<span class="_ _d"> </span>symbolized<span class="_ _d"> </span>file<span class="_ _d"> </span>and<span class="_ _26"> </span>line<span class="_ _d"> </span>numb<span class="_ _b"></span>er)<span class="_ _26"> </span>he<span class="_ _d"> </span>could<span class="_ _d"> </span>identify<span class="_ _26"> </span>computationally<span class="_ _d"> </span>ex-</div><div class="t m0 x30 hb y26f ff9 fs6 fc0 sc0 ls0 ws0">p<span class="_ _b"></span>ensive<span class="_ _d"> </span>a<span class="_ _3"></span>rray<span class="_ _26"> </span>copies<span class="_ _d"> </span>that<span class="_ _d"> </span>happ<span class="_ _b"></span>en<span class="_ _d"> </span>unintentionally<span class="_ _d"> </span>with<span class="_ _d"> </span>the<span class="_ _d"> </span><span class="_ _d"> </span><span class="ffa">auto<span class="_ _26"> </span></span><span class="_ _d"> </span>keyw<span class="_ _3"></span>ord<span class="_ _26"> </span>in<span class="_ _d"> </span>C++.&quot;</div><div class="t m0 x9 hb y270 ff9 fs6 fc0 sc0 ls0 ws0">After<span class="_ _c"> </span>finding<span class="_ _d"> </span>one<span class="_ _c"> </span>of<span class="_ _c"> </span>these<span class="_ _c"> </span>costly<span class="_ _d"> </span>arra<span class="_ _3"></span>y<span class="_ _c"> </span>copies<span class="_ _d"> </span>in<span class="_ _c"> </span>the<span class="_ _c"> </span>path<span class="_ _c"> </span>of<span class="_ _d"> </span>one<span class="_ _c"> </span>of<span class="_ _c"> </span><span class="ff19">Meta</span>s<span class="_ _d"> </span>major</div><div class="t m0 x30 hb y271 ff9 fs6 fc0 sc0 ls0 ws0">ad<span class="_ _f"> </span>services,<span class="_ _f"> </span>the<span class="_ _f"> </span>engineer<span class="_ _f"> </span>determined<span class="_ _f"> </span>that<span class="_ _f"> </span>the<span class="_ _8"> </span>vecto<span class="_ _3"></span>r<span class="_ _f"> </span>copy<span class="_ _c"> </span>wasnt<span class="_ _c"> </span>intentional.<span class="_"> </span>So<span class="_ _f"> </span>he</div><div class="t m0 x30 hb y272 ff9 fs6 fc0 sc0 ls0 ws0">added<span class="_ _9"> </span>an<span class="_ _9"> </span>&quot;<span class="_ _d"> </span><span class="ff15">&amp;<span class="_ _26"> </span></span>&quot;<span class="_ _21"> </span>after<span class="_ _9"> </span>the<span class="_ _4"> </span><span class="ffa">auto<span class="_ _2f"> </span></span>keyw<span class="_ _3"></span>o<span class="_ _3"></span>rd<span class="_ _9"> </span>to<span class="_ _21"> </span>turn<span class="_ _9"> </span>the<span class="_ _9"> </span>copy<span class="_ _1b"> </span>into<span class="_ _9"> </span>a<span class="_ _21"> </span>reference,<span class="_ _21"> </span>which</div><div class="t m0 x30 hb y273 ff9 fs6 fc0 sc0 ls0 ws0">avoids<span class="_ _c"> </span>unnecessa<span class="_ _3"></span>ry<span class="_ _c"> </span>data<span class="_ _c"> </span>duplication<span class="_ _d"> </span>by<span class="_ _d"> </span>p<span class="_ _b"></span>ointing<span class="_ _c"> </span>to<span class="_ _c"> </span>the<span class="_ _c"> </span>data<span class="_ _c"> </span>rather<span class="_ _d"> </span>than<span class="_ _c"> </span>reproducing</div><div class="t m0 x30 hb y274 ff9 fs6 fc0 sc0 ls0 ws0">it.</div><div class="t m0 x9 hb y275 ff9 fs6 fc0 sc0 ls0 ws0">&quot;It<span class="_ _21"> </span>w<span class="_ _3"></span>as<span class="_ _21"> </span>a<span class="_ _21"> </span><span class="ff19">one-character<span class="_ _e"> </span>commit</span>,<span class="_ _e"> </span>which,<span class="_ _e"> </span>after<span class="_ _21"> </span>it<span class="_ _9"> </span>was<span class="_ _9"> </span>shipp<span class="_ _b"></span>ed<span class="_ _21"> </span>to<span class="_ _21"> </span>production,</div><div class="t m0 x30 hb y276 ff9 fs6 fc0 sc0 ls0 ws0">equated<span class="_ _d"> </span>to<span class="_ _d"> </span>an<span class="_ _26"> </span>estimated<span class="_ _d"> </span><span class="ff19">15,000<span class="_ _c"> </span>servers<span class="_ _c"> </span>in<span class="_ _d"> </span>capacity<span class="_ _d"> </span>savings<span class="_ _c"> </span>p<span class="_ _b"></span>er<span class="_ _c"> </span>y<span class="_ _3"></span>ear<span class="ff9">,&quot;<span class="_ _26"> </span>said<span class="_ _d"> </span>Rome.</span></span></div><div class="t m0 xb hd y277 ffb fs7 fcc sc0 ls0 ws0">Meta<span class="_ _9"> </span>recently<span class="_ _9"> </span>made<span class="_ _21"> </span>a<span class="_ _9"> </span>1<span class="_ _21"> </span>character<span class="_ _9"> </span>change<span class="_ _21"> </span>to<span class="_ _9"> </span>their<span class="_ _9"> </span>codebase<span class="_ _21"> </span>which<span class="_ _9"> </span>saves<span class="_ _21"> </span>the</div><div class="t m0 x1 hd y278 ffb fs7 fcc sc0 ls0 ws0">equivalent<span class="_ _9"> </span>of<span class="_ _20"> </span>15,000<span class="_ _9"> </span>servers<span class="_ _9"> </span>in<span class="_ _21"> </span>capacity<span class="_ _9"> </span>per<span class="_ _21"> </span>year<span class="_ _31"> </span><span class="ff10 fs8"></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">68/93</div><a class="l" href="https://x.com/DanielLockyer/status/1903042764566130911"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:19.047000px;width:391.471000px;height:11.656000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://x.com/DanielLockyer/status/1903042764566130911"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:4.656000px;width:245.897000px;height:11.153000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4b" class="pf w0 h0" data-page-no="4b"><div class="pc pc4b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _1b"> </span>P<span class="_ _3"></span>assing<span class="_ _1b"> </span>-<span class="_ _9"> </span><span class="ff5">const<span class="_ _1b"> </span></span>P<span class="_ _3"></span>arameters<span class="_ _56"> </span>4/4</div><div class="t m0 x1a hb y279 ff5 fs6 fc0 sc0 ls0 ws0">const<span class="_ _10"> </span><span class="ff4">mo<span class="_ _b"></span>difier<span class="_ _c"> </span>applied<span class="_ _c"> </span>to<span class="_ _f"> </span>values,<span class="_ _c"> </span>p<span class="_ _0"></span>ointers,<span class="_ _c"> </span>references<span class="_ _c"> </span><span class="ff9">do<span class="_ _b"></span>es<span class="_ _c"> </span>not<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>duce<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _c"> </span>co<span class="_ _0"></span>de</span></span></div><div class="t m0 x1 hb y27a ff4 fs6 fc0 sc0 ls0 ws0">in<span class="_ _c"> </span>most<span class="_ _c"> </span>cases,<span class="_ _f"> </span>but<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>useful<span class="_ _f"> </span>for<span class="_ _c"> </span>ensuring<span class="_ _c"> </span>read-only<span class="_ _c"> </span>accesses</div><div class="t m0 x1 hb y27b ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>some<span class="_ _c"> </span>cases,<span class="_ _f"> </span>pass<span class="_ _10"> </span><span class="ff5">by-const<span class="_ _10"> </span></span>is<span class="_ _c"> </span>b<span class="_ _b"></span>eneficial<span class="_ _f"> </span>for<span class="_ _c"> </span>performance<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _10"> </span><span class="ff6">const<span class="_ _10"> </span></span>memb<span class="_ _b"></span>er</div><div class="t m0 x1 hb y27c ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>overloading<span class="_ _c"> </span>could<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>cheap<span class="_ _b"></span>er<span class="_ _c"> </span>than<span class="_ _f"> </span>their<span class="_ _c"> </span>counterparts</div><div class="t m0 xb hd y27d ffb fs7 fcc sc0 ls0 ws0">GoTW#81:<span class="_ _20"> </span>Constant<span class="_ _1b"> </span>Optimization?</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">69/93</div><a class="l" href="http://www.gotw.ca/gotw/081.htm"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:5.272000px;width:152.628000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4c" class="pf w0 h0" data-page-no="4c"><div class="pc pc4c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">inline<span class="_ _1b"> </span><span class="ff1">F<span class="_ _3"></span>unction<span class="_ _1b"> </span>Declaration<span class="_ _57"> </span>1/3</span></div><div class="t m0 x1a hb y27e ff1 fs6 fc1 sc0 ls0 ws0">inline</div><div class="t m0 x5 hb y27f ff6 fs6 fc7 sc0 ls0 ws0">inline<span class="_ _10"> </span><span class="ff4 fc0">sp<span class="_ _b"></span>ecifier<span class="_ _c"> </span>for<span class="_ _c"> </span>optimization<span class="_ _c"> </span>purp<span class="_ _b"></span>oses<span class="_ _c"> </span>is<span class="_ _f"> </span>just<span class="_ _c"> </span>a<span class="_ _f"> </span>hint<span class="_ _c"> </span>for<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _c"> </span>that</span></div><div class="t m0 x1a hb y280 ff4 fs6 fc0 sc0 ls0 ws0">increases<span class="_ _c"> </span>the<span class="_ _c"> </span>heuristic<span class="_ _f"> </span>threshold<span class="_ _c"> </span>for<span class="_ _c"> </span><span class="ff1">inlining</span>,<span class="_ _f"> </span>namely<span class="_ _c"> </span>copying<span class="_ _c"> </span>the<span class="_ _c"> </span>function<span class="_ _c"> </span>b<span class="_ _0"></span>ody</div><div class="t m0 x1a hb y281 ff4 fs6 fc0 sc0 ls0 ws0">where<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>called</div><div class="t m0 x1 hc y282 ff5 fs4 fc9 sc0 ls0 ws0">inline<span class="_"> </span><span class="fc6">void<span class="_"> </span><span class="ff6 fc7">f<span class="fc0">()<span class="_"> </span>{<span class="_"> </span>...