1855 lines
1.8 MiB
1855 lines
1.8 MiB
<!DOCTYPE html>
|
||
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<meta charset="utf-8"/>
|
||
<meta name="generator" content="pdf2htmlEX"/>
|
||
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
|
||
<style type="text/css">
|
||
/*!
|
||
* Base CSS for pdf2htmlEX
|
||
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
|
||
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
||
*/#sidebar{position:absolute;top:0;left:0;bottom:0;width:250px;padding:0;margin:0;overflow:auto}#page-container{position:absolute;top:0;left:0;margin:0;padding:0;border:0}@media screen{#sidebar.opened+#page-container{left:250px}#page-container{bottom:0;right:0;overflow:auto}.loading-indicator{display:none}.loading-indicator.active{display:block;position:absolute;width:64px;height:64px;top:50%;left:50%;margin-top:-32px;margin-left:-32px}.loading-indicator img{position:absolute;top:0;left:0;bottom:0;right:0}}@media print{@page{margin:0}html{margin:0}body{margin:0;-webkit-print-color-adjust:exact}#sidebar{display:none}#page-container{width:auto;height:auto;overflow:visible;background-color:transparent}.d{display:none}}.pf{position:relative;background-color:white;overflow:hidden;margin:0;border:0}.pc{position:absolute;border:0;padding:0;margin:0;top:0;left:0;width:100%;height:100%;overflow:hidden;display:block;transform-origin:0 0;-ms-transform-origin:0 0;-webkit-transform-origin:0 0}.pc.opened{display:block}.bf{position:absolute;border:0;margin:0;top:0;bottom:0;width:100%;height:100%;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}.bi{position:absolute;border:0;margin:0;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}@media print{.pf{margin:0;box-shadow:none;page-break-after:always;page-break-inside:avoid}@-moz-document url-prefix(){.pf{overflow:visible;border:1px solid #fff}.pc{overflow:visible}}}.c{position:absolute;border:0;padding:0;margin:0;overflow:hidden;display:block}.t{position:absolute;white-space:pre;font-size:1px;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%;unicode-bidi:bidi-override;-moz-font-feature-settings:"liga" 0}.t:after{content:''}.t:before{content:'';display:inline-block}.t span{position:relative;unicode-bidi:bidi-override}._{display:inline-block;color:transparent;z-index:-1}::selection{background:rgba(127,255,255,0.4)}::-moz-selection{background:rgba(127,255,255,0.4)}.pi{display:none}.d{position:absolute;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%}.it{border:0;background-color:rgba(255,255,255,0.0)}.ir:hover{cursor:pointer}</style>
|
||
<style type="text/css">
|
||
/*!
|
||
* Fancy styles for pdf2htmlEX
|
||
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
|
||
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
||
*/@keyframes fadein{from{opacity:0}to{opacity:1}}@-webkit-keyframes fadein{from{opacity:0}to{opacity:1}}@keyframes swing{0{transform:rotate(0)}10%{transform:rotate(0)}90%{transform:rotate(720deg)}100%{transform:rotate(720deg)}}@-webkit-keyframes swing{0{-webkit-transform:rotate(0)}10%{-webkit-transform:rotate(0)}90%{-webkit-transform:rotate(720deg)}100%{-webkit-transform:rotate(720deg)}}@media screen{#sidebar{background-color:#2f3236;background-image:url("")}#outline{font-family:Georgia,Times,"Times New Roman",serif;font-size:13px;margin:2em 1em}#outline ul{padding:0}#outline li{list-style-type:none;margin:1em 0}#outline li>ul{margin-left:1em}#outline a,#outline a:visited,#outline a:hover,#outline a:active{line-height:1.2;color:#e8e8e8;text-overflow:ellipsis;white-space:nowrap;text-decoration:none;display:block;overflow:hidden;outline:0}#outline a:hover{color:#0cf}#page-container{background-color:#9e9e9e;background-image:url("");-webkit-transition:left 500ms;transition:left 500ms}.pf{margin:13px auto;box-shadow:1px 1px 3px 1px #333;border-collapse:separate}.pc.opened{-webkit-animation:fadein 100ms;animation:fadein 100ms}.loading-indicator.active{-webkit-animation:swing 1.5s ease-in-out .01s infinite alternate none;animation:swing 1.5s ease-in-out .01s infinite alternate none}.checked{background:no-repeat url()}}</style>
|
||
<style type="text/css">
|
||
.ff0{font-family:sans-serif;visibility:hidden;}
|
||
@font-face{font-family:ff1;src:url('data:application/font-woff;base64,d09GRgABAAAAABt0AA0AAAAAKdQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAbWAAAABoAAAAcn3rSEEdERUYAABs8AAAAHAAAAB4AJwBQT1MvMgAAAaQAAABFAAAAVlcUHGZjbWFwAAACvAAAANsAAAGi1cdbMGdhc3AAABs0AAAACAAAAAj//wADZ2x5ZgAABDAAABTHAAAg0AsjcXZoZWFkAAABMAAAADQAAAA2JylLc2hoZWEAAAFkAAAAIAAAACQGoAMzaG10eAAAAewAAADQAAABKKIdDyZsb2NhAAADmAAAAJYAAACWFj0N5G1heHAAAAGEAAAAHgAAACAAkABtbmFtZQAAGPgAAAGZAAAC3PqDKoJwb3N0AAAalAAAAJ4AAADO5MbyDnicY2BkYGBgYmQrzRPYEc9v85WBm/kFUIThkS7zKRj9f+d/NuZvTO+AXA4GJpAoAE/gDLN4nGNgZGBgevefjYGBhf//zv+Xmb8xAEVQgBcAoGEG2HicY2BkYGDwYshiYGEAASYgZmQAiTmA+QwAFL0A/gAAeJxjYGTcw7SHgZWBgakLSDMw9EBoxgcMhoxMQFEGDmYGMGgACjowIEBAmmsKkFL4zcz07j8bUOU7hl9APiNIDgAoEQziAAAAeJw9j70OAUEUhc+dlWiIgmKtmK1WUEhWoTLlNn4SFRI6D6ARlcozeACVyguovIPa9vRKyTozxCRfzv07k3vFh3syJlbX2MoZU2K8OYx0MWOtYFU1YMiIdH6EJLKx6+fZT9EmC3WlP6DuyYqk31yGWKo38wQL70YCh+H8Xzkfc77p5lLUciX41Egd2S+ipWLu9WQeI5IMoUyguUOVeZ839ERnF1VGwth4K/Rt3e1Kn/Ns6D/Rd0DFeV4I1AM+1VKXO3v2nj3/HUB7O+gPJnIvxnicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMigyaDPYMZgxWDP4MkQwRDFUKUg+ZvxN/P//0BVCgwaDNoMhmBZRwZvoGwiUJYBJPv/8f+7/+/8v/3/xv8r/y//v/T/4v/TD3RZ3VndoDbiBIxsDHAljExAggldAdDpLBAmKxsDOwcnFzcDDy8fv4AgUEQIJCzMICIqJi4hKSUtwyArJ6+gqKSsoqqmrqGpBXQuGOjo6ukbGBoZm5iamVtYWlnb2NrZOzg6Obu44nccJcANxvAgqBQAZ4stCAAAAAAAAAAAAAAAADwAbgCeAMAA7AD+ARgBOAFgAaIB/AI0AoQC0gMAA04DigPKBAoEOgRyBKAE4gUWBTAFZAWIBdgGDAZEBnQGyAcGB14Hige8B/IIWAiUCMoJFgleCZoJ5AogCloKxAr8CyoLZguiC7wMCgxCDHAMqgziDRINYg2WDcoN9g5IDoQOyA70DxoPgA/eEGgAAHiclVkJmBxlme7/r66jq7uO7rr6qL7Pmen09PQ5mWF6kgyTTCAJOScJBFHCYhLCuYhEFAMisOIBeKyIj3IEXXZXLpVd1geVQx+irux6rA8RBddlFzXEsASQYzr7/X9V90wG1PV5kpqq7pnv/e7v/f7yYM9lHo/nNfygJ+wpeTyazhm8jIZQpoKKFdSEf43WOKqZQZ2DDwsTyHk0XuN4xOsjfoFHiEW8L7Q25NPtrK3DJa7h20u3pJ7VBeRlmX8Ixx+uKxw3tz9mGLFszDCjgIg8s8c5dAE+4kl6PKwjvFgINlrtDgKABDJ0XmYM3bRMdEFACSmS8u3dOyS/HBJ9AhcrDEdXjwde8HlZ+R5U//zr6wJexHGMkOpc9KVdD/5sRvJQjAnA2OJg5HWuZ1iz0e4wzQbgucYBxpa3CAdQNaB8+/WecC+f7lx0166v/2y1xFJcKv8GJop3ezRA07PpoJ5pBtOZRj0dbNSMYJqJNrsvbu4ebTaRuhkpKNe/V5vN7lFHx63HP+M55PmQJ+bxtHUF9XQkjmgvcPghX0MQlIDo40WO8TMRH6+v1YSYJm8KsKBdQhFSAnyk87zuyA14HkEjyOfhiW4gszGO0Ej1O9Xqd5BvZsbFhivBVgj2iQE+JGhUGAUR3IeeT58Hn8LfIJ1HXDYDbmyjVr1moue57r3+ZCjMoQ3kB35cUN68IhMJCgrz4UzEwVwDl6fwDzzwmAOfEb2CIKRR7+A2CIHIB+voqWr319XquuHhannJjKnKpm4wK2dmZrBXmkFhVZZDqjz3j1ReBS5HQF6ZxhgEEhsmUQsCnM3wIHkYtYhg09BlBCmgoHq7ZpkGOqLb3bttXfzW2aOt2RTr4321ULs1u+eqfC7vG2WuuePkBm9USdIKmviD3ac31l+oBZZNDZWvO2twbSkvVPEHkNeXpToc/y16FXRY7uhA4kcgLbNe62BQxPVsG4IKRi7QDFzXYcBoyHQ+gdCrl75//Lx6gOO94ik70wMhrjhZBr/jpGbY/mS8vLkucLxg80p2yapCpDxZTu2dWvX93ZcPDfqm/eJKY7CUmJri9ZDJIAZ5ZanQGSyt9gdKPo4xU7bB6tmpynnjwe0eDyY1gTmo+5QnT7UegpJzUyDraKvRUjQhHjWzGMxyDOasyKBu23HtV3FN+KWgh1bb+mDM+Dck3/aEre0mtb3bjEYMBd2iCEase7Guo9lq9xDxUR58dATwxno+ghLsO4lpVBjwiQzQFdyENlBP0x4gY1CLptaRD76vNFPJKnmR47kl70gMGn6E+EBUW5YTg6Ykq7wZRaZpMVgwgo9nC+fv/MW+91nJbJjxTkiBbVq4muykqmFtPMhjQVdRzQ6pwaAkBfnPS+8n/ujFMONpO92C6Mg2VaJIHOnZTLFANeRBHdyoeLMZztATmCiPXjVzY3ura6pZ1YdQKt/wBVgxUTg75ee8Axse+yjyikFbry3hQgXbSIT83sNTs6XlyfLM0s0DaXS5LobyMV7dYtdO2d49sixZtaLi6dP5djvui5jDRDdap+h7UHNJ2qNPqNTFrXlB5c7fobP7H3X3Lqhn7JmA4BzEj3iKxG5Eui5YSySS9tim6etka2EY04Axi/DQwbYWLRmCPmJ50TmSyMeGNzbBfRwTYhMrtz/5qQVzYXBNSYlUJ/MxnReY1A3nSnLcGkwtg6Y2ovrUwtyFC2cE9gzC5QHIGduTIzEhsMMozRP8JslPTEeFpZlFplDMcgrCDxRbacuf6f6uKI/kiuyP+UhI3iaHIvyP2WfP4jkk2DOxWDj5zgtLMV7CO3SdYXR97oD0fRTR47mNPyE9ivGcAbhfBNyYp+BZQpBlhjQWkpgEkYVK4c1iA3KThF9zbvAXB0bXteLdI7ZuxF5RIkuHWrnIqSvv+/Kt77lUjjRycfueK2+69dH6mqLFGjE8a+uQv7H8eH5srRq//10/RpIx3H3uqt/THvsyvhY/SuzP6zxNRRoNUgnQuuhzBZGwqKR82rTBGfhabnyotOqfztix48yvj57eFDTsZ5n8+toFrXa7ff6KXLHG4cCY4M0E/Kefcf8DZ5yu6l7xPJHJJJYt7765fDIgFbGf+J3Y/zTYr3gSJCe4nvFQlZbJQ60OoSCxHD/9+a90/0DsRcK9W6ZvZCNLtnX2XzWxtRJh0ewX/tkxc/fW24bG1o/k5l5JD68ZI72AyN+Ev+p2ngXSTZJ72WLWSJN+Dd8Yk5QM4E3QrHdRoL+Ja9HU70YQHzOsSPe1m281NJV2abzJ1s2okFaYh/SYrf0rxoxpOTOH4DUAz7UG5NN5MN/zevAGbkST/zn0PJH9vG7XKeI+SNwrQOx3iNg35qF6HONlfDPEquLEaj5SVj9UBdo63Fg1sxkoHUgjA9/M77nMiVanWl3Ka1hkvUOloVEnXpWRTYHAk4GawNScaAVE2yvu8XuH1JATL//V0rQkufZ9E+KVdTs5MSgdnDeN1GkcpV26Y+BvgmlxrfuYayHcown6UZWUHhK7r1ArZ4mVR4645Qg4O+D6e5oXPb7Qk278fl5Wdf6PXd0ehr/J9HQrMryx6I+DiPyEGcjih1XtpIz67IW6nSHiMqDaCiM/kQl0X4vrPgOVd//dvPjuYVTVDdH/qotjAo55Qk454tu1BDawCTl0l6vja6oh4AWKzj3jFVTJ78hhLgM5rQW+zHI8IzMwmmifOdGx0H2seqs/LJnLdDsGSgfG9/OKqaZUU+EvnfYj+JRAb6oF9y/nkG/pNf5UeLPrcMyWP979rhriMeZDKorfXZl7o6faQPfxA+HSR9DJtkKiMB/rdN+faLFGqB5cEOkza0b3hR4+PCANURUBuoSNuZd6SKW532GpF2uYC8d/Cz3gB8AfofciNZ0Kwn8YfGxGhv6XYGsdL366e1/3frQenfZJxEt2sbNuomhLsBEsfJjtfgrtRZd1rxxNrxhqpywr3R5anonZuZWV8VwkkhsfXunp9ZyrwC6NzDi0qDaJMTzhUU7buerqfZ918+31y6+5ob39ivcV24mgF/1yz66ne/bsuWDZiu4bipVPufZ8htqjecbpnIPidAcKl6W2AQdhs2Ac2FZvN2D/gToG3CTqYPz0tcuV3PpwUM2nSo7FNwKXtEudUnGyaMvEZNmGW13wo1puIiy2o1Evmv3Nhs0Gb/rDLZa64AY7M10Zy0Yi2bHKdGY0M1Vemg5jJKtoOmD5V8XfOe764WO0Xobo5HGXMWZRkMkQ4tvEJdDLWvhjgYA0LgUU/gBUTpU45qgaHVvSzke+oI1uuPrqzc2ELGMsBlCy+1rPQ0iQEqXlpRsK942O/moccmsEYp4HH3VcjjaMKlyTkGnSzWrNRpFshZg4pgPExyIMTUGcQ41gV0uiBML5/ZeesprjZEPTZR9WvCIX2HYkqeSrtaHx8OjIxpmBczZoPPnCG+yc+d5R+53rdj9x8fkWxpzgE32wWglbQ4HT3lVIypI/EEhGxtet2F6USyLHkW/Uia35Qc4MXU5qATZW/DV8H9mdEHgqW+z7iAefEYbiNPWvqaHQEzRhDoZCKhhfhpZ+uWUyzNxz1BkxBmaF4DZ1qDHww229ngWz3yWlLt2CLt7qP+LbimMbVxZbZ+5o0caybNPsct0uxbXnOu9opkSjvvtUdBvtVTs2rt+4Ad3pVBgiOuNHnDqGbGQI06VxdrKOshrLpTj4EfYZPhpUdhAi8yxbbCnBKH8Hrzeu46MhpVjEtzLK3J2wIjG6hs9SmBhwmu5yY+xz6K/hQ8AKQ097BbCmFmMVaWfrPRbnkeutSeSAm/0Gx8AT84r3AGsFlRk5aLHnAtEP6Ls5eF6hwPMB70AGPudmBwSE9Mg2+kUkJuy1oONZe7yyJonGAL6FlecOaIR5aWjf2lXjq7r7DJPqvkOLE9W/fUvNv3knmgHlg7HueZvTSzahj6iQNHSPAL89CLYUXEY4jJy9nhDCvvOSqO1OFEaDoZDblFW+fLuoWqfmxMM/F7ObgPcL131IycDzD9/0maZ59Ijis3gJTSM7IJhY9D/0DQOeu891/8XvznnA3dWfY+6e2UZZliSHm2iwD+fpqNkFo6YJuyXak+2+oYHqoQR6MKWK3c+iSVXReGetNCX0JtlXQlErHA1LXc5LlhfoAQPHX0aH0M8hv0f7U2jCXbU7bL1PyekJBuV+fFP2GjpdpdAh3c7Htda5kxsS5WWtSVtOFs9YxrF+zIvq2q3fu16xW8VkMcHK6YhB549+2rbRxEjC9HMoO7xkivOPBgWBT33xjq0IS8aAnSgjMVSgPfRl7Kc8o0G2dxn6ZXERySCNIeHlnX0uSBXCfiQoqaGV5akKGi6R3gTqCfbJ+SKdENchv16K1wvJ4dQS04//kIm0S7WUVSv2ZvNvfEbUTNVKzcFkummb2e7rRSveStOd8mV0EPw02N/Ymg2HIut9jkxOkRIMIcngJhMdFIzpLS/878hJxXCAgd6UaFTig2YAgxKDiU2T8AlXE3h/9sWX5ZBfNKqSP2Lo9kghEUs2E+FRUSqCHwjuS9QPC1iCsy+S+NSsHtNimgWigaNAB6GXoDVEzdYpA8tLCQmKRJATgysGT2nQiF2fqlAPUH+kbN0HwdFjYxaY3gqrwUiLuuXXJGJzr76YtOxWukMcEpJJziRBp2fAF2nY5JxumE54HbOpQ6h7SL7AM0+XB/SMGlS6RxGrRqupzVN+jvcyXlFbs+Xya/ZdtvevLmRK7XfzyAu1Gc5U4vqY6LNSAcHnK1yx79IrL3nH1PT1pC4Ip/4A7I8DDiqdBTKOo3oNqrPfj+mxW51Eh0wN9AHEBXzxISsuMvVqtQrm27qqGaOP5eIREZ9PTrnsQFiVz5/p3kNKBW3EwWBu/Zc51heC/SxyvIZN9FNPHTraOoJLRxAYSfLR0C3THZA0BaAxFOAfxXacAdmJ++t7i6xvGRlGGaxwpsQJA43kwfXD2JBr1WJxulCNhF6/aHwwNxWLjRzc3hybkDiGf4qRk5FqxLnuuuJSNaR/8mb0acnrL6y4KxpgwkYAcX4zXUt/PKZNJiZi2W35ofV3ZbO8lt0VicUD5Rq9dr9VY0xzJfHjSXA5BjlVXMA7SZ1z7jq+gM7WSZHB4n2MDppwZmgKbty6QmJydWXttEPktVJmauIXC/jyET1fmlpL+RBkrucgvt05U1jM5hefBj5KI0QBeC1eT4R62wKEZg+R/HjEsiKaM9vw8YeO1z3PguwY4TCW7hwRdlD/RKwH01wE8+ynh3f6eZbDgp01YiKmZTGPl/pKWvbamuANQW5I6EcEbgEw8kyDD18EH5bmTwtk9NZtw50NCqK5+GKuaoakq4WkoNshYqQR12608mMZ5XP3eFnT9Kl/z8f5XQu8ePe1hiHIn/gvzs/0Z4Pn0bffixZ47sS9COLNFCCHx/5EvN8u/FBZtOXTXDaYAg19ODt48ok3zuqkFZdMfFBt7aUJAbHSBtIrOr9YfHsRUak2EE/v3EmSw81F0K3053IRlCHnl2+XiwSe1wsT+bcmowso2wWL4NHehTnoXbxzUu+0cahSb4ZMtQRDhgh37KVjL12PONksNgqWxCHsN4Y6g6Yf/erw4dePRO1K1A5IdmQ4Fk1lWrZp2q2Mw/s7MIB+6omTDpV3ZtbijGgRNOiI9H0DtAEysJLl6fL0kl5hRc2JrV+//t31HB+0Ehf/T9CdUQ/RkJZtHfr00TvSRxUpEKTzoYNeAkybVDO7YH6TQ88TxkPDoc71Gh0Nca2+urluIMz9+5oyzf0PR830Rec2biYOfHQ8V1vVjL84RbO9+8PvJiLWgS/18g+dA3gpujkBH/rjcTqHk9tb3ZxMQYjUcjkhSyy6QYNWP738wfn4LC/UTV4MEvlktnwU4jPqRKdPO4izmo3+UgAfOEfZ/ZUAyGQCWyb66P1j7VMlBANXGNu+Lhkz8+lycOSrrTLSlJCfDGJxdPWMnc7YsSGt+rHPBsMhbpVXEaZbeoz38oKulMc/EeBgQ2BhJIvDI6Gwj2N5IzhE7ddBv/fgtQ4nJOjkDBuYYLNvPRlGlB+58xC959RGc7derVpGLBnXtler23WtOAC9h/MKw7qp3jg3Qw95Ns0cHs4lgDnZpC4A5xj6nnMauZCVnbgczB+NHqNRHD5702lGDKJrDNTbNMy0IqJbTlqLbNpRfj4QXdl8of9ujCwITwFOxOHrzqlJfzGIIXrWgJ5i3yuPrB6R38uWwqbNszt38pGEUUL3sHL3E4OD6GKZtRVZ7v4IVSydyoU9AD8JcuvwwDibJQSuyPdfjRWZHufvvY2haOQGP3meEE6eHLJkjl3KIe+4L5y2gyGL24NUSdITYWG9PGh75YIRFbxbNojRvBZU0D3d/TGNA4byZBsN/0faZMAp+yUJa9Huc5Vb38Vbiip3f4Iy+RB239mBjoicdfd6OHDGPsOf7C3lsGq25ru4iQ5ly2T5PXc2qIaHcuIX/lbMljU9MHsaEKyhrHjTHX7TRD7xxv1R0RQCj33NL5i8svc8QTF9gQcelQlu/Hid+nyJuyMxLnlwhxYsFG03BJA+Fn1b5QThTlYfXDV0MtBrieHTmUhOFnj+YbYYzUWtzSzC5RKjFMwSuhfWiYKSb+VkZqWgeA07ZkWC6LaANxqrf6OeuOkSr0VrDS4PgR4xWmtputdkeYc/pelGU29DONBD1e53q4Fj+Zs0zaiiEtxWbtF1PZ8fDKmoiXEoWIC77vcxE3Te9aGDnkMwowBEm38TOnnCm4NJznnFyCTc94v4pHN99OWnb7379oByB+B8+F7K+db8BayP/eO/2OOFV7q8MCEyjWp1pM8LHye8EI285du49vj/gzFWFn0Lw+i3DpUELklskcAWwoNWuidPC3zCLBoVhT9qX5ySbjAwA9ZhidY5vSCqKL08UV3at+n2WCTEg295NrjiJHwWUatEuf3dVMM95Fo9wZqNd/FeX6gu+gQxM3GJx0t0ZyZd3Zd5dv+F2i9SO0v0LvYfuD8dTGbybQ08WB2lBt4RtTTXuFR6/L/hjuXD+WRovOr+AvHA/amoKfw5yw/fxXqFUIOEMDlxyZ3wk09mEhee4JgNX3Ki6fk/8kNbTgB4nJVSy07CUBA9F4vRBcadiXExSzFprYUNLjFqQkQJFcO2YIEG0mtaEsLa31H/wy/wS9x7envVqCvbdObM68wjBbCDFyiUz90XVthSexZX4KgjizdQV48WO6ipV4ur2FHvFm+iVhFmKmeb1pOpKrDCrqpaXCH/Z84G+urYYgf76tniKg7Um8Wb2K84OIPGA9bIkGCKGZYQBPD5NuDyLXGL3hGzBG14lB1EGGPO2hVy6oS+CCnuTcxD12Rdm3iZWWQc0k4NU8xOERaY0NJG3tI3pB4gxDn6lIJL6ht6erTqZMSZflhnyXS2lMD3G65L2ZLRWtqedKLxXK/yeSJRei8dr+vJtV7RmcihTmUUz6LFRPREbuOhDMLzfiiX/ZtBL6yT94oDh2aBHCdcF1fdMErzE6I251twL7T1gvLCrLA0OuPBYnMujzWCU36/mdwvgjIe8JSuOW1x2ABNUup0eaGzaSyB58upfPZ2i460g5bb4KZB8++c3+z4UVX8djHny3n28uTljD77CYNxlic8Cvv5TfkH7QeM+HTOAAAAeJxtzjtOAgEARdEzA4kFBpUgSmFjEPxFBxHwExui/BQUFFTEBdjYuRhX4vJgYii5ycst7xP6Z/br2TK68QKhhKSUVWlr1m3IyNqUs2Vb3o5dBXuKSvYdOHTk2IlTkbIzFeeqauouXLpy7catO00tbZ24cu9BT9+jJwPD+M2LkbFXb95NfJj69BeEQSJIrvx8fzUbUbRweeHKHHh+F5gAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJPIGYB8xgABsEAeHicY2BgYGQAgtsKp6pB9CNd5lMwGgBCrgX6AAA=')format("woff");}.ff1{font-family:ff1;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff2;src:url('data:application/font-woff;base64,d09GRgABAAAAAA38AA0AAAAAE/gAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAN4AAAABoAAAAcn3rSEEdERUYAAA3EAAAAHAAAAB4AJwAkT1MvMgAAAaQAAABBAAAAVlTVYBNjbWFwAAACWAAAAK4AAAGafjZsyGdhc3AAAA28AAAACAAAAAj//wADZ2x5ZgAAA0gAAAhtAAAMFLbCOeVoZWFkAAABMAAAADMAAAA2JpdMKmhoZWEAAAFkAAAAHgAAACQFxgNVaG10eAAAAegAAABvAAAAeD6xBStsb2NhAAADCAAAAD4AAAA+J5wkqm1heHAAAAGEAAAAHgAAACAAYwBPbmFtZQAAC7gAAAG3AAADOWsDV/1wb3N0AAANcAAAAEkAAABeAv4DS3icY2BkYGBgYmSLXnvIP57f5isDN/MLoAjDI13mU3Ba6v8rZmamg0AuBwMTSBQARdULRwB4nGNgZGBgOvj/FQMDsw8DEDAzMzAyoAI5AFioAyIAAHicY2BkYGCQY/BhYGYAASYgZmQAiTmA+QwADRQAswAAeJxjYGSyZpzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgxVTAf/vwKqPMggBlMDAMVOCpQAAAB4nGOUYAADRl8QAURVDFKM9gxZTJoMTszMDFbMQgwejNMYjJj1GMyZfRg8mJ4xWDKlMigx+TMYMxUy6DLpMWgzSQBxI5CfyqDNqMegzlQD5L9m0AfxgWxjoBpdpigGXcZTQLY/gwrjNwZjAClnEBEAeJxjYGBgZoBgGQZGBhCYAuQxgvksDBVAWopBACjCxaDAoMdgxODM4MkQwJDIkMmQzVDAUMJQ9f8/UI0Cgy5Qzgko5weUSwbK5TIUgeT+P/5//f+V/0f/H/i/5/+a/6v/r/q/8v+K/4uhduEAjGwMcAWMTECCCV0BxMlwwMIKJNjQFLFzgClOEMHFzYNuCS8DH7+AoJCwCIMog5i4hCSDlLQMWEIWn9PoBgBo8yPNAAAAAAAAAAAAAAAAAA4AIABkAKoA7gEaAWABkAHSAhACUgKGAsIC+ANKA4wDsAP6BEIEfASqBOIFQgWsBdwGCgAAeJx1Vn9sG+UZvu8722ef7fPP8+XOvtjnc+wmTpz4bN8lcZLSpgnpnJSmbkKTlhSR/kiztE2CMrVUwLRBqdBaxjRaBCmoFasWAZ3G2LpRmATS6KqxTdq6iUkIaZPGVKaNFmn9h/W69852frAiJd99353vnud93ud9v49AhEBcRlniPwRJEA1SQUJZ/TriLncSBIGIaRivwUgRhBq0xZN5VbkWbY5Gm0vGEDV/sxGGT/ALRAbep6S8uh6phXxSjtsoNaeE2KBNjmdQIV9ZMJhikAflFE3V0CcR/QhJ/WXfll5li5d08BHZR/kjh0d3f9PfFI3a73GceHeMcjIXL/pp6u8HJ/sm2jMoyoYFMsLfe2hmVGpXYyKVdxyjHMPAHhjjt/CrRB2RIFqBCwBLhZyiFnz5ZBoVJJMLVY9IYxm3iUBC9RtzXzBURAp+68m9+nSdyvNqHXpk8vie0vj8Y5v7T8Q9i1t3CcMDVz3xpwcvbT4U9YvYI/qjeze138/Qe5BT2cEIt8b1N4/s0T8TGMLUZODOp/gqfpdoq/CIJ834OU1VQiKqKJLKIDnOkGywngQimprvAUL46otHTn/44XOHR/N2L2lxUTaMfN/eLhS39bQ0dt+3oX78pA1hq8V9/cGXrz1/5trYkMvh+ZfXTtrshx9zNW16fPvWY/0tzCP7rRYrBh4KkJkETUSCkCAl1Co9QpADFrLEmuGjSfkbC7LQLsDfyowka9Gas9s3RX8lPg20vgXfhZyjOIPhG7Z4CoSsxzk2RRWUHgwoqaQMeCEO+fIZLBc4Dd9KZHwWS9Culyy+TGJhwVgicnLJ47Cjhyu38HeYcMB7+yM/7cIHbt/yBsKMAW7cxDYvdkQt9O1b6PXqfaBhaE2SoLWTAD+iFbVDlAFrsDNoASWS/O2zz/zO+N/fWio3NQ4PtWZK5XTjtsFWVD79xz+cef7Pf3p69ImBhDzwxP07T96XSg6dgu93AMhZiDViRhu0pRFrKMZ+SU/JBCQNa7E+gCPx2Wcnfgpmkudm5aqtDk49sx/7pb62vXHP6bY+yY/RzdL0v2v6mkofGmTDuSjPCPrnQjQXNvTGRByGXhwAZ6fMTILEhXwrkm0QG+LYFDDpIbWAYSEuUI9yrYjCvQP8dIEN/T5uCQXK66SQxDps5ywUzdhfo4Wm3zwwQZJ8xJ5vH6Pt3iDiYYWYsM+DzjrtIX2TwCzdvGnmOnfncxzBXrO+TXWrVs4pYGUGTHx3J0cWds1fuDA/0pWirTSy2RwW9/5uf2N3Ji5lutKB3gNW08g/vvfIS397aX3OVbfktFvdY+P2emX3+p7dStQ+Pmi62Ii/BYZujAkvIdUquyK8XNE9lazoblaypuLuUwf0f2Q5Lov46ZPl5tyuobDbHR6azCduTz3He6NoPurlX5x+uH0DI+rHRWZAq/g6DTg+dMe4Qi9bweDkDFpuGoUcKxspN20AvtKwT9Q1E+2dAO8ojuwLu/vVGM/H1H53eKatq8FHvfeegXoYUJe2dzHiD+T8lbz8C5HxtXQoFVx0A3Ab4PoVUJXCqhFCN3h7cdvusLtXjfJ8VO2t7zp22KTwBhodKTLij0yEHyYYI7FVaGI5n2XIZzfEaMAEIaWp1T3q7onVelA3Wu4cuJz0O+xxe/rAwisX5nZ0rCR5X3egqSsjxVq6MqFcPOwW1KA8oWR/5qmf4yRX18uzc2uyHVV293Q/oMTooCfG1ccCQLeah07IN/RxyQy7G8lf1oDTWFOlwvLCyH8Od87MZLnPuKxxqYzLC1OKS5dAiooo87XZ+fO1mX4q6q3oBJUGVYQJtsZhFayJhKjZ2QLHFSojvO2R0Kzk4c2Z/l3Js+KpMnwnv7pyqa+IRoO9M1XpzbBVclDKuNzYPBULPfng6oj+KvmacmJckPfufF1IiIDI+sSfjMz/f2Qf/0qs85LGHDND5U/lgMkJdMVvA6e2GidgkSKhh5OUL5hjKzRNXkYDD6MeBA2vJvDbk9apLId+aQ/ZL6OBhuzoAJc96nNZX3vVRvuPLuuMFpHe4vejD5B+YtAgMIhGgJXVre9ErzDWNVrX8m34P27sJmA+lFpFxWQCrQ72Ehnk0XDngIV22PX3aZNAMH/EabdZETuQbBtF1wf1R720E73p0l+oIj9K8chK6Y+jRuOG2VOMOtgMdeCAzm70dbMA1u4aUNx489mPzi5+vDiaKHaIkc7OhkRHsbPYkSDuzC0uzs2eO7d340MKhDy5sX9K43ltqtav0BcQD0ckV/aMtRWshGyAVKv0HoS+OFg6Xssx8pRnRq1se3Nf2H2wuZ1FCx3bzq9J7siW5kiaY8R3uLSBB7EMmx7rM/pjtXgLeThm3KV75KpHIcyFOMNq+ZxCwtYF+1mFC8bDzpTYL4Vo7KBjyjiX/fq0werG2NHBdrmJtvkd7lCacrl/Hoy0yZEWyrUjU+SoTUw8LoUaMuG6iDN2cQ3bYTXdy7hbRWGnr67HjdZF0yEXBr+9EVonVnsSOgO5KFX3mJSNMmKAhmNuaSZNozLMY1Oq2qlUzXhY61XJQsZiHGeC8GOoGy6Ezoz179QYq9NmtiYnIjNtpWwx5g03lzJs83hvSVl+SGOEbUGxPdFWjMXJYl9aSJ3qmciyVi9V9xQ4y1FKpNY3ZgUP7fT52OaOrtHKsxPQxeBdT7hNEjobhCyDGK8/3Gh6OgFGSKP/mqcS2eik1f2JTa6cG4xTsqxJOM1Tyra0V9DY1PspVhO86e1ZimfQP1F5QnHG9O+bjZEPxNBMzKlMLJmawXAFch429yrDvRqqfs/IL2VmUkNXXPr3fA4KFY5t+ZqFt6OHvDSlf/Ct3AbJRV69anHaafTre7YuWWiK1jtCOTVD/A+ihB8WAAAAeJytUk1v2kAQfesAUqU2t16qHKa3JJJdY7iA1EvIh4pCEplQ5bokC1iAF9kgxD/qoeoP6q/p83pVqVXbU2155s2bj52ZNYBjfINC/Xz+iRXeqPceB2ipjx4foa2+eNzA26DlcRPHQd/jFvkdI1XjFa2vLqvCCu9U0+MAr9UHj48wVZceN3CuvnvcxElw4nEL58EnDGCxwQEFMsyxwBaCBDHfDkK+Ne6RnTJKcIGIcgiNZyyZu0dJnZHTyPHifBFGLurO+evIKuKUdu4qGZ6kscKMlnXykdwT9QRjXCGlFNxQ35N5oHXGihjYzaHI5outJHHcCUPKnkwPchHJUD8v7b5cZqLzFxlGo0ju7J5kJqc2l6lZ6NVM7EwezZNMxlfpWG7S+8nD+Ix1b9lwykbWbogB5YZjtTk4bkepXet8oDdlm2Y1UuHiVjRssdbU126urdMFt2jcDiOmC/r8/l4+JG+YsWM5zdw6PuG+Q7f/avsJujzC5ttrW8yNJFEsffmlrTA1891KF+STXtjhWpLuv4b6/VT8sVr17xp6S95dfW/1TDH7ETpNUWbcLPuJu/IfjvsB8umNUAB4nG3Duw2CUAAAwOOxgBa2dBALGmEFwj8EJWjFMiyOhtpLTnA6dnf/JL+RIHZxdZPK5B4KpUqt0er0BqPJ7OllsXr72L4fhghJAAAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQlkgZgHzGAAE3QBMeJxjYGBgZACC2wqnqkH0I13mUzAaAEKuBfoAAA==')format("woff");}.ff2{font-family:ff2;line-height:0.727000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff3;src:url('data:application/font-woff;base64,d09GRgABAAAAAA6oAA0AAAAAE4gAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAOjAAAABoAAAAcn3rSEEdERUYAAA5wAAAAHAAAAB4AJwAvT1MvMgAAAagAAABJAAAAVlXqGS1jbWFwAAACiAAAAMMAAAGyEXmc9Wdhc3AAAA5oAAAACAAAAAj//wADZ2x5ZgAAA6AAAAivAAALbPHoq2FoZWFkAAABMAAAADQAAAA2Jv1LcmhoZWEAAAFkAAAAIgAAACQGiQIoaG10eAAAAfQAAACTAAAApEZiC2Zsb2NhAAADTAAAAFQAAABUM5A2em1heHAAAAGIAAAAHgAAACAAbwBMbmFtZQAADFAAAAGtAAAC/SPZsAhwb3N0AAAOAAAAAGcAAAB8UkeknXicY2BkYGBgYmRr2vO+OZ7f5isDN/MLoAjDI13mUzD6/9//rMxtTO+AXA4GJpAoAHweDYt4nGNgZGBgeveflYGBOej/3/8uzG0MKQyiDMhAEwCgcwa1AAB4nGNgZGBg0GTwZGBhAAEmIGZkAIk5gPkMAA4JALwAAHicY2BkPMU4gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEMGhgYGB0YECAgzTUFSCn8ZmZ69x+k/x3DbyCfESQHAIwpDnkAAAB4nGOUYAADRl8g8QxI1zLYAjEj4yuGmYwCDC6MbgwmQDqeqYshlkmHIYqRiyGKOQjIz2eIZrzK4Mn4jcGPcTODHZC2A9I2jNoMyUC9DEC+L9A8P8bbDH4gmpmNwRckBpSzANKqQPv8GMsZlBiTgOq/MUQwHmDIYZrFkMN44P9fxpUM0oznGI4D8QlmaYZkAPfiJPYAeJxjYGBgZoBgGQZGBhBYA+QxgvksDBOAtAIQsoBpLQZdBisGJwY3Bk8GX4YAhkyGAoZyhioF2d/M//+DVWgw6KCoSGTIZihiqFSQAan4//j/nf+3/5//f+L/0f+H/x/4v+//uv9r/6/5v/oBF6sq1Ha8gJGNAa6MkQlIMKErgHgFBFhY2RjYOZAlOaE0FxBzMzDwACleBgY+dEv4BQSFhEVExcQZJCSlpGVkGeTkFRSVlBlUVAk7kCygpk6KagBwBCr9AAAAAAAAAAAAAAAAIAA+AI4AngCsAMAA+AEUASABTAFwAa4B3AIGAjICZAKKAvYDFgMoA0ADTAOGA6QDzAP6BBIEVgR4BJoEuAToBRIFMgVOBWoFtnicbVZ7TFvnFb/nu8bXz2vjtw0Y7IttCGDA1/YFg23IbAyOediEZwjEgeWxtNuax9Y1XaI2TROStc0aoiZT1a6apjBV0aIuyzaJSkWKlm6Rlv23St2ENnVrtO4hVVOrtOWyc++FJKuG+Pi+y73nd875nddHAZXcqIC/kn9RJoqq4IJWi8CzNKN2egEquy/35da6uWwx56jTM/znV2EICstVO759/cDl7wweo/AHKED5nyjyAcJwKVqIh8IQ4h0w/6hwTffl++KNh8K+qyh7BSKkHWV5BGKB87eCSd6DaWDUuAnxNISCQgr4SC0IcT7iMCkbozaB00HUxMUadDvtQLtYo5kOHmH1LEvUjhMLFhXtlF45ND75hUnHmmiV68SCDX5mtGtzz2nNFov5hZzWbrTrk0m9XfrnC/7Nf9kMyaQB7ctsnKJWqSKlpiiB4QRO4K9nGqLuyiKc+G4R30epVchQn1M0+u4TfNAhfmEA1WqCogg1J/u0gu8YirKiKI1rvVhZnMUFh4pipoj80dRu/Pjn5CbFUk6qDnHQf59VcpEFxgt0PNgEDB+JywcaD+S4+cf7RXHpw/3fMun3TgxOt+v3jhyPPT38jM8wP3M6cal0cmXHE+TmwWzbhMMwD/pI9tMd4kcd4+I/h6V4TaO+S+QGZcQHpBjRfYyP5qw+cvaa2qV+Jg6NRvEPXxm/CMvkGIjd4i38WJGDDNqJvvKclb8+vjSOTyD5ST+PJxdF+Tgrp6YYjsQ4BOStDqeD4eOClScfD54ChyimBybg1ODS4V6i1wHYX7xxmHytXcwcIHXR9VfITXG/bmLQ3P4xRJG/XWjnW4iro6wyk+g9J/PygIg3LK8vvJYcX/rPwqE9xvzo+dT50jfgH8WnxDVy88li95j4p52IM7DxCazBHcpDhSQLBSm/wkSIS7kVD3J+Ziuv/Cxh1A4+IsTh+3lNbbnZ28hWVJgP9x7U6gOBkSFNqdjXb/46W5XO8RXqpobm+kDA4a4KNlXm620VjdFEZPu22f7Xe5lKzlUdtNlQ99DGJ8SBPhhRuxRZf4hBH+i44gbnN4Ha6YikgIB98eUWXWEpny6OZdJlayq2vb2ZcXoymZ61hdNCC3LzXsfi7PhY591at8tbQt5T6Nff0S83Isu1IlWJw8mE0T+14ghjgx+OTk7N2myX9rYkgp46PpzdbTIJydGSalv0bHnmQqW712070Jcvd1R70F7EJF1yLrplrh7gOtFqIbgFDFcL+sJILmuzP5sb5tP5262uzvghqyUV6+WTZ8rlM1GoX39nLTY6PT5GSbXQjba+j7baqBqpUhTj1MxDeKQjTCR4uC3eNfV0jYzQKhjdOTlnt10sztY4M8RSV21qKrr/PFTurPKpYot7y4uDXc2BqEObicp9aB7/fEjeoey4S5aagGekNMSqU3TAe3Xb/D1az+OGQ6V8acAwYDM9kWvgyFEz1/JkQjwBzyamB8o6qSapDZ60wa+pMJWg+hU8JiRVJOcPodle0gURL5GfsUcJypKVxHk5sApPcSt61QR+5YG0uj3VMeI0sN/sjfiNFSqNzagdq24p+HWGl2Z2PW5gc1adLuDU4/t43Y6xVX0oUNdr1DcE6nqcFe5ojXkiZ2MGk91lWCQVqrCQma1hnRaXFhteur1zaFhIN3pbwg0t8e1zPt8bsVhbFy7xrqtWT2fqm1uQo0EMhhbja5ZrNS6ztJmQDCwXUs5ydLshhmm4PbvzjA+CC1Md9zH17mSvUHIch5CLRvKi0tOkLiC1xMv52bxv3DIOK0+Pow78hlhQh17SEVLwBZ6B35YOztT2LQ3s+Wjm3bXhCwib/M2byvfQ/LCvXM4v5eW+grbSHoxBvWxrCuT8kOAeOSLZMucRhvyqkKLpChPniWTQg0fPczk2P7q/Ij99Fj1iHV4bO5G4/8hpNZsvFq/IOSTzgzq/xA/zJX4QceABP7CaGbiC3HRg7Zgwx/WUQ+niWyUpJwQLUgrAZ/YfTE3M2+2vTk2U5yw9nfF99clEx74/7nn+dHn+e+enSxNjy7MzMteBjRSxoy0sVbWJJzcP5n+bh5RXYD+b72vjC2fyupGpTPceU2dHmm/SuDz+zkNS9/g3OdHaeW42N9/xO2we85ucv4bYOrmzbvoowIW+o6bW/FzWUnoMTsHu/PuwOjmDE57yY/2+ib41bVkiyH0yTKRJj26qMAqMVCRYGk78dcBxw/TE6EBVYnTGpDJ47ZVtjfZavWZbU8LN5rs9iYFRo0pXbbdwdRzrOSmUmjORrLXKrFbpKu310UDMbSS1vYGUxc2qVYzWYWlS7hrzaMdF0iVNBKnnCXJx8wwWOqNGg6Awmi16OkuGnVXZqnOGc3FzOx+uCZ0EY+LkycQXJU7CmMQ4qXEuWx52OMxQuULxAMt5/chXE35jX6FP42jnhw3dhUh3OgGD4i8CvoQAXgnjMQyQCTFwhmqBo3HSSXMuBQIxietTuaEgS4NxEucMrIgZXBvzfu7VZNfwluw9lMWJgBMN2ePUNELIozINWzu598GkRaMB+48GGwpWRg2G/N6sRacCfX6/BPrZdLhPvAUrn843bFu69Zej4eDFOzJHG+sbUdk2p2QbS28GCyE3dVjRxredzQGb0dGmqQ+aq53xmWG/Vwu2t2Fl/W+hdotK02uy+3fByk+X0v2QQJsxA+EDxKykqEYQpAHTBIKPweyOdwEsii9rYaiAl4czBtitEd8aw+NLDTANXSHxKmAu34Z7hGBVq5VbB7rJ8E5lA1exUrpTXVM2uDeCVytccg28i3L0AznlBuZUNohmGni3pXhN2cg+RUy6U6mkWUDP4yyQ+pSbapV0SvcvqzIR5EbNbM6I0P+dFXQJL2mvYGNbPlLKHzbPdXg9JneNq0nrOfb76vrqmM5zzHBka4oc6OG8ZF9xfQBWcIwQV/8ebaYy0PjUL83+8OZg2dVf1v0XTWFXNwB4nJ1SzU7iUBT+bgUyk6hxNxsXZ6nJtKkFF7CYhQZNiPyEgmHbaoEG7NUWQniKeZHJPIHP4iv4Cn7c3pkF7uxNz/nOud/5bQEc4y8Uyuf+P1b4pn5Y7KCmPIsP8FP9triCE/VmcRXHzpHFNZw4v8hUle+0/pioHVbkVy12cKjE4gNM1KXFFYh6tbiKU/VucQ3inOIaGs/YIkeKGeZYQRDA56nD5Slxk96YLMEVPMoOIjxgwdgNCuqUvggZHs2dh65h9cx9ydwxzmhnJlPCShGWmNLSRo7om1CPEaKNIaXglrpPz4DWOTPiWj9v83Q2X0ng+3XXpWxKvJUrTzrRw0JvikUqUfYoHa/rSU9v6EzlTGcSJ/NoORU9lVEykXHYHoZyO+yPB+E5896x4dAMUOCCI+OuG0ZZcUG0myHHk+kWPZ0/RdQ3ZpCV0TnXlpileVyUoMV3P5/LMWImSPGCtWG3TESTN3W75AANJtbZ6kbns0QCz5eW/OvD7cfL9GWd0BU03ToHDxqf294vg/3w3e+YsOOClPJTlF37rC28TPIi5bJY22/IV/J/AAIEflAAAAB4nG3IOw4BUQBA0TNPoUDGBpQKyRSTzA7EjG/8Jr6hFo3OztiZnrcANznNFfh+opvMvwZRImhoaetIdfX048/kCiOlytjE1MzcwtLK2sZWbWfv4Ojk7OLq5Z2E5vNxr4Z58QMg3Q/PAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEINIGYB8xgABVYAV3icY2BgYGQAgtsKp6pB9CNd5lMwGgBCrgX6AAA=')format("woff");}.ff3{font-family:ff3;line-height:1.001000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff4;src:url('data:application/font-woff;base64,d09GRgABAAAAABgcAA0AAAAAIWwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAYAAAAABoAAAAcn3rSEkdERUYAABfkAAAAHAAAAB4AJwBaT1MvMgAAAaQAAABIAAAAVlXqGT5jbWFwAAAC3AAAAO0AAAGiqrmKn2dhc3AAABfcAAAACAAAAAj//wADZ2x5ZgAABHgAABEEAAAX9CI2Vn5oZWFkAAABMAAAADQAAAA2Jt5LdWhoZWEAAAFkAAAAIAAAACQGVQLhaG10eAAAAewAAADvAAABTqckEghsb2NhAAADzAAAAKoAAACq/qL5fm1heHAAAAGEAAAAHgAAACAAmwBMbmFtZQAAFXwAAAGtAAAC/Trpjflwb3N0AAAXLAAAAK0AAADi5zjz43icY2BkYGBgYmRzcK7sjOe3+crAzfwCKMLwSJf5NIz+f/g/G/NCpndALgcDE0gUAEV5DER4nGNgZGBgevefjYGBecP/w/+vMy9kAIqggGAAqvQHOnicY2BkYGAIYfBkYGUAASYgZmQAiTmA+QwAEqkA6AAAeJxjYGScyjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBgYGZgcGBAhIc00BUgq/mZje/WcDqnzH8AvIZwTJAQAM0QyMeJxNjyGLQkEUhc/cwaDCK4IIIxaFhcVkkIfNDRpE5IkKlofuWsQf8ZL+CX/BskUQtpm0WkxGjSbLw6pnRoMPvnfumXvPMFfl4D7V5u8K6Dp8NUeH+DrFOosxe2mnMX2MTzJ8qSVPPt78Ezt/hC9L5MlYInzJASPpI5QaWdLvEHIulAJCPcOEfiQnZqKXLqhllOUXJVm5jKdX8KwSLT98zxlVSaCrNpxJoEQtqgqMfRd9wJ1aKn3fqgt6rANtENhz9gs25zID5iPuMUXG9fa8/w8eFbZWa971zzpGw+313M3yrZO4SRNGcjAwD6GRQKYAeJxjYGBgZoBgGQZGBhCYA+QxgvksDA1gWgAowsOgwKDKoMlgxWDP4MkQxVDFsF5BUkFWQek30///QFUgWQ0GbaCsI4MPQyLDOgUJBRmgLMP///8f/7///+7/O/9v/L/+/+r/8//nPDB5YPRAjzUQaiNOwMjGAFfCyAQkmNAVQJwOdCkDKxsDOwcnFzcPLx+/gKCQsIioGEhGnEFCUkpaRlZOXoGBQVFJWUVVTV1DU0tbR1dPH2KGgaGRsYmpmbmFpZW1ja2dvYOjk7OLq5u7hyd+xyGDAAYGL6IV+/n7+MLYQcG4VHlDaQBhLS9rAAAAAAAAAAAAAAAAAABsAJAAtADWAOYA9AEAASABXgF2AbgB+AIUAkYCiAKkAuoDLAM+A2YDigO8A/AEEAQwBEoEfASUBKAEsgTgBPoFIAVCBXgFngXcBfgGFgYyBmoGhgamBsQG9gcgB0YHcgeeB8IIIghCCFQIdAiMCJgIygjqCRAJPAlsCYIJzAnqCggKIgpSCmoKlgq2CvYLBAsUCyQLPgtYC2YLpAvSC/oAAHicfVgJeFvVlX7nypZkS7Ysa/NuybIly7ItW0/Sky1LtmNbXuTItuRNXuI1JA40EEIJLomzhyRDICxTyJAFpqRkJmHIEGJo8eQj4WOCG2AKUwrtDJD2+2CgHboMpZTFz3Pue7LjpMzkc96me8/9zzn/We5lEhnv4qsSOfkdk8xkMoWMh2lhGNBKCyxul4d16ou0MpCa8Y0D+qq59gu4LOaCVIlOmydhnZ4b3lZHNvZ0e7kIBOV8OEkpV8rgnCJZrvxu/DvPWHOlKVqVQqnSKaS5Vnjx+ndS2HPH5r7ezZtHpMqFtDSlPJ38IU258Ez8K/i93RJ1DmexerPTSJR/6rpXBv8B07EohXbUS8swiWaL2sUFJBwrlUkpRGj3v+RIKy7P0Pj77aW5hVX5X52Fxsdn7K1cZnr/9PYnhx6fGCwU5XhRjluUg8ZIlcjMHs7jdpVLrKwe3NdL0ftf+upGKfqzS3KeJm+SZkaDb1qzSa0tcKtNBS7WpHY5dWoTedPEf1LMf2wyQUYxGCB1+TnDZOI/FmWMLe5mnmOijJRhOJmZM7vZ50psmZlRmNkWpb8rmIugZb5mJIjV5DaBlv8Cki5Wi3PxSufibyydGI1Gl/V7EfVTUb/Hne0SvQ0vJvKnpSq5MhF66I38MjHlm4hWKU9MkfyTVkkxEaZk8TcwT36I9rEIElLBXFAOViokACjEoCdp1nKJuYCa3qBnnRzMF2fEOKOvVlNgyRlylsZyysMaaVKWPbvTqFbnRzrzIfhIn6taW10Wve/R7oDH4Yrx/wXEq1IX69dyd+/wb7xZtEcML6dwbYRiAzerlsrcHo5Vs3CKf34b27nbp91WTeR6Up3oX3gYx5fg+Is43i6Mr4WAxC3wlsgs1nJipTrrtKkgE/+QyD6Ai/ymravzcovV4QZTRX56kjoREpISyx8e/a7ZaEwKJss2ab4jzZDO1m1tzs/3evICg5mVjoKMRJAqZU9uG7CGioxJNUnSjWkgYl6yVwnlE1rbyuWhmSijiB0QfgAETFKZVTCfTiuV5QHMT8e2dimMGzzeBkUWZ2kOJZRV+UoqenWF+euqQzd7OW/kua7p9TWVnkiNvtSR55dC8mpHWaXX6XFV99c5h3PVw6K/chDEO+QwxnsqIjDrzG6TW4M2M6ulEnhnooP/YmFw4gy8dPr0aT/asR+21vIvI24r4r6I84xx3BYReNyEUplZbdKZdAJtLu4c8E0aTfreSrmmzJhdYyuuTl0FHfyX5f7wrVfW7PaUem0ukp7f6IiGywpgU90btt3XcSmLKRVWkeE65RIh3xh0wipUvsxlpc86qY4mG84D87lmXzTHXV2Sc/w7HOt2taxLalwbHIoYCgK+JiBJGa6igCXj/eoOa2Oao22m69hlrU+37Y7ooYl2W2BNjTLNUNJcGrAt+edzxHBYiAdMaOY0Da6FnjHBvLmhraz702n09gU4QTqs64+8ugE6IRGaMaqWsBsYM+NYshFC58pBTJiiJyWCtXRaDASPZsUzzN/V3zvdUR3w3xbp3OQPeLu6G6q4RvpfstpZEW7hXG3o4bsigWGtNlrWvH59c1lUqxkCCbuq3uWur+c/a25pbmlsa11hx0zKdBBZRhfhaHDSyEQ8eQTtuDIuEcL3bwrW5pdX1Y3IjQOO4FB9bbSwvs7aC5Csdxb4rblo0Kpm6Dh+udxtuXtzsf3QxM3Bhrzm+w1qWaZrVUlVeTRsqxkSeSbkG5hDy8gYRoMZRx3POlGYivKNUTrGi+hOkIuYOzKE3CHNBTNF53YhLCEcJTgJTlSta7jdvKmnxhAeuCn2aDRKLC0Vfbd7jKfHjKXDXK17eOFoNM5tMkNmcUU1w5jMVpPMDKxGYrGapTSgycxQO//e6jZI7G8ezJWA1J2ZmvXaa2SWDwNE9aaHWyzNiFpCsZNxlJPK6Jl80Zcm9bILLS6LHXRISXrHzx4yfv8G/i+fTh1e09J129Qd0Zk7xvbf3fXAka7Nc6FNZHZ9kOtOTxn/xWTTFz/xRfjfrRZ4tmrxcxIil4R4EohutaRRvxj0BsxGlhX50sORkK+wqGHvyJo1I3s9Nrsz1W6zsqNNjY1No6vMRVxZYZJiagqKN0zJ5dpInlLZ2/e96b5epcKCNhlFXY6gLnJqExA0MdEYWsJ+5Nx2/kuQ7jjXe3DDkSMbDkLPfZfJ7L89uPuHCz8+gTjX4PwSco7WLRtgjCOBUHuMdbWQH0kJ74ILz2NMHIQ2fvZNfJgh5+rhUz+/AEx8firOT8GXa3MxW5DUszh4N5Tzb8XgLLkdvvbzr+DAuG16l2zz/1jGjewgvZMbRctUOVzlqtJSu1e0TFPtnrcslaJdFKmZkSJVmmgX3Ul/HNdatIuCMkVNEbF4ZcnaGH86FoOeGFUHqfEmOJi4HszzOF6on2r2+VgMX8Tv8Bk+SgX7YCItgs/4m2OVoCCzCweJMHcSSSXFMZnCWlapCiRmykq6qEGjN7AeTsNKpMhCW8Xe1ofr5BDeVHAsUwbKrl23k1tAeud2/knYe8q28DCZ7ePHm/Jdb0G8z6H+nUDZKVS2RJSpMSAOMrH18wYICxf46MDCA6hM1gFyK427xd+Qp8hrWAP0KCMtnqlY58qERJ760fZtP35hx8zonsHY3t1DA3vgT/xPfvbvRx97lz+66++f2H3vP59l4vwK4vrJlCHIL6SVWc2uZFhw/5qnYl+u3d811nXoUHQE/rt7C/8Bmb0rUt/FvyfmgcXdAp40xiTIkBnM1mVQVBKiSqOgasHKGhBasH3Lut5yp4DvR717hwf37RtKyZHJ18Y6boJY38ma49PpFOm7j91z5gz/P6cSiOT+qWFmCe+UYC+9YDGzCJeGNrcMeSo2d7z3jxseHF4dG+8+fLhnDPz8y2T21pB/3DDLhfhv2gTbl2Ke/QxxFy/Xcr1Qyq3YAIk9kMeJnBVsasgD+qeHz3aMTm9UjW6p7yrRFdW7a3M9M69GVe3DqzrNukJHe63J/S89M01dXZ2uqsJ0VVpKdn5VMLzF2VnX4qjMS1cpNDnmalwb21Oyh5wV6pQQV6hHvFKRPfswsmKxAbzuI6PkVlg4TG6DepHH6Psu1F+9XKOQtILH8YF0PXDTur+NjTU0ToY/ueWhh26B13nnyLr1a+ANOhc7BnKvGDNJQFOrSF1yL//7If73w097pJA0uBd534ZcqzucV/Ex9MbnSZ7AeXn4IjJfKsM78jTOfU0e5AN9kjxxpW9zBbahdZNdV3q7HEUEElsGusZzCyUJIG0dpLLhgX90sh/wJ3GNj576O7X3G/Dyp9ce0mirvgax112B02RWIFIJmw2shNy7/v13RyFlcf2ludE/gpN/AzZCC/81JPIvCPMwtskjYiwlUXsKGnLIOvII/6te/ldT/yrP8ackPIYrj/C/BT08zr+vKB/RSn8d7/FxfgXOVwn9JcTdoQO2iCUVvBx27kePvAof8tuNIBu1kzAEbAvniMBLD/YdR+B1ZKWRonYvtQ9CeyUWQ53MLQYn9jxHQv6pau+xu5xFXUFpKBIcCb/OWRz5BYWOLnttA7G7/c5V9rHQsUByU55ZoxFrcgTXuCrUtcwlxupo3luOMplOaASubmxvCYRDLbGm4XDE3Wg1B7iBDybuqSpHxX/uOzDS1+17r65H1LkQZZ5A3AYxV1uEkDXIylH7VBDRwom22NDW6YnyulJlcY3N2ZC1OtDXVMwevHA4PbM+K90bsreNehAflfWsgC97pQ0w9atZiXs5N6H6z4broy2T69o6V4XCFh830OUpMZpctfeMj+3nwLLw9qtcd6y3JydP1NuMco8jxnRBbxPtWznDNeF6Aa1UBsf5K6SnprtR2tI3MHNndKCiuCqpsdTerPyP1lFvvevgxNjB1oCrLhD0irojShjE/gV1B2EfkQusjiYUrEuiaBi0lqRkmXSbNoba2kaaC0vJZnWiypy1pZqfgV3VA21jCmRdzqITPoTLTBnDMUFRltRspTkJPYQ6+8CZl6CLd5ScBf9E6R5WKuRGahSNyw7CDlzw4Ie2dCWrSDANNzhtiup+dabXZs/YOTy0sy4r17Smnitu6/6Bu6iA4wqK7r9nQG9UySFWG4jBfgyzMq5hNDdV7yZSTQ5rquro8NZbjP02u7dxxGj8xS0u521Onm9KVWckJRSUllI7dOHlHPpNK9Q3F+0qaSsnMksH58Kg0FizXZXhkLf3AJhTNSZd2oDvc2TTfMsx9E8IrfkkuV/sFWl1pVvbo6GQHAvx3Pdi1IeLLy+yzAs4RkXrjGE52wYIpi3aB7wQcgaqdcaSZG2OOhSL+Ro6Cvz5CSlGAwGUAEy3sO+J5wSrTOA9x8rgncjRzqaWKwOnrkYPISDPT8+IvkWdmKPX6j2iEes9fifz6KuCuK4kruu1J1Yn+sapI/PhRLXdxDqXbi3V/ZM53mG0gSanUIsmuPZwqWV1JHJseW04h2v8lT11N9izpap/hT3hUnP7Mcr3POT728h3hRCV2htLaZwjb+8cjO3aMTSwM9xd7e3prvJF/3Ns397xifsODUT7ert7hobFnBGAq4hFiMlrOUO3ImfEtw9XkeP+cKh5OBgLd1StKk42s9X9H0zuq/oDmamsObimaaJ6XqtyjIsxWYhyn0W5abQqJK6IdSySbja+q7wW7g3dzeMb282rspNCIbejqr+jKlCUfOlP/v2jk/vysxSN/Cv3FrWNtgXXVqWINozgpRnlJ9N9HMStx0Fz22goWHcr7CFjoZ/DpcERwLE5aK/1aC9WOONZopZwyFNOaBkP4EZTKOT09MhAi1VeAqyvsLd29itbI2tS1ViYC7JMKk++lctShZqUdeEepSpfr7OXZ0sS5Mly6Y5gkbG0sbJJlZGqTJDIpCkKm68I9x/EWG8JpOpTFNIEeXpGQkKyWpMp4Ncgpnbio2ynedUt5BRWh/lFp6U5tb21Ndrd13ToEFtpy7bsAkX19u3VX0VNAn9w7jnce6Vfy6IrijycCzVs8DnCuZVsU7jC5/fh1vx8kbHKDQVi7YQLOFch1mqxxtcCXDjTfyY8VigFuasD5vhG/L8wXuDY/9N4vT2Kc7KFOVZa31WAcw3i3KU7OXqgvxX3XQm2QMeBdldlIiSWVgXrbXi31VGZfxkpc9zzBsw9/Q+OmkNzbx8oLt33M6oPNchrIiYau2YOu0Aau69Fv/9A5NJc9OC+yPNzcx++c/LkO2L9X2QFHeiuUkL3vA6gqQJqsREw5BEEo4ELv8xxG4vM0mJLstKgLLzU4ZGbyiUg2QVzC580lcnr0xKyswdgblt65768JghQufTs5EGUq76xvgsnRQ/yB0ERxgr/N3AT/+cefHjIBjHwWflTggoJAvFnhf2pisml52XYexstaR5jeprFiB2ukTNbzbrr+1Ed7Udnr/BXr1wB48nzi8z588Cw3jsnPY82DPkqvAH34KDHD78VB1zhiwBH4KjBy5fhfNBhqU3dXOD4gbiHCZIGeIbspjkN6PngM/wjMEUa6oTzQfiIeU7cx+BuHa2Lm3V6uAgfRWa23fD7yrNHMkkPHwn9He4Ufk9ZlmBYKejSNXFRKhLnjOOcLctzRKkG8XZeEH7p2hKR+Bnnn5lpooVHxDNO3EVq+V9D3jTkUXnIP3KbUI/t/2dFTrzu87cXadAtf/j2mt2w/IHoaQlHNJT787g2rWG5tCfHJIaelF23uHCIhWvDfDSaEAqduBMXXO3NNuUYM4qmyWR0oRXmxFUG20YVjemF9um4XvAKytbR/gW+VaIG1wLLdfJOhEKwa1lYgxqF8Y1k9n8B/oNJdnicnVJNTttAFP7GJFGRWsSODYu3BAlbxkkXYcECBEgRCSgmVbYTmCRWggfZQVFOwUVQT8BZuEKv0M/jaRfprrb83vfefO93DGAPP6FQPz/+YoUv6sDjAC0VebyDE/XmcQP76tPjJvaCbx63sB+ck6kau7TeXVSFFflNjwN8VeLxDsbqu8cNiPrwuIlD9cvjFiQ4xCUsXrBBgQwzzLGCIEHMt42Qb4279E7IElwgouxB4xELxq5RUmf0aeR4cmcR+o41cOc1s2Ic0c5dJsNKGktMaVknH+gbU4+Q4gpDSsEN9R0997SOmRGX9mVTZLP5SpI4bochZVcmG7mIpKcfF3ZdLjLR+ZP0on4kA7umM5Mjm8vEzPVyKnYqD2Yso/RqmMrN8G50nx4z7y0bTt0AJU45Lm77qc7LU6JqhgLPrlsMbPGsqa/dICunC67NuKVFjBSc8dvOF3IQQ94rk2hG1KyEaw3dmqslJ+gwsc1X17aYGUmiWM7kTx/h0Mxel7qgK+mGbQ6edP5te7sMtsOr39HwoOR11FdRdx2ztvDQFGXGZbF23JH/yf8b+tB+RgAAAHicbc5HTgIBAEbhbwYTSCQoIgiWjVGxkDgUu26MYsXe0QO4cecF2JB4HstdvIxODEtf8uftXn6hP346Zv3HVbxAKCGlX1rGgEFZQ3KG5RWMKCoZNWbchElTps0ox7058xZULIpU1dQ1LFm2YtWadRs2bdmxq2nPvgOHjhxrOXHqzLkLl/GDazdu3bn3oO3RkzffPn1596EbhEEi6Eu+vjw3t6Oo52rPtV8CBRvfAAAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEwmAgZgHzGAAHLwCCeJxjYGBgZACC2wqnqkH0I13m0zAaAEK4BfwAAA==')format("woff");}.ff4{font-family:ff4;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff5;src:url('data:application/font-woff;base64,d09GRgABAAAAAAkAAA0AAAAADCAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAI5AAAABoAAAAcn3rSEkdERUYAAAjIAAAAHAAAAB4AJwAYT1MvMgAAAaQAAABBAAAAVlXmXtdjbWFwAAACGAAAAGgAAAFaFroscmdhc3AAAAjAAAAACAAAAAj//wADZ2x5ZgAAAqgAAAQ0AAAFJA36nHZoZWFkAAABMAAAADMAAAA2JpZLdWhoZWEAAAFkAAAAHgAAACQF7gJTaG10eAAAAegAAAAtAAAASB+rAtlsb2NhAAACgAAAACYAAAAmCgoItm1heHAAAAGEAAAAHgAAACAAVwA0bmFtZQAABtwAAAGrAAAC8Y+IyTVwb3N0AAAIiAAAADUAAABGAFQAu3icY2BkYGBgYmRbHy7MGs9v85WBm/kFUIThkS7zaTgt95+N6R/TOyCXg4EJJAoAHQMKlQB4nGNgZGBgevefjYGB2YoBCJj+MTAyoAIhAFUGA0cAAHicY2BkYGAQYjBkYGYAASYgZmQAiTmA+QwACS0AjAAAeJxjYGT8zDiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBhsmd79ZwOqfMfwC6YGAPuvC2gAAAB4nGOUYAADRl8QAURzGUKA2JpJGIy1gDgGiHWgWA6INZD4YMxsxWANAMj+BaIAAAB4nGNgYGBmgGAZBkYGEAgB8hjBfBYGCyDNxcDBwASECgyaDJYMtv//A8UUGDQY9EHs/4//3/l//f8VqF4oYGRjgAswMgEJJgZUwAixEgRYWMEUGzsHJxc3Dy8fvwCQJ8gw5AEA5dMOZAAAAAAAAAAAAAAAKgBUAHoAtADQAQoBSAFmAZYB0AHuAjACdgKSAAB4nF1U3U/bVhy9107s5oOUpHbISBbmOLETkpnEju2ShDgJBAIZ4XNrI9EMChVNu086YLAJuqk8VGqnPlTTWKv1aYo2Td1bJ/Vx2rpV/QOQJqG9IaRKe6r6ULVh1w5UWyXr3t99+J1z7jn3ZwDB9AEB57B/QCcAZjbA8RwmJ12qkoYOE011+E1wLt5mtbxbmztjPxF3eLPRYLCND4Zcz0yWaXBwcxscTNjs3uriT3NfLccm5JgTQJBGmKUWZogiSCIKsyY5yQsmXhLdHX4IS6+i4S2SZ9uvomGI5gAcYu4gTBodKBI6cCRWTqowiyNMuGNubuMYcYywtpnh4mGF7RD251XSZMXbrIQdbxgVABjoPngM97HvwXEQMtAINsDrYIokdrjJpGAKtC4PJVFV4D6X2vy0VxBTl5bTPacwwuVLFBI+F4HRTo2tBDyweHN0rT713Q9TC/XJb5hwOS51dkrxcpjZyonC6RwAuv4ZtDxAnA4AIlCWnAQpZzFVckrwQfP2VvJURJn0u7c0+JzGNEj6fS++bfXF0LKL+jijLwtV/UMZcWyAIHmk2E1TDox0wONILYoN7jZPt8/bLWUbHwxM5zJ5qkfeXvzcyXk8xwast5YID/Fr0XHGZsnbQuEhvn9ytJS+s1ntkhMeNylbrkKdE/mzhzgjRn76q1B1LxTEGoWygiQc8WehIYAgUah7X8xmlqJtwQ/V3mI+Xynhcjr1ZqzqizAXtfGljJqdujexLsXzPVIlo04VzNBSiXUn4kqqJ13NiWd8rpqejR/d9wl2A1h1p0IszcqMDJFNrJPA4ZPz7zT3oW3+/C/wYaPRKMBGswpX0s3fW16Fke5d1Nv1f90v7WKdDM3Qumdw9+rZ9IUQ91pVdHdHvVo4qDmH4bnm47g2tfpo5kpSyEQTDqZfeHuQ5+FK8WH4S6TtyJdOwOsMpANjAwIC198NbTDo2GQSVTRBu43Xs5enGI2LjAyEG8u9iqqOn7OOL5RmZ9azg5B6Twt5/64XqU4PM3x97tYflEZv1sevLdyt9Zrpn092G1k8RZw3QDu6oAOnWTScCB7FwMA9vlQWaleWN1Cmj+B9bCR88evfFn+EiUtwFPmBv9RLAwZEDU/0mVFUAeWnHOWGG97QFJKrnEhyRiki3ZfvX64U5LdW766WlfzYTDHTNzCinhyGIx+NlD8o35tcW5tM1ShnRR6s1weTY06qBs1iLifKfdnm0/zwcL5/aOg/nnWBuD5r+qipOpXqMLUmOItJoh8n0e8BjTSJ2DsM+jvvV7SA0Fc4azXZWC7zRmm2QPuKka7edNQ7C6HdIwY0rsvHrA/Bsdt/Cinuk4/Ndh/Vfn3+Qj/d4XXFy+tYO/G60hdSYtPj3ckZpCUNVrAm3AAkmnwAKJYJJCXGfbhjzeCLrWAQ+yx4uMMNQfhLEP4FVoAaVniclVLNTttAEP7WJKkqoXCouAGaIwjZspwcGo5EgBQ1AcUEcd3AJrESvMgOivIKPAvqsY/SR+hz9PN6Vam54ZVnvpn9dv52AbTxEwr19/APK3xRhx4HaKlzj/dwrt49buBA/fa4iXbQ8LiFg6BDpmp8pfXhTlVYoa2aHgfYV8ce7+FBJR43cKJ+edzEkfrjcQsnwTf0YfGKLQpkmGOBNQQJYq4OQq4a9+idkiW4REQ5gMYTljy7QUmd0aeR49ntRRg61sjt18yKcUo7d5EMM2msMKNlnbyn75F6ghRXGFMKbqhv6bmjdcaI6NvXbZHNF2tJ4rgThpQ9mW7lMpKBflraTbnMROfPMoiGkYzshs5MTm0uU7PQq5nYmdybR5mkV+NUbsa3k7v0jHF/sODUNVDiO81hqvOSoGqgwIsrFSNbvGjqa9fF2umCMzNuYhGnJLjg/3+wkD0Yst4YQpNfcxJONHQTruaboMuwNl9f22JuJIliuRBfRDg287eVLuhJemGHLSfd3YJ3c2DnbPUKDf0lb6G+gbremHmFm6YoM86IeeOufDr4XxzKfK4AeJxjYGIAg/9zGVQYsAEhIGZkYGJgZuBm4AHyhBlEGEQZxBjEGSQYJBmkGKQZZBgUAH4JAw8AAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCQSBmAfMYAARZAEB4nGNgYGBkAILbCqeqQfQjXebTMBoAQrgF/AAA')format("woff");}.ff5{font-family:ff5;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff6;src:url('data:application/font-woff;base64,d09GRgABAAAAABVYAA0AAAAAH1AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAVPAAAABoAAAAcn3rSFkdERUYAABUgAAAAHAAAAB4AJwA+T1MvMgAAAaQAAAA/AAAAVla9YgdjbWFwAAACSAAAANgAAAGyRp6gfWdhc3AAABUYAAAACAAAAAj//wADZ2x5ZgAAA5QAAA9zAAAXMILWWuVoZWFkAAABMAAAADIAAAA2JZRLWmhoZWEAAAFkAAAAHgAAACQE0QEnaG10eAAAAeQAAABiAAAAegj3BLBsb2NhAAADIAAAAHIAAABylbSQKG1heHAAAAGEAAAAHgAAACAAfQBUbmFtZQAAEwgAAAGjAAAC9MdDbHdwb3N0AAAUrAAAAGoAAACSBawGEnicY2BkYGBgYmRjYb94LJ7f5isDN/MLoAjDI13mswj6vyKTFNMWIJeDgQkkCgAjLQn8AAB4nGNgZGBg2vJfEUjyMjD8/8wkxQAUQQGsAGVwA/sAAHicY2BkYGCwYAhkYGYAASYgZmQAiTmA+QwAEE8A0gAAeJxjYGRiZtrDwMrAwNQFpBkYeiA04wMGQ0YmoCgDBzMDDDAyIIGANNcUIKXAUMO05b8iUOUWhvswNQC8BAp0AHicHYxdCkBgFEQP3ggPig9FSZQn+V0BL7INy7MiizHcmunO3M61DP9Y52dg+9zMrPRcDHTk8vHvaimlIcNQECoZaZA76ntcdiomWjEeB5G+oG3RpRWxkSjFBCJKnhdFvwmsAAB4nGNgYGBmgGAZBkYGEFgD5DGC+SwME4C0AhCygGldBjMGOwZHBmcGNwZfhkCGUIYIhkyGcoYqhpr//8EqdBj0GayhKrwZ/BmCgSoSGbIZKkEq/j/+f+P/9f+X/1/8f+H/uf+n/p/8f+L/sf/7/u/9v+f/bqjteAEjGwNcGSMTkGBCVwDxCgywsDKwsXNwcnHz8IK4fPwCggwMQgzCDAwiIL6omDiDhKQUg7SMLAODHEyTvIKikrKKqpo6g4amlraOrp6+gaGRsQmDqRmDOWEn0hwAAH0DL94AAAAAAAAAAAAAACIANABUAHgAoADeASoBYgGkAeQCGAI+AloCggLCAwADQgOCA64D9gQ2BGYEvgUWBU4FgAXABgAGOAZsBqgG3AcWB4YHwAfuCDAIUAioCOAJBAlACX4JsAoMCkgKgAqwCvwLRAuGC5gAAHicjVgLcBt3mdd/V5Ys29q3dlda7eq5K1mytWs9Y7tWHD8TJ85Tdto87IS0SZvQxA2X9Gib0iSF0nIDhWuZlmM4bij06Ny0w10IcIVyPZiBK1Nu5rg2R1pg6HGhzfRupoF2KND1ff9dyXLalCETaV/y/3v8f9/v+33rQZ4nlz+M9nnu9wgejy74UkmjUq5Va+5JtVQU0b5DaVpOWDTZEc3qcb0cn9kbpiKdfB8yYtHskMeDPBXUiS6gPR6/x+MRUolkuZRAF6r2c9UqqqI9jQb+TW35KfQCcc5Dw4XgR01LyDHxQsB+Jhjl5AAawwfiAb/wzr54mPULxBfjYVjUQ3is5TfRy8RRT7cnhFdoO+gvG0lfSBCLVfTyPfNzp/Fn+5bDW2aPzqKBj53/+sfhc+rGs2dvvPmhh8CPg/DX34F1IjjePEpWysOIhdWcsGG9EFsqagh9p/CmaW4zzUx+bbonrG8LMqyu6wY6m9TThL8RtewgyeG4ivB1EdbLu/lLwEJrUbVSNlJJn18MrXI0JPgp5C+55+giF7W/brIXju4cSQ9298R5LrG0c/HMB0NnIj9iIkrQUnmDo87fsGNoXVqleSkaiU4cuvWGW/bxR0RZDEvYdg5y8grYrrX3rmlIQ6VitWw48cGtmuvQe/yBQF+5Y9/iR7SQqHZxm9LXbZwZ7TdjZilljBQmNF+MF+KHds0dnims+drM8cZ4JKqF+J6IOHn9lCEzUW1A65V7gpIajVQn5od3rglvd/ZKAefeII55Uh7DzXII5zTUSnfF3Xu+joYRuAEJT7EkesOcKFMMaz5lmpX/i/JdP+9mQorGTZhP/+tz+i6Sg/wbu7homEJ7mU5etb+GBux/x9iAPYA8XCQOeMz35EGENLihw+0CqrDwINH0JeRg7+LZxcbxBCfEumObhufWVmazQZHjSC6K/LDnhf8uDc8fe7bxl3tHtbAq8cHKTG1gc4FjWQqRKo+9+rJ8B465BD78FPYi5ulrelEgWm40we5AognZFMashN1DP71rLjs9avzdkakJVRKjPiZSv4Uamt1xYvtktbyhM7G1tOn7N5yMTdw99+l/XJcPq1qICwRu3tl/+3xl01A+ET64EdvHdbwVnYP6iF9dH7xAEa2yhgy4Rb0xoym9+NMR6zO6aFnuo+KaocVz6KjSm1WVXNb+bHYyE5JpoUfOkr1hNVNxc13x1NAFoh9XoRNlRsdL6818B5GILkQYirG/LUbQKJxEFPsKopR9vNj9I1YQ2X/rFnmRe+IJDnxOe55Br6KvAG/QbeYQWwzyatl+rDyItg8O2k8OltEe9JVG4yEgk6t8AC7paKa3H7kRSx3YB/tfHOOIsq8o2CE0IQLY2uZFxyGXW4Bi0G8Ar7on22QFJ1G1TMqPoUIhB7jADgDZoijxRUnMdCP0m+IBmmVllf8Mr8osSx8ohgLaCb88JPtPxDpD52s1XSdZVqLQ/DyiJJYldbmbRG+rFK3and7Ak8hr/xHn1ADsXGpzSHPnpDqBCUlF4AAGb6aAHNRg0OAH6NLt8wcefPDA+CDZgRAl6KTAM7yXDIzlRw98YCyz0UsauX+YXjp/38fO5/1dXhSy7mMYpicYrK39xMFDnyhflwLbwIPodaidAZxLCkc+glIhh6U01LRtVOBOcaV+WcyWUEbAYq+TgsGTvzpBKzxPkjyv0CfypvlZy5Jly0IfUjn0Os0yLEP3PZuQ4LCbZlgp8ayBqfR53RCiDqZkhy8cH5qcXMv432MRyMIp25rRPPel/Dxg+Q1rg5U8tS1oWfsti6KcQ/B83JqzlPinvqAoYCtJ/OLQ7YZu6Oh5/P0/l7xxQ5epc/avcTvyaPB1GezH2hx+tU22VCnD1gMY0GVOtT9jmtGoaX7BNM2XnAQAWbsBGbpdGmZYGvIM6+LF34F1SytxVUssiYuGZHG5tG4l3YgkBdWJZmTwHL1jbjXDSoNSROr6SNi5UMJmLd+za84XkEM15xq6kkSjR2w7wqOAfTMtOdfPwzFqX0JdLNMN13aJxjivAM4uAM4kjDSPQHmTBW+57i1qpL/sosuPWclpHrUquuDl5fLwweGKzHm9nFxxT7f0BIq1oYGuQE/AHLrO7OxGH/n8wqwu+zoi6c17P7+wOR3p8IX12S+d7U+JSl/fyQesdFTLlME+3udXIB9hT9LhKKcxvGeTMT06T6rolSNzx0OWdcqyQnC42Pjg9vGRxcWRcfTVjccec0Fk6EszvVM/n3Tj+7ATX8Iz4jADtFvJTbOJ/K1YvU6sK6EOo4ybfTGG6ghd8Pk1NRrLBLTuwWLpXaF7dwT8A3cUAl0Bf/8gn+nIdHNdnTmGRgPHKkMjVGkditBH0bvysDB7cqBPi2YKp08OZJMbA52RDmq25/p23zrqqXs8aYdLcbGNoHKdwMUniZLbvkzU5G2pjlb4IOO2EPAafokuHp5bqPtZRid8HM3xJCL78yOlkUNL9ckj22drflAvwA7pDuGIuTYX2zxaUa88eGtW5KzTPT2Mn6KCFTVSz2wXFHZXZeLGbIi3TgOGE39RSWv9AY4W23X6W9i/zGquYK/awlDrvtNogSF+6xTIbcAKXzXN/HHnilfRqVXUYJfc0uxzr6dVvskL5PKbRADspbE9qELBB5VyVV06ZLhyiwhYods+d1sTMWO92XHnlKgb9jf23H33HrQBY8Z+enLzlgk0aejYBub+K2DDatcokI+4EhI0gZY9v7RCPXlAFjDwFesmU+Abs71wNNlTt7EWnOj1wWzhoGWxhz/KWVCeIQY99hiRBstv/yfYT3pPnIArQ/+PP7i69vdEAH17lW7INDsA6AW/y75laK4qglAzFQo5DaBWJ4iAom1VBnds2vu3H/UuWSjOhbSHbzrApMzz+5fK2WKSZggjHFRTO9ZMbSEbZDQclbcsrn3et3bGm0soOuMXgmC/a/n3DvdF8K6u2MdSqVWOKmprFgCfo1kun2oMm4TBC2TatKZVrjy67cT2qVJ+vGqVNl9cOJNNAgOiVzHDf9E4s3dk50h2urcxB/meAnsvQLxpbK2pTDDeHZVkoiRFNgMEqKMXmPTG4sI9kdK+kUc1cQCV0rV4yD8/PCb5OCZ3PJDqi9+7J71xqn+LHK0hKZlPMfWdVTYAcSUhrwTEpXpyzZ01Mu3WWmkFh9VnptLUYzg0grCmoyxRXLft5F0Qoxte2nz8ulxp81TRWmsYrNh/Zu/i6dQZHJ0t3zGZGZkbHdnZcLVEGeL7CcSnAAu1ImzKQNjMBOZWJzanfv3oJ0J2k7n/vnt2LRyCgrN/HdxZnpagXHPz1P7C+p7jPemcdu8/33vn7pBAVtdWma5jt45YGLe4Br9J3IKZ3FF7maSKWirbKcmr25gTtkagb8Z4vWfbEpa2S7sty/6dZe3ebVq7FsZ6wtkwkZGiuQkDy1r7FacoNd3Ij86Q3dAiSY+ynEDL6BnoZ3XPVtxBcEIzrTEn4wuJkkZUcSfDfvhc0et+cNLh0xrWINF8ueBNNlsOHt6WVa5b8UmsdGCqoJMo0MF0ymhydzWduv/790/ynPaB6WKfOZh9tLi+WEynSoeDfFIpROSqxuiLH19EjxbCDOvtzPZO7A91d/DdkFyk8mOJ0Z3z62YLmqGr2crYfiX+92nY7nS1Yv+QkZluH+ntkjKxQgHntBs2EAFm+lfNhpUm7q/VqJzKwI8IVHjYsjQ5mVufssy/KZipdMEE3FTG70uZeG58IZcerX+5LXseyz100cULiHf0HLEAWtZRH+8SHw4+STeVVZAEz1n2Ly3rKLDLAyq3YD2QsBLw35lMIUKA4w/QS3IiIUuJBMTDw9r21frjfYQV2KnhU2ckW6E32/qQKYYPTmZB0plmFg6jUe4sW2CZIEi82NIDCuY3kUb3jk601BX48PSdOsuRhn74HJ77wYcXwYfQ+0WHXjTt75rWydtN63Mqd7uTLjdJtgx/j5PUhb7lmWhrw9aWtCXUNW61VVUTehqBHxNd1oa+TJBW86rcv6E/xAdpLadK/XNWWNPCVkz3p/MDkcyaeJ7xalhcpYmXemPjg49jYQWRwsXY0ONNlaXBUYr29aVqCfpXtDsfORgCf/v+TAxJfxJCUQ5dC0NQlayAIUR4qsA3LwLfBNpvcDBSWiMmrqwX72rM3XnnE3fumCkVN84cnAF+Pv3M2bPX17fvGBnds8fFYddyFl0Gv1f1oWsCRbp2Myhgp00rhfkSlGhp7F394CnH77d0g+Eyq/oB4cksZ4mIYxeYrGMlY6umIJfWnNcyZKUdFhEpfAlAWZts3HF655iFmDCMIFkgtidGrDU7Nt088U+AyG9YmKrzMs8w9DuvkRw6ZAxsn19bn2+0dP9rYDvlcCgYpNCfKHQRvaZm1U2NG4E2TXN62jSPqNz47qEcOiEqMkfcMnXcpUxcBNR43sXDJOzPj2F/JlrdAHchrPHAUEvgFYhMAUKrky5S2xOfGyxIPC/6MZPZNrihGFSwkAsxHZHdw0Ninyr3rRlL+OXshoGhXGcEP2N5L/I1hgcrNzFqRVfPhHL9USCJBWjINL8tqTAS7fP6g4qVCCpphWdZcwI6T5AKmooQ7eEIv6BY4LcEfn+PyDfRkDRA6TWx7AxCrTyFBA2ad9257bw4+97i3Ts2F8xZR+g9YpqPQO+QKFUleU7gybPr1o9PXdKN9XhCYuj1hv7LHiZMdWrhIEMzNK4f6NsInfP0NuvHTVebMATcQeto9S1cPOZ0xm+N/LVLux3xuNCbw1CM8umCYYRjp644hPI2J3Bd/foPnYsfOPsjLv8RvQX2Yq7GJB3xkyFXiUylZQq9ZcpHe0yaDfmOyqZ53DSZxUUGn6BP6va3DJLl0LQzA15CEawu8foUrG/D+iW3T5MYAjCNOMIuQzY5SkPOSwYJj/Wg6GuOAHNM2rIyRPhEIUEb4R4hHuO8Q4o8sESz8I828kYwoYQoPmfAjYGlAfQpmbK/y9DB0Kf3FGVBRusoWSe5JEv+7nQkUt74Fu7srl/yctKJu9yMm/Kuem9GESGYAOtE7X3z8DAZUOPlqFFUJDFKer10L9XBUOivwk5eggfmV/KyISBaabWSEqNRsaPT60VJpau/QKD9Tqb+gDpcHY7z/zPwx3kH4k8038AgZ6BItScKR1j4UXse/1nU/iTMDX4WJf+L5AXgACGKNgG8/Kz9i8vudN7rJ3meDrKI5wB1MGL0RwV8h2Ls/1UxEFnaycnLy08hiziH32N3CMkKWy6GkNVoKNUq8Wi1Cj/5f0lZKqMAeJyVUstKw1AQPTe2vha6ETeKzEoUSYhpFeqy0gqlUWmtuE01bUNLrqSB0o/wT8S9n+In+Bee3FwUxI0JmTkzc+Zx5wbAFt6gUD7331hhU+1Z7KCifItXcKJeLK5gW31YXMWWs2bxKradczJVZYPWq8kqsMKOqlrsYF0dWryCe3VmcQUH6t3iKvbVp8WrOHB2cQmNZyyRIcEYE+QQBPD51uDyLXGD3iFZgiY8yg4iPGLK3AXm1Al9EVI8mZiH0LCuTbxkFowj2qmpFLNThBlGtLSRd/Q9UA/QRws9SsEV9Q09t7SOWRGX+nmZJeNJLoHv11yXsiHDpTQ96USPU72YTxOJ0ifpeKEn13pBZyJHOpVhPIlmI9EjuYsfZNBv9fpy1bsZ3PaPWbfLgUMznCbOccojoxuGOtXd/JS4ycCMp0NTzyjbhpsbnXFtsVmaxyzBBb+/6rnfRUpOwKW6ZsnFigPUWVaneVtn41gCz5cL+ZnALfrSEzTcGk8d1P+e+acHfuUWP2LMWee8iPISynl99hUG42yecE3s69fl38W/AH/Jeo8AeJxtzckKQQEAQNHj+QAy2xhKygYhlO0zyzxH/sZv87J26y5vV+DH523vH8PImEBcQlJKWkZWTl5BUUlZRVVNXUNTS1tHV0/fIGpHQmMTUzNzC0sraxtbu+h3cHRydnF1c/fw9PoC3hQNvgAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQnMgZgHzGAAF+wBmeJxjYGBgZACC2wqnqkH0I13mszAaAELMBgAAAA==')format("woff");}.ff6{font-family:ff6;line-height:0.915000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff7;src:url('data:application/font-woff;base64,d09GRgABAAAAAAxUAA0AAAAAEcQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAMOAAAABoAAAAcn3rSGkdERUYAAAwcAAAAHAAAAB4AJwAfT1MvMgAAAaQAAABCAAAAVlauYcJjbWFwAAACRAAAAJkAAAGSUIZs8mdhc3AAAAwUAAAACAAAAAj//wADZ2x5ZgAAAxQAAAcNAAAKNCoytidoZWFkAAABMAAAADMAAAA2JsFLiGhoZWEAAAFkAAAAIAAAACQGCAH5aG10eAAAAegAAABaAAAAYim0BVVsb2NhAAAC4AAAADQAAAA0GtIdqG1heHAAAAGEAAAAHQAAACAAXQBHbmFtZQAACiQAAAGqAAADG8vaZk9wb3N0AAAL0AAAAEMAAABUAqcDinicY2BkYGBgYmTzszn+N57f5isDN/MLoAjDI13m83Ba4r8dsz7TQSCXg4EJJAoARqQLBAB4nGNgZGBgOvjfDkj+YWD478ysz5DCIMqADCQAfLcFBXicY2BkYGCQZHBhYGIAARDJyAAScwDzGQALrgClAAAAeJxjYGS8x7SHgZWBgakLSMsy9IDo/3MZHzAYMjIBRRk4mBlggJEBCQSkuaYAKQWGCqaD/+2AKg8yHIKpAQBy/A0dAAB4nGOUYAADRl8QwcDAlMyQwLQfiP8wNDLxMlgyvmRQZjJkUGP8z2DOGMAQDWQ7ApU5MQkzeIFpIJ9JjUEGSEswljA4MS5j0GCcwhAG5LszfmEoZZAGAIAlDisAAHicY2BgYGaAYBkGRgYQ6AHyGMF8FoYCIC3BIAAU4WBQYHBjCGIIZUhkSGPIZMgBypUxVPz/D1SBkElmyGDIZshjKALJ/H/8f9//zf83/l/2f+n/Jf8X/1/0f+H/BVBbsAJGNga4NCMTkGBCVwBxKmHAgsRmZWBgQ+KyM3BwcnEz8PAy8PEzCAgKMQiLiIqJA705OAAAAO4hHQAAAAAAAAAAAAAAAAAAMgByAKwBBAFIAY4BzgIOAkwCgALGAuQDIgNSA5YDzAQsBGoEpATUBRp4nIVWa4wbVxWec2fmzssz49fM2J7x+Llje+21vX5nd+vVZpVNNmXbfSQhK6qAkEghtEqLoCKqoBAkhFRQKpUf/IRWAjVSK6CoFPUXTQsC8QcE/KkQKhRRobQkQFoByoZzx/toEwQra+Uzlu93vu8757vmgPsIx5GXyfOcz3FgQKlSkrodWzKgDuG/YjBMjKFbwGfkJSmb+0O99qYbFambfnMgpr0uvn+Mpl24kDVE8mjB5F9Nul7i365luWTLS9oZPD7EeJe8wOW4KsdNGYQdW+FL/AHAPHR8XqLScBAgcLczIE/yhq7PJ2L0/vMjBGqHQBn3Wrq21ctF/G+PIo2Ni+2LJw77hkGkGOR2/hmCnnItYgXro8eD745Gr89zSIv74q2/8C3En2LoQqnYFHcxbYmnNqLtl+SX+vzK6dVKtj9XryUk7TRCdrMG3Y63t05txrZp2qti+afxmX5epUY66B+dgW+6lp3ZuW9zfXMDnmbvGedDt26QGrzGNbgFhhoyXQRaQr5joYs8S0UJq2FvOIbhoNvxRROGhiCxfsY8vIGcp7ImFVbOLi5GlJV7zrZtSbMr963JYoTIRItvnY7arcy0Fo1cjpveoUaF0qwvGuUsaoU9JO89Pard5cVIqdFeplpsJMtSHmjELs0Wn/ogEN2qeX4D1HjAhRqVsF8/7Jd1G7aGXdmOTyZVpQmlIiptEJ90O+wzi8KvQU194ORb3d7fZg+VFEkkDk9VqqTbzXLPNxVREKRoMb11d4SqfEeStdL1G0ZcFCV5nupa2soMZyopp5XJGSNVL7M+CBdgHxfRK4eb2ddtuNuNM9xzbYjyGfxeM2MCN1GvaiZOl1evtAY/W51uU6afQd/pujP5jufIkiiIkllM5QrRqIgKJd25v17v/JFJdfPd6znHGxRybrqdzupx1VQnvQyxlwZqUmBzCwYpFQzYY2/jtE6UQUOB1YMe85TYghU3d64JhCYb+a11nUoERICIdeLkZ89lUl9/5IG1L9Gp4P4yCJbNp4pNz5pTFafGy4oSPHrh05//1JnqQvkrzJMPYRMm+TFXw4JZwEgTE8EkWof97Sk22QCF+vjAwAxKU9NOLkr5VLctye32MTZMuEDHovG4II1i5StlLyUL5MGM6kVSMf3BcnnnObY9sElisfL6d6ioxBF/CfFX0YvKgRMJNrjUhPetLhrSHROmAewwH3Bu55V4sb6ht1i5u7rMjjkwKpvNtUE0nFFIBOXlu363t7e4RG8np6rLa0z7w8j5BPkWZ2JqcMPb4IZ7+7Rb/2KX4BpGEduaWepku76OlmNEYd0OyZ1jefRK2nHSicmWMo2PI9gScmRzT9mhLeR2J7/hgEUU+m0CrkTSgnfEctuOqmfUsmojSnyXpIUkV591p+ZUTSMk/uLnCA+2rUQvS1np4+8h+syXLVBVRb/0hoCTCZNeGOcN7MW8k/Eewz0h2wdnTb4begW/+f9e4fz8b6/uQYgiQqhgTp1s/xev4CH2oGMFDWYVeuXhnnwS94RyWaZins2iNIZeEw6WdEzIoLOT6vb/8feXJBoNxi0Xl5KKghwrZ4J+Tn/96tV/vZ0r9jzLdvv5vOu1M57uzc3g+albY3IcueUn6YQJXpFu04clKEuqQaloArUdTFGyQNVq78MLR0oVxsyL0kfYeGBI3H2qvuAaovjVwtluvSuIZsI//2c32OjXOz8KdW14ScwHd7a9mLeeKlzTzUhsz5+fhH2wu1K6c06Ytnyo7YuCbIw+ZlR2bWOa5lFTHdKDdt6ICAI8npBAOLL0woGiS0HXliLmxM/qrRvwW9R0mSnK4peOSbjjNsufJqngKwgf4NUhJXdDOrxVfDaijg2X89+b64Fo6qYmEd0kskJpfftejVfdhFnKV/Wq7j8/rIKm6qoiQEQHSaHyzPFjmuDkCm4miAZf+0YMgFIZ/4qBaMpHBqYTEXlJTpqN+UsRgacilXjil0FXW7PxlEJFyYo1sP9T2P8rZI1l1xRlvS3i/cGSah6G+2KFQRZeeRNq8JiwPux/wh8kNROTqu3E0bEcjmh8mwXZdkfREsGsLKoAraQdfeImiUfL4c+MrXL5aqfgSxkfsY/iPG7Az7ny7Tfv+2/9/fgIN4HlBl366Nbh6AKCsr0Yq7Fad0Xr0FS4JuEaZE4urIHHEHdeq7or/bcmGwjcZ3ARhojpYpFEAESt8EF/EhuOO4HygfSUV53Z1VmxBrSastMilJ6OZH1L03V4jo/uXJqehoeliGeYxs6voOkkiT6ZBzyXVPD8vZxqQmv3FxoTdRHYMDAyORi8N6ts+L1YaugRXTz6sJ1I1dWIRkD/6UMyEUqNREJZPCfG/LrGwkr/4QXZtkFRn/hCWsOhULQrP9BkWzIfOC+YrI58/2WD4/4Dk5J/IgAAAHicpVLLTsJQED23gtGNcWHixsRZoklrLWxgiVETImKoGJYWLdDQ9GqLIXyG/2H8CL/Hj/Bwe3XhY2VvOnNm7rzOtAC28AqF8rn5wgobatdiBxV1aPEafPVscQU76t3iKracfYvXseMMGakqm7ReTNYKK2yrqsUO64vFa7hVRxZXUFNvFlex5yiL11FzPJxA4wFL5EgwwRRzCAL4PHW4PCVu0jtilKANj7KDCHeYMXeBgjqhL0KGe3PnoWuiLs19GbmKqNHOTKWYnSKkGNPSRl7TN6QeIMQp+pSCc+oePVe0DlgRJ/phmSeT6VwC36+7LmVTRktpe9KJ7mZ6UcwSibJ76XhdTy71gs5EajqTUTyN0rHosVzHQxmEp/1Qzvu9wVV4wLoXHDg0BAocky4uumGUFcdEbc6XkhfaOqU8MxTmRudcWGzW5TFH0OL7vZL7VaBH2inX8Ignk9UymU1G1O2aAzTYQGfzM51PYgk8X1ryOYm76t8bpcnjU0x30HTrpB80fg7/V0v8Vmr1g8ZkUjCs/DglG5+zCC/jvEi4Ps7iN+S/vT4Amx6E8QAAeJxty9sJQGAAgNGDKYxgAGUAuUSE3DKZPb3zD+Cr8/iJeZ/gtvgrDSKxRCZXKFVqjVanNxhN5vCuNrvD6foAqLoKMAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCCSBmAfMYAASmAEd4nGNgYGBkAILbCqeqQfQjXebzMBoAQuAGBAAA')format("woff");}.ff7{font-family:ff7;line-height:0.899000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff8;src:url('data:application/font-woff;base64,d09GRgABAAAAABJYAA0AAAAAGswAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAASPAAAABoAAAAcn3rSGkdERUYAABIgAAAAHAAAAB4AJwAuT1MvMgAAAaQAAABDAAAAVlWZXqpjbWFwAAACQAAAAJ4AAAGCtQnWZ2dhc3AAABIYAAAACAAAAAj//wADZ2x5ZgAAAzQAAAzVAAATPI+FVSJoZWFkAAABMAAAADMAAAA2Jf1LW2hoZWEAAAFkAAAAIAAAACQFSgEnaG10eAAAAegAAABVAAAAWgxmB39sb2NhAAAC4AAAAFIAAABSUVxMmm1heHAAAAGEAAAAHgAAACAAbQBSbmFtZQAAEAwAAAGtAAAC9Oimu2Zwb3N0AAARvAAAAFwAAAByBAj7LnicY2BkYGBgYmQLONmbE89v85WBm/kFUIThkS7zeTjN/V+GqYJpG5DLwcAEEgUAPckK1gB4nGNgZGBg2vZfBkjyMjD8n8pUwZDCIMmADFgBbGsEdHicY2BkYGDQYPBnYGYAASYgZmQAiTmA+QwADm0AwAAAeJxjYGT8xziBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMFQxbfsvA1S5jeEJTA0AaZUM7AB4nGOUYAADRl8QwcDAxMvwguEtgzdDJUMxw0yGVgY9Bl+GYCBdwtDI0MlQx9DFoMvgwhDB0M+QyHCEwZghgKGegZuhgyGOIZlhDpAXwJAAIQGEhw/qAAAAeJxjYGBgZoBgGQZGBhCoAfIYwXwWhgQgLcIgABRhYVBgUGLQZdBnMGawYLBhyGSo+v8fKAsS1YCLJjJk//////H/R//v/r/z/+b/q/8v/V/3fy3UZAzAyMYAl2JkAhJM6AoYwFaDACsbOwcnFwM3kMkD4vMCMR92Y1EBv4CgkLCIqJg4g4SklLSMrJy8gqKSsoqqmjoxumkOAKAhHOcAAAAAAAAAAAAAAAAAOgBoAJIA3gEIASoBPAFcAaoB8AIWAmAClgLMAxoDXAO0BAIEUgSgBQAFMgWWBe4GFAZiBqAG6AdCB3wH0ggSCHYI4AlACZ4AAHichVdpjCRnea6vqrqrqus+u7q6+qjqs/q+7+m5r93ZZdhhdtd7YK83Zrxer8FHYIOya0eEDWsDnghsYzAWsRIFEDaRpSDHUpREQfwAAQLxix9BkRLJQQHFUg5hyzP5qqpnpnftKFppp6o0873P+zzPe3wIirwF1tAY+ggiIRkEAQSHpuxsFbRmQafZ0FQl/L4vYGceC7AhjgcAzZIFRfvOPIaztP9O5xQNrf04RJEcQQTIHzYNDhd+GiIp7/VHDYMLIAD5zf5r6EX0e0gMQQJKEB6fy7ZbY9w7nnMxwLga+BYnKotqvbS0udFnRI4kQuee6j3Edih5IbX1wOrTO+f6SZki6UCw9bWvHd89TSEwAeT4/mvgTXi2AV8UDoeHt1vdMWi33BhuBvDkN/0zOUG/9fn7FYFzw4AX/RNFWuBO/OcTz26KLC3CQO6Zf4CcQ0sohbQQJOPirUKMwD14FhDBlP8wOT4Buj5NvPfg/oQB9w2BZs6ZAUPncOsmR7Fs4ua9gv+RTnAsZt8QCCP5hxelf+INau6GJvKhAHd9nhRJXRiOQpwQoeY+XRCoAHVjnjQi/HBAQ1yPIx9Gm6iMRGHmSvEIS8puDY9wNNFm5flsKMoruH2rUnkhR5rw0fpjsL3y1bTKBbk/WXnJ9n66ub64//vgMnIDUSa5uvR1uv6DeyK4/GSRFyNLFkZETScZdWqrT2iUSsozwJaNStY947OARy2wjRAurpRlt5oWalX2/r5SAXMw6or7O5X9V9HrUCfe1YkAk0iex9DrzF6AF3mFAe9xAq+gXwqJ763JKhcS0TdFDfF0PrH/X+ga9G3f/fsg4TnHO2OStRIHzYare7YI7Dbko9GBzynb9Rf8RT8ZdG1xtnfhU8PVC01VlTGuYjln1qr9fMHJfuhj/YY5mqEDrGTffGjzo+Cfqxfj9dX5S/mV4UqE14QgEdaNpVp6GEueqdgVLh/nGbN8+RSCIVsQ2zGILYykkOoRj51uBfhxVYg4DnIunqCqaM1Gh5h6RsVXrp68fO1YdvDc/ScuPDBTHnFztfn7F6ozD/TGo/VHFrsrj/544/OnFpZ3VKabn79+vDfaFvj5f8mW18vZ8tpbudHFXql3wePps0gPPYOWEHWCI5dxec74KIgANOe/qxzL7f2bpIMnBZLVInvf/g/lPK+EfsZKGvtTUoT//83rLIKgyBP776AJ8NdIFml6p7mGq4DcoTnCY+CdisFEmo3uGG02DnJ01eigCYW1anqOx9uj5uKtzVoakw0Fn8fVsBAIclzqzyNG9VIwolQv7VLzWiesUu2t1Stv5ClB5gL83rsCGTsucaHHsq3nT/Hp7Jchpj/afwe8jV5GdCTtOcH3kZzyNXed4KY6TS94+9nTvQ1yq+8ULjpYodUaHltOxzpXknbnQaBeef30MSsJjpuWifJ/mT23VGp/cSs9+oLL5W2YvwjzTx9mf9BU1IPAfhiYvGcvcSZS3TrltF++1F40w6Iu8smFT+58osmEmPAxNU3y+ebJB7/dzUdtVY4w0q3NqxUq7PobRW7CWA7Mq4B0P5jr7mGK/zffzt18Z0tO4cMO9vj/y/iLXv57nfcx7mJ7esJDCilNYzvkAtZYEFbdERE+KqLZ8BkxEg21+vJ9nRWykB58wuKCH/MpOZUwSvdG4n/nUYNpannz6l8My4Ld5g1CfhhS89+yvtz367+8b6JD9Aoye6Q6LHA3ihtHhe0QCxKTljAxOxT/wBhjAKvRmzjoMK6IOp6ISgGMPekUzsxyCrNQq49iKm8EGXaQ6Q/yziKOYygekPRSfDBAk5F4WCRZEFDC9Kpp7X11s51ay1uapSg8hf0CLJuWHA4wtKJlVMHx9VyCeBXIWdHVM8BhkDF0GtkYnQV3FxIPpm37Z0Gz/pFmJFE3YqoURsVodpjgMLPV6m988fQwi6mwlC5DE+/Yie7OSa3aSGChmBaO6wIZRPW0Rj2aOb3+4GtVTnKL6Z7M8JlNp+v5+uzEa0NXTW/eu00fksnhcBh/YEFB0J68Hc91qCMm+laqTPcds5qLxQQWD4oQzs2yZ7dCdb4+6jGcmKaxAM+mdkPljlPNKLGvX4j2Ouf7dUHkZTiAwP94rvtmrtvuvBRn1UqOoSnI3bOwxn+NnvW5O+imcB/x9T5q5xAcOoUKU6bG1q8vLDo9cisQV5sCzom2+yrpSS2uNxkMh6BKCVHRYtALu+nH6jlZ/QkfjBYaLGOmH2tkpfJocxCM1gsUSYHPqNGIIMU1z4eXJtytTnEHgeWI93UiAutMZvKE4DbEjrmTy1d4wiRvdu38MHA9T5ksZNDvUht2f3vVsjuiHsbLHRA2DHwnoNCZsM8nUeoVWyVWJRrEN+wpJvd+Ls2dL6Y/okkRARexDtCjBmae5FVC4bZpOgTxfx9y+yuI35rWXr6zt7jNxIUOfiXEB6nKCfzqeafwlIM9hkdVomgQ0dQuVeoW6jVOAK/6gQdckJex84bHURNyNITeX5+oV8G89CcG8+W7+30WhQHjIOxWw5Hhwhqa4EScUgVWrkTVnGUYDEUzSiotRO945ak8qQUoFjiVGak5TtUcnTYsWgMkl1RT7c84+eR4cLacLkomcbt6r3n0GvxcOfZKAuNoezSq1+qfWtQlFPN7zqarNcxjzuMKHMgIcROHvaYrH9gSneR1RwKHMutzBatA95ODWiYb4hUo9QrG0iqOB3nOlulYoy93FyrtlkhZui8yN79aTqvWN8qFc+tfcQxP5jDDRLqqyIZMakHtdLu9Wvu5Oi142qLIk1Db30G8NNxEjrrk3ePwd8+dHX/oy/cMTy2ls4Nr2fTgGpAe/s7FlSvfPXMsO37mVGHwBXgWvW+Dd73+1ZucBTv+pNN6ZvHzfl/axPRAAu/e2gwXRbRWzhdecArpT2OqogQCMGOFjbX6+rDbnl8+nEjAfOgNRcT+ETrKAm8xRPyExITM0JzWabdPz0/tAJ/bt9EIxJaA6OCNYgKoO9VOUV8ADDaF6dR/U/iBU1ittVu9jWe3R8UQyYVoEb/dc+YPFoK/hbH/IXv62NW/aodFVmCC3Hu/BG9M7QQfhZ5YhLHrU9tH9gMMcbh3jjH3EuKtB4uWJOqS1hjV8nnfA0t4jFWoYIBV7KAUKUeT9VDn+HAbbFoxTQrz+taxl13lAzyQeDIZMyMKb2Jm1UlYkUHb8+hlqPk7Bx71JvMd88/diCtozp/WE1o8LSewOQCpCcdx8K/5ZP/styzYE4Xo0lwhHBFTsjzIymkxs9FcXo9JhCCEtEotrkmFpmJW4+E/Tc4r9iU7anCKoGpMnmcVFsdpmjMLUqEUq+ZNMyDzUogXaItWRAoLSlrew/wSxPxbOMudw+4+aUBHd5jJRD9q7uC319aqg0U4sS9myDgn45b7OIenkyMRbjZ0ajf5yV4OREzr+TQkjLsF5/QeT9qtDE2RU7U89muZCNq54HRB+z4eg6nKPbgBH+5bmFvIhEjFfk8vdSuznRCdiWC4wNrGQiFZZpqF9VIxFGVUfBEXZQXDSDaU2sUTFbFVLI6G3RdMWjobClEmv7Bcyqn2M7X+N19NCWKQ33ubJ81NmmLxw76jQ6xl706LTsG8U2AP1hiuFfC6Dj+hulY6Pxid7JKqWOIJ094eZxt0ayU9kxBxXOMc8GDkyu3Li7PNL2mk7jQjZurxekaO3S4sn338DANvwrzqxb8Pxj8B469BrtylN+gvL12vaXtGgjTFMVeoO4jiAPww6Xqdwxs4NBwqVE4sJdI9KZPTFULgJBMVuAATFjnR4MbddIMIM3A/RcWgwPardp6CaHOVq4/2enSkla7VwgVHjqFYBKclEBJTulVZT9uLuz+MizSQTWJRXa4Ycw891TQkkuLVpfLrd/bvkwd3oeBd62HHWyqyU+37sHkf0O7VtpendrT97Kz1soVhrZOAi5kWNOQKVcSiujnDu5uFvbM6SFV7xQGjMISoq8GIGeHoKB/VYzMsbO1Majf38WJxmLWTugBvlsnUdyk2kqyWKIo0848Ui+2SFmMwTTJ4NSIUHh6xRqLuhEhqkpOJRmFOq+5W6Xecg27nAQze4ZaJq9Fpv2Cz4OAD+J58Y7M8ZGU2CIGSRvOCULPqq01WVDOMO4VsyRpYdl1z2kYpFuNpGQuILDQ4e+LpTlGN0RClzqvXNvTRXPdpK6TVczRFmXSlkyvntf7Hy2O7fKpbXWcYwbX5gbfcu8TCwUzNeQxPhgj8l83dpYfmj1D/mkFo4SMdROdMI1VMiNkwraU6mezMGVkSE7Kap6AOTGprmKjYikAQDGMnt0bbsbiZlcyx4In0SnhjOa7aosmuZ7KtkzIZklJRuO2Z1n1xNcJQAZOu39Najwd4GA9+R/4X8PYVbQAAAHiclVJLTuNAEH1tkjBICFgNG4RqCUK2jBNGCksQICKcRPkgtk5wEivBjRxLUQ4xNxnNfo4yR5hbzHO7QSKscMtVr6pefbpsAHv4DYXyeXzHCt/UocUOasqzeAtn6qfFFeyrvxZXsedsW1zDvvODTFXZofXLZBVY4UBVLXawq8TiLTyqC4srOFZ/LK7iSP2zuIZj5zuuofGKNTIkmGKGHIIAPk8dLk+Jm/SOyBJcwaNsIcIYc+ausKRO6IuQ4tnEPISG1TbxklkwTminplLMThEWmNDSRg7oe6Ieoo8b9CgFd9Qderq0TlkR1/p1nSXTWS6B79ddl7Ipo7VcedKKxnO9Ws4TidJnaXmhJ229ojORE53KKJ5Fi4noiQziJxn2b3p9uet1ht3+Kes+cODQDKdxzuviIQx1qs+JijtkeDHToq2zl4j61nBzozOuLTZL85gpuOS7Wc/FPdlFiYTLKDkBl+qaJRcrDtBgWZ3mtzqbxhJ4vlzK2xTufR4tkjE9QdOt89ZB4/PMH3tgI7f4EWPOumS0/AjlvD77CoNxtky4Jvb1G/Ll4v8B2+Z7UQAAAHicbcu7DYIAAEDBE2KlgLGgsbBlEPygRlHBv6M4GVPZ0CID+JIrn4Du2zbdx8K/st5AIDQ0MhaJJSamUjNzef8trawVNrZ29g5KRydnldrF1c3dw9PL+wc2zQ4rAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQnUgZgHzGAAFSwBWeJxjYGBgZACC2wqnqkH0I13m8zAaAELgBgQAAA==')format("woff");}.ff8{font-family:ff8;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff9;src:url('data:application/font-woff;base64,d09GRgABAAAAAB6EAA0AAAAALxwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAeaAAAABoAAAAcn3rSHEdERUYAAB5MAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABBAAAAVlWYXrhjbWFwAAACeAAAAN8AAAGanrkojWdhc3AAAB5EAAAACAAAAAj//wADZ2x5ZgAABAgAABf/AAAmYCFzfghoZWFkAAABMAAAADQAAAA2JZJLXWhoZWEAAAFkAAAAHwAAACQE0QEeaG10eAAAAegAAACQAAAAtguACYFsb2NhAAADWAAAAK4AAACuhPN78m1heHAAAAGEAAAAHgAAACAAmwBTbmFtZQAAHAgAAAGnAAAC8Z5xzmBwb3N0AAAdsAAAAJMAAADOCC4IXHicY2BkYGBgYmRr3FkpHc9v85WBm/kFUIThkS7zBRj9/9d/GSY5pm1ALgcDE0gUAFAlDCh4nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAHicY2BkYGAIYwhgYGYAASYgZmQAiTmA+QwAE2AA7wAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBhqmbb9lwGq3MbwBKYGAOcMCvsAAAB4nB2NTQ7BABBGX626QGiE+ukCaWNh0UgbjYUNCZFYO4LD2blED2DnKDY8nWT+3sx8E8Q0Flz/AVodXizZMePBjSMpTypqSc6dgjWJcWOum0mq790esKLHkLEk4sKBkbRrX0krWcHEHxFtec7b/coccmJBSaZu6F1On/L7sd7qGVPOaoTEqicqzOXbH/uOEwR4nGNgYGBmgGAZBkYGEJgC5DGC+SwMFUBaikEAKMLFoMigwqDGYMZgwWDPEMEQzRDLEM9QzVD7/z9QjQKDMlBOAyhnxeDIEAWWSwTJ/X/8/9H/h/8f/L///97/u//v/L/9/9b/m/9vQO3CARjZGOAKGJmABBO6AqCTWRhY2RjYGTg4ubh5ePn4BQSFhEVExRjEGSQkpaRlZBnk5BUUlZRVVNXUNTS1tHV09fQNDI2MTUwZzMyB7rRksLK2sbWzd3B0cnZxdXP38PTy9vH18w8IDAoOYQjF5zr6AADaWDDnAAAAAAAAAAAAAAAAMACGAOIBUAF8AaoB8AISAjQCSAJeAn4CogLIAw4DYAOUA9gEFgRWBHwErATWBPYFHAVoBaoF5gYkBkwGnAbgBy4HbAeOB74IAAgsCIgIzAkQCT4JngnyClQKjAq+CwALUguYC9gL9gwUDCgMbgyoDOwNJg1cDZQOAg48DmgOog7iDwIPYg+cD8AP/BA6EHAQyBEAETwRbhHCEgoSYhKiEugTMAAAeJyVWQuUW2Wdz3czeee+c3Pzzk0ySWbunUkm70zm/eh0OjOdmU47fcx02ukDSktbqFCeLbYFsSpC9bjoKh45oqsrImgpqAuexaMr5+jRHihLV3qEugjKIrDiyi7YdP/fd5N5tMWzW5jc7343+f7v3/9xDZTheYMBtVP7DaLBDyuXWbIwVDSF0siY70bZEOJc5mgiX8yidlMDMooJ0Ygoi0fkRE9IDYVUqhDcKz0s8TTNCyuRyRMwmQIXPsBPQgb4RxlicOofqB2GDkOPwRB3aQjOj0UThVJsYREt5DtQ/VLMZd0sytWvWQn/JJdNxiw59IfMKidl5lnOzczXF7FMtoXvymaG2YYo5zEy87VrYybbyndnH57n538a3+52C27uttolnvh0In5Q8/j2kw+4/fSngVejoXLxEfQc9YQhD9z2YW7NFskVi3ahFCrkMUOSy+KWC+SuVMjnskEUMkouM4iRLyWSUgglCwySXCGUh7siem5+VIlsmA7xop8VxraMz01ElPSKBB/m+CAjjMyseTNb7DxTTqcf6b3KkVC1uPWq7oDsF2VnD32e35bpnHPENTXREElnfEG3t8WZdz4rXP2xH9qKoWj27eEO+3M2wnfg4n+hN8CGBUO/YTW2IqjMbHHnssUSMBlChMUkZrOQL3WjUqIuDXxJLuLbDpRNdqIUGMQsueSiMYWSWBA4Ar2hhvKNLi3JuEBYO59JtXe195cG45acOdCdSqfTZTHvbQ+r69T3GiyMXQxw/Ram3R5xebwaulf5xNrGcsAToXi2eXRwcFNXd6stb5lcMzixttw6XWlZ3/pAQ1DJGe0+F9eSKJVWV78nbZcULayUsf8gw8Ngk1NgE5/BYCKaTupC6NYwW4Bft+xGp1jBtT02OZS4RhJYelNam5oVCw5xTe6Gez+2v2O96OBsHZs2bp852cnq526Ac7fBucTrLQzSlVMsFQt5QoJQgIO3LTuygaOlbbFJlMGHuuysvXYozZmdTiCmnz1omEHPUjZDhvhQLJpGwCu4d8mi26AHJXUThBFcwcUtJd0eLAKKz7pYh2ezcci4125jXfKePbKLtfC7Fjf2uV5kJLaUmNC0iUSvWWLczvYyLTGSrSs+qWmT8dpehx14iRsm0euUaJB1v9D9WY813YPBxK9nPpmIfyqT+VQi/skMytSW+FOX53sXD6JZw0cNrpo8uqb0BWYcze6MMS5/F93gDDQ2BmIZ38is5HTbXO1UY8AXr+AzysiJzqANBhvmIxYBBnKRLDqTqf5LJoMqmGoijr/3M/gYAlqORVqExFDc703gvx79Eofv1uOVJTZENc4Q+f5z1uo/0V5GtqIVrMzI1Akrd2EqKPFWjvpOUNKxqQ3i5hzEjcMgEexboGbJJ3AguLNFdO6jG9YfwX8j665fN3XjFMrc/cSp4/B3ePfx47v3fvHvgY9d8Oun4RyPjnBEubwZKxk7FGAYD0p+Wv2rqm5Kl2LxFapdUjapiqJE0JealTBl2upWL1zQdZ2Hj7NwVs13sKJ6EHZKCE2LW1rCpORiKHBcSy7fTZEoR2d5b/W7GvvHLTO9yU6aDvJc+PrprUck1eN2ft5/Hlk4QGlK9fIRjn52fLp7KB6hXZLP4+vfsW9jrKfd63YckmnwZZahMS8toJ9XgJfKcltIFjOLMLoAV0TaIgYVncdLWbSEEHrl9i1bD/ldoh8ZTVRiR/easZWq6o02RYR8b25lxOoXXf4dM2v3TKoDj45cP9nn8fpFC2015ldlWscikoMymp2RLiXld3Ci3+cu9K7r2NgurtNtGARG36YOGCKGRl37kp4zdA/XPULsRgBwbmyGGG9Eb6sjnar6uKp2/reftZ2HmAr6+BH1sRefVXZFlIiyS/TINNoJQeerPoSmqw8Tu4AuzkIea7uCLkJIVwaID08gPfDwLELYkIgznr1zy9rrgwJogLIiti/avWmgPKU6RY6neB9yqOqbhd7p63609qaZbp8HC+9AoeBEe34qy/IsgxoCQkT5vv8WLG8W+Pg12CRoUGucpKgFOCfSEk8pEicmcE64Q78+vK55VW/8oWuHen2q18ZFhw44er55cGSk0r5a7mkprXlm443KisPT953sbXb7AwLn4G7eVrppurymtyU23DWB80zdH9wGZYE61kOJZEQ9oUAOXAgeeTGMXrlj89zhdaXs6MHvHBzNFqc3ju4fXb1nNbPmjjXrbln36Oh1142W13LMirbebdt62wZZburVZKWSbG5vf7dt1aq27PAwyE6wAT0K8Sovj1f+ikhR/0PX1dbVU3XsoAimjZKzQsvPEhcRrp72F480zQYYlzvDREONfiW+ePBnV22RnC6bN4+aZF+8gPHOkEdnqDToiugpkYxDjRCHrFIiYUEjNzrjYWyW6mNuGQ1Y2AYj7fFUX0c+eYZzI+OLTBN72mRCEi/yj5/kdF+PG/4ZvY4eAgwVl6KotIinr6erD6QLaGOhUP1mIY12ptHheDzxdELH1jpPgOMGl8VUk7MVEcndsgmdkauPORtojxPFq6/JmD00iYaa2BcbgA/bUyc5F+EN89INB/6SusbQQhALZ9AgctXSaDdV6jZeDgchI1UvJn/ZM9BiFMUAbXb3ZJx2xjzUPxYkQDC3rWN9k9v4NVJdov/ojDWOqBzLMO6wHO3qCljMTtrqjyhOAgXZVd6QKlbXLak3A8DNO4AHMeCsjsagdagfSSFUA4YaIshiLptGeah2YmYLekfdp3KiW/qi5BY5WKvCTSbJa/dKppsE9dttZjNC5nZAbY6ltmyhWA6ggrLJHCdfeO8rr1HhmL1YNZB6DPSLfgtY4QFUaib2rycFPfEuiRSCV0WhtkC/nZv8i6b5fJr22/EthUJP79a24m07+zqkUunjhyrf7L0moqDzEWW+s3lUENb/Uen8yWD15amRc3ruaIL4fBXiU1uGUTIuZWrGSaaMBBMAvbuNODWhV29at/Pee3esLNMcq1ACH2mwRLUAPXDNrhVWIRn2UVQs/o/De5+8+2NPpgKC+imaYb1ah2w9sXfPZyjak436dL2Di6LfgcwCrtTQ5RKbsYg4D/7u9vlfaZokadqv5m8f2TAxu3kMtR76ri7YD1566vPVMJYF4gb9hfQNC3mwdhr4uZuIA0gLpYyUI7VaqO5/ELQxKVLQuxcJ/QVy4kFNCwY1DR308pQQFai37jByAmRCEFfgjHegBrKL8yJhgveuBikhBxZ/Kov4uhXfivJLQ/o20bUXPt4A/nJY2r/Jy5J8tMC/BL/FNP90bCknx3Ka9mVNUxTg9ZCXR2/W2Di9jI3TEVw4nFcivBfXd2Dzd8Dm7VhPQFOqBeES81ML5k9RyRSqO0Cx1nJl0Ts8ywIHLr5tYPauu2Z78lYr68DO4GQtFLJ2N3fOzXWky5YmVb1Fe5vlqK8BJ7yrDddBmkA7iVeYnFZr++CJvdee2NAXUYiOBPh4X9dRfDElX6YQYIGkylxhyR12lffV21TVc9qjkmvtsniLC6hz53DGxlaLKD/5iRKJKNh9gPYIfPwYaMuY9iXuUz//x1r1N5q2dy+oO0quysJZcAoyDIBuX4YzInrtzC+vbHAMUYW6BOhlLbhrxdhmn+TyWYIFpzfumVLVH2hUv1K9anC8Kyv5/SJnd5vYhB99XsFHkiz2NpyfXdBPLmn5MPXwYn1tjllE8DGoY1ZrTcdnIJKu1gMKX37epM2o3sj9XxcFDovznweOLGroIhCFi2x/unqOYomeMF7+HngIXxZnC4ZYiKXfQywdV9XGRlX9uqaV3lgeNlhpK2gW/tFwLgPnVuHc/qUozMdYZIZ2KJGM8YtwjB/gUCE4EUZuOVfsQQSgiTPjb6KqNqXxgogCPXSFHhRMSBR4fQsvKj7J2oc7AF+HVfJVats6VKPntz2TSJyueKqtGLPJ1nm8YuWfdSmRicdlFu9Vw1ghely/C3xn6jbX4zhpBJavYJkQkkU5t+AE76oemuU5zmU52obAUffqfruSZRd3sEdYRZfRyAto5z1VrW4euK8+cA96AQcPZSiD752BuA4YUgRhGoCLhnx3A6CL2ZKHMI6S3lcOIQjkIjrTIMj5jmyukpeFBryu5BKZlN/jsFEjDlv+lqzd6bRlDmWtTpQZnxtv9JrN3sbxuQfmJmBpdPLx5pXjmTtTSahmWj9+Tz4eVhIFgusYh18huQzHNMb1Kzmou57AXtk9fRtA7V064p6fDq/su/rqPvTuZ69/rC7nazOj7+g5oww1GJaxCTpmvYawyG5ydhKQynypxLEFkTtQou4t3QidMZvDkUgw4vRbKX/QSCeuqAWbLdPXm7XZLNaWfm8qwnBWU6uHRZkDxUoX21U2SQ5jvmJCl6ul/XBbS1RpaTtyIJ1RZ8yS0bpB2En4Fy7+F2UH3RRxNUQybhK7MXhL4kPURAZI2PFDAMoFABKqpjjKnlZLAaeZsjlC6dFFxDs5vW9KYQCFGxw2HjXGH1rRs2JF79bEYBtU1V7ZZ/Ofruv16oENeU9M8GU93gijRpAw3ne61lOS3mU/1rLOJfbpLlTLVbJbrjVzyWgimdJnE8uqBrynZw2Z/IfO7l67s9vEczhHcNBRGdvU/kJvk0YNW3uKweTuByu1h3YnTYk3ZPpTMeuOqaamb6y8VpNd6lGGYWmnoyPo7VfDnQxPMXI4Xe7fgZ8dg1RCscxNlYSSs1IeoS2ry4Crij+BrpNL8+3yiJTq+6T7ghz7JwJQhyGrPqZpucPkDvqtO5ek1mpYV19Rvx/z8ZBVMT0D2NYJ9GIL2A/QvwwXcV+zsEM5teCBLx6ouf7wxmGywqH+8OZDhzajaZKaHh1eu3YYrcHoT/LjxfdIftR0mWJGPBEFzzfW0ZDgn4gBsSTW99D7vOg+2iDyPOMU7A1H3CKv7dZ4UdpCUwCuQxK5pwYA0y78D89TyMIzVEMd+qqHS770J1AA3xMenBffowzAQ5l0FISDJJn+6a1s0rhEZOAEN/pZ8GDCUl12Q2IImUQhbG/IGY15oz3MuxqoIRRXJzVN1pxGlDLbO+2WVoSMtOrRtEmMgRcuOBlGtrwV8L9l8TA0Q1FERd+di2v/6hAEx4tq8x7UDWCo5yicJwvLKvrlBX1ygc+YXFrUn4YsUOOjt7U9Gs/Ss9Msx6nXqqr7yI1uDfZahnqZ2s7e427I/wpUN9//PgW1MHiF6Rwute6+W789V/0AeIH+H9LHjlpdD/kSkyqhS5wPc2ZBi1XoecicXwOvt6OB9+puOILvq08jaz2N4mBi0W8WXZFsVKOrFspOoP/ri49Ajf8E7gBNWPgEHjYsqZleVZ/wgg8/oar3369moUakTnl5JXLhVtIfPALWqv328p4EZeu/w2c047xOfRyXw6R3vLgHnbl4Cs/vTFeY3x0g4zsyU/uAsqAnDY36pIQ0HfUxAekIXbUWMYereAAefWQOi1I3oiycIGzwFDcOb/nGXX2d/kBa9IfKMd/2q8VG7dtbj5VbMo1+OgI2iiYnK0OjVGvGWPRJvqjTONv3vGVsDKUbwypPB/T8Yr34AanR/ZBhasinW2khbIGF2rwP8A3QDgMheuP26d4sMUqLqo55+fLg2htGxvLpVV2Z8tTZuSNtDLYHg97DujmZOjbTN9PbMtS6cQbraSXQfA7k16U3Lghbf1GQxO9WorEoQ+ldGEW6sOes3sa+ps1Hfbn5LsnfFvT4XWwQwhlg0t46oLAzvZ64ZDHZ/PF9ZjkWlI5ublw11IKsTFhy+SXZ0oDAmBl336xTdtrdWPYo2KEBZA/qnko8ZbEnKCwYnccWqE2KANCoBnUsSBdWrjl4+7r+jC5/i/pgf0t5auyaQUVxBQpHNs8dUb+AZa9ajw019830981sIvougOynQXa/IUqkp5bOKlEsgidRWNxaLkenxeRIev74HbNzVzEMUz3HzOdHPSDjmKkrn5qk9zliTYFjczN33rJZ4I19ve3uj7T39lT0OEjAxynqGjyHQhibk1HGGKy9LyJpYXkpS9hApwJRH0XzQYE5qKoHr9K06puadtU2VZvf0ruNUt0ej4isbFBKARA9TxJDqxLJ9g1BTx+8GEAX0A8NJUOPYaI2MUrWJ7JJXJa4c25cEJrqczg8l6u9apGxDsx4GgY6FvMpo4ZqTl9EFyDOrH6Pb/tQSjM5HS6rtNLhSsdTYen4j4+vpOwOMbx9KN/a2hFPPFEeK5fHvuqL9iTjnfHUjuFV29ERwROl6KZU/1aPjZOdALYmuxRKB/vWru0bb6G4mBiNNuf7twZjsW9PtrdPtlcveCKcDRmzwUgup+vSCsbDvtK6tE+rhcSVqhgSNPgReMv90K/6G1snwVW+qqotusdUVt3ZouLu4+XWxED/I/UKhfc+mT3x73ps4v7sF9RWg4QnuPFLrKX75cK06Bda9XmoiA5o2me8/G7ts2Q2RHq1VuKGT1GG2gQI408Q3QjnKjjmTcQHdReUXaTOKS3mbLdUrFO4gU+O5e4Bvwgjk5N15X2+YyAP1AmEVHOwozOx2u2TvWYcaI1F9DlM9ymdKDLwIMsHy/o4kp+uXAHypSUZ1SKDV34AXTUvug6sbtO0BzStDS79Xv4LEbhT1djNnwmreifzuVWji5qs/sN9+Ob6p4E+5EX0ItCXPkyT6EW1+j1VPaYLdUxVFo+xGtDF97H90ePYJvU+tG7+xRx7ha2ljRuUBDVHD1HkO+AbK9UElIEZPE1bspzBQza8iDhplkqks97mSriJaYAtzNdrLcpQ52P6eG1xTdo20sBRDB3NZiPFEP9Hil3iv8D//9F/Q2Qq/+H+6xKNV3LgVjx15HUHpgwlwLoXAOtstbdiBOkWh+545v3Cbd+6Df4fmSgWJsf3j5/dfPTo5rljx9b3rV/fNzA/X89RUfQG8B7W55UYTK7sNx+Sp5bw7REuy1TPYs4pR0RhfcvyFJRsF6NUCOiGcPVpWtDaYoqodQfYfYwLCQLIUiHtW+Ck5dXTtx7dsKKoz6/atK/3Fyob15TKq34EFE+Xj87OHcmJPK5bLvwb2tKc3TDT3zu7QbcXfuf6OtBO1nAUysy6qS71XgI1IQq97hOs0C9PzF8HoP0elJBQWl7v5VfsCDYLFnSjy2uW+H3jN0cWQCE8zrhFoDUMdvo52Km3npFwNVLrfeqNT63p6TbqDnzJrBRXu270c6ZxqjKetftxWyMyZv+W/o7dUx2evElOjGT7E1YZP4hBo8Y3Kz2de0fKwdIdQrIVcFedxf2OMJn05zgo5WJZh7fR7xJFtQ/uAg7WZVfcSdbJClE8fwB+n6HUhYolsfi2ltSSdY/WW0jyehE9M9vbuXadqq0lRctXVPUrRmfEF0whaBiPlscHhn+vRCZJ0UKviSivMkKIi0eitdjBdQJ6dCF2QBXmxVfEGD4IoW5q6RaJnDEcvtnBEzrkG+lIgFOSnnrJoECgMrFbPiAg8y7LuWwWQQ0+p+M10PWAnH8GurXZmt76LG83/HWK6M9acL9ZAuVxLvN+6Kxu0jTfrl0+vED3Qs8AbQ4oH42TIdSzqFybP3JA469Ao7K0v0okE3jaXx/rLG0VxFyxVPMLOVfvbtBfoSatGAXGCelBhl7XTYthhhGMFUHg1Fs1LZtFJpkWvD7B6YVWJ6tpt6roPqhRqycFgfJkpv2NE2kZT3tW641E9WVlddrnbdkqoAjpb/A7zLeAz9KH9zelxf4GOL+kw8FJ5C31ZpXj+akJkedgqTbdfKBJxXsct2KA5/S9fbc3qXqPc+ONBFUjXz4RIfdzczpvJ76Me23Iodg2HWQqYwa9oYVKTrZgHfWgBKgumajjKf4WmSTg0V19H/3ZbWr9O3kiF095Jd6PLBm/RTRDCv1E2iS1foRmoaluohVb2oxMyYyG91rRfV4zVR0YWJNTXD7JIzZk6KIkQWe7lbJ4FIplZSsVm/R81CPdfD9l9up2xj70EvD7/+vJXgJP/BJEBYPKb9Z7MhwlDHiQYUlP5qJRk09vwdp8+kb1bGJpT1aCvuoF6KtypOLA0AFRm4dGHqfNbiOscZhi+jFcpLos+P1FiJKz6AWOpddn+kzuznRjPN3hNlWKG2mWS6YqblO5TLazYB1PeOWDDOdlEKAb4+XpBwdDAWwv5JQ5+sEBJTQIj2UHWs4LqpPTX0rXWVnkDfu6vMjLhzCwhEWU+dv0laW8gmr+F9QcoGoAeJyVUktO40AQfe180EgoLNDshqiWIGTLsrMJSxAgRTighCC2HegkVoIbOUFRrsBZEEuOwhHmHPPSbo002Y0tV72qel2/NoAWPqFQPQ9/scKe+ulxgKY69biGU/XucR0H6tvjBlpB3eMmDoKUTFX/QevDndpihZZqeBxgXx15XMODSjyuo62+PG7gl/rtcRPt4BAXsHjFBiVyTDHDCoIEMd8UId8Kd+kdkyU4R0TZg8YT5jy7xpI6p0+jwLOLRcgcq+/iFXPLOKZduEyGlTQWmNCyTt7T90g9whCXGFAKrqlv6bmjdcKMuLCvmzKfzlaSxHEahpRdGW/kPJKefprb9XKeiy6epRdlkfTtms5cjm0hYzPTi4nYidybRxkNLwdDuR7cju6GJ8x7w4Yz15zlqLjJMltYgu0AJV5cq+jb8kVTXzniyumSOzNuYxG3JDjj92+ykDMYst6YQpNfcRIXSf1+E3SY1harK1tOjSRRLGfimwgHZvq20CU9STdMOXLS2W14twZ2zm7/QkP/krdQ3UDVb8y6wqAplzl3xLpxR/47+R82NnzWAHicbc5pLwIAAIDhp2PMyFGuZpGmg0qhck0zkQq5SWL+kN9czWfP9n5/Bf0Z/mr4z9u4gKCQsAmTpkybETFrzrwFUTGLlixbsSpuTcK6DUmbUrakZWTlbNuRV1C0q6Rsz74DFVU1h44cO3HqTN25C5euNF1raeu4cetO170Hj548e/E6PnvX86Hv08CXbz8jUc0SigAAAAAB//8AAnicY2BkYGDgAWIxIGZiYATCUCBmAfMYAAdFAIR4nGNgYGBkAILbCqeqQfQjXeYLMBoAQuoGBgAA')format("woff");}.ff9{font-family:ff9;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ffa;src:url('data:application/font-woff;base64,d09GRgABAAAAAAWsAA0AAAAACCgAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFkAAAABoAAAAcn3rSHEdERUYAAAV0AAAAHAAAAB4AJwAOT1MvMgAAAaQAAABGAAAAVlZHgY5jbWFwAAACDAAAAFkAAAFiIrNO7Gdhc3AAAAVsAAAACAAAAAj//wADZ2x5ZgAAAnwAAAD0AAABAHVtBAZoZWFkAAABMAAAADMAAAA2J2BLPWhoZWEAAAFkAAAAIAAAACQGuANZaG10eAAAAewAAAAeAAAAHg6NAQFsb2NhAAACaAAAABIAAAASALwAXm1heHAAAAGEAAAAHQAAACAASwAkbmFtZQAAA3AAAAHAAAADUdeLqtNwb3N0AAAFMAAAADoAAABFOdO5PXicY2BkYGBgYjjyrWHDtXh+m68M3MwvgCIMj3SZL8Bp8/9szOuZ3gG5HEC1QAAAkF0NBQB4nGNgZGBgevefjYGB+QUDEDCvZ0hhkGRABuwAaDoEGHicY2BkYGDgYFBkANEMDExAzAhmO4D5DAAGYQBwAAAAeJxjYGT6xziBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMQJwA4wSkuaYAKQUlG6Z3/9mAKt8x/IKqYQAAe3MNoQAAARgAAAAAAAABTQAAA+gAAAEWAHcD6AA3AwoAUwA4AAB4nGNgYGBmgGAZBkYGEIgB8hjBfBYGByDNw8DBwARkKzDUKE5SElKy+f8fKIrE+//4f8e94rtf7p6GmgAHjGwMcCFGJiDBxICmAGI1rQALDc0mFgAAXg8RBQAAAAAAAAAAAAAAAAAAEAA8AE4AgAAAeJxjYGQo/8/GMJ/pHQM7A4O4iJKpoImR6HwNjZuKiszLFBUZGBnM/39lXs/4n0GagYFBhJ2PkZ1Nm1HJ1MxcUcnEWFFN3cSa0UhcjlGceT1HYB4fE6cQt2TZX25RUaavZZLcQpxMfHmBjEwCTLKNIZy8/aEaof28nCGNskBzgxmeMW1j5APZyyCiDDaNaZvi3/uKikyKjHwaGgxANRYMrUwXGfMZFIAcETZlJXU9RmUlPiZ2ENvUxMwYZLOxkZk5kMV0McbLLdTRTVtMW1uGiZ2dD8o1DmFm5uZj9POt8bHSEVCy12QVUgCz/T2kGBgAvsUvxnicrVLLattAFD2j2IZCSXftppS7KSQLDYqULpxlTBIwlhOsuAS6GieyLfyYICkYf0N/pXTRj+p39Gg07cKLdlMNmnvmvs+dAXCM71Bov89/sMIb9dHjAD018PgIifrhcQfvgrced3EcjDzuUf+VnqrziqdvLqrBCh9U1+MAr9Unj48wV0OPO9Dqp8ddvA+0xz3o4AsGsHjGHiUKLLBEDUGMiCtByNXiPrUzegkuobkPYfCIFWN3qCgL6gy2eHI2jdR5jZ299Ww8Tnjeukw5KxmsMefJuv2eugfKKTJcYcJdcEN5S80dT6fMiIF93pfFYllLHEVJGHLvy2wvl1qG5nFld9WqELN9kqFOtYztjspCTuxWZvnSrOdi53KfP8g0u5pkcjO5nd5lp8w7YsMpG6rZVkaaG7Zo2V6FM5LHKE1Nvcz2m5ldV2dUNMRKejUUMLblxlBeO3a1kyVnmbtJaiYQXPD/e5GQXHNGvVBjGN/GxJx86G6iuYcY5yxjt/W1LRe5xDqSCzloLpzki5e1KWmJ+2HCEcXn/yJ4WPuQ8O+czWvOaa94m+1NtvyatyI05mVVcNbsK0rkvxX9BfZnlWZ4nGNgYmD4//Hb7v9NDBoM2AAHEDMyMDEwM8QzMjG8Z2TmSiwqyi8vykzPKGEvzszNzEksAgCzMA37AAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCdiBmAfMYAAPrADZ4nGNgYGBkAILbCqeqQfQjXeYLMBoAQuoGBgAA')format("woff");}.ffa{font-family:ffa;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ffb;src:url('data:application/font-woff;base64,d09GRgABAAAAABgMAA0AAAAAIVgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAX8AAAABoAAAAcn3rSHkdERUYAABfUAAAAHAAAAB4AJwBaT1MvMgAAAaQAAABHAAAAVlXqGRZjbWFwAAAC3AAAAO0AAAGiqrmKn2dhc3AAABfMAAAACAAAAAj//wADZ2x5ZgAABHgAABEEAAAX9CI2Vn5oZWFkAAABMAAAADQAAAA2Jt5LgWhoZWEAAAFkAAAAIAAAACQGVQLgaG10eAAAAewAAADwAAABTqYOEghsb2NhAAADzAAAAKoAAACq/qL5fm1heHAAAAGEAAAAHgAAACAAmwBMbmFtZQAAFXwAAAGtAAAC/Trpjflwb3N0AAAXLAAAAJ4AAADNcScM4XicY2BkYGBgYmTTm+zBEM9v85WBm/kFUIThkS7zRRj9//B/NuaFTO+AXA4GJpAoADHyC9R4nGNgZGBgevefjYGBecP/w/+vMS9kAIqggGAAqt8HOXicY2BkYGAIYfBkYGUAASYgZmQAiTmA+QwAEqkA6AAAeJxjYGTMZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBAwMDswMDAgSkuaYAKYXfTEzv/rMBVb5j+AXkM4LkAP/KDGQAeJxNjyFPA0EQhb+draFNzhCShis1NCEBDIYcEgSIhpAjVGAuLWAI/6EY+BP9BSQICAKFA4tBIStRqAsW3mwruOS7N29n3mYntElfOPQfxF2KcMORKOKC6iVG6rWS1vI16+J0rk5HrP3zM3z+k8ImdMTIxuzZB0MbUNmOmMi/UWmushWqeMWF/NCmyozneivdYNPu6NlDymTxkcxVRDvXe6ZsW4Pj8KKZBj3patgi93fJl3zTD83f1/DFieoyLlP6ufpdz6XMQPlr7XHJYuq96/57Milehyfd9ay6Zj/tNdvNOYtNfuyA3Nrk5H9dsD+QeJxjYGBgZoBgGQZGBhCYA+QxgvksDA1gWgAowsOgwKDKoMlgxWDP4MkQxVDFsF5BUkFWQek30///QFUgWQ0GbaCsI4MPQyLDOgUJBRmgLMP///8f/7///+7/O/9v/L/+/+r/8//nPDB5YPRAjzUQaiNOwMjGAFfCyAQkmNAVQJwOdCkDKxsDOwcnFzcPLx+/gKCQsIioGEhGnEFCUkpaRlZOXoGBQVFJWUVVTV1DU0tbR1dPH2KGgaGRsYmpmbmFpZW1ja2dvYOjk7OLq5u7hyd+xyGDAAYGL6IV+/n7+MLYQcG4VHlDaQBhLS9rAAAAAAAAAAAAAAAAAABsAJAAtADWAOYA9AEAASABXgF2AbgB+AIUAkYCiAKkAuoDLAM+A2YDigO8A/AEEAQwBEoEfASUBKAEsgTgBPoFIAVCBXgFngXcBfgGFgYyBmoGhgamBsQG9gcgB0YHcgeeB8IIIghCCFQIdAiMCJgIygjqCRAJPAlsCYIJzAnqCggKIgpSCmoKlgq2CvYLBAsUCyQLPgtYC2YLpAvSC/oAAHicfVgJeFvVlX7nypZkS7Ysa/NuybIly7ItW0/Sky1LtmNbXuTItuRNXuI1JA40EEIJLomzhyRDICxTyJAFpqRkJmHIEGJo8eQj4WOCG2AKUwrtDJD2+2CgHboMpZTFz3Pue7LjpMzkc96me8/9zzn/We5lEhnv4qsSOfkdk8xkMoWMh2lhGNBKCyxul4d16ou0MpCa8Y0D+qq59gu4LOaCVIlOmydhnZ4b3lZHNvZ0e7kIBOV8OEkpV8rgnCJZrvxu/DvPWHOlKVqVQqnSKaS5Vnjx+ndS2HPH5r7ezZtHpMqFtDSlPJ38IU258Ez8K/i93RJ1DmexerPTSJR/6rpXBv8B07EohXbUS8swiWaL2sUFJBwrlUkpRGj3v+RIKy7P0Pj77aW5hVX5X52Fxsdn7K1cZnr/9PYnhx6fGCwU5XhRjluUg8ZIlcjMHs7jdpVLrKwe3NdL0ftf+upGKfqzS3KeJm+SZkaDb1qzSa0tcKtNBS7WpHY5dWoTedPEf1LMf2wyQUYxGCB1+TnDZOI/FmWMLe5mnmOijJRhOJmZM7vZ50psmZlRmNkWpb8rmIugZb5mJIjV5DaBlv8Cki5Wi3PxSufibyydGI1Gl/V7EfVTUb/Hne0SvQ0vJvKnpSq5MhF66I38MjHlm4hWKU9MkfyTVkkxEaZk8TcwT36I9rEIElLBXFAOViokACjEoCdp1nKJuYCa3qBnnRzMF2fEOKOvVlNgyRlylsZyysMaaVKWPbvTqFbnRzrzIfhIn6taW10Wve/R7oDH4Yrx/wXEq1IX69dyd+/wb7xZtEcML6dwbYRiAzerlsrcHo5Vs3CKf34b27nbp91WTeR6Up3oX3gYx5fg+Is43i6Mr4WAxC3wlsgs1nJipTrrtKkgE/+QyD6Ai/ymravzcovV4QZTRX56kjoREpISyx8e/a7ZaEwKJss2ab4jzZDO1m1tzs/3evICg5mVjoKMRJAqZU9uG7CGioxJNUnSjWkgYl6yVwnlE1rbyuWhmSijiB0QfgAETFKZVTCfTiuV5QHMT8e2dimMGzzeBkUWZ2kOJZRV+UoqenWF+euqQzd7OW/kua7p9TWVnkiNvtSR55dC8mpHWaXX6XFV99c5h3PVw6K/chDEO+QwxnsqIjDrzG6TW4M2M6ulEnhnooP/YmFw4gy8dPr0aT/asR+21vIvI24r4r6I84xx3BYReNyEUplZbdKZdAJtLu4c8E0aTfreSrmmzJhdYyuuTl0FHfyX5f7wrVfW7PaUem0ukp7f6IiGywpgU90btt3XcSmLKRVWkeE65RIh3xh0wipUvsxlpc86qY4mG84D87lmXzTHXV2Sc/w7HOt2taxLalwbHIoYCgK+JiBJGa6igCXj/eoOa2Oao22m69hlrU+37Y7ooYl2W2BNjTLNUNJcGrAt+edzxHBYiAdMaOY0Da6FnjHBvLmhraz702n09gU4QTqs64+8ugE6IRGaMaqWsBsYM+NYshFC58pBTJiiJyWCtXRaDASPZsUzzN/V3zvdUR3w3xbp3OQPeLu6G6q4RvpfstpZEW7hXG3o4bsigWGtNlrWvH59c1lUqxkCCbuq3uWur+c/a25pbmlsa11hx0zKdBBZRhfhaHDSyEQ8eQTtuDIuEcL3bwrW5pdX1Y3IjQOO4FB9bbSwvs7aC5Csdxb4rblo0Kpm6Dh+udxtuXtzsf3QxM3Bhrzm+w1qWaZrVUlVeTRsqxkSeSbkG5hDy8gYRoMZRx3POlGYivKNUTrGi+hOkIuYOzKE3CHNBTNF53YhLCEcJTgJTlSta7jdvKmnxhAeuCn2aDRKLC0Vfbd7jKfHjKXDXK17eOFoNM5tMkNmcUU1w5jMVpPMDKxGYrGapTSgycxQO//e6jZI7G8ezJWA1J2ZmvXaa2SWDwNE9aaHWyzNiFpCsZNxlJPK6Jl80Zcm9bILLS6LHXRISXrHzx4yfv8G/i+fTh1e09J129Qd0Zk7xvbf3fXAka7Nc6FNZHZ9kOtOTxn/xWTTFz/xRfjfrRZ4tmrxcxIil4R4EohutaRRvxj0BsxGlhX50sORkK+wqGHvyJo1I3s9Nrsz1W6zsqNNjY1No6vMRVxZYZJiagqKN0zJ5dpInlLZ2/e96b5epcKCNhlFXY6gLnJqExA0MdEYWsJ+5Nx2/kuQ7jjXe3DDkSMbDkLPfZfJ7L89uPuHCz8+gTjX4PwSco7WLRtgjCOBUHuMdbWQH0kJ74ILz2NMHIQ2fvZNfJgh5+rhUz+/AEx8firOT8GXa3MxW5DUszh4N5Tzb8XgLLkdvvbzr+DAuG16l2zz/1jGjewgvZMbRctUOVzlqtJSu1e0TFPtnrcslaJdFKmZkSJVmmgX3Ul/HNdatIuCMkVNEbF4ZcnaGH86FoOeGFUHqfEmOJi4HszzOF6on2r2+VgMX8Tv8Bk+SgX7YCItgs/4m2OVoCCzCweJMHcSSSXFMZnCWlapCiRmykq6qEGjN7AeTsNKpMhCW8Xe1ofr5BDeVHAsUwbKrl23k1tAeud2/knYe8q28DCZ7ePHm/Jdb0G8z6H+nUDZKVS2RJSpMSAOMrH18wYICxf46MDCA6hM1gFyK427xd+Qp8hrWAP0KCMtnqlY58qERJ760fZtP35hx8zonsHY3t1DA3vgT/xPfvbvRx97lz+66++f2H3vP59l4vwK4vrJlCHIL6SVWc2uZFhw/5qnYl+u3d811nXoUHQE/rt7C/8Bmb0rUt/FvyfmgcXdAp40xiTIkBnM1mVQVBKiSqOgasHKGhBasH3Lut5yp4DvR717hwf37RtKyZHJ18Y6boJY38ma49PpFOm7j91z5gz/P6cSiOT+qWFmCe+UYC+9YDGzCJeGNrcMeSo2d7z3jxseHF4dG+8+fLhnDPz8y2T21pB/3DDLhfhv2gTbl2Ke/QxxFy/Xcr1Qyq3YAIk9kMeJnBVsasgD+qeHz3aMTm9UjW6p7yrRFdW7a3M9M69GVe3DqzrNukJHe63J/S89M01dXZ2uqsJ0VVpKdn5VMLzF2VnX4qjMS1cpNDnmalwb21Oyh5wV6pQQV6hHvFKRPfswsmKxAbzuI6PkVlg4TG6DepHH6Psu1F+9XKOQtILH8YF0PXDTur+NjTU0ToY/ueWhh26B13nnyLr1a+ANOhc7BnKvGDNJQFOrSF1yL//7If73w097pJA0uBd534ZcqzucV/Ex9MbnSZ7AeXn4IjJfKsM78jTOfU0e5AN9kjxxpW9zBbahdZNdV3q7HEUEElsGusZzCyUJIG0dpLLhgX90sh/wJ3GNj576O7X3G/Dyp9ce0mirvgax112B02RWIFIJmw2shNy7/v13RyFlcf2ludE/gpN/AzZCC/81JPIvCPMwtskjYiwlUXsKGnLIOvII/6te/ldT/yrP8ackPIYrj/C/BT08zr+vKB/RSn8d7/FxfgXOVwn9JcTdoQO2iCUVvBx27kePvAof8tuNIBu1kzAEbAvniMBLD/YdR+B1ZKWRonYvtQ9CeyUWQ53MLQYn9jxHQv6pau+xu5xFXUFpKBIcCb/OWRz5BYWOLnttA7G7/c5V9rHQsUByU55ZoxFrcgTXuCrUtcwlxupo3luOMplOaASubmxvCYRDLbGm4XDE3Wg1B7iBDybuqSpHxX/uOzDS1+17r65H1LkQZZ5A3AYxV1uEkDXIylH7VBDRwom22NDW6YnyulJlcY3N2ZC1OtDXVMwevHA4PbM+K90bsreNehAflfWsgC97pQ0w9atZiXs5N6H6z4broy2T69o6V4XCFh830OUpMZpctfeMj+3nwLLw9qtcd6y3JydP1NuMco8jxnRBbxPtWznDNeF6Aa1UBsf5K6SnprtR2tI3MHNndKCiuCqpsdTerPyP1lFvvevgxNjB1oCrLhD0irojShjE/gV1B2EfkQusjiYUrEuiaBi0lqRkmXSbNoba2kaaC0vJZnWiypy1pZqfgV3VA21jCmRdzqITPoTLTBnDMUFRltRspTkJPYQ6+8CZl6CLd5ScBf9E6R5WKuRGahSNyw7CDlzw4Ie2dCWrSDANNzhtiup+dabXZs/YOTy0sy4r17Smnitu6/6Bu6iA4wqK7r9nQG9UySFWG4jBfgyzMq5hNDdV7yZSTQ5rquro8NZbjP02u7dxxGj8xS0u521Onm9KVWckJRSUllI7dOHlHPpNK9Q3F+0qaSsnMksH58Kg0FizXZXhkLf3AJhTNSZd2oDvc2TTfMsx9E8IrfkkuV/sFWl1pVvbo6GQHAvx3Pdi1IeLLy+yzAs4RkXrjGE52wYIpi3aB7wQcgaqdcaSZG2OOhSL+Ro6Cvz5CSlGAwGUAEy3sO+J5wSrTOA9x8rgncjRzqaWKwOnrkYPISDPT8+IvkWdmKPX6j2iEes9fifz6KuCuK4kruu1J1Yn+sapI/PhRLXdxDqXbi3V/ZM53mG0gSanUIsmuPZwqWV1JHJseW04h2v8lT11N9izpap/hT3hUnP7Mcr3POT728h3hRCV2htLaZwjb+8cjO3aMTSwM9xd7e3prvJF/3Ns397xifsODUT7ert7hobFnBGAq4hFiMlrOUO3ImfEtw9XkeP+cKh5OBgLd1StKk42s9X9H0zuq/oDmamsObimaaJ6XqtyjIsxWYhyn0W5abQqJK6IdSySbja+q7wW7g3dzeMb282rspNCIbejqr+jKlCUfOlP/v2jk/vysxSN/Cv3FrWNtgXXVqWINozgpRnlJ9N9HMStx0Fz22goWHcr7CFjoZ/DpcERwLE5aK/1aC9WOONZopZwyFNOaBkP4EZTKOT09MhAi1VeAqyvsLd29itbI2tS1ViYC7JMKk++lctShZqUdeEepSpfr7OXZ0sS5Mly6Y5gkbG0sbJJlZGqTJDIpCkKm68I9x/EWG8JpOpTFNIEeXpGQkKyWpMp4Ncgpnbio2ynedUt5BRWh/lFp6U5tb21Ndrd13ToEFtpy7bsAkX19u3VX0VNAn9w7jnce6Vfy6IrijycCzVs8DnCuZVsU7jC5/fh1vx8kbHKDQVi7YQLOFch1mqxxtcCXDjTfyY8VigFuasD5vhG/L8wXuDY/9N4vT2Kc7KFOVZa31WAcw3i3KU7OXqgvxX3XQm2QMeBdldlIiSWVgXrbXi31VGZfxkpc9zzBsw9/Q+OmkNzbx8oLt33M6oPNchrIiYau2YOu0Aau69Fv/9A5NJc9OC+yPNzcx++c/LkO2L9X2QFHeiuUkL3vA6gqQJqsREw5BEEo4ELv8xxG4vM0mJLstKgLLzU4ZGbyiUg2QVzC580lcnr0xKyswdgblt65768JghQufTs5EGUq76xvgsnRQ/yB0ERxgr/N3AT/+cefHjIBjHwWflTggoJAvFnhf2pisml52XYexstaR5jeprFiB2ukTNbzbrr+1Ed7Udnr/BXr1wB48nzi8z588Cw3jsnPY82DPkqvAH34KDHD78VB1zhiwBH4KjBy5fhfNBhqU3dXOD4gbiHCZIGeIbspjkN6PngM/wjMEUa6oTzQfiIeU7cx+BuHa2Lm3V6uAgfRWa23fD7yrNHMkkPHwn9He4Ufk9ZlmBYKejSNXFRKhLnjOOcLctzRKkG8XZeEH7p2hKR+Bnnn5lpooVHxDNO3EVq+V9D3jTkUXnIP3KbUI/t/2dFTrzu87cXadAtf/j2mt2w/IHoaQlHNJT787g2rWG5tCfHJIaelF23uHCIhWvDfDSaEAqduBMXXO3NNuUYM4qmyWR0oRXmxFUG20YVjemF9um4XvAKytbR/gW+VaIG1wLLdfJOhEKwa1lYgxqF8Y1k9n8B/oNJdnicnVJNTttAFP7GJFGRWsSODYu3BAlbxkkXYcECBEgRCSgmVbYTmCRWggfZQVFOwUVQT8BZuEKv0M/jaRfprrb83vfefO93DGAPP6FQPz/+YoUv6sDjAC0VebyDE/XmcQP76tPjJvaCbx63sB+ck6kau7TeXVSFFflNjwN8VeLxDsbqu8cNiPrwuIlD9cvjFiQ4xCUsXrBBgQwzzLGCIEHMt42Qb4279E7IElwgouxB4xELxq5RUmf0aeR4cmcR+o41cOc1s2Ic0c5dJsNKGktMaVknH+gbU4+Q4gpDSsEN9R0997SOmRGX9mVTZLP5SpI4bochZVcmG7mIpKcfF3ZdLjLR+ZP0on4kA7umM5Mjm8vEzPVyKnYqD2Yso/RqmMrN8G50nx4z7y0bTt0AJU45Lm77qc7LU6JqhgLPrlsMbPGsqa/dICunC67NuKVFjBSc8dvOF3IQQ94rk2hG1KyEaw3dmqslJ+gwsc1X17aYGUmiWM7kTx/h0Mxel7qgK+mGbQ6edP5te7sMtsOr39HwoOR11FdRdx2ztvDQFGXGZbF23JH/yf8b+tB+RgAAAHicbc7LMoIBAEDhr9/GDINuKLUxFDLjFhF2ISkkl0TbHsTGTM9TbPMaXkb/tHZmzvbMEZjw92HDfzyGRgSmTJsxa868BVExcQlJi5YsS0lbkZG1as26nHzY27SlYNuOXXv2HSg6dKTk2ImyU2fOVVy4dKXqWs2NuoZbd+41PWiFB0+evWh71fHmXVffry/fBoY+I4GRn6DXGwP43hdxAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYATCYCBmAfMYAAcvAIJ4nGNgYGBkAILbCqeqQfQjXeaLMBoAQvQGCAAA')format("woff");}.ffb{font-family:ffb;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ffc;src:url('data:application/font-woff;base64,d09GRgABAAAAABG4AA0AAAAAGIQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAARnAAAABoAAAAcn3rSHkdERUYAABGAAAAAHAAAAB4AJwA8T1MvMgAAAagAAABKAAAAVlXpGXJjbWFwAAACqAAAAMMAAAGaRIxgdmdhc3AAABF4AAAACAAAAAj//wADZ2x5ZgAAA9wAAAtsAAAP/NA4PPtoZWFkAAABMAAAADIAAAA2JxRLgWhoZWEAAAFkAAAAIgAAACQGoAJOaG10eAAAAfQAAACzAAAA2GtLEDpsb2NhAAADbAAAAG4AAABuY1Rfem1heHAAAAGIAAAAHgAAACAAfABNbmFtZQAAD0gAAAGsAAAC/R/VrARwb3N0AAAQ9AAAAIQAAACugnc/MXicY2BkYGBgYmSLvTQ3NJ7f5isDN/MLoAjDI13miwj6PxvzLKZ3QC4HAxNIFABDHgsjAAB4nGNgZGBgevefjYGBOZuB4b8z8yyGFAZRBmRgBgB10gTzAAB4nGNgZGBgMGPwYmBhAAEmIGZkAIk5gPkMAA+BAMoAAHicY2Bk4mOcwMDKwMDUxbSHQZahB0T/n8v4gMGQkQkoysDKzAAGDQwMjA4MCBCQ5poCpBR+MzO9+88GVPmO4ReQzwiSAwBPjw2+AAB4nGOUYAADRl8g8R5MmzB+YWBlFGNIZJrNIAPEiUz1DDlMlxgSgOwcoHgckxxDHHM2QwrTEaDYAyCuh9JtQKzDYMa0kmEF0waGCsaHDJ5MrAxBjHsZ7IG0HZC2YzRiSAWazwjkBwLtC2R8yRACopmlGAJBYkA5CyCtCcT2jGFAvfUMyoyZDKlAfgzjWaA7VgPdcBbozrMMjIybGWQYbzCcAOKTTO5ANRIQzKzHkAoAeTIq1wB4nGNgYGBmgGAZBkYGEJgC5DGC+SwMFUBaikEAKMLFoMCgy6DPYMXgwuDO4MkQypDJUKUg+5v5/3+gGpicI1jOhyGRIVtB5jfD////H/+//v/a/zP/j/0/8v/w/4P/t/3f+kCE1QhqFw7AyMYAV8DIBCSY0BVAnAwHLAysCA4bhGLn4ORiYOBm4GFg4OXjFxAUEhYRFUPSIy4hKSUtIysnz6CgqKSsoqqmrqGppa2jq6ePz2kUAANDBNvYhJBqACUhJYwAAAAAAAAAAAAAAAAOAC4AQgBmAJ4A0gD0ASoBNgFIAXYBkgG8AeACGgJCAoQCogLEAvwDKANQA34DqgPSBEAEYARyBIoElgTOBPAFGgVIBXwFlAXeBgAGIgY+Bm4GhgawBtAG7AcIB04HggewB/4AAHicfVcJUBvnFd73S2iFDiSthIQOQNKCBAhs0IIWIXMjDskRIAFGGIMAH8ElPlNfdbDr2yQ4ccJM4yROp5m6cWsndZIJmXbotHGbSTxxjsmdtp6kk8aZZNo0bZo6SYPo2xVgnNZlpN1ltf/3vve9618KqHLqWWij/k1JKCrfwTugOnlNBenPVlEUUGlzMtJLPqU0+I+MBhnrdPE+Hnyc10h6QD77gUIjVxCQk2zx4vdp6m+iBpU8TS153KCiCDWE6xiYQWwar1iek+AXIKaLDcSYGIzGkk0xCp+z4WGcTONTOopysG4HzQKnBBfPyugMoMl4vyN5ZVcITvUa85QAyp5CY+Hly2Q6GQHoyrSdanG1UhRaQXvkOcTJoEyUHf3JANahR7ICSA5IfC4P0JzXJ15I8IJMaB/dmPxy6q+jezSqLSvb+0qV62LjFbcPfT9PvbHzZNWpzoMz4a1k+tZmvotRD4PSG7zWnvwoEE1+eougz9jcF+RlcpHKRVsyGuVxuxge1TEZTbTL7WKdaNhk5LwoGuludBU0HG5rrbt9xyGf21Ocm+fOKx/s7Sn3coMNLndtSV66cnQUCjaOyuWGaLZa1dP7j1U9KqUL9Umgc4B+yQV9QPTKgV4tuvGnnCv7kl9NgWz/0R229RtP7T218Rx0n3ieTL9y78GfzP7yh/Nc30Wugi5CIG9CtVYIExnYtKluzCly9ZeUFdjzCt3+ea7BJvaQ+jVXWWWZSFaZYY7ma7Qi2cwz1RgGtDWAhzDyxZziWD33THwqjv+J94ngh4yiCkHPSbh8+Dz5nan4kTJQkunZCYLPrEVfH8BnzEIm6N0yDUhYCWaCBIFMeqOJ8/G4UhY5BKQh/Epbgw3gUGRqqyaYTsB0x4vbyBhId+1L/hgOP87OTpHpVcnhBif3OsQQG3Uk1xBbLWBL3CKm3sTpOTKy94RLwNk76YLDEbh6fPYkppflONks5Gdi7hOJjlymlJhXov5YBzXAiSFgnRh5oxCFz+wf7btj0uH8cP/4nTtsw6vjZ605a/r7fgbxB994/aEH33nnrgOP/OjgXU9coKhUTMlvkIuC0ouYGEpWzy2N6s+ZRwYerY5PfbVu03BGR+dkzWRsK/yla2fyPTK9K1rfmbwSE7kdFLlpKaeIQ5tYt+x/EqwFN2dCmsxovHvDijJugevO7MSa1eeybcP96my5vCXu3wvxVWdWPLybEVk/ePT8+aNHz0qJ5O7RQWqR+yVRR6OoJDtPHa3zi/RH47sfbuyZ+vvGPVr11th+VbTrnsp7urdig/ktmd4crh42TfPh5DchjItv7hMyiD4UpGrW6eYFvrzPvQyEj+CLF9NU9MSUA8LHSKzMA0O7B+3tO+uHlSqnzlnj9ZuKNLofvNBmr+tvGFQobIy9pNVvLvxV93iws7Oj3J/HaLRqa66/ObLT21HXupyzMRql3saKve4s5p2RXBB7HconhgMNeoB3SORHZCZZ/HD8cJ/MLDuSQRJkM8zeQ7ZAfSrfdyH/D1EP3Tx/l5iiog+YWwdNT6zfsCNrOD5iCDc27TGMRD4eu+++MXgp6R3ccOsAvCxq2jb3BVyFl6gsIY4OlscYLiPoeC0IIaSFWjVqgE/FkvfBqbC8ZTS3KEOWlnFuV7rKld/RKe+KNoe0m9WvaGSlruWsK2+51eXR1jYST0W1t8EzFD5dowjmsHq9YC+K/SBP7JXmBdVpjKLEt5A1GhCzWpM5sbKtTBGZCtd1x4N1I/q6iqby5Zm1/Nh7I0f9y7BK3gocH1zVFbhS1y1oUYt+fI5+mOb7TCoPTfQyWEhEHs52x/sHDYb7R5atcFuc/sK2fo2msmZVZwE3MThwkjHXW5jRYCjhE3jWIM9mkad1QZcUpgnJ8ovZjYo8GVFGYq2tmZmHQu18bfh3RZYAP6Znan2Fbnd57dHhoWM8uGbffIHvivd023JS2PABcmVEDRwiDn3dwEL1YKReVNetiKHAPX1DmYapWJ/d2pTGF3t6sv7QlqisL58YGZpoq66oq2muFDRYh4e/kWfFboEIGUQDHC0UCfbWFDS8zxaprfm2NMtW1aZoOBpShQza7S3OYrJdl6ZhLTurkuNwoKovNKTELgpzXhKA56kSiqfaUpgy1i3UG0YN/Q+AN4fQC32JF4b0vAs+Tib4kCHEUu9bRjyAbOjMVMOqLGBU5UpplipjWyPn0EiVVb22kgirUN27pn+LKq2wwKBId+Gv2+sr7Z1dr2UV5TsbsorZ/N40a0W2rs/iYtKBbq+tGYFjEikUVzYmsjWZFTJjbam/vb3S7M+0FxcXFvNNg3b7u2Pl3i3eZDIrVylhLDoZOIuLU7XTiUHWY3y1Yr/3oWcamM9DGp6K1JiGy4Oqcky/xtaeYw5gN/QFvsCku9R6OtWLcD0sJ3en9hjCtOFR5IfCA2FnXB+HmT1xtNGFD+aiDaW4u0jh8xwNb0fHhnOCU63D1/ouvx+bRFjfq+dTnKD0+vx6KDwVFucX3pd4MA5iheprQMxpAW7JJUf7RN29NLkUqZGCwuXggurypZeJVm24d0QZWjPB4gJbngFdun5xsfWWaPT0dW3QHnOjNnQNuVGcRKsm3d5RsCAPXGxRWl3z+lRi/Zgxx8XZlX+z2SXNPL06vj4z8+H+vpEhpqGqcgPD1PkDG/44dOTw8MiJyb7Yqp6u7v41KczCuRrCIi+xJq/3DnpJ75CZFrpHOFTGRY6GFbGB5sCwpsrfyHmkdFZ51W3vrT3i/4yMl62YGAiOVF3Sa5cPI3YtYgs+a6kcikpbUu/Y9HEDyfuWlvzxSHlHV0vQkHnnSjZglGnCJ3Lo/OX+MS3aqfaqLv6z+lhi7ZFci7Ip+dxd+aFEqHmdX5XKuygezqIdhTg15yPHw6nQd7Ul4USzoWsLHCJD4bfg4upBwOdZ7BVPoo5li3s9XuSwjLjxgxTTuNSMomU5BCdULuRI4KCmsqytvcNS3zGgkapyTIzDnK0uUdE5Ra4SgypUa+Hbu9VSRY7ZXOgxSiU0Dftb8uzFTWVBvVVDS2mZWlkYyC216mTEXu+qYbI08jQ5k4U9P8si9Bnk9AAJCPkh9Fpe7C8cjb2GlmGbjUZboxZ/l2qVNWidVE1W6NbiQDgAyqp9+6q+jjlSOvRjfuhwj85c765Lhhc8FVZ0jAacqpZIs9xYxkWV1ZHSQHUA2pNP59v9FeAU98GYFDbEwPpKB1bC6Y00h9sNYkv+qzcSKdIS0Hd8D2aSTfidjXu8h19N2RbWfY3rMItw3LqF/b5GWG9KrV84k68/6jXI00DdvLHds1KrTgNdaKjZoJKCqvU2AfbLPm/pkZdh5rHzxZUnZ948Vug4+YaALySrOcUL655medwACXV/ObbpF9HP745t+Gn0zzMzH7595szbIh+Y40Q/jIIfixsRYQbPc9KjS097au15TnmeW6HKZvi17bYiOTDPwczsx8ESeb1WarX2wcwdv24JQo2Aie828Cli6oQ9Lw/zWwoaE9oXALg3OZEOXRFZluxOFayXJx/rxsv7CiEOAXfyLGA9vABXiULcM6uFnQmqQnOm1AmsMSZYWG6+kDrB1ej4HTH8ijV6CdcpF9eh75gbptQJeOFxJnYhdSJrU8ti4jqcXRKpOLs8N51eaTfc/v8DDd8al/6w7SZTrnHxBjEKQ098n0MuZA1yEXp79sIbpP5bZMR9IXIhYXynvB8b/7kdC/aHKs0OjTk3qyTdspusjc22wUzK4upQQtnE5Hl2Uws+kzjayRT2AfA/0fVoF3bdiGxyiMj1OB7gwCJuow5xk00oPf5JRT23z/tgpkq/5cUNNtzipP4vtSVDSxzbhqbtlgXTb2Xna+0u2rJbtchstC4v97qvxBRKKJoERs/o0t32XfOChxNK6j/lnGnWeJydUs1O4lAU/m4FMpOocTcbF2epybSpBRewmIUGTYj8hIJh22qBBuzVFkJ4inmRyTyBz+Ir+Ap+3N6ZBe7sTc/5zrnf+W0BHOMvFMrn/j9W+KZ+WOygpjyLD/BT/ba4ghP1ZnEVx86RxTWcOL/IVJXvtP6YqB1W5FctdnCoxOIDTNSlxRWIerW4ilP1bnEN4pziGhrP2CJHihnmWEEQwOepw+UpcZPemCzBFTzKDiI8YMHYDQrqlL4IGR7NnYeuYfXMfcncMc5oZyZTwkoRlpjS0kaO6JtQjxGijSGl4Ja6T8+A1jkz4lo/b/N0Nl9J4Pt116VsSryVK0860cNCb4pFKlH2KB2v60lPb+hM5UxnEifzaDkVPZVRMpFx2B6GcjvsjwfhOfPeseHQDFDgguPirhtGWXFBtJshx5PpFj2dP0XUN2aQldE515aYpXmMFLT47udzOUbMBClesDbslolo8qZulxygwcQ6W93ofJZI4PnSkn99uP14mb6sE7qCplvn4EHjc9v7ZbAfvvsdE3ZckFJ+irJrn7WFl0lepFwWa/sN+Ur+D/e9fkB4nG3KvW5BcQDG4ed/EGtj76Y0InF8tMyClgra+qqPC7DY3IBr4s7seoYzepNfnuUVcb8lnb16tPekIJLxpOBZ0YuSsoqqmlhdQ1PLW/Js6+jpG/jwaWjky9jE1My3H7/mFpZW1v5sbO3sXVxDFDIhG3L50/Ew6MZxaj21kdr8B8ZtGVYAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCUyBmAfMYAAXlAGR4nGNgYGBkAILbCqeqQfQjXeaLMBoAQvQGCAAA')format("woff");}.ffc{font-family:ffc;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ffd;src:url('data:application/font-woff;base64,d09GRgABAAAAABsMAA0AAAAAKbQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAa8AAAABoAAAAcn3rSIkdERUYAABrUAAAAHAAAAB4AJwBPT1MvMgAAAaQAAABEAAAAVlWZ/qJjbWFwAAACaAAAANcAAAGaszN792dhc3AAABrMAAAACAAAAAj//wADZ2x5ZgAAA9QAABS/AAAhQPtF211oZWFkAAABMAAAADQAAAA2JY9LYmhoZWEAAAFkAAAAHwAAACQEzgEiaG10eAAAAegAAAB+AAAAnAtHBfJsb2NhAAADQAAAAJQAAACUDccWtG1heHAAAAGEAAAAHgAAACAAjgBSbmFtZQAAGJQAAAGtAAAC/Ur1jf1wb3N0AAAaRAAAAIYAAAC0Br4HwHicY2BkYGBgYmSzfebDG89v85WBm/kFUIThkS7zZRj9/89/aSZJpm1ALgcDE0gUAEIcC9h4nGNgZGBg2vZfGkjy/v/z/wuTJANQBAWwAgCTjgXyAHicY2BkYGDwZPBnYGYAASYgZmQAiTmA+QwAEegA4QAAeJxjYGRiZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1CQAQkEpLmmACkFBUmmbf+lgSq3MTxlgKoBAL8LCod4nB2MTQrCYAwFp+Kygj+otVZQECnSVan4tSfQhXbrFTycOw/RQwk6NZCXSV6SKOEf0a0XGIxoePHgQKCTS55UFGzUk7VQO73eX7MkZ0ZKZr+glbZM7IIUnFTWIVM3S2Ku7Dlz9FfMnTnN9yPVZu7dhZWUMHY7Zcf7B3lCDzwAAHicY2BgYGaAYBkGRgYQmALkMYL5LAwVQFqKQQAowsWgwKDCoMmgzWDFYMfgyRDGEMGQyVClIPn/P1ANSE4DKKfLYMPgyOANlEtkyAbJ/X/8/8H/u//v/L/9/9b/G/+v/7/2/9z/sw/0oXbhAIxsDHAFjExAggldAcTJLEDMysbAzsDBycXNw8vHLyAoJCwiyiAmLsHAICklLSMrJ6+gyKCkrKKqpq6hqaWto8ugBzND38DQyNjE1MycwcLSytrG1s7ewdHJ2cXVzR2f0ygDHsQrBQAs8ys4AAAAAAAAAAAAAAAAYACQAL4A3ADuAQQBJAFIAXQBtAIEAkIChALEAv4DQAOEA6oD0APsBBIEVgSSBNAE+gVGBYoF1gYsBk4GlgbIBywHegfAB+4ITAioCQYJQgl0CbQKAApICoIKtgrwCyYLYgvQDAoMNgyCDKYNDA1EDWYNog3kDiAOeg66DvYPNA+aD+IQOhB6EKB4nI1Ze3Ab9Z3XbyVrrdc+tNKu1pJWlmRZWsuWbOtlW7b8lF8QP2I7iePYcZomEPIqDYHmCSEJzbXXUKC9g7bDlbZD6TDAUQhw/MG0dObowAzXg5Sm7fQu0JZCb6YEBmgPEuW+v9+uZDkJnfPMrnZ/K+/v+/h8v9/P9yuD0dB1+TH0GvWModPQaygaDBGXmXa7wqEelECZdAGl2kW3ixalTMKUSWdzmXSq3Y8U5HaZw6HGTDrXGHUrxmiGQS4FpeEmi17bMKcEZhZcfC3n41zTyeGQy7h5MqDMznudLg8rTKXGwsyfk71957rbWh/N3+BoVNVI7ZYBt6dGdnlsQ7Z3LA2RFo+9a9mCn9AbC7Knzum2562/sMaziYd/Vpsdzbw30W39Ta3BgAyPXX4cnQH5AwZDDREqCmIVjERuBtEM5XaJkkKhMwzv2hyZjvcMpaw8Y6atvdO+mfW2WnPWIqxJ33L36IkNA4pgoW01dPzg7o7FJ/O1NTZ4/wZ4/zK83webuRijpnUBbJOg8E5Z2EgS0TJ5L8dKm6Zs9ZOdHMvhzVC7/laWLTw1Xz/0ua2NVpZsZzBg2RsN0+htSjAIcOeKg1HB7OFQOg9vByun0NvJ08Onk/iE5obvTibvJiftfzsQi86iOQON/zccDKVTQXQ2WXoxmUQF+PYw/s7P4VQ0HDHYiF+J6FheVGzwyhF8FDyNDV444LtlHLBYTxrp7kXk+6/Vlp5xiKyrFo3jD+o+s/PShM/NmJ3Uj31uLA9laL/8EfoNtQf2cuM3rOxGpxtDZnBCexb95ui6udvxUVz3xXWzt86itrueOXMKjiM7v/LVm/Z85zsgxw747+fhPT4scxyFMAjziIf3gTjZHLzRzafaFYSej30aYx32hVQmGBlSrS5lwe5gFUVhWAo93Kz4KXrBo176G8Vq9krD6Ry8t1mzRRBe14uymXRjOGSmRXeVwIB3AE5KBz86x3lKj6ns7/YtDqj9NsbLc/6965aO7fb8k+cvFMdLNtXDBxjH88vre0eawja3S5bkgW07N9ywRTzscrKM20X2bwb7nIf9O6t8QfZSYBssB+iKQy6LlSRiEalWhDLDN9H5A5uXjtY1ynZ+Xax/7XQxATrLye5g02BqKmDxhnzb5md2xNVU4fGxL0wPSBA4gj3gva6tdQ3FMi6r0egNZULJgMXpkj1Spm+mq2myTprD/vODkO9Rew1RQ5NmeTe2snvFBRkNEQK+BnmIE6K8Eb0XmyiAFLGnsTcKFz2c5Q8WRvDJ3ASsPv5fLym7YGvill2cR3Sg7ayZk0vfpVgeLZa+r/kGbHOO2mpIrsYpTjyabcAYsAzm4eFBUJfLTbB57s6lmZv9HO911G/oWyh2zTbZnSxLcR7kwFJdyA7M7Xlh5taNvXWixy04eqfzmbl2lnU4kNXDY8le8H8J658BGX4F/lEMcV2KBFUxvZbqMFJ0RIcxpCUsHfrVodnYSG/koZ2DA+AYKxcdvsXaNzezr3hdvnOytmFDx9qfbrilfvDo3D0/7mkSZfCIlTu4revWua6Z/mRc2DNlqMLHPsgJOHpoxkS7COYLVC4IiQyM0oMIJCWsPzpPs1Kiv7UBclKYb1rfU/obwSLFcXVmNA6aU0NWKyNltu56YNrlSrbu/to/9xMwNjkYhiNBYaxgUjQEy3FBbJ8jQCyDLqqrCxEsrVyi80cWNx2dyucH9j++v787PzUz0dm1ZmrPFDMz0D+7/vD6x8f37h3PzvLCSLx3y3JffNjFz74b6+6ONeXzH7Zdd31remysyu71hoSeN4jdK97PVfCgUGD4qC4Asfz9N7T0em1gdYvYPLKjFlv96LrGYiEywcmhTOe66/Lda1DH3U+LDQqLLc/b+GNLYPkNtyiDt1tSyUB8qrdrZojkL5Ir0ROQv6TV+Yu/ZuYsH+gLegotPbWSSzsgO5+lmg0u3abRSGM6F9Eh7UAiOis6rFzpKaeIxjirQ/SU3kQBzwInWP/T0cD+h1XgBPbMGZbI1Wj4GXobPQR5nl3J9GI547/dUvpWSwptTKVKD6da0Hb00PDw/ZD8V8lgcNE1ej5vQZomUg3IUHqWbI4CpTc9WCC0Bg1VbS9geYgMXrDI+5AbVA0leqYCMEbDNAlGBpE0AdlZKFCwIgntkhi1IfR+fLuDYVlBlL4niQLLMo7tcd4cOWDiuAaeNR2ImPkfDQwoCsUwLEPdeCMFHwyluCwUZXfyRqPTeekjI/0E6ir9O+AVe+YtyBMewKtKbEu2hfIQJh9ViCX5K+vUL9BbS5Mfx1SvV429NbGUb8sPb2zvPHJDf5+7q/Mrt3f/sO8GJYDeDSibuxNjPLPuf0I9Lw+V/nv2+re02IwBRv8AGI2vyk9SgcpkMR0i4ZlA0QSqYBPXKfSH/XNb7777c2OdZrPRzikUzzGckbKOJos7dw43ra2h6sOPDO9+5st3PdNqc5gRr34VYtNmteeH7tu1+77Ofj+2PXAD9EfQ2Um8cLXGNFaRx+Hwx0PLr6qqKKrqq8uHihsnl5cnN6KWw09i1ZTAvx1ZfqAk3UP0qYPTx/DOzpVaqL8RkquoKwT5JuzWq2B5KRN2B8usEH0MhXG/qiqKqqL9MgvqSbaPjhtZLQ15bMeRjaxBfdSsy3vGQEG3K/OKLDjcrkW4EcNvFskakQtzrD+DXCnCtT5bhqrKVCW3G/4X7/fJqRUZTqVxEfiWqgaDIOURmUXvayK8USXCG6RAESvxHsLLwN8XwN85bB/YFAMcQ77K9aji+FVuJ0UK+wVdYDmO4up5KjG2cOLEQn/azrAYAgGjrRju2bK5EC9YmrBwt6kXoDY+ApLAXwajocWnQcE/mr93z677JqewfFguUffbYFUU4sJ8ZakmJiF1Wq+UqUxFMG1Fo1Afx27DEshnZSIILuCyjM+rlsm1TMgVFuStt8r1HAwGZ3z38sv4jI+SRGoLMkzC6QWQVcKyXgExXQL0glr6varu2gWu8ZNP8IKCkRKA9+g4fQ/eka1wwVSUBmVX+x6UIi8UytfgFVoA1o9VfE+9To394yIExee12MAfr6vqBpUTxPu/a0YCz+FdP9l/MrCy+cfICh+QkX5S+j2CXMRoeaAeTu+APOGVuFltbk2xSoS8AxFyCtszEsHn76lqx/uVkKgYECtbZBgHDgJk4OH0KewxWsV/U3yYoTADijZGE8ZomK92d4ovu1ZySqlsLypQZSvg76FPY2tjrNOFatqaKYco2GrcSKqTTQi4qfYEX3RErYs0ol2DuPvr0FeBTIMJ0O88Dxw3iay5QI1OruVKYcjR2oN38ZWn9G4w1P0y57DhNXC/biscyxdAjxyOZbAKqewoagzzFbBqYvMVaIqSkKqGLroQk3mZY53m5xCB4k0VKMaGJKkWVrFZbyJsRykZvYyR49GHpUgZjCAhnB1SyY5+q0FV61U6IL7Pkh6jlWQaE4hgShdMIJmZTmsBTWOCR7h5LovOmpxSOt+e6kpLThO+7ko1tiW8HpuFKtpt2e6+jMVmt6T7+jO1NtQ2sTjRIJvNcsPE4ncWJ+HSaOcj6shE26lkVPbFE3eeTkXrQ/EskQVj/DypafW4UptJvboK4GK5kJ3fMXsEEu4xLe+en4mMDdx00wD66N49zwUULc3+cdP1H5b13E/0bMQZA5G2BppV8vIk7vBWK13ROY9wZ4t3DQCY0FkzHQh6zYF6i7e2x9ZyTSNYajN3tVutltrWvvqEqd7G1tKtkM5Q283Znm5HylKgBPt+dLVJOg+m2oL18daTB1PNjfO0Waixrbd6bgLZxcsfUVawS7dhqMyiMEwAQo1X9yYrqCEMgCipUKl2XJ8p3XSUtaUpU+cwUxZbfdvElRnvybndsZYwY0E1dquAguEHR/tGR/sWG4YSYltHnVRn9b2xOu1tG4yskX1BaaSuLsi0gDRrB95Y6WX2aDkaS41rhE7dgRiJktbSJMl8RWMRVaXEpJWSAMJfRed2zNzYQ7OkbrAchYzNiZGOgb37uos7pudyNWbWhp8oJmONqy4dTA8lQtN9GX/rw8M7E3Uu9QSUELvdlvcFhuLzHi+/IT3wuaSTc5AHPt4Zl8V8LNRudbKiL13hBR+AzePV9ffqeHVX+pGsVnc/IEntBKm1j+FT+iRZ4WT05ZWSi0tDOS4zZGlM5qDgIoMJfF0L+zZUcgXU2VW5nVTXyhJVqyp779+rx8FYS/M4uaSKgdLDC4cPL6CNOBZKj143OzeO5gKkdjov/w19Ans06boZGUpLSOXsQ7QCoprK5oRKFf8EqsQJk5PjnRxXc0IUOHW7yjnFLY4aZA6uEZ34nipC4rv0VydnNPJO0ENPj6VDmYboSRAW7mF/r54PO6vzepRejWMhGq4qYlJuRbY4ogUI/wvqjTGWZbduAnaBLx128eSXJBVfMsyaEZZjYzdCgbv5a5KqjUJefLEC29o3A+Ti3nvxUkA5X/ormdt8QtHoOUPE0K6znVC03AaSxptBbo13pQkJA0fgcR/hO7kCRdEs75yTujaML3z/H4a6RYY1Ix8r1N2zdas7GvvRzsNdLZkGp9MYAIvUN05lh9dQqRRCJrPs9ohjSz3nasdmje0RJc7XShzOWfbLn5Aa6zXEyhGks69KLvSjlS4cIof0gu8cmhloJ3yrJaaOyWx2bGpfcU0uOd6dyc2dW7ojxYGBGAe6hDneM23HNg0sDTWPtSxswtgYgz1fAxs0EAtQRFkclmQqFE2HQ2SKiPWFIEavceHx1sXb5fRSzzfrhDjqThaDzGLfiK+GYcK7LcG4cnyhYWykecwtt1kaOtrEocVuphbr1gC2NoBu/vKMBTZa4ZSZShPDYxunVzpdyqCO+ezZ0albDs4MpDQFW2LfGkjm5tZkM8VAwKV0HNu0dEfLg1i7kvHkSHxoU3FgaQH2zIFuvwDdfBprIdrpYw24DuIKR9TSqx76hSs6nli+6+j84jazw2YtvWHfnJ+ow6qNmIeT6SnbbltY9R1/7viBBQdHo8I46PbF4a6xHNgRx9YZagfuEqFTwT4Dy/lRaoV0uldRwbyWAtEZb72b5qWI6yBOHge3qWrpfVXdti2mfn6xb5lqcXncTpPREfYmCcV8hTC1jBLIFEbIHMN/2Ysuoeehb+g1TJS792h5rBc1u3HWFTFDIpNrbZqjHdjw1TMdbG4hnaB0BoAHHZdk1uYxBeW65WImYkY2u7vWPbyQDYdOvXhqXHLVw3JzMh9peLojFu3Ex67QaHuis96pbr93OzrhcnNOIxNvHlySWYcI3a1f6K3vnZ3pm2wJqFG/mu3frISDJ2Ld+SY4Sj9TGlmjyV7XHMpkMDbtGDiAmZZK3sBW06B/LaJAggM/ogyxB1TYoDEx2azG/iWmNmvAyUzc2YyTQ+D3SXV46MlApfN5PvP1dzTegG34ErVocOOpYOQKl2n4pLAZ09l29JJa+rWqHrhZVU/L7A71tL/J72/Cr0cZ3PGVnqWMeAWPF8lk+CLo0rU6B7o/mxG6+dwqck1LAJeL6q0xVhBvm2ojzR0+tZHLfpn9HmHa0PCFD30zoGoM9tvj06sZIYj13fs16r3vRTz7Brlev1avsjLpRK/HSs/G1GN3xtQHZfZObdSsG65k1HqeyxfBeCZ0BttvRb+ys1Zx9msu8is9mqTjUqHIdygTtDEc63AKwTZchFbdkFYGX9TbHQyKJjNSpBCIMSZY0mrAu4mGsd6nSF1afYdJfAZfUQzTkE4Hcwr3QZm/E9yBLs3/T9y5/y7sfPZrwQ5CWPAR1FGGTshTr0OeqjU4CQ/WBuTSyo8Hrx945MCBR9LTe6anvjCFMs8fu2Np8fivB+fnB4tbt2q4tV8OoXdA5kBlmhm9Jpl2f0b9qBK4jrmqgryKZaYEJeCUV9UP0PhyiJJh3xCeYNdUdeYryZ3UEx1LxlW5XY79kCA4NzVz4I514ylEMw7JhvH84GCmZ36mo3P8JwS7v+o+tmnxWM7J8jVu16XXKRbdEs3OLw4NLi7ovemfQIamSv4rewoAfVVckSyhUOhPMu/0oLnNeyHlforFmJ7G5z0yO7LVrzppdJvgqXPevOZIQAufjBY+oWmHW9BwMgp+ewX8NkCqi1FjDzrfLZPdBBXFPx/iX+WkVRMzzQwBJKJXLLI63DKRtsuY0jodJv/Wvj5PMuBtUAtBmfZER1t7m80efYiGzEv9hS1DDx3h6iM+Z2OjugX4pIObjymCl6dNZlrwqHUOb6jO6XareMBks9s6QlITsH0sswwy/5RqwhPnCEYa/tVNw7c+aSonJK2LKOgPIAv8dOng1IaYup7Q2x9gU/3A6Ah5ufqgERg6Tx0tDPcPfqgE1hJ+uxZb6y+M4GctYZ+NcTAOPbYwD0BPVHK6NlrKVKUcbV+qLJiec4EGwJbtxdNaJoeK6GODMblMCAIBimUbv4QMJCl9wPGilRaa639Jbp+FfT2XL6IPYV9V49kVCnzFuMiLqqZF6MOYsq/GxYJCgnmfgrPrfqy3b/duH/7EN+jrSulRaFAojkOz5ZlQ6QU0oKVdojMHe1+EvYvV/BtIRzRspgkaKJ2K64KQmbKQKqCc9hOrlBKwVJXZwEWWF7qNJhev2GsaARAS4/SzTouR6hZ4PGfeh+fOjKMtjYyq0eaXecZTg9rbtFX8EN2DSfq/Mg4bbzsRalrbKkLrZ0NT2giaYn3w9A3mHrPoaZ/1oyayQJKjzuVBl9xncfk8yv09Ji8RJr8/BtR5fp2LByOqauzwrTEVr3H89eO8vvbFO2J6DTt0iGTswEPf0AZT27bh+4DyjYdw33bZR/xaKPvVtPIbGp0FeteL0ld5GZs023ulq79ton2BlK8h6XEJnpqU3yyYadPpQMXt8qIAnYRzdJXvO23OVMjfFnR5PIJozNlybtFoRdvKSLiQpkPpX1ZhIQin34K8hAXTQf13T3RFY0m4Go1WBs6/FUsnAYY0izr+t9xfzpKF0s+RQxushc0AQoedRbE6EoIJmdMWSuca9UEzMjwNzfccmblgLGp8H//oGq76pWcumFCtNpdzrYmmRZ9PCrag95snEl7Bwdpa51nkh9yQ/z/GM7hiAHicnVJLTuNAEH1tkoiRALFjw6KWII0t44RFWLAAAVKEA0oIyrYDncRKcCMnKMop5iIjTsBZuMJcYZ7bPbMIO2y56lXVq09XG8Ae3qFQPY//scK2OvA4QENFHm/hp/rlcQ376tPjOvaCXY8b2A/OyVS1H7R+u6wSK/LrHgfYUeLxFobq1OMaRH14XMeh+uNxAxIc4hIWr1ijQIYJplhCkCDm20TIt8JtekdkCS4QUXag8YQZc1dYUGf0aeR4drEIqWN1Xbxilowj2rmrZNhJY44xLevkA31D6gH6uEKPUnBDfUfPPa1jVsSlfV0X2WS6lCSOm2FI2ZbRWi4i6einmV0tZpno/Fk6URpJ167ozOTI5jIyUz0fix3LgxnKoH/V68tN725w3z9m3VsOnLrhLE54XNymqc3tCVF5hgIvblp0bfGiqa8dd+l0wbUZt7SImYIzfpv1Qh7EkPfGIpoZFSvhWkO35nLJCVosbPPltS0mRpIoljP5N0fYM5O3uS7oStphkwdPWl/H3myDzfTydzQMLHgd1VVUU8fsLQyaYpFxWewdt+Q79f8CECd+ZgAAAHicbc1bT4EBAIDhx+eiC2aUU2hpqxRGDp3WLR2NKIfET/G7/Lz65tqzvdevwM7fRt8+b2ERgagDMXEJSSmHjqRlZOXkHSsoKjlxquzMuQuXKq5cq6qpa2i60dLW0XXrzr0Hj570wu+zF6/h6d2HgaGRT2MTX75Nzcwt/Fj6tbK2/QcT2hB+AAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCDyBmAfMYAAa2AHd4nGNgYGBkAILbCqeqQfQjXebLMBoAQwgGDAAA')format("woff");}.ffd{font-family:ffd;line-height:0.923000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ffe;src:url('data:application/font-woff;base64,d09GRgABAAAAABR8AA0AAAAAG+AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAUYAAAABoAAAAcn3rSJEdERUYAABREAAAAHAAAAB4AJwBKT1MvMgAAAaQAAABHAAAAVlXqGbJjbWFwAAACtAAAAPAAAAG6K4ReQmdhc3AAABQ8AAAACAAAAAj//wADZ2x5ZgAABDAAAA3dAAAS9JlTqtdoZWFkAAABMAAAADIAAAA2JphLh2hoZWEAAAFkAAAAIAAAACQGDwKiaG10eAAAAewAAADIAAABDoTJDyNsb2NhAAADpAAAAIoAAACKooKdxm1heHAAAAGEAAAAHgAAACAAiwBLbmFtZQAAEhAAAAGoAAAC8ZCLzDZwb3N0AAATuAAAAIMAAACqB+EHvHicY2BkYGBgYmRL4k3ujue3+crAzfwCKMLwSJf5CoL+z8Ysx/QOyOVgYAKJAgAauwnpAAB4nGNgZGBgevefjYGBuYmB4f81ZjkGoAgKcAYAcysEtnicY2BkYGBwYfBgYGUAASYgZmQAiTmA+QwAEOAA1wAAeJxjYGTiZJzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBAwMDswMDAgSkuaYAKYXfTEzv/rMBVb5j+AXkM4LkAN+yDAEAeJxNj7EOAUEQhv+ZKyWK0yjuKBwiErlKcnQaBYojRDQXJ/EC3kCpQekheISrPYHEQyhR8u9GYZNv/5n9Z3ZnpQi7ZGQ2wJkjkj1iEjllxj5SmSFHXakgIg2yIM0fPqn/5RZTb/r1Qv+Ang6R6Jl6QyJlxiESZ4s181TfrDtiqSfSRUszVOWBtrqYyBUBNaBWpAPPvucixhMDeWFKHTshYnNGr2R6bH3C3h182aBgPLkjz3vzVJhYMjt33/yPc360Bg/eF9pjJlt4nGNgYGBmgGAZBkYGENgC5DGC+SwMM4C0EoMCkMUEJFUZNBmsGGwZHBmcGTwZAhhCGDIZqhjWK0gqKP1m+v8fqBakRoNBG6rGjcGHIYghkSEbqobx////j//f/3/3/53/t/5f/3/t/5X/l/5f/H/0/5H/Ex6oP5BndYS6gQBgZGOAK2RkAhJM6AogXgK6m4GVjYGdg5OLm4eXj19AUEhYRFSMgUEcKCfBIMnAICUtI8vAICevoKjEoKyiimyGmrqGppa2jq4eg76BoZGxiamZuYWllbWNrR0xToQAR+KVgoEDjOHkjEuJPZQGAGXRMyoAAAAAAAAAAAAAAGoAigCqAM4A3gDsAPgBHAFYAXABnAHgAf4CLAJyAo4C1AMYAyoDSgNkA5gDsAPiA/oEBgQYBEQEZgSKBKwE0gUQBSYFXgWIBa4F2AYEBigGiAaoBroG0gbeBxIHMgdYB4AHrAfCCAYIJAhECGAIkgiqCNgI+AkGCRYJJAlSCXoAAHicfVgJcBvXed7/gQQoghcELEiCBI3FEgcJEiSxAJYAKPAC7wsESIASDxEUTVNyIikSJ6YcXdZlWxlq7JGjqp5I9lgaKwkztieNOXFCh5XaVMo41rRNKsltR05jazqTTNVD1bR1w2X/twvSVNrpDLncJfZ9//df3/8emEwmsHZLVUYeMtmMibExfqaDYcCgttp9Xr/gMdoMGlDz9EkE+qz/8iPw2nlrnspQphI8/icfEkMHkolg/TBENVKzVrsldwt8qM3Jyp1P/3/1nx1mda4hX6vNZ3PUpU649eQzKR+eO5gcnpub0GhX9bqc7Mx88jtdzuq76X9DWBxUFZT4u/0l+aqo9PbmJ6TPDK5pIIE+bWWYTN4NPu9WUcjLQHKQaN6xZ3asufipIG8uLQ9a/qt3dfEas9ZnKh9PXf7hpakxO10fwPVhZb3NoNbw4QyvW+UQygDCmxcXIdgX1zYvLupdVdZfJQ/IIFNI1/OczsBbfTrO6vMKnM4reFgd5yEPeOkz1ij9huehjDWCmf+CVR6MLJTxvPQbxJlae4H5gEkwaoYRNbzI+4QPqlwlpgQcP5agdrTMCpiZVUaFdjgfB2bpIWxdCTP0s114pWvxM4EuTCQSjMJNDbfQNz3NswbySDq7YUJzeitTuqJSaTVZuZkwrtyQeyT/94msLE1ONslXfY/eMAxhKtZ+C/fIVaaAccpIWCUOCkRLo9Co8bozeKtGzRrKMrEiRD/cc4lf3x+s9tTv9SSK/XGi1pXWWpJl+ZC5xVBSVcI1FBRC26X4szODV783lKqtGH2Dq+ipFUxf8R4w823ugLWoqrYZ+e9Aa++jXSRRAT5Bp+Z9HlHQCfC+tHhcHDjZyh4Pg1QYbl59XfbXhZfb+H6p/L4YJj5aqmqNgxJlDep8QH4hgNvS0x/U1riizULHVrfnwq75np1X96qL1MuRdyvrBl2NyUgs+ObRHS0Tfd8CGRf9v4O41XKNYBAdfrGMYiG+C3x+MaySLeWBxhEGxZYGK+jOkbHwXntWRtmzofrWcEuPxWgXi7WhyqLaZoPDMrutf2+Dt7Hv/cHn/e4qQ2VgoME/3ExIxlNVNl1VTU6dM1AX2N7kHS1hx9E9zIMZyXxOzmH/5iMTnuV9nA8wHrwOXYPPp4ekfwWSmv4BnNp27dq1Znhb2gHz3l9PUx8c6MNtXGtO++AGx4YPmD1ex7EcK/f67dMTwpgzt7xkpMo3EHb0Wzthh/SoJhw9+NHESZddF6qp7hsa7hyAucgt5wnKaz0+JUyN0kUUn8jSUcjKGVivFAd9YtUsrRQslDtltoZhR3uL86399T6/v386q3PGVm+uTBqtTcEOgIzsrcWVxY3lpk+DUWerpXNh6ts3DY3siWdifHXreLdz2+g2bUFukbu8nA24GKUG1h4jl3NMLj6oCcsX6NEiJomDO6njOx59A9P857BIup6VPvohRJk16KHrVBs+FDJ82gu5Wfwi1RT/Rk5VckWxBiNGTr/pHu4c3jFypLVL6Dk4HJ/rETraRloaApHWYEML6ffUDnTW+7rfjx2ajwuTpvwBX/vu3e2+gXzTTtB6mhoFT1Oz9G8dbZHO5q7OJ+JZLSs0tptIjYh5oHSen7ZeGcF4ulVK6xUqJF7f3R/iqkMNu7SmHcH2mhqzLbzd3tZsHwXIMgrlDTbOxIcCndB/6WZNvf2rz1uErvap+oGKCMaW1anZ2kiVt3o4WukfpXmVdQWWMToahtGjsujS6pKAmYQUSdB3Asxh8gAOMVsUleEV6fOwG3fkAbd6gbORKZtt9bKNI3s42MWyxn80Gtl0TZNXyRJayGYYjndwGh4EvRbIq7v6pLu9A5AzFjly+OZNsiT1wh7pAs1xy9pjMkquMxbMk3pdjWixGQs1dlpi6xER/SIZ3WZzNZ1NpW6cFV0uX4Hb4fSl2tva2lNNFbZAdfkW7e4951/76yyNYcSizRkeOjQ/PJyTY5draSdy48ifoPYywDt4bBBOh41CuPg/WUGUfj4JN8hXyeNm6Sa+lOb1zDqv/4eVD8NInpn9mswqVOsW82uqqoIKq9aW05/Y62ROWm3JiL0gX+FkuNy8wek5jJeWRktH+Qh4Fchzk9J3JidhZBI6pR9hsH4J1evvMyv4vjwbdMLK5CQ+pHEy5LijViKGIAokQxqdtD+qIkur5wh9ZwYbowTfKZZt8WqNineo7A6eGi3UGwsFv6gXVCUxMLSd7eX2RnIhNr/1dDgXtINn5slsx6L05hCY3vGvXiRL1dLiJZ/7LyFBZx3ankNcnZxxuwMURGMhFTMyd8qUaZD+E2L0L2RBzKtxkkyKgTer/01mZS0MrP2WfEh+sV53agsNtgUlxi63pMdPPlyRvlhZAfXK5ItLL5750RkYef1Xv3r92/fuLZx44/LJl995R8ZJ4SWJXLLpDgBxXEBT7DGqqbTrBA9JfnP2yiSoZr+ZnBw6d24Ifjf0vPQZWTr0yuGY9GtmA+MwYuQyRuqRSnZHUQyRwrDYm+Tw5E/fHP/9sxdTfcldw+fPJ1MQkn5Glvb2bZtml+o713oU/XKjX4B+OdMapHQ+inQNuEm6osoAK0qRnqegDAicnD6yr+Dp55piQfvQU7ZG1nFixtXt4Ar6Us2DDZVPN82uJI61JWO9XldzDpultZf6ggPzBQW6ZHN7dUUouyh/v2zbhn5cJO9hTGm9oxManDDkYsPHkx9vIwfJHrL6GvkKaZd99qPOvg0fo8c26rNvXS6VcaJMXI3PmkdkfcRZDG9HW2ZDoT8+VVcx1K7uj3dPxfPrEkG/023R6Yi9Ll7V0KqqrNvm7aia6v6WNyPHWmTm9dkmnRLjONp7iDHOx73r+hRmafFTSxrZKCtr4MN9A7Vduni0e7xjPD7kizitTfWjn+560aGvwba4Gzw7MRyr/9twDP0tR8xF2Qe5X+2yzhdq3LAu6yIsRkcmjx2Z8Yarcx0N7u6O/sZkt6327E9f0Re3mwzPtHZOCAo/irUi14BpIx5y9+sElW9jTuDMW4lHhrtmZnsSLdG4PRQYjYlBh9bb+NKNl0Swr979mTeWjA958ygmn+a3lXagjaPjWixMB5rqisJUA4vSDZIIx7vVfcmJFw4lJzzOhtxOh7st9+/aJn1tdWd3pc72hN2tQsSj1Bjuj2AadQr9BnnbYgaBpUWLuqRAw3RFpYG3H9gX7emZ6rJXkX26LAc3F5ZOwNHwSM+UVp6Z5jUPPIKbOKUCTJuCRRWOlesWHQ6BpyyDVY4RYvqXovsFzRNj1AVW3MDQpoVH5upwhikV8bq2BMd0ZrHSVXTqT082FZutqYhY1Z34js9eLtLf0ZcmrA5Cxg6PwqmMTJJZVd06ac4zeIlGbxa4wEBUbKywuKrtNf6WlMVyxSvUifgr/aKFKyiwVrrkOAzi5TrmzCDrm5fOUrUZ0kXFwvU4aPUVpV5PPBrcvgDW3K2coWAk+O9YRj/vvIz5oS27SM4r85GqK922vxWNbkEhXn5uUrYxLO/Z0nrt0MglKwoa+DzxxmBX78c7v38/eg4B629/X8lNDK9vfanXiKboNXIl9zHW5X/AdRNrVomthyX3N5iv/+0Ljj1tbhzb5MWmuxsdvbHYZebLmKCd/xUT9g9igogLT2JcpjVbhjX7GdasVjkRbVSrcXPK4bPTE2NnTo/vPBUfDgUS8W2hob9PnTk9Nb1wbvvg8FBscGxU6fkwPEQueUzRuhqyaSYbLU87fn/fQEM82jPZviM+GGh12uZHPp0+E/gXcrQ2dHZn+07xXjiV7tEwrMh4pfS06PuylXyCsoPf3KXbu6b29/U3RaNidWj7YKCS4288anh55/SZSET6i7PlnROdbVOltJWYOF6iiIs7GKDNJHMUIdoxE+1u+Rocg/Hev4EboxME3zVjfA5gfOSzBD2RyQIfJl7ckOMP8gnjuVrWdzxQQWEZKTTCAU70lW6P53Ymtay9iC8rCtSZnBZn0JTX35Hb0Z2wlJpsVkdB3QuVoVJtVZdHlW12W7ZkaHWFzjqbvziPWNodIWNpVqZmiy6vUs6zHnkkSIhOT6p9Prn3BRZ1gDVQ4Ut09yeGR7pfecXrqTTZXgYmfOxY+GHSopy5H2ONLNO1qHR0U2r3YVnLqcUbuB7lZmr9QtzsETrjteayQCMMSEvlZXj05Oh6FDf4CNfjuQ5UvIpOftxKYMQ+em/8vdhgfQbJDOS2wLIUgeW/Os/ZX7N+l0mvI+/iuhJ5HW4ccC+CwrGOoE//Ie8ujPZm5uUAqKob4gvRhqoMyJzpbrOrQbObov6HTgyrKy+iC3/2anUHBO8fdYagS6l/evkEbaT7lRcdQiHt109G/uh88ub15MKLyeWf/OTB3StX7iqc1gTZl2LKKQ+7pQZoPqERVAIeeQrDgG7d38pz+nxPkdpRmZ1blGO7NdRV4FepGtthefVhpU+fmdWmyzCZtsPyNeeJ2prFawoXet67hNg6+TwL6YMMmz7FXpKOQ04fnmcWYJ/0eAhvLrggDo0V0juKG0wHaYIfk9NUS4B+Z/BjaQEOkiYq1cwU/APzAUqLGnf2m79vICn6hQMwa8wc4eCC8n0D3fNK98E6B1aq+7To7+D8oLpHOeJi3PMImidGiHzww8ECdxIJVTR6dR5HSTTImUv4Its3SCqx2gXLyjzZ3pPSdul519dpj1LsXyI2K0f0/0TUoy2oWcczc4h3NRqFoxtgHToEkyJk6X8A/1khiAAAAHiclVJLTuNAEH1tkqCRRmExYgeoliBky7KzCUsQIEUkoJggth3oJFaCG9lBUa4wZxmx5CgcYc4xL+3WSGSHLVe9qnpdvzaANt6hUD8P/7HCrtr3OEBLnXq8g1P12+MG9tSnx020g4bHLewFKZmq8YPWH3dqgxXaqulxgJ/q0OMdPKjE4waO1IfHTRyovx63cBT8wgUsXrFGiRxTzLCEIEHMN0XIt8ZdesdkCc4RUfag8YQ5z65QUef0aRR4drEIfccauHjN3DCOaRcuk2EljQUmtKyT9/Q9Uo+Q4RJDSsE19S09d7ROmBEX9nVd5tPZUpI4TsOQsivjtZxH0tNPc7uq5rno4ll6UT+SgV3RmcuxLWRsZnoxETuRe/Moo+xymMn18HZ0l50w7w0bztwAFUfFTT/TRUWwGaDEi2sVA1u+aOorN8XS6ZI7M25jEbckOOP3NVnIGQxZb0yhya85iYukfr8JOkxri+WVLadGkiiWM/FNhEMzfVvokp6kG6YcOelsN7xdA1tnN3+hob/iLdQ3UPcbs64waMoq545YN+7It5P/AyG+fLZ4nG3MSUqCAQCA0ZdugsR5ygFciGAKalFeoHIoyqHB8TxuvY1bvYaX0R/XPvi2n5CL01bNNa9BN0LCbt2JiIqJS0hKScvIysm7V1BUUlZRDU51DxqaWto6Hj159qIb3N686+kbGPrw6cu3kbGJqR+//vybmVtYWlk72tnYO5wBuAYRnQAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCZyBmAfMYAAZ/AHJ4nGNgYGBkAILbCqeqQfQjXeYrMBoAQxIGDgAA')format("woff");}.ffe{font-family:ffe;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:fff;src:url('data:application/font-woff;base64,d09GRgABAAAAABSQAA0AAAAAG/AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAUdAAAABoAAAAcn3rSOEdERUYAABRYAAAAHAAAAB4AJwBKT1MvMgAAAaQAAABHAAAAVlXqGbZjbWFwAAACuAAAAPAAAAG6K4ReQmdhc3AAABRQAAAACAAAAAj//wADZ2x5ZgAABDQAAA3dAAAS9JlTqtdoZWFkAAABMAAAADIAAAA2JphLm2hoZWEAAAFkAAAAIAAAACQGDwKiaG10eAAAAewAAADJAAABDoXnDyNsb2NhAAADqAAAAIoAAACKooKdxm1heHAAAAGEAAAAHgAAACAAiwBLbmFtZQAAEhQAAAGoAAAC8ZCLzDZwb3N0AAATvAAAAJQAAAC6RVijbHicY2BkYGBgYmR78kh7cjy/zVcGbuYXQBGGR7rM9xD0fzZmOaZ3QC4HAxNIFABRDAskAAB4nGNgZGBgevefjYGBuYmB4f81ZjkGoAgKcAYAcysEtnicY2BkYGBwYfBgYGUAASYgZmQAiTmA+QwAEOAA1wAAeJxjYGTiZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBAwMDswMDAgSkuaYAKYXfTEzv/rMBVb5j+AXkM4LkAOD+DAUAeJxNjz0KwkAQhd9MSiFNGov8FEZEBEklRDsbC0kRRRSboIIX8AaWVqb1DuINtPYEgoewU0t9u1i48O2b2TezOytV2CUZtyfgzJDKHjlJnYhxiKVMUaGuVJGSJpmT1o+ANP5yi6k3/XqiX6KvGQo9Um8oJGKcoHC2WDNf6pt1JRZ6ID209Yy6PNBRD2O5IqbG1Jp04dv3POScdSgvTKgjJ0FuzuiFpsfWF+zdIZANPOPJHS7vdakwsVzs3APzP8750QZ8+F/lyCd5AAAAeJxjYGBgZoBgGQZGBhDYAuQxgvksDDOAtBKDApDFBCRVGTQZrBhsGRwZnBk8GQIYQhgyGaoY1itIKij9Zvr/H6gWpEaDQRuqxo3BhyGIIZEhG6qG8f///4//3/9/9/+d/7f+X/9/7f+V/5f+X/x/9P+R/xMeqD+QZ3WEuoEAYGRjgCtkZAISTOgKIF4CupuBlY2BnYOTi5uHl49fQFBIWERUjIFBHCgnwSDJwCAlLSPLwCAnr6CoxKCsoopshpq6hqaWto6uHoO+gaGRsYmpmbmFpZW1ja0dMU6EAEfilYKBA4zh5IxLiT2UBgBl0TMqAAAAAAAAAAAAAABqAIoAqgDOAN4A7AD4ARwBWAFwAZwB4AH+AiwCcgKOAtQDGAMqA0oDZAOYA7AD4gP6BAYEGAREBGYEigSsBNIFEAUmBV4FiAWuBdgGBAYoBogGqAa6BtIG3gcSBzIHWAeAB6wHwggGCCQIRAhgCJIIqgjYCPgJBgkWCSQJUgl6AAB4nH1YCXAb13ne/4EEKIIXBCxIggSNxRIHCRIksQCWACjwAu8LBEiAEg8RFE1TciIpEiemHF3WZVsZauyRo6qeSPZYGisJM7YnjTlxQoeV2lTKONa0TSrJbUdOY2s6k0zVQ9W0dcNl/7cL0lTa6Qy53CX2ff/3X9//HphMJrB2S1VGHjLZjImxMX6mg2HAoLbafV6/4DHaDBpQ8/RJBPqs//Ij8Np5a57KUKYSPP4nHxJDB5KJYP0wRDVSs1a7JXcLfKjNycqdT/9/9Z8dZnWuIV+rzWdz1KVOuPXkMykfnjuYHJ6bm9BoV/W6nOzMfPI7Xc7qu+l/Q1gcVBWU+Lv9JfmqqPT25iekzwyuaSCBPm1lmEzeDT7vVlHIy0BykGjesWd2rLn4qSBvLi0PWv6rd3XxGrPWZyofT13+4aWpMTtdH8D1YWW9zaDW8OEMr1vlEMoAwpsXFyHYF9c2Ly7qXVXWXyUPyCBTSNfznM7AW306zurzCpzOK3hYHechD3jpM9Yo/YbnoYw1gpn/glUejCyU8bz0G8SZWnuB+YBJMGqGETW8yPuED6pcJaYEHD+WoHa0zAqYmVVGhXY4Hwdm6SFsXQkz9LNdeKVr8TOBLkwkEozCTQ230Dc9zbMG8kg6u2FCc3orU7qiUmk1WbmZMK7ckHsk//eJrCxNTjbJV32P3jAMYSrWfgv3yFWmgHHKSFglDgpES6PQqPG6M3irRs0ayjKxIkQ/3HOJX98frPbU7/Ukiv1xotaV1lqSZfmQucVQUlXCNRQUQtul+LMzg1e/N5SqrRh9g6voqRVMX/EeMPNt7oC1qKq2GfnvQGvvo10kUQE+QafmfR5R0AnwvrR4XBw42coeD4NUGG5efV3214WX2/h+qfy+GCY+WqpqjYMSZQ3qfEB+IYDb0tMf1Na4os1Cx1a358Ku+Z6dV/eqi9TLkXcr6wZdjclILPjm0R0tE33fAhkX/b+DuNVyjWAQHX6xjGIhvgt8fjGski3lgcYRBsWWBivozpGx8F57VkbZs6H61nBLj8VoF4u1ocqi2maDwzK7rX9vg7ex7/3B5/3uKkNlYKDBP9xMSMZTVTZdVU1OnTNQF9je5B0tYcfRPcyDGcl8Ts5h/+YjE57lfZwPMB68Dl2Dz6eHpH8Fkpr+AZzadu3atWZ4W9oB895fT1MfHOjDbVxrTvvgBseGD5g9XsexHCv3+u3TE8KYM7e8ZKTKNxB29Fs7YYf0qCYcPfjRxEmXXReqqe4bGu4cgLnILecJyms9PiVMjdJFFJ/I0lHIyhlYrxQHfWLVLK0ULJQ7ZbaGYUd7i/Ot/fU+v79/OqtzxlZvrkwarU3BDoCM7K3FlcWN5aZPg1Fnq6VzYerbNw2N7IlnYnx163i3c9voNm1BbpG7vJwNuBilBtYeI5dzTC4+qAnLF+jRIiaJgzup4zsefQPT/OewSLqelT76IUSZNeih61QbPhQyfNoLuVn8ItUU/0ZOVXJFsQYjRk6/6R7uHN4xcqS1S+g5OByf6xE62kZaGgKR1mBDC+n31A501vu6348dmo8Lk6b8AV/77t3tvoF8007QepoaBU9Ts/RvHW2RzuauzifiWS0rNLabSI2IeaB0np+2XhnBeLpVSusVKiRe390f4qpDDbu0ph3B9poasy283d7WbB8FyDIK5Q02zsSHAp3Qf+lmTb39q89bhK72qfqBigjGltWp2dpIlbd6OFrpH6V5lXUFljE6GobRo7Lo0uqSgJmEFEnQdwLMYfIADjFbFJXhFenzsBt35AG3eoGzkSmbbfWyjSN7ONjFssZ/NBrZdE2TV8kSWshmGI53cBoeBL0WyKu7+qS7vQOQMxY5cvjmTbIk9cIe6QLNccvaYzJKrjMWzJN6XY1osRkLNXZaYusREf0iGd1mczWdTaVunBVdLl+B2+H0pdrb2tpTTRW2QHX5Fu3uPedf++ssjWHEos0ZHjo0Pzyck2OXa2kncuPIn6D2MsA7eGwQToeNQrj4P1lBlH4+CTfIV8njZukmvpTm9cw6r/+HlQ/DSJ6Z/ZrMKlTrFvNrqqqCCqvWltOf2OtkTlptyYi9IF/hZLjcvMHpOYyXlkZLR/kIeBXIc5PSdyYnYWQSOqUfYbB+CdXr7zMr+L48G3TCyuQkPqRxMuS4o1YihiAKJEManbQ/qiJLq+cIfWcGG6ME3ymWbfFqjYp3qOwOnhot1BsLBb+oF1QlMTC0ne3l9kZyITa/9XQ4F7SDZ+bJbMei9OYQmN7xr14kS9XS4iWf+y8hQWcd2p5DXJ2ccbsDFERjIRUzMnfKlGmQ/hNi9C9kQcyrcZJMioE3q/9NZmUtDKz9lnxIfrFed2oLDbYFJcYut6THTz5ckb5YWQH1yuSLSy+e+dEZGHn9V796/dv37i2ceOPyyZffeUfGSeEliVyy6Q4AcVxAU+wxqqm06wQPSX5z9sokqGa/mZwcOnduCH439Lz0GVk69MrhmPRrZgPjMGLkMkbqkUp2R1EMkcKw2Jvk8ORP3xz//bMXU33JXcPnzydTEJJ+Rpb29m2bZpfqO9d6FP1yo1+AfjnTGqR0Pop0DbhJuqLKACtKkZ6noAwInJw+sq/g6eeaYkH70FO2RtZxYsbV7eAK+lLNgw2VTzfNriSOtSVjvV5Xcw6bpbWX+oID8wUFumRze3VFKLsof79s24Z+XCTvYUxpvaMTGpww5GLDx5MfbyMHyR6y+hr5CmmXffajzr4NH6PHNuqzb10ulXGiTFyNz5pHZH3EWQxvR1tmQ6E/PlVXMdSu7o93T8Xz6xJBv9Nt0emIvS5e1dCqqqzb5u2omur+ljcjx1pk5vXZJp0S4zjae4gxzse96/oUZmnxU0sa2Sgra+DDfQO1Xbp4tHu8Yzw+5Is4rU31o5/uetGhr8G2uBs8OzEcq//bcAz9LUfMRdkHuV/tss4XatywLusiLEZHJo8dmfGGq3MdDe7ujv7GZLet9uxPX9EXt5sMz7R2TggKP4q1IteAaSMecvfrBJVvY07gzFuJR4a7ZmZ7Ei3RuD0UGI2JQYfW2/jSjZdEsK/e/Zk3lowPefMoJp/mt5V2oI2j41osTAea6orCVAOL0g2SCMe71X3JiRcOJSc8zobcToe7Lffv2iZ9bXVnd6XO9oTdrULEo9QY7o9gGnUK/QZ522IGgaVFi7qkQMN0RaWBtx/YF+3pmeqyV5F9uiwHNxeWTsDR8EjPlFaemeY1DzyCmzilAkybgkUVjpXrFh0Ogacsg1WOEWL6l6L7Bc0TY9QFVtzA0KaFR+bqcIYpFfG6tgTHdGax0lV06k9PNhWbramIWNWd+I7PXi7S39GXJqwOQsYOj8KpjEySWVXdOmnOM3iJRm8WuMBAVGyssLiq7TX+lpTFcsUr1In4K/2ihSsosFa65DgM4uU65swg65uXzlK1GdJFxcL1OGj1FaVeTzwa3L4A1tytnKFgJPjvWEY/77yM+aEtu0jOK/ORqivdtr8VjW5BIV5+blK2MSzv2dJ67dDIJSsKGvg88cZgV+/HO79/P3oOAetvf1/JTQyvb32p14im6DVyJfcx1uV/wHUTa1aJrYcl9zeYr//tC449bW4c2+TFprsbHb2x2GXmy5ignf8VE/YPYoKIC09iXKY1W4Y1+xnWrFY5EW1Uq3FzyuGz0xNjZ06P7zwVHw4FEvFtoaG/T505PTW9cG774PBQbHBsVOn5MDxELnlM0boasmkmGy1PO35/30BDPNoz2b4jPhhoddrmRz6dPhP4F3K0NnR2Z/tO8V44le7RMKzIeKX0tOj7spV8grKD39yl27um9vf1N0WjYnVo+2CgkuNvPGp4eef0mUhE+ouz5Z0TnW1TpbSVmDheooiLOxigzSRzFCHaMRPtbvkaHIPx3r+BG6MTBN81Y3wOYHzkswQ9kckCHyZe3JDjD/IJ47la1nc8UEFhGSk0wgFO9JVuj+d2JrWsvYgvKwrUmZwWZ9CU19+R29GdsJSabFZHQd0LlaFSbVWXR5Vtdlu2ZGh1hc46m784j1jaHSFjaVamZosur1LOsx55JEiITk+qfT659wUWdYA1UOFLdPcnhke6X3nF66k02V4GJnzsWPhh0qKcuR9jjSzTtah0dFNq92FZy6nFG7ge5WZq/ULc7BE647XmskAjDEhL5WV49OToehQ3+AjX47kOVLyKTn7cSmDEPnpv/L3YYH0GyQzktsCyFIHlvzrP2V+zfpdJryPv4roSeR1uHHAvgsKxjqBP/yHvLoz2ZublAKiqG+IL0YaqDMic6W6zq0Gzm6L+h04Mqysvogt/9mp1BwTvH3WGoEupf3r5BG2k+5UXHUIh7ddPRv7ofPLm9eTCi8nln/zkwd0rV+4qnNYE2ZdiyikPu6UGaD6hEVQCHnkKw4Bu3d/Kc/p8T5HaUZmdW5RjuzXUVeBXqRrbYXn1YaVPn5nVpsswmbbD8jXnidqaxWsKF3reu4TYOvk8C+mDDJs+xV6SjkNOH55nFmCf9HgIby64IA6NFdI7ihtMB2mCH5PTVEuAfmfwY2kBDpImKtXMFPwD8wFKixp39pu/byAp+oUDMGvMHOHggvJ9A93zSvfBOgdWqvu06O/g/KC6RzniYtzzCJonRoh88MPBAncSCVU0enUeR0k0yJlL+CLbN0gqsdoFy8o82d6T0nbpedfXaY9S7F8iNitH9P9E1KMtqFnHM3OIdzUahaMbYB06BJMiZOl/AP9ZIYgAAAB4nJVSS07jQBB9bZKgkUZhMWIHqJYgZMuyswlLECBFJKCYILYd6CRWghvZQVGuMGcZseQoHGHOMS/t1khkhy1Xvap6Xb82gDbeoVA/D/+xwq7a9zhAS516vINT9dvjBvbUp8dNtIOGxy3sBSmZqvGD1h93aoMV2qrpcYCf6tDjHTyoxOMGjtSHx00cqL8et3AU/MIFLF6xRokcU8ywhCBBzDdFyLfGXXrHZAnOEVH2oPGEOc+uUFHn9GkUeHaxCH3HGrh4zdwwjmkXLpNhJY0FJrSsk/f0PVKPkOESQ0rBNfUtPXe0TpgRF/Z1XebT2VKSOE7DkLIr47WcR9LTT3O7qua56OJZelE/koFd0ZnLsS1kbGZ6MRE7kXvzKKPscpjJ9fB2dJedMO8NG87cABVHxU0/00VFsBmgxItrFQNbvmjqKzfF0umSOzNuYxG3JDjj9zVZyBkMWW9MocmvOYmLpH6/CTpMa4vllS2nRpIoljPxTYRDM31b6JKepBumHDnpbDe8XQNbZzd/oaG/4i3UN1D3G7OuMGjKKueOWDfuyLeT/wMhvny2eJxtzElKggEAQOHv/10UJJYNZqngQgQzcIhqL+ZUOKWWQwdw084ztPU23aXL5I+07MHj7Z7Qnt+tov9oRgZCMYeOxCUcO5F06sy5CymX0q5cy8jKyStEp5IbZbcqqmrq7tx78BjdnrS0dXT1PHvRNzA0MvZqYmrmzbu5haWVDz++fQVhEDvYfK5bjWrtr/Ud3ioUnAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJnIGYB8xgABn8AcnicY2BgYGQAgtsKp6pB9CNd5nswGgBDdgYiAAA=')format("woff");}.fff{font-family:fff;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff10;src:url('data:application/font-woff;base64,d09GRgABAAAAAB6EAA0AAAAALxwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAeaAAAABoAAAAcn3rSPkdERUYAAB5MAAAAHAAAAB4AJwBcT1MvMgAAAaQAAABBAAAAVlWYXrhjbWFwAAACeAAAAN8AAAGanrkojWdhc3AAAB5EAAAACAAAAAj//wADZ2x5ZgAABAgAABf/AAAmYCFzfghoZWFkAAABMAAAADQAAAA2JZJLf2hoZWEAAAFkAAAAHwAAACQE0QEeaG10eAAAAegAAACQAAAAtguACYFsb2NhAAADWAAAAK4AAACuhPN78m1heHAAAAGEAAAAHgAAACAAmwBTbmFtZQAAHAgAAAGnAAAC8Z5xzmBwb3N0AAAdsAAAAJMAAADOCC4IXHicY2BkYGBgYmRr3FkxOZ7f5isDN/MLoAjDI13mhzD6/6//MkxyTNuAXA4GJpAoAGcvDMF4nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAHicY2BkYGAIYwhgYGYAASYgZmQAiTmA+QwAE2AA7wAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBhqmbb9lwGq3MbwBKYGAOcMCvsAAAB4nB2NTQ7BABBGX626QGiE+ukCaWNh0UgbjYUNCZFYO4LD2blED2DnKDY8nWT+3sx8E8Q0Flz/AVodXizZMePBjSMpTypqSc6dgjWJcWOum0mq790esKLHkLEk4sKBkbRrX0krWcHEHxFtec7b/coccmJBSaZu6F1On/L7sd7qGVPOaoTEqicqzOXbH/uOEwR4nGNgYGBmgGAZBkYGEJgC5DGC+SwMFUBaikEAKMLFoMigwqDGYMZgwWDPEMEQzRDLEM9QzVD7/z9QjQKDMlBOAyhnxeDIEAWWSwTJ/X/8/9H/h/8f/L///97/u//v/L/9/9b/m/9vQO3CARjZGOAKGJmABBO6AqCTWRhY2RjYGTg4ubh5ePn4BQSFhEVExRjEGSQkpaRlZBnk5BUUlZRVVNXUNTS1tHV09fQNDI2MTUwZzMyB7rRksLK2sbWzd3B0cnZxdXP38PTy9vH18w8IDAoOYQjF5zr6AADaWDDnAAAAAAAAAAAAAAAAMACGAOIBUAF8AaoB8AISAjQCSAJeAn4CogLIAw4DYAOUA9gEFgRWBHwErATWBPYFHAVoBaoF5gYkBkwGnAbgBy4HbAeOB74IAAgsCIgIzAkQCT4JngnyClQKjAq+CwALUguYC9gL9gwUDCgMbgyoDOwNJg1cDZQOAg48DmgOog7iDwIPYg+cD8AP/BA6EHAQyBEAETwRbhHCEgoSYhKiEugTMAAAeJyVWQuUW2Wdz3czeee+c3Pzzk0ySWbunUkm70zm/eh0OjOdmU47fcx02ukDSktbqFCeLbYFsSpC9bjoKh45oqsrImgpqAuexaMr5+jRHihLV3qEugjKIrDiyi7YdP/fd5N5tMWzW5jc7343+f7v3/9xDZTheYMBtVP7DaLBDyuXWbIwVDSF0siY70bZEOJc5mgiX8yidlMDMooJ0Ygoi0fkRE9IDYVUqhDcKz0s8TTNCyuRyRMwmQIXPsBPQgb4RxlicOofqB2GDkOPwRB3aQjOj0UThVJsYREt5DtQ/VLMZd0sytWvWQn/JJdNxiw59IfMKidl5lnOzczXF7FMtoXvymaG2YYo5zEy87VrYybbyndnH57n538a3+52C27uttolnvh0In5Q8/j2kw+4/fSngVejoXLxEfQc9YQhD9z2YW7NFskVi3ahFCrkMUOSy+KWC+SuVMjnskEUMkouM4iRLyWSUgglCwySXCGUh7siem5+VIlsmA7xop8VxraMz01ElPSKBB/m+CAjjMyseTNb7DxTTqcf6b3KkVC1uPWq7oDsF2VnD32e35bpnHPENTXREElnfEG3t8WZdz4rXP2xH9qKoWj27eEO+3M2wnfg4n+hN8CGBUO/YTW2IqjMbHHnssUSMBlChMUkZrOQL3WjUqIuDXxJLuLbDpRNdqIUGMQsueSiMYWSWBA4Ar2hhvKNLi3JuEBYO59JtXe195cG45acOdCdSqfTZTHvbQ+r69T3GiyMXQxw/Ram3R5xebwaulf5xNrGcsAToXi2eXRwcFNXd6stb5lcMzixttw6XWlZ3/pAQ1DJGe0+F9eSKJVWV78nbZcULayUsf8gw8Ngk1NgE5/BYCKaTupC6NYwW4Bft+xGp1jBtT02OZS4RhJYelNam5oVCw5xTe6Gez+2v2O96OBsHZs2bp852cnq526Ac7fBucTrLQzSlVMsFQt5QoJQgIO3LTuygaOlbbFJlMGHuuysvXYozZmdTiCmnz1omEHPUjZDhvhQLJpGwCu4d8mi26AHJXUThBFcwcUtJd0eLAKKz7pYh2ezcci4125jXfKePbKLtfC7Fjf2uV5kJLaUmNC0iUSvWWLczvYyLTGSrSs+qWmT8dpehx14iRsm0euUaJB1v9D9WY813YPBxK9nPpmIfyqT+VQi/skMytSW+FOX53sXD6JZw0cNrpo8uqb0BWYcze6MMS5/F93gDDQ2BmIZ38is5HTbXO1UY8AXr+AzysiJzqANBhvmIxYBBnKRLDqTqf5LJoMqmGoijr/3M/gYAlqORVqExFDc703gvx79Eofv1uOVJTZENc4Q+f5z1uo/0V5GtqIVrMzI1Akrd2EqKPFWjvpOUNKxqQ3i5hzEjcMgEexboGbJJ3AguLNFdO6jG9YfwX8j665fN3XjFMrc/cSp4/B3ePfx47v3fvHvgY9d8Oun4RyPjnBEubwZKxk7FGAYD0p+Wv2rqm5Kl2LxFapdUjapiqJE0JealTBl2upWL1zQdZ2Hj7NwVs13sKJ6EHZKCE2LW1rCpORiKHBcSy7fTZEoR2d5b/W7GvvHLTO9yU6aDvJc+PrprUck1eN2ft5/Hlk4QGlK9fIRjn52fLp7KB6hXZLP4+vfsW9jrKfd63YckmnwZZahMS8toJ9XgJfKcltIFjOLMLoAV0TaIgYVncdLWbSEEHrl9i1bD/ldoh8ZTVRiR/easZWq6o02RYR8b25lxOoXXf4dM2v3TKoDj45cP9nn8fpFC2015ldlWscikoMymp2RLiXld3Ci3+cu9K7r2NgurtNtGARG36YOGCKGRl37kp4zdA/XPULsRgBwbmyGGG9Eb6sjnar6uKp2/reftZ2HmAr6+BH1sRefVXZFlIiyS/TINNoJQeerPoSmqw8Tu4AuzkIea7uCLkJIVwaID08gPfDwLELYkIgznr1zy9rrgwJogLIiti/avWmgPKU6RY6neB9yqOqbhd7p63609qaZbp8HC+9AoeBEe34qy/IsgxoCQkT5vv8WLG8W+Pg12CRoUGucpKgFOCfSEk8pEicmcE64Q78+vK55VW/8oWuHen2q18ZFhw44er55cGSk0r5a7mkprXlm443KisPT953sbXb7AwLn4G7eVrppurymtyU23DWB80zdH9wGZYE61kOJZEQ9oUAOXAgeeTGMXrlj89zhdaXs6MHvHBzNFqc3ju4fXb1nNbPmjjXrbln36Oh1142W13LMirbebdt62wZZburVZKWSbG5vf7dt1aq27PAwyE6wAT0K8Sovj1f+ikhR/0PX1dbVU3XsoAimjZKzQsvPEhcRrp72F480zQYYlzvDREONfiW+ePBnV22RnC6bN4+aZF+8gPHOkEdnqDToiugpkYxDjRCHrFIiYUEjNzrjYWyW6mNuGQ1Y2AYj7fFUX0c+eYZzI+OLTBN72mRCEi/yj5/kdF+PG/4ZvY4eAgwVl6KotIinr6erD6QLaGOhUP1mIY12ptHheDzxdELH1jpPgOMGl8VUk7MVEcndsgmdkauPORtojxPFq6/JmD00iYaa2BcbgA/bUyc5F+EN89INB/6SusbQQhALZ9AgctXSaDdV6jZeDgchI1UvJn/ZM9BiFMUAbXb3ZJx2xjzUPxYkQDC3rWN9k9v4NVJdov/ojDWOqBzLMO6wHO3qCljMTtrqjyhOAgXZVd6QKlbXLak3A8DNO4AHMeCsjsagdagfSSFUA4YaIshiLptGeah2YmYLekfdp3KiW/qi5BY5WKvCTSbJa/dKppsE9dttZjNC5nZAbY6ltmyhWA6ggrLJHCdfeO8rr1HhmL1YNZB6DPSLfgtY4QFUaib2rycFPfEuiRSCV0WhtkC/nZv8i6b5fJr22/EthUJP79a24m07+zqkUunjhyrf7L0moqDzEWW+s3lUENb/Uen8yWD15amRc3ruaIL4fBXiU1uGUTIuZWrGSaaMBBMAvbuNODWhV29at/Pee3esLNMcq1ACH2mwRLUAPXDNrhVWIRn2UVQs/o/De5+8+2NPpgKC+imaYb1ah2w9sXfPZyjak436dL2Di6LfgcwCrtTQ5RKbsYg4D/7u9vlfaZokadqv5m8f2TAxu3kMtR76ri7YD1566vPVMJYF4gb9hfQNC3mwdhr4uZuIA0gLpYyUI7VaqO5/ELQxKVLQuxcJ/QVy4kFNCwY1DR308pQQFai37jByAmRCEFfgjHegBrKL8yJhgveuBikhBxZ/Kov4uhXfivJLQ/o20bUXPt4A/nJY2r/Jy5J8tMC/BL/FNP90bCknx3Ka9mVNUxTg9ZCXR2/W2Di9jI3TEVw4nFcivBfXd2Dzd8Dm7VhPQFOqBeES81ML5k9RyRSqO0Cx1nJl0Ts8ywIHLr5tYPauu2Z78lYr68DO4GQtFLJ2N3fOzXWky5YmVb1Fe5vlqK8BJ7yrDddBmkA7iVeYnFZr++CJvdee2NAXUYiOBPh4X9dRfDElX6YQYIGkylxhyR12lffV21TVc9qjkmvtsniLC6hz53DGxlaLKD/5iRKJKNh9gPYIfPwYaMuY9iXuUz//x1r1N5q2dy+oO0quysJZcAoyDIBuX4YzInrtzC+vbHAMUYW6BOhlLbhrxdhmn+TyWYIFpzfumVLVH2hUv1K9anC8Kyv5/SJnd5vYhB99XsFHkiz2NpyfXdBPLmn5MPXwYn1tjllE8DGoY1ZrTcdnIJKu1gMKX37epM2o3sj9XxcFDovznweOLGroIhCFi2x/unqOYomeMF7+HngIXxZnC4ZYiKXfQywdV9XGRlX9uqaV3lgeNlhpK2gW/tFwLgPnVuHc/qUozMdYZIZ2KJGM8YtwjB/gUCE4EUZuOVfsQQSgiTPjb6KqNqXxgogCPXSFHhRMSBR4fQsvKj7J2oc7AF+HVfJVats6VKPntz2TSJyueKqtGLPJ1nm8YuWfdSmRicdlFu9Vw1ghely/C3xn6jbX4zhpBJavYJkQkkU5t+AE76oemuU5zmU52obAUffqfruSZRd3sEdYRZfRyAto5z1VrW4euK8+cA96AQcPZSiD752BuA4YUgRhGoCLhnx3A6CL2ZKHMI6S3lcOIQjkIjrTIMj5jmyukpeFBryu5BKZlN/jsFEjDlv+lqzd6bRlDmWtTpQZnxtv9JrN3sbxuQfmJmBpdPLx5pXjmTtTSahmWj9+Tz4eVhIFgusYh18huQzHNMb1Kzmou57AXtk9fRtA7V064p6fDq/su/rqPvTuZ69/rC7nazOj7+g5oww1GJaxCTpmvYawyG5ydhKQynypxLEFkTtQou4t3QidMZvDkUgw4vRbKX/QSCeuqAWbLdPXm7XZLNaWfm8qwnBWU6uHRZkDxUoX21U2SQ5jvmJCl6ul/XBbS1RpaTtyIJ1RZ8yS0bpB2En4Fy7+F2UH3RRxNUQybhK7MXhL4kPURAZI2PFDAMoFABKqpjjKnlZLAaeZsjlC6dFFxDs5vW9KYQCFGxw2HjXGH1rRs2JF79bEYBtU1V7ZZ/Ofruv16oENeU9M8GU93gijRpAw3ne61lOS3mU/1rLOJfbpLlTLVbJbrjVzyWgimdJnE8uqBrynZw2Z/IfO7l67s9vEczhHcNBRGdvU/kJvk0YNW3uKweTuByu1h3YnTYk3ZPpTMeuOqaamb6y8VpNd6lGGYWmnoyPo7VfDnQxPMXI4Xe7fgZ8dg1RCscxNlYSSs1IeoS2ry4Crij+BrpNL8+3yiJTq+6T7ghz7JwJQhyGrPqZpucPkDvqtO5ek1mpYV19Rvx/z8ZBVMT0D2NYJ9GIL2A/QvwwXcV+zsEM5teCBLx6ouf7wxmGywqH+8OZDhzajaZKaHh1eu3YYrcHoT/LjxfdIftR0mWJGPBEFzzfW0ZDgn4gBsSTW99D7vOg+2iDyPOMU7A1H3CKv7dZ4UdpCUwCuQxK5pwYA0y78D89TyMIzVEMd+qqHS770J1AA3xMenBffowzAQ5l0FISDJJn+6a1s0rhEZOAEN/pZ8GDCUl12Q2IImUQhbG/IGY15oz3MuxqoIRRXJzVN1pxGlDLbO+2WVoSMtOrRtEmMgRcuOBlGtrwV8L9l8TA0Q1FERd+di2v/6hAEx4tq8x7UDWCo5yicJwvLKvrlBX1ygc+YXFrUn4YsUOOjt7U9Gs/Ss9Msx6nXqqr7yI1uDfZahnqZ2s7e427I/wpUN9//PgW1MHiF6Rwute6+W789V/0AeIH+H9LHjlpdD/kSkyqhS5wPc2ZBi1XoecicXwOvt6OB9+puOILvq08jaz2N4mBi0W8WXZFsVKOrFspOoP/ri49Ajf8E7gBNWPgEHjYsqZleVZ/wgg8/oar3369moUakTnl5JXLhVtIfPALWqv328p4EZeu/w2c047xOfRyXw6R3vLgHnbl4Cs/vTFeY3x0g4zsyU/uAsqAnDY36pIQ0HfUxAekIXbUWMYereAAefWQOi1I3oiycIGzwFDcOb/nGXX2d/kBa9IfKMd/2q8VG7dtbj5VbMo1+OgI2iiYnK0OjVGvGWPRJvqjTONv3vGVsDKUbwypPB/T8Yr34AanR/ZBhasinW2khbIGF2rwP8A3QDgMheuP26d4sMUqLqo55+fLg2htGxvLpVV2Z8tTZuSNtDLYHg97DujmZOjbTN9PbMtS6cQbraSXQfA7k16U3Lghbf1GQxO9WorEoQ+ldGEW6sOes3sa+ps1Hfbn5LsnfFvT4XWwQwhlg0t46oLAzvZ64ZDHZ/PF9ZjkWlI5ublw11IKsTFhy+SXZ0oDAmBl336xTdtrdWPYo2KEBZA/qnko8ZbEnKCwYnccWqE2KANCoBnUsSBdWrjl4+7r+jC5/i/pgf0t5auyaQUVxBQpHNs8dUb+AZa9ajw019830981sIvougOynQXa/IUqkp5bOKlEsgidRWNxaLkenxeRIev74HbNzVzEMUz3HzOdHPSDjmKkrn5qk9zliTYFjczN33rJZ4I19ve3uj7T39lT0OEjAxynqGjyHQhibk1HGGKy9LyJpYXkpS9hApwJRH0XzQYE5qKoHr9K06puadtU2VZvf0ruNUt0ej4isbFBKARA9TxJDqxLJ9g1BTx+8GEAX0A8NJUOPYaI2MUrWJ7JJXJa4c25cEJrqczg8l6u9apGxDsx4GgY6FvMpo4ZqTl9EFyDOrH6Pb/tQSjM5HS6rtNLhSsdTYen4j4+vpOwOMbx9KN/a2hFPPFEeK5fHvuqL9iTjnfHUjuFV29ERwROl6KZU/1aPjZOdALYmuxRKB/vWru0bb6G4mBiNNuf7twZjsW9PtrdPtlcveCKcDRmzwUgup+vSCsbDvtK6tE+rhcSVqhgSNPgReMv90K/6G1snwVW+qqotusdUVt3ZouLu4+XWxED/I/UKhfc+mT3x73ps4v7sF9RWg4QnuPFLrKX75cK06Bda9XmoiA5o2me8/G7ts2Q2RHq1VuKGT1GG2gQI408Q3QjnKjjmTcQHdReUXaTOKS3mbLdUrFO4gU+O5e4Bvwgjk5N15X2+YyAP1AmEVHOwozOx2u2TvWYcaI1F9DlM9ymdKDLwIMsHy/o4kp+uXAHypSUZ1SKDV34AXTUvug6sbtO0BzStDS79Xv4LEbhT1djNnwmreifzuVWji5qs/sN9+Ob6p4E+5EX0ItCXPkyT6EW1+j1VPaYLdUxVFo+xGtDF97H90ePYJvU+tG7+xRx7ha2ljRuUBDVHD1HkO+AbK9UElIEZPE1bspzBQza8iDhplkqks97mSriJaYAtzNdrLcpQ52P6eG1xTdo20sBRDB3NZiPFEP9Hil3iv8D//9F/Q2Qq/+H+6xKNV3LgVjx15HUHpgwlwLoXAOtstbdiBOkWh+545v3Cbd+6Df4fmSgWJsf3j5/dfPTo5rljx9b3rV/fNzA/X89RUfQG8B7W55UYTK7sNx+Sp5bw7REuy1TPYs4pR0RhfcvyFJRsF6NUCOiGcPVpWtDaYoqodQfYfYwLCQLIUiHtW+Ck5dXTtx7dsKKoz6/atK/3Fyob15TKq34EFE+Xj87OHcmJPK5bLvwb2tKc3TDT3zu7QbcXfuf6OtBO1nAUysy6qS71XgI1IQq97hOs0C9PzF8HoP0elJBQWl7v5VfsCDYLFnSjy2uW+H3jN0cWQCE8zrhFoDUMdvo52Km3npFwNVLrfeqNT63p6TbqDnzJrBRXu270c6ZxqjKetftxWyMyZv+W/o7dUx2evElOjGT7E1YZP4hBo8Y3Kz2de0fKwdIdQrIVcFedxf2OMJn05zgo5WJZh7fR7xJFtQ/uAg7WZVfcSdbJClE8fwB+n6HUhYolsfi2ltSSdY/WW0jyehE9M9vbuXadqq0lRctXVPUrRmfEF0whaBiPlscHhn+vRCZJ0UKviSivMkKIi0eitdjBdQJ6dCF2QBXmxVfEGD4IoW5q6RaJnDEcvtnBEzrkG+lIgFOSnnrJoECgMrFbPiAg8y7LuWwWQQ0+p+M10PWAnH8GurXZmt76LG83/HWK6M9acL9ZAuVxLvN+6Kxu0jTfrl0+vED3Qs8AbQ4oH42TIdSzqFybP3JA469Ao7K0v0okE3jaXx/rLG0VxFyxVPMLOVfvbtBfoSatGAXGCelBhl7XTYthhhGMFUHg1Fs1LZtFJpkWvD7B6YVWJ6tpt6roPqhRqycFgfJkpv2NE2kZT3tW641E9WVlddrnbdkqoAjpb/A7zLeAz9KH9zelxf4GOL+kw8FJ5C31ZpXj+akJkedgqTbdfKBJxXsct2KA5/S9fbc3qXqPc+ONBFUjXz4RIfdzczpvJ76Me23Iodg2HWQqYwa9oYVKTrZgHfWgBKgumajjKf4WmSTg0V19H/3ZbWr9O3kiF095Jd6PLBm/RTRDCv1E2iS1foRmoaluohVb2oxMyYyG91rRfV4zVR0YWJNTXD7JIzZk6KIkQWe7lbJ4FIplZSsVm/R81CPdfD9l9up2xj70EvD7/+vJXgJP/BJEBYPKb9Z7MhwlDHiQYUlP5qJRk09vwdp8+kb1bGJpT1aCvuoF6KtypOLA0AFRm4dGHqfNbiOscZhi+jFcpLos+P1FiJKz6AWOpddn+kzuznRjPN3hNlWKG2mWS6YqblO5TLazYB1PeOWDDOdlEKAb4+XpBwdDAWwv5JQ5+sEBJTQIj2UHWs4LqpPTX0rXWVnkDfu6vMjLhzCwhEWU+dv0laW8gmr+F9QcoGoAeJyVUktO40AQfe180EgoLNDshqiWIGTLsrMJSxAgRTighCC2HegkVoIbOUFRrsBZEEuOwhHmHPPSbo002Y0tV72qel2/NoAWPqFQPQ9/scKe+ulxgKY69biGU/XucR0H6tvjBlpB3eMmDoKUTFX/QevDndpihZZqeBxgXx15XMODSjyuo62+PG7gl/rtcRPt4BAXsHjFBiVyTDHDCoIEMd8UId8Kd+kdkyU4R0TZg8YT5jy7xpI6p0+jwLOLRcgcq+/iFXPLOKZduEyGlTQWmNCyTt7T90g9whCXGFAKrqlv6bmjdcKMuLCvmzKfzlaSxHEahpRdGW/kPJKefprb9XKeiy6epRdlkfTtms5cjm0hYzPTi4nYidybRxkNLwdDuR7cju6GJ8x7w4Yz15zlqLjJMltYgu0AJV5cq+jb8kVTXzniyumSOzNuYxG3JDjj92+ykDMYst6YQpNfcRIXSf1+E3SY1harK1tOjSRRLGfimwgHZvq20CU9STdMOXLS2W14twZ2zm7/QkP/krdQ3UDVb8y6wqAplzl3xLpxR/47+R82NnzWAHicbc5pLwIAAIDhp2PMyFGuZpGmg0qhck0zkQq5SWL+kN9czWfP9n5/Bf0Z/mr4z9u4gKCQsAmTpkybETFrzrwFUTGLlixbsSpuTcK6DUmbUrakZWTlbNuRV1C0q6Rsz74DFVU1h44cO3HqTN25C5euNF1raeu4cetO170Hj548e/E6PnvX86Hv08CXbz8jUc0SigAAAAAB//8AAnicY2BkYGDgAWIxIGZiYATCUCBmAfMYAAdFAIR4nGNgYGBkAILbCqeqQfQjXeaHMBoAQ5QGKAAA')format("woff");}.ff10{font-family:ff10;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff11;src:url('data:application/font-woff;base64,d09GRgABAAAAAATAAA0AAAAABtwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEpAAAABoAAAAcn3rSRkdERUYAAASIAAAAGwAAAB4AJwALT1MvMgAAAZwAAAA/AAAAVlVXVldjbWFwAAAB8AAAAEYAAAFKzKIgqGdhc3AAAASAAAAACAAAAAj//wADZ2x5ZgAAAkQAAADSAAAA4MubV/JoZWFkAAABMAAAAC8AAAA2J2BMSWhoZWEAAAFgAAAAGQAAACQHQgPuaG10eAAAAdwAAAAUAAAAFAcqAD5sb2NhAAACOAAAAAwAAAAMACgAmG1heHAAAAF8AAAAHQAAACAASQBDbmFtZQAAAxgAAAFHAAACZ8Tq+Zxwb3N0AAAEYAAAAB4AAAA0TLakpHicY2BkYGBgZHBka/C+H89v85WBm/kFUIThkS7zU2Sa+QVzJJDiYGAC8QAphQnIAHicY2BkYGCOZAAC5hdQkpEBFbACADPuAjoAAAB4nGNgZGBgYGVwYGBiAAEQycgAEnMA8xkACS4AjQAAAHicY2Bk/MI4gYGVgYGpi2kPAwNDD4RmfMBgyMgEFGVgZWaAAUYBBgQISHNNAVIKz8KZI0F8CMnACCIA6SYJUgAB9AA+AAAAAAFNAAAAAQAAA+gAAHicY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUnoX//w/kg+n/jyXXQtUDASMbA5zDyAQkmBhQASPEiuEMACjNCjEAAAAAABQAFAAUABQAcHicHcsxCsJAEIXhmSxMJAHDxmw6hRg3lopuYiEaIUewskkRW3ttPIC9d7C38BxWNmIlgmcQWVwzxcCD/wML5gB4YStgYANMxjxmPOL7zyfH3dx6fF9s9T0BWGCOvU0nITdCBBRH3STlKhtHozYGZpHgQWhWNkOVTXEUtripugNEMi9J1QT7Sd2HzC8LPSzKssAD53or01TiVSqn0Ws4N+E13UofqUk5EW7WjvCw7QlcnmtxLUq/5yuph392tl0X7/rpidrQgsg2qHI6QsAPxO4tjgAAeJyNkL1qAkEQx/8bPyARQirr6VJ5OVcRtAgcinYpLCxDLtyigt7Knij2eYA0eYc0SZUHSJXnyv/WhVik8JZhfvM9NwCu8QmF43eHp8AKDbwHvkAN34EruFXNwFU01CxwDTfqJXCd/g9mquolrUdfVbJCE6+BL3CFr8AVPOAncBVNdR+4BlHPgev0v2EIiw0OcFhijgW2EIyQYgdDmpByZIwLNGK00UNETrDik5OqwluG2lCX1RkzMbSbg1vOF1sZpTsjkzTPDqLjdi+SZLUSHyrEmcK4nclYMOY+Ofsl2PtuFmtqjG2+TfamsGsaU+8tN8PUrtP8r6rUjhsZv2/EjQUDyv9djzGNPlroUMo/1Ogep42tmxvRUSwDOZlOS/dbnZaOdfe8bWf+IgUvVeYKZ5R3jIIWJhhXLG0ucdyOKHJW218w0mfsAHicY2BiwA9YgZiRgYmBmZGJvTQv09XM1BwAC8ICSwAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAeJxjYGBgZACC2wqnqkH0I13mpzAaAEO8BjAAAA==')format("woff");}.ff11{font-family:ff11;line-height:0.857000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff12;src:url('data:application/font-woff;base64,d09GRgABAAAAAA2YAA0AAAAAEjAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAANfAAAABoAAAAcn3rSaEdERUYAAA1gAAAAHAAAAB4AJwArT1MvMgAAAaQAAABEAAAAVlXm/rhjbWFwAAACaAAAALYAAAGinRqvoGdhc3AAAA1YAAAACAAAAAj//wADZ2x5ZgAAA2wAAAflAAAKTE2V98loZWFkAAABMAAAADMAAAA2JxBLy2hoZWEAAAFkAAAAIAAAACQGeQKbaG10eAAAAegAAAB+AAAAlERAB8Fsb2NhAAADIAAAAEwAAABMLSov/G1heHAAAAGEAAAAHgAAACAAagBHbmFtZQAAC1QAAAGtAAAC/T7tkf1wb3N0AAANBAAAAFMAAABsBAME+3icY2BkYGBgYmTTnv37Zzy/zVcGbuYXQBGGR7rM3+A033825g6md0AuBwMTSBQAYtUMAgB4nGNgZGBgevefjYGBeToDw/8bzB0MQBEUoAoAfSIFGXicY2BkYGBQZXBhYGYAASYgZmQAiTmA+QwADQkAsgAAeJxjYGR8zziBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABDxC+l4nGOUYAADRl8QAUQvGcwYzzGYMRUyODEdYIhmDmSIZ8pjiGZSYNBhmsUQxTydgY/xClDNNwY/xs0MykBaGUgrMmozSAH1SgP5vgzPGDwYbzP4AWk/ZjYGX5AYUE4OrAek3gdIlwPVJjIIgeX2A80E4RUM0ky/GD4CAP2yHy8AAHicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMCgz2DP4MLgyxDAEMwQyhDOkMlQxlCloPT/P1AVRNYZSTaRIZuhEiT7//H/q/+P/T/8f/f/nf+3/9/2f+v/Nf9X/1/5gAlqI07AyMYAV8LIBCSY0BVAnI4EWNBUsAIxGzuMx8HAwMnAwMXADfQPDPDy8QsICgmLiDKIiUtISknLyMrJKygyMCgp43ccMlAhXimpAAD8oiXrAAAAAAAAAAAAAAAAACIATgCEAKQAzgDwATYBVAGQAcgB9AIcAkQCdAKWAvIDFAMmAz4DSgN+A54DxAPwBB4ENAR0BJIEsATOBPgFGAUmeJxtVntsG3cdv++d7cvTjhOf7TycxD4/68RpfC/HSZyX7cTeJant2GkTN2nS5/oQqECp1jYd3frIWpW1bE3LHxsIplRiopRJRZuKtFaDiUW00L8QBVX8g6iGQEwUaWJx+N5dUqKB5d/d76T7fr6f3+f7OgIIcc0A75F/I8wEARYajBTrEngJRC5shff0pVskqTfo6/SQKaumK8nHuuovMgZdGVWnq6Z+bK0g8EcSItoukR8SVqJBRTGCA1iBFyVR4FkX7VPAKFbgYEny9Q/EOrxfzcSsI8X56WuZDOkZ6Wg9OLyVG/tWoKVjRooJO1ZvZBRcIAbXnpF95D3CSRAeA21gXT4vcosBF7ZZbbTX52VdBsZis3JhSZTIPtHnj50pFovBr/ULgVC7yR/whWfPDcVnYl4P3+6qrHzxwJtL+zojZeW1OYex6t0TLxUmq6p82hmm8bJI3iHKNCUMrNPsDFtp3hsEMxcWycWfnCqtASzcmljcf+3a3ouQv/wxeefB1bM/WP3gu8h1Fu0/Q3sbQThZM2ugWNKHdzNXZ0WynCjVceRno2C9n/rYBKNHr1faGkmomD56lDw4XTKQVSOrS+Sd0n5HfFt16BnwzzlFELOCqFM5IRUE3MwqcnbPW4V/7jk7XsxdvJjdCX/NvFR6Qt45nunJl/44oWjYtvYpPCVXiHbU0KJIKKFcGBdfCNQ/iXHiws2Aempq4hb/Vnh6avb4i6bpb/Zta7UFhiJdLtpsPzkXeIF1mFI7+7b5TVui3d2tws/zpxKZ3LjIuey1NcZGF23raR07ZjabMgMjWwNBk8loanT1aPGcWvuU7MfzmNe5eAUzZ7aofMwc2X95954rhdmBwXn56aHvXD0Mvy6FZ/ftn4EHiq2RIKgLaIu5ABRLhaADWAONO65O0TcGKHCdKjRKTV34aPsRppGiwNA3k/soPxFsIUEXMRbyxzw06Jqc9DR5ZzUNl+Sv1NZGnpTeRel/870ztsDvt4JYyr4a8e87aYcRNbfX/gVXYIWwEx4lsoIRFN48ehF470ZyM7TgMpKMRc1EuJJuKLZ1iQd7D3R6xhOGVCZZlBt7422cv63V6bHWZ4Npt0Uf4KPhwS0zI28P0GbW3uS1WNSYj6G/R3hOI9G4ETEGg24WtbijRy3jRXh0JDUSldOJQnxa3iYMeppaXNL2J3vOSu14mt9FFmcK+a6HrXb7hKo9i7hL6jmwlpQTKIA2OgRq1BXiGPOl4Z+eODbfHgtWeaRQMin35pKkbgt/Ya74url+oN5yIJmeizTVKDwVvGXkWa0goi5KOBVMm5mjBO8GKCzLsczw/N6Rsb60zEbFHduEAa73/P3zPLhXP3wi5KYKea3+nOv8LIQDGTqbQWXEqFmi4lrpEPYmAw1LpYeQ784MUVQqt/3kNzIzIXe3weF1mIJD1X8am+tqdOqExfm5xdGeoIe3lsd59fxKZ8phj2LwrtBzAMco9YltScOHnNfvihw5lE6lisNbWPLrNWz78WhpAc5Ep1Jz2OkoonGNg8fwS8JP8MSQhkP7rIwaJDxvN4QZLa15aX0pwCKnxk0TRKzjg+AyUtoDPK5vaOIpZ3GgM1DRlV9ZKE4v9NU78Fn0xfNvc55WSVmTr04yrcYymOztmYRFUq8LSfEZh8kqXOoaG5f6As3tIX+7ODjrdH5fELZ24yo9TBjN9nKdu60dzz6KXG9irCxqb+JDJOtSW7SWVgzclPU1W5zukFlOSxPnwFvb4LZ09rKfYx6tJG5o8cFiIN4iL6MKNEFwaCqhctfTaUOhAHdPFlSNx/DyCfqpVPz4aDVvJY6GT7LX5WTqXvGHT8ZfR8zeX/2I2HifuI7vUxoiouGDxpd8H3V2r/Ol1Hht3nGMpmyYId+XyUqLtyHc+fw+3JPdZ5OK58FrtDZbjJPRzzft7iXSmcwNzb+qC/r5X12YL+kyHN2sC9yLp26gJs2YsyuYs5U4+TY6Gv+8UA1aiFcWdkyeVpac7RInMtFI9g+7zp2d233p4lR2Mn9zpkis130MHiGXL9U983/q/nA62SOnh6biO+SxSL8X676roNT938mFjq7F2eHdkQct9fbdGi6LuMuIa1LqSo/9i9RYhm0CFup/ExP71rJc0TrEJucPX4uk01xbZHIs0uWuvP+s0t5wftfuc/39pV+84U7MpZN7RdPzeMcQG4sDngsnQQzfSfQfgldgZ/ox3NteBHy3EbXahVoFN88hASOKI0gZ6zEKA6rMIMayMYF2pSaLqapErmisaTYb3c0es6/FK9YbXxisGkjnWh0NQriePS1l2+LhhMlurNJRdFmtyc17hPpqsmXAE7M1l+srLA1tCtda9J8ku4lapf/hN45a+ByDTYCxhCVIyvFsdiLx2mt7/A7faaiOnj4d/SLLrucJ2t6Eu4rteqfbPLjgZnpob7RDburkhuRwT6wbRks/8zijEjRrcwtuo221NrfWZxSOK7j9zo53xopuHRhEO9MEd0txXGv7WvxLQxFZ9Wtc41Vbm2KrfJl1gOKzDyhO/aaog9u/NTldddW2rQaft8ZuYj8YH+7Vg+4E3F39s6+zVlc2YGJc03D31o1oEnoUTMwuWERMnMEBEJTuHwTByWC7FbsBFktXQS8b7IbzsLP07zxuvu2HKej2lZZB0+IfxMtkOVxXataDn0hkeekvYH8Z7MR/ALh9KyAAAAB4nJ1STU7bQBT+xiRRkVrEjg2LtwQJW8ZJF2HBAgRIEQkoJlW2E5gkVoIH2UFRTsFFUE/AWbhCr9DP42kX6a62/N733nzvdwxgDz+hUD8//mKFL+rA4wAtFXm8gxP15nED++rT4yb2gm8et7AfnJOpGru03l1UhRX5TY8DfFXi8Q7G6rvHDYj68LiJQ/XL4xYkOMQlLF6wQYEMM8yxgiBBzLeNkG+Nu/ROyBJcIKLsQeMRC8auUVJn9GnkeHJnEfqONXDnNbNiHNHOXSbDShpLTGlZJx/oG1OPkOIKQ0rBDfUdPfe0jpkRl/ZlU2Sz+UqSOG6HIWVXJhu5iKSnHxd2XS4y0fmT9KJ+JAO7pjOTI5vLxMz1cip2Kg9mLKP0apjKzfBudJ8eM+8tG07dACVOOTJu+6nOy1OiaoYCz65bDGzxrKmv3SArpwuuzbilRVyU4Izfdr6QgxjyXplEM6JmJVxr6NZcLTlBh4ltvrq2xcxIEsVyJn/6CIdm9rrUBV1JN2xz8KTzb9vbZbAdXv2Ohgclr6O+irrrmLWFh6YoMy6LteOO/E/+3wUXflYAAAB4nG3DMQqCAAAAwMt+0BOEanEQBIlm09KoNMsCnX2Kzy5p7uAEfj6jyD/r+UJgaSW0sRVLpHb2Mge5wtFJqXJ2cXVTa9y1Hp46L2+9wfQFqu8K/gAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCFSBmAfMYAAUqAFN4nGNgYGBkAILbCqeqQfQjXeZvMBoARGYGUgAA')format("woff");}.ff12{font-family:ff12;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff13;src:url('data:application/font-woff;base64,d09GRgABAAAAAA2YAA0AAAAAEjAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAANfAAAABoAAAAcn3rSaEdERUYAAA1gAAAAHAAAAB4AJwArT1MvMgAAAaQAAABEAAAAVlXm/rljbWFwAAACaAAAALYAAAGinRqvoGdhc3AAAA1YAAAACAAAAAj//wADZ2x5ZgAAA2wAAAflAAAKTE2V98loZWFkAAABMAAAADMAAAA2JxBLy2hoZWEAAAFkAAAAIAAAACQGeQKbaG10eAAAAegAAAB+AAAAlERMB8Fsb2NhAAADIAAAAEwAAABMLSov/G1heHAAAAGEAAAAHgAAACAAagBHbmFtZQAAC1QAAAGtAAAC/T7tkf1wb3N0AAANBAAAAFMAAABsBAME+3icY2BkYGBgYmTTbv79PZ7f5isDN/MLoAjDI13mb3Ca7z8bcwfTOyCXg4EJJAoAXkcL6AB4nGNgZGBgevefjYGBeToDw/8bzB0MQBEUoAoAfSIFGXicY2BkYGBQZXBhYGYAASYgZmQAiTmA+QwADQkAsgAAeJxjYGT8wDiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABFEC+p4nGOUYAADRl8QAUSvGMwYzzGYMRUxODEdYIhmDmKIZ8pniGZSYNBhms0QxTydgY/xKlDNNwY/xs0MykBaGUgrMmozSAH1SgP5vgzPGDwYbzP4AWk/ZjYGX5AYUE4OrAek3hdIlwPVJjEIgeUOAM0E4ZUM0kw/GT4CAAEtHzsAAHicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMCgz2DP4MLgyxDAEMwQyhDOkMlQxlCloPT/P1AVRNYZSTaRIZuhEiT7//H/q/+P/T/8f/f/nf+3/9/2f+v/Nf9X/1/5gAlqI07AyMYAV8LIBCSY0BVAnI4EWNBUsAIxGzuMx8HAwMnAwMXADfQPDPDy8QsICgmLiDKIiUtISknLyMrJKygyMCgp43ccMlAhXimpAAD8oiXrAAAAAAAAAAAAAAAAACIATgCEAKQAzgDwATYBVAGQAcgB9AIcAkQCdAKWAvIDFAMmAz4DSgN+A54DxAPwBB4ENAR0BJIEsATOBPgFGAUmeJxtVntsG3cdv++d7cvTjhOf7TycxD4/68RpfC/HSZyX7cTeJant2GkTN2nS5/oQqECp1jYd3frIWpW1bE3LHxsIplRiopRJRZuKtFaDiUW00L8QBVX8g6iGQEwUaWJx+N5dUqKB5d/d76T7fr6f3+f7OgIIcc0A75F/I8wEARYajBTrEngJRC5shff0pVskqTfo6/SQKaumK8nHuuovMgZdGVWnq6Z+bK0g8EcSItoukR8SVqJBRTGCA1iBFyVR4FkX7VPAKFbgYEny9Q/EOrxfzcSsI8X56WuZDOkZ6Wg9OLyVG/tWoKVjRooJO1ZvZBRcIAbXnpF95D3CSRAeA21gXT4vcosBF7ZZbbTX52VdBsZis3JhSZTIPtHnj50pFovBr/ULgVC7yR/whWfPDcVnYl4P3+6qrHzxwJtL+zojZeW1OYex6t0TLxUmq6p82hmm8bJI3iHKNCUMrNPsDFtp3hsEMxcWycWfnCqtASzcmljcf+3a3ouQv/wxeefB1bM/WP3gu8h1Fu0/Q3sbQThZM2ugWNKHdzNXZ0WynCjVceRno2C9n/rYBKNHr1faGkmomD56lDw4XTKQVSOrS+Sd0n5HfFt16BnwzzlFELOCqFM5IRUE3MwqcnbPW4V/7jk7XsxdvJjdCX/NvFR6Qt45nunJl/44oWjYtvYpPCVXiHbU0KJIKKFcGBdfCNQ/iXHiws2Aempq4hb/Vnh6avb4i6bpb/Zta7UFhiJdLtpsPzkXeIF1mFI7+7b5TVui3d2tws/zpxKZ3LjIuey1NcZGF23raR07ZjabMgMjWwNBk8loanT1aPGcWvuU7MfzmNe5eAUzZ7aofMwc2X95954rhdmBwXn56aHvXD0Mvy6FZ/ftn4EHiq2RIKgLaIu5ABRLhaADWAONO65O0TcGKHCdKjRKTV34aPsRppGiwNA3k/soPxFsIUEXMRbyxzw06Jqc9DR5ZzUNl+Sv1NZGnpTeRel/870ztsDvt4JYyr4a8e87aYcRNbfX/gVXYIWwEx4lsoIRFN48ehF470ZyM7TgMpKMRc1EuJJuKLZ1iQd7D3R6xhOGVCZZlBt7422cv63V6bHWZ4Npt0Uf4KPhwS0zI28P0GbW3uS1WNSYj6G/R3hOI9G4ETEGg24WtbijRy3jRXh0JDUSldOJQnxa3iYMeppaXNL2J3vOSu14mt9FFmcK+a6HrXb7hKo9i7hL6jmwlpQTKIA2OgRq1BXiGPOl4Z+eODbfHgtWeaRQMin35pKkbgt/Ya74url+oN5yIJmeizTVKDwVvGXkWa0goi5KOBVMm5mjBO8GKCzLsczw/N6Rsb60zEbFHduEAa73/P3zPLhXP3wi5KYKea3+nOv8LIQDGTqbQWXEqFmi4lrpEPYmAw1LpYeQ784MUVQqt/3kNzIzIXe3weF1mIJD1X8am+tqdOqExfm5xdGeoIe3lsd59fxKZ8phj2LwrtBzAMco9YltScOHnNfvihw5lE6lisNbWPLrNWz78WhpAc5Ep1Jz2OkoonGNg8fwS8JP8MSQhkP7rIwaJDxvN4QZLa15aX0pwCKnxk0TRKzjg+AyUtoDPK5vaOIpZ3GgM1DRlV9ZKE4v9NU78Fn0xfNvc55WSVmTr04yrcYymOztmYRFUq8LSfEZh8kqXOoaG5f6As3tIX+7ODjrdH5fELZ24yo9TBjN9nKdu60dzz6KXG9irCxqb+JDJOtSW7SWVgzclPU1W5zukFlOSxPnwFvb4LZ09rKfYx6tJG5o8cFiIN4iL6MKNEFwaCqhctfTaUOhAHdPFlSNx/DyCfqpVPz4aDVvJY6GT7LX5WTqXvGHT8ZfR8zeX/2I2HifuI7vUxoiouGDxpd8H3V2r/Ol1Hht3nGMpmyYId+XyUqLtyHc+fw+3JPdZ5OK58FrtDZbjJPRzzft7iXSmcwNzb+qC/r5X12YL+kyHN2sC9yLp26gJs2YsyuYs5U4+TY6Gv+8UA1aiFcWdkyeVpac7RInMtFI9g+7zp2d233p4lR2Mn9zpkis130MHiGXL9U983/q/nA62SOnh6biO+SxSL8X676roNT938mFjq7F2eHdkQct9fbdGi6LuMuIa1LqSo/9i9RYhm0CFup/ExP71rJc0TrEJucPX4uk01xbZHIs0uWuvP+s0t5wftfuc/39pV+84U7MpZN7RdPzeMcQG4sDngsnQQzfSfQfgldgZ/ox3NteBHy3EbXahVoFN88hASOKI0gZ6zEKA6rMIMayMYF2pSaLqapErmisaTYb3c0es6/FK9YbXxisGkjnWh0NQriePS1l2+LhhMlurNJRdFmtyc17hPpqsmXAE7M1l+srLA1tCtda9J8ku4lapf/hN45a+ByDTYCxhCVIyvFsdiLx2mt7/A7faaiOnj4d/SLLrucJ2t6Eu4rteqfbPLjgZnpob7RDburkhuRwT6wbRks/8zijEjRrcwtuo221NrfWZxSOK7j9zo53xopuHRhEO9MEd0txXGv7WvxLQxFZ9Wtc41Vbm2KrfJl1gOKzDyhO/aaog9u/NTldddW2rQaft8ZuYj8YH+7Vg+4E3F39s6+zVlc2YGJc03D31o1oEnoUTMwuWERMnMEBEJTuHwTByWC7FbsBFktXQS8b7IbzsLP07zxuvu2HKej2lZZB0+IfxMtkOVxXataDn0hkeekvYH8Z7MR/ALh9KyAAAAB4nJ1STU7bQBT+xiRRkVrEjg2LtwQJW8ZJF2HBAgRIEQkoJlW2E5gkVoIH2UFRTsFFUE/AWbhCr9DP42kX6a62/N733nzvdwxgDz+hUD8//mKFL+rA4wAtFXm8gxP15nED++rT4yb2gm8et7AfnJOpGru03l1UhRX5TY8DfFXi8Q7G6rvHDYj68LiJQ/XL4xYkOMQlLF6wQYEMM8yxgiBBzLeNkG+Nu/ROyBJcIKLsQeMRC8auUVJn9GnkeHJnEfqONXDnNbNiHNHOXSbDShpLTGlZJx/oG1OPkOIKQ0rBDfUdPfe0jpkRl/ZlU2Sz+UqSOG6HIWVXJhu5iKSnHxd2XS4y0fmT9KJ+JAO7pjOTI5vLxMz1cip2Kg9mLKP0apjKzfBudJ8eM+8tG07dACVOOTJu+6nOy1OiaoYCz65bDGzxrKmv3SArpwuuzbilRVyU4Izfdr6QgxjyXplEM6JmJVxr6NZcLTlBh4ltvrq2xcxIEsVyJn/6CIdm9rrUBV1JN2xz8KTzb9vbZbAdXv2Ohgclr6O+irrrmLWFh6YoMy6LteOO/E/+3wUXflYAAAB4nG3DMQqCAAAAwMt+0BOEanEQBIlm09KoNMsCnX2Kzy5p7uAEfj6jyD/r+UJgaSW0sRVLpHb2Mge5wtFJqXJ2cXVTa9y1Hp46L2+9wfQFqu8K/gAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCFSBmAfMYAAUqAFN4nGNgYGBkAILbCqeqQfQjXeZvMBoARGYGUgAA')format("woff");}.ff13{font-family:ff13;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff14;src:url('data:application/font-woff;base64,d09GRgABAAAAAAvkAA0AAAAAD8QAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAALyAAAABoAAAAcn3rSekdERUYAAAusAAAAHAAAAB4AJwAkT1MvMgAAAagAAABDAAAAVlWOXrljbWFwAAACXAAAAKwAAAGabAxp82dhc3AAAAukAAAACAAAAAj//wADZ2x5ZgAAA0gAAAZlAAAIKP7NDrNoZWFkAAABMAAAADIAAAA2JylL3GhoZWEAAAFkAAAAIgAAACQGiALdaG10eAAAAewAAABuAAAAeDUBB09sb2NhAAADCAAAAD4AAAA+HPoa6G1heHAAAAGIAAAAHgAAACAAYwBLbmFtZQAACbAAAAGoAAAC8Y2jxyBwb3N0AAALWAAAAEwAAABeA1UDrnicY2BkYGBgYmQ71571MZ7f5isDN/MLoAjDI13m/wj6vxHzeqaDQC4HAxNIFABlpwwiAAB4nGNgZGBgOvjfiIGBuYmB4f9y5vUMKQyiDMhADgCBRQVqAAB4nGNgZGBgkGPwYGBmAAEmIGZkAIk5gPkMAAywAK8AAHicY2BkvM84gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEGGBmQQECaawqQUmCoYjr43wio8iDDOZgaAGRTDPAAeJxjlGAAA0ZfEAFEcgzJTOsYkpgmMuQyZTLEM8ozxDM3MaQxvmNwYzzJYM8kzGAPpO2YmBiYgOxAhq8MQYzfGEJBNLMBQyBIDChnwRjPEMzYxaDCWMyQwniLIYdpH0MOkGYAYkbG/QyyAGiiFXgAAHicY2BgYGaAYBkGRgYQmALkMYL5LAwVQFqKQQAowsWgwKDH4MzgyuDJ4MuQyJDKkMmQz1DCUPX/P1ANSM4JLpfMkM6QzVDEUPb////H/6/9P/z/0P/9//f8X/l/xf/l/5f9X/J/MdQuHICRjQGugJEJSDChK4A4GQFYsJjCysbADqQ4gJgTizQXAzcPLwMfvwCDoJCwiCgDg5i4BIOklLSMLD6n0Q0AAEtqI7kAAAAAAAAAAAAAAAwARAB8AJoApgDUARABNgFmAZQCAAIkAjYCTgJaApQCuALiAvoDPgNgA34DrgPGA/QEFAAAeJxtVWtsG1Uavd+d2mPH70fsYDtOPBOPYztxkxl3JokbO2mapHGT4tiJnZImdUIIod2qqNJuYQVqu10qWlRUaMruaqE8IpBQKa9KlVAtoEUIofIoEqjArvoLhBBSkXiI/qnDN5NuG2Btz/je8cw55zvfwwTInYSQi6RIGEIkXpHeKDqLRYK7WULop/QssRIvaSQkbAU+5JJED2sFNgiMLMSBlURZWzC4oE/aT+2qXl38ZceDVvPuXG57p+me3H7pzzMHOPPO0eOd/y4crGT30LMLA/KYyzwLRmnDDyPVb7pGqz8OEwJk1/LP9Ao9Tzjk0rN6nhMigiIrsiR6PV4WNzzH4nWvRxLxMr2rP9Las+FePtvQuHfvESUaa+MEISzPTBR9Pik50xtv7mltMpoUcefjJxbuMbDuiQazebzw173FcbNZQL7tGN8FegbjI1FwhVg+wrMhfIcl2l3ljsMlW/EnoR0KluppGXxz9MwA/ab3OiVk5VkooDeaZy7prfJiGXdA5tG4V3B1GyEh3sXrWYaPMEKEZ/Amr8vjlWTFJTH+/EHgd3w6bJMaAA7mF+8zrA8COA58fB9dGDxVfWYMfKeV6/+kZ1urp56WhM8B80HJwPLP8CN8SDwkrKIrqkNKGjIgq86oPnlsoHBWyupVi9IUXsgZhhdSUaPlhYeMpqboeM5YHMuO2PeYbOLWXp0+0ZwIuzw6ob3Qsr6PibV3JwdbZrMnkmvMXF0976rx2bVYM8i7rPFiXpAzDcjkZRPAc/oVKjgzWSrPNj85L6WaA6GORHbKZuvKlMbDbUfePOb0Dfjcd/dtmpYwBsSiBa2mAqtjwBSjLYpwEzEN8FbBNDo+NOR2H9pclDO592OBrs5dTmeP0iXV6JKZh2fKhxUQrl9+N5kvFcaSNTWqR2nU+j1qdRI/qg1pWOwtEg8rJ6hKAl9WL1h604WisVSanqt1/6M0xfv6wcU12BOFuv/0l9f1tx+5s/zI5vVtTaLXuFHETNNlkW6C90gL6SCDaIzquturtgPPRVB3CsQggztOrdqVQyOVJVa+GZnsQgVx4PQ20HuwZ/oDrWlg7EbrXzaKEQtj6tpW27QhWmcwn3h7j9m6yWmsCdeZ8EdZGC1eNMWEpl6zdvbpAuuC9mkuodOzhQfm4O9rdFTX0tpXrnc4ktTu74x03p5Tepob44nwWrmv3Ni4lJTaFTyqH3iDNUzIbudicS2/o2gchzlxazWbBs0hG2DFMlhTLJwvpBnK2MOBZL85WVjM9WW3HuWAszhDbvtE10/0bPX9TSfR+zyCKfQ4OsWudIWC0+S53HSOL7vLUNlbRq5x5Iojl0nliqyQKBILXxXvnQ0OLQ7PXNt+6UruUcTs+OglvF/FlG/12XO5xZzWZ6iZyWAumn6vebV8VtbcF1l65TchrF6XR2xDUwuG/OTqkFatLgwO5/Mnb/mEnH/0if0/PmnAvwFFqJNqjXZgD0SwRk04V7WpeqM6PavLhDprn53etqO2dmlq+/y8oy/VueBwZLpTd/935tBDs3NHH906Oj6WH902STRtBTy9htqwCcAKN0Qp8Ozg/Y7WXDnrLu6BfTA1/BlcmJymeH8T9kkFNbSoChisX0WbqgkaSQBO3bQOnWO1gRsEL348cNTY2q0E7hiqXz8xbV1jrq91KC2eRhPbEI+sdZu29AS6NxctOp//Ninhaj4QSwVMLUNir9Nn0zMmhzciNrT7HXraOBBJeQIGXY3DHVd1z6GOJZrCftVmi+LCksF6kFie1eNc2ZbfUgrK45YJf9Z/zHJMdM63+cKHgaT37UtfLTWuxP4nNDUKFWIhxAg8I2FL4phNYy1Gqz9M5fPhOkqtpWCmHirVjVD55DG++XFxof1/zzIWfBanBeCoFiJJhVdzegPFdeOLsXw36WUAwLTlrsLanMuiA8eprMfMgPNVFfUXXyJljP7rPFTeeURKQ9+VvzUpMIL4+KIC4q/UO8srEcmr1vsXE7vPla4tlna+WPr23LmvLy8tXdb0wLKkxeJTY7mZGHXIM5IHtaSpGtXr/oTgtrXVGflYjSXo7NgxFjb4WWN/z2aoXL8aW+fSGfoda3y+rVB5PrZfDB2Yvx+x65HgGmI71P87RZ3ecVBCLFaenAJ4qrrfCGMj+jr9UQvsNlRPj+HyiTgUIBOtvgy/AtwkrVkAAAB4nJVSzUrjUBT+bmwrA0NdDO5UzlKRhJB00y6VKhTbSmPFbaJpG1pzNamUvsI8y+DSR/ER5jnmy81lwO7MJed859zv/CYA2niHQv3c/8cK++rQYgctdW7xHs7Vb4sbOFCfFjfRdhoWt3DghGSqxg9af0xUhRXaqmmxg5/q2OI93KvA4gZO1IfFTRypvxa3cOL8wiU0XrBFgQxzLLCGIIDPE8LlqXGX3oQswQU8ygFiPGLJ2A1K6oy+GDmezJ2HoWGNzH3NrBintHOTKWWlGCvMaGkj7+h7oJ4iQh8TSsE19ZieW1pnzIhL/bItsvliLYHvh65L2ZVkKxeeDOLHpd6Uy0zi/EkG3tCTkd7QmcmpziVJF/FqJnomd+mDTKP+JJLryXh6G50x7w0bjswAJUfFzTCK85KgGqDAs2kVI108x9RXZoq10QV3lpqNedySoMf3azKXEyQMz/CKN8PtGX51E9r9Bugwrc7XV7qYpxJ4vvTENuGOk1X2+pbSE3TdkCMHnd2Gd2tgJ7b6C1P2WpJRf4G6X591hZdpUWbcEev6Hfl28n8ewHyweJxtysENQ2AAgNFXnaALuBEHhw4hCKJIqmmxU4d15x/Al7zbJ+LYg7/UVXFwE7l7SMKTyT0VSpVao9XpvQxGk7fZx9fPYrWd6PgLAgAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJZIGYB8xgABN0ATHicY2BgYGQAgtsKp6pB9CNd5v8wGgBEwAZkAAA=')format("woff");}.ff14{font-family:ff14;line-height:0.911000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff15;src:url('data:application/font-woff;base64,d09GRgABAAAAAAVkAA0AAAAAB5AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFSAAAABoAAAAcn3rSgEdERUYAAAUsAAAAHAAAAB4AJwAOT1MvMgAAAaAAAAA/AAAAVlSTXttjbWFwAAACAAAAAGAAAAFiDQYOCmdhc3AAAAUkAAAACAAAAAj//wADZ2x5ZgAAAnQAAADcAAAA3EEXq9ZoZWFkAAABMAAAAC4AAAA2Ja5MhGhoZWEAAAFgAAAAIAAAACQE4QJGaG10eAAAAeAAAAAfAAAAIAlBAMVsb2NhAAACYAAAABIAAAASAKQAYG1heHAAAAGAAAAAHQAAACAATAAYbmFtZQAAA1AAAAGpAAAC8YygxB9wb3N0AAAE/AAAACUAAAAyAE0AzXicY2BkYGBgYmRbsTKTM57f5isDN/MLoAjDI10WJmSayZRpKpDiYADzAPVSB2UAAHicY2BkYGCaygAETKoMDP+3MpkypDCIMiADDgBHJAMseJxjYGRgYOBgEGVgYgABEMnIABJzAPMZAAVMAGUAAAB4nGNgZIxnnMDAysDA1MW0h0GWoQdE/5/L+IDBkJEJKMrAyswAA4wMSCAgzTUFSCkwVDFNBfEhJEQNABvnChkAeJxjlGAAA0ZfEAHE/xhCmFQZghlfAbnnGOQAKvgEDQB4nGNgYGBmgGAZBkYGEIgB8hjBfBYGByDNw8DBwARkKzBkMuQxVDBU/f8PFEXi/X/8f/b/6f/7/vdCTYADRjYGuBAjE5BgYkBTALGaKoAFRLDCuWwM7NQymSIAAHCEER8AAAAAAAAAAAAAABIANgBOAG4AAAACAFQAAAE9ApUAAwAHAAAzIxMzNyM3M6hUXlQiZRVlAbx0ZQABAFMAAAIXAcYAFAAAISMTNiMiBg8BIxMzBzYzMh4CBgcB0Vc9GGo1Rgw0V2BQEFBcJDEZCgIFASFjVzrzAcNJTBIdKyoaAAABAAAAAAI1AbwACwAAISMnByMlJzMXNzMHAeladsBZAP+bWm+wWO+8vOXXpKTXAAABAB4AAAIGAbwAEQAAKQE3ASMiBisBNyEHATMyNjsBAav+cwkBW04GGAaTDQF8Cf6mVwYYBpssAVEBQCr+sAF4nJVSzU7iUBT+bgWMyQQXZnYjOUuNadO0LISlRkmIgKFi3LZaoAF7tcUQXmGeZeJyHmUewefw4/bGRHbTm57znXO/89sCaOIdCtVz/4UV9tVPix001JnFezhTvy2u4VD9s7iOplOzuIFDJyRT1Q5o/TFRW6zQVHWLHfxQxxbv4V4FFtfQUn8truOX+rC4gZZzhEtovGCDAhlmmGMFQQCfJ4TLU+EOvQlZggt4lH3EeMSCsWuU1Bl9MXI8mTsPA8MamvuKuWWc0M5NppSVYiwxpaWNvKPvgXqCCFcYUwp61CN6bmmdMiMu9cumyGbzlQS+H7ouZUeSjVx40o8fF3pdLjKJ8yfpewNPhnpNZyYnOpckncfLqeip3KUPMomuxpH0xqPJbXTKvDdsODIDlDinOYjivCTYDlDg2bSKoS6eY+prM8XK6II7S83GPG5J0OX7PZnLCRKGZ3jFm+F2Db/Dm9DuN0CbaXW+utbFLJXA86Urtgl3lCyz17eUnqDjhhw5aO82vFsDO7HbvzBlryUZ1Reo+vVZV3iZFmXGHbGu35b/Tv4JGcx8qAAAAHicY2BiYPj/BYjnMqgwYAMcQMzIwMTAzODDEMgQzRALAKeeBRkAAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCdiBmAfMYAAPrADZ4nGNgYGBkAILbCqeqQfQjXRYmGA0AOuoEbAAA')format("woff");}.ff15{font-family:ff15;line-height:0.661000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff16;src:url('data:application/font-woff;base64,d09GRgABAAAAAAa0AA0AAAAACXgAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGmAAAABoAAAAcn3rSgEdERUYAAAZ8AAAAHAAAAB4AJwART1MvMgAAAaQAAABDAAAAVltfSmZjbWFwAAACFAAAAGgAAAFiCOv3lmdhc3AAAAZ0AAAACAAAAAj//wADZ2x5ZgAAApQAAAHiAAACKMo6P95oZWFkAAABMAAAADIAAAA2J4hAnWhoZWEAAAFkAAAAIAAAACQEJvrfaG10eAAAAegAAAAqAAAAKhbcAmtsb2NhAAACfAAAABgAAAAYAgQCoG1heHAAAAGEAAAAHQAAACAATgAvbmFtZQAABHgAAAHFAAADaX5VV/pwb3N0AAAGQAAAADMAAABImmw/M3icY2BkYGBgYjgSKc/6Op7f5isDN/MLoAjDI10WJjgt9O0E8x8GDSCXgwEsCgAoEQnwAAB4nGNgZGBg0Ph2goGBRYGB4f8b5j8MIBFkwAUAeHQFAXicY2BkYGDgZtBhANEMDExAzAhmO4D5DAAHxQB+AAAAeJxjYGQ6xDiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgEGBAhIc00BUgrPGBk0vp0AsjQ4LUBqQHIA6pYKYgABGAAAAAAAAAFNAAADGAAABCAAOAOxADgB2ADiAdgAEgPoAG8BygCYACwAAHicY2BgYGaAYBkGRgYQiAHyGMF8FgYHIM3DwMHABGQrMAQyZDIUPWP8/x8oqsAQwJAB5DH8////8f8t/+f9nybFCTUBDhjZGOBCjExAgokBTQHEalIACyt2cTZ2GIuDRBNpCwDDWBB3AAAAAAAAAAAAAAA6AHoAjACeAMYA7AEUeJxFkU9oE0EUxuftbHeyyZLudP/VSqSTbZOITUKy2Wwp2FapQigIIrRe6qWXgkhBpMVTDtWTRy8eLBRBSi56KQS8SoteRG/i0RwC3htYu1l8ySoeHnzf8PH7Hm8IkMVomvYJIXlCgIl8wW8EKjSannDcyoQrwDYZiHqwDAHtb0Qf9YwK2/HLlEmvb1ziS3daW0vz8RO4xdT4LXRebK0+MIY8pKmJDHRh4Ki/ymtXZzI0vplOafG9nL25SJLOfey8hp3Cry9LPhfcvCJ51l/XqEiuL6x8VrLG73Q//jZX4XJ8V+aVuUSPFF35p6Lp0mTO0Gkr6upGbrI0dtLv/3qojDSWYv/PUMApKRGGxuWehQOnvd7JSSgYq4abo8xUKMh5kjFc3+M455johaKqdKoJZ3fwiUaYMQmZxzNlwaUMD7gChgdNr27TSB7+kLWZ/lqWHXwHiSi6mjFZdtAzmFx7qMlU/RLZqfZlLeG9ungKh8iz0JhuvljgeoAcy2QKNx3bseFQM1uvj29wTe3Olnfli4P0/c8QwO2z9bSsnsXPj9rv95QxawFZNWQ5aHSmuHn82GbQ9BvFQhF39OpIqx2vTmnqzoI7W36kjMjDr/GHMerxm2edo/a7PVnBAkL+AL2AfcgAAHicrVJNb9pAEH3rAFKlKlKPlXoY9RCFgy3HpAfSS5WIREExQRCqnCotyQIu4I2MI8LP6T3qL+iv6i/o87L00BzaQ73yzNvZ+XgzuwD28R0K2+/zb6zwRjU9DtBQlx7v4YP64XENb4MDj+vYD7543KD9Gz1V7RV3zy6qwgrvVd3jAK/VR4/38FX1Pa4hUT89ruNd8MnjBpJgiTNYPGCDAhmmmKGEIEHM1ULItcVtWsf0EpwiouxC4w5zxq6xos5o08hx784ipM6r5863npXHIfe5y2RYSWOBCXfWyRvabqlHGKKDAaXggvqalj53TWbEmX3YFNl0VkoSx60wpGzLeCOnkXT13dyuV/NMdH4v3SiNpGfXNGZyaHMZm5leTMRO5MbcymjYGQzlYnA96g+bzHtFwikJlaTVwRO1IdEVSVeEjzgAXKWpLmedp9Lkq8zmRzRV7RVYukbQs8VSU5+7kNLpghM1bp4RUwhO+P+9VMiuDSMfmVYzxzYu4R2E7k6qG0lwzFI2L89tMTWSRLGcyAuK4cBMHxe64FnSDlscV3L8L83+yeBl87vM1fs29NhF73qtXo/w0BSVf8Uvbsl/Lv0LDVecpgAAAHicY2BiAIP/TQwaDNgANxAzMjAxMDMYM5gweDP4MIQyMjEys5fmZbqaGRhAaUMAs4IHdAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCLiBmAfMYAAQMADl4nGNgYGBkAILbCqeqQfQjXRYmGA0AOuoEbAAA')format("woff");}.ff16{font-family:ff16;line-height:2.400000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff17;src:url('data:application/font-woff;base64,d09GRgABAAAAAAZQAA0AAAAACMgAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGNAAAABoAAAAcn3rSgEdERUYAAAYYAAAAHAAAAB4AJwAPT1MvMgAAAaQAAABGAAAAVlZnYgtjbWFwAAACEAAAAF0AAAFiCQkPEWdhc3AAAAYQAAAACAAAAAj//wADZ2x5ZgAAAoQAAAGaAAABvN/MOm1oZWFkAAABMAAAADIAAAA2JgpLoWhoZWEAAAFkAAAAHwAAACQFcgISaG10eAAAAewAAAAkAAAAJA4hATtsb2NhAAACcAAAABQAAAAUANgBUG1heHAAAAGEAAAAHQAAACAATQA+bmFtZQAABCAAAAG1AAADOQQojqhwb3N0AAAF2AAAADUAAABA183XS3icY2BkYGBgYjhytOZncTy/zVcGbuYXQBGGR7osTHBa/T8bUybTOyCXgwEsCgBZRgrFAAB4nGNgZGBgevefDUjOZwACpkyGFAZJBmTACQBbuwOJAHicY2BkYGDgZLBmYGIAARDJyAAScwDzGQAJHQCMAAAAeJxjYGT8wjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAONDEggIM01BUgpMB9mevefDajyHcMvIJ8RJAcAhhoOHgAAARgAAAAAAAABTQAAAp8AAAEeAFgBHgBYAgIAOQKTACsCTAAneJxjYGBgZoBgGQZGBhCIAfIYwXwWBgcgzcPAwcAEZCsw6DDoM29kPvz/P1AUxNOD8P4//n/j//U/YX9coSbAASMbA1yIkQlIMDGgKYBYDQMsDKxsDMMMAAB/vBEmAAAAAAAAAAAAAAAAAAAgADIAUgCmAN54nCWQTy8zURTGz7md3qkxvaWmo4KZyUx16FQTdzoz9SeEBPUvsSB4F15WJcrGxkIsfAKR+ALExsbOgq2Ina3vILGzE33vvJYn5zzP8zsPIGy2puANmtAFEGkMHTuoRmFAHbtYDX2uv3lDqTRdzPTkDSNv2iTYqahJOn/cYZWtMQChB4BnoZcBQo3GKv5sVkyzsly2xA3EN6Mtiq/kEzJi0GSMzUUKxv74Sn9uU50iA3eTrE0l7xL73syrisQSD4oq5EDAa32RfXyEEojIgTjF/fWIHfoxjCYJ13PdAl+mMs1pPg8jsXIr6BYdm8oMc5ruc7Lj10eUw4OF7btGvTFtJghVKSo66yu1WRkrJbWzJ4JSdnVwSe+1uNeYyAbD7tr2ysF9Y6+20VSSUjKRkJyJ3qjanjnMa2mz69I4CZzyaTGoCU5XcM7hveiyEH/qoZ7TfkEncRy5gXJV8DDyn0ZQI5njR8b135k/s2f1jzRjL0HJXylma44932P04VWBjx7dbCxMnW8R9cIfrq0vG2PcK5SaopZ/iMNOHAAAeJytUk1r20AQfavYhkKbWy8lh+ktCUhVpVxs6CVpEmwqJ9hxyXXtrG1hRxtkGeN/1EPID+qv6dNqKbS0PVVCM2/efOzMaAEc4gUKzfP1J1Z4o957HKCjPnl8gI/qm8ctvA06HrdxGPQ87pDfMlK1XtF6dlk1Vnin2h4HeK0+eHyAqfrscQun6rvHbRwFRx53cBr0cQGLJ+xRIscCS1QQJIj5pgj5NrhLdsoowTkiygE0Zlgxd4cNdU5Oo8CD80XIXNTQ+ZvIOuKYduEqGZ6kscaclnXyjtw99QRjXGJEKbimviFzS+uEFXFhn/ZlvlhWksRxGoaUXZnu5TySgZ6t7G6zykUXDzKIskiGdkcyl2NbyNQs9Xoudi535l4m48vRWK5HN5Pb8QnrfmHDGRuq2Fafsm4tZ9tdurJMV8t+pdf5jGY9UolHF4GhLR819ZWbq3K65BaN22HEvQl6/P5ePuSEhhlbMpq5TXziPKnffoIzHmGL6sqWCyNJFEtPfmkrHJnFdq1L8kk3TLmW5OxfQ/1+Kv5Yrb67ht4Ns5r/1sxU3wyh05SbnJtlP3Eq/+G4HyNUju4AAAB4nGNgYmD4//Hb7v8TGNQYsAFOIGZkYGJgZuBnEGQQYmRiZGZNzCnISGQtzkzPTQQAUrQJwgAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIOIGYB8xgAA/YAN3icY2BgYGQAgtsKp6pB9CNdFiYYDQA66gRsAAA=')format("woff");}.ff17{font-family:ff17;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff18;src:url('data:application/font-woff;base64,d09GRgABAAAAAAUMAA0AAAAAB3QAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAE8AAAABoAAAAcn3rSgEdERUYAAATUAAAAHAAAAB4AJwAMT1MvMgAAAagAAABFAAAAVlcHff9jbWFwAAACCAAAAEoAAAFSIjApDmdhc3AAAATMAAAACAAAAAj//wADZ2x5ZgAAAmQAAACMAAAAjDl42vloZWFkAAABMAAAADIAAAA2J+pHDWhoZWEAAAFkAAAAIgAAACQFMgFiaG10eAAAAfAAAAAYAAAAGA7WAOtsb2NhAAACVAAAAA4AAAAOAEYAEm1heHAAAAGIAAAAHQAAACAASQAhbmFtZQAAAvAAAAG4AAADRaIK/ohwb3N0AAAEqAAAACMAAAAuAFv3y3icY2BkYGBgYjjiZ+Z4Np7f5isDN/MLoAjDI10WJjid98eHhYlRBMjlYACLAgAhLAj0AAB4nGNgZGBgFPnjw8DAcoyB4f8zFiaGFAZJBmTABgBuFASXAAB4nGNgZGBgYGOQYwDRDAxMQMwIZjuA+QwABeAAawAAAHicY2BkUWWcwMDKwMDUxbSHQZGhB0T/72F8wGDIyAQUZWBlZoABRiB2gHEC0lxTgJSCkhSjyB8foKQI8xaoGgYAGDYK0gAAAAEYAAAAAAAAAU0AAATGAAADwwB9A+gAbnicY2BgYGaAYBkGRgYQ8AHyGMF8FgYDIM0BhExAWkFJSEnq/38E6//ju5/uvobqAgNGNgY4lxGkh4kBFTBCrBrkgJUSzQCwVAuCAAAAAAAAAAAAAAAAABIARgAAAAEAfQDgA0UBFAAHAAAAFCMhIjQzIQNFJ/2GJycCegEUNDQAAAEAbvxMBAIANAAdAAAlFAcBBiMiJicDBwYjIiY1ND8BNjIeARcTATYzMhYEAgf96wwTCgcG5zsMAwcKEHALCAYDBNAB7wsQCw8aCAz8WRMFCwGvJgYJBwgKRwcDBQj+ewNmFA8AAAB4nK1Sy2rbQBQ9o9iGQvCyqywulEICkRByKDirEpMYTOUEKS7ZjmPZFrY1QVIw3vWDmnxTP6VHo6HQULKqBt177mvuawD08QqF9vv+Byv01SeHPfTUV4ePEKkXhzv46PUd7qLvjRzuUf+DnqrzgdJPG9VghRPVddjDsYocPsJCjR3u4Fz9criLE++zwz2cewlGMHjCASVyrLBGDUGEkGcAn6fFQ2rn9BJcISCdQOMRG8buUZHn1GkUWFhbgNh6Ta299Ww8TikX9qaMmTS2WFIylt5T90A+Q4prJKSCMfktNXeUzngjRubpUOardS1RGA58n3Qo84NcBTLRjxuzrza56GIhkyAOZGr2VOZyagqZZ2u9XYpZyn32ILP0OkllnNzO7tIz3vuNBccsqGZZKdvcsUTD8ip8oTGOdb1OD7u52VaUm65KujT1Y2rKnSa/sa3VlpccZGbHGHB0gkv+72Xw2WbGmGfKmtFtRMSh+3YJzQoiXDCJKeobU64yiYJQLuXvyvwkWz1vdUlDNPQHHE508X5rbxPj3xc2jzijueIS2wW2nTVPRGjMyirniFlTOJD/k/E3LbiTvnicY2BiYPj/8dvu/zsZ5BmwATYgZmRgYmBmeM+wFADcngcbAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJWIGYB8xgAA9UANHicY2BgYGQAgtsKp6pB9CNdFiYYDQA66gRsAAA=')format("woff");}.ff18{font-family:ff18;line-height:1.224000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff19;src:url('data:application/font-woff;base64,d09GRgABAAAAAASUAA0AAAAABvwAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEeAAAABoAAAAcn3rSgkdERUYAAARcAAAAGwAAAB4AJwALT1MvMgAAAaQAAABBAAAAVlNOfxJjbWFwAAAB/AAAAEYAAAFKRBjk7Wdhc3AAAARUAAAACAAAAAj//wADZ2x5ZgAAAlAAAAAoAAAAKHJurLZoZWFkAAABMAAAADIAAAA2JpdLpGhoZWEAAAFkAAAAHgAAACQD8gOIaG10eAAAAegAAAAUAAAAFAWFAFZsb2NhAAACRAAAAAwAAAAMAAAAFG1heHAAAAGEAAAAHQAAACAASAANbmFtZQAAAngAAAG1AAADRagRBI5wb3N0AAAEMAAAACEAAAAs/4z30nicY2BkYGBgYjiy9jI/dzy/zVcGbuYXQBGGR7oszHA6jOEp0wlGASCXA6gWCAAmPAlDAAB4nGNgZGBgFGAAAmZ5EMl0giGFQZIBGbACABzMAYEAAHicY2BkYGBgZeBiANEMDExAzAhmO4D5DAAD0QBWAAAAeJxjYGScwDiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMQOwA4wSkuaYAKQUlIUYBsKQAXA0DAB49CSsAAAABGAAAAAAAAAFNAAAAAQAAAx8AVnicY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUlIT+/wfywfT/x3c/QdUDASMbA5zDyAQkmBhQASPEiuEMAPqwCSgAAAAAAAAAAAAAAAAAFAABAFYA5QLIARAACQAAJRQjISI1NDMhMgLII/3UIyMCLCP6FRYVAAB4nK1Sy2rbQBQ9o9iGQvGyqywulEICkRBSNs6qxCQGEzlBiku241i2hW1NkBSMd/2gtt/UT+nRaCi0lKyqQfee+37MABjiBxS678tvrDBUHx32MFCfHT5BpL473MMHb+hwH0Nv7PCA+q/0VL13lL7ZqBYrnKq+wx7eq8jhEyzVxOEeLtRPh/s49T45PMCFl2IMgxccUaHAGhs0EEQIeWL4PB0eUbugl+AaAekUGs/YMvaAmrygTqPE0toCJNZrZu2dZ+txRrm0mXJW0thhRclY+kjdE/kcGW6Qkgom5PfUPFA6Z0aMzcuxKtabRqIwjH2fdCSLo1wHMtXPW3Oot4XocinTIAlkZg5UFnJmSlnkG71biVnJY/4k8+wmzWSS3s8fsnPmvWPDCRtq2FbGMfds0bC9moPjLkl0s8mO+4XZ1ZTbqSq6tP1jZqq9Jr+1ozWWV1xkbtcYcHWCK/5vVfA5Zs6YV8qa0V1EZC2xu4IIlyxiyubWVOtcoiCUK/mzMz/N1687XdEQjfyYy4ku3x7t78L4d8L2Eec017zE7gK7ydonIjTmVV1wxewpjOX/VPwFP9yT1gAAAHicY2BiYPj/8dvu/xMY1BiwAVYgZmRgYmBmeA8Ayk4GUwAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAHicY2BgYGQAgtsKp6pB9CNdFmYYDQA69ARuAAA=')format("woff");}.ff19{font-family:ff19;line-height:0.043000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff1a;src:url('data:application/font-woff;base64,d09GRgABAAAAAAWUAA0AAAAAB/gAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFeAAAABoAAAAcn3rSgkdERUYAAAVcAAAAHAAAAB4AJwAMT1MvMgAAAaQAAABHAAAAVlRCYc1jbWFwAAACBAAAAEcAAAFSA8oKt2dhc3AAAAVUAAAACAAAAAj//wADZ2x5ZgAAAlwAAAENAAABELaYYHVoZWFkAAABMAAAADMAAAA2JpVLXmhoZWEAAAFkAAAAIAAAACQEpgOFaG10eAAAAewAAAAYAAAAGAhYAJVsb2NhAAACTAAAAA4AAAAOAIgAVG1heHAAAAGEAAAAHQAAACAASgA9bmFtZQAAA2wAAAG3AAADOfsli59wb3N0AAAFJAAAAC8AAAA63/7PB3icY2BkYGBgYjhiynXZMp7f5isDN/MLoAjDI10WZjjt+f8b0yXGnUAuB1AtEAAALpgKqgB4nGNgZGBg3Pn/GwMDsyoDEDBdYkhhkGRABmwAbFgEMHicY2BkYGBgY7BiYGIAARDJyAAScwDzGQAIswCIAAAAeJxjYGT8zTiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAONDEggIM01BUgpMB9m3Pn/GwMD404GLiCfESQHAIgVDbkAARgAAAAAAAABTQAAAAEAAAMlAEwCzQBJeJxjYGBgZoBgGQZGBhDwAfIYwXwWBgMgzQGETEBagXkj8+H//xGs/4//BP9xguoCA0Y2BjiXEaSHiQEVMEKsGs4AAOaiDIcAAAAAAAAAAAAAAABUAIgAAHicY2Bi8Pn/jekS404GTQZLBgZVETZlJTV1EGFqYmZsJCYuxyhuZm7HaGwkysfELsdkbGRmDhRX12NUV1NWYmPnYxQVETM2YrpkqaFlwVtZFZ6zo9ivjJORidFZhoWNW4iZ19mAWYCHS0CJjZVf6AYTO4tEgmqIvIycjVGFjaihoWpYil/GyrhIHl3ugGQBDj4+/Tpjc3MOEUE+NbFyiWYtXfVCJVNrBgYmBk+gO5cxrmcQYFBiYGAU0WYUExWBuVPRiN1EWYmPWVQE5EKgc5mWmZfLr8v2zVhTysivey9Pz1NTmlNcRV7Ax1pJnnGipp5N9twY78SNKxKVTZxMxBX1RTkc1dMZGACMujT8AAAAeJytUk1r20AQfavYhkKbWy8lh8ktCUhR5VCwoZekSbCpnGDHJde1s7aFHW2QZYz/UQ+lP6i/pk+rpdCS9BQJzbz53JmnBbCPn1Con29/sMI7dehxgJb67PEePqrvHjfwPmh53MR+0PW4Rf+GmarxhtYPV1VhhQ+q6XGAt+rU4z1M1BePGzhRvzxu4iA48LiFk6CHC1g8YYcCGeZYoIQgQcy3jZBvjTv0TpglOEdE2YfGFEvWbrGmzujTyPHgYhFSlzVw8TqzyjiinbtOhidprDCjZZ28o++eeowRLjGkFFxT39BzS+uYHXFhn3ZFNl+UksRxOwwpOzLZyXkkfT1d2u16mYnOH6QfpZEM7JbOTI5sLhOz0KuZ2JncmXsZjy6HI7ke3oxvR8fs+5UDpxyo5Fg9ymq0jGN/YihNdbnolXqVTWlWKxV4dBkY2OJRU1+5vUqnC7JoHIcReRN0+b3cPuSGhhUbejRr6/yEfIeO/4r9BGc8wubllS3mRpIolq78NVY4NPPNShf0J52wTVqSs/8t9e+peLZbdXcNo2tW1f+t3qm6GcKgKdYZmeU8cVte4bjfEaiO1gB4nGNgYmD4//Hb7v87GeQZsAE2IGZkYGJgZmRiZGZNzCnISGQtzkzPTQQANNkJrwAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCViBmAfMYAAPVADR4nGNgYGBkAILbCqeqQfQjXRZmGA0AOvQEbgAA')format("woff");}.ff1a{font-family:ff1a;line-height:0.451000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff1b;src:url('data:application/font-woff;base64,d09GRgABAAAAAATAAA0AAAAAByQAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEpAAAABoAAAAcn3rSgkdERUYAAASIAAAAGwAAAB4AJwALT1MvMgAAAaQAAABCAAAAVlMqWsBjbWFwAAAB/AAAAEoAAAFKAE0K02dhc3AAAASAAAAACAAAAAj//wADZ2x5ZgAAAlQAAABQAAAAUBl4hNhoZWFkAAABMAAAADIAAAA2JJtJWGhoZWEAAAFkAAAAHwAAACQBUAD1aG10eAAAAegAAAAUAAAAFAN8AFZsb2NhAAACSAAAAAwAAAAMAAAAKG1heHAAAAGEAAAAHQAAACAASAAdbmFtZQAAAqQAAAG3AAADRdE6Lbhwb3N0AAAEXAAAACEAAAAs/3729HicY2BkYGBgYjiyaLtwbzy/zVcGbuYXQBGGR7oszHA67L89w2mGLCCXA6gWCAA/7wpVAAB4nGNgZGBgyPpvz8DA6MsAAqcZUhgkGZABKwBQ8gNFAHicY2BkYGBgZZBiANEMDExAzAhmO4D5DAAFYQBmAAAAeJxjYGToZpzAwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGVmgAFGBiQQkOaaAqQUGHQYsv7bA1lZDAdhagA2dAuOAAABGAAAAAAAAAFNAAAAAQAAARYAVnicY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUGHT+/wfywfT/x/9vQNUDASMbA5zDyAQkmBhQASPEChhgYRh+AAD0xgkkAAAAAAAAAAAAAAAAACgAAQBW/z8AywBqABkAADcUDgMjIjU0NzY1JwYHBiMiJjU0NjMyFssRGBoUBAoLRAICAw4VGB0dGB0jASFALSMRCwULRGMPAQINIBUWHzgAAHicrVLLattAFD2j2IZC8bKrLC6UQgKRUMbZOKsSk5iYyAlyXLId27It7GiCrGC86we1/aZ+So9GQ6GlZFUNuvfc92MGQBc/oNB8X35jha766HGAjvrs8RG0+u5xCx+CrsdtdIOBxx3qv9JTtd5R+uaiaqxwrNoeB3ivtMdHWKihxy2cqZ8et3EcfPK4g7MgxQAWLzigRI4V1qgg0Ih5egh5GtyndkYvwRUi0hEM5tgwdo8deU6dQYGFs0VInNfY2RvP2uOEcuEyZaxksMWSknX0kbon8ikmuEZKKhiS31PzQOmUGTGwL4cyX60r0XHcC0PSvswOchXJyMw3dr/b5GKKhYyiJJKx3VOZy4ktZJatzXYpdimP2ZNMJ9fpRIbp/fRhcsq8d2w4YUMV27olrVvL2fY5R8ddkphqfVuZbT4/p1xPVeLZOWFsy2dDfuNGqxwvucjMrTFivOCS/1sVQo6ZMeaVOsPoJkJz6aG7hPoKNC5YxBbVjS1Xmegolkv5s7MwzVavW1PSoPthj8vRF2+P9ndh/Dth/YgzmncMbC6wmax+IkJjVu5yrpg9xT35PxV/Aa5DkH4AeJxjYGJg+P/x2+7/TQwaDNgAKxAzMjAxMDPwAwDHxgVnAAAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAeJxjYGBgZACC2wqnqkH0I10WZhgNADr0BG4AAA==')format("woff");}.ff1b{font-family:ff1b;line-height:0.299000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff1c;src:url('data:application/font-woff;base64,d09GRgABAAAAABsMAA0AAAAAKbQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAa8AAAABoAAAAcn3rSjkdERUYAABrUAAAAHAAAAB4AJwBPT1MvMgAAAaQAAABEAAAAVlWZ/qJjbWFwAAACaAAAANcAAAGaszN792dhc3AAABrMAAAACAAAAAj//wADZ2x5ZgAAA9QAABS/AAAhQPtF211oZWFkAAABMAAAADQAAAA2JY9LzmhoZWEAAAFkAAAAHwAAACQEzgEiaG10eAAAAegAAAB+AAAAnAtHBfJsb2NhAAADQAAAAJQAAACUDccWtG1heHAAAAGEAAAAHgAAACAAjgBSbmFtZQAAGJQAAAGtAAAC/Ur1jf1wb3N0AAAaRAAAAIYAAAC0Br4HwHicY2BkYGBgYmSzfeYVG89v85WBm/kFUIThkS4LJ4z+/+e/NJMk0zYgl4OBCSQKACsYCpR4nGNgZGBg2vZfGkjy/v/z/wuTJANQBAWwAgCTjgXyAHicY2BkYGDwZPBnYGYAASYgZmQAiTmA+QwAEegA4QAAeJxjYGRiZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1CQAQkEpLmmACkFBUmmbf+lgSq3MTxlgKoBAL8LCod4nB2MTQrCYAwFp+Kygj+otVZQECnSVan4tSfQhXbrFTycOw/RQwk6NZCXSV6SKOEf0a0XGIxoePHgQKCTS55UFGzUk7VQO73eX7MkZ0ZKZr+glbZM7IIUnFTWIVM3S2Ku7Dlz9FfMnTnN9yPVZu7dhZWUMHY7Zcf7B3lCDzwAAHicY2BgYGaAYBkGRgYQmALkMYL5LAwVQFqKQQAowsWgwKDCoMmgzWDFYMfgyRDGEMGQyVClIPn/P1ANSE4DKKfLYMPgyOANlEtkyAbJ/X/8/8H/u//v/L/9/9b/G/+v/7/2/9z/sw/0oXbhAIxsDHAFjExAggldAcTJLEDMysbAzsDBycXNw8vHLyAoJCwiyiAmLsHAICklLSMrJ6+gyKCkrKKqpq6hqaWto8ugBzND38DQyNjE1MycwcLSytrG1s7ewdHJ2cXVzR2f0ygDHsQrBQAs8ys4AAAAAAAAAAAAAAAAYACQAL4A3ADuAQQBJAFIAXQBtAIEAkIChALEAv4DQAOEA6oD0APsBBIEVgSSBNAE+gVGBYoF1gYsBk4GlgbIBywHegfAB+4ITAioCQYJQgl0CbQKAApICoIKtgrwCyYLYgvQDAoMNgyCDKYNDA1EDWYNog3kDiAOeg66DvYPNA+aD+IQOhB6EKB4nI1Ze3Ab9Z3XbyVrrdc+tNKu1pJWlmRZWsuWbOtlW7b8lF8QP2I7iePYcZomEPIqDYHmCSEJzbXXUKC9g7bDlbZD6TDAUQhw/MG0dObowAzXg5Sm7fQu0JZCb6YEBmgPEuW+v9+uZDkJnfPMrnZ/K+/v+/h8v9/P9yuD0dB1+TH0GvWModPQaygaDBGXmXa7wqEelECZdAGl2kW3ixalTMKUSWdzmXSq3Y8U5HaZw6HGTDrXGHUrxmiGQS4FpeEmi17bMKcEZhZcfC3n41zTyeGQy7h5MqDMznudLg8rTKXGwsyfk71957rbWh/N3+BoVNVI7ZYBt6dGdnlsQ7Z3LA2RFo+9a9mCn9AbC7Knzum2562/sMaziYd/Vpsdzbw30W39Ta3BgAyPXX4cnQH5AwZDDREqCmIVjERuBtEM5XaJkkKhMwzv2hyZjvcMpaw8Y6atvdO+mfW2WnPWIqxJ33L36IkNA4pgoW01dPzg7o7FJ/O1NTZ4/wZ4/zK83webuRijpnUBbJOg8E5Z2EgS0TJ5L8dKm6Zs9ZOdHMvhzVC7/laWLTw1Xz/0ua2NVpZsZzBg2RsN0+htSjAIcOeKg1HB7OFQOg9vByun0NvJ08Onk/iE5obvTibvJiftfzsQi86iOQON/zccDKVTQXQ2WXoxmUQF+PYw/s7P4VQ0HDHYiF+J6FheVGzwyhF8FDyNDV444LtlHLBYTxrp7kXk+6/Vlp5xiKyrFo3jD+o+s/PShM/NmJ3Uj31uLA9laL/8EfoNtQf2cuM3rOxGpxtDZnBCexb95ui6udvxUVz3xXWzt86itrueOXMKjiM7v/LVm/Z85zsgxw747+fhPT4scxyFMAjziIf3gTjZHLzRzafaFYSej30aYx32hVQmGBlSrS5lwe5gFUVhWAo93Kz4KXrBo176G8Vq9krD6Ry8t1mzRRBe14uymXRjOGSmRXeVwIB3AE5KBz86x3lKj6ns7/YtDqj9NsbLc/6965aO7fb8k+cvFMdLNtXDBxjH88vre0eawja3S5bkgW07N9ywRTzscrKM20X2bwb7nIf9O6t8QfZSYBssB+iKQy6LlSRiEalWhDLDN9H5A5uXjtY1ynZ+Xax/7XQxATrLye5g02BqKmDxhnzb5md2xNVU4fGxL0wPSBA4gj3gva6tdQ3FMi6r0egNZULJgMXpkj1Spm+mq2myTprD/vODkO9Rew1RQ5NmeTe2snvFBRkNEQK+BnmIE6K8Eb0XmyiAFLGnsTcKFz2c5Q8WRvDJ3ASsPv5fLym7YGvill2cR3Sg7ayZk0vfpVgeLZa+r/kGbHOO2mpIrsYpTjyabcAYsAzm4eFBUJfLTbB57s6lmZv9HO911G/oWyh2zTbZnSxLcR7kwFJdyA7M7Xlh5taNvXWixy04eqfzmbl2lnU4kNXDY8le8H8J658BGX4F/lEMcV2KBFUxvZbqMFJ0RIcxpCUsHfrVodnYSG/koZ2DA+AYKxcdvsXaNzezr3hdvnOytmFDx9qfbrilfvDo3D0/7mkSZfCIlTu4revWua6Z/mRc2DNlqMLHPsgJOHpoxkS7COYLVC4IiQyM0oMIJCWsPzpPs1Kiv7UBclKYb1rfU/obwSLFcXVmNA6aU0NWKyNltu56YNrlSrbu/to/9xMwNjkYhiNBYaxgUjQEy3FBbJ8jQCyDLqqrCxEsrVyi80cWNx2dyucH9j++v787PzUz0dm1ZmrPFDMz0D+7/vD6x8f37h3PzvLCSLx3y3JffNjFz74b6+6ONeXzH7Zdd31remysyu71hoSeN4jdK97PVfCgUGD4qC4Asfz9N7T0em1gdYvYPLKjFlv96LrGYiEywcmhTOe66/Lda1DH3U+LDQqLLc/b+GNLYPkNtyiDt1tSyUB8qrdrZojkL5Ir0ROQv6TV+Yu/ZuYsH+gLegotPbWSSzsgO5+lmg0u3abRSGM6F9Eh7UAiOis6rFzpKaeIxjirQ/SU3kQBzwInWP/T0cD+h1XgBPbMGZbI1Wj4GXobPQR5nl3J9GI547/dUvpWSwptTKVKD6da0Hb00PDw/ZD8V8lgcNE1ej5vQZomUg3IUHqWbI4CpTc9WCC0Bg1VbS9geYgMXrDI+5AbVA0leqYCMEbDNAlGBpE0AdlZKFCwIgntkhi1IfR+fLuDYVlBlL4niQLLMo7tcd4cOWDiuAaeNR2ImPkfDQwoCsUwLEPdeCMFHwyluCwUZXfyRqPTeekjI/0E6ir9O+AVe+YtyBMewKtKbEu2hfIQJh9ViCX5K+vUL9BbS5Mfx1SvV429NbGUb8sPb2zvPHJDf5+7q/Mrt3f/sO8GJYDeDSibuxNjPLPuf0I9Lw+V/nv2+re02IwBRv8AGI2vyk9SgcpkMR0i4ZlA0QSqYBPXKfSH/XNb7777c2OdZrPRzikUzzGckbKOJos7dw43ra2h6sOPDO9+5st3PdNqc5gRr34VYtNmteeH7tu1+77Ofj+2PXAD9EfQ2Um8cLXGNFaRx+Hwx0PLr6qqKKrqq8uHihsnl5cnN6KWw09i1ZTAvx1ZfqAk3UP0qYPTx/DOzpVaqL8RkquoKwT5JuzWq2B5KRN2B8usEH0MhXG/qiqKqqL9MgvqSbaPjhtZLQ15bMeRjaxBfdSsy3vGQEG3K/OKLDjcrkW4EcNvFskakQtzrD+DXCnCtT5bhqrKVCW3G/4X7/fJqRUZTqVxEfiWqgaDIOURmUXvayK8USXCG6RAESvxHsLLwN8XwN85bB/YFAMcQ77K9aji+FVuJ0UK+wVdYDmO4up5KjG2cOLEQn/azrAYAgGjrRju2bK5EC9YmrBwt6kXoDY+ApLAXwajocWnQcE/mr93z677JqewfFguUffbYFUU4sJ8ZakmJiF1Wq+UqUxFMG1Fo1Afx27DEshnZSIILuCyjM+rlsm1TMgVFuStt8r1HAwGZ3z38sv4jI+SRGoLMkzC6QWQVcKyXgExXQL0glr6varu2gWu8ZNP8IKCkRKA9+g4fQ/eka1wwVSUBmVX+x6UIi8UytfgFVoA1o9VfE+9To394yIExee12MAfr6vqBpUTxPu/a0YCz+FdP9l/MrCy+cfICh+QkX5S+j2CXMRoeaAeTu+APOGVuFltbk2xSoS8AxFyCtszEsHn76lqx/uVkKgYECtbZBgHDgJk4OH0KewxWsV/U3yYoTADijZGE8ZomK92d4ovu1ZySqlsLypQZSvg76FPY2tjrNOFatqaKYco2GrcSKqTTQi4qfYEX3RErYs0ol2DuPvr0FeBTIMJ0O88Dxw3iay5QI1OruVKYcjR2oN38ZWn9G4w1P0y57DhNXC/biscyxdAjxyOZbAKqewoagzzFbBqYvMVaIqSkKqGLroQk3mZY53m5xCB4k0VKMaGJKkWVrFZbyJsRykZvYyR49GHpUgZjCAhnB1SyY5+q0FV61U6IL7Pkh6jlWQaE4hgShdMIJmZTmsBTWOCR7h5LovOmpxSOt+e6kpLThO+7ko1tiW8HpuFKtpt2e6+jMVmt6T7+jO1NtQ2sTjRIJvNcsPE4ncWJ+HSaOcj6shE26lkVPbFE3eeTkXrQ/EskQVj/DypafW4UptJvboK4GK5kJ3fMXsEEu4xLe+en4mMDdx00wD66N49zwUULc3+cdP1H5b13E/0bMQZA5G2BppV8vIk7vBWK13ROY9wZ4t3DQCY0FkzHQh6zYF6i7e2x9ZyTSNYajN3tVutltrWvvqEqd7G1tKtkM5Q283Znm5HylKgBPt+dLVJOg+m2oL18daTB1PNjfO0Waixrbd6bgLZxcsfUVawS7dhqMyiMEwAQo1X9yYrqCEMgCipUKl2XJ8p3XSUtaUpU+cwUxZbfdvElRnvybndsZYwY0E1dquAguEHR/tGR/sWG4YSYltHnVRn9b2xOu1tG4yskX1BaaSuLsi0gDRrB95Y6WX2aDkaS41rhE7dgRiJktbSJMl8RWMRVaXEpJWSAMJfRed2zNzYQ7OkbrAchYzNiZGOgb37uos7pudyNWbWhp8oJmONqy4dTA8lQtN9GX/rw8M7E3Uu9QSUELvdlvcFhuLzHi+/IT3wuaSTc5AHPt4Zl8V8LNRudbKiL13hBR+AzePV9ffqeHVX+pGsVnc/IEntBKm1j+FT+iRZ4WT05ZWSi0tDOS4zZGlM5qDgIoMJfF0L+zZUcgXU2VW5nVTXyhJVqyp779+rx8FYS/M4uaSKgdLDC4cPL6CNOBZKj143OzeO5gKkdjov/w19Ans06boZGUpLSOXsQ7QCoprK5oRKFf8EqsQJk5PjnRxXc0IUOHW7yjnFLY4aZA6uEZ34nipC4rv0VydnNPJO0ENPj6VDmYboSRAW7mF/r54PO6vzepRejWMhGq4qYlJuRbY4ogUI/wvqjTGWZbduAnaBLx128eSXJBVfMsyaEZZjYzdCgbv5a5KqjUJefLEC29o3A+Ti3nvxUkA5X/ormdt8QtHoOUPE0K6znVC03AaSxptBbo13pQkJA0fgcR/hO7kCRdEs75yTujaML3z/H4a6RYY1Ix8r1N2zdas7GvvRzsNdLZkGp9MYAIvUN05lh9dQqRRCJrPs9ohjSz3nasdmje0RJc7XShzOWfbLn5Aa6zXEyhGks69KLvSjlS4cIof0gu8cmhloJ3yrJaaOyWx2bGpfcU0uOd6dyc2dW7ojxYGBGAe6hDneM23HNg0sDTWPtSxswtgYgz1fAxs0EAtQRFkclmQqFE2HQ2SKiPWFIEavceHx1sXb5fRSzzfrhDjqThaDzGLfiK+GYcK7LcG4cnyhYWykecwtt1kaOtrEocVuphbr1gC2NoBu/vKMBTZa4ZSZShPDYxunVzpdyqCO+ezZ0albDs4MpDQFW2LfGkjm5tZkM8VAwKV0HNu0dEfLg1i7kvHkSHxoU3FgaQH2zIFuvwDdfBprIdrpYw24DuIKR9TSqx76hSs6nli+6+j84jazw2YtvWHfnJ+ow6qNmIeT6SnbbltY9R1/7viBBQdHo8I46PbF4a6xHNgRx9YZagfuEqFTwT4Dy/lRaoV0uldRwbyWAtEZb72b5qWI6yBOHge3qWrpfVXdti2mfn6xb5lqcXncTpPREfYmCcV8hTC1jBLIFEbIHMN/2Ysuoeehb+g1TJS792h5rBc1u3HWFTFDIpNrbZqjHdjw1TMdbG4hnaB0BoAHHZdk1uYxBeW65WImYkY2u7vWPbyQDYdOvXhqXHLVw3JzMh9peLojFu3Ex67QaHuis96pbr93OzrhcnNOIxNvHlySWYcI3a1f6K3vnZ3pm2wJqFG/mu3frISDJ2Ld+SY4Sj9TGlmjyV7XHMpkMDbtGDiAmZZK3sBW06B/LaJAggM/ogyxB1TYoDEx2azG/iWmNmvAyUzc2YyTQ+D3SXV46MlApfN5PvP1dzTegG34ErVocOOpYOQKl2n4pLAZ09l29JJa+rWqHrhZVU/L7A71tL/J72/Cr0cZ3PGVnqWMeAWPF8lk+CLo0rU6B7o/mxG6+dwqck1LAJeL6q0xVhBvm2ojzR0+tZHLfpn9HmHa0PCFD30zoGoM9tvj06sZIYj13fs16r3vRTz7Brlev1avsjLpRK/HSs/G1GN3xtQHZfZObdSsG65k1HqeyxfBeCZ0BttvRb+ys1Zx9msu8is9mqTjUqHIdygTtDEc63AKwTZchFbdkFYGX9TbHQyKJjNSpBCIMSZY0mrAu4mGsd6nSF1afYdJfAZfUQzTkE4Hcwr3QZm/E9yBLs3/T9y5/y7sfPZrwQ5CWPAR1FGGTshTr0OeqjU4CQ/WBuTSyo8Hrx945MCBR9LTe6anvjCFMs8fu2Np8fivB+fnB4tbt2q4tV8OoXdA5kBlmhm9Jpl2f0b9qBK4jrmqgryKZaYEJeCUV9UP0PhyiJJh3xCeYNdUdeYryZ3UEx1LxlW5XY79kCA4NzVz4I514ylEMw7JhvH84GCmZ36mo3P8JwS7v+o+tmnxWM7J8jVu16XXKRbdEs3OLw4NLi7ovemfQIamSv4rewoAfVVckSyhUOhPMu/0oLnNeyHlforFmJ7G5z0yO7LVrzppdJvgqXPevOZIQAufjBY+oWmHW9BwMgp+ewX8NkCqi1FjDzrfLZPdBBXFPx/iX+WkVRMzzQwBJKJXLLI63DKRtsuY0jodJv/Wvj5PMuBtUAtBmfZER1t7m80efYiGzEv9hS1DDx3h6iM+Z2OjugX4pIObjymCl6dNZlrwqHUOb6jO6XareMBks9s6QlITsH0sswwy/5RqwhPnCEYa/tVNw7c+aSonJK2LKOgPIAv8dOng1IaYup7Q2x9gU/3A6Ah5ufqgERg6Tx0tDPcPfqgE1hJ+uxZb6y+M4GctYZ+NcTAOPbYwD0BPVHK6NlrKVKUcbV+qLJiec4EGwJbtxdNaJoeK6GODMblMCAIBimUbv4QMJCl9wPGilRaa639Jbp+FfT2XL6IPYV9V49kVCnzFuMiLqqZF6MOYsq/GxYJCgnmfgrPrfqy3b/duH/7EN+jrSulRaFAojkOz5ZlQ6QU0oKVdojMHe1+EvYvV/BtIRzRspgkaKJ2K64KQmbKQKqCc9hOrlBKwVJXZwEWWF7qNJhev2GsaARAS4/SzTouR6hZ4PGfeh+fOjKMtjYyq0eaXecZTg9rbtFX8EN2DSfq/Mg4bbzsRalrbKkLrZ0NT2giaYn3w9A3mHrPoaZ/1oyayQJKjzuVBl9xncfk8yv09Ji8RJr8/BtR5fp2LByOqauzwrTEVr3H89eO8vvbFO2J6DTt0iGTswEPf0AZT27bh+4DyjYdw33bZR/xaKPvVtPIbGp0FeteL0ld5GZs023ulq79ton2BlK8h6XEJnpqU3yyYadPpQMXt8qIAnYRzdJXvO23OVMjfFnR5PIJozNlybtFoRdvKSLiQpkPpX1ZhIQin34K8hAXTQf13T3RFY0m4Go1WBs6/FUsnAYY0izr+t9xfzpKF0s+RQxushc0AQoedRbE6EoIJmdMWSuca9UEzMjwNzfccmblgLGp8H//oGq76pWcumFCtNpdzrYmmRZ9PCrag95snEl7Bwdpa51nkh9yQ/z/GM7hiAHicnVJLTuNAEH1tkoiRALFjw6KWII0t44RFWLAAAVKEA0oIyrYDncRKcCMnKMop5iIjTsBZuMJcYZ7bPbMIO2y56lXVq09XG8Ae3qFQPY//scK2OvA4QENFHm/hp/rlcQ376tPjOvaCXY8b2A/OyVS1H7R+u6wSK/LrHgfYUeLxFobq1OMaRH14XMeh+uNxAxIc4hIWr1ijQIYJplhCkCDm20TIt8JtekdkCS4QUXag8YQZc1dYUGf0aeR4drEIqWN1Xbxilowj2rmrZNhJY44xLevkA31D6gH6uEKPUnBDfUfPPa1jVsSlfV0X2WS6lCSOm2FI2ZbRWi4i6einmV0tZpno/Fk6URpJ167ozOTI5jIyUz0fix3LgxnKoH/V68tN725w3z9m3VsOnLrhLE54XNymqc3tCVF5hgIvblp0bfGiqa8dd+l0wbUZt7SImYIzfpv1Qh7EkPfGIpoZFSvhWkO35nLJCVosbPPltS0mRpIoljP5N0fYM5O3uS7oStphkwdPWl/H3myDzfTydzQMLHgd1VVUU8fsLQyaYpFxWewdt+Q79f8CECd+ZgAAAHicbc1bT4EBAIDhx+eiC2aUU2hpqxRGDp3WLR2NKIfET/G7/Lz65tqzvdevwM7fRt8+b2ERgagDMXEJSSmHjqRlZOXkHSsoKjlxquzMuQuXKq5cq6qpa2i60dLW0XXrzr0Hj570wu+zF6/h6d2HgaGRT2MTX75Nzcwt/Fj6tbK2/QcT2hB+AAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCDyBmAfMYAAa2AHd4nGNgYGBkAILbCqeqQfQjXRZOGA0AOzAEegAA')format("woff");}.ff1c{font-family:ff1c;line-height:0.923000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff1d;src:url('data:application/font-woff;base64,d09GRgABAAAAAAzcAA0AAAAAEhgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAMwAAAABoAAAAcn3rSkEdERUYAAAykAAAAHAAAAB4AJwAiT1MvMgAAAaQAAABBAAAAVlWYXvtjbWFwAAACJAAAAJkAAAGCVOBwe2dhc3AAAAycAAAACAAAAAj//wADZ2x5ZgAAAvwAAAesAAAK0JttMs5oZWFkAAABMAAAADQAAAA2JYJL0WhoZWEAAAFkAAAAHQAAACQEwAE1aG10eAAAAegAAAA7AAAAQgZBAetsb2NhAAACwAAAADoAAAA6Ig4fsm1heHAAAAGEAAAAHgAAACAAYQBPbmFtZQAACqgAAAGqAAAC8Z1uy19wb3N0AAAMVAAAAEYAAABaAwsDU3icY2BkYGBgYmT7d5hldjy/zVcGbuYXQBGGR7osXDD6/+//Mky8TNuAXA4GJpAoAEWRCyB4nGNgZGBg2vZfBkgK//8NJHkZgCIogBUAaVgD+QAAAHicY2BkYGCQYfBhYGYAASYgZmQAiTmA+QwADN4AsQAAeJxjYGT8yziBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBgqmbb9lwGq3MbwBKYGAP3FCz4AAAB4nGOUYAADRl8QwcDAJMxgzWAJhGpAbMDAzeDBoMRgyiAHZPkzWP3/DaTNgTxPBkkgSxLIkgYApqMGLwB4nGNgYGBmgGAZBkYGEKgB8hjBfBaGBCAtwiAAFGFhUGBQYdBlsGNIZchkyGcoY6j8/x8oCxG1YUhkSGfIYShiqPj////j/w/+3/h/6v+K/8v/L/2/+P8iqMkYgJGNAS7FyAQkmNAVQJzGAuOzokqzsXNgNxgZcHJx8/Ay8PELMDAICgmLMDCIiolLSDJISRPWSg8AAKiEHAwAAAAAAAAAAAAAAAAAAGAAdACcALwA5gE0AW4BqgHkAhoChAK6AuQDAgNaA5ADsgPiBEYEeASsBNgFGAVoAAB4nI1WW2wU1xmef2a9473O7Oxc9u6d2d0Zr2d22d2ZvRgbX8aA8WKwiTEFg03AkNKUNJELaVGAcovUSFWiNhJSqyjKQ9WnNKgqSppWSl8QT4loeSDQSI1aVbw0USMhVUJI654zM4CjRlUla33mP7Pn/77/+/7/LEERI+u/hk/J94k2MUZsI4gS76cFXtkCVapptcyGKPC0KDWdp3bTamQhRwm8v6CoTautakIOtGYUBF6ULPQ0BvDp0Z22uaPAZHkhzcZnrBklemTWxv9ycT7D8NMH9v7LtDbfGTGqw+/Zx0IlXS/5tVY9kUpl+ER4S/ivwXJD50dXgmin6C82qlI6iXYi9fDN2HNXfhdsZeTGx+pw4E/BEYIAYhhCcA/2EwH0wBdkpWmZcgPuNXo3Gg0YbUBd1VTnPcKEe2SNEByOBU3VSqrVLnkUIyDCPYmhwkzvD5IE2/kAIyV69yGVWIqJAMFb7CBzKyzGBOb6bxmCIEhCJf4IX8AvUd74xszCUwxf1Hq/qLVgqdXq/apVg+dqcE5VtY+0r+OR8LfpvigUaKemFVCdwkt9GFHvA3/ERyEskOrdT0hMJAIzEtSF6G2fDzw4QkwM3GYxptr6IzICHxBDSE3EEp2paK5UY6RpqQWFRlLhqBtpiFkQzYYnoNloj5FkJMZx+6XOt7rPjh1b3jQ5mg0FfZCLiemBTjF99ASnDV1bfnVYb5Q4jpIZllS0PcP6eDYy1ADw+ROJjJBWItTS1J/pXV2oqFk9Hkg42ELrj+ArcpVIEZqrgKIhgEoVmrGCYo0ABoPFoDFOfxYwoBZ8dX5xsk5yRY4s63o3yW22956enW1Wu6Nma+/d5QubIlGGjUbg3zaX/E3l4sGJpQl9W2X/ASQRqvEOlPMOqkfZqQb5hHeOdC2sWRpKFiVd9ig73GGVnfXDF5PWkfF0YXggLcYz4GOKFVtmlsanpUBGPRnID+UuHSzMbK9QESUtZJJCECjFqouTS22JcLyhIB1oxDWLMxd5HdEkm64QWNmmR1iImVrToeuQJWm9y3I02dq+8PK5xXHLZVw+bRudhV2mtc22/Uh/6+LBlR+VryK+veDlqaGJpUsH9uOcTY9rhlA2sHXtjSSXc4AFRh+Ysp+GO3FtZ+3Yjy8cWvk2w0R698LLw7sSNMOou6PfacyFToYKWubywUOXfrDCceTw9jbTv/bDrRbmRxG59QxJwYdEnRgldmL/YjX9tCi4C4FHyZw/FHBQtJ1p4bJ/KrLDOm5VKR0cB6ISUElOCWTjydUd9XIfKfKxNfKZ46/deE3LJ/j86o6WUR0pDn7Y0dROR9U6300rE1qxrZqrP1uF81yyQIUGK/bhRDjcx6ZJoGYnJhcWJktTXG6omB9s2oezinJlsNOZ7wz3bkgy2w9QH8ibJvZKCBURazbkKYYUanpWNBte4KlTsYvQBpLsqq7LaaW6B6n1tq6XXdH6M+PylbJt259XilOT79o2fI4Ee7+fF3/6N6TVHEr4CXmU4FA3oGxoYmw4HLmCxGWzWg34xOj9xTBOv2AYrye540fyRj5voFNBx/J/RBL4Oe96fTP6uIvwc994Itw1er83jHPnDOPtJHfO9hD1gvi7648Q9wBcJ7Zi52CqZtNymDewhN8UQH0EZgx3L84gebrmSOcNMqBP6xoqLB+PbVjt12NxHi/yql/d1EiVxgfKUR8KyLJ9v7t95BrJsBtWMsuQoONVRq7X5XYu9k+Scbk6WiG85f9DK+F/SpVh/lsq3eaTrlK4r9qorz5DfeXM+ZLnZ8fBit/xLHx29t2zr7z3yuz8yfm5782hoXRh+dDly4sT+/ZNbF1ZwXhz6ONLhFf2ekXVPKhf18kdgPBlOs5moXv8eV3v9QxjdtYwXkhyu5ctA9aElJB6fs9pzwK53WWnHjMI4y2EccbpfMqd+lsAa4TkkHCbNa0qqVV9SDfK1QpNWOd+qKLX3Qs8R0oi3KITWrc2a4bSMslxUbaPyhweG5dquVypNDaQcnbHywER7xZJ8LHlfHWUG7crpVq8ej6a0bKCLOsHIlG2PxjcU8rGkizd56fjUjkdSRXSHMfpYxGGyQfDXDAuhhNiqJ+ORwuurknE4yY5RBS8G0LdAgVX3DHsK09dgUd8nGl9c8nesrhXNxacG+IdXX+nm6sAlNRL7fmt3X/Y8wgGGm7z9t93qzkvRwjPZriG7m/XO26pnnQKn0N2aW0IYON0tb7K9Jtua1MROTM47c1m284qZx7iRnrARPnAkHXbaczHXB6iPBmUFeWhoiTqFo1yz0WBtJsCHurpl/wim2FF/0tpXT+l69KJExJawDW7dx3NXlRomLXt3sdg2Z6XHqBzax5+pxM1+kmnjkBb85IUpPbjDkVbtGTCA+OUHmOZZ+aYGGd83zBKZ9ZUA8UqW6eibEw/hSIvnlVtG9/sa2sky8j2W2/Y9tKSs3zjLZQ/vZ51eLWc3y3+AuX9nsDWlegWumKaqkYpmurkFfArkiiZrXF4HIOHgt/4OT/fKm1KCfE0BKwM6gbqJxW/UH2xGqfVzVUf9KnmEM2hZ3hd6id7EyOLVl5MJaS4rxPeR/X1w7MknZDlhJ9680w8/vJVql9E3fUfwM7tpHiclVJBTuNAEKwxSVZIq3BA3AD1EYRsWU4OhCMRIEU4oIQgrhOYJFaCBzlBUb6wb1ntkafwBN5BeTxaaXNbW+6urqnp7ukxgCb+QKF6Hv9ihR/qwOMADXXm8Q7O1C+Pa9hTnx7X0QxqHjewF7SoVLVdRr/drhIrNFXd4wA/1ZHHO3hUicc1HKsPj+s4VF8eN3Ac7KMLizdsUCDDFDOsIEgQ820h5FvhDtkxVYJLRLQ9aDxjzr1rLOkzcho5XtxahNSp+m69UpaKE8a5y2RYSWOBCSPr7AO5J/oRhrjCgFZwQ39H5p7RKTOia982RTadrSSJ41YY0nZkvJHLSHr6eW7Xy3kmOn+RXpRG0rdrkpmc2FzGZqYXE7ETeTBPMhpeDYZyM7gb3Q9PmfeWDaeuOYtzhmlqc0tQHqDAq2sVfVu8avprJ1w5X3Bmxk0s4pQEF/z+TRbyDIaqd6bQ1FeahBMN3YTL+SZoM63NV9e2mBpJolguxDcRDsz0faELMkknbPHISXu74e0a2Npb/oWG/JK3UN1A1W/MusJFUywzzoh147b8d/JvMUJ8zgAAeJxtw7sJg1AAAMDzpUjrAAF1kHT+UCEq+EM3y7AarHNwgtv59fbP6zcSPDzFEqlMrlCq1BqtzkdvMJrMFqvN7rgAG8MIXgAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQmkgZgHzGAAExwBKeJxjYGBgZACC2wqnqkH0I10WLhgNADs6BHwAAA==')format("woff");}.ff1d{font-family:ff1d;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
@font-face{font-family:ff1e;src:url('data:application/font-woff;base64,d09GRgABAAAAAAzcAA0AAAAAEhgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAMwAAAABoAAAAcn3rSkkdERUYAAAykAAAAHAAAAB4AJwAiT1MvMgAAAaQAAABBAAAAVlWYXvtjbWFwAAACJAAAAJkAAAGCVOBwe2dhc3AAAAycAAAACAAAAAj//wADZ2x5ZgAAAvwAAAesAAAK0JttMs5oZWFkAAABMAAAADQAAAA2JYJL02hoZWEAAAFkAAAAHQAAACQEwAE1aG10eAAAAegAAAA7AAAAQgZBAetsb2NhAAACwAAAADoAAAA6Ig4fsm1heHAAAAGEAAAAHgAAACAAYQBPbmFtZQAACqgAAAGqAAAC8Z1uy19wb3N0AAAMVAAAAEYAAABaAwsDU3icY2BkYGBgYmT7d5hlcjy/zVcGbuYXQBGGR7os3DD6/+//Mky8TNuAXA4GJpAoAERnCxp4nGNgZGBg2vZfBkgK//8NJHkZgCIogBUAaVgD+QAAAHicY2BkYGCQYfBhYGYAASYgZmQAiTmA+QwADN4AsQAAeJxjYGT8yziBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBgqmbb9lwGq3MbwBKYGAP3FCz4AAAB4nGOUYAADRl8QwcDAJMxgzWAJhGpAbMDAzeDBoMRgyiAHZPkzWP3/DaTNgTxPBkkgSxLIkgYApqMGLwB4nGNgYGBmgGAZBkYGEKgB8hjBfBaGBCAtwiAAFGFhUGBQYdBlsGNIZchkyGcoY6j8/x8oCxG1YUhkSGfIYShiqPj////j/w/+3/h/6v+K/8v/L/2/+P8iqMkYgJGNAS7FyAQkmNAVQJzGAuOzokqzsXNgNxgZcHJx8/Ay8PELMDAICgmLMDCIiolLSDJISRPWSg8AAKiEHAwAAAAAAAAAAAAAAAAAAGAAdACcALwA5gE0AW4BqgHkAhoChAK6AuQDAgNaA5ADsgPiBEYEeASsBNgFGAVoAAB4nI1WW2wU1xmef2a9473O7Oxc9u6d2d0Zr2d22d2ZvRgbX8aA8WKwiTEFg03AkNKUNJELaVGAcovUSFWiNhJSqyjKQ9WnNKgqSppWSl8QT4loeSDQSI1aVbw0USMhVUJI654zM4CjRlUla33mP7Pn/77/+/7/LEERI+u/hk/J94k2MUZsI4gS76cFXtkCVapptcyGKPC0KDWdp3bTamQhRwm8v6CoTautakIOtGYUBF6ULPQ0BvDp0Z22uaPAZHkhzcZnrBklemTWxv9ycT7D8NMH9v7LtDbfGTGqw+/Zx0IlXS/5tVY9kUpl+ER4S/ivwXJD50dXgmin6C82qlI6iXYi9fDN2HNXfhdsZeTGx+pw4E/BEYIAYhhCcA/2EwH0wBdkpWmZcgPuNXo3Gg0YbUBd1VTnPcKEe2SNEByOBU3VSqrVLnkUIyDCPYmhwkzvD5IE2/kAIyV69yGVWIqJAMFb7CBzKyzGBOb6bxmCIEhCJf4IX8AvUd74xszCUwxf1Hq/qLVgqdXq/apVg+dqcE5VtY+0r+OR8LfpvigUaKemFVCdwkt9GFHvA3/ERyEskOrdT0hMJAIzEtSF6G2fDzw4QkwM3GYxptr6IzICHxBDSE3EEp2paK5UY6RpqQWFRlLhqBtpiFkQzYYnoNloj5FkJMZx+6XOt7rPjh1b3jQ5mg0FfZCLiemBTjF99ASnDV1bfnVYb5Q4jpIZllS0PcP6eDYy1ADw+ROJjJBWItTS1J/pXV2oqFk9Hkg42ELrj+ArcpVIEZqrgKIhgEoVmrGCYo0ABoPFoDFOfxYwoBZ8dX5xsk5yRY4s63o3yW22956enW1Wu6Nma+/d5QubIlGGjUbg3zaX/E3l4sGJpQl9W2X/ASQRqvEOlPMOqkfZqQb5hHeOdC2sWRpKFiVd9ig73GGVnfXDF5PWkfF0YXggLcYz4GOKFVtmlsanpUBGPRnID+UuHSzMbK9QESUtZJJCECjFqouTS22JcLyhIB1oxDWLMxd5HdEkm64QWNmmR1iImVrToeuQJWm9y3I02dq+8PK5xXHLZVw+bRudhV2mtc22/Uh/6+LBlR+VryK+veDlqaGJpUsH9uOcTY9rhlA2sHXtjSSXc4AFRh+Ysp+GO3FtZ+3Yjy8cWvk2w0R698LLw7sSNMOou6PfacyFToYKWubywUOXfrDCceTw9jbTv/bDrRbmRxG59QxJwYdEnRgldmL/YjX9tCi4C4FHyZw/FHBQtJ1p4bJ/KrLDOm5VKR0cB6ISUElOCWTjydUd9XIfKfKxNfKZ46/deE3LJ/j86o6WUR0pDn7Y0dROR9U6300rE1qxrZqrP1uF81yyQIUGK/bhRDjcx6ZJoGYnJhcWJktTXG6omB9s2oezinJlsNOZ7wz3bkgy2w9QH8ibJvZKCBURazbkKYYUanpWNBte4KlTsYvQBpLsqq7LaaW6B6n1tq6XXdH6M+PylbJt259XilOT79o2fI4Ee7+fF3/6N6TVHEr4CXmU4FA3oGxoYmw4HLmCxGWzWg34xOj9xTBOv2AYrye540fyRj5voFNBx/J/RBL4Oe96fTP6uIvwc994Itw1er83jHPnDOPtJHfO9hD1gvi7648Q9wBcJ7Zi52CqZtNymDewhN8UQH0EZgx3L84gebrmSOcNMqBP6xoqLB+PbVjt12NxHi/yql/d1EiVxgfKUR8KyLJ9v7t95BrJsBtWMsuQoONVRq7X5XYu9k+Scbk6WiG85f9DK+F/SpVh/lsq3eaTrlK4r9qorz5DfeXM+ZLnZ8fBit/xLHx29t2zr7z3yuz8yfm5782hoXRh+dDly4sT+/ZNbF1ZwXhz6ONLhFf2ekXVPKhf18kdgPBlOs5moXv8eV3v9QxjdtYwXkhyu5ctA9aElJB6fs9pzwK53WWnHjMI4y2EccbpfMqd+lsAa4TkkHCbNa0qqVV9SDfK1QpNWOd+qKLX3Qs8R0oi3KITWrc2a4bSMslxUbaPyhweG5dquVypNDaQcnbHywER7xZJ8LHlfHWUG7crpVq8ej6a0bKCLOsHIlG2PxjcU8rGkizd56fjUjkdSRXSHMfpYxGGyQfDXDAuhhNiqJ+ORwuurknE4yY5RBS8G0LdAgVX3DHsK09dgUd8nGl9c8nesrhXNxacG+IdXX+nm6sAlNRL7fmt3X/Y8wgGGm7z9t93qzkvRwjPZriG7m/XO26pnnQKn0N2aW0IYON0tb7K9Jtua1MROTM47c1m284qZx7iRnrARPnAkHXbaczHXB6iPBmUFeWhoiTqFo1yz0WBtJsCHurpl/wim2FF/0tpXT+l69KJExJawDW7dx3NXlRomLXt3sdg2Z6XHqBzax5+pxM1+kmnjkBb85IUpPbjDkVbtGTCA+OUHmOZZ+aYGGd83zBKZ9ZUA8UqW6eibEw/hSIvnlVtG9/sa2sky8j2W2/Y9tKSs3zjLZQ/vZ51eLWc3y3+AuX9nsDWlegWumKaqkYpmurkFfArkiiZrXF4HIOHgt/4OT/fKm1KCfE0BKwM6gbqJxW/UH2xGqfVzVUf9KnmEM2hZ3hd6id7EyOLVl5MJaS4rxPeR/X1w7MknZDlhJ9680w8/vJVql9E3fUfwM7tpHiclVJBTuNAEKwxSVZIq3BA3AD1EYRsWU4OhCMRIEU4oIQgrhOYJFaCBzlBUb6wb1ntkafwBN5BeTxaaXNbW+6urqnp7ukxgCb+QKF6Hv9ihR/qwOMADXXm8Q7O1C+Pa9hTnx7X0QxqHjewF7SoVLVdRr/drhIrNFXd4wA/1ZHHO3hUicc1HKsPj+s4VF8eN3Ac7KMLizdsUCDDFDOsIEgQ820h5FvhDtkxVYJLRLQ9aDxjzr1rLOkzcho5XtxahNSp+m69UpaKE8a5y2RYSWOBCSPr7AO5J/oRhrjCgFZwQ39H5p7RKTOia982RTadrSSJ41YY0nZkvJHLSHr6eW7Xy3kmOn+RXpRG0rdrkpmc2FzGZqYXE7ETeTBPMhpeDYZyM7gb3Q9PmfeWDaeuOYtzhmlqc0tQHqDAq2sVfVu8avprJ1w5X3Bmxk0s4pQEF/z+TRbyDIaqd6bQ1FeahBMN3YTL+SZoM63NV9e2mBpJolguxDcRDsz0faELMkknbPHISXu74e0a2Npb/oWG/JK3UN1A1W/MusJFUywzzoh147b8d/JvMUJ8zgAAeJxtw7sJg1AAAMDzpUjrAAF1kHT+UCEq+EM3y7AarHNwgtv59fbP6zcSPDzFEqlMrlCq1BqtzkdvMJrMFqvN7rgAG8MIXgAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQmkgZgHzGAAExwBKeJxjYGBgZACC2wqnqkH0I10WbhgNADtEBH4AAA==')format("woff");}.ff1e{font-family:ff1e;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
|
||
.m0{transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-ms-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-webkit-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);}
|
||
.m1{transform:none;-ms-transform:none;-webkit-transform:none;}
|
||
.v0{vertical-align:0.000000px;}
|
||
.ls0{letter-spacing:0.000000px;}
|
||
.sc_{text-shadow:none;}
|
||
.sc0{text-shadow:-0.015em 0 transparent,0 0.015em transparent,0.015em 0 transparent,0 -0.015em transparent;}
|
||
@media screen and (-webkit-min-device-pixel-ratio:0){
|
||
.sc_{-webkit-text-stroke:0px transparent;}
|
||
.sc0{-webkit-text-stroke:0.015em transparent;text-shadow:none;}
|
||
}
|
||
.ws0{word-spacing:0.000000px;}
|
||
._3b{margin-left:-23.623142px;}
|
||
._32{margin-left:-19.587332px;}
|
||
._23{margin-left:-9.121653px;}
|
||
._5{margin-left:-5.537550px;}
|
||
._8{margin-left:-3.844782px;}
|
||
._3{margin-left:-1.900950px;}
|
||
._6{width:1.802750px;}