<span class="_"> </span>}</span></span></span></div><div class="t m0 xb hb y283 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>can<span class="_ _c"> </span>ignore<span class="_ _c"> </span>the<span class="_ _c"> </span>hint</span></div><div class="t m0 xb hb y284 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Inlining<span class="_ _9"> </span><span class="ff4">can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>very<span class="_ _f"> </span>effective<span class="_ _c"> </span>for<span class="_ _c"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span>b<span class="_ _b"></span>ecause<span class="_ _c"> </span>it<span class="_ _f"> </span>can<span class="_ _c"> </span>merge<span class="_ _f"> </span>different</span></span></div><div class="t m0 x36 hb y285 ff4 fs6 fc0 sc0 ls0 ws0">functions<span class="_ _c"> </span>into<span class="_ _c"> </span>one,<span class="_ _f"> </span>allowing<span class="_ _c"> </span>constant<span class="_ _c"> </span>p<span class="_ _3"></span>ropagation,<span class="_ _f"> </span>eliminating<span class="_ _c"> </span>dead<span class="_ _f"> </span>co<span class="_ _b"></span>de,<span class="_ _c"> </span>or</div><div class="t m0 x36 hb y286 ff4 fs6 fc0 sc0 ls0 ws0">combining<span class="_ _c"> </span>instructions</div><div class="t m0 xb hb y287 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">inlined<span class="_ _9"> </span><span class="ff4">functions<span class="_ _c"> </span>increase<span class="_ _f"> </span>the<span class="_ _c"> </span>binary<span class="_ _c"> </span>size<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _f"> </span>they<span class="_ _c"> </span>are<span class="_ _c"> </span>expanded<span class="_ _c"> </span>in-place<span class="_ _c"> </span>for</span></span></div><div class="t m0 x36 hb y288 ff4 fs6 fc0 sc0 ls0 ws0">every<span class="_ _c"> </span>function<span class="_ _c"> </span>call</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">70/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4d" class="pf w0 h0" data-page-no="4d"><div class="pc pc4d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">inline<span class="_ _1b"> </span><span class="ff1">F<span class="_ _3"></span>unction<span class="_ _1b"> </span>Declaration<span class="_ _57"> </span>2/3</span></div><div class="t m0 x1 hb y289 ff1 fs6 fc0 sc0 ls0 ws0">Compilers<span class="_ _f"> </span>have<span class="_ _8"> </span>different<span class="_ _8"> </span>heuristics<span class="_ _8"> </span>fo<span class="_ _3"></span>r<span class="_ _8"> </span>function<span class="_ _8"> </span>inlining</div><div class="t m0 xb hb y28a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>lines<span class="_ _c"> </span>(even<span class="_ _f"> </span>comments:<span class="_ _21"> </span><span class="ff6">How<span class="_"> </span>new-lines<span class="_"> </span>affect<span class="_"> </span>the<span class="_"> </span>Linux<span class="_"> </span>kernel</span></span></div><div class="t m0 x36 hb y28b ff6 fs6 fc0 sc0 ls0 ws0">performance<span class="_ _d"> </span><span class="ff10 fs8"></span><span class="ff4">).</span></div><div class="t m0 xb hb y28c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>assembly<span class="_ _c"> </span>instructions.</span></div><div class="t m0 xb hb y28d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Inlining<span class="_ _c"> </span>depth<span class="_ _f"> </span>(recursive).</span></div><div class="t m0 xb hb y28e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff6">-Winline<span class="_ _10"> </span><span class="ff4">w<span class="_ _3"></span>arns<span class="_ _c"> </span>when<span class="_ _c"> </span>a<span class="_ _c"> </span>function<span class="_ _f"> </span>mark<span class="_ _3"></span>ed<span class="_ _c"> </span>inline<span class="_ _c"> </span>could<span class="_ _f"> </span>not<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>substituted,<span class="_ _c"> </span>and</span></span></div><div class="t m0 x36 hb y28f ff4 fs6 fc0 sc0 ls0 ws0">gives<span class="_ _c"> </span>the<span class="_ _c"> </span>reason<span class="_ _f"> </span>for<span class="_ _c"> </span>the<span class="_ _c"> </span>failure.</div><div class="t m0 x30 h10 y290 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">An<span class="_ _9"> </span>Inline<span class="_ _21"> </span>Function<span class="_ _9"> </span>is<span class="_ _9"> </span>As<span class="_ _21"> </span>Fast<span class="_ _9"> </span>As<span class="_ _21"> </span>a<span class="_ _9"> </span>Macro</span></div><div class="t m0 x30 h10 y291 ff1a fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffb">Inlining<span class="_ _9"> </span>Decisions<span class="_ _21"> </span>in<span class="_ _9"> </span>Visual<span class="_ _9"> </span>Studio</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">71/93</div><a class="l" href="https://nadav.amit.zone/linux/2018/10/10/newline.html"><div class="d m1" style="border-style:none;position:absolute;left:207.653000px;bottom:167.968000px;width:218.540000px;height:12.755000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://nadav.amit.zone/linux/2018/10/10/newline.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:152.387000px;width:74.001000px;height:12.754000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/Inline.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:25.063000px;width:190.286000px;height:7.373000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://devblogs.microsoft.com/cppblog/inlining-decisions-in-visual-studio/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:10.468000px;width:166.750000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4e" class="pf w0 h0" data-page-no="4e"><div class="pc pc4e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">inline<span class="_ _1b"> </span><span class="ff1">F<span class="_ _3"></span>unction<span class="_ _1b"> </span>Declaration<span class="_ _57"> </span>3/3</span></div><div class="t m0 x1 hb y292 ff4 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>extensions<span class="_ _c"> </span>allow<span class="_ _c"> </span>to<span class="_ _c"> </span>manually<span class="_ _f"> </span><span class="ff9">fo<span class="_ _3"></span>rce<span class="_ _1b"> </span><span class="ff4">inline/non-inline<span class="_ _f"> </span>functions<span class="_ _c"> </span>with<span class="_ _c"> </span>attributes.</span></span></div><div class="t m0 x1 hb y293 ff4 fs6 fc0 sc0 ls0 ws0">Here<span class="_ _c"> </span><span class="fcd">C++17</span>attributes<span class="_ _c"> </span>are<span class="_ _c"> </span>adopted:</div><div class="t m0 x1 hb y294 ff4 fs6 fc0 sc0 ls0 ws0">GCC/Clang:</div><div class="t m0 x1 hd y295 ffb fs7 fc0 sc0 ls0 ws0">[[<span class="fc7">gnu::always_inline</span>]]<span class="_ _9"> </span><span class="ff5 fc6">void<span class="_"> </span></span>f()<span class="_ _9"> </span>{<span class="_ _21"> </span>...<span class="_ _9"> </span>}</div><div class="t m0 x1 hd y296 ffb fs7 fc0 sc0 ls0 ws0">[[<span class="fc7">gnu::noinline</span>]]<span class="_ _3b"> </span><span class="ff5 fc6">void<span class="_"> </span></span>f()<span class="_ _1b"> </span>{<span class="_ _21"> </span>...<span class="_ _9"> </span>}</div><div class="t m0 x1 hb y297 ff4 fs6 fc0 sc0 ls0 ws0">MSV<span class="_ _3"></span>C:</div><div class="t m0 x1 hd y298 ffb fs7 fc0 sc0 ls0 ws0">[[<span class="fc7">msvc::forceinline</span>]]<span class="_ _20"> </span><span class="ff5 fc6">void<span class="_"> </span></span>f()<span class="_ _1b"> </span>{<span class="_ _21"> </span>...<span class="_ _9"> </span>}</div><div class="t m0 x1 hd y299 ffb fs7 fc0 sc0 ls0 ws0">[[<span class="fc7">msvc::noinline</span>]]<span class="_ _47"> </span><span class="ff5 fc6">void<span class="_"> </span></span>f()<span class="_ _9"> </span>{<span class="_ _9"> </span>...<span class="_ _21"> </span>}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">72/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf4f" class="pf w0 h0" data-page-no="4f"><div class="pc pc4f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Inlining<span class="_ _1b"> </span>and<span class="_ _1b"> </span>Linkage</div><div class="t m0 xb hb y29a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _c"> </span>function<span class="_ _f"> </span>with<span class="_ _c"> </span><span class="ff1">internal<span class="_ _8"> </span>linkage<span class="_ _c"> </span></span>is<span class="_ _f"> </span>not<span class="_ _c"> </span>visible<span class="_ _f"> </span>outside<span class="_ _c"> </span>the<span class="_ _f"> </span>current<span class="_ _c"> </span>translation</span></div><div class="t m0 x36 hb y29b ff4 fs6 fc0 sc0 ls0 ws0">unit,<span class="_ _c"> </span>allowing<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _c"> </span>to<span class="_ _f"> </span>p<span class="_ _b"></span>erform<span class="_ _c"> </span>aggressive<span class="_ _c"> </span><span class="ff9">inlining</span>.</div><div class="t m0 xb hb y29c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">On<span class="_ _c"> </span>the<span class="_ _f"> </span>other<span class="_ _c"> </span>hand,<span class="_ _f"> </span><span class="ff1">external<span class="_ _f"> </span>linkage<span class="_ _f"> </span></span>do<span class="_ _b"></span>es<span class="_ _f"> </span>not<span class="_ _c"> </span>prevent<span class="_ _c"> </span>function<span class="_ _c"> </span>inlining<span class="_ _c"> </span>if<span class="_ _f"> </span>the</span></div><div class="t m0 x36 hb y29d ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>b<span class="_ _b"></span>o<span class="_ _b"></span>dy<span class="_ _f"> </span>is<span class="_ _c"> </span>visible<span class="_ _f"> </span>in<span class="_ _c"> </span>a<span class="_ _f"> </span>translation<span class="_ _c"> </span>unit.<span class="_ _21"> </span>How<span class="_ _3"></span>ever,<span class="_ _c"> </span>function<span class="_ _c"> </span>side<span class="_ _f"> </span>effects<span class="_ _c"> </span>or</div><div class="t m0 x36 hb y29e ff4 fs6 fc0 sc0 ls0 ws0">internal<span class="_ _c"> </span>state<span class="_ _c"> </span>may<span class="_ _c"> </span>influence<span class="_ _c"> </span>the<span class="_ _f"> </span>compilers<span class="_ _c"> </span>decision.</div><div class="t m0 xb hb y29f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>unctions<span class="_ _f"> </span>with<span class="_ _c"> </span><span class="ff1">external<span class="_ _8"> </span>linkage<span class="_ _f"> </span></span>that<span class="_ _c"> </span>are<span class="_ _c"> </span>defined<span class="_ _c"> </span>in<span class="_ _c"> </span>a<span class="_ _f"> </span>different<span class="_ _c"> </span>translation<span class="_ _f"> </span>unit</span></div><div class="t m0 x36 hb y2a0 ff4 fs6 fc0 sc0 ls0 ws0">cannot<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>inlined.<span class="_ _21"> </span><span class="ff9">Link-time<span class="_ _c"> </span>optimization<span class="_ _f"> </span></span>(L<span class="_ _7"></span>TO)<span class="_ _f"> </span>may<span class="_ _c"> </span>enable<span class="_ _c"> </span>function<span class="_ _c"> </span>inlining</div><div class="t m0 x36 hb y2a1 ff4 fs6 fc0 sc0 ls0 ws0">across<span class="_ _c"> </span>translation<span class="_ _c"> </span>units.</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">73/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf50" class="pf w0 h0" data-page-no="50"><div class="pc pc50 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Symb<span class="_ _b"></span>ol<span class="_ _1b"> </span>Visibility</div><div class="t m0 x1 hb y1cb ff4 fs6 fc0 sc0 ls0 ws0">All<span class="_ _c"> </span>compilers,<span class="_ _c"> </span>except<span class="_ _d"> </span>MSVC,<span class="_ _d"> </span>exp<span class="_ _0"></span>o<span class="_ _3"></span>rt<span class="_ _c"> </span>all<span class="_ _d"> </span>function<span class="_ _c"> </span>symb<span class="_ _b"></span>ols<span class="_ _c"> </span><span class="fff">→<span class="_ _c"> </span></span>the<span class="_ _c"> </span>symb<span class="_ _b"></span>ols<span class="_ _c"> </span>can<span class="_ _c"> </span>be<span class="_ _c"> </span>used<span class="_ _c"> </span>in</div><div class="t m0 x1 hb y2a2 ff4 fs6 fc0 sc0 ls0 ws0">other<span class="_ _c"> </span>translation<span class="_ _c"> </span>units<span class="_ _f"> </span>and<span class="_ _c"> </span>may<span class="_ _c"> </span>influence<span class="_ _c"> </span>the<span class="_ _f"> </span>compilers<span class="_ _c"> </span>inlining<span class="_ _f"> </span>decision.