|
||
._0{width:3.073600px;}
|
||
._15{width:4.074202px;}
|
||
._37{width:6.144032px;}
|
||
._36{width:7.300371px;}
|
||
._35{width:8.766540px;}
|
||
._3c{width:9.957742px;}
|
||
._21{width:11.125793px;}
|
||
._c{width:12.583245px;}
|
||
._d{width:13.957122px;}
|
||
._11{width:15.027613px;}
|
||
._9{width:16.199369px;}
|
||
._1d{width:17.261012px;}
|
||
._a{width:18.346366px;}
|
||
._10{width:19.615951px;}
|
||
._e{width:20.673031px;}
|
||
._7{width:21.691454px;}
|
||
._16{width:22.909110px;}
|
||
._1b{width:24.408594px;}
|
||
._17{width:26.499790px;}
|
||
._3e{width:28.443509px;}
|
||
._4{width:31.241700px;}
|
||
._b{width:32.418280px;}
|
||
._1a{width:34.603385px;}
|
||
._1{width:36.288314px;}
|
||
._12{width:37.655680px;}
|
||
._3d{width:38.824627px;}
|
||
._2{width:40.911750px;}
|
||
._20{width:45.727240px;}
|
||
._18{width:46.803791px;}
|
||
._2c{width:49.484230px;}
|
||
._2b{width:59.476279px;}
|
||
._26{width:75.317760px;}
|
||
._27{width:94.147200px;}
|
||
._28{width:113.458914px;}
|
||
._38{width:121.374771px;}
|
||
._31{width:132.186506px;}
|
||
._13{width:188.774274px;}
|
||
._2f{width:199.986586px;}
|
||
._3a{width:278.101862px;}
|
||
._33{width:279.357158px;}
|
||
._39{width:306.758477px;}
|
||
._34{width:489.637244px;}
|
||
._30{width:500.970774px;}
|
||
._41{width:713.536746px;}
|
||
._1e{width:779.182530px;}
|
||
._22{width:855.807926px;}
|
||
._1c{width:893.861717px;}
|
||
._24{width:936.295272px;}
|
||
._f{width:964.062651px;}
|
||
._19{width:1007.373855px;}
|
||
._25{width:1069.473903px;}
|
||
._2d{width:1081.651386px;}
|
||
._14{width:1196.232635px;}
|
||
._40{width:1226.494558px;}
|
||
._1f{width:1231.292255px;}
|
||
._2e{width:1242.673605px;}
|
||
._29{width:1252.369346px;}
|
||
._2a{width:1292.012789px;}
|
||
._3f{width:1506.870400px;}
|
||
.fcd{color:rgb(171,171,171);}
|
||
.fc0{color:rgb(35,55,59);}
|
||
.fc1{color:rgb(250,250,250);}
|
||
.fc2{color:rgb(255,255,255);}
|
||
.fc5{color:rgb(102,102,102);}
|
||
.fc9{color:rgb(128,128,128);}
|
||
.fc3{color:rgb(176,0,64);}
|
||
.fc6{color:rgb(0,128,0);}
|
||
.fc7{color:rgb(57,75,79);}
|
||
.fc4{color:rgb(0,0,255);}
|
||
.fca{color:transparent;}
|
||
.fc8{color:rgb(173,34,49);}
|
||
.fcc{color:rgb(8,69,125);}
|
||
.fcb{color:rgb(61,122,122);}
|
||
.fs9{font-size:19.925200px;}
|
||
.fs8{font-size:23.910400px;}
|
||
.fs5{font-size:31.880400px;}
|
||
.fs6{font-size:35.865600px;}
|
||
.fs4{font-size:39.850400px;}
|
||
.fs7{font-size:43.636400px;}
|
||
.fs3{font-size:47.820800px;}
|
||
.fs2{font-size:57.384800px;}
|
||
.fs1{font-size:82.650000px;}
|
||
.fs0{font-size:99.148400px;}
|
||
.yc2{bottom:-31.814000px;}
|
||
.y0{bottom:-0.500000px;}
|
||
.ya7{bottom:3.169000px;}
|
||
.y137{bottom:5.038000px;}
|
||
.y176{bottom:5.680000px;}
|
||
.y211{bottom:6.002000px;}
|
||
.y7f{bottom:6.019000px;}
|
||
.y167{bottom:6.108000px;}
|
||
.y104{bottom:6.786000px;}
|
||
.y224{bottom:7.185000px;}
|
||
.y5b{bottom:7.272000px;}
|
||
.yd2{bottom:7.376000px;}
|
||
.yc7{bottom:7.799000px;}
|
||
.y244{bottom:8.970000px;}
|
||
.y1b7{bottom:9.412000px;}
|
||
.yc6{bottom:9.531000px;}
|
||
.y1a7{bottom:9.830000px;}
|
||
.y21d{bottom:10.422000px;}
|
||
.y9a{bottom:11.369000px;}
|
||
.y199{bottom:12.250000px;}
|
||
.y26d{bottom:12.336000px;}
|
||
.y88{bottom:12.874000px;}
|
||
.y11{bottom:13.018000px;}
|
||
.y3e{bottom:13.640000px;}
|
||
.y20a{bottom:13.751000px;}
|
||
.ya6{bottom:15.772000px;}
|
||
.y71{bottom:15.992000px;}
|
||
.y1f8{bottom:16.560000px;}
|
||
.y67{bottom:18.223000px;}
|
||
.y7e{bottom:18.621000px;}
|
||
.y136{bottom:18.786000px;}
|
||
.y103{bottom:19.389000px;}
|
||
.y5a{bottom:19.874000px;}
|
||
.y210{bottom:20.597000px;}
|
||
.y1fb{bottom:21.153000px;}
|
||
.y1fc{bottom:21.865000px;}
|
||
.yc5{bottom:22.134000px;}
|
||
.y1a6{bottom:22.433000px;}
|
||
.y1f9{bottom:22.861000px;}
|
||
.y26c{bottom:22.885000px;}
|
||
.y180{bottom:23.917000px;}
|
||
.y265{bottom:24.519000px;}
|
||
.y78{bottom:25.401000px;}
|
||
.y13d{bottom:25.874000px;}
|
||
.y21c{bottom:26.004000px;}
|
||
.y18f{bottom:26.233000px;}
|
||
.y1fa{bottom:26.670000px;}
|
||
.y198{bottom:26.845000px;}
|
||
.y99{bottom:26.950000px;}
|
||
.y51{bottom:27.817000px;}
|
||
.ya5{bottom:28.375000px;}
|
||
.y223{bottom:28.902000px;}
|
||
.y1f7{bottom:29.163000px;}
|
||
.y154{bottom:29.232000px;}
|
||
.y209{bottom:29.332000px;}
|
||
.y1e0{bottom:29.611000px;}
|
||
.y1e2{bottom:29.831000px;}
|
||
.yeb{bottom:30.058000px;}
|
||
.y24{bottom:31.130000px;}
|
||
.y70{bottom:31.573000px;}
|
||
.y66{bottom:31.972000px;}
|
||
.y102{bottom:31.992000px;}
|
||
.y59{bottom:32.477000px;}
|
||
.y135{bottom:32.535000px;}
|
||
.y1a5{bottom:35.036000px;}
|
||
.y20f{bottom:35.192000px;}
|
||
.y23b{bottom:36.213000px;}
|
||
.y1a{bottom:36.916000px;}
|
||
.ye2{bottom:36.920000px;}
|
||
.yb8{bottom:37.162000px;}
|
||
.yc1{bottom:38.941000px;}
|
||
.y47{bottom:39.129000px;}
|
||
.y166{bottom:39.184000px;}
|
||
.y17f{bottom:39.498000px;}
|
||
.y1b0{bottom:41.364000px;}
|
||
.y197{bottom:41.440000px;}
|
||
.y21b{bottom:41.585000px;}
|
||
.y1e1{bottom:41.712000px;}
|
||
.y1df{bottom:42.214000px;}
|
||
.y234{bottom:42.379000px;}
|
||
.y6{bottom:42.950000px;}
|
||
.y50{bottom:43.399000px;}
|
||
.y101{bottom:44.594000px;}
|
||
.y208{bottom:44.725000px;}
|
||
.y252{bottom:44.819000px;}
|
||
.yaf{bottom:44.927000px;}
|
||
.y91{bottom:45.368000px;}
|
||
.y14c{bottom:45.588000px;}
|
||
.yea{bottom:45.640000px;}
|
||
.y65{bottom:45.720000px;}
|
||
.y134{bottom:46.283000px;}
|
||
.y15d{bottom:47.423000px;}
|
||
.y222{bottom:47.521000px;}
|
||
.yd1{bottom:48.061000px;}
|
||
.y10{bottom:48.374000px;}
|
||
.y188{bottom:49.064000px;}
|
||
.ya4{bottom:49.147000px;}
|
||
.y153{bottom:49.257000px;}
|
||
.ye1{bottom:49.523000px;}
|
||
.y23a{bottom:49.961000px;}
|
||
.y25a{bottom:50.249000px;}
|
||
.y23{bottom:50.333000px;}
|
||
.y98{bottom:50.502000px;}
|
||
.y1f6{bottom:50.587000px;}
|
||
.yc3{bottom:51.016000px;}
|
||
.y10e{bottom:51.197000px;}
|
||
.y175{bottom:51.209000px;}
|
||
.yc0{bottom:51.543000px;}
|
||
.y120{bottom:51.820000px;}
|
||
.y12a{bottom:52.118000px;}
|
||
.y26b{bottom:52.415000px;}
|
||
.y87{bottom:53.053000px;}
|
||
.yf4{bottom:53.278000px;}
|
||
.y264{bottom:54.048000px;}
|
||
.y6f{bottom:54.128000px;}
|
||
.y145{bottom:54.415000px;}
|
||
.y165{bottom:54.766000px;}
|
||
.y17e{bottom:55.080000px;}
|
||
.y18e{bottom:55.762000px;}
|
||
.y19{bottom:56.119000px;}
|
||
.y227{bottom:56.586000px;}
|
||
.y1f3{bottom:56.888000px;}
|
||
.y1af{bottom:56.946000px;}
|
||
.y100{bottom:57.197000px;}
|
||
.y16c{bottom:57.382000px;}
|
||
.y1a1{bottom:57.617000px;}
|
||
.y77{bottom:58.915000px;}
|
||
.y13c{bottom:59.388000px;}
|
||
.y64{bottom:59.468000px;}
|
||
.y207{bottom:59.588000px;}
|
||
.y5{bottom:59.625000px;}
|
||
.y117{bottom:59.860000px;}
|
||
.y133{bottom:60.031000px;}
|
||
.y251{bottom:60.400000px;}
|
||
.yae{bottom:60.509000px;}
|
||
.y1de{bottom:60.596000px;}
|
||
.y90{bottom:60.950000px;}
|
||
.y14b{bottom:61.169000px;}
|
||
.y15c{bottom:61.172000px;}
|
||
.yb7{bottom:61.186000px;}
|
||
.y21a{bottom:62.148000px;}
|
||
.y46{bottom:62.681000px;}
|
||
.y1f5{bottom:63.190000px;}
|
||
.y1d7{bottom:63.638000px;}
|
||
.y239{bottom:63.710000px;}
|
||
.y10d{bottom:63.800000px;}
|
||
.ybf{bottom:64.146000px;}
|
||
.y11f{bottom:64.422000px;}
|
||
.y1b6{bottom:64.534000px;}
|
||
.y187{bottom:64.645000px;}
|
||
.y129{bottom:64.721000px;}
|
||
.ya3{bottom:64.728000px;}
|
||
.y174{bottom:64.958000px;}
|
||
.y1a4{bottom:65.252000px;}
|
||
.ye0{bottom:65.693000px;}
|
||
.yf{bottom:65.784000px;}
|
||
.y259{bottom:65.831000px;}
|
||
.yf3{bottom:65.881000px;}
|
||
.y97{bottom:66.084000px;}
|
||
.y221{bottom:66.091000px;}
|
||
.y1da{bottom:67.474000px;}
|
||
.y26a{bottom:67.996000px;}
|
||
.y144{bottom:68.163000px;}
|
||
.y1d6{bottom:68.621000px;}
|
||
.y86{bottom:68.634000px;}
|
||
.yd0{bottom:69.097000px;}
|
||
.y152{bottom:69.282000px;}
|
||
.y1f2{bottom:69.491000px;}
|
||
.y22{bottom:69.535000px;}
|
||
.yff{bottom:69.800000px;}
|
||
.ye9{bottom:70.188000px;}
|
||
.y164{bottom:70.347000px;}
|
||
.y17d{bottom:70.661000px;}
|
||
.y206{bottom:70.887000px;}
|
||
.y116{bottom:72.463000px;}
|
||
.y1ae{bottom:72.527000px;}
|
||
.y16b{bottom:72.964000px;}
|
||
.y1a0{bottom:73.199000px;}
|
||
.y132{bottom:73.780000px;}
|
||
.y4f{bottom:74.895000px;}
|
||
.y63{bottom:75.050000px;}
|
||
.y2a{bottom:75.097000px;}
|
||
.y1dc{bottom:75.729000px;}
|
||
.y1f4{bottom:75.792000px;}
|
||
.y39{bottom:75.857000px;}
|
||
.yad{bottom:76.090000px;}
|
||
.y10c{bottom:76.402000px;}
|
||
.y249{bottom:76.446000px;}
|
||
.y6e{bottom:76.684000px;}
|
||
.ybe{bottom:76.748000px;}
|
||
.y15b{bottom:76.912000px;}
|
||
.y1db{bottom:76.939000px;}
|
||
.y11e{bottom:77.025000px;}
|
||
.y128{bottom:77.324000px;}
|
||
.y219{bottom:77.730000px;}
|
||
.y233{bottom:78.080000px;}
|
||
.y173{bottom:78.706000px;}
|
||
.y238{bottom:78.878000px;}
|
||
.y196{bottom:79.314000px;}
|
||
.y1dd{bottom:79.447000px;}
|
||
.y186{bottom:80.227000px;}
|
||
.y1a3{bottom:80.833000px;}
|
||
.ydf{bottom:81.274000px;}
|
||
.y58{bottom:81.879000px;}
|
||
.yfe{bottom:82.402000px;}
|
||
.ye8{bottom:82.790000px;}
|
||
.ye{bottom:83.194000px;}
|
||
.y220{bottom:83.239000px;}
|
||
.ya2{bottom:83.298000px;}
|
||
.y1d9{bottom:83.414000px;}
|
||
.y263{bottom:83.578000px;}
|
||
.yb6{bottom:83.742000px;}
|
||
.y143{bottom:83.904000px;}
|
||
.y85{bottom:84.216000px;}
|
||
.ycf{bottom:84.679000px;}
|
||
.yf2{bottom:84.710000px;}
|
||
.y8f{bottom:84.975000px;}
|
||
.y115{bottom:85.065000px;}
|
||
.y18d{bottom:85.291000px;}
|
||
.y226{bottom:85.382000px;}
|
||
.y1d8{bottom:85.407000px;}
|
||
.y163{bottom:85.929000px;}
|
||
.y250{bottom:86.042000px;}
|
||
.y45{bottom:86.232000px;}
|
||
.y17c{bottom:86.243000px;}
|
||
.y205{bottom:86.468000px;}
|
||
.y7d{bottom:86.566000px;}
|
||
.y131{bottom:87.528000px;}
|
||
.y38{bottom:88.459000px;}
|
||
.y21{bottom:88.738000px;}
|
||
.y18{bottom:88.929000px;}
|
||
.y10b{bottom:89.005000px;}
|
||
.y151{bottom:89.307000px;}
|
||
.y11d{bottom:89.628000px;}
|
||
.y96{bottom:89.635000px;}
|
||
.y127{bottom:89.926000px;}
|
||
.yd9{bottom:90.688000px;}
|
||
.y22c{bottom:91.902000px;}
|
||
.y1b5{bottom:92.071000px;}
|
||
.y76{bottom:92.430000px;}
|
||
.y15a{bottom:92.494000px;}
|
||
.y29{bottom:92.507000px;}
|
||
.y1d2{bottom:92.611000px;}
|
||
.y13b{bottom:92.903000px;}
|
||
.y218{bottom:93.311000px;}
|
||
.y195{bottom:94.895000px;}
|
||
.yfd{bottom:95.005000px;}
|
||
.y248{bottom:95.016000px;}
|
||
.y1d5{bottom:95.027000px;}
|
||
.y258{bottom:95.587000px;}
|
||
.y1a2{bottom:96.415000px;}
|
||
.ybd{bottom:96.579000px;}
|
||
.y1be{bottom:96.750000px;}
|
||
.y1f1{bottom:97.217000px;}
|
||
.y269{bottom:97.525000px;}
|
||
.y114{bottom:97.668000px;}
|
||
.y30{bottom:98.381000px;}
|
||
.y4e{bottom:98.447000px;}
|
||
.ya1{bottom:98.880000px;}
|
||
.ye7{bottom:98.960000px;}
|
||
.y6d{bottom:99.239000px;}
|
||
.y14a{bottom:100.231000px;}
|
||
.yf1{bottom:100.292000px;}
|
||
.y1d3{bottom:100.332000px;}
|
||
.y8e{bottom:100.556000px;}
|
||
.y62{bottom:100.594000px;}
|
||
.yd{bottom:100.603000px;}
|
||
.y18c{bottom:100.873000px;}
|
||
.y37{bottom:101.062000px;}
|
||
.y1cd{bottom:101.328000px;}
|
||
.y57{bottom:101.446000px;}
|
||
.y24f{bottom:101.624000px;}
|
||
.y44{bottom:101.814000px;}
|
||
.y232{bottom:101.896000px;}
|
||
.y7c{bottom:102.148000px;}
|
||
.y21f{bottom:102.661000px;}
|
||
.y1ef{bottom:103.518000px;}
|
||
.yd5{bottom:103.877000px;}
|
||
.y1ce{bottom:103.986000px;}
|
||
.y19f{bottom:104.721000px;}
|
||
.y1ba{bottom:105.043000px;}
|
||
.y95{bottom:105.217000px;}
|
||
.yce{bottom:105.715000px;}
|
||
.y243{bottom:105.944000px;}
|
||
.yb5{bottom:106.297000px;}
|
||
.y84{bottom:106.771000px;}
|
||
.y237{bottom:106.802000px;}
|
||
.y1d4{bottom:107.630000px;}
|
||
.y1b4{bottom:107.652000px;}
|
||
.y17b{bottom:107.777000px;}
|
||
.y20{bottom:107.941000px;}
|
||
.y75{bottom:108.011000px;}
|
||
.y17{bottom:108.132000px;}
|
||
.y20e{bottom:108.230000px;}
|
||
.y172{bottom:108.370000px;}
|
||
.y13a{bottom:108.484000px;}
|
||
.y1d1{bottom:108.551000px;}
|
||
.y217{bottom:108.893000px;}
|
||
.y130{bottom:109.087000px;}
|
||
.y1ad{bottom:109.145000px;}
|
||
.y185{bottom:109.756000px;}
|
||
.y1f0{bottom:109.819000px;}
|
||
.y28{bottom:109.917000px;}
|
||
.yac{bottom:110.078000px;}
|
||
.y16a{bottom:110.463000px;}
|
||
.y194{bottom:110.477000px;}
|
||
.y1d0{bottom:110.544000px;}
|
||
.y204{bottom:111.073000px;}
|
||
.y257{bottom:111.168000px;}
|
||
.y1bd{bottom:112.332000px;}
|
||
.yde{bottom:113.046000px;}
|
||
.y262{bottom:113.107000px;}
|
||
.yd8{bottom:113.243000px;}
|
||
.y142{bottom:113.433000px;}
|
||
.y36{bottom:113.665000px;}
|
||
.y11c{bottom:113.837000px;}
|
||
.y126{bottom:114.136000px;}
|
||
.y61{bottom:114.342000px;}
|
||
.y2f{bottom:114.420000px;}
|
||
.y10a{bottom:114.459000px;}
|
||
.ye6{bottom:114.542000px;}
|
||
.y6c{bottom:114.821000px;}
|
||
.y1cf{bottom:114.901000px;}
|
||
.yfc{bottom:115.229000px;}
|
||
.y162{bottom:115.458000px;}
|
||
.y149{bottom:115.813000px;}
|
||
.yf0{bottom:115.873000px;}
|
||
.y3d{bottom:116.103000px;}
|
||
.y8d{bottom:116.138000px;}
|
||
.y4{bottom:117.024000px;}
|
||
.y24e{bottom:117.205000px;}
|
||
.ya0{bottom:117.450000px;}
|
||
.y7b{bottom:117.729000px;}
|
||
.yc{bottom:118.013000px;}
|
||
.y242{bottom:118.547000px;}
|
||
.y247{bottom:119.041000px;}
|
||
.y150{bottom:119.103000px;}
|
||
.y19e{bottom:120.302000px;}
|
||
.y83{bottom:120.519000px;}
|
||
.y1b9{bottom:120.625000px;}
|
||
.y94{bottom:120.798000px;}
|
||
.y21e{bottom:120.848000px;}
|
||
.y56{bottom:121.012000px;}
|
||
.y2c{bottom:121.063000px;}
|
||
.ycd{bottom:121.296000px;}
|
||
.y17a{bottom:121.525000px;}
|
||
.y113{bottom:121.877000px;}
|
||
.y4d{bottom:121.999000px;}
|
||
.y159{bottom:122.023000px;}
|
||
.y12f{bottom:122.835000px;}
|
||
.y231{bottom:122.942000px;}
|
||
.y22b{bottom:123.107000px;}
|
||
.y1c9{bottom:123.623000px;}
|
||
.y203{bottom:123.676000px;}
|
||
.y20d{bottom:123.812000px;}
|
||
.y171{bottom:123.951000px;}
|
||
.y216{bottom:124.474000px;}
|
||
.y1ac{bottom:124.727000px;}
|
||
.y1cc{bottom:125.263000px;}
|
||
.y184{bottom:125.338000px;}
|
||
.y43{bottom:125.365000px;}
|
||
.ydd{bottom:125.649000px;}
|
||
.yab{bottom:125.659000px;}
|
||
.y169{bottom:126.045000px;}
|
||
.y236{bottom:126.210000px;}
|
||
.y1cb{bottom:126.259000px;}
|
||
.y35{bottom:126.267000px;}
|
||
.y3a{bottom:126.280000px;}
|
||
.y11b{bottom:126.439000px;}
|
||
.y125{bottom:126.738000px;}
|
||
.y268{bottom:127.055000px;}
|
||
.y109{bottom:127.062000px;}
|
||
.y1f{bottom:127.144000px;}
|
||
.y141{bottom:127.182000px;}
|
||
.y27{bottom:127.326000px;}
|
||
.y16{bottom:127.335000px;}
|
||
.y256{bottom:127.532000px;}
|
||
.yfb{bottom:127.832000px;}
|
||
.y1bc{bottom:127.913000px;}
|
||
.y60{bottom:128.091000px;}
|
||
.y3c{bottom:128.706000px;}
|
||
.yd7{bottom:128.825000px;}
|
||
.yb4{bottom:130.322000px;}
|
||
.y18b{bottom:130.402000px;}
|
||
.y2e{bottom:130.460000px;}
|
||
.y161{bottom:131.040000px;}
|
||
.y241{bottom:131.149000px;}
|
||
.y1ee{bottom:131.244000px;}
|
||
.y24d{bottom:133.569000px;}
|
||
.y82{bottom:134.268000px;}
|
||
.y112{bottom:134.480000px;}
|
||
.y1b3{bottom:135.189000px;}
|
||
.ybc{bottom:135.229000px;}
|
||
.y179{bottom:135.274000px;}
|
||
.yb{bottom:135.423000px;}
|
||
.y158{bottom:135.772000px;}
|
||
.y19d{bottom:135.883000px;}
|
||
.y9f{bottom:136.020000px;}
|
||
.y1b8{bottom:136.206000px;}
|
||
.y202{bottom:136.278000px;}
|
||
.y93{bottom:136.380000px;}
|
||
.y12e{bottom:136.584000px;}
|
||
.ycc{bottom:136.878000px;}
|
||
.y6b{bottom:137.376000px;}
|
||
.y4c{bottom:137.580000px;}
|
||
.y193{bottom:138.013000px;}
|
||
.y1ca{bottom:138.139000px;}
|
||
.yd4{bottom:138.248000px;}
|
||
.y22a{bottom:138.688000px;}
|
||
.y1ed{bottom:138.803000px;}
|
||
.y34{bottom:138.870000px;}
|
||
.y3{bottom:139.042000px;}
|
||
.y124{bottom:139.341000px;}
|
||
.y20c{bottom:139.393000px;}
|
||
.y170{bottom:139.533000px;}
|
||
.y55{bottom:139.558000px;}
|
||
.y1c8{bottom:139.563000px;}
|
||
.y108{bottom:139.665000px;}
|
||
.y8c{bottom:139.689000px;}
|
||
.y1ab{bottom:140.308000px;}
|
||
.yfa{bottom:140.434000px;}
|
||
.y140{bottom:140.930000px;}
|
||
.y42{bottom:140.947000px;}
|
||
.y3b{bottom:141.308000px;}
|
||
.y74{bottom:141.525000px;}
|
||
.y1c7{bottom:141.556000px;}
|
||
.y139{bottom:141.998000px;}
|
||
.y1e9{bottom:142.178000px;}
|
||
.ydc{bottom:142.486000px;}
|
||
.y261{bottom:142.636000px;}
|
||
.y246{bottom:143.066000px;}
|
||
.y1ec{bottom:143.204000px;}
|
||
.y1bb{bottom:143.495000px;}
|
||
.y240{bottom:143.752000px;}
|
||
.y1e4{bottom:143.847000px;}
|
||
.y1c5{bottom:144.341000px;}
|
||
.y235{bottom:144.539000px;}
|
||
.y14f{bottom:144.582000px;}
|
||
.y26{bottom:144.736000px;}
|
||
.y148{bottom:145.342000px;}
|
||
.y1eb{bottom:145.851000px;}
|
||
.y18a{bottom:145.984000px;}
|
||
.y215{bottom:146.008000px;}
|
||
.y1e{bottom:146.347000px;}
|
||
.y2d{bottom:146.500000px;}
|
||
.y15{bottom:146.538000px;}
|
||
.y111{bottom:147.082000px;}
|
||
.ybb{bottom:147.832000px;}
|
||
.y81{bottom:148.016000px;}
|
||
.y201{bottom:148.881000px;}
|
||
.y230{bottom:148.959000px;}
|
||
.ye5{bottom:149.052000px;}
|
||
.yef{bottom:149.638000px;}
|
||
.y1c6{bottom:150.140000px;}
|
||
.y1b2{bottom:150.770000px;}
|
||
.yaa{bottom:151.203000px;}
|
||
.y7a{bottom:151.244000px;}
|
||
.y19c{bottom:151.465000px;}
|
||
.y33{bottom:151.473000px;}
|
||
.y157{bottom:151.512000px;}
|
||
.y11a{bottom:151.645000px;}
|
||
.y123{bottom:151.944000px;}
|
||
.y92{bottom:151.961000px;}
|
||
.y107{bottom:152.267000px;}
|
||
.y25e{bottom:152.455000px;}
|
||
.ycb{bottom:152.459000px;}
|
||
.ya{bottom:152.833000px;}
|
||
.yd6{bottom:152.849000px;}
|
||
.y6a{bottom:152.957000px;}
|
||
.y1ea{bottom:152.987000px;}
|
||
.yf9{bottom:153.037000px;}
|
||
.y192{bottom:153.595000px;}
|
||
.y5f{bottom:153.635000px;}
|
||
.y229{bottom:154.269000px;}
|
||
.y183{bottom:154.867000px;}
|
||
.y178{bottom:154.975000px;}
|
||
.y1e8{bottom:155.076000px;}
|
||
.y16f{bottom:155.114000px;}
|
||
.y8b{bottom:155.271000px;}
|
||
.y2b{bottom:155.434000px;}
|
||
.yb3{bottom:156.339000px;}
|
||
.y1e3{bottom:156.449000px;}
|
||
.y267{bottom:156.584000px;}
|
||
.y13f{bottom:156.671000px;}
|
||
.y1aa{bottom:157.282000px;}
|
||
.y138{bottom:157.580000px;}
|
||
.ydb{bottom:158.067000px;}
|
||
.y1e5{bottom:158.118000px;}
|
||
.y12d{bottom:158.143000px;}
|
||
.y110{bottom:159.685000px;}
|
||
.y73{bottom:160.096000px;}
|
||
.y1c3{bottom:160.335000px;}
|
||
.y20b{bottom:160.429000px;}
|
||
.yba{bottom:160.434000px;}
|
||
.y160{bottom:160.569000px;}
|
||
.y54{bottom:160.594000px;}
|
||
.y147{bottom:160.924000px;}
|
||
.y4b{bottom:161.132000px;}
|
||
.y200{bottom:161.484000px;}
|
||
.y189{bottom:161.565000px;}
|
||
.y255{bottom:161.654000px;}
|
||
.ye4{bottom:161.655000px;}
|
||
.y80{bottom:161.764000px;}
|
||
.y1e7{bottom:161.792000px;}
|
||
.y25{bottom:162.146000px;}
|
||
.yee{bottom:162.240000px;}
|
||
.y168{bottom:163.544000px;}
|
||
.y9e{bottom:164.030000px;}
|
||
.y32{bottom:164.075000px;}
|
||
.y41{bottom:164.499000px;}
|
||
.y23f{bottom:164.937000px;}
|
||
.y1d{bottom:165.550000px;}
|
||
.yf8{bottom:165.640000px;}
|
||
.y14{bottom:165.741000px;}
|
||
.y1e6{bottom:165.939000px;}
|
||
.ya9{bottom:166.785000px;}
|
||
.y79{bottom:166.825000px;}
|
||
.y19b{bottom:167.046000px;}
|
||
.y245{bottom:167.091000px;}
|
||
.y156{bottom:167.094000px;}
|
||
.y24c{bottom:167.691000px;}
|
||
.yca{bottom:168.041000px;}
|
||
.y1c4{bottom:168.056000px;}
|
||
.y1c0{bottom:169.052000px;}
|
||
.y22f{bottom:169.995000px;}
|
||
.y214{bottom:170.033000px;}
|
||
.y9{bottom:170.242000px;}
|
||
.y182{bottom:170.448000px;}
|
||
.y119{bottom:170.474000px;}
|
||
.y177{bottom:170.556000px;}
|
||
.y122{bottom:170.773000px;}
|
||
.y8a{bottom:170.852000px;}
|
||
.y106{bottom:171.097000px;}
|
||
.y12c{bottom:171.891000px;}
|
||
.yb2{bottom:171.921000px;}
|
||
.y260{bottom:172.165000px;}
|
||
.y1b1{bottom:172.305000px;}
|
||
.yd3{bottom:172.619000px;}
|
||
.y1ff{bottom:174.086000px;}
|
||
.ye3{bottom:174.257000px;}
|
||
.y4a{bottom:174.880000px;}
|
||
.y69{bottom:175.513000px;}
|
||
.yc4{bottom:176.011000px;}
|
||
.y15f{bottom:176.150000px;}
|
||
.y53{bottom:176.175000px;}
|
||
.y1c2{bottom:176.275000px;}
|
||
.y16e{bottom:176.648000px;}
|
||
.y31{bottom:176.678000px;}
|
||
.y2{bottom:177.167000px;}
|
||
.y254{bottom:177.236000px;}
|
||
.y9d{bottom:177.779000px;}
|
||
.yf7{bottom:178.242000px;}
|
||
.y1c1{bottom:178.267000px;}
|
||
.y1a9{bottom:178.318000px;}
|
||
.y10f{bottom:178.514000px;}
|
||
.y5e{bottom:179.179000px;}
|
||
.y14e{bottom:179.958000px;}
|
||
.yed{bottom:180.223000px;}
|
||
.yb9{bottom:180.265000px;}
|
||
.y23e{bottom:180.519000px;}
|
||
.y25d{bottom:180.825000px;}
|
||
.y191{bottom:181.132000px;}
|
||
.y19a{bottom:182.628000px;}
|
||
.y155{bottom:182.675000px;}
|
||
.y24b{bottom:183.273000px;}
|
||
.yc9{bottom:183.622000px;}
|
||
.y1c{bottom:184.753000px;}
|
||
.y13{bottom:184.944000px;}
|
||
.y22e{bottom:185.577000px;}
|
||
.y213{bottom:185.615000px;}
|
||
.y12b{bottom:185.640000px;}
|
||
.y118{bottom:186.055000px;}
|
||
.y266{bottom:186.113000px;}
|
||
.y228{bottom:186.138000px;}
|
||
.y13e{bottom:186.200000px;}
|
||
.y121{bottom:186.354000px;}
|
||
.y105{bottom:186.678000px;}
|
||
.y1fe{bottom:186.689000px;}
|
||
.yb1{bottom:187.502000px;}
|
||
.y8{bottom:187.652000px;}
|
||
.y40{bottom:188.523000px;}
|
||
.y49{bottom:188.628000px;}
|
||
.yda{bottom:189.839000px;}
|
||
.y146{bottom:190.453000px;}
|
||
.y68{bottom:191.094000px;}
|
||
.y72{bottom:191.592000px;}
|
||
.y15e{bottom:191.732000px;}
|
||
.y16d{bottom:192.230000px;}
|
||
.ya8{bottom:192.329000px;}
|
||
.y5d{bottom:192.927000px;}
|
||
.y9c{bottom:193.144000px;}
|
||
.y253{bottom:193.599000px;}
|
||
.y1a8{bottom:193.899000px;}
|
||
.y181{bottom:194.473000px;}
|
||
.y89{bottom:194.877000px;}
|
||
.yf6{bottom:195.079000px;}
|
||
.yec{bottom:195.805000px;}
|
||
.y14d{bottom:195.998000px;}
|
||
.y1bf{bottom:196.113000px;}
|
||
.y25c{bottom:196.406000px;}
|
||
.y23d{bottom:196.574000px;}
|
||
.y190{bottom:196.713000px;}
|
||
.y52{bottom:197.211000px;}
|
||
.y1{bottom:197.790000px;}
|
||
.yc8{bottom:199.204000px;}
|
||
.y24a{bottom:199.636000px;}
|
||
.y22d{bottom:201.158000px;}
|
||
.y212{bottom:201.196000px;}
|
||
.y25f{bottom:201.694000px;}
|
||
.yb0{bottom:203.084000px;}
|
||
.y1b{bottom:203.956000px;}
|
||
.y3f{bottom:204.105000px;}
|
||
.y225{bottom:204.124000px;}
|
||
.y12{bottom:204.147000px;}
|
||
.y1fd{bottom:204.928000px;}
|
||
.y5c{bottom:206.676000px;}
|
||
.y48{bottom:207.174000px;}
|
||
.y9b{bottom:208.509000px;}
|
||
.yf5{bottom:210.661000px;}
|
||
.y23c{bottom:212.155000px;}
|
||
.y25b{bottom:212.770000px;}
|
||
.y7{bottom:236.149000px;}
|
||
.h12{height:1.594016px;}
|
||
.h18{height:6.599270px;}
|
||
.h17{height:10.544486px;}
|
||
.h15{height:13.170557px;}
|
||
.h16{height:14.943900px;}
|
||
.h11{height:15.804774px;}
|
||
.h13{height:17.932800px;}
|
||
.h1a{height:22.124998px;}
|
||
.h8{height:23.910300px;}
|
||
.h10{height:24.818995px;}
|
||
.ha{height:24.890726px;}
|
||
.h14{height:25.285248px;}
|
||
.hd{height:26.899200px;}
|
||
.h9{height:27.576477px;}
|
||
.h6{height:29.887800px;}
|
||
.hf{height:30.196389px;}
|
||
.he{height:30.283662px;}
|
||
.hc{height:32.727300px;}
|
||
.h19{height:33.091994px;}
|
||
.h5{height:35.865600px;}
|
||
.h4{height:40.456284px;}
|
||
.h7{height:43.038600px;}
|
||
.h3{height:58.268250px;}
|
||
.hb{height:61.987500px;}
|
||
.h2{height:74.361300px;}
|
||
.h0{height:255.118000px;}
|
||
.h1{height:255.500000px;}
|
||
.w0{width:453.543000px;}
|
||
.w1{width:454.000000px;}
|
||
.x0{left:0.000000px;}
|
||
.x26{left:8.080000px;}
|
||
.x1a{left:9.460000px;}
|
||
.x4{left:10.667000px;}
|
||
.x20{left:14.707000px;}
|
||
.x54{left:16.539000px;}
|
||
.x24{left:18.812000px;}
|
||
.x53{left:20.030000px;}
|
||
.x33{left:22.424000px;}
|
||
.x29{left:23.609000px;}
|
||
.x1{left:28.346000px;}
|
||
.x2b{left:29.376000px;}
|
||
.xb{left:31.335000px;}
|
||
.x1b{left:32.369000px;}
|
||
.x5{left:34.488000px;}
|
||
.x10{left:35.719000px;}
|
||
.x12{left:37.543000px;}
|
||
.x56{left:39.350000px;}
|
||
.x14{left:41.967000px;}
|
||
.x18{left:43.300000px;}
|
||
.x2a{left:44.531000px;}
|
||
.x28{left:48.297000px;}
|
||
.x6{left:50.486000px;}
|
||
.x57{left:52.095000px;}
|
||
.x2c{left:53.153000px;}
|
||
.x19{left:55.278000px;}
|
||
.x52{left:56.325000px;}
|
||
.x51{left:57.537000px;}
|
||
.x2{left:59.485000px;}
|
||
.x1d{left:60.525000px;}
|
||
.x11{left:63.208000px;}
|
||
.x1e{left:66.252000px;}
|
||
.x9{left:67.724000px;}
|
||
.xc{left:68.994000px;}
|
||
.x15{left:72.460000px;}
|
||
.x2f{left:74.972000px;}
|
||
.x58{left:80.653000px;}
|
||
.x55{left:82.653000px;}
|
||
.x2d{left:90.812000px;}
|
||
.x16{left:98.085000px;}
|
||
.x1c{left:101.074000px;}
|
||
.x21{left:103.066000px;}
|
||
.x8{left:106.772000px;}
|
||
.x31{left:107.842000px;}
|
||
.x2e{left:109.642000px;}
|
||
.x22{left:111.681000px;}
|
||
.x3e{left:114.806000px;}
|
||
.x4c{left:116.584000px;}
|
||
.x25{left:118.010000px;}
|
||
.x17{left:119.903000px;}
|
||
.x27{left:120.999000px;}
|
||
.x4b{left:122.819000px;}
|
||
.x23{left:124.884000px;}
|
||
.x3c{left:127.976000px;}
|
||
.x30{left:131.195000px;}
|
||
.x3f{left:133.880000px;}
|
||
.x3a{left:135.052000px;}
|
||
.x3d{left:138.321000px;}
|
||
.x39{left:139.644000px;}
|
||
.x35{left:141.404000px;}
|
||
.x34{left:144.984000px;}
|
||
.x3b{left:148.968000px;}
|
||
.x40{left:151.066000px;}
|
||
.x36{left:153.456000px;}
|
||
.x37{left:157.704000px;}
|
||
.x44{left:162.294000px;}
|
||
.x41{left:165.046000px;}
|
||
.x45{left:167.486000px;}
|
||
.x4d{left:169.364000px;}
|
||
.x46{left:172.038000px;}
|
||
.x1f{left:177.786000px;}
|
||
.x38{left:182.398000px;}
|
||
.x42{left:184.685000px;}
|
||
.xa{left:185.772000px;}
|
||
.x4e{left:189.404000px;}
|
||
.x43{left:190.689000px;}
|
||
.x4f{left:191.960000px;}
|
||
.x47{left:194.563000px;}
|
||
.x50{left:197.589000px;}
|
||
.x48{left:199.756000px;}
|
||
.x49{left:204.308000px;}
|
||
.x32{left:209.586000px;}
|
||
.xd{left:216.235000px;}
|
||
.x4a{left:222.082000px;}
|
||
.xe{left:246.363000px;}
|
||
.xf{left:265.192000px;}
|
||
.x3{left:378.705000px;}
|
||
.x13{left:424.403000px;}
|
||
.x7{left:428.637000px;}
|
||
@media print{
|
||
.v0{vertical-align:0.000000pt;}
|
||
.ls0{letter-spacing:0.000000pt;}
|
||
.ws0{word-spacing:0.000000pt;}
|
||
._3b{margin-left:-31.497522pt;}
|
||
._32{margin-left:-26.116442pt;}
|
||
._23{margin-left:-12.162204pt;}
|
||
._5{margin-left:-7.383400pt;}
|
||
._8{margin-left:-5.126375pt;}
|
||
._3{margin-left:-2.534600pt;}
|
||
._6{width:2.403666pt;}
|
||
._0{width:4.098134pt;}
|
||
._15{width:5.432270pt;}
|
||
._37{width:8.192043pt;}
|
||
._36{width:9.733828pt;}
|
||
._35{width:11.688719pt;}
|
||
._3c{width:13.276990pt;}
|
||
._21{width:14.834391pt;}
|
||
._c{width:16.777660pt;}
|
||
._d{width:18.609495pt;}
|
||
._11{width:20.036818pt;}
|
||
._9{width:21.599159pt;}
|
||
._1d{width:23.014683pt;}
|
||
._a{width:24.461821pt;}
|
||
._10{width:26.154602pt;}
|
||
._e{width:27.564042pt;}
|
||
._7{width:28.921939pt;}
|
||
._16{width:30.545480pt;}
|
||
._1b{width:32.544792pt;}
|
||
._17{width:35.333053pt;}
|
||
._3e{width:37.924678pt;}
|
||
._4{width:41.655600pt;}
|
||
._b{width:43.224373pt;}
|
||
._1a{width:46.137847pt;}
|
||
._1{width:48.384419pt;}
|
||
._12{width:50.207573pt;}
|
||
._3d{width:51.766169pt;}
|
||
._2{width:54.549000pt;}
|
||
._20{width:60.969653pt;}
|
||
._18{width:62.405055pt;}
|
||
._2c{width:65.978973pt;}
|
||
._2b{width:79.301705pt;}
|
||
._26{width:100.423680pt;}
|
||
._27{width:125.529600pt;}
|
||
._28{width:151.278552pt;}
|
||
._38{width:161.833028pt;}
|
||
._31{width:176.248675pt;}
|
||
._13{width:251.699032pt;}
|
||
._2f{width:266.648781pt;}
|
||
._3a{width:370.802483pt;}
|
||
._33{width:372.476211pt;}
|
||
._39{width:409.011302pt;}
|
||
._34{width:652.849659pt;}
|
||
._30{width:667.961032pt;}
|
||
._41{width:951.382328pt;}
|
||
._1e{width:1038.910039pt;}
|
||
._22{width:1141.077235pt;}
|
||
._1c{width:1191.815622pt;}
|
||
._24{width:1248.393695pt;}
|
||
._f{width:1285.416868pt;}
|
||
._19{width:1343.165140pt;}
|
||
._25{width:1425.965204pt;}
|
||
._2d{width:1442.201848pt;}
|
||
._14{width:1594.976847pt;}
|
||
._40{width:1635.326077pt;}
|
||
._1f{width:1641.723006pt;}
|
||
._2e{width:1656.898140pt;}
|
||
._29{width:1669.825794pt;}
|
||
._2a{width:1722.683718pt;}
|
||
._3f{width:2009.160533pt;}
|
||
.fs9{font-size:26.566933pt;}
|
||
.fs8{font-size:31.880533pt;}
|
||
.fs5{font-size:42.507200pt;}
|
||
.fs6{font-size:47.820800pt;}
|
||
.fs4{font-size:53.133867pt;}
|
||
.fs7{font-size:58.181867pt;}
|
||
.fs3{font-size:63.761067pt;}
|
||
.fs2{font-size:76.513067pt;}
|
||
.fs1{font-size:110.200000pt;}
|
||
.fs0{font-size:132.197867pt;}
|
||
.yc2{bottom:-42.418667pt;}
|
||
.y0{bottom:-0.666667pt;}
|
||
.ya7{bottom:4.225333pt;}
|
||
.y137{bottom:6.717333pt;}
|
||
.y176{bottom:7.573333pt;}
|
||
.y211{bottom:8.002667pt;}
|
||
.y7f{bottom:8.025333pt;}
|
||
.y167{bottom:8.144000pt;}
|
||
.y104{bottom:9.048000pt;}
|
||
.y224{bottom:9.580000pt;}
|
||
.y5b{bottom:9.696000pt;}
|
||
.yd2{bottom:9.834667pt;}
|
||
.yc7{bottom:10.398667pt;}
|
||
.y244{bottom:11.960000pt;}
|
||
.y1b7{bottom:12.549333pt;}
|
||
.yc6{bottom:12.708000pt;}
|
||
.y1a7{bottom:13.106667pt;}
|
||
.y21d{bottom:13.896000pt;}
|
||
.y9a{bottom:15.158667pt;}
|
||
.y199{bottom:16.333333pt;}
|
||
.y26d{bottom:16.448000pt;}
|
||
.y88{bottom:17.165333pt;}
|
||
.y11{bottom:17.357333pt;}
|
||
.y3e{bottom:18.186667pt;}
|
||
.y20a{bottom:18.334667pt;}
|
||
.ya6{bottom:21.029333pt;}
|
||
.y71{bottom:21.322667pt;}
|
||
.y1f8{bottom:22.080000pt;}
|
||
.y67{bottom:24.297333pt;}
|
||
.y7e{bottom:24.828000pt;}
|
||
.y136{bottom:25.048000pt;}
|
||
.y103{bottom:25.852000pt;}
|
||
.y5a{bottom:26.498667pt;}
|
||
.y210{bottom:27.462667pt;}
|
||
.y1fb{bottom:28.204000pt;}
|
||
.y1fc{bottom:29.153333pt;}
|
||
.yc5{bottom:29.512000pt;}
|
||
.y1a6{bottom:29.910667pt;}
|
||
.y1f9{bottom:30.481333pt;}
|
||
.y26c{bottom:30.513333pt;}
|
||
.y180{bottom:31.889333pt;}
|
||
.y265{bottom:32.692000pt;}
|
||
.y78{bottom:33.868000pt;}
|
||
.y13d{bottom:34.498667pt;}
|
||
.y21c{bottom:34.672000pt;}
|
||
.y18f{bottom:34.977333pt;}
|
||
.y1fa{bottom:35.560000pt;}
|
||
.y198{bottom:35.793333pt;}
|
||
.y99{bottom:35.933333pt;}
|
||
.y51{bottom:37.089333pt;}
|
||
.ya5{bottom:37.833333pt;}
|
||
.y223{bottom:38.536000pt;}
|
||
.y1f7{bottom:38.884000pt;}
|
||
.y154{bottom:38.976000pt;}
|
||
.y209{bottom:39.109333pt;}
|
||
.y1e0{bottom:39.481333pt;}
|
||
.y1e2{bottom:39.774667pt;}
|
||
.yeb{bottom:40.077333pt;}
|
||
.y24{bottom:41.506667pt;}
|
||
.y70{bottom:42.097333pt;}
|
||
.y66{bottom:42.629333pt;}
|
||
.y102{bottom:42.656000pt;}
|
||
.y59{bottom:43.302667pt;}
|
||
.y135{bottom:43.380000pt;}
|
||
.y1a5{bottom:46.714667pt;}
|
||
.y20f{bottom:46.922667pt;}
|
||
.y23b{bottom:48.284000pt;}
|
||
.y1a{bottom:49.221333pt;}
|
||
.ye2{bottom:49.226667pt;}
|
||
.yb8{bottom:49.549333pt;}
|
||
.yc1{bottom:51.921333pt;}
|
||
.y47{bottom:52.172000pt;}
|
||
.y166{bottom:52.245333pt;}
|
||
.y17f{bottom:52.664000pt;}
|
||
.y1b0{bottom:55.152000pt;}
|
||
.y197{bottom:55.253333pt;}
|
||
.y21b{bottom:55.446667pt;}
|
||
.y1e1{bottom:55.616000pt;}
|
||
.y1df{bottom:56.285333pt;}
|
||
.y234{bottom:56.505333pt;}
|
||
.y6{bottom:57.266667pt;}
|
||
.y50{bottom:57.865333pt;}
|
||
.y101{bottom:59.458667pt;}
|
||
.y208{bottom:59.633333pt;}
|
||
.y252{bottom:59.758667pt;}
|
||
.yaf{bottom:59.902667pt;}
|
||
.y91{bottom:60.490667pt;}
|
||
.y14c{bottom:60.784000pt;}
|
||
.yea{bottom:60.853333pt;}
|
||
.y65{bottom:60.960000pt;}
|
||
.y134{bottom:61.710667pt;}
|
||
.y15d{bottom:63.230667pt;}
|
||
.y222{bottom:63.361333pt;}
|
||
.yd1{bottom:64.081333pt;}
|
||
.y10{bottom:64.498667pt;}
|
||
.y188{bottom:65.418667pt;}
|
||
.ya4{bottom:65.529333pt;}
|
||
.y153{bottom:65.676000pt;}
|
||
.ye1{bottom:66.030667pt;}
|
||
.y23a{bottom:66.614667pt;}
|
||
.y25a{bottom:66.998667pt;}
|
||
.y23{bottom:67.110667pt;}
|
||
.y98{bottom:67.336000pt;}
|
||
.y1f6{bottom:67.449333pt;}
|
||
.yc3{bottom:68.021333pt;}
|
||
.y10e{bottom:68.262667pt;}
|
||
.y175{bottom:68.278667pt;}
|
||
.yc0{bottom:68.724000pt;}
|
||
.y120{bottom:69.093333pt;}
|
||
.y12a{bottom:69.490667pt;}
|
||
.y26b{bottom:69.886667pt;}
|
||
.y87{bottom:70.737333pt;}
|
||
.yf4{bottom:71.037333pt;}
|
||
.y264{bottom:72.064000pt;}
|
||
.y6f{bottom:72.170667pt;}
|
||
.y145{bottom:72.553333pt;}
|
||
.y165{bottom:73.021333pt;}
|
||
.y17e{bottom:73.440000pt;}
|
||
.y18e{bottom:74.349333pt;}
|
||
.y19{bottom:74.825333pt;}
|
||
.y227{bottom:75.448000pt;}
|
||
.y1f3{bottom:75.850667pt;}
|
||
.y1af{bottom:75.928000pt;}
|
||
.y100{bottom:76.262667pt;}
|
||
.y16c{bottom:76.509333pt;}
|
||
.y1a1{bottom:76.822667pt;}
|
||
.y77{bottom:78.553333pt;}
|
||
.y13c{bottom:79.184000pt;}
|
||
.y64{bottom:79.290667pt;}
|
||
.y207{bottom:79.450667pt;}
|
||
.y5{bottom:79.500000pt;}
|
||
.y117{bottom:79.813333pt;}
|
||
.y133{bottom:80.041333pt;}
|
||
.y251{bottom:80.533333pt;}
|
||
.yae{bottom:80.678667pt;}
|
||
.y1de{bottom:80.794667pt;}
|
||
.y90{bottom:81.266667pt;}
|
||
.y14b{bottom:81.558667pt;}
|
||
.y15c{bottom:81.562667pt;}
|
||
.yb7{bottom:81.581333pt;}
|
||
.y21a{bottom:82.864000pt;}
|
||
.y46{bottom:83.574667pt;}
|
||
.y1f5{bottom:84.253333pt;}
|
||
.y1d7{bottom:84.850667pt;}
|
||
.y239{bottom:84.946667pt;}
|
||
.y10d{bottom:85.066667pt;}
|
||
.ybf{bottom:85.528000pt;}
|
||
.y11f{bottom:85.896000pt;}
|
||
.y1b6{bottom:86.045333pt;}
|
||
.y187{bottom:86.193333pt;}
|
||
.y129{bottom:86.294667pt;}
|
||
.ya3{bottom:86.304000pt;}
|
||
.y174{bottom:86.610667pt;}
|
||
.y1a4{bottom:87.002667pt;}
|
||
.ye0{bottom:87.590667pt;}
|
||
.yf{bottom:87.712000pt;}
|
||
.y259{bottom:87.774667pt;}
|
||
.yf3{bottom:87.841333pt;}
|
||
.y97{bottom:88.112000pt;}
|
||
.y221{bottom:88.121333pt;}
|
||
.y1da{bottom:89.965333pt;}
|
||
.y26a{bottom:90.661333pt;}
|
||
.y144{bottom:90.884000pt;}
|
||
.y1d6{bottom:91.494667pt;}
|
||
.y86{bottom:91.512000pt;}
|
||
.yd0{bottom:92.129333pt;}
|
||
.y152{bottom:92.376000pt;}
|
||
.y1f2{bottom:92.654667pt;}
|
||
.y22{bottom:92.713333pt;}
|
||
.yff{bottom:93.066667pt;}
|
||
.ye9{bottom:93.584000pt;}
|
||
.y164{bottom:93.796000pt;}
|
||
.y17d{bottom:94.214667pt;}
|
||
.y206{bottom:94.516000pt;}
|
||
.y116{bottom:96.617333pt;}
|
||
.y1ae{bottom:96.702667pt;}
|
||
.y16b{bottom:97.285333pt;}
|
||
.y1a0{bottom:97.598667pt;}
|
||
.y132{bottom:98.373333pt;}
|
||
.y4f{bottom:99.860000pt;}
|
||
.y63{bottom:100.066667pt;}
|
||
.y2a{bottom:100.129333pt;}
|
||
.y1dc{bottom:100.972000pt;}
|
||
.y1f4{bottom:101.056000pt;}
|
||
.y39{bottom:101.142667pt;}
|
||
.yad{bottom:101.453333pt;}
|
||
.y10c{bottom:101.869333pt;}
|
||
.y249{bottom:101.928000pt;}
|
||
.y6e{bottom:102.245333pt;}
|
||
.ybe{bottom:102.330667pt;}
|
||
.y15b{bottom:102.549333pt;}
|
||
.y1db{bottom:102.585333pt;}
|
||
.y11e{bottom:102.700000pt;}
|
||
.y128{bottom:103.098667pt;}
|
||
.y219{bottom:103.640000pt;}
|
||
.y233{bottom:104.106667pt;}
|
||
.y173{bottom:104.941333pt;}
|
||
.y238{bottom:105.170667pt;}
|
||
.y196{bottom:105.752000pt;}
|
||
.y1dd{bottom:105.929333pt;}
|
||
.y186{bottom:106.969333pt;}
|
||
.y1a3{bottom:107.777333pt;}
|
||
.ydf{bottom:108.365333pt;}
|
||
.y58{bottom:109.172000pt;}
|
||
.yfe{bottom:109.869333pt;}
|
||
.ye8{bottom:110.386667pt;}
|
||
.ye{bottom:110.925333pt;}
|
||
.y220{bottom:110.985333pt;}
|
||
.ya2{bottom:111.064000pt;}
|
||
.y1d9{bottom:111.218667pt;}
|
||
.y263{bottom:111.437333pt;}
|
||
.yb6{bottom:111.656000pt;}
|
||
.y143{bottom:111.872000pt;}
|
||
.y85{bottom:112.288000pt;}
|
||
.ycf{bottom:112.905333pt;}
|
||
.yf2{bottom:112.946667pt;}
|
||
.y8f{bottom:113.300000pt;}
|
||
.y115{bottom:113.420000pt;}
|
||
.y18d{bottom:113.721333pt;}
|
||
.y226{bottom:113.842667pt;}
|
||
.y1d8{bottom:113.876000pt;}
|
||
.y163{bottom:114.572000pt;}
|
||
.y250{bottom:114.722667pt;}
|
||
.y45{bottom:114.976000pt;}
|
||
.y17c{bottom:114.990667pt;}
|
||
.y205{bottom:115.290667pt;}
|
||
.y7d{bottom:115.421333pt;}
|
||
.y131{bottom:116.704000pt;}
|
||
.y38{bottom:117.945333pt;}
|
||
.y21{bottom:118.317333pt;}
|
||
.y18{bottom:118.572000pt;}
|
||
.y10b{bottom:118.673333pt;}
|
||
.y151{bottom:119.076000pt;}
|
||
.y11d{bottom:119.504000pt;}
|
||
.y96{bottom:119.513333pt;}
|
||
.y127{bottom:119.901333pt;}
|
||
.yd9{bottom:120.917333pt;}
|
||
.y22c{bottom:122.536000pt;}
|
||
.y1b5{bottom:122.761333pt;}
|
||
.y76{bottom:123.240000pt;}
|
||
.y15a{bottom:123.325333pt;}
|
||
.y29{bottom:123.342667pt;}
|
||
.y1d2{bottom:123.481333pt;}
|
||
.y13b{bottom:123.870667pt;}
|
||
.y218{bottom:124.414667pt;}
|
||
.y195{bottom:126.526667pt;}
|
||
.yfd{bottom:126.673333pt;}
|
||
.y248{bottom:126.688000pt;}
|
||
.y1d5{bottom:126.702667pt;}
|
||
.y258{bottom:127.449333pt;}
|
||
.y1a2{bottom:128.553333pt;}
|
||
.ybd{bottom:128.772000pt;}
|
||
.y1be{bottom:129.000000pt;}
|
||
.y1f1{bottom:129.622667pt;}
|
||
.y269{bottom:130.033333pt;}
|
||
.y114{bottom:130.224000pt;}
|
||
.y30{bottom:131.174667pt;}
|
||
.y4e{bottom:131.262667pt;}
|
||
.ya1{bottom:131.840000pt;}
|
||
.ye7{bottom:131.946667pt;}
|
||
.y6d{bottom:132.318667pt;}
|
||
.y14a{bottom:133.641333pt;}
|
||
.yf1{bottom:133.722667pt;}
|
||
.y1d3{bottom:133.776000pt;}
|
||
.y8e{bottom:134.074667pt;}
|
||
.y62{bottom:134.125333pt;}
|
||
.yd{bottom:134.137333pt;}
|
||
.y18c{bottom:134.497333pt;}
|
||
.y37{bottom:134.749333pt;}
|
||
.y1cd{bottom:135.104000pt;}
|
||
.y57{bottom:135.261333pt;}
|
||
.y24f{bottom:135.498667pt;}
|
||
.y44{bottom:135.752000pt;}
|
||
.y232{bottom:135.861333pt;}
|
||
.y7c{bottom:136.197333pt;}
|
||
.y21f{bottom:136.881333pt;}
|
||
.y1ef{bottom:138.024000pt;}
|
||
.yd5{bottom:138.502667pt;}
|
||
.y1ce{bottom:138.648000pt;}
|
||
.y19f{bottom:139.628000pt;}
|
||
.y1ba{bottom:140.057333pt;}
|
||
.y95{bottom:140.289333pt;}
|
||
.yce{bottom:140.953333pt;}
|
||
.y243{bottom:141.258667pt;}
|
||
.yb5{bottom:141.729333pt;}
|
||
.y84{bottom:142.361333pt;}
|
||
.y237{bottom:142.402667pt;}
|
||
.y1d4{bottom:143.506667pt;}
|
||
.y1b4{bottom:143.536000pt;}
|
||
.y17b{bottom:143.702667pt;}
|
||
.y20{bottom:143.921333pt;}
|
||
.y75{bottom:144.014667pt;}
|
||
.y17{bottom:144.176000pt;}
|
||
.y20e{bottom:144.306667pt;}
|
||
.y172{bottom:144.493333pt;}
|
||
.y13a{bottom:144.645333pt;}
|
||
.y1d1{bottom:144.734667pt;}
|
||
.y217{bottom:145.190667pt;}
|
||
.y130{bottom:145.449333pt;}
|
||
.y1ad{bottom:145.526667pt;}
|
||
.y185{bottom:146.341333pt;}
|
||
.y1f0{bottom:146.425333pt;}
|
||
.y28{bottom:146.556000pt;}
|
||
.yac{bottom:146.770667pt;}
|
||
.y16a{bottom:147.284000pt;}
|
||
.y194{bottom:147.302667pt;}
|
||
.y1d0{bottom:147.392000pt;}
|
||
.y204{bottom:148.097333pt;}
|
||
.y257{bottom:148.224000pt;}
|
||
.y1bd{bottom:149.776000pt;}
|
||
.yde{bottom:150.728000pt;}
|
||
.y262{bottom:150.809333pt;}
|
||
.yd8{bottom:150.990667pt;}
|
||
.y142{bottom:151.244000pt;}
|
||
.y36{bottom:151.553333pt;}
|
||
.y11c{bottom:151.782667pt;}
|
||
.y126{bottom:152.181333pt;}
|
||
.y61{bottom:152.456000pt;}
|
||
.y2f{bottom:152.560000pt;}
|
||
.y10a{bottom:152.612000pt;}
|
||
.ye6{bottom:152.722667pt;}
|
||
.y6c{bottom:153.094667pt;}
|
||
.y1cf{bottom:153.201333pt;}
|
||
.yfc{bottom:153.638667pt;}
|
||
.y162{bottom:153.944000pt;}
|
||
.y149{bottom:154.417333pt;}
|
||
.yf0{bottom:154.497333pt;}
|
||
.y3d{bottom:154.804000pt;}
|
||
.y8d{bottom:154.850667pt;}
|
||
.y4{bottom:156.032000pt;}
|
||
.y24e{bottom:156.273333pt;}
|
||
.ya0{bottom:156.600000pt;}
|
||
.y7b{bottom:156.972000pt;}
|
||
.yc{bottom:157.350667pt;}
|
||
.y242{bottom:158.062667pt;}
|
||
.y247{bottom:158.721333pt;}
|
||
.y150{bottom:158.804000pt;}
|
||
.y19e{bottom:160.402667pt;}
|
||
.y83{bottom:160.692000pt;}
|
||
.y1b9{bottom:160.833333pt;}
|
||
.y94{bottom:161.064000pt;}
|
||
.y21e{bottom:161.130667pt;}
|
||
.y56{bottom:161.349333pt;}
|
||
.y2c{bottom:161.417333pt;}
|
||
.ycd{bottom:161.728000pt;}
|
||
.y17a{bottom:162.033333pt;}
|
||
.y113{bottom:162.502667pt;}
|
||
.y4d{bottom:162.665333pt;}
|
||
.y159{bottom:162.697333pt;}
|
||
.y12f{bottom:163.780000pt;}
|
||
.y231{bottom:163.922667pt;}
|
||
.y22b{bottom:164.142667pt;}
|
||
.y1c9{bottom:164.830667pt;}
|
||
.y203{bottom:164.901333pt;}
|
||
.y20d{bottom:165.082667pt;}
|
||
.y171{bottom:165.268000pt;}
|
||
.y216{bottom:165.965333pt;}
|
||
.y1ac{bottom:166.302667pt;}
|
||
.y1cc{bottom:167.017333pt;}
|
||
.y184{bottom:167.117333pt;}
|
||
.y43{bottom:167.153333pt;}
|
||
.ydd{bottom:167.532000pt;}
|
||
.yab{bottom:167.545333pt;}
|
||
.y169{bottom:168.060000pt;}
|
||
.y236{bottom:168.280000pt;}
|
||
.y1cb{bottom:168.345333pt;}
|
||
.y35{bottom:168.356000pt;}
|
||
.y3a{bottom:168.373333pt;}
|
||
.y11b{bottom:168.585333pt;}
|
||
.y125{bottom:168.984000pt;}
|
||
.y268{bottom:169.406667pt;}
|
||
.y109{bottom:169.416000pt;}
|
||
.y1f{bottom:169.525333pt;}
|
||
.y141{bottom:169.576000pt;}
|
||
.y27{bottom:169.768000pt;}
|
||
.y16{bottom:169.780000pt;}
|
||
.y256{bottom:170.042667pt;}
|
||
.yfb{bottom:170.442667pt;}
|
||
.y1bc{bottom:170.550667pt;}
|
||
.y60{bottom:170.788000pt;}
|
||
.y3c{bottom:171.608000pt;}
|
||
.yd7{bottom:171.766667pt;}
|
||
.yb4{bottom:173.762667pt;}
|
||
.y18b{bottom:173.869333pt;}
|
||
.y2e{bottom:173.946667pt;}
|
||
.y161{bottom:174.720000pt;}
|
||
.y241{bottom:174.865333pt;}
|
||
.y1ee{bottom:174.992000pt;}
|
||
.y24d{bottom:178.092000pt;}
|
||
.y82{bottom:179.024000pt;}
|
||
.y112{bottom:179.306667pt;}
|
||
.y1b3{bottom:180.252000pt;}
|
||
.ybc{bottom:180.305333pt;}
|
||
.y179{bottom:180.365333pt;}
|
||
.yb{bottom:180.564000pt;}
|
||
.y158{bottom:181.029333pt;}
|
||
.y19d{bottom:181.177333pt;}
|
||
.y9f{bottom:181.360000pt;}
|
||
.y1b8{bottom:181.608000pt;}
|
||
.y202{bottom:181.704000pt;}
|
||
.y93{bottom:181.840000pt;}
|
||
.y12e{bottom:182.112000pt;}
|
||
.ycc{bottom:182.504000pt;}
|
||
.y6b{bottom:183.168000pt;}
|
||
.y4c{bottom:183.440000pt;}
|
||
.y193{bottom:184.017333pt;}
|
||
.y1ca{bottom:184.185333pt;}
|
||
.yd4{bottom:184.330667pt;}
|
||
.y22a{bottom:184.917333pt;}
|
||
.y1ed{bottom:185.070667pt;}
|
||
.y34{bottom:185.160000pt;}
|
||
.y3{bottom:185.389333pt;}
|
||
.y124{bottom:185.788000pt;}
|
||
.y20c{bottom:185.857333pt;}
|
||
.y170{bottom:186.044000pt;}
|
||
.y55{bottom:186.077333pt;}
|
||
.y1c8{bottom:186.084000pt;}
|
||
.y108{bottom:186.220000pt;}
|
||
.y8c{bottom:186.252000pt;}
|
||
.y1ab{bottom:187.077333pt;}
|
||
.yfa{bottom:187.245333pt;}
|
||
.y140{bottom:187.906667pt;}
|
||
.y42{bottom:187.929333pt;}
|
||
.y3b{bottom:188.410667pt;}
|
||
.y74{bottom:188.700000pt;}
|
||
.y1c7{bottom:188.741333pt;}
|
||
.y139{bottom:189.330667pt;}
|
||
.y1e9{bottom:189.570667pt;}
|
||
.ydc{bottom:189.981333pt;}
|
||
.y261{bottom:190.181333pt;}
|
||
.y246{bottom:190.754667pt;}
|
||
.y1ec{bottom:190.938667pt;}
|
||
.y1bb{bottom:191.326667pt;}
|
||
.y240{bottom:191.669333pt;}
|
||
.y1e4{bottom:191.796000pt;}
|
||
.y1c5{bottom:192.454667pt;}
|
||
.y235{bottom:192.718667pt;}
|
||
.y14f{bottom:192.776000pt;}
|
||
.y26{bottom:192.981333pt;}
|
||
.y148{bottom:193.789333pt;}
|
||
.y1eb{bottom:194.468000pt;}
|
||
.y18a{bottom:194.645333pt;}
|
||
.y215{bottom:194.677333pt;}
|
||
.y1e{bottom:195.129333pt;}
|
||
.y2d{bottom:195.333333pt;}
|
||
.y15{bottom:195.384000pt;}
|
||
.y111{bottom:196.109333pt;}
|
||
.ybb{bottom:197.109333pt;}
|
||
.y81{bottom:197.354667pt;}
|
||
.y201{bottom:198.508000pt;}
|
||
.y230{bottom:198.612000pt;}
|
||
.ye5{bottom:198.736000pt;}
|
||
.yef{bottom:199.517333pt;}
|
||
.y1c6{bottom:200.186667pt;}
|
||
.y1b2{bottom:201.026667pt;}
|
||
.yaa{bottom:201.604000pt;}
|
||
.y7a{bottom:201.658667pt;}
|
||
.y19c{bottom:201.953333pt;}
|
||
.y33{bottom:201.964000pt;}
|
||
.y157{bottom:202.016000pt;}
|
||
.y11a{bottom:202.193333pt;}
|
||
.y123{bottom:202.592000pt;}
|
||
.y92{bottom:202.614667pt;}
|
||
.y107{bottom:203.022667pt;}
|
||
.y25e{bottom:203.273333pt;}
|
||
.ycb{bottom:203.278667pt;}
|
||
.ya{bottom:203.777333pt;}
|
||
.yd6{bottom:203.798667pt;}
|
||
.y6a{bottom:203.942667pt;}
|
||
.y1ea{bottom:203.982667pt;}
|
||
.yf9{bottom:204.049333pt;}
|
||
.y192{bottom:204.793333pt;}
|
||
.y5f{bottom:204.846667pt;}
|
||
.y229{bottom:205.692000pt;}
|
||
.y183{bottom:206.489333pt;}
|
||
.y178{bottom:206.633333pt;}
|
||
.y1e8{bottom:206.768000pt;}
|
||
.y16f{bottom:206.818667pt;}
|
||
.y8b{bottom:207.028000pt;}
|
||
.y2b{bottom:207.245333pt;}
|
||
.yb3{bottom:208.452000pt;}
|
||
.y1e3{bottom:208.598667pt;}
|
||
.y267{bottom:208.778667pt;}
|
||
.y13f{bottom:208.894667pt;}
|
||
.y1aa{bottom:209.709333pt;}
|
||
.y138{bottom:210.106667pt;}
|
||
.ydb{bottom:210.756000pt;}
|
||
.y1e5{bottom:210.824000pt;}
|
||
.y12d{bottom:210.857333pt;}
|
||
.y110{bottom:212.913333pt;}
|
||
.y73{bottom:213.461333pt;}
|
||
.y1c3{bottom:213.780000pt;}
|
||
.y20b{bottom:213.905333pt;}
|
||
.yba{bottom:213.912000pt;}
|
||
.y160{bottom:214.092000pt;}
|
||
.y54{bottom:214.125333pt;}
|
||
.y147{bottom:214.565333pt;}
|
||
.y4b{bottom:214.842667pt;}
|
||
.y200{bottom:215.312000pt;}
|
||
.y189{bottom:215.420000pt;}
|
||
.y255{bottom:215.538667pt;}
|
||
.ye4{bottom:215.540000pt;}
|
||
.y80{bottom:215.685333pt;}
|
||
.y1e7{bottom:215.722667pt;}
|
||
.y25{bottom:216.194667pt;}
|
||
.yee{bottom:216.320000pt;}
|
||
.y168{bottom:218.058667pt;}
|
||
.y9e{bottom:218.706667pt;}
|
||
.y32{bottom:218.766667pt;}
|
||
.y41{bottom:219.332000pt;}
|
||
.y23f{bottom:219.916000pt;}
|
||
.y1d{bottom:220.733333pt;}
|
||
.yf8{bottom:220.853333pt;}
|
||
.y14{bottom:220.988000pt;}
|
||
.y1e6{bottom:221.252000pt;}
|
||
.ya9{bottom:222.380000pt;}
|
||
.y79{bottom:222.433333pt;}
|
||
.y19b{bottom:222.728000pt;}
|
||
.y245{bottom:222.788000pt;}
|
||
.y156{bottom:222.792000pt;}
|
||
.y24c{bottom:223.588000pt;}
|
||
.yca{bottom:224.054667pt;}
|
||
.y1c4{bottom:224.074667pt;}
|
||
.y1c0{bottom:225.402667pt;}
|
||
.y22f{bottom:226.660000pt;}
|
||
.y214{bottom:226.710667pt;}
|
||
.y9{bottom:226.989333pt;}
|
||
.y182{bottom:227.264000pt;}
|
||
.y119{bottom:227.298667pt;}
|
||
.y177{bottom:227.408000pt;}
|
||
.y122{bottom:227.697333pt;}
|
||
.y8a{bottom:227.802667pt;}
|
||
.y106{bottom:228.129333pt;}
|
||
.y12c{bottom:229.188000pt;}
|
||
.yb2{bottom:229.228000pt;}
|
||
.y260{bottom:229.553333pt;}
|
||
.y1b1{bottom:229.740000pt;}
|
||
.yd3{bottom:230.158667pt;}
|
||
.y1ff{bottom:232.114667pt;}
|
||
.ye3{bottom:232.342667pt;}
|
||
.y4a{bottom:233.173333pt;}
|
||
.y69{bottom:234.017333pt;}
|
||
.yc4{bottom:234.681333pt;}
|
||
.y15f{bottom:234.866667pt;}
|
||
.y53{bottom:234.900000pt;}
|
||
.y1c2{bottom:235.033333pt;}
|
||
.y16e{bottom:235.530667pt;}
|
||
.y31{bottom:235.570667pt;}
|
||
.y2{bottom:236.222667pt;}
|
||
.y254{bottom:236.314667pt;}
|
||
.y9d{bottom:237.038667pt;}
|
||
.yf7{bottom:237.656000pt;}
|
||
.y1c1{bottom:237.689333pt;}
|
||
.y1a9{bottom:237.757333pt;}
|
||
.y10f{bottom:238.018667pt;}
|
||
.y5e{bottom:238.905333pt;}
|
||
.y14e{bottom:239.944000pt;}
|
||
.yed{bottom:240.297333pt;}
|
||
.yb9{bottom:240.353333pt;}
|
||
.y23e{bottom:240.692000pt;}
|
||
.y25d{bottom:241.100000pt;}
|
||
.y191{bottom:241.509333pt;}
|
||
.y19a{bottom:243.504000pt;}
|
||
.y155{bottom:243.566667pt;}
|
||
.y24b{bottom:244.364000pt;}
|
||
.yc9{bottom:244.829333pt;}
|
||
.y1c{bottom:246.337333pt;}
|
||
.y13{bottom:246.592000pt;}
|
||
.y22e{bottom:247.436000pt;}
|
||
.y213{bottom:247.486667pt;}
|
||
.y12b{bottom:247.520000pt;}
|
||
.y118{bottom:248.073333pt;}
|
||
.y266{bottom:248.150667pt;}
|
||
.y228{bottom:248.184000pt;}
|
||
.y13e{bottom:248.266667pt;}
|
||
.y121{bottom:248.472000pt;}
|
||
.y105{bottom:248.904000pt;}
|
||
.y1fe{bottom:248.918667pt;}
|
||
.yb1{bottom:250.002667pt;}
|
||
.y8{bottom:250.202667pt;}
|
||
.y40{bottom:251.364000pt;}
|
||
.y49{bottom:251.504000pt;}
|
||
.yda{bottom:253.118667pt;}
|
||
.y146{bottom:253.937333pt;}
|
||
.y68{bottom:254.792000pt;}
|
||
.y72{bottom:255.456000pt;}
|
||
.y15e{bottom:255.642667pt;}
|
||
.y16d{bottom:256.306667pt;}
|
||
.ya8{bottom:256.438667pt;}
|
||
.y5d{bottom:257.236000pt;}
|
||
.y9c{bottom:257.525333pt;}
|
||
.y253{bottom:258.132000pt;}
|
||
.y1a8{bottom:258.532000pt;}
|
||
.y181{bottom:259.297333pt;}
|
||
.y89{bottom:259.836000pt;}
|
||
.yf6{bottom:260.105333pt;}
|
||
.yec{bottom:261.073333pt;}
|
||
.y14d{bottom:261.330667pt;}
|
||
.y1bf{bottom:261.484000pt;}
|
||
.y25c{bottom:261.874667pt;}
|
||
.y23d{bottom:262.098667pt;}
|
||
.y190{bottom:262.284000pt;}
|
||
.y52{bottom:262.948000pt;}
|
||
.y1{bottom:263.720000pt;}
|
||
.yc8{bottom:265.605333pt;}
|
||
.y24a{bottom:266.181333pt;}
|
||
.y22d{bottom:268.210667pt;}
|
||
.y212{bottom:268.261333pt;}
|
||
.y25f{bottom:268.925333pt;}
|
||
.yb0{bottom:270.778667pt;}
|
||
.y1b{bottom:271.941333pt;}
|
||
.y3f{bottom:272.140000pt;}
|
||
.y225{bottom:272.165333pt;}
|
||
.y12{bottom:272.196000pt;}
|
||
.y1fd{bottom:273.237333pt;}
|
||
.y5c{bottom:275.568000pt;}
|
||
.y48{bottom:276.232000pt;}
|
||
.y9b{bottom:278.012000pt;}
|
||
.yf5{bottom:280.881333pt;}
|
||
.y23c{bottom:282.873333pt;}
|
||
.y25b{bottom:283.693333pt;}
|
||
.y7{bottom:314.865333pt;}
|
||
.h12{height:2.125355pt;}
|
||
.h18{height:8.799027pt;}
|
||
.h17{height:14.059315pt;}
|
||
.h15{height:17.560743pt;}
|
||
.h16{height:19.925200pt;}
|
||
.h11{height:21.073033pt;}
|
||
.h13{height:23.910400pt;}
|
||
.h1a{height:29.499997pt;}
|
||
.h8{height:31.880400pt;}
|
||
.h10{height:33.091994pt;}
|
||
.ha{height:33.187635pt;}
|
||
.h14{height:33.713664pt;}
|
||
.hd{height:35.865600pt;}
|
||
.h9{height:36.768636pt;}
|
||
.h6{height:39.850400pt;}
|
||
.hf{height:40.261852pt;}
|
||
.he{height:40.378215pt;}
|
||
.hc{height:43.636400pt;}
|
||
.h19{height:44.122658pt;}
|
||
.h5{height:47.820800pt;}
|
||
.h4{height:53.941712pt;}
|
||
.h7{height:57.384800pt;}
|
||
.h3{height:77.691000pt;}
|
||
.hb{height:82.650000pt;}
|
||
.h2{height:99.148400pt;}
|
||
.h0{height:340.157333pt;}
|
||
.h1{height:340.666667pt;}
|
||
.w0{width:604.724000pt;}
|
||
.w1{width:605.333333pt;}
|
||
.x0{left:0.000000pt;}
|
||
.x26{left:10.773333pt;}
|
||
.x1a{left:12.613333pt;}
|
||
.x4{left:14.222667pt;}
|
||
.x20{left:19.609333pt;}
|
||
.x54{left:22.052000pt;}
|
||
.x24{left:25.082667pt;}
|
||
.x53{left:26.706667pt;}
|
||
.x33{left:29.898667pt;}
|
||
.x29{left:31.478667pt;}
|
||
.x1{left:37.794667pt;}
|
||
.x2b{left:39.168000pt;}
|
||
.xb{left:41.780000pt;}
|
||
.x1b{left:43.158667pt;}
|
||
.x5{left:45.984000pt;}
|
||
.x10{left:47.625333pt;}
|
||
.x12{left:50.057333pt;}
|
||
.x56{left:52.466667pt;}
|
||
.x14{left:55.956000pt;}
|
||
.x18{left:57.733333pt;}
|
||
.x2a{left:59.374667pt;}
|
||
.x28{left:64.396000pt;}
|
||
.x6{left:67.314667pt;}
|
||
.x57{left:69.460000pt;}
|
||
.x2c{left:70.870667pt;}
|
||
.x19{left:73.704000pt;}
|
||
.x52{left:75.100000pt;}
|
||
.x51{left:76.716000pt;}
|
||
.x2{left:79.313333pt;}
|
||
.x1d{left:80.700000pt;}
|
||
.x11{left:84.277333pt;}
|
||
.x1e{left:88.336000pt;}
|
||
.x9{left:90.298667pt;}
|
||
.xc{left:91.992000pt;}
|
||
.x15{left:96.613333pt;}
|
||
.x2f{left:99.962667pt;}
|
||
.x58{left:107.537333pt;}
|
||
.x55{left:110.204000pt;}
|
||
.x2d{left:121.082667pt;}
|
||
.x16{left:130.780000pt;}
|
||
.x1c{left:134.765333pt;}
|
||
.x21{left:137.421333pt;}
|
||
.x8{left:142.362667pt;}
|
||
.x31{left:143.789333pt;}
|
||
.x2e{left:146.189333pt;}
|
||
.x22{left:148.908000pt;}
|
||
.x3e{left:153.074667pt;}
|
||
.x4c{left:155.445333pt;}
|
||
.x25{left:157.346667pt;}
|
||
.x17{left:159.870667pt;}
|
||
.x27{left:161.332000pt;}
|
||
.x4b{left:163.758667pt;}
|
||
.x23{left:166.512000pt;}
|
||
.x3c{left:170.634667pt;}
|
||
.x30{left:174.926667pt;}
|
||
.x3f{left:178.506667pt;}
|
||
.x3a{left:180.069333pt;}
|
||
.x3d{left:184.428000pt;}
|
||
.x39{left:186.192000pt;}
|
||
.x35{left:188.538667pt;}
|
||
.x34{left:193.312000pt;}
|
||
.x3b{left:198.624000pt;}
|
||
.x40{left:201.421333pt;}
|
||
.x36{left:204.608000pt;}
|
||
.x37{left:210.272000pt;}
|
||
.x44{left:216.392000pt;}
|
||
.x41{left:220.061333pt;}
|
||
.x45{left:223.314667pt;}
|
||
.x4d{left:225.818667pt;}
|
||
.x46{left:229.384000pt;}
|
||
.x1f{left:237.048000pt;}
|
||
.x38{left:243.197333pt;}
|
||
.x42{left:246.246667pt;}
|
||
.xa{left:247.696000pt;}
|
||
.x4e{left:252.538667pt;}
|
||
.x43{left:254.252000pt;}
|
||
.x4f{left:255.946667pt;}
|
||
.x47{left:259.417333pt;}
|
||
.x50{left:263.452000pt;}
|
||
.x48{left:266.341333pt;}
|
||
.x49{left:272.410667pt;}
|
||
.x32{left:279.448000pt;}
|
||
.xd{left:288.313333pt;}
|
||
.x4a{left:296.109333pt;}
|
||
.xe{left:328.484000pt;}
|
||
.xf{left:353.589333pt;}
|
||
.x3{left:504.940000pt;}
|
||
.x13{left:565.870667pt;}
|
||
.x7{left:571.516000pt;}
|
||
}
|
||
</style>
|
||
<script>
|
||
/*
|
||
Copyright 2012 Mozilla Foundation
|
||
Copyright 2013 Lu Wang <coolwanglu@gmail.com>
|
||
Apachine License Version 2.0
|
||
*/
|
||
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
|
||
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
|
||
</script>
|
||
<script>
|
||
(function(){/*
|
||
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
|
||
Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
|
||
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
||
*/
|
||
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
|
||
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
|
||
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
|
||
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
|
||
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
|
||
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
|
||
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
|
||
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
|
||
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
|
||
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
|
||
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
|
||
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
|
||
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
|
||
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
|
||
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
|
||
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
|
||
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
|
||
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
|
||
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
|
||
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
|
||
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
|
||
pdf2htmlEX.Viewer=Viewer;})();
|
||
</script>
|
||
<script>
|
||
try{
|
||
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
|
||
}catch(e){}
|
||
</script>
|
||
<title></title>
|
||
</head>
|
||
<body>
|
||
<div id="sidebar">
|
||
<div id="outline">
|
||
<ul><li><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",28.346,255.118,null]'>Compiler Optimizations</a><ul><li><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",28.346,228.21,null]'>About the Compiler</a></li><li><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",28.346,228.21,null]'>Compiler Optimization Flags</a></li><li><a class="l" href="#pff" data-dest-detail='[15,"XYZ",28.346,228.21,null]'>Floating-point Optimization Flags</a></li><li><a class="l" href="#pf11" data-dest-detail='[17,"XYZ",28.346,228.21,null]'>Linker Optimization Flags</a></li><li><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",28.346,215.913,null]'>Architecture Flags</a></li><li><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",28.346,216.354,null]'>Help the Compiler to Produce Better Code</a></li><li><a class="l" href="#pf16" data-dest-detail='[22,"XYZ",28.346,224.12,null]'>Profile Guided Optimization (PGO)</a></li><li><a class="l" href="#pf19" data-dest-detail='[25,"XYZ",28.346,228.21,null]'>Post-Processing Binary Optimizer</a></li></ul></li><li><a class="l" href="#pf1c" data-dest-detail='[28,"XYZ",28.346,255.118,null]'>Compiler Transformation Techniques</a><ul><li><a class="l" href="#pf1e" data-dest-detail='[30,"XYZ",28.346,228.21,null]'>Basic Compiler Transformations</a></li><li><a class="l" href="#pf21" data-dest-detail='[33,"XYZ",28.346,228.21,null]'>Loop Unswitching</a></li><li><a class="l" href="#pf22" data-dest-detail='[34,"XYZ",28.346,220.666,null]'>Loop Fusion</a></li><li><a class="l" href="#pf23" data-dest-detail='[35,"XYZ",28.346,212.502,null]'>Loop Fission</a></li><li><a class="l" href="#pf24" data-dest-detail='[36,"XYZ",28.346,220.043,null]'>Loop Interchange</a></li><li><a class="l" href="#pf25" data-dest-detail='[37,"XYZ",28.346,220.342,null]'>Loop Tiling</a></li></ul></li><li><a class="l" href="#pf26" data-dest-detail='[38,"XYZ",28.346,255.118,null]'>Libraries and Data Structures</a><ul><li><a class="l" href="#pf27" data-dest-detail='[39,"XYZ",28.346,228.21,null]'>External Libraries</a></li></ul></li><li><a class="l" href="#pf2b" data-dest-detail='[43,"XYZ",28.346,255.118,null]'>Performance Benchmarking</a><ul><li><a class="l" href="#pf2d" data-dest-detail='[45,"XYZ",28.346,216.663,null]'>What to Test?</a></li><li><a class="l" href="#pf2e" data-dest-detail='[46,"XYZ",28.346,228.21,null]'>Workload/Dataset Quality</a></li><li><a class="l" href="#pf2f" data-dest-detail='[47,"XYZ",28.346,207.494,null]'>Cache Behavior</a></li><li><a class="l" href="#pf31" data-dest-detail='[49,"XYZ",28.346,228.21,null]'>Stable CPU Performance</a></li><li><a class="l" href="#pf35" data-dest-detail='[53,"XYZ",28.346,206.653,null]'>Multi-Threads Considerations</a></li><li><a class="l" href="#pf36" data-dest-detail='[54,"XYZ",28.346,228.21,null]'>Program Memory Layout</a></li><li><a class="l" href="#pf37" data-dest-detail='[55,"XYZ",28.346,219.917,null]'>Measurement Overhead</a></li><li><a class="l" href="#pf38" data-dest-detail='[56,"XYZ",28.346,228.21,null]'>Compiler Optimizations</a></li><li><a class="l" href="#pf3a" data-dest-detail='[58,"XYZ",28.346,164.531,null]'>Metric Evaluation</a></li></ul></li><li><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",28.346,255.118,null]'>Profiling</a><ul><li><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",28.346,228.21,null]'>gprof</a></li><li><a class="l" href="#pf44" data-dest-detail='[68,"XYZ",28.346,228.21,null]'>uftrace</a></li><li><a class="l" href="#pf45" data-dest-detail='[69,"XYZ",28.346,222.194,null]'>callgrind</a></li><li><a class="l" href="#pf46" data-dest-detail='[70,"XYZ",28.346,228.21,null]'>cachegrind</a></li><li><a class="l" href="#pf49" data-dest-detail='[73,"XYZ",28.346,228.21,null]'>perf Linux profiler</a></li></ul></li><li><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",28.346,255.118,null]'>Parallel Computing</a><ul><li><a class="l" href="#pf4d" data-dest-detail='[77,"XYZ",28.346,217.069,null]'>Concurrency vs. Parallelism</a></li><li><a class="l" href="#pf4e" data-dest-detail='[78,"XYZ",28.346,211.032,null]'>Performance Scaling</a></li><li><a class="l" href="#pf4f" data-dest-detail='[79,"XYZ",28.346,228.21,null]'>Gustafson's Law</a></li><li><a class="l" href="#pf50" data-dest-detail='[80,"XYZ",28.346,228.21,null]'>Parallel Programming Languages</a></li></ul></li></ul></div>
|
||
</div>
|
||
<div id="page-container">
|
||
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Mo<span class="_ _0"></span>dern<span class="_ _1"> </span>C++</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Programming</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls0 ws0">22.<span class="_ _2"> </span>Perf<span class="_ _3"></span>ormance<span class="_ _4"> </span>Optimiza<span class="_ _5"></span>tion<span class="_ _4"> </span>I<span class="_ _0"></span>I<span class="_ _6"></span>I</div><div class="t m0 x2 h4 y4 ff2 fs2 fc0 sc0 ls0 ws0">Non-Coding<span class="_ _7"> </span>Optimiza<span class="_ _8"></span>tions<span class="_ _7"> </span>and<span class="_ _7"> </span>Benchmarking</div><div class="t m0 x1 h5 y5 ff3 fs3 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>ederico<span class="_ _9"> </span>Busato</div><div class="t m0 x3 h6 y6 ff4 fs4 fc0 sc0 ls0 ws0">2024-03-29</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _8"></span>able<span class="_ _9"> </span>of<span class="_ _a"> </span>Contents</div><div class="t m0 x5 h7 y8 ff1 fs4 fc2 sc0 ls0 ws0">1<span class="_ _b"> </span><span class="fs2 fc0">Compiler<span class="_ _7"> </span>Optimizations</span></div><div class="t m0 x6 h6 y9 ff4 fs4 fc0 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _c"> </span>the<span class="_ _c"> </span>Compiler</div><div class="t m0 x6 h6 ya ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>Optimization<span class="_ _d"> </span>Flags</div><div class="t m0 x6 h6 yb ff4 fs4 fc0 sc0 ls0 ws0">Floating-p<span class="_ _6"></span>oint<span class="_ _c"> </span>Optimization<span class="_ _c"> </span>Flags</div><div class="t m0 x6 h6 yc ff4 fs4 fc0 sc0 ls0 ws0">Link<span class="_ _3"></span>er<span class="_ _d"> </span>Optimization<span class="_ _c"> </span>Flags</div><div class="t m0 x6 h6 yd ff4 fs4 fc0 sc0 ls0 ws0">Architecture<span class="_ _c"> </span>Flags</div><div class="t m0 x6 h6 ye ff4 fs4 fc0 sc0 ls0 ws0">Help<span class="_ _c"> </span>the<span class="_ _d"> </span>Compiler<span class="_ _c"> </span>to<span class="_ _d"> </span>Pro<span class="_ _6"></span>duce<span class="_ _c"> </span>Better<span class="_ _c"> </span>Co<span class="_ _6"></span>de</div><div class="t m0 x6 h6 yf ff4 fs4 fc0 sc0 ls0 ws0">Profile<span class="_ _c"> </span>Guided<span class="_ _d"> </span>Optimization<span class="_ _c"> </span>(PGO)</div><div class="t m0 x6 h6 y10 ff4 fs4 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>ost-Pro<span class="_ _6"></span>cessing<span class="_ _c"> </span>Binary<span class="_ _c"> </span>Optimizer</div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">1/76</div><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:183.866000px;width:156.545000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:167.309000px;width:84.600000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:149.899000px;width:121.254000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pff" data-dest-detail='[15,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:132.489000px;width:143.033000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf11" data-dest-detail='[17,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:115.080000px;width:109.603000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:97.670000px;width:77.986000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:80.260000px;width:181.154000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf16" data-dest-detail='[22,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:62.297000px;width:149.814000px;height:11.955000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf19" data-dest-detail='[25,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:45.441000px;width:142.065000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _8"></span>able<span class="_ _9"> </span>of<span class="_ _a"> </span>Contents</div><div class="t m0 x5 h7 y12 ff1 fs4 fc2 sc0 ls0 ws0">2<span class="_ _b"> </span><span class="fs2 fc0">Compiler<span class="_ _7"> </span>T<span class="_ _5"></span>ransfo<span class="_ _3"></span>rmation<span class="_ _7"> </span>T<span class="_ _5"></span>echniques</span></div><div class="t m0 x6 h6 y13 ff4 fs4 fc0 sc0 ls0 ws0">Basic<span class="_ _c"> </span>Compiler<span class="_ _d"> </span>T<span class="_ _8"></span>ransformations</div><div class="t m0 x6 h6 y14 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _c"> </span>Unswitching</div><div class="t m0 x6 h6 y15 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _c"> </span>F<span class="_ _3"></span>usion</div><div class="t m0 x6 h6 y16 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _c"> </span>Fission</div><div class="t m0 x6 h6 y17 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _c"> </span>Interchange</div><div class="t m0 x6 h6 y18 ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _c"> </span>Tiling</div><div class="t m0 x5 h7 y19 ff1 fs4 fc2 sc0 ls0 ws0">3<span class="_ _b"> </span><span class="fs2 fc0">Lib<span class="_ _3"></span>ra<span class="_ _3"></span>ries<span class="_ _7"> </span>and<span class="_ _e"> </span>Data<span class="_ _e"> </span>Structures</span></div><div class="t m0 x6 h6 y1a ff4 fs4 fc0 sc0 ls0 ws0">External<span class="_ _c"> </span>Libra<span class="_ _3"></span>ries</div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">2/76</div><a class="l" href="#pf1c" data-dest-detail='[28,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:200.361000px;width:242.931000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1e" data-dest-detail='[30,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:182.010000px;width:134.579000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf21" data-dest-detail='[33,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:162.807000px;width:76.781000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf22" data-dest-detail='[34,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:143.605000px;width:52.968000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf23" data-dest-detail='[35,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:124.402000px;width:54.296000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf24" data-dest-detail='[36,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:105.199000px;width:74.360000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf25" data-dest-detail='[37,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:85.996000px;width:50.145000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf26" data-dest-detail='[38,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:53.297000px;width:195.629000px;height:13.781000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf27" data-dest-detail='[39,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:35.920000px;width:74.194000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _8"></span>able<span class="_ _9"> </span>of<span class="_ _a"> </span>Contents</div><div class="t m0 x5 h7 y1b ff1 fs4 fc2 sc0 ls0 ws0">4<span class="_ _b"> </span><span class="fs2 fc0">P<span class="_ _3"></span>erfo<span class="_ _3"></span>rmance<span class="_ _e"> </span>Benchma<span class="_ _3"></span>rking</span></div><div class="t m0 x6 h6 y1c ff4 fs4 fc0 sc0 ls0 ws0">What<span class="_ _c"> </span>to<span class="_ _d"> </span>T<span class="_ _8"></span>est?</div><div class="t m0 x6 h6 y1d ff4 fs4 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>orkload/Dataset<span class="_ _c"> </span>Quality</div><div class="t m0 x6 h6 y1e ff4 fs4 fc0 sc0 ls0 ws0">Cache<span class="_ _c"> </span>Behavior</div><div class="t m0 x6 h6 y1f ff4 fs4 fc0 sc0 ls0 ws0">Stable<span class="_ _c"> </span>CPU<span class="_ _d"> </span>P<span class="_ _3"></span>erformance</div><div class="t m0 x6 h6 y20 ff4 fs4 fc0 sc0 ls0 ws0">Multi-Threads<span class="_ _c"> </span>Considerations</div><div class="t m0 x6 h6 y21 ff4 fs4 fc0 sc0 ls0 ws0">Program<span class="_ _c"> </span>Memory<span class="_ _c"> </span>Lay<span class="_ _3"></span>out</div><div class="t m0 x6 h6 y22 ff4 fs4 fc0 sc0 ls0 ws0">Measurement<span class="_ _c"> </span>Overhead</div><div class="t m0 x6 h6 y23 ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>Optimizations</div><div class="t m0 x6 h6 y24 ff4 fs4 fc0 sc0 ls0 ws0">Metric<span class="_ _c"> </span>Evaluation</div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">3/76</div><a class="l" href="#pf2b" data-dest-detail='[43,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:200.170000px;width:182.595000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2d" data-dest-detail='[45,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:183.757000px;width:62.652000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2e" data-dest-detail='[46,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:162.063000px;width:111.857000px;height:11.955000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2f" data-dest-detail='[47,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:145.351000px;width:66.556000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf31" data-dest-detail='[49,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:126.148000px;width:105.867000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf35" data-dest-detail='[53,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:106.945000px;width:124.754000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf36" data-dest-detail='[54,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:85.805000px;width:106.185000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf37" data-dest-detail='[55,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:68.539000px;width:100.401000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf38" data-dest-detail='[56,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:47.399000px;width:100.111000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3a" data-dest-detail='[58,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:30.133000px;width:76.020000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _8"></span>able<span class="_ _9"> </span>of<span class="_ _a"> </span>Contents</div><div class="t m0 x5 h7 y25 ff1 fs4 fc2 sc0 ls0 ws0">5<span class="_ _b"> </span><span class="fs2 fc0">Profiling</span></div><div class="t m0 x6 h9 y26 ff6 fs4 fc0 sc0 ls0 ws0">gprof</div><div class="t m0 x6 h9 y27 ff6 fs4 fc0 sc0 ls0 ws0">uftrace</div><div class="t m0 x6 h9 y28 ff6 fs4 fc0 sc0 ls0 ws0">callgrind</div><div class="t m0 x6 h9 y29 ff6 fs4 fc0 sc0 ls0 ws0">cachegrind</div><div class="t m0 x6 h6 y2a ff6 fs4 fc0 sc0 ls0 ws0">perf<span class="_ _c"> </span><span class="ff4">Linux<span class="_ _d"> </span>p<span class="_ _3"></span>rofiler</span></div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">4/76</div><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:158.360000px;width:56.986000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:141.582000px;width:28.144000px;height:10.328000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf44" data-dest-detail='[68,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:126.330000px;width:38.605000px;height:8.170000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf45" data-dest-detail='[69,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:106.763000px;width:49.066000px;height:10.327000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf46" data-dest-detail='[70,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:89.353000px;width:54.296000px;height:10.327000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf49" data-dest-detail='[73,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:71.943000px;width:81.029000px;height:11.069000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf6" class="pf w0 h0" data-page-no="6"><div class="pc pc6 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _8"></span>able<span class="_ _9"> </span>of<span class="_ _a"> </span>Contents</div><div class="t m0 x5 h7 ya ff1 fs4 fc2 sc0 ls0 ws0">6<span class="_ _b"> </span><span class="fs2 fc0">P<span class="_ _3"></span>a<span class="_ _3"></span>rallel<span class="_ _e"> </span>Computing</span></div><div class="t m0 x6 h6 yb ff4 fs4 fc0 sc0 ls0 ws0">Concurrency<span class="_ _c"> </span>vs.<span class="_ _a"> </span>P<span class="_ _3"></span>arallelism</div><div class="t m0 x6 h6 yc ff4 fs4 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>erformance<span class="_ _c"> </span>Scaling</div><div class="t m0 x6 h6 yd ff4 fs4 fc0 sc0 ls0 ws0">Gustafson’s<span class="_ _c"> </span>Law</div><div class="t m0 x6 h6 ye ff4 fs4 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>arallel<span class="_ _c"> </span>Programming<span class="_ _d"> </span>Languages</div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">5/76</div><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:47.076000px;bottom:149.047000px;width:127.103000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4d" data-dest-detail='[77,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:132.489000px;width:116.868000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4e" data-dest-detail='[78,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:115.080000px;width:86.730000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4f" data-dest-detail='[79,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:99.607000px;width:69.599000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf50" data-dest-detail='[80,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:49.490000px;bottom:80.260000px;width:138.730000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf7" class="pf w0 h0" data-page-no="7"><div class="pc pc7 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y2b ff1 fs0 fc0 sc0 ls0 ws0">Compiler</div><div class="t m0 x8 h2 y2c ff1 fs0 fc0 sc0 ls0 ws0">Optimizations</div><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:149.618000px;width:241.993000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:115.247000px;width:158.930000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf8" class="pf w0 h0" data-page-no="8"><div class="pc pc8 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _9"> </span>Compiler<span class="_ _a"> </span>Optimizations<span class="_ _f"> </span>1/3</div><div class="t m0 x9 h5 y2d ff3 fs3 fc0 sc0 ls0 ws0">”I<span class="_ _c"> </span>alwa<span class="_ _3"></span>ys<span class="_ _d"> </span>sa<span class="_ _3"></span>y<span class="_ _d"> </span>the<span class="_ _c"> </span>purp<span class="_ _6"></span>ose<span class="_ _d"> </span>of<span class="_ _c"> </span>optimizing<span class="_ _d"> </span>compilers<span class="_ _d"> </span>is<span class="_ _c"> </span>not<span class="_ _d"> </span>to<span class="_ _d"> </span>mak<span class="_ _3"></span>e<span class="_ _d"> </span>co<span class="_ _6"></span>de</div><div class="t m0 x6 h5 y2e ff3 fs3 fc0 sc0 ls0 ws0">run<span class="_ _e"> </span>faster,<span class="_ _e"> </span>but<span class="_ _a"> </span>to<span class="_ _e"> </span>p<span class="_ _3"></span>revent<span class="_ _10"> </span>p<span class="_ _3"></span>rogrammers<span class="_ _10"> </span>from<span class="_ _10"> </span>writing<span class="_ _10"> </span>utter<span class="_ _10"> </span>****<span class="_ _10"> </span>in<span class="_ _10"> </span>the</div><div class="t m0 x6 h5 y2f ff3 fs3 fc0 sc0 ls0 ws0">pursuit<span class="_ _9"> </span>of<span class="_ _11"> </span>making<span class="_ _11"> </span>it<span class="_ _9"> </span>run<span class="_ _11"> </span>faster“</div><div class="t m0 xa h5 y30 ff7 fs3 fc0 sc0 ls0 ws0">Rich<span class="_ _a"> </span>F<span class="_ _3"></span>elk<span class="_ _3"></span>er<span class="ff3">,<span class="_ _11"> </span><span class="ff8">musl-libc<span class="_ _9"> </span></span>(<span class="ff8">libc<span class="_ _11"> </span></span>alternative)</span></div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">6/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf9" class="pf w0 h0" data-page-no="9"><div class="pc pc9 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _9"> </span>Compiler<span class="_ _a"> </span>Optimizations<span class="_ _f"> </span>2/3</div><div class="t m0 xb ha y31 ff6 fs6 fc3 sc0 ls0 ws0">bool<span class="_ _a"> </span><span class="ff9 fc4">isEven<span class="fc0">(</span></span>int<span class="_ _a"> </span><span class="ff9 fc0">number)<span class="_ _10"> </span>{</span></div><div class="t m0 x6 ha y32 ff6 fs6 fc3 sc0 ls0 ws0">int<span class="_ _12"> </span><span class="ff9 fc0">numberCompare<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;</span></div><div class="t m0 x6 ha y33 ff6 fs6 fc3 sc0 ls0 ws0">bool<span class="_ _a"> </span><span class="ff9 fc0">even<span class="_ _13"> </span><span class="fc5">=<span class="_ _a"> </span><span class="fc6">true</span></span>;</span></div><div class="t m0 x6 ha y34 ff6 fs6 fc6 sc0 ls0 ws0">while<span class="_ _a"> </span><span class="ff9 fc0">(number<span class="_ _a"> </span><span class="fc5">!=<span class="_ _10"> </span></span>numberCompare)<span class="_ _a"> </span>{</span></div><div class="t m0 xc ha y35 ff9 fs6 fc0 sc0 ls0 ws0">even<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>!</span>even;</div><div class="t m0 xc ha y36 ff9 fs6 fc0 sc0 ls0 ws0">numberCompare<span class="fc5">++</span>;</div><div class="t m0 x6 ha y37 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x6 ha y38 ff6 fs6 fc6 sc0 ls0 ws0">return<span class="_ _a"> </span><span class="ff9 fc0">even;</span></div><div class="t m0 xb ha y39 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hb y3a ffa fs1 fc0 sc0 ls0 ws0">→</div><div class="t m0 xe ha y3b ff6 fs6 fc3 sc0 ls0 ws0">bool<span class="_ _a"> </span><span class="ff9 fc4">isEven<span class="fc0">(</span></span>int<span class="_ _a"> </span><span class="ff9 fc0">number)<span class="_ _10"> </span>{</span></div><div class="t m0 xf ha y3c ff6 fs6 fc6 sc0 ls0 ws0">return<span class="_ _a"> </span><span class="ff9 fc0">number<span class="_ _a"> </span><span class="fc5">&<span class="_ _10"> </span>1u</span>;</span></div><div class="t m0 xe ha y3d ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x10 ha y3e ff9 fs6 fc7 sc0 ls0 ws0">Exploring<span class="_ _a"> </span>Clang/LLVM<span class="_ _a"> </span>optimization<span class="_ _10"> </span>on<span class="_ _a"> </span>programming<span class="_ _10"> </span>horror</div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">7/76</div><a class="l" href="https://blog.matthieud.me/2020/exploring-clang-llvm-optimization-on-programming-horror/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:8.863000px;width:260.897000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pfa" class="pf w0 h0" data-page-no="a"><div class="pc pca w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _9"> </span>Compiler<span class="_ _a"> </span>Optimizations<span class="_ _f"> </span>3/3</div><div class="t m0 x1 hc y3f ff4 fs7 fc0 sc0 ls0 ws0">On<span class="_ _d"> </span>the<span class="_ _11"> </span>other<span class="_ _d"> </span>hand,<span class="_ _11"> </span>having<span class="_ _d"> </span>a<span class="_ _11"> </span>go<span class="_ _6"></span>od<span class="_ _11"> </span>compiler<span class="_ _11"> </span>do<span class="_ _6"></span>es<span class="_ _d"> </span>not<span class="_ _d"> </span>mean<span class="_ _11"> </span>that<span class="_ _d"> </span>it<span class="_ _11"> </span>can<span class="_ _d"> </span>fully<span class="_ _11"> </span>optimize</div><div class="t m0 x1 hc y40 ff4 fs7 fc0 sc0 ls0 ws0">any<span class="_ _d"> </span>co<span class="_ _6"></span>de:</div><div class="t m0 x10 hc y41 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">The<span class="_ _d"> </span>compiler<span class="_ _11"> </span>do<span class="_ _6"></span>es<span class="_ _d"> </span>not<span class="_ _d"> </span><span class="ffc">“understand”<span class="_ _a"> </span></span>the<span class="_ _d"> </span>co<span class="_ _6"></span>de,<span class="_ _d"> </span>as<span class="_ _11"> </span>opp<span class="_ _6"></span>osed<span class="_ _d"> </span>to<span class="_ _11"> </span>human</span></div><div class="t m0 x10 hc y42 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">The<span class="_ _d"> </span>compiler<span class="_ _d"> </span>is<span class="_ _d"> </span><span class="ffc">conservative<span class="_ _9"> </span></span>and<span class="_ _d"> </span>applies<span class="_ _d"> </span>optimizations<span class="_ _d"> </span>only<span class="_ _d"> </span>if<span class="_ _c"> </span>they<span class="_ _d"> </span>are<span class="_ _c"> </span>safe<span class="_ _d"> </span>and<span class="_ _d"> </span>do</span></div><div class="t m0 x6 hc y43 ff4 fs7 fc0 sc0 ls0 ws0">not<span class="_ _d"> </span>affect<span class="_ _11"> </span>the<span class="_ _d"> </span>correctness<span class="_ _d"> </span>of<span class="_ _d"> </span>computation</div><div class="t m0 x10 hc y44 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">The<span class="_ _d"> </span>compiler<span class="_ _11"> </span>is<span class="_ _d"> </span>full<span class="_ _11"> </span>of<span class="_ _d"> </span><span class="ffc">mo<span class="_ _6"></span>dels<span class="_ _d"> </span>and<span class="_ _11"> </span>heuristics<span class="_ _a"> </span></span>that<span class="_ _d"> </span>could<span class="_ _11"> </span>not<span class="_ _d"> </span>match<span class="_ _11"> </span>a<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific</span></div><div class="t m0 x6 hc y45 ff4 fs7 fc0 sc0 ls0 ws0">situation</div><div class="t m0 x10 hc y46 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">The<span class="_ _d"> </span>compiler<span class="_ _11"> </span><span class="ffc">cannot<span class="_ _d"> </span>sp<span class="_ _6"></span>end<span class="_ _d"> </span>large<span class="_ _d"> </span>amount<span class="_ _d"> </span>of<span class="_ _11"> </span>time<span class="_ _9"> </span></span>in<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>optimization</span></div><div class="t m0 x10 hc y47 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">The<span class="_ _d"> </span>compiler<span class="_ _11"> </span>could<span class="_ _d"> </span>consider<span class="_ _11"> </span><span class="ffc">other<span class="_ _d"> </span>targets<span class="_ _a"> </span></span>outside<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance,<span class="_ _d"> </span>e.g.<span class="_ _10"> </span>binary<span class="_ _d"> </span>size</span></div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">8/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pfb" class="pf w0 h0" data-page-no="b"><div class="pc pcb w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _9"> </span>the<span class="_ _a"> </span>Compiler<span class="_ _14"> </span>1/2</div><div class="t m0 x1 hc y48 ffc fs7 fc0 sc0 ls0 ws0">Imp<span class="_ _6"></span>o<span class="_ _3"></span>rtant<span class="_ _d"> </span>advise:<span class="_ _e"> </span><span class="ff1 fc8">Use<span class="_ _9"> </span>an<span class="_ _9"> </span>up<span class="_ _6"></span>dated<span class="_ _11"> </span>version<span class="_ _9"> </span>of<span class="_ _9"> </span>the<span class="_ _9"> </span>compiler</span></div><div class="t m0 x10 hc y49 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">New<span class="_ _3"></span>er<span class="_ _11"> </span>compiler<span class="_ _d"> </span>produces<span class="_ _11"> </span><span class="ff1">b<span class="_ _6"></span>etter/faster<span class="_ _9"> </span>co<span class="_ _6"></span>de</span></span></div><div class="t m0 x11 h6 y4a ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>Effective<span class="_ _c"> </span>optimizations</div><div class="t m0 x11 h6 y4b ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>Supp<span class="_ _6"></span>o<span class="_ _3"></span>rt<span class="_ _c"> </span>for<span class="_ _c"> </span>newer<span class="_ _c"> </span>CPU<span class="_ _c"> </span>architectures</div><div class="t m0 x10 hc y4c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">New<span class="_ _9"> </span>w<span class="_ _3"></span>arnings<span class="_ _d"> </span><span class="ff4">to<span class="_ _d"> </span>avoid<span class="_ _11"> </span>common<span class="_ _d"> </span>errors<span class="_ _d"> </span>and<span class="_ _d"> </span>b<span class="_ _6"></span>etter<span class="_ _d"> </span>supp<span class="_ _6"></span>o<span class="_ _3"></span>rt<span class="_ _11"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>existing</span></span></div><div class="t m0 x6 hc y4d ff4 fs7 fc0 sc0 ls0 ws0">erro<span class="_ _3"></span>r/wa<span class="_ _3"></span>rnings<span class="_ _d"> </span>(e.g.