</div><div class="t m0 x1 hb y2a3 ff4 fs6 fc0 sc0 ls0 ws0">Alternatives:</div><div class="t m0 xb hb y2a4 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff6">static<span class="_ _10"> </span></span>functions</span></div><div class="t m0 xb hb y2a5 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff6">anonymous<span class="_"> </span>namespace<span class="_ _10"> </span></span>(functions<span class="_ _c"> </span>and<span class="_ _c"> </span>classes)</span></div><div class="t m0 xb hb y2a6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>GNU<span class="_ _f"> </span>extension<span class="_ _c"> </span>(also<span class="_ _f"> </span><span class="ff6">clang</span>)<span class="_ _10"> </span><span class="ff6">__attribute__((visibility(&quot;hidden&quot;)))</span></span></div><div class="t m0 xb hd y2a7 ffb fs7 fcc sc0 ls0 ws0">gcc.gnu.org/wiki/Visibility</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">74/93</div><a class="l" href="https://gcc.gnu.org/wiki/Visibility"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:3.462000px;width:129.091000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf51" class="pf w0 h0" data-page-no="51"><div class="pc pc51 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Pure<span class="_ _1b"> </span>F<span class="_ _3"></span>unctions<span class="_ _58"> </span>1/2</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Pure<span class="_ _f"> </span>functions<span class="_ _f"> </span><span class="ff4">have<span class="_ _c"> </span><span class="ff9">no<span class="_ _f"> </span>side<span class="_ _c"> </span>effect<span class="_ _9"> </span></span>on<span class="_ _c"> </span>its<span class="_ _f"> </span>parameters<span class="_ _c"> </span>and<span class="_ _c"> </span>dont<span class="_ _c"> </span>mo<span class="_ _b"></span>dify<span class="_ _f"> </span>global</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">va<span class="_ _3"></span>riables.</div><div class="t m0 x1 hb y101 ff9 fs6 fc0 sc0 ls0 ws0">Pure<span class="_ _c"> </span>functions<span class="_ _1b"> </span><span class="ff4">can<span class="_ _c"> </span>access<span class="_ _c"> </span>global<span class="_ _f"> </span>va<span class="_ _3"></span>riables.<span class="_ _21"> </span>On<span class="_ _c"> </span>the<span class="_ _c"> </span>other<span class="_ _f"> </span>hand,<span class="_ _c"> </span>they<span class="_ _c"> </span>can<span class="_ _c"> </span>only<span class="_ _c"> </span>call<span class="_ _f"> </span>other</span></div><div class="t m0 x1 hb y102 ff9 fs6 fc0 sc0 ls0 ws0">pure<span class="_ _c"> </span>functions<span class="ff4">,<span class="_ _c"> </span>cannot<span class="_ _f"> </span>mo<span class="_ _b"></span>dify<span class="_ _f"> </span>input<span class="_ _c"> </span>p<span class="_ _b"></span>ointers<span class="_ _f"> </span>o<span class="_ _3"></span>r<span class="_ _f"> </span>references,<span class="_ _c"> </span>and<span class="_ _f"> </span>must<span class="_ _c"> </span>have<span class="_ _f"> </span>non-<span class="_ _26"> </span><span class="ff6">void</span></span></div><div class="t m0 x1 hb y103 ff4 fs6 fc0 sc0 ls0 ws0">return<span class="_ _c"> </span>type.</div><div class="t m0 x1 hb y2a8 ff4 fs6 fc0 sc0 ls0 ws0">Main<span class="_ _c"> </span>property:<span class="_ _9"> </span><span class="ff6">Referential<span class="_"> </span>transparency<span class="_ _d"> </span><span class="ff10 fs8"><span class="_ _c"> </span></span><span class="fff">→<span class="_ _c"> </span><span class="ff9">Pure<span class="_ _f"> </span>functions<span class="_ _9"> </span></span></span></span>alw<span class="_ _3"></span>ays<span class="_ _c"> </span>returns<span class="_ _c"> </span>the</div><div class="t m0 x1 hb y2a9 ff4 fs6 fc0 sc0 ls0 ws0">same<span class="_ _c"> </span>output<span class="_ _c"> </span>for<span class="_ _c"> </span>the<span class="_ _c"> </span>same<span class="_ _f"> </span>inputs,<span class="_ _c"> </span>without<span class="_ _f"> </span>affecting<span class="_ _c"> </span>the<span class="_ _f"> </span>p<span class="_ _3"></span>rogram<span class="_ _f"> </span>state.</div><div class="t m0 x1 hb y2aa ff9 fs6 fc0 sc0 ls0 ws0">Pure<span class="_ _c"> </span>functions<span class="_ _9"> </span><span class="ff4">allo<span class="_ _3"></span>w<span class="_ _f"> </span>the<span class="_ _c"> </span>following<span class="_ _c"> </span>optimizations:</span></div><div class="t m0 xb hb y2ab ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Common<span class="_ _c"> </span>Sub-expression<span class="_ _c"> </span>Elimination<span class="ff4">:<span class="_ _21"> </span>when<span class="_ _c"> </span>the<span class="_ _f"> </span>function<span class="_ _c"> </span>is<span class="_ _f"> </span>called<span class="_ _c"> </span>multiple<span class="_ _f"> </span>times</span></span></div><div class="t m0 x36 hb y2ac ff4 fs6 fc0 sc0 ls0 ws0">with<span class="_ _c"> </span>the<span class="_ _c"> </span>same<span class="_ _f"> </span>arguments.</div><div class="t m0 xb hb y2ad ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Dead-Co<span class="_ _b"></span>de<span class="_ _c"> </span>Elimination<span class="_ _b"></span><span class="ff4">:<span class="_ _21"> </span>if<span class="_ _c"> </span>the<span class="_ _f"> </span>result<span class="_ _c"> </span>value<span class="_ _f"> </span>o<span class="_ _3"></span>r<span class="_ _f"> </span>subsequent<span class="_ _c"> </span>op<span class="_ _b"></span>erations<span class="_ _f"> </span>are<span class="_ _c"> </span>not<span class="_ _c"> </span>used,</span></span></div><div class="t m0 x36 hb y2ae ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>function<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>removed<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _f"> </span>it<span class="_ _c"> </span>do<span class="_ _b"></span>esnt<span class="_ _f"> </span>mo<span class="_ _b"></span>dify<span class="_ _c"> </span>the<span class="_ _f"> </span>program<span class="_ _c"> </span>state.</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">75/93</div><a class="l" href="https://en.wikipedia.org/wiki/Referential_transparency"><div class="d m1" style="border-style:none;position:absolute;left:99.592000px;bottom:117.697000px;width:148.455000px;height:12.694000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf52" class="pf w0 h0" data-page-no="52"><div class="pc pc52 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Pure<span class="_ _1b"> </span>F<span class="_ _3"></span>unctions<span class="_ _58"> </span>2/2</div><div class="t m0 x1 hf y113 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffc fc7">pow2<span class="fc0">(</span></span>double<span class="_"> </span><span class="ffc fc0">x);<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>defined<span class="_ _1b"> </span>in<span class="_ _8"> </span>another<span class="_ _1b"> </span>translation<span class="_ _8"> </span>unit</span></span></div><div class="t m0 x1 hf y115 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffc fc7">caller<span class="fc0">(</span></span>double<span class="_"> </span><span class="ffc fc0">v)<span class="_ _1b"> </span>{</span></div><div class="t m0 xf hf y116 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffc fc0">x<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>pow2(v)<span class="_ _1b"> </span><span class="fc8">+<span class="_ _8"> </span></span>pow2(v);<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>generates<span class="_ _8"> </span>4<span class="_ _1b"> </span>calls</span></span></div><div class="t m0 xf hf y117 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_"> </span><span class="ffc fc0">y<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span></span>pow2(v)<span class="_ _1b"> </span><span class="fc8">+<span class="_ _8"> </span></span>pow2(v);</span></div><div class="t m0 xf hf y118 ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_"> </span><span class="ffc fc0">x<span class="_ _8"> </span><span class="fc8">+<span class="_ _1b"> </span></span>y;</span></div><div class="t m0 x1 hf y119 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y2af ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>compiler<span class="_ _c"> </span>automatically<span class="_ _f"> </span>recognizes<span class="_ _c"> </span><span class="ff9">pure<span class="_ _f"> </span>functions<span class="_ _9"> </span></span>when<span class="_ _c"> </span>they<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>entirely<span class="_ _c"> </span>visible<span class="_ _f"> </span>in</div><div class="t m0 x1 hb y2b0 ff4 fs6 fc0 sc0 ls0 ws0">a<span class="_ _c"> </span>translation<span class="_ _c"> </span>unit.<span class="_ _21"> </span><span class="ff9">Link-Time-Optimization<span class="_ _8"> </span></span>can<span class="_ _c"> </span>help<span class="_ _c"> </span>to<span class="_ _f"> </span>optimize<span class="_ _c"> </span>them<span class="_ _f"> </span>across</div><div class="t m0 x1 hb y2b1 ff4 fs6 fc0 sc0 ls0 ws0">translation<span class="_ _c"> </span>units.<span class="_ _21"> </span>ASM<span class="_ _c"> </span>statements<span class="_ _f"> </span>prevent<span class="_ _c"> </span>their<span class="_ _c"> </span>detection.</div><div class="t m0 x1 hb y2b2 ff4 fs6 fc0 sc0 ls0 ws0">Clang/GCC<span class="_ _c"> </span>allow<span class="_ _c"> </span>to<span class="_ _c"> </span>explicitly<span class="_ _c"> </span>mark<span class="_ _3"></span>ed<span class="_ _c"> </span><span class="ff9">pure<span class="_ _f"> </span>function<span class="_ _f"> </span></span>with<span class="_ _c"> </span>the<span class="_ _f"> </span>attribute</div><div class="t m0 x1a hb y2b3 ff6 fs6 fc0 sc0 ls0 ws0">[[gnu::pure]]<span class="_ _26"> </span><span class="ff4">.</span></div><div class="t m0 xb hd y2b4 ffb fs7 fcc sc0 ls0 ws0">Pure<span class="_ _9"> </span>functions<span class="_ _9"> </span>in<span class="_ _21"> </span>C++</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">76/93</div><a class="l" href="https://soroush.github.io/en/2020/08/06/pure-functions-in-cpp"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:3.276000px;width:100.847000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf53" class="pf w0 h0" data-page-no="53"><div class="pc pc53 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Constant<span class="_ _1b"> </span>F<span class="_ _3"></span>unctions</div><div class="t m0 x1 hb y6d ff1 fs6 fc0 sc0 ls0 ws0">Constant<span class="_ _f"> </span>Functions<span class="_ _c"> </span><span class="ff4">have<span class="_ _c"> </span><span class="ff9">no<span class="_ _f"> </span>side<span class="_ _c"> </span>effect<span class="_ _9"> </span></span>on<span class="_ _c"> </span>its<span class="_ _f"> </span>pa<span class="_ _3"></span>rameters<span class="_ _f"> </span>and<span class="_ _c"> </span>dont<span class="_ _f"> </span>refer<span class="_ _c"> </span>global</span></div><div class="t m0 x1 hb ye9 ff4 fs6 fc0 sc0 ls0 ws0">va<span class="_ _3"></span>riables.<span class="_ _21"> </span>They<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>a<span class="_ _c"> </span>stricter<span class="_ _f"> </span>case<span class="_ _c"> </span>of<span class="_ _f"> </span><span class="ff9">pure<span class="_ _c"> </span>functions</span>.</div><div class="t m0 x1 hb y2b5 ff9 fs6 fc0 sc0 ls0 ws0">Constant<span class="_ _c"> </span>functions<span class="_ _9"> </span><span class="ff4">allo<span class="_ _3"></span>w<span class="_ _f"> </span>further<span class="_ _c"> </span>optimizations:</span></div><div class="t m0 xb hb y2b6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Strong<span class="_ _c"> </span>Common<span class="_ _f"> </span>Sub-exp<span class="_ _3"></span>ression<span class="_ _f"> </span>Elimination<span class="ff4">:<span class="_ _21"> </span>this<span class="_ _f"> </span>optimization<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>applied</span></span></div><div class="t m0 x36 hb y2b7 ff4 fs6 fc0 sc0 ls0 ws0">even<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>non-subsequent<span class="_ _c"> </span>statements<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _c"> </span>mo<span class="_ _b"></span>dification<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _d"> </span>global<span class="_ _c"> </span>state<span class="_ _c"> </span>dont</div><div class="t m0 x36 hb y2b8 ff4 fs6 fc0 sc0 ls0 ws0">affect<span class="_ _c"> </span>them.</div><div class="t m0 xb hb y2b9 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff9">Lo<span class="_ _b"></span>op<span class="_ _c"> </span>optimizations<span class="_ _3c"></span><span class="ff4">:<span class="_ _9"> </span>thanks<span class="_ _f"> </span>to<span class="_ _c"> </span>the<span class="_ _f"> </span>ab<span class="_ _b"></span>ove<span class="_ _c"> </span>property<span class="_ _7"></span>,<span class="_ _c"> </span><span class="ff9">constant<span class="_ _c"> </span>functions<span class="_ _9"> </span></span>within<span class="_ _f"> </span>a</span></span></div><div class="t m0 x36 hb y2ba ff4 fs6 fc0 sc0 ls0 ws0">lo<span class="_ _b"></span>op<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>reordered<span class="_ _c"> </span>a<span class="_ _3"></span>rbitrarily</div><div class="t m0 x1 hb y2bb ff4 fs6 fc0 sc0 ls0 ws0">Clang/GCC<span class="_ _c"> </span>allow<span class="_ _c"> </span>to<span class="_ _c"> </span>explicitly<span class="_ _c"> </span>mark<span class="_ _3"></span>ed<span class="_ _c"> </span><span class="ff9">constant<span class="_ _f"> </span>function<span class="_ _f"> </span></span>with<span class="_ _c"> </span>the<span class="_ _f"> </span>attribute</div><div class="t m0 x1a hb y2bc ff6 fs6 fc0 sc0 ls0 ws0">[[gnu::const]]<span class="_ _26"> </span><span class="ff4">.</span></div><div class="t m0 xb hd y2bd ffb fs7 fcc sc0 ls0 ws0">Implications<span class="_ _9"> </span>of<span class="_ _9"> </span>pure<span class="_ _21"> </span>and<span class="_ _9"> </span>constant<span class="_ _21"> </span>functions</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">77/93</div><a class="l" href="https://lwn.net/Articles/285332/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:1.831000px;width:204.409000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf54" class="pf w0 h0" data-page-no="54"><div class="pc pc54 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _1b"> </span>Aliasing<span class="_ _59"> </span>1/4</div><div class="t m0 x1 hb y2be ff4 fs6 fc0 sc0 ls0 ws0">Consider<span class="_ _c"> </span>the<span class="_ _c"> </span>following<span class="_ _c"> </span>example:</div><div class="t m0 x1 hd y2bf ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>suppose<span class="_ _9"> </span>f()<span class="_ _21"> </span>is<span class="_ _9"> </span>not<span class="_ _21"> </span>inline</div><div class="t m0 x1 hd y2c0 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffb fc7">f<span class="fc0">(</span></span>int<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">input,<span class="_ _9"> </span></span></span>int<span class="_"> </span><span class="ffb fc0">size,<span class="_ _21"> </span></span>int<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">output)<span class="_ _21"> </span>{</span></span></div><div class="t m0 xd hd y2c1 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x16 hd y2c2 ffb fs7 fc0 sc0 ls0 ws0">output[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>input[i];</div><div class="t m0 x1 hd y2c3 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y2c4 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>compiler<span class="_ _f"> </span>cannot<span class="_ _c"> </span><span class="ff9">unroll<span class="_ _9"> </span></span>the<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>(sequential<span class="_ _f"> </span>execution,<span class="_ _c"> </span>no<span class="_ _f"> </span>ILP)<span class="_ _c"> </span>b<span class="_ _b"></span>ecause</span></div><div class="t m0 xc hb y2c5 ff6 fs6 fc0 sc0 ls0 ws0">output<span class="_ _10"> </span><span class="ff4">and<span class="_ _10"> </span></span>input<span class="_ _10"> </span><span class="ff4">pointers<span class="_ _f"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span><span class="ff1">aliased</span>,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span></span>output<span class="_"> </span>=<span class="_"> </span>input<span class="_"> </span>+<span class="_"> </span>1</div><div class="t m0 xb hb y2c6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>aliasing<span class="_ _c"> </span>problem<span class="_ _c"> </span>is<span class="_ _c"> </span>even<span class="_ _c"> </span>wo<span class="_ _3"></span>rse<span class="_ _c"> </span>for<span class="_ _d"> </span>more<span class="_ _c"> </span>complex<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>and<span class="_ _c"> </span><span class="ff9">inhibits<span class="_ _f"> </span>all<span class="_ _c"> </span>kinds<span class="_ _c"> </span>of</span></span></div><div class="t m0 x36 hb y2c7 ff9 fs6 fc0 sc0 ls0 ws0">optimization<span class="_ _f"> </span><span class="ff4">including<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>re-order<span class="_ _3"></span>ing,<span class="_ _f"> </span>vectorization,<span class="_ _c"> </span>common<span class="_ _c"> </span>sub-exp<span class="_ _3"></span>ression</span></div><div class="t m0 x36 hb y2c8 ff4 fs6 fc0 sc0 ls0 ws0">elimination,<span class="_ _c"> </span>etc.</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">78/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf55" class="pf w0 h0" data-page-no="55"><div class="pc pc55 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _1b"> </span>Aliasing<span class="_ _59"> </span>2/4</div><div class="t m0 x1 hb y18c ff4 fs6 fc0 sc0 ls0 ws0">Most<span class="_ _c"> </span>compilers<span class="_ _c"> </span>(included<span class="_ _f"> </span><span class="ff6">GCC/Clang/MSVC</span>)<span class="_ _c"> </span>provide<span class="_ _c"> </span><span class="ff1">restricted<span class="_ _8"> </span>p<span class="_ _b"></span>ointers</span></div><div class="t m0 x1 hb y18d ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _26"> </span><span class="ff6 fc7">__restrict<span class="_ _d"> </span></span>)<span class="_ _c"> </span>so<span class="_ _f"> </span>that<span class="_ _c"> </span>the<span class="_ _f"> </span>programmer<span class="_ _c"> </span>asserts<span class="_ _c"> </span>that<span class="_ _c"> </span>the<span class="_ _c"> </span>p<span class="_ _0"></span>ointers<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _c"> </span>not<span class="_ _f"> </span>aliased</div><div class="t m0 x1 hd y2c9 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffb fc7">f<span class="fc0">(</span></span>int<span class="ffb fc8">*<span class="_ _9"> </span></span><span class="fc9">__restrict<span class="_"> </span><span class="ffb fc0">input,</span></span></div><div class="t m0 x38 hd y2ca ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _5a"> </span><span class="ffb fc0">size,</span></div><div class="t m0 x38 hd y2cb ff5 fs7 fc6 sc0 ls0 ws0">int<span class="ffb fc8">*<span class="_ _9"> </span></span><span class="fc9">__restrict<span class="_"> </span><span class="ffb fc0">output)<span class="_ _9"> </span>{</span></span></div><div class="t m0 xd hd y2cc ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x16 hd y2cd ffb fs7 fc0 sc0 ls0 ws0">output[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>input[i];</div><div class="t m0 x1 hd y2ce ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y2cf ff4 fs6 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>otential<span class="_ _f"> </span>b<span class="_ _b"></span>enefits:</div><div class="t m0 xb hb y2d0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Instruction-level<span class="_ _c"> </span>parallelism</span></div><div class="t m0 xb hb y2d1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Less<span class="_ _c"> </span>instructions<span class="_ _f"> </span>executed</span></div><div class="t m0 xb hb y2d2 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Merge<span class="_ _c"> </span>common<span class="_ _f"> </span>sub-exp<span class="_ _3"></span>ressions</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">79/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf56" class="pf w0 h0" data-page-no="56"><div class="pc pc56 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _1b"> </span>Aliasing<span class="_ _59"> </span>3/4</div><div class="t m0 x1 hb ydc ff1 fs6 fc0 sc0 ls0 ws0">Benchma<span class="_ _3"></span>rking<span class="_ _8"> </span>matrix<span class="_ _8"> </span>multiplication</div><div class="t m0 x1 hd y2d3 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffb fc7">matrix_mul_v1<span class="fc0">(</span></span><span class="fc9">const<span class="_"> </span></span>int<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">A,</span></span></div><div class="t m0 x41 hd y2d4 ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_"> </span><span class="fc6">int<span class="ffb fc8">*<span class="_ _9"> </span><span class="fc0">B,</span></span></span></div><div class="t m0 x41 hd y2d5 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _5b"> </span><span class="ffb fc0">N,</span></div><div class="t m0 x41 hd y2d6 ff5 fs7 fc6 sc0 ls0 ws0"><span class="fce sc0">int</span><span class="ffb fc8"><span class="fce sc0">*</span><span class="_ _36"> </span><span class="fc0"><span class="fce sc0">C)</span><span class="_ _21"> </span><span class="fce sc0">{</span></span></span></div><div class="t m0 x1 hd y2d7 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffb fc7">matrix_mul_v2<span class="fc0">(</span></span><span class="fc9">const<span class="_"> </span></span>int<span class="ffb fc8">*<span class="_ _9"> </span></span><span class="fc9">__restrict<span class="_"> </span><span class="ffb fc0">A,</span></span></div><div class="t m0 x41 hd y2d8 ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_"> </span><span class="fc6">int<span class="ffb fc8">*<span class="_ _9"> </span></span></span>__restrict<span class="_"> </span><span class="ffb fc0">B,</span></div><div class="t m0 x41 hd y2d9 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _5c"> </span><span class="ffb fc0">N,</span></div><div class="t m0 x41 hd y2da ff5 fs7 fc6 sc0 ls0 ws0">int<span class="ffb fc8">*<span class="_ _36"> </span></span><span class="fc9">__restrict<span class="_"> </span><span class="ffb fc0">C)<span class="_ _21"> </span>{</span></span></div><div class="t m0 x41 hd y2db ff5 fs7 fc0 sc0 ls0 ws0">Optimization<span class="_ _33"> </span><span class="ffb">-O1<span class="_ _4e"> </span>-O2<span class="_ _5d"> </span>-O3</span></div><div class="t m0 x41 h10 y2dc ffb fs7 fc0 sc0 ls0 ws0">v1<span class="_ _5e"> </span><span class="ffe">1,030<span class="_ _d"> </span>ms<span class="_ _19"> </span>777<span class="_ _d"> </span>ms<span class="_ _5f"> </span>777<span class="_ _d"> </span>ms</span></div><div class="t m0 x41 h10 y2dd ffb fs7 fc0 sc0 ls0 ws0">v2<span class="_ _60"> </span><span class="ffe">513<span class="_ _d"> </span>ms<span class="_ _19"> </span>510<span class="_ _d"> </span>ms<span class="_ _5f"> </span>761<span class="_ _d"> </span>ms</span></div><div class="t m0 x41 h10 y2de ffb fs7 fc0 sc0 ls0 ws0">Speedup<span class="_ _61"> </span><span class="ffe">2.0x<span class="_ _62"> </span>1.5x<span class="_ _27"> </span>1.02x</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">80/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf57" class="pf w0 h0" data-page-no="57"><div class="pc pc57 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _1b"> </span>Aliasing<span class="_ _59"> </span>4/4</div><div class="t m0 x1 hf y113 ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffc fc7">foo<span class="fc0">(std<span class="fc8">::</span>vector<span class="fc8">&lt;</span></span></span>double<span class="ffc fc8">&gt;&amp;<span class="_ _8"> </span><span class="fc0">v,<span class="_ _1b"> </span></span></span><span class="fc9">const<span class="_"> </span></span>double<span class="ffc fc8">&amp;<span class="_ _1b"> </span><span class="fc0">coeff)<span class="_ _1b"> </span>{</span></span></div><div class="t m0 xf hf y114 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span>auto<span class="ffc fc8">&amp;<span class="_ _8"> </span><span class="fc0">item<span class="_ _1b"> </span></span>:<span class="_ _1b"> </span><span class="fc0">v)<span class="_ _8"> </span>item<span class="_ _1b"> </span></span>*=<span class="_ _1b"> </span><span class="fc0">std</span>::<span class="fc0">sinh(coeff);</span></span></div><div class="t m0 x1 hf y115 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y2df ff4 fs6 fc0 sc0 ls0 ws0">vs.</div><div class="t m0 x1 hf y2e0 ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffc fc7">foo<span class="fc0">(std<span class="fc8">::</span>vector<span class="fc8">&lt;</span></span></span>double<span class="ffc fc8">&gt;&amp;<span class="_ _8"> </span><span class="fc0">v,<span class="_ _1b"> </span></span></span>double<span class="_"> </span><span class="ffc fc0">coeff)<span class="_ _1b"> </span>{</span></div><div class="t m0 xf hf y2e1 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffc fc0">(</span>auto<span class="ffc fc8">&amp;<span class="_ _8"> </span><span class="fc0">item<span class="_ _1b"> </span></span>:<span class="_ _1b"> </span><span class="fc0">v)<span class="_ _8"> </span>item<span class="_ _1b"> </span></span>*=<span class="_ _1b"> </span><span class="fc0">std</span>::<span class="fc0">sinh(coeff);</span></span></div><div class="t m0 x1 hf y2e2 ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hd y2e3 ffb fs7 fcc sc0 ls0 ws0">Argument<span class="_ _9"> </span>Passing,<span class="_ _9"> </span>Core<span class="_ _21"> </span>Guidelines<span class="_ _9"> </span>and<span class="_ _21"> </span>Aliasing</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">81/93</div><a class="l" href="https://www.youtube.com/watch?v=uylFACqcWYI"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:-0.756000px;width:218.531000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf58" class="pf w0 h0" data-page-no="58"><div class="pc pc58 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 ya1 ff1 fs0 fc0 sc0 ls0 ws0">Object-Oriented</div><div class="t m0 x8 h2 ya2 ff1 fs0 fc0 sc0 ls0 ws0">Programming</div><a class="l" href="#pf58" data-dest-detail='[88,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:149.618000px;width:241.993000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf58" data-dest-detail='[88,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:115.247000px;width:154.986000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf59" class="pf w0 h0" data-page-no="59"><div class="pc pc59 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>a<span class="_ _3"></span>riable/Object<span class="_ _9"> </span>Scop<span class="_ _b"></span>e</div><div class="t m0 x1 hb y2e4 ff1 fs6 fc0 sc0 ls0 ws0">Decla<span class="_ _3"></span>re<span class="_ _8"> </span>lo<span class="_ _b"></span>cal<span class="_ _8"> </span>variable<span class="_ _f"> </span>in<span class="_ _f"> </span>the<span class="_ _8"> </span>innermost<span class="_ _8"> </span>scop<span class="_ _b"></span>e</div><div class="t m0 xb hb y2e5 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>can<span class="_ _c"> </span>more<span class="_ _c"> </span>lik<span class="_ _3"></span>ely<span class="_ _f"> </span>fit<span class="_ _c"> </span>them<span class="_ _c"> </span>into<span class="_ _f"> </span>registers<span class="_ _c"> </span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>stack</span></div><div class="t m0 xb hb y2e6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">it<span class="_ _c"> </span>improves<span class="_ _c"> </span>readabilit<span class="_ _3"></span>y</span></div><div class="t m0 x2b h10 y2e7 ff1 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>rong:</div><div class="t m0 x2b hd y2e8 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">i,<span class="_ _9"> </span>x;</span></div><div class="t m0 x2b hd y2e9 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></div><div class="t m0 x42 hd y2ea ffb fs7 fc0 sc0 ls0 ws0">x<span class="_ _45"> </span><span class="fc8">=<span class="_ _9"> </span></span>value<span class="_ _9"> </span><span class="fc8">*<span class="_ _21"> </span>5</span>;</div><div class="t m0 x42 hd y2eb ffb fs7 fc0 sc0 ls0 ws0">sum<span class="_ _9"> </span><span class="fc8">+=<span class="_ _9"> </span></span>x;</div><div class="t m0 x2b hd y2ec ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x43 h10 y2e7 ff1 fs7 fc0 sc0 ls0 ws0">Co<span class="_ _3"></span>rrect:</div><div class="t m0 x43 hd y2e8 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></span></div><div class="t m0 x44 hd y2e9 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffb fc0">x<span class="_ _20"> </span><span class="fc8">=<span class="_ _1b"> </span></span>value<span class="_ _21"> </span><span class="fc8">*<span class="_ _9"> </span>5</span>;</span></div><div class="t m0 x44 hd y2ea ffb fs7 fc0 sc0 ls0 ws0">sum<span class="_ _14"> </span><span class="fc8">+=<span class="_ _9"> </span></span>x;</div><div class="t m0 x43 hd y2eb ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y2ed ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4 fcd">C++17<span class="_ _c"> </span><span class="fc0">allows<span class="_ _c"> </span>lo<span class="_ _b"></span>cal<span class="_ _c"> </span>variable<span class="_ _c"> </span>initialization<span class="_ _c"> </span>in<span class="_ _10"> </span><span class="ff6">if<span class="_ _10"> </span></span>and<span class="_ _10"> </span><span class="ff6">switch<span class="_ _10"> </span></span>statements,<span class="_ _c"> </span>while</span></span></div><div class="t m0 x36 hb y2ee ff4 fs6 fcd sc0 ls0 ws0">C++20<span class="_ _c"> </span><span class="fc0">intro<span class="_ _b"></span>duces<span class="_ _f"> </span>them<span class="_ _c"> </span>for<span class="_ _c"> </span>in<span class="_ _c"> </span><span class="ff9">range-based<span class="_ _c"> </span>lo<span class="_ _b"></span>ops</span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">82/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5a" class="pf w0 h0" data-page-no="5a"><div class="pc pc5a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>a<span class="_ _3"></span>riable/Object<span class="_ _9"> </span>Scop<span class="_ _b"></span>e</div><div class="t m0 x1 hb y2ef ff1 fs6 fc0 sc0 ls0 ws0">Exception!<span class="_ _21"> </span><span class="ff4">Built-in<span class="_ _c"> </span>type<span class="_ _c"> </span>variables<span class="_ _c"> </span>and<span class="_ _c"> </span>passive<span class="_ _f"> </span>structures<span class="_ _c"> </span>should<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>placed<span class="_ _f"> </span>in<span class="_ _c"> </span>the</span></div><div class="t m0 x1 hb y2f0 ff4 fs6 fc0 sc0 ls0 ws0">innermost<span class="_ _c"> </span>lo<span class="_ _b"></span>op,<span class="_ _f"> </span>while<span class="_ _c"> </span>objects<span class="_ _f"> </span>with<span class="_ _c"> </span>constructors<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>placed<span class="_ _f"> </span>outside<span class="_ _c"> </span>lo<span class="_ _b"></span>ops</div><div class="t m0 x9 hd y2f1 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></span></div><div class="t m0 x45 hd y2f2 ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>string<span class="_ _9"> </span>str(<span class="fca">&quot;prefix_&quot;</span>);</div><div class="t m0 x45 hd y2f3 ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>cout<span class="_ _9"> </span><span class="fc8">&lt;&lt;<span class="_ _9"> </span></span>str<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span></span>value[i];</div><div class="t m0 x9 hd y2f4 ffb fs7 fc0 sc0 ls0 ws0">}<span class="_ _9"> </span><span class="ffa fc5">//<span class="_ _9"> </span>str<span class="_ _21"> </span>call<span class="_ _9"> </span>CTOR/DTOR<span class="_ _21"> </span>N<span class="_ _9"> </span>times</span></div><div class="t m0 x43 hd y2f1 ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>string<span class="_ _9"> </span>str(<span class="fca">&quot;prefix_&quot;</span>);</div><div class="t m0 x43 hd y2f2 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_"> </span><span class="ffb fc0">(</span><span class="fc6">int<span class="_"> </span><span class="ffb fc0">i<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _21"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _21"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _21"> </span>{</span></span></div><div class="t m0 x44 hd y2f3 ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>cout<span class="_ _9"> </span><span class="fc8">&lt;&lt;<span class="_ _9"> </span></span>str<span class="_ _21"> </span><span class="fc8">+<span class="_ _9"> </span></span>value[i];</div><div class="t m0 x43 hd y2f4 ffb fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">83/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5b" class="pf w0 h0" data-page-no="5b"><div class="pc pc5b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _1b"> </span>Optimizations</div><div class="t m0 xb hb y8d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">direct<span class="_ _8"> </span>initialization<span class="_ _c"> </span></span>and<span class="_ _c"> </span><span class="ff9">full<span class="_ _f"> </span>object<span class="_ _c"> </span>constructor<span class="_ _9"> </span></span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>tw<span class="_ _3"></span>o-step</span></div><div class="t m0 x36 hb y2f5 ff4 fs6 fc0 sc0 ls0 ws0">initialization<span class="_ _c"> </span>(also<span class="_ _c"> </span>for<span class="_ _c"> </span>variables)</div><div class="t m0 xb hb y2f6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">move<span class="_ _8"> </span>semantic<span class="_ _c"> </span></span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span><span class="ff9">copy<span class="_ _c"> </span>constructo<span class="_ _3"></span>r<span class="ff4">.