<span class="_ _10"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>highlights)</div><div class="t m0 x10 hc y4e ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">F<span class="_ _3"></span>aster<span class="_ _9"> </span>compiling,<span class="_ _9"> </span>less<span class="_ _9"> </span>memo<span class="_ _3"></span>ry<span class="_ _9"> </span>usage</span></div><div class="t m0 x10 hc y4f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Less<span class="_ _9"> </span>compiler<span class="_ _11"> </span>bugs<span class="ff4">:<span class="_ _10"> </span>compilers<span class="_ _11"> </span>are<span class="_ _d"> </span>very<span class="_ _d"> </span>complex<span class="_ _d"> </span>and<span class="_ _11"> </span>they<span class="_ _d"> </span>have<span class="_ _11"> </span>many<span class="_ _d"> </span>bugs</span></span></div><div class="t m0 x1 hc y50 ff7 fs7 fc0 sc0 ls0 ws0">Use<span class="_ _11"> </span>an<span class="_ _9"> </span>up<span class="_ _6"></span>dated<span class="_ _9"> </span>version<span class="_ _9"> </span>of<span class="_ _11"> </span>the<span class="_ _9"> </span>linker<span class="_ _15"></span><span class="ff4">:<span class="_ _10"> </span>e.g.<span class="_ _a"> </span>for<span class="_ _d"> </span><span class="ffc">Link<span class="_ _d"> </span>Time<span class="_ _11"> </span>Optimization</span>,</span></div><div class="t m0 xb hc y51 ffd fs7 fc0 sc0 ls0 ws0">gold<span class="_ _16"> </span>linker<span class="_ _17"> </span><span class="ff4">o<span class="_ _3"></span>r<span class="_ _11"> </span>LL<span class="_ _5"></span>VM<span class="_ _11"> </span>linker<span class="_ _17"> </span><span class="ffd">lld</span></span></div><div class="t m0 x7 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">9/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pfc" class="pf w0 h0" data-page-no="c"><div class="pc pcc w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ab<span class="_ _6"></span>out<span class="_ _9"> </span>the<span class="_ _a"> </span>Compiler<span class="_ _14"> </span>2/2</div><div class="t m0 x1 h5 y52 ff1 fs3 fc8 sc0 ls0 ws0">Which<span class="_ _a"> </span>compiler?</div><div class="t m0 x1 hc y53 ff1 fs7 fc0 sc0 ls0 ws0">Answ<span class="_ _3"></span>er:<span class="_ _10"> </span><span class="ff4">It<span class="_ _d"> </span>dep<span class="_ _6"></span>endents<span class="_ _d"> </span>on<span class="_ _11"> </span>the<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>and<span class="_ _d"> </span>on<span class="_ _11"> </span>the<span class="_ _d"> </span>processor</span></div><div class="t m0 x1 hc y54 ff4 fs7 fc0 sc0 ls0 ws0">example:<span class="_ _10"> </span><span class="ffd">GCC<span class="_ _7"> </span>9<span class="_ _16"> </span>vs.<span class="_ _18"> </span>Clang<span class="_ _16"> </span>8</span></div><div class="t m0 x1 hc y55 ff4 fs7 fc0 sc0 ls0 ws0">Some<span class="_ _d"> </span>compilers<span class="_ _11"> </span>can<span class="_ _d"> </span>produce<span class="_ _11"> </span>optimized<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>for<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>a<span class="_ _3"></span>rchitectures:</div><div class="t m0 x10 hc y56 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Intel<span class="_ _9"> </span>Compiler<span class="_ _11"> </span><span class="ff4">(commercial):<span class="_ _a"> </span>Intel<span class="_ _11"> </span>processors</span></span></div><div class="t m0 x10 hc y57 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">IBM<span class="_ _9"> </span>XL<span class="_ _11"> </span>Compiler<span class="_ _11"> </span><span class="ff4">(commercial):<span class="_ _10"> </span>IBM<span class="_ _11"> </span>processors/system</span></span></div><div class="t m0 x10 hc y58 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Nvidia<span class="_ _9"> </span>NV<span class="_ _3"></span>C++<span class="_ _9"> </span>Compiler<span class="_ _11"> </span><span class="ff4">(free/commercial):<span class="_ _10"> </span>Multi-co<span class="_ _3"></span>re<span class="_ _11"> </span>processors/GPUs</span></span></div><div class="t m0 x12 hd y59 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html</span></div><div class="t m0 x12 hd y5a ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Intel<span class="_ _a"> </span>Blog:<span class="_ _12"> </span>gcc-x86-performance-hints</span></div><div class="t m0 x12 hd y5b ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Advanced<span class="_ _a"> </span>Optimization<span class="_ _10"> </span>and<span class="_ _a"> </span>New<span class="_ _a"> </span>Capa-bilities<span class="_ _10"> </span>of<span class="_ _a"> </span>GCC<span class="_ _a"> </span>10</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">10/76</div><a class="l" href="https://www.phoronix.com/scan.php?page=article&item=gcc9-clang8-hedt&num=1"><div class="d m1" style="border-style:none;position:absolute;left:72.108000px;bottom:157.173000px;width:105.083000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:29.488000px;width:227.945000px;height:10.212000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:16.886000px;width:180.872000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://documentation.suse.com/sbp/all/pdf/SBP-GCC-10_color_en.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:4.283000px;width:251.482000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pfd" class="pf w0 h0" data-page-no="d"><div class="pc pcd w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _a"> </span>Optimization<span class="_ _9"> </span>Flags<span class="_ _19"> </span>1/2</div><div class="t m0 x14 hc y5c ff6 fs7 fc0 sc0 ls0 ws0">-O0<span class="_ _c"> </span><span class="ff1">,<span class="_ _17"> </span></span>/Od<span class="_ _1a"> </span><span class="ff4">Disables<span class="_ _d"> </span>any<span class="_ _11"> </span>optimization</span></div><div class="t m0 x8 h6 y5d ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">default<span class="_ _c"> </span>b<span class="_ _6"></span>ehavior</span></div><div class="t m0 x8 h6 y5e ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">fast<span class="_ _c"> </span>compile<span class="_ _d"> </span>time</span></div><div class="t m0 x14 hc y5f ff6 fs7 fc0 sc0 ls0 ws0">-O1<span class="_ _c"> </span><span class="ff1">,<span class="_ _17"> </span></span>/O1<span class="_ _1a"> </span><span class="ff4">Enables<span class="_ _d"> </span>basic<span class="_ _11"> </span>optimizations</span></div><div class="t m0 x14 hc y60 ff6 fs7 fc0 sc0 ls0 ws0">-O2<span class="_ _c"> </span><span class="ff1">,<span class="_ _17"> </span></span>/O2<span class="_ _1a"> </span><span class="ff4">Enables<span class="_ _d"> </span>advanced<span class="_ _11"> </span>optimizations</span></div><div class="t m0 x8 h6 y61 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">some<span class="_ _c"> </span>optimization<span class="_ _d"> </span>steps<span class="_ _c"> </span>are<span class="_ _c"> </span>exp<span class="_ _6"></span>ensive</span></div><div class="t m0 x8 h6 y62 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">can<span class="_ _c"> </span>increase<span class="_ _d"> </span>the<span class="_ _c"> </span>binary<span class="_ _c"> </span>size</span></div><div class="t m0 x15 hc y63 ff6 fs7 fc0 sc0 ls0 ws0">-O3<span class="_ _1a"> </span><span class="ff4">Enable<span class="_ _d"> </span>aggressive<span class="_ _d"> </span>optimizations.<span class="_ _10"> </span>T<span class="_ _8"></span>urns<span class="_ _d"> </span>on<span class="_ _11"> </span>all<span class="_ _d"> </span>optimizations<span class="_ _11"> </span>sp<span class="_ _6"></span>ecified<span class="_ _d"> </span>by</span></div><div class="t m0 x16 hc y64 ffd fs7 fc0 sc0 ls0 ws0">-O2<span class="ff4">,<span class="_ _d"> </span>plus<span class="_ _11"> </span>some<span class="_ _d"> </span>more</span></div><div class="t m0 x8 h6 y65 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _1a"> </span><span class="ffd">-O3<span class="_ _1b"> </span><span class="ff4">do<span class="_ _6"></span>es<span class="_ _c"> </span>not<span class="_ _c"> </span>guarantee<span class="_ _c"> </span>to<span class="_ _c"> </span>produce<span class="_ _d"> </span>faster<span class="_ _c"> </span>co<span class="_ _6"></span>de<span class="_ _c"> </span>than<span class="_ _17"> </span></span>-O2</span></div><div class="t m0 x8 h6 y66 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">it<span class="_ _c"> </span>could<span class="_ _d"> </span>break<span class="_ _c"> </span>floating-point<span class="_ _d"> </span>IEEE754<span class="_ _c"> </span>rules<span class="_ _d"> </span>in<span class="_ _c"> </span>some<span class="_ _d"> </span>non-traditional</span></div><div class="t m0 x17 h6 y67 ff4 fs4 fc0 sc0 ls0 ws0">compilers<span class="_ _c"> </span>(<span class="ffd">nvc++</span>,<span class="_ _d"> </span><span class="ffd">IBM<span class="_ _e"> </span>xlc</span>)</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">11/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pfe" class="pf w0 h0" data-page-no="e"><div class="pc pce w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _a"> </span>Optimization<span class="_ _9"> </span>Flags<span class="_ _19"> </span>2/2</div><div class="t m0 x18 hc y5c ff6 fs7 fc0 sc0 ls0 ws0">-O4<span class="_ _c"> </span><span class="ff1">/<span class="_"> </span></span>-O5<span class="_ _1a"> </span><span class="ff4">It<span class="_ _d"> </span>is<span class="_ _d"> </span>an<span class="_ _11"> </span>alias<span class="_ _d"> </span>of<span class="_ _17"> </span><span class="ffd">-O3<span class="_ _17"> </span></span>in<span class="_ _11"> </span>some<span class="_ _d"> </span>compilers,<span class="_ _11"> </span>or<span class="_ _c"> </span>it<span class="_ _11"> </span>can<span class="_ _11"> </span>refer<span class="_ _d"> </span>to<span class="_ _17"> </span><span class="ffd">-O3<span class="_ _17"> </span></span>+</span></div><div class="t m0 x16 hc y68 ff4 fs7 fc0 sc0 ls0 ws0">inter-p<span class="_ _3"></span>ro<span class="_ _6"></span>cedural<span class="_ _d"> </span>optimizations<span class="_ _11"> </span>(basic,<span class="_ _d"> </span>full)<span class="_ _11"> </span>and<span class="_ _d"> </span>high-order</div><div class="t m0 x16 hc y69 ff4 fs7 fc0 sc0 ls0 ws0">transfo<span class="_ _3"></span>rmation<span class="_ _11"> </span>(HOT)<span class="_ _d"> </span>optimizer<span class="_ _11"> </span>for<span class="_ _d"> </span>specialized<span class="_ _11"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>transformations</div><div class="t m0 x19 hc y6a ff6 fs7 fc0 sc0 ls0 ws0">-Ofast<span class="_ _1a"> </span><span class="ff4">Provides<span class="_ _d"> </span>other<span class="_ _d"> </span>aggressive<span class="_ _d"> </span>optimizations<span class="_ _11"> </span>that<span class="_ _11"> </span>ma<span class="_ _3"></span>y<span class="_ _11"> </span>violate<span class="_ _d"> </span>strict</span></div><div class="t m0 x16 hc y6b ff4 fs7 fc0 sc0 ls0 ws0">compliance<span class="_ _d"> </span>with<span class="_ _11"> </span>language<span class="_ _d"> </span>standards.<span class="_ _a"> </span>It<span class="_ _11"> </span>includes<span class="_ _17"> </span><span class="ffd">-O3<span class="_ _16"> </span>-ffast-math</span></div><div class="t m0 x14 hc y6c ff6 fs7 fc0 sc0 ls0 ws0">-Os<span class="_ _c"> </span><span class="ff1">,<span class="_ _17"> </span></span>/Os<span class="_ _1a"> </span><span class="ff4">Optimize<span class="_ _d"> </span>for<span class="_ _d"> </span>size.<span class="_ _a"> </span>It<span class="_ _11"> </span>enables<span class="_ _11"> </span>all<span class="_ _17"> </span><span class="ffd">-O2<span class="_ _17"> </span></span>optimizations<span class="_ _d"> </span>that<span class="_ _11"> </span>do<span class="_ _d"> </span>not</span></div><div class="t m0 x16 hc y6d ff4 fs7 fc0 sc0 ls0 ws0">t<span class="_ _3"></span>ypically<span class="_ _11"> </span>increase<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>size<span class="_ _11"> </span>(e.g.<span class="_ _10"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>unrolling)</div><div class="t m0 x15 hc y6e ff6 fs7 fc0 sc0 ls0 ws0">-Oz<span class="_ _1a"> </span><span class="ff4">Aggressively<span class="_ _d"> </span>optimize<span class="_ _d"> </span>for<span class="_ _d"> </span>size</span></div><div class="t m0 x1a hc y6f ff6 fs7 fc0 sc0 ls0 ws0">-funroll-loops<span class="_ _1a"> </span><span class="ff4">Enables<span class="_ _d"> </span>loop<span class="_ _11"> </span>unrolling<span class="_ _11"> </span>(not<span class="_ _d"> </span>included<span class="_ _11"> </span>in<span class="_ _17"> </span><span class="ffd">-O3<span class="_ _c"> </span></span>)</span></div><div class="t m0 x1b hc y70 ff6 fs7 fc0 sc0 ls0 ws0">-fopt-info<span class="_ _1a"> </span><span class="ff4">Describes<span class="_ _d"> </span>optimization<span class="_ _11"> </span>passes<span class="_ _11"> </span>and<span class="_ _d"> </span>missed<span class="_ _11"> </span>optimizations</span></div><div class="t m0 x1c he y71 ffd fs7 fc0 sc0 ls0 ws0">-fopt-info-missed</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">12/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pff" class="pf w0 h0" data-page-no="f"><div class="pc pcf w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-p<span class="_ _6"></span>oint<span class="_ _9"> </span>Optimization<span class="_ _a"> </span>Flags<span class="_ _1c"> </span>1/2</div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">In<span class="_ _d"> </span>general,<span class="_ _11"> </span>enabling<span class="_ _d"> </span>the<span class="_ _11"> </span>follo<span class="_ _3"></span>wing<span class="_ _11"> </span>flags<span class="_ _d"> </span>implies<span class="_ _11"> </span>less<span class="_ _11"> </span>floating-p<span class="_ _6"></span>oint<span class="_ _d"> </span>accuracy<span class="_ _8"></span>,<span class="_ _d"> </span>breaking</div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>IEEE754<span class="_ _11"> </span>standa<span class="_ _3"></span>rd,<span class="_ _11"> </span>and<span class="_ _d"> </span>it<span class="_ _11"> </span>is<span class="_ _d"> </span>implementation<span class="_ _11"> </span>dep<span class="_ _6"></span>endent<span class="_ _d"> </span>(not<span class="_ _11"> </span>included<span class="_ _d"> </span>in<span class="_ _17"> </span><span class="ffd">-O3<span class="_ _c"> </span></span>)</div><div class="t m0 x1d hf y73 ff6 fs7 fc0 sc0 ls0 ws0">-fno-signaling-nans</div><div class="t m0 x1e hc y74 ff6 fs7 fc0 sc0 ls0 ws0">-fno-trapping-math<span class="_ _1a"> </span><span class="ff4">Disable<span class="_ _d"> </span>floating-point<span class="_ _11"> </span>exceptions</span></div><div class="t m0 xb hc y75 ff6 fs7 fc0 sc0 ls0 ws0">-mfma<span class="_ _16"> </span>-ffp-contract=fast<span class="_ _1a"> </span><span class="ff4">F<span class="_ _3"></span>o<span class="_ _3"></span>rce<span class="_ _11"> </span>floating-p<span class="_ _6"></span>oint<span class="_ _d"> </span>exp<span class="_ _3"></span>ression<span class="_ _11"> </span>contraction<span class="_ _d"> </span>such<span class="_ _11"> </span>as</span></div><div class="t m0 x1f hc y76 ff4 fs7 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>rming<span class="_ _11"> </span>of<span class="_ _d"> </span>fused<span class="_ _11"> </span>multiply-add<span class="_ _d"> </span>op<span class="_ _6"></span>erations</div><div class="t m0 x1e hc y77 ff6 fs7 fc0 sc0 ls0 ws0">-ffinite-math-only<span class="_ _1a"> </span><span class="ff4">Disable<span class="_ _c"> </span>sp<span class="_ _6"></span>ecial<span class="_ _d"> </span>conditions<span class="_ _d"> </span>for<span class="_ _c"> </span>handling<span class="_ _17"> </span><span class="ffd">inf<span class="_ _17"> </span></span>and<span class="_ _17"> </span><span class="ffd">NaN</span></span></div><div class="t m0 x1e hc y78 ff6 fs7 fc0 sc0 ls0 ws0">-fassociative-math<span class="_ _1a"> </span><span class="ff4">Assume<span class="_ _d"> </span>floating-point<span class="_ _11"> </span>asso<span class="_ _6"></span>ciative<span class="_ _d"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">13/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf10" class="pf w0 h0" data-page-no="10"><div class="pc pc10 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-p<span class="_ _6"></span>oint<span class="_ _9"> </span>Optimization<span class="_ _a"> </span>Flags<span class="_ _1c"> </span>2/2</div><div class="t m0 x20 hc y79 ff6 fs7 fc0 sc0 ls0 ws0">-funsafe-math-optimizations<span class="_ _1a"> </span><span class="ff4">Allo<span class="_ _3"></span>ws<span class="_ _d"> </span>breaking<span class="_ _d"> </span>floating-p<span class="_ _6"></span>oint<span class="_ _d"> </span>asso<span class="_ _6"></span>ciativit<span class="_ _3"></span>y<span class="_ _d"> </span>and</span></div><div class="t m0 x1f hc y7a ff4 fs7 fc0 sc0 ls0 ws0">enables<span class="_ _d"> </span>reciprocal<span class="_ _11"> </span>optimization</div><div class="t m0 x8 hc y7b ff6 fs7 fc0 sc0 ls0 ws0">-ffast-math<span class="_ _1a"> </span><span class="ff4">Enables<span class="_ _d"> </span>aggressive<span class="_ _d"> </span>floating-p<span class="_ _6"></span>oint<span class="_ _d"> </span>optimizations.<span class="_ _10"> </span>All</span></div><div class="t m0 x1f hc y7c ff4 fs7 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>previous,<span class="_ _d"> </span>flush-to-zero<span class="_ _d"> </span>denormal<span class="_ _d"> </span>numb<span class="_ _6"></span>er,<span class="_ _d"> </span>plus</div><div class="t m0 x1f hc y7d ff4 fs7 fc0 sc0 ls0 ws0">others</div><div class="t m0 x10 ha y7e ff9 fs6 fc7 sc0 ls0 ws0">Beware<span class="_ _a"> </span>of<span class="_ _a"> </span>fast-math</div><div class="t m0 x5 ha y7f ff9 fs6 fc7 sc0 ls0 ws0">Semantics<span class="_ _a"> </span>of<span class="_ _a"> </span>Floating<span class="_ _10"> </span>Point<span class="_ _a"> </span>Math<span class="_ _10"> </span>in<span class="_ _a"> </span>GCC</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">14/76</div><a class="l" href="https://simonbyrne.github.io/notes/fastmath/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:17.625000px;width:91.432000px;height:9.664000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://gcc.gnu.org/wiki/FloatingPointMath"><div class="d m1" style="border-style:none;position:absolute;left:34.324000px;bottom:1.241000px;width:185.579000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf11" class="pf w0 h0" data-page-no="11"><div class="pc pc11 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Link<span class="_ _3"></span>er<span class="_ _a"> </span>Optimization<span class="_ _9"> </span>Flags</div><div class="t m0 x1e hc y5c ff6 fs7 fc0 sc0 ls0 ws0">-flto<span class="_ _1a"> </span><span class="ff4">Enables<span class="_ _d"> </span><span class="ffc">Link<span class="_ _d"> </span>Time<span class="_ _d"> </span>Optimizations<span class="_ _a"> </span></span>(Interprocedural<span class="_ _11"> </span>Optimization).<span class="_ _10"> </span>The</span></div><div class="t m0 x21 hc y68 ff4 fs7 fc0 sc0 ls0 ws0">link<span class="_ _3"></span>er<span class="_ _11"> </span>merges<span class="_ _d"> </span>all<span class="_ _11"> </span>mo<span class="_ _6"></span>dules<span class="_ _d"> </span>into<span class="_ _d"> </span>a<span class="_ _11"> </span>single<span class="_ _d"> </span>combined<span class="_ _11"> </span>mo<span class="_ _6"></span>dule<span class="_ _d"> </span>for</div><div class="t m0 x21 hc y69 ff4 fs7 fc0 sc0 ls0 ws0">optimization</div><div class="t m0 x22 h6 y80 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">the<span class="_ _c"> </span>linker<span class="_ _c"> </span>must<span class="_ _d"> </span>support<span class="_ _c"> </span>this<span class="_ _d"> </span>feature:<span class="_ _a"> </span><span class="ffd">GNU<span class="_ _10"> </span>ld<span class="_ _e"> </span>v2.21++<span class="_ _d"> </span></span>o<span class="_ _3"></span>r<span class="_ _d"> </span><span class="ffd">gold<span class="_ _d"> </span></span>version,</span></div><div class="t m0 x23 h6 y81 ff4 fs4 fc0 sc0 ls0 ws0">to<span class="_ _c"> </span>check<span class="_ _d"> </span>with<span class="_ _1b"> </span><span class="ffd">ld<span class="_ _7"> </span>--version</span></div><div class="t m0 x22 h6 y82 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">it<span class="_ _c"> </span>can<span class="_ _d"> </span>significantly<span class="_ _c"> </span>improve<span class="_ _c"> </span>the<span class="_ _d"> </span>performance</span></div><div class="t m0 x22 h6 y83 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">in<span class="_ _c"> </span>general,<span class="_ _d"> </span>it<span class="_ _c"> </span>is<span class="_ _d"> </span>a<span class="_ _c"> </span>very<span class="_ _d"> </span>exp<span class="_ _6"></span>ensive<span class="_ _c"> </span>step,<span class="_ _c"> </span>even<span class="_ _d"> </span>longer<span class="_ _c"> </span>than<span class="_ _d"> </span>the<span class="_ _c"> </span>object</span></div><div class="t m0 x23 h6 y84 ff4 fs4 fc0 sc0 ls0 ws0">compilations</div><div class="t m0 x1a hc y85 ff6 fs7 fc0 sc0 ls0 ws0">-fwhole-program<span class="_ _1a"> </span><span class="ff4">Assume<span class="_ _d"> </span>that<span class="_ _d"> </span>the<span class="_ _d"> </span>current<span class="_ _11"> </span>compilation<span class="_ _11"> </span>unit<span class="_ _d"> </span>represents<span class="_ _d"> </span>the<span class="_ _d"> </span>whole</span></div><div class="t m0 x21 hc y86 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram<span class="_ _11"> </span>b<span class="_ _6"></span>eing<span class="_ _d"> </span>compiled<span class="_ _d"> </span><span class="ffa">→<span class="_ _11"> </span></span>Assume<span class="_ _d"> </span>that<span class="_ _11"> </span>all<span class="_ _d"> </span>non-extern<span class="_ _11"> </span>functions<span class="_ _11"> </span>and</div><div class="t m0 x21 hc y87 ff4 fs7 fc0 sc0 ls0 ws0">va<span class="_ _3"></span>riables<span class="_ _11"> </span>b<span class="_ _6"></span>elong<span class="_ _d"> </span>only<span class="_ _d"> </span>to<span class="_ _11"> </span>their<span class="_ _d"> </span>compilation<span class="_ _11"> </span>unit</div><div class="t m0 x10 ha y88 ff9 fs6 fc7 sc0 ls0 ws0">Ubuntu<span class="_ _a"> </span>21.04<span class="_ _a"> </span>To<span class="_ _10"> </span>Turn<span class="_ _a"> </span>On<span class="_ _10"> </span>LTO<span class="_ _a"> </span>Optimizations<span class="_ _a"> </span>For<span class="_ _10"> </span>Its<span class="_ _a"> </span>Packages</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">15/76</div><a class="l" href="https://www.phoronix.com/scan.php?page=news_item&px=Ubuntu-21.04-LTO-Packages"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:8.097000px;width:275.019000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf12" class="pf w0 h0" data-page-no="12"><div class="pc pc12 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Architecture<span class="_ _a"> </span>Flags<span class="_ _9"> </span>-<span class="_ _a"> </span>32-bits<span class="_ _1d"> </span>o<span class="_ _3"></span>r<span class="_ _1d"> </span>64-bits?<span class="_ _1e"> </span>1/3</div><div class="t m0 x1 hc y89 ff4 fs7 fc0 sc0 ls0 ws0">Architecture-o<span class="_ _3"></span>riented<span class="_ _11"> </span>optimizations<span class="_ _d"> </span>are<span class="_ _d"> </span>not<span class="_ _d"> </span>included<span class="_ _11"> </span>in<span class="_ _d"> </span>other<span class="_ _11"> </span>flags<span class="_ _d"> </span>(<span class="_ _c"> </span><span class="ffd">-O3<span class="_ _c"> </span></span>)</div><div class="t m0 x24 hc y8a ff6 fs7 fc0 sc0 ls0 ws0">-m64<span class="_ _1a"> </span><span class="ff4">In<span class="_ _d"> </span>64-bit<span class="_ _d"> </span>mo<span class="_ _6"></span>de<span class="_ _d"> </span>the<span class="_ _d"> </span>numb<span class="_ _6"></span>er<span class="_ _d"> </span>of<span class="_ _11"> </span>available<span class="_ _11"> </span>registers<span class="_ _d"> </span>increases<span class="_ _11"> </span>from<span class="_ _d"> </span>6<span class="_ _11"> </span>to<span class="_ _d"> </span>14<span class="_ _11"> </span>general</span></div><div class="t m0 x6 hc y8b ff4 fs7 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span>from<span class="_ _11"> </span>8<span class="_ _d"> </span>to<span class="_ _11"> </span>16<span class="_ _d"> </span><span class="ffd">XMM</span>.<span class="_ _11"> </span>Also,<span class="_ _d"> </span>all<span class="_ _11"> </span>64-bits<span class="_ _d"> </span>x86<span class="_ _11"> </span>architectures<span class="_ _d"> </span>have<span class="_ _d"> </span><span class="ffd">SSE2<span class="_ _11"> </span></span>extension<span class="_ _d"> </span>by</div><div class="t m0 x6 hc y8c ff4 fs7 fc0 sc0 ls0 ws0">default.<span class="_ _10"> </span>64-bit<span class="_ _d"> </span>applications<span class="_ _d"> </span>can<span class="_ _11"> </span>use<span class="_ _11"> </span>mo<span class="_ _3"></span>re<span class="_ _11"> </span>than<span class="_ _d"> </span>4GB<span class="_ _11"> </span>address<span class="_ _d"> </span>space</div><div class="t m0 x24 hc y8d ff6 fs7 fc0 sc0 ls0 ws0">-m32<span class="_ _1a"> </span><span class="ff4">32-bit<span class="_ _d"> </span>mode.<span class="_ _10"> </span>It<span class="_ _11"> </span>should<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>combined<span class="_ _11"> </span>with<span class="_ _17"> </span><span class="ffd">-mfpmath=sse<span class="_ _17"> </span></span>to<span class="_ _d"> </span>enable<span class="_ _11"> </span>using<span class="_ _11"> </span>of<span class="_ _1d"> </span><span class="ffd">XMM</span></span></div><div class="t m0 x6 hc y8e ff4 fs7 fc0 sc0 ls0 ws0">registers<span class="_ _d"> </span>in<span class="_ _11"> </span>floating<span class="_ _d"> </span>p<span class="_ _6"></span>oint<span class="_ _d"> </span>instructions<span class="_ _11"> </span>(instead<span class="_ _d"> </span>of<span class="_ _11"> </span>stack<span class="_ _d"> </span>in<span class="_ _11"> </span>x87<span class="_ _11"> </span>mo<span class="_ _6"></span>de).<span class="_ _a"> </span>32-bit</div><div class="t m0 x6 hc y8f ff4 fs7 fc0 sc0 ls0 ws0">applications<span class="_ _d"> </span>can<span class="_ _11"> </span>use<span class="_ _d"> </span>less<span class="_ _11"> </span>than<span class="_ _d"> </span>4GB<span class="_ _11"> </span>address<span class="_ _d"> </span>space</div><div class="t m0 x1 hc y90 ff4 fs7 fc0 sc0 ls0 ws0">It<span class="_ _d"> </span>is<span class="_ _11"> </span>recommended<span class="_ _d"> </span>to<span class="_ _11"> </span>use<span class="_ _d"> </span>64-bits<span class="_ _11"> </span>for<span class="_ _d"> </span>High-P<span class="_ _3"></span>erformance<span class="_ _d"> </span>Computing<span class="_ _d"> </span>applications<span class="_ _d"> </span>and</div><div class="t m0 x1 hc y91 ff4 fs7 fc0 sc0 ls0 ws0">32-bits<span class="_ _d"> </span>for<span class="_ _d"> </span>phone<span class="_ _d"> </span>and<span class="_ _11"> </span>tablets<span class="_ _d"> </span>applications</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">16/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf13" class="pf w0 h0" data-page-no="13"><div class="pc pc13 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Architecture<span class="_ _1d"> </span>Flags<span class="_ _1f"> </span>2/3</div><div class="t m0 x5 hc y5c ff6 fs7 fc0 sc0 ls0 ws0">-march=<arch><span class="_ _1a"> </span><span class="ff4">Generates<span class="_ _d"> </span>instructions<span class="_ _d"> </span>for<span class="_ _d"> </span>a<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>processor<span class="_ _d"> </span>to<span class="_ _d"> </span>exploit<span class="_ _d"> </span>exclusive</span></div><div class="t m0 x25 hc y68 ff4 fs7 fc0 sc0 ls0 ws0">ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _d"> </span>features.<span class="_ _4"> </span><span class="ffd"><arch><span class="_ _17"> </span></span>represents<span class="_ _d"> </span>the<span class="_ _d"> </span>minimum<span class="_ _11"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re</div><div class="t m0 x25 hc y69 ff4 fs7 fc0 sc0 ls0 ws0">supp<span class="_ _6"></span>o<span class="_ _3"></span>rted<span class="_ _d"> </span>by<span class="_ _d"> </span>the<span class="_ _d"> </span>binaries<span class="_ _d"> </span>(not<span class="_ _d"> </span>p<span class="_ _6"></span>o<span class="_ _3"></span>rtable)</div><div class="t m0 x26 hc y92 ff6 fs7 fc0 sc0 ls0 ws0">-mtune=<tune<span class="_ _9"> </span>arch><span class="_ _1a"> </span><span class="ff4">Specifies<span class="_ _11"> </span>the<span class="_ _d"> </span>target<span class="_ _d"> </span>microa<span class="_ _3"></span>rchitecture.<span class="_ _10"> </span>Generates<span class="_ _11"> </span>optimized<span class="_ _d"> </span>co<span class="_ _6"></span>de</span></div><div class="t m0 x25 hc y93 ff4 fs7 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _11"> </span>a<span class="_ _d"> </span>class<span class="_ _11"> </span>of<span class="_ _d"> </span>processors<span class="_ _d"> </span>without<span class="_ _d"> </span>exploiting<span class="_ _11"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re</div><div class="t m0 x25 hc y94 ff4 fs7 fc0 sc0 ls0 ws0">features.<span class="_ _10"> </span>Bina<span class="_ _3"></span>ries<span class="_ _11"> </span>a<span class="_ _3"></span>re<span class="_ _11"> </span>still<span class="_ _d"> </span>compatibles<span class="_ _11"> </span>with<span class="_ _d"> </span>other<span class="_ _11"> </span>processors,<span class="_ _d"> </span>e.g.</div><div class="t m0 x25 hc y95 ff4 fs7 fc0 sc0 ls0 ws0">ea<span class="_ _3"></span>rlier<span class="_ _11"> </span>CPUs<span class="_ _d"> </span>in<span class="_ _11"> </span>the<span class="_ _d"> </span>architecture<span class="_ _d"> </span>family<span class="_ _d"> </span>(maybe<span class="_ _11"> </span>slow<span class="_ _3"></span>er<span class="_ _d"> </span>than</div><div class="t m0 x27 hc y96 ffd fs7 fc0 sc0 ls0 ws0">-march<span class="_ _c"> </span><span class="ff4">)</span></div><div class="t m0 x20 hc y97 ff6 fs7 fc0 sc0 ls0 ws0">-mcpu=<tune<span class="_ _9"> </span>arch><span class="_ _1a"> </span><span class="ff4">Dep<span class="_ _3"></span>recated<span class="_ _d"> </span>synonym<span class="_ _11"> </span>for<span class="_ _17"> </span><span class="ffd">-mtune<span class="_ _17"> </span></span>fo<span class="_ _3"></span>r<span class="_ _d"> </span><span class="ffd">x86-64<span class="_ _11"> </span></span>processors,<span class="_ _d"> </span>optimizes</span></div><div class="t m0 x25 hc y98 ff4 fs7 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _11"> </span>b<span class="_ _6"></span>oth<span class="_ _d"> </span>a<span class="_ _d"> </span>particula<span class="_ _3"></span>r<span class="_ _d"> </span>architecture<span class="_ _d"> </span>and<span class="_ _d"> </span>microarchitecture<span class="_ _d"> </span>on<span class="_ _d"> </span><span class="ffd">Arm</span></div><div class="t m0 x14 hc y99 ff6 fs7 fc0 sc0 ls0 ws0">-mfpu<fp<span class="_ _9"> </span>hw><span class="_ _1a"> </span><span class="ff4">(Arm)<span class="_ _d"> </span>Optimize<span class="_ _d"> </span>for<span class="_ _d"> </span>a<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>floating-p<span class="_ _6"></span>oint<span class="_ _d"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re</span></div><div class="t m0 x10 hc y9a ff6 fs7 fc0 sc0 ls0 ws0">-m<instr<span class="_ _9"> </span>set><span class="_ _1a"> </span><span class="ff4">(x86-64)<span class="_ _d"> </span>Optimize<span class="_ _d"> </span>for<span class="_ _d"> </span>a<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>instruction<span class="_ _11"> </span>set</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">17/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf14" class="pf w0 h0" data-page-no="14"><div class="pc pc14 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Architecture<span class="_ _1d"> </span>Flags<span class="_ _1f"> </span>3/3</div><div class="t m0 x28 h6 y9b ff6 fs4 fc0 sc0 ls0 ws0"><arch><span class="_ _20"> </span><span class="ffd">armv9-a<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>armv7-a+neon-vfpv4<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>znver4<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>core2<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>skylake</span></div><div class="t m0 x29 h6 y9c ff6 fs4 fc0 sc0 ls0 ws0"><tune<span class="_ _11"> </span>arch><span class="_ _20"> </span><span class="ffd">cortex-a9<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>neoverse-n2<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>generic<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>intel</span></div><div class="t m0 x29 h6 y9d ff6 fs4 fc0 sc0 ls0 ws0"><instr<span class="_ _11"> </span>set><span class="_ _20"> </span><span class="ffd">see2<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>avx512</span></div><div class="t m0 x2a h6 y9e ff6 fs4 fc0 sc0 ls0 ws0"><fp<span class="_ _11"> </span>hw><span class="_ _20"> </span><span class="ffd">neon<span class="_ _c"> </span><span class="ff4">,<span class="_ _1b"> </span></span>neon-fp-armv8</span></div><div class="t m0 x10 hc y9f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _1a"> </span><span class="ff6"><tune<span class="_ _11"> </span>arch><span class="_ _17"> </span><span class="ff4">should<span class="_ _11"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>alw<span class="_ _3"></span>ays<span class="_ _d"> </span>greater<span class="_ _d"> </span>than<span class="_ _17"> </span><span class="ff6"><arch></span></span></span></div><div class="t m0 x10 hc ya0 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">In<span class="_ _d"> </span>general,<span class="_ _17"> </span><span class="ff6">-mtune<span class="_ _17"> </span></span>is<span class="_ _11"> </span>set<span class="_ _d"> </span>to<span class="_ _17"> </span><span class="ffd">generic<span class="_ _17"> </span></span>if<span class="_ _11"> </span>not<span class="_ _d"> </span>sp<span class="_ _6"></span>ecified</span></div><div class="t m0 x10 hc ya1 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _1a"> </span><span class="ff6">-march=native<span class="_ _21"> </span><span class="ff4">,<span class="_ _17"> </span></span>-mtune=native<span class="_ _21"> </span><span class="ff4">,<span class="_ _17"> </span></span>-mcpu=native<span class="_ _c"> </span><span class="ff4">:<span class="_ _10"> </span>Allo<span class="_ _3"></span>ws<span class="_ _11"> </span>the<span class="_ _d"> </span>compiler<span class="_ _11"> </span>to</span></span></div><div class="t m0 x6 hc ya2 ff4 fs7 fc0 sc0 ls0 ws0">determine<span class="_ _d"> </span>the<span class="_ _11"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cesso<span class="_ _3"></span>r<span class="_ _11"> </span>type<span class="_ _d"> </span>(not<span class="_ _11"> </span>alwa<span class="_ _3"></span>ys<span class="_ _d"> </span>accurate)</div><div class="t m0 x10 hc ya3 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Esp<span class="_ _6"></span>ecially<span class="_ _d"> </span>with<span class="_ _d"> </span>new<span class="_ _11"> </span>compilers,<span class="_ _d"> </span>prefer<span class="_ _d"> </span><span class="ff1">auto-vectorization<span class="_ _d"> </span></span>to<span class="_ _d"> </span>explicit<span class="_ _11"> </span>vecto<span class="_ _3"></span>r</span></div><div class="t m0 x6 hc ya4 ff4 fs7 fc0 sc0 ls0 ws0">intrinsics</div><div class="t m0 x12 hd ya5 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">GCC<span class="_ _a"> </span>Arm<span class="_ _10"> </span>options<span class="fff">,<span class="_ _21"> </span></span>GCC<span class="_ _10"> </span>X86-64<span class="_ _a"> </span>options</span></div><div class="t m0 x12 hd ya6 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Compiler<span class="_ _a"> </span>flags<span class="_ _10"> </span>across<span class="_ _a"> </span>architectures:<span class="_ _12"> </span>-march,<span class="_ _a"> </span>-mtune,<span class="_ _10"> </span>and<span class="_ _a"> </span>-mcpu</span></div><div class="t m0 x12 hd ya7 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">NVIDIA<span class="_ _a"> </span>Grace<span class="_ _10"> </span>CPU<span class="_ _a"> </span>Benchmarking<span class="_ _a"> </span>Guide,<span class="_ _10"> </span>Arm<span class="_ _a"> </span>Vector<span class="_ _a"> </span>Instructions:<span class="_ _12"> </span>SVE<span class="_ _10"> </span>and<span class="_ _a"> </span>NEON</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">18/76</div><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:25.386000px;width:72.603000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html"><div class="d m1" style="border-style:none;position:absolute;left:125.410000px;bottom:25.386000px;width:86.725000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/compiler-flags-across-architectures-march-mtune-and-mcpu"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:12.783000px;width:298.555000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://nvidia.github.io/grace-cpu-benchmarking-guide/developer/vectorization.html"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:0.180000px;width:355.043000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf15" class="pf w0 h0" data-page-no="15"><div class="pc pc15 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Help<span class="_ _1d"> </span>the<span class="_ _1d"> </span>Compiler<span class="_ _1d"> </span>to<span class="_ _a"> </span>Pro<span class="_ _6"></span>duce<span class="_ _1d"> </span>Better<span class="_ _1d"> </span>Co<span class="_ _6"></span>de</div><div class="t m0 x10 hc ya8 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Grouping<span class="_ _d"> </span>va<span class="_ _3"></span>riables<span class="_ _d"> </span>and<span class="_ _d"> </span>functions<span class="_ _c"> </span>related<span class="_ _d"> </span>to<span class="_ _d"> </span>each<span class="_ _d"> </span>other<span class="_ _d"> </span>in<span class="_ _c"> </span>the<span class="_ _d"> </span>same<span class="_ _d"> </span>translation<span class="_ _d"> </span>unit</span></div><div class="t m0 x10 hc ya9 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Define<span class="_ _d"> </span><span class="ffc">global<span class="_ _11"> </span>variables<span class="_ _9"> </span></span>and<span class="_ _11"> </span><span class="ffc">functions<span class="_ _a"> </span></span>in<span class="_ _d"> </span>the<span class="_ _11"> </span>translation<span class="_ _d"> </span>unit<span class="_ _11"> </span>in<span class="_ _d"> </span>which<span class="_ _11"> </span>they<span class="_ _d"> </span>are</span></div><div class="t m0 x6 hc yaa ff4 fs7 fc0 sc0 ls0 ws0">used<span class="_ _d"> </span>more<span class="_ _d"> </span>often</div><div class="t m0 x10 hc yab ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Global<span class="_ _d"> </span>variables<span class="_ _1d"> </span><span class="ff4">and<span class="_ _d"> </span>functions<span class="_ _11"> </span>that<span class="_ _d"> </span>are<span class="_ _d"> </span>not<span class="_ _d"> </span>used<span class="_ _11"> </span>by<span class="_ _d"> </span>other<span class="_ _d"> </span>translation<span class="_ _d"> </span>units<span class="_ _11"> </span>should</span></span></div><div class="t m0 x6 hc yac ff4 fs7 fc0 sc0 ls0 ws0">have<span class="_ _d"> </span><span class="ffc">internal<span class="_ _11"> </span>linkage<span class="_ _9"> </span></span>(<span class="ffc">anonymous<span class="_ _11"> </span>namespace<span class="_ _6"></span></span>/<span class="_ _c"> </span><span class="ffd">static<span class="_ _17"> </span></span>function)</div><div class="t m0 x1 hc yad ff1 fs7 fc0 sc0 ls0 ws0">Static<span class="_ _11"> </span>libra<span class="_ _3"></span>ry<span class="_ _9"> </span>linking<span class="_ _11"> </span>helps<span class="_ _9"> </span>the<span class="_ _9"> </span>linker<span class="_ _11"> </span>to<span class="_ _9"> </span>optimize<span class="_ _9"> </span>the<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _9"> </span>across<span class="_ _9"> </span>different</div><div class="t m0 x1 hc yae ff1 fs7 fc0 sc0 ls0 ws0">mo<span class="_ _6"></span>dules<span class="_ _11"> </span>(link-time<span class="_ _9"> </span>optimizations).