<span class="_ _21"> </span>Mark<span class="_ _c"> </span></span>cop<span class="_ _3"></span>y<span class="_ _c"> </span>constructor<span class="_ _9"> </span><span class="ff4">as</span></span></span></div><div class="t m0 xc hb y2f7 ff6 fs6 fc0 sc0 ls0 ws0">=delete<span class="_ _10"> </span><span class="ff4">(sometimes<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>hard<span class="_ _c"> </span>to<span class="_ _c"> </span>see,<span class="_ _c"> </span>e.g.<span class="_ _21"> </span>implicit)</span></div><div class="t m0 xb hb y2f8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">static<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>all<span class="_ _c"> </span>memb<span class="_ _b"></span>ers<span class="_ _f"> </span>that<span class="_ _c"> </span>do<span class="_ _f"> </span>not<span class="_ _c"> </span>use<span class="_ _f"> </span>instance<span class="_ _c"> </span>memb<span class="_ _b"></span>er<span class="_ _f"> </span>(avoid<span class="_ _c"> </span>passing</span></div><div class="t m0 xc hb y2f9 ff6 fs6 fc0 sc0 ls0 ws0">this<span class="_ _10"> </span><span class="ff4">p<span class="_ _b"></span>ointer)</span></div><div class="t m0 xb hb y2fa ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">If<span class="_ _c"> </span>the<span class="_ _f"> </span>object<span class="_ _c"> </span>semantic<span class="_ _f"> </span>is<span class="_ _c"> </span><span class="ff9">trivially<span class="_ _f"> </span>cop<span class="_ _3"></span>yable<span class="ff4">,<span class="_ _c"> </span>ensure<span class="_ _c"> </span><span class="ff1">defaulted<span class="_ _10"> </span><span class="ff6">=<span class="_"> </span>default</span></span></span></span></span></div><div class="t m0 x36 hb y2fb ff9 fs6 fc0 sc0 ls0 ws0">default/cop<span class="_ _3"></span>y<span class="_ _f"> </span>constructo<span class="_ _3"></span>rs<span class="_ _9"> </span><span class="ff4">and<span class="_ _c"> </span></span>assignment<span class="_ _f"> </span>op<span class="_ _b"></span>erators<span class="_ _1b"> </span><span class="ff4">to<span class="_ _c"> </span>enable<span class="_ _f"> </span>vecto<span class="_ _3"></span>rization</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">84/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5c" class="pf w0 h0" data-page-no="5c"><div class="pc pc5c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _1b"> </span>Dynamic<span class="_ _1b"> </span>Behavior<span class="_ _8"> </span>Optimizations</div><div class="t m0 xb hb y49 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Virtual<span class="_ _8"> </span>calls<span class="_ _c"> </span><span class="ff4">are<span class="_ _c"> </span>slo<span class="_ _3"></span>wer<span class="_ _c"> </span>than<span class="_ _c"> </span>standard<span class="_ _c"> </span>functions</span></span></div><div class="t m0 x15 hb y21d ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_"> </span>Virtual<span class="_ _c"> </span>calls<span class="_ _c"> </span>prevent<span class="_ _c"> </span>any<span class="_ _c"> </span>kind<span class="_ _f"> </span>of<span class="_ _c"> </span>optimizations<span class="_ _f"> </span>as<span class="_ _c"> </span>function<span class="_ _f"> </span>lo<span class="_ _b"></span>okup<span class="_ _c"> </span>is<span class="_ _f"> </span>at</div><div class="t m0 x1b hb y21e ff4 fs6 fc0 sc0 ls0 ws0">runtime<span class="_ _c"> </span>(lo<span class="_ _b"></span>op<span class="_ _f"> </span>transfo<span class="_ _3"></span>rmation,<span class="_ _f"> </span>vectorization,<span class="_ _c"> </span>etc.)</div><div class="t m0 x15 hb y2fc ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_"> </span>Virtual<span class="_ _c"> </span>call<span class="_ _c"> </span>overhead<span class="_ _f"> </span>is<span class="_ _c"> </span>up<span class="_ _f"> </span>to<span class="_ _c"> </span>20%-50%<span class="_ _f"> </span>for<span class="_ _c"> </span>function<span class="_ _c"> </span>that<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>inlined</div><div class="t m0 xb hb y2fd ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Ma<span class="_ _3"></span>rk<span class="_ _10"> </span><span class="ff6">final<span class="_ _10"> </span></span>all<span class="_ _10"> </span><span class="ff6">virtual<span class="_ _10"> </span></span>functions<span class="_ _c"> </span>that<span class="_ _f"> </span>are<span class="_ _c"> </span>not<span class="_ _c"> </span>overridden</span></div><div class="t m0 xb hb y2fe ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>dynamic<span class="_ _c"> </span>op<span class="_ _b"></span>erations,<span class="_ _f"> </span>e.g.<span class="_ _4"> </span><span class="ff6">dynamic_cast</span></span></div><div class="t m0 x10 h10 y2ff ffe fs7 fcc sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ffb">The<span class="_ _9"> </span>Hidden<span class="_ _21"> </span>Performance<span class="_ _9"> </span>Price<span class="_ _9"> </span>of<span class="_ _21"> </span>Virtual<span class="_ _9"> </span>Functions</span></div><div class="t m0 x10 h10 y300 ffe fs7 fcc sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ffb">Investigating<span class="_ _9"> </span>the<span class="_ _21"> </span>Performance<span class="_ _9"> </span>Overhead<span class="_ _9"> </span>of<span class="_ _21"> </span>C++<span class="_ _9"> </span>Exceptions</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">85/93</div><a class="l" href="https://raw.githubusercontent.com/CppCon/CppCon2022/main/Presentations/CppCon-The-Hidden-Performance-Price-of-Virtual-Functions.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:19.893000px;width:232.653000px;height:7.373000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://pspdfkit.com/blog/2020/performance-overhead-of-exceptions-in-cpp/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:3.306000px;width:265.604000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5d" class="pf w0 h0" data-page-no="5d"><div class="pc pc5d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _1b"> </span>Op<span class="_ _b"></span>eration<span class="_ _1b"> </span>Optimizations</div><div class="t m0 xb hb y301 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Minimize<span class="_ _c"> </span>multiple<span class="_ _10"> </span><span class="ff5">+<span class="_ _10"> </span></span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>b<span class="_ _0"></span>et<span class="_ _3"></span>w<span class="_ _3"></span>een<span class="_ _c"> </span>objects<span class="_ _f"> </span>to<span class="_ _c"> </span>avoid<span class="_ _f"> </span>temp<span class="_ _b"></span>ora<span class="_ _3"></span>ry<span class="_ _c"> </span>storage</span></div><div class="t m0 xb hb y302 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">x<span class="_"> </span>+=<span class="_"> </span>obj<span class="_ _26"> </span></span>,<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff6">x<span class="_"> </span>=<span class="_"> </span>x<span class="_"> </span>+<span class="_"> </span>obj<span class="_ _10"> </span><span class="fff">→<span class="_ _f"> </span></span></span>avoid<span class="_ _c"> </span>object<span class="_ _c"> </span>copy<span class="_ _c"> </span>and<span class="_ _c"> </span>temp<span class="_ _b"></span>ora<span class="_ _3"></span>ry</span></div><div class="t m0 x36 hb y303 ff4 fs6 fc0 sc0 ls0 ws0">sto<span class="_ _3"></span>rage</div><div class="t m0 xb hb y304 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">++obj<span class="_ _26"> </span></span>/<span class="_ _d"> </span><span class="ff5">obj<span class="_ _10"> </span></span>(return<span class="_ _10"> </span><span class="ff6">&amp;obj<span class="_ _26"> </span></span>),<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff6">obj++<span class="_ _d"> </span></span>,<span class="_ _d"> </span><span class="ff6">obj<span class="_ _10"> </span></span>(cop<span class="_ _3"></span>y<span class="_ _c"> </span>and<span class="_ _f"> </span>return</span></div><div class="t m0 x36 hb y305 ff4 fs6 fc0 sc0 ls0 ws0">old<span class="_ _10"> </span><span class="ff6">obj<span class="_ _26"> </span></span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">86/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5e" class="pf w0 h0" data-page-no="5e"><div class="pc pc5e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _1b"> </span>Implicit<span class="_ _1b"> </span>Conversion</div><div class="t m0 x1 hf y113 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">A<span class="_"> </span><span class="ffc fc0">{<span class="_ _1c"> </span><span class="ffa fc5">//<span class="_ _8"> </span>big<span class="_ _1b"> </span>object</span></span></span></div><div class="t m0 xf hf y114 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">array[<span class="fc8">10000</span>];</span></div><div class="t m0 x1 hf y115 ffc fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 x1 hf y116 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_"> </span><span class="fc7">B<span class="_"> </span><span class="ffc fc0">{</span></span></div><div class="t m0 xf hf y117 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_"> </span><span class="ffc fc0">array[<span class="fc8">10000</span>];</span></div><div class="t m0 xf hf y119 ffc fs5 fc0 sc0 ls0 ws0">B()<span class="_ _8"> </span><span class="fc8">=<span class="_ _1b"> </span><span class="ff5 fc9">default</span></span>;</div><div class="t m0 xf hf y11a ffc fs5 fc0 sc0 ls0 ws0">B(<span class="ff5 fc9">const<span class="_"> </span></span>A<span class="fc8">&amp;<span class="_ _8"> </span></span>a)<span class="_ _1b"> </span>{<span class="_ _1b"> </span><span class="ffa fc5">//<span class="_ _8"> </span>user-defined<span class="_ _1b"> </span>constructor</span></div><div class="t m0 x15 hf y11b ffc fs5 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>copy(a.array,<span class="_ _8"> </span>a.array<span class="_ _1b"> </span><span class="fc8">+<span class="_ _1b"> </span>10000</span>,<span class="_ _8"> </span>array);</div><div class="t m0 xf hf y11c ffc fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hf y306 ffc fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 x1 hf y11d ffa fs5 fc5 sc0 ls0 ws0">//----------------------------------------------------------------------</div><div class="t m0 x1 hf y11e ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_"> </span><span class="ffc fc7">f<span class="fc0">(</span></span><span class="fc9">const<span class="_"> </span><span class="ffc fc0">B<span class="fc8">&amp;<span class="_ _1b"> </span></span>b)<span class="_ _8"> </span>{}</span></span></div><div class="t m0 x1 hf y120 ffc fs5 fc0 sc0 ls0 ws0">A<span class="_ _8"> </span>a;</div><div class="t m0 x1 hf y307 ffc fs5 fc0 sc0 ls0 ws0">B<span class="_ _8"> </span>b;</div><div class="t m0 x1 hf y121 ffc fs5 fc0 sc0 ls0 ws0">f(b);<span class="_ _8"> </span><span class="ffa fc5">//<span class="_ _1b"> </span>no<span class="_ _8"> </span>cost</span></div><div class="t m0 x1 hf y122 ffc fs5 fc0 sc0 ls0 ws0">f(a);<span class="_ _8"> </span><span class="ffa fc5">//<span class="_ _1b"> </span><span class="fc3">very<span class="_ _8"> </span>costly!!<span class="_ _1b"> </span></span>implicit<span class="_ _8"> </span>conversion</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">87/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf5f" class="pf w0 h0" data-page-no="5f"><div class="pc pc5f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y308 ff5 fs0 fc0 sc0 ls0 ws0">Std<span class="_ _1"> </span><span class="ff1">Lib<span class="_ _7"></span>ra<span class="_ _3"></span>ry<span class="_ _1"> </span>and</span></div><div class="t m0 x8 h2 y135 ff1 fs0 fc0 sc0 ls0 ws0">Other<span class="_ _1"> </span>Language</div><div class="t m0 x8 h2 y309 ff1 fs0 fc0 sc0 ls0 ws0">Asp<span class="_ _0"></span>ects</div><a class="l" href="#pf5f" data-dest-detail='[95,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:166.803000px;width:241.993000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf5f" data-dest-detail='[95,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:132.432000px;width:241.993000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf5f" data-dest-detail='[95,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:98.061000px;width:90.543000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf60" class="pf w0 h0" data-page-no="60"><div class="pc pc60 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>rom<span class="_ _1b"> </span>C<span class="_ _1b"> </span>to<span class="_ _9"> </span>C++</div><div class="t m0 xb hb y30a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>old<span class="_ _c"> </span><span class="ff6">C<span class="_ _f"> </span></span>libra<span class="_ _3"></span>ry<span class="_ _c"> </span>routines<span class="_ _c"> </span>such<span class="_ _f"> </span>as<span class="_ _10"> </span><span class="ff6">qsort<span class="_ _26"> </span></span>,<span class="_ _10"> </span><span class="ff6">bsearch<span class="_ _d"> </span></span>,<span class="_ _c"> </span>etc.<span class="_ _21"> </span>Prefer<span class="_ _10"> </span><span class="ff5">std::sort<span class="_ _d"> </span></span>,</span></div><div class="t m0 xc hb y30b ff5 fs6 fc0 sc0 ls0 ws0">std::binary_search<span class="_ _10"> </span><span class="ff4">instead</span></div><div class="t m0 x15 hb y30c ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_ _15"> </span><span class="ff6">std::sort<span class="_ _10"> </span></span>is<span class="_ _c"> </span>based<span class="_ _c"> </span>on<span class="_ _f"> </span>a<span class="_ _c"> </span>hybrid<span class="_ _c"> </span>so<span class="_ _3"></span>rting<span class="_ _f"> </span>algorithm.<span class="_ _9"> </span>Quick-so<span class="_ _3"></span>rt<span class="_ _f"> </span>/<span class="_ _c"> </span>head-sort</div><div class="t m0 x1b hb y30d ff4 fs6 fc0 sc0 ls0 ws0">(introso<span class="_ _3"></span>rt),<span class="_ _c"> </span>merge-sort<span class="_ _d"> </span>/<span class="_ _c"> </span>insertion,<span class="_ _c"> </span>etc.<span class="_ _9"> </span>dep<span class="_ _b"></span>ending<span class="_ _c"> </span>on<span class="_ _c"> </span>the<span class="_ _d"> </span><span class="ff6">std<span class="_ _c"> </span></span>implementation</div><div class="t m0 x15 hb y30e ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_"> </span>Prefer<span class="_ _10"> </span><span class="ff6">std::find()<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>small<span class="_ _f"> </span>arra<span class="_ _3"></span>y<span class="_ _7"></span>,<span class="_ _10"> </span><span class="ff6 fs4">std::lower_bound<span class="_ _26"> </span><span class="ff4">,</span></span></div><div class="t m0 x19 hb y30f ff6 fs4 fc0 sc0 ls0 ws0">std::upper_bound<span class="_ _26"> </span><span class="ff4">,<span class="_ _10"> </span></span>std::binary_search<span class="_ _12"> </span><span class="ff4 fs6">for<span class="_ _c"> </span>large<span class="_ _c"> </span>so<span class="_ _3"></span>rted<span class="_ _c"> </span>arra<span class="_ _3"></span>y</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">88/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf61" class="pf w0 h0" data-page-no="61"><div class="pc pc61 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _1b"> </span>Optimizations</div><div class="t m0 xb hb y1f7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _15"> </span><span class="ff5">std::fill<span class="_ _10"> </span><span class="ff4">applies<span class="_ _10"> </span><span class="ff6">memset<span class="_ _10"> </span></span>and<span class="_ _10"> </span></span>std::copy<span class="_ _12"> </span><span class="ff4">applies<span class="_ _10"> </span><span class="ff6">memcpy<span class="_ _10"> </span></span>if<span class="_ _f"> </span>the</span></span></div><div class="t m0 x36 hb y310 ff4 fs6 fc0 sc0 ls0 ws0">input/output<span class="_ _c"> </span>are<span class="_ _c"> </span>continuous<span class="_ _c"> </span>in<span class="_ _c"> </span>memory</div><div class="t m0 xb hb y311 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>the<span class="_ _f"> </span>same<span class="_ _c"> </span>type<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>initialization<span class="_ _c"> </span>in<span class="_ _f"> </span>functions<span class="_ _c"> </span>like<span class="_ _12"> </span><span class="ff6">std::accumulate()<span class="_ _d"> </span></span>,</span></div><div class="t m0 xc h11 y312 ff6 fs6 fc0 sc0 ls0 ws0">std::fill</div><div class="t m0 x36 hd y313 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffb fc0">array<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span></span>new<span class="_"> </span><span class="fc6">int<span class="ffb fc0">[size];</span></span></div><div class="t m0 x36 hd y314 ffb fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x36 hd y315 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_"> </span><span class="ffb fc0">sum<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>std<span class="fc8">::</span>accumulate(array,<span class="_ _21"> </span>array<span class="_ _9"> </span><span class="fc8">+<span class="_ _21"> </span></span>size,<span class="_ _9"> </span><span class="fc8">0u</span>);</span></div><div class="t m0 x36 hd y316 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>0u<span class="_ _9"> </span>!=<span class="_ _21"> </span>0<span class="_ _9"> </span><span class="ff17">→<span class="_ _21"> </span></span>conversion<span class="_ _9"> </span>at<span class="_ _21"> </span>each<span class="_ _9"> </span>step</div><div class="t m0 x36 hd y317 ffb fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>fill(array,<span class="_ _9"> </span>array<span class="_ _9"> </span><span class="fc8">+<span class="_ _21"> </span></span>size,<span class="_ _9"> </span><span class="fc8">0u</span>);</div><div class="t m0 x36 hd y318 ffa fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>it<span class="_ _9"> </span>is<span class="_ _21"> </span>not<span class="_ _9"> </span>translated<span class="_ _21"> </span>into<span class="_ _9"> </span><span class="ff15">memset</span></div><div class="t m0 xb hd y319 ffb fs7 fcc sc0 ls0 ws0">The<span class="_ _9"> </span>Hunt<span class="_ _9"> </span>for<span class="_ _21"> </span>the<span class="_ _9"> </span>Fastest<span class="_ _21"> </span>Zero</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">89/93</div><a class="l" href="https://travisdowns.github.io/blog/2020/01/20/zero.html"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:0.655000px;width:138.506000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf62" class="pf w0 h0" data-page-no="62"><div class="pc pc62 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Containers</div><div class="t m0 xb hb y136 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">std<span class="_ _10"> </span></span>container<span class="_ _c"> </span>memb<span class="_ _b"></span>er<span class="_ _c"> </span>functions<span class="_ _f"> </span>(e.g.<span class="_ _4"> </span><span class="ff6">obj.find()<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>external</span></div><div class="t m0 x36 hb y31a ff4 fs6 fc0 sc0 ls0 ws0">ones<span class="_ _c"> </span>(e.g.<span class="_ _4"> </span><span class="ff6">std::find()<span class="_ _d"> </span></span>).<span class="_ _21"> </span><span class="fs4">Example:<span class="_ _2f"> </span><span class="ff6">std::set<span class="_ _12"> </span><span class="ff9">O<span class="_ _0"></span><span class="ff1c">(</span>log<span class="_ _0"></span><span class="ff1c">(</span>n<span class="ff1c">))<span class="_ _c"> </span></span></span></span>vs.<span class="_ _1b"> </span><span class="ff9">O<span class="_ _0"></span><span class="ff1c">(</span>n<span class="ff1c">)</span></span></span></div><div class="t m0 xb hb y31b ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Be<span class="_ _c"> </span>aw<span class="_ _3"></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>of<span class="_ _c"> </span>container<span class="_ _f"> </span>p<span class="_ _3"></span>rop<span class="_ _0"></span>erties,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span><span class="ff6 fs4">vector.push_back(v)<span class="_ _26"> </span></span>,<span class="_ _c"> </span>instead<span class="_ _f"> </span>of</span></div><div class="t m0 xc hb y31c ff6 fs4 fc0 sc0 ls0 ws0">vector.insert(vector.begin(),<span class="_"> </span>value)<span class="_ _10"> </span><span class="fff fs6">→<span class="_ _c"> </span><span class="ff4">entire<span class="_ _c"> </span>copy<span class="_ _c"> </span>of<span class="_ _c"> </span>all<span class="_ _f"> </span>vecto<span class="_ _3"></span>r<span class="_ _f"> </span>elements</span></span></div><div class="t m0 xb hb y31d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Set<span class="_ _10"> </span><span class="ff5">std::vector<span class="_ _10"> </span></span>size<span class="_ _c"> </span>during<span class="_ _c"> </span>the<span class="_ _f"> </span>object<span class="_ _c"> </span>construction<span class="_ _f"> </span>(or<span class="_ _c"> </span>use<span class="_ _c"> </span>the<span class="_ _10"> </span><span class="ff6">reserve()</span></span></div><div class="t m0 x36 hb y31e ff4 fs6 fc0 sc0 ls0 ws0">metho<span class="_ _b"></span>d)<span class="_ _c"> </span>if<span class="_ _c"> </span>the<span class="_ _c"> </span>numb<span class="_ _0"></span>er<span class="_ _d"> </span>of<span class="_ _f"> </span>elements<span class="_ _c"> </span>to<span class="_ _c"> </span>insert<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _d"> </span>in<span class="_ _f"> </span>advance<span class="_ _c"> </span><span class="fff">→<span class="_ _c"> </span></span>every<span class="_ _c"> </span>implicit</div><div class="t m0 x36 hb y31f ff4 fs6 fc0 sc0 ls0 ws0">resize<span class="_ _c"> </span>is<span class="_ _c"> </span>equivalent<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>copy<span class="_ _c"> </span>of<span class="_ _c"> </span>all<span class="_ _c"> </span>vector<span class="_ _c"> </span>elements</div><div class="t m0 xb hb y320 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Consider<span class="_ _c"> </span><span class="ff9">unordered<span class="_ _1b"> </span></span>containers<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>standard<span class="_ _c"> </span>one,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span><span class="ff6">unordered_map</span></span></div><div class="t m0 x36 hb y321 ff4 fs6 fc0 sc0 ls0 ws0">vs.<span class="_ _4"> </span><span class="ff6">map</span></div><div class="t m0 xb hb y322 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">std::array<span class="_ _10"> </span></span>instead<span class="_ _c"> </span>of<span class="_ _c"> </span>dynamic<span class="_ _f"> </span>heap<span class="_ _c"> </span>allo<span class="_ _b"></span>cation</span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">90/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf63" class="pf w0 h0" data-page-no="63"><div class="pc pc63 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Critics<span class="_ _1b"> </span>to<span class="_ _1b"> </span>Standard<span class="_ _8"> </span>T<span class="_ _7"></span>emplate<span class="_ _1b"> </span>Lib<span class="_ _3"></span>rary<span class="_ _8"> </span>(STL)</div><div class="t m0 xb hb y1f7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Platfo<span class="_ _3"></span>rm/Compiler-dep<span class="_ _b"></span>endent<span class="_ _f"> </span>implementation</span></div><div class="t m0 xb hb y21d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Execution<span class="_ _c"> </span>order<span class="_ _c"> </span>and<span class="_ _c"> </span>results<span class="_ _c"> </span>across<span class="_ _f"> </span>platforms</span></div><div class="t m0 xb hb y323 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Debugging<span class="_ _c"> </span>is<span class="_ _f"> </span>ha<span class="_ _3"></span>rd</span></div><div class="t m0 xb hb y324 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Complex<span class="_ _c"> </span>interaction<span class="_ _f"> </span>with<span class="_ _c"> </span>custom<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>allo<span class="_ _b"></span>cators</span></div><div class="t m0 xb hb y325 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Erro<span class="_ _3"></span>r<span class="_ _f"> </span>handling<span class="_ _c"> </span>based<span class="_ _f"> </span>on<span class="_ _c"> </span>exceptions<span class="_ _f"> </span>is<span class="_ _c"> </span>non-transparent</span></div><div class="t m0 xb hb y326 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Bina<span class="_ _3"></span>ry<span class="_ _f"> </span>bloat</span></div><div class="t m0 xb hb y327 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compile<span class="_ _c"> </span>time<span class="_ _f"> </span>(see<span class="_ _c"> </span><span class="ff6">C++<span class="_"> </span>Compile<span class="_"> </span>Health<span class="_"> </span>Watchdog</span>,<span class="_ _f"> </span>and<span class="_ _c"> </span><span class="ff6">STL<span class="_"> </span>Explorer</span>)</span></div><div class="t m0 xb hd y328 ffb fs7 fcc sc0 ls0 ws0">STL<span class="_ _9"> </span>isnt<span class="_ _9"> </span>for<span class="_ _21"> </span>*anyone*</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">91/93</div><a class="l" href="https://artificial-mind.net/projects/compile-health/"><div class="d m1" style="border-style:none;position:absolute;left:135.048000px;bottom:39.725000px;width:156.628000px;height:12.754000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://s9w.github.io/stl_explorer/explorer.html"><div class="d m1" style="border-style:none;position:absolute;left:316.502000px;bottom:39.725000px;width:70.720000px;height:12.754000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://twitter.com/m_ninepoints/status/1497768472184430600"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:1.872000px;width:105.554000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf64" class="pf w0 h0" data-page-no="64"><div class="pc pc64 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Exceptions</div><div class="t m0 x1 hb y6d ff4 fs6 fc0 sc0 ls0 ws0">Exceptions<span class="_ _c"> </span>affect<span class="_ _c"> </span>b<span class="_ _0"></span>oth<span class="_ _c"> </span>performance<span class="_ _c"> </span>and<span class="_ _c"> </span>memory<span class="_ _c"> </span>resources:</div><div class="t m0 xb hb yb8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Exceptions<span class="_ _c"> </span>make<span class="_ _c"> </span>functions<span class="_ _c"> </span>harder<span class="_ _c"> </span>to<span class="_ _c"> </span>inline,<span class="_ _c"> </span>due<span class="_ _f"> </span>to<span class="_ _c"> </span>their<span class="_ _f"> </span>side<span class="_ _c"> </span>effect.</span></div><div class="t m0 xb hb y329 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Side<span class="_ _c"> </span>effects<span class="_ _f"> </span>also<span class="_ _c"> </span>prevent<span class="_ _c"> </span>o<span class="_ _3"></span>r<span class="_ _f"> </span>limit<span class="_ _c"> </span>common<span class="_ _c"> </span>optimizations,<span class="_ _f"> </span>such<span class="_ _c"> </span>as<span class="_ _f"> </span>instruction</span></div><div class="t m0 x36 hb y32a ff4 fs6 fc0 sc0 ls0 ws0">reo<span class="_ _3"></span>rdering<span class="_ _f"> </span>and<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>unrolling.</div><div class="t m0 xb hb y32b ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Exceptions<span class="_ _c"> </span>produce<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>bloat<span class="_ _f"> </span>affecting<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>lo<span class="_ _b"></span>cality<span class="_ _c"> </span>and<span class="_ _c"> </span>decreasing<span class="_ _c"> </span>cache<span class="_ _f"> </span>hits.</span></div><div class="t m0 x1 hb y32c ff4 fs6 fc0 sc0 ls0 ws0">Mitigation:</div><div class="t m0 xb hb y32d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">noexcept<span class="_ _10"> </span></span>deco<span class="_ _3"></span>rator,<span class="_ _c"> </span>esp<span class="_ _b"></span>ecially<span class="_ _c"> </span>for<span class="_ _c"> </span>move<span class="_ _c"> </span>constructo<span class="_ _3"></span>r<span class="_ _f"> </span>and<span class="_ _c"> </span>assignment<span class="_ _f"> </span><span class="fff">→</span></span></div><div class="t m0 x36 hb y32e ff4 fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram<span class="_ _f"> </span>is<span class="_ _c"> </span>ab<span class="_ _b"></span>orted<span class="_ _c"> </span>if<span class="_ _c"> </span>an<span class="_ _f"> </span>erro<span class="_ _3"></span>r<span class="_ _f"> </span>o<span class="_ _b"></span>ccurs.</div><div class="t m0 xb hb y32f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>b<span class="_ _b"></span>enchmarks<span class="_ _c"> </span>rep<span class="_ _b"></span>o<span class="_ _3"></span>rt<span class="_ _f"> </span>5-7%<span class="_ _c"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>imp<span class="_ _3"></span>rovement<span class="_ _10"> </span><span class="ff6">noexcept<span class="_ _1"> </span>Can</span></span></div><div class="t m0 x36 h11 y330 ff6 fs6 fc0 sc0 ls0 ws0">(Sometimes)<span class="_"> </span>Help<span class="_"> </span>(or<span class="_"> </span>Hurt)<span class="_"> </span>Performance<span class="_ _d"> </span><span class="ff10 fs8"></span></div><div class="t m0 xb hb y331 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff6">Bitcoin:<span class="_ _63"> </span>9%<span class="_"> </span>less<span class="_"> </span>memory:<span class="_ _63"> </span>make<span class="_ _15"> </span>SaltedOutpointHasher<span class="_ _24"> </span>noexcept<span class="_ _2d"> </span><span class="ff10 fs8"></span></span></div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">92/93</div><a class="l" href="https://16bpp.net/blog/post/noexcept-can-sometimes-help-or-hurt-performance/"><div class="d m1" style="border-style:none;position:absolute;left:315.471000px;bottom:40.322000px;width:110.722000px;height:16.531000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://16bpp.net/blog/post/noexcept-can-sometimes-help-or-hurt-performance/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:27.729000px;width:228.637000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/bitcoin/bitcoin/pull/16957"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:3.181000px;width:372.319000px;height:16.930000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
<div id="pf65" class="pf w0 h0" data-page-no="65"><div class="pc pc65 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Other<span class="_ _1b"> </span>Language<span class="_ _1b"> </span>Asp<span class="_ _b"></span>ects</div><div class="t m0 xb hb y332 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">lambda<span class="_ _10"> </span></span>exp<span class="_ _3"></span>ression<span class="_ _f"> </span>(o<span class="_ _3"></span>r<span class="_ _10"> </span><span class="ff6">function<span class="_"> </span>object<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _f"> </span>of<span class="_ _10"> </span><span class="ff6">std::function</span></span></div><div class="t m0 x36 hb y333 ff4 fs6 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _f"> </span>function<span class="_ _c"> </span>p<span class="_ _b"></span>ointers</div><div class="t m0 xb hb y334 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>dynamic<span class="_ _c"> </span>op<span class="_ _b"></span>erations:<span class="_ _21"> </span><span class="ff1">exceptions<span class="_ _f"> </span></span>(and<span class="_ _c"> </span>use<span class="_ _10"> </span><span class="ff6">noexcept<span class="_ _d"> </span></span>),<span class="_ _c"> </span><span class="ff1">smart<span class="_ _f"> </span>p<span class="_ _b"></span>ointer</span></span></div><div class="t m0 x36 hb y335 ff4 fs6 fc0 sc0 ls0 ws0">(e.g.<span class="_ _4"> </span><span class="ff6">std::unique_ptr<span class="_ _26"> </span></span>)</div><div class="t m0 x13 ha y13 ff7 fs5 fc0 sc0 ls0 ws0">93/93</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
</div>
<div class="loading-indicator">
<img alt="" src=""/>
</div>
</body>
</html>