<span class="_ _10"> </span><span class="ff4">Dynamic<span class="_ _d"> </span>linking<span class="_ _11"> </span>p<span class="_ _3"></span>revents<span class="_ _11"> </span>these<span class="_ _d"> </span>kinds<span class="_ _11"> </span>of</span></div><div class="t m0 x1 hc yaf ff4 fs7 fc0 sc0 ls0 ws0">optimizations</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">19/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf16" class="pf w0 h0" data-page-no="16"><div class="pc pc16 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Profile<span class="_ _1d"> </span>Guided<span class="_ _1d"> </span>Optimization<span class="_ _1d"> </span>(PGO)<span class="_ _22"> </span>1/2</div><div class="t m0 x1 hc yb0 ff1 fs7 fc0 sc0 ls0 ws0">Profile<span class="_ _11"> </span>Guided<span class="_ _9"> </span>Optimization<span class="_ _9"> </span>(PGO)<span class="_ _11"> </span><span class="ff4">is<span class="_ _d"> </span>a<span class="_ _11"> </span>compiler<span class="_ _d"> </span>technique<span class="_ _11"> </span>aims<span class="_ _d"> </span>at<span class="_ _11"> </span>improving<span class="_ _d"> </span>the</span></div><div class="t m0 x1 hc yb1 ff4 fs7 fc0 sc0 ls0 ws0">application<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>b<span class="_ _3"></span>y<span class="_ _11"> </span>reducing<span class="_ _d"> </span>instruction-cache<span class="_ _11"> </span>problems,<span class="_ _d"> </span>reducing<span class="_ _d"> </span>branch</div><div class="t m0 x1 hc yb2 ff4 fs7 fc0 sc0 ls0 ws0">misp<span class="_ _3"></span>redictions,<span class="_ _11"> </span>etc.<span class="_ _10"> </span><span class="ffc">PGO<span class="_ _d"> </span>provides<span class="_ _d"> </span>info<span class="_ _3"></span>rmation<span class="_ _11"> </span>to<span class="_ _d"> </span>the<span class="_ _11"> </span>compiler<span class="_ _d"> </span>ab<span class="_ _6"></span>out<span class="_ _d"> </span>areas<span class="_ _d"> </span>of<span class="_ _d"> </span>an</span></div><div class="t m0 x1 hc yb3 ffc fs7 fc0 sc0 ls0 ws0">application<span class="_ _d"> </span>that<span class="_ _11"> </span>a<span class="_ _3"></span>re<span class="_ _11"> </span>most<span class="_ _d"> </span>frequently<span class="_ _11"> </span>executed</div><div class="t m0 x1 hc yb4 ff4 fs7 fc0 sc0 ls0 ws0">It<span class="_ _d"> </span>consists<span class="_ _11"> </span>in<span class="_ _d"> </span>the<span class="_ _11"> </span>followin<span class="_ _3"></span>g<span class="_ _11"> </span>steps:</div><div class="t m0 x2b hc yb5 ff1 fs7 fc0 sc0 ls0 ws0">(1)<span class="_ _7"> </span><span class="ff4">Compile<span class="_ _d"> </span>and<span class="_ _11"> </span><span class="ffc">instrument<span class="_ _1d"> </span></span>the<span class="_ _11"> </span>co<span class="_ _6"></span>de</span></div><div class="t m0 x2b hc yb6 ff1 fs7 fc0 sc0 ls0 ws0">(2)<span class="_ _7"> </span><span class="ffc">R<span class="_ _3"></span>un<span class="_ _9"> </span><span class="ff4">the<span class="_ _d"> </span>program<span class="_ _d"> </span>b<span class="_ _3"></span>y<span class="_ _11"> </span>exercising<span class="_ _d"> </span>the<span class="_ _11"> </span>most<span class="_ _d"> </span>used/critical<span class="_ _11"> </span>paths</span></span></div><div class="t m0 x2b hc yb7 ff1 fs7 fc0 sc0 ls0 ws0">(3)<span class="_ _7"> </span><span class="ffc">Compile<span class="_ _d"> </span>again<span class="_ _11"> </span><span class="ff4">the<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>and<span class="_ _11"> </span>exploit<span class="_ _d"> </span>the<span class="_ _11"> </span>info<span class="_ _3"></span>rmation<span class="_ _11"> </span>produced<span class="_ _d"> </span>in<span class="_ _11"> </span>the<span class="_ _d"> </span>previous<span class="_ _d"> </span>step</span></span></div><div class="t m0 x1 hc yb8 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>particula<span class="_ _3"></span>r<span class="_ _d"> </span>options<span class="_ _11"> </span>to<span class="_ _d"> </span>instrument<span class="_ _11"> </span>and<span class="_ _d"> </span>compile<span class="_ _11"> </span>the<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>are<span class="_ _d"> </span>compiler<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">20/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf17" class="pf w0 h0" data-page-no="17"><div class="pc pc17 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Profile<span class="_ _1d"> </span>Guided<span class="_ _1d"> </span>Optimization<span class="_ _1d"> </span>(PGO)<span class="_ _22"> </span>2/2</div><div class="t m0 x1 hc yb9 ff1 fs7 fc0 sc0 ls0 ws0">GCC</div><div class="t m0 x10 ha yba ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">gcc<span class="_ _a"> </span><span class="fc4">-fprofile-generate<span class="_ _10"> </span></span>my_prog.c<span class="_ _a"> </span>my_prog<span class="_ _10"> </span><span class="fc9">#<span class="_ _a"> </span>program<span class="_ _a"> </span>instrumentation</span></span></div><div class="t m0 x10 ha ybb ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">.<span class="fc5">/</span>my_prog<span class="_ _a"> </span><span class="fc9">#<span class="_ _10"> </span>run<span class="_ _a"> </span>the<span class="_ _10"> </span>program<span class="_ _a"> </span>(most<span class="_ _a"> </span>critial/common<span class="_ _10"> </span>path)</span></span></div><div class="t m0 x10 ha ybc ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">gcc<span class="_ _a"> </span><span class="fc4">-fprofile-use<span class="_ _10"> </span><span class="fc5">-</span></span>O3<span class="_ _a"> </span>my_prog.c<span class="_ _10"> </span>my_prog<span class="_ _12"> </span><span class="fc9">#<span class="_ _a"> </span>use<span class="_ _a"> </span>instrumentation<span class="_ _10"> </span>info</span></span></div><div class="t m0 x1 hc ybd ff1 fs7 fc0 sc0 ls0 ws0">Clang</div><div class="t m0 x10 ha ybe ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">clang<span class="fc5">++<span class="_ _a"> </span><span class="fc4">-fprofile-instr-generate<span class="_ _10"> </span></span></span>my_prog.c<span class="_ _a"> </span>my_prog</span></div><div class="t m0 x10 ha ybf ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">.<span class="fc5">/</span>my_prog</span></div><div class="t m0 x10 ha yc0 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">xcrun<span class="_ _a"> </span>llvm<span class="fc5">-</span>profdata<span class="_ _10"> </span>merge<span class="_ _a"> </span><span class="fc5">-</span>output<span class="_ _10"> </span>default.profdata<span class="_ _a"> </span>default.profraw</span></div><div class="t m0 x10 ha yc1 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">clang<span class="fc5">++<span class="_ _a"> </span><span class="fc4">-fprofile-instr-use=</span></span>default.profdata<span class="_ _10"> </span><span class="fc5">-</span>O3<span class="_ _a"> </span>my_prog.c<span class="_ _10"> </span>my_prog</span></div><div class="t m0 x10 hd yc2 fff fs6 fc7 sc0 ls0 ws0"><span class="fca sc0">e.g.</span><span class="_ _9"> </span><span class="fca sc0">Firefo</span><span class="fca sc0">x</span><span class="_ _21"> </span><span class="fca sc0">and</span><span class="_ _c"> </span><span class="fca sc0">Go</span><span class="_ _6"></span><span class="fca sc0">ogle</span><span class="_ _21"> </span><span class="fca sc0">Chrome</span><span class="_ _c"> </span><span class="fca sc0">supp</span><span class="_ _6"></span><span class="fca sc0">o</span><span class="_ _3"></span><span class="fca sc0">rt</span><span class="_ _c"> </span><span class="fca sc0">PGO</span><span class="_ _c"> </span><span class="fca sc0">building</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">21/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf18" class="pf w0 h0" data-page-no="18"><div class="pc pc18 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">PGO,<span class="_ _1d"> </span>L<span class="_ _8"></span>TO<span class="_ _1d"> </span>P<span class="_ _3"></span>erformance</div><div class="t m0 x17 he yc3 ffd fs7 fc0 sc0 ls0 ws0">SPEC<span class="_ _16"> </span>2017<span class="_ _16"> </span>built<span class="_ _16"> </span>with<span class="_ _16"> </span>GCC<span class="_ _16"> </span>10.2<span class="_ _16"> </span>and<span class="_ _16"> </span>-O2</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">22/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf19" class="pf w0 h0" data-page-no="19"><div class="pc pc19 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ost-Pro<span class="_ _6"></span>cessing<span class="_ _1d"> </span>Bina<span class="_ _3"></span>ry<span class="_ _a"> </span>Optimizer<span class="_ _1c"> </span>1/2</div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>lay<span class="_ _3"></span>out<span class="_ _d"> </span>in<span class="_ _11"> </span>the<span class="_ _d"> </span>final<span class="_ _11"> </span>binary<span class="_ _d"> </span>can<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>further<span class="_ _d"> </span>optimized<span class="_ _11"> </span>with<span class="_ _d"> </span>a<span class="_ _11"> </span><span class="ff1">p<span class="_ _6"></span>ost-link<span class="_ _11"> </span>binary</span></div><div class="t m0 x1 hc y72 ff1 fs7 fc0 sc0 ls0 ws0">optimizer<span class="_ _11"> </span><span class="ff4">and<span class="_ _d"> </span></span>lay<span class="_ _3"></span>out<span class="_ _11"> </span>optimization<span class="_ _11"> </span><span class="ff4">like<span class="_ _d"> </span><span class="ffd">BOLT<span class="_ _d"> </span></span>or<span class="_ _d"> </span><span class="ffd">Propeller<span class="_ _d"> </span></span>(sampling<span class="_ _d"> </span>or</span></div><div class="t m0 x1 hc yc4 ff4 fs7 fc0 sc0 ls0 ws0">instrumentation<span class="_ _d"> </span>profile)</div><div class="t m0 x10 ha yc5 ff9 fs6 fc7 sc0 ls0 ws0">BOLT:<span class="_ _a"> </span>A<span class="_ _a"> </span>Practical<span class="_ _10"> </span>Binary<span class="_ _a"> </span>Optimizer<span class="_ _10"> </span>for<span class="_ _a"> </span>Data<span class="_ _a"> </span>Centers<span class="_ _10"> </span>and<span class="_ _a"> </span>Beyond</div><div class="t m0 x5 ha yc6 ff9 fs6 fc7 sc0 ls0 ws0">BOLT<span class="_ _a"> </span>optimization<span class="_ _a"> </span>technology<span class="_ _10"> </span>could<span class="_ _a"> </span>bring<span class="_ _10"> </span>obvious<span class="_ _a"> </span>performance<span class="_ _a"> </span>uplift<span class="_ _10"> </span>on<span class="_ _a"> </span>arm<span class="_ _10"> </span>server</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">23/76</div><a class="l" href="https://github.com/facebookincubator/BOLT"><div class="d m1" style="border-style:none;position:absolute;left:215.658000px;bottom:187.869000px;width:24.902000px;height:12.901000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/google/llvm-propeller"><div class="d m1" style="border-style:none;position:absolute;left:254.719000px;bottom:187.869000px;width:53.537000px;height:12.901000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.facebook.com/publications/bolt-a-practical-binary-optimizer-for-data-centers-and-beyond/"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:19.145000px;width:293.848000px;height:11.657000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/bolt-optimization-technology"><div class="d m1" style="border-style:none;position:absolute;left:34.324000px;bottom:4.754000px;width:383.287000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1a" class="pf w0 h0" data-page-no="1a"><div class="pc pc1a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ost-Pro<span class="_ _6"></span>cessing<span class="_ _1d"> </span>Bina<span class="_ _3"></span>ry<span class="_ _a"> </span>Optimizer<span class="_ _1c"> </span>2/2</div><div class="t m0 x10 ha yc7 ff9 fs6 fc7 sc0 ls0 ws0">The<span class="_ _a"> </span>many<span class="_ _a"> </span>faces<span class="_ _10"> </span>of<span class="_ _a"> </span>LLVM<span class="_ _10"> </span>PGO<span class="_ _a"> </span>and<span class="_ _a"> </span>FDO</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">24/76</div><a class="l" href="https://aaupov.github.io/blog/2023/07/09/pgo"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:3.022000px;width:162.043000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1b" class="pf w0 h0" data-page-no="1b"><div class="pc pc1b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>olyhedral<span class="_ _1d"> </span>Optimizations</div><div class="t m0 x1 hc yc8 ff1 fs7 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>olyhedral<span class="_ _9"> </span>optimization<span class="_ _d"> </span><span class="ff4">is<span class="_ _11"> </span>a<span class="_ _11"> </span>compilation<span class="_ _d"> </span>technique<span class="_ _11"> </span>that</span></div><div class="t m0 x1 hc yc9 ff4 fs7 fc0 sc0 ls0 ws0">rely<span class="_ _d"> </span>on<span class="_ _11"> </span>the<span class="_ _d"> </span>representation<span class="_ _d"> </span>of<span class="_ _d"> </span>programs,<span class="_ _d"> </span>esp<span class="_ _6"></span>ecially<span class="_ _d"> </span>those<span class="_ _d"> </span>involving</div><div class="t m0 x1 hc yca ff4 fs7 fc0 sc0 ls0 ws0">nested<span class="_ _d"> </span>lo<span class="_ _6"></span>ops<span class="_ _d"> </span>and<span class="_ _11"> </span>a<span class="_ _3"></span>rrays,<span class="_ _d"> </span>in<span class="_ _d"> </span><span class="ffc">parametric<span class="_ _d"> </span>p<span class="_ _6"></span>olyhedra</span>.<span class="_ _a"> </span>Thanks<span class="_ _11"> </span>to</div><div class="t m0 x1 hc ycb ff4 fs7 fc0 sc0 ls0 ws0">combinato<span class="_ _3"></span>rial<span class="_ _11"> </span>and<span class="_ _d"> </span>geometrical<span class="_ _11"> </span>optimizations<span class="_ _d"> </span>on<span class="_ _11"> </span>these<span class="_ _d"> </span>objects,<span class="_ _11"> </span>the</div><div class="t m0 x1 hc ycc ff4 fs7 fc0 sc0 ls0 ws0">compiler<span class="_ _d"> </span>is<span class="_ _11"> </span>able<span class="_ _d"> </span>to<span class="_ _11"> </span>analyze<span class="_ _d"> </span>and<span class="_ _11"> </span>optimize<span class="_ _d"> </span>the<span class="_ _11"> </span>programs<span class="_ _d"> </span>including<span class="_ _d"> </span><span class="ffc">automatic</span></div><div class="t m0 x1 hc ycd ffc fs7 fc0 sc0 ls0 ws0">pa<span class="_ _3"></span>rallelization<span class="ff4">,<span class="_ _11"> </span></span>data<span class="_ _d"> </span>lo<span class="_ _6"></span>calit<span class="_ _3"></span>y<span class="ff4">,<span class="_ _11"> </span></span>memory<span class="_ _d"> </span>management<span class="ff4">,<span class="_ _d"> </span></span>SIMD<span class="_ _d"> </span>instructions<span class="ff4">,<span class="_ _11"> </span>and<span class="_ _11"> </span></span>co<span class="_ _6"></span>de</div><div class="t m0 x1 hc yce ffc fs7 fc0 sc0 ls0 ws0">generation<span class="_ _d"> </span>for<span class="_ _d"> </span>ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _d"> </span>accelerators</div><div class="t m0 x1 hc ycf ff6 fs7 fc0 sc0 ls0 ws0">Polly<span class="_ _21"> </span><span class="ff11 fs8"><span class="_ _11"> </span></span><span class="ff4">is<span class="_ _d"> </span>a<span class="_ _11"> </span>high-level<span class="_ _d"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>and<span class="_ _d"> </span>data-lo<span class="_ _6"></span>cality<span class="_ _c"> </span>optimizer<span class="_ _11"> </span>and<span class="_ _d"> </span>optimization<span class="_ _11"> </span>infrastructure</span></div><div class="t m0 x1 hc yd0 ff4 fs7 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _11"> </span>LL<span class="_ _5"></span>VM</div><div class="t m0 x1 hc yd1 ff6 fs7 fc0 sc0 ls0 ws0">PLUTO<span class="_ _21"> </span><span class="ff11 fs8"><span class="_ _11"> </span></span><span class="ff4">is<span class="_ _11"> </span>an<span class="_ _d"> </span>automatic<span class="_ _11"> </span>pa<span class="_ _3"></span>rallelization<span class="_ _11"> </span>to<span class="_ _6"></span>ol<span class="_ _d"> </span>based<span class="_ _d"> </span>on<span class="_ _11"> </span>the<span class="_ _11"> </span>p<span class="_ _6"></span>olyhedral<span class="_ _d"> </span>mo<span class="_ _6"></span>del</span></div><div class="t m0 x10 hd yd2 fff fs6 fc7 sc0 ls0 ws0">see<span class="_ _c"> </span>also<span class="_ _21"> </span><span class="ff9">Using<span class="_ _10"> </span>Polly<span class="_ _a"> </span>with<span class="_ _10"> </span>Clang</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">25/76</div><a class="l" href="https://polly.llvm.org/"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:80.557000px;width:30.629000px;height:12.694000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://pluto-compiler.sourceforge.net/"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:43.939000px;width:30.629000px;height:12.694000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://polly.llvm.org/docs/UsingPollyWithClang.html"><div class="d m1" style="border-style:none;position:absolute;left:67.359000px;bottom:2.599000px;width:105.553000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1c" class="pf w0 h0" data-page-no="1c"><div class="pc pc1c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 yd3 ff1 fs0 fc0 sc0 ls0 ws0">Compiler</div><div class="t m0 x8 h2 yd4 ff1 fs0 fc0 sc0 ls0 ws0">T<span class="_ _23"></span>ransfo<span class="_ _8"></span>rmation</div><div class="t m0 x8 h2 yd5 ff1 fs0 fc0 sc0 ls0 ws0">T<span class="_ _23"></span>echniques</div><a class="l" href="#pf1c" data-dest-detail='[28,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:166.803000px;width:241.993000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1c" data-dest-detail='[28,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:137.252000px;width:241.993000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1c" data-dest-detail='[28,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:98.061000px;width:127.771000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1d" class="pf w0 h0" data-page-no="1d"><div class="pc pc1d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Help<span class="_ _1d"> </span>the<span class="_ _1d"> </span>Compiler<span class="_ _1d"> </span>to<span class="_ _a"> </span>Pro<span class="_ _6"></span>duce<span class="_ _1d"> </span>Better<span class="_ _1d"> </span>Co<span class="_ _6"></span>de</div><div class="t m0 x1 hc yd6 ff1 fs7 fc0 sc0 ls0 ws0">Overview<span class="_ _11"> </span>on<span class="_ _9"> </span>compiler<span class="_ _9"> </span>co<span class="_ _6"></span>de<span class="_ _9"> </span>generation<span class="_ _11"> </span>and<span class="_ _9"> </span>transformation:</div><div class="t m0 x10 hc yd7 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Optimizations<span class="_ _16"> </span>in<span class="_ _16"> </span>C++<span class="_ _16"> </span>Compilers</span></div><div class="t m0 x11 hc yd8 ffc fs7 fc0 sc0 ls0 ws0">Matt<span class="_ _d"> </span>Go<span class="_ _6"></span>db<span class="_ _6"></span>olt<span class="ff4">,<span class="_ _d"> </span></span>A<span class="_ _3"></span>CM<span class="_ _11"> </span>Queue</div><div class="t m0 x10 hc yd9 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Compiler<span class="_ _16"> </span>Optimizations</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">26/76</div><a class="l" href="https://dl.acm.org/ft_gateway.cfm?id=3372264&ftid=2096683&dwn=1"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:125.404000px;width:173.811000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://compileroptimizations.com/category/address_optimization.htm"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:87.267000px;width:127.993000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1e" class="pf w0 h0" data-page-no="1e"><div class="pc pc1e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Basic<span class="_ _1d"> </span>Compiler<span class="_ _1d"> </span>T<span class="_ _8"></span>ransfo<span class="_ _3"></span>rmations<span class="_ _24"> </span>1/3</div><div class="t m0 x10 hc y5c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Constant<span class="_ _9"> </span>folding<span class="ff4">.<span class="_ _a"> </span>Direct<span class="_ _11"> </span>evaluation<span class="_ _11"> </span>constant<span class="_ _d"> </span>expressions<span class="_ _d"> </span>at<span class="_ _d"> </span>compile-time</span></span></div><div class="t m0 x2c ha yda ff6 fs6 fc6 sc0 ls0 ws0">const<span class="_ _a"> </span><span class="fc3">int<span class="_ _a"> </span><span class="ff9 fc0">K<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span>100<span class="_ _10"> </span>*<span class="_ _a"> </span>1234<span class="_ _a"> </span>/<span class="_ _10"> </span>2</span>;</span></span></div><div class="t m0 x10 hc ydb ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Constant<span class="_ _9"> </span>p<span class="_ _3"></span>ropagation<span class="ff4">.<span class="_ _10"> </span>Substituting<span class="_ _d"> </span>the<span class="_ _11"> </span>values<span class="_ _d"> </span>of<span class="_ _11"> </span>known<span class="_ _d"> </span>constants<span class="_ _d"> </span>in</span></span></div><div class="t m0 x6 hc ydc ff4 fs7 fc0 sc0 ls0 ws0">exp<span class="_ _3"></span>ressions<span class="_ _11"> </span>at<span class="_ _d"> </span>compile-time</div><div class="t m0 x2c ha ydd ff6 fs6 fc6 sc0 ls0 ws0">const<span class="_ _a"> </span><span class="fc3">int<span class="_ _a"> </span><span class="ff9 fc0">K<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span>100<span class="_ _10"> </span>*<span class="_ _a"> </span>1234<span class="_ _a"> </span>/<span class="_ _10"> </span>2</span>;</span></span></div><div class="t m0 x2c ha yde ff6 fs6 fc6 sc0 ls0 ws0">const<span class="_ _a"> </span><span class="fc3">int<span class="_ _a"> </span><span class="ff9 fc0">J<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span></span>K<span class="_ _10"> </span><span class="fc5">*<span class="_ _a"> </span>25</span>;</span></span></div><div class="t m0 x10 hc ydf ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Common<span class="_ _9"> </span>sub<span class="_ _6"></span>exp<span class="_ _3"></span>ression<span class="_ _11"> </span>elimination<span class="_ _6"></span><span class="ff4">.<span class="_ _a"> </span>Avoid<span class="_ _c"> </span>computing<span class="_ _11"> </span>identical<span class="_ _11"> </span>and<span class="_ _d"> </span>redundant</span></span></div><div class="t m0 x6 hc ye0 ff4 fs7 fc0 sc0 ls0 ws0">exp<span class="_ _3"></span>ressions</div><div class="t m0 x2c ha ye1 ff6 fs6 fc3 sc0 ls0 ws0">int<span class="_ _a"> </span><span class="ff9 fc0">x<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span></span>y<span class="_ _a"> </span><span class="fc5">*<span class="_ _10"> </span></span>z<span class="_ _a"> </span><span class="fc5">+<span class="_ _a"> </span></span>v;</span></div><div class="t m0 x2c ha ye2 ff6 fs6 fc3 sc0 ls0 ws0">int<span class="_ _a"> </span><span class="ff9 fc0">y<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span></span>y<span class="_ _a"> </span><span class="fc5">*<span class="_ _10"> </span></span>z<span class="_ _a"> </span><span class="fc5">+<span class="_ _a"> </span></span>k;<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>y<span class="_ _10"> </span>*<span class="_ _a"> </span>z<span class="_ _a"> </span>is<span class="_ _10"> </span>redundant</span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">27/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf1f" class="pf w0 h0" data-page-no="1f"><div class="pc pc1f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1d"> </span>T<span class="_ _8"></span>ransfo<span class="_ _3"></span>rmations<span class="_ _25"> </span>2/3</div><div class="t m0 x10 hc y5c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Induction<span class="_ _9"> </span>va<span class="_ _3"></span>riable<span class="_ _9"> </span>elimination<span class="ff4">.<span class="_ _10"> </span>Eliminate<span class="_ _d"> </span>variables<span class="_ _d"> </span>whose<span class="_ _d"> </span>values<span class="_ _11"> </span>a<span class="_ _3"></span>re<span class="_ _11"> </span>dep<span class="_ _6"></span>endent</span></span></div><div class="t m0 x6 hc y68 ff4 fs7 fc0 sc0 ls0 ws0">(induction)</div><div class="t m0 x2c ha ye3 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(</span><span class="fc3">int<span class="_ _a"> </span><span class="ff9 fc0">i<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;<span class="_ _10"> </span>i<span class="_ _a"> </span><span class="fc5"><<span class="_ _a"> </span>10</span>;<span class="_ _10"> </span>i<span class="fc5">++</span>)</span></span></div><div class="t m0 x15 ha ye4 ff9 fs6 fc0 sc0 ls0 ws0">x<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>i<span class="_ _10"> </span><span class="fc5">*<span class="_ _a"> </span>8</span>;</div><div class="t m0 x2c ha ye5 ff8 fs6 fcb sc0 ls0 ws0">//<span class="_ _a"> </span>"x"<span class="_ _a"> </span>can<span class="_ _10"> </span>be<span class="_ _a"> </span>derived<span class="_ _10"> </span>by<span class="_ _a"> </span>knowing<span class="_ _a"> </span>the<span class="_ _10"> </span>value<span class="_ _a"> </span>of<span class="_ _10"> </span>"i"</div><div class="t m0 x10 hc ye6 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Dead<span class="_ _9"> </span>co<span class="_ _6"></span>de<span class="_ _11"> </span>elimination<span class="ff4">.<span class="_ _10"> </span>Elimination<span class="_ _d"> </span>of<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>which<span class="_ _d"> </span>is<span class="_ _11"> </span>executed<span class="_ _11"> </span>but<span class="_ _d"> </span>whose<span class="_ _11"> </span>result</span></span></div><div class="t m0 x6 hc ye7 ff4 fs7 fc0 sc0 ls0 ws0">is<span class="_ _d"> </span>never<span class="_ _11"> </span>used,<span class="_ _d"> </span>e.g.<span class="_ _10"> </span>dead<span class="_ _11"> </span>sto<span class="_ _3"></span>re</div><div class="t m0 x2c ha ye8 ff6 fs6 fc3 sc0 ls0 ws0">int<span class="_ _a"> </span><span class="ff9 fc0">a<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span></span>b<span class="_ _a"> </span><span class="fc5">*<span class="_ _10"> </span></span>c;</span></div><div class="t m0 x2c ha ye9 ff9 fs6 fc0 sc0 ls0 ws0">...<span class="_ _a"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>"a"<span class="_ _10"> </span>is<span class="_ _a"> </span>never<span class="_ _10"> </span>used,<span class="_ _a"> </span>"b<span class="_ _a"> </span>*<span class="_ _10"> </span>c"<span class="_ _a"> </span>is<span class="_ _10"> </span>not<span class="_ _a"> </span>computed</span></div><div class="t m0 x6 hc yea ffc fs7 fc0 sc0 ls0 ws0">Unreachable<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>elimination<span class="_ _11"> </span><span class="ff4">instead<span class="_ _11"> </span>involves<span class="_ _d"> </span>removing<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>that<span class="_ _d"> </span>is<span class="_ _11"> </span>never</span></div><div class="t m0 x6 hc yeb ff4 fs7 fc0 sc0 ls0 ws0">executed</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">28/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf20" class="pf w0 h0" data-page-no="20"><div class="pc pc20 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1d"> </span>T<span class="_ _8"></span>ransfo<span class="_ _3"></span>rmations<span class="_ _25"> </span>3/3</div><div class="t m0 x10 hc yec ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Use-define<span class="_ _9"> </span>chain<span class="ff4">.<span class="_ _a"> </span>Avoid<span class="_ _d"> </span>computations<span class="_ _d"> </span>related<span class="_ _11"> </span>to<span class="_ _11"> </span>a<span class="_ _d"> </span>variable<span class="_ _d"> </span>that<span class="_ _d"> </span>happ<span class="_ _6"></span>en<span class="_ _d"> </span>b<span class="_ _6"></span>efo<span class="_ _3"></span>re</span></span></div><div class="t m0 x6 hc yed ff4 fs7 fc0 sc0 ls0 ws0">its<span class="_ _d"> </span>definition</div><div class="t m0 x2c ha yee ff9 fs6 fc0 sc0 ls0 ws0">x<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>i<span class="_ _10"> </span><span class="fc5">*<span class="_ _a"> </span></span>k<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>l;</div><div class="t m0 x2c ha yef ff9 fs6 fc0 sc0 ls0 ws0">x<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>32</span>;<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>"i<span class="_ _10"> </span>*<span class="_ _a"> </span>k<span class="_ _a"> </span>+<span class="_ _10"> </span>l"<span class="_ _a"> </span>is<span class="_ _10"> </span>not<span class="_ _a"> </span>needed</span></div><div class="t m0 x10 hc yf0 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">P<span class="_ _3"></span>eephole<span class="_ _9"> </span>optimization<span class="ff4">.<span class="_ _10"> </span>Replace<span class="_ _d"> </span>a<span class="_ _11"> </span>small<span class="_ _d"> </span>set<span class="_ _11"> </span>of<span class="_ _11"> </span>lo<span class="_ _3"></span>w-level<span class="_ _11"> </span>instructions<span class="_ _d"> </span>with<span class="_ _11"> </span>a</span></span></div><div class="t m0 x6 hc yf1 ff4 fs7 fc0 sc0 ls0 ws0">faster<span class="_ _d"> </span>sequence<span class="_ _11"> </span>of<span class="_ _d"> </span>instructions<span class="_ _11"> </span>with<span class="_ _d"> </span>b<span class="_ _6"></span>etter<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>and<span class="_ _d"> </span>the<span class="_ _11"> </span>same<span class="_ _11"> </span>semantic.</div><div class="t m0 x6 hc yf2 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>optimization<span class="_ _11"> </span>can<span class="_ _d"> </span>involve<span class="_ _11"> </span>pattern<span class="_ _d"> </span>matching</div><div class="t m0 x2c ha yf3 ff9 fs6 fc0 sc0 ls0 ws0">imul<span class="_ _26"> </span>eax<span class="fc5">,<span class="_ _a"> </span></span>eax<span class="fc5">,<span class="_ _a"> </span>8<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>a<span class="_ _10"> </span>*<span class="_ _a"> </span>8</span></span></div><div class="t m0 x2c ha yf4 ff9 fs6 fc0 sc0 ls0 ws0">sal<span class="_ _27"> </span>eax<span class="fc5">,<span class="_ _a"> </span>3<span class="_ _28"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>a<span class="_ _a"> </span><<<span class="_ _10"> </span>3<span class="_ _a"> </span>(shift)</span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">29/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf21" class="pf w0 h0" data-page-no="21"><div class="pc pc21 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _9"> </span>Unswitching</div><div class="t m0 x10 hc yf5 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Lo<span class="_ _6"></span>op<span class="_ _11"> </span>Unswitching<span class="ff4">.<span class="_ _10"> </span>Split<span class="_ _11"> </span>the<span class="_ _d"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>to<span class="_ _11"> </span>imp<span class="_ _3"></span>rove<span class="_ _11"> </span>data<span class="_ _d"> </span>lo<span class="_ _6"></span>cality<span class="_ _5"></span>,<span class="_ _11"> </span>reduce<span class="_ _d"> </span>lo<span class="_ _6"></span>op</span></span></div><div class="t m0 x6 hc yf6 ff4 fs7 fc0 sc0 ls0 ws0">instructions<span class="_ _d"> </span>(esp<span class="_ _6"></span>ecially<span class="_ _d"> </span>branches),<span class="_ _d"> </span>and<span class="_ _d"> </span>allow<span class="_ _d"> </span>additional<span class="_ _d"> </span>optimizations</div><div class="t m0 x2c ha yf7 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>N;<span class="_ _a"> </span>i<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha yf8 ff6 fs6 fc6 sc0 ls0 ws0">if<span class="_ _a"> </span><span class="ff9 fc0">(x)</span></div><div class="t m0 x2d ha yf9 ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;</div><div class="t m0 x15 h10 yfa ff6 fs6 fc6 sc0 ls0 ws0">else</div><div class="t m0 x2d ha yfb ff9 fs6 fc0 sc0 ls0 ws0">b[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;</div><div class="t m0 x2c ha yfc ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2c ha yfd ff6 fs6 fc6 sc0 ls0 ws0">if<span class="_ _a"> </span><span class="ff9 fc0">(x)<span class="_ _a"> </span>{</span></div><div class="t m0 x15 ha yfe ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>N;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x2d ha yff ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>use<span class="_ _10"> </span>memset</span></div><div class="t m0 x2c ha y100 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2c ha y101 ff6 fs6 fc6 sc0 ls0 ws0">else<span class="_ _a"> </span><span class="ff9 fc0">{</span></div><div class="t m0 x15 ha y102 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>N;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x2d ha y103 ff9 fs6 fc0 sc0 ls0 ws0">b[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span>0</span>;<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>use<span class="_ _10"> </span>memset</span></div><div class="t m0 x2c ha y104 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">30/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf22" class="pf w0 h0" data-page-no="22"><div class="pc pc22 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _9"> </span>Fusion</div><div class="t m0 x10 hc y105 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Lo<span class="_ _6"></span>op<span class="_ _11"> </span>Fusion<span class="_ _d"> </span><span class="ff4">(jamming).<span class="_ _a"> </span>Merge<span class="_ _11"> </span>multiple<span class="_ _11"> </span>lo<span class="_ _6"></span>ops<span class="_ _d"> </span>to<span class="_ _d"> </span>improve<span class="_ _d"> </span>data<span class="_ _d"> </span>lo<span class="_ _6"></span>calit<span class="_ _3"></span>y<span class="_ _11"> </span>and</span></span></div><div class="t m0 x6 hc y106 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _6"></span>erfo<span class="_ _3"></span>rm<span class="_ _d"> </span>additional<span class="_ _11"> </span>optimizations</div><div class="t m0 x2c ha y107 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>300</span>;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x15 ha y108 ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>a[i]<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>sqrt(i);</div><div class="t m0 x2c ha y109 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>300</span>;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x15 ha y10a ff9 fs6 fc0 sc0 ls0 ws0">b[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>b[i]<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>sqrt(i);</div><div class="t m0 x2c ha y10b ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>300</span>;<span class="_ _a"> </span>i<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y10c ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>a[i]<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>sqrt(i);<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>sqrt(i)<span class="_ _a"> </span>is<span class="_ _10"> </span>computed<span class="_ _a"> </span>only</span></div><div class="t m0 x15 ha y10d ff9 fs6 fc0 sc0 ls0 ws0">b[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>b[i]<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>sqrt(i);<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>one<span class="_ _a"> </span>time</span></div><div class="t m0 x2c ha y10e ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">31/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf23" class="pf w0 h0" data-page-no="23"><div class="pc pc23 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _9"> </span>Fission</div><div class="t m0 x10 hc y10f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Lo<span class="_ _6"></span>op<span class="_ _11"> </span>Fission<span class="_ _11"> </span><span class="ff4">(distribution).<span class="_ _10"> </span>Split<span class="_ _d"> </span>a<span class="_ _11"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>in<span class="_ _d"> </span>multiple<span class="_ _11"> </span>lo<span class="_ _6"></span>ops<span class="_ _d"> </span>to</span></span></div><div class="t m0 x2c ha y110 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>size;<span class="_ _a"> </span>i<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y111 ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>b[rand()];<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>cache<span class="_ _10"> </span>pollution</span></div><div class="t m0 x15 ha y112 ff9 fs6 fc0 sc0 ls0 ws0">c[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>d[rand()];</div><div class="t m0 x2c ha y113 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2c ha y114 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>size;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x15 ha y115 ff9 fs6 fc0 sc0 ls0 ws0">a[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>b[rand()];<span class="_ _10"> </span><span class="ff8 fcb">//<span class="_ _a"> </span>better<span class="_ _10"> </span>cache<span class="_ _a"> </span>utilization</span></div><div class="t m0 x2c ha y116 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>size;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x15 ha y117 ff9 fs6 fc0 sc0 ls0 ws0">c[i]<span class="_ _a"> </span><span class="fc5">=<span class="_ _a"> </span></span>d[rand()];</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">32/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf24" class="pf w0 h0" data-page-no="24"><div class="pc pc24 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _9"> </span>Interchange</div><div class="t m0 x10 hc y118 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Lo<span class="_ _6"></span>op<span class="_ _11"> </span>Interchange<span class="ff4">.<span class="_ _a"> </span>Exchange<span class="_ _d"> </span>the<span class="_ _d"> </span>order<span class="_ _c"> </span>of<span class="_ _d"> </span>lo<span class="_ _6"></span>op<span class="_ _d"> </span>iterations<span class="_ _d"> </span>to<span class="_ _d"> </span>imp<span class="_ _3"></span>rove<span class="_ _d"> </span>data<span class="_ _d"> </span>lo<span class="_ _6"></span>calit<span class="_ _3"></span>y</span></span></div><div class="t m0 x6 hc y119 ff4 fs7 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rm<span class="_ _11"> </span>additional<span class="_ _d"> </span>optimizations<span class="_ _11"> </span>(e.g.<span class="_ _10"> </span>vecto<span class="_ _3"></span>rization)</div><div class="t m0 x2c ha y11a ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>1000000</span>;<span class="_ _a"> </span>i<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y3 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(j<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>j<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>100</span>;<span class="_ _a"> </span>j<span class="fc5">++</span>)</span></div><div class="t m0 x2d ha y11b ff9 fs6 fc0 sc0 ls0 ws0">a[j<span class="_ _a"> </span><span class="fc5">*<span class="_ _a"> </span></span>x<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>i]<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span></span>...;<span class="_ _a"> </span><span class="ff8 fcb">//<span class="_ _10"> </span>low<span class="_ _a"> </span>locality</span></div><div class="t m0 x2c ha y11c ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2c ha y11d ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(j<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>j<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>100</span>;<span class="_ _a"> </span>j<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y11e ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span>1000000</span>;<span class="_ _a"> </span>i<span class="fc5">++</span>)</span></div><div class="t m0 x2d ha y11f ff9 fs6 fc0 sc0 ls0 ws0">a[j<span class="_ _a"> </span><span class="fc5">*<span class="_ _a"> </span></span>x<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>i]<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span></span>...;<span class="_ _a"> </span><span class="ff8 fcb">//<span class="_ _10"> </span>high<span class="_ _a"> </span>locality</span></div><div class="t m0 x2c ha y120 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">33/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf25" class="pf w0 h0" data-page-no="25"><div class="pc pc25 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _6"></span>op<span class="_ _9"> </span>Tiling</div><div class="t m0 x10 hc y121 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Lo<span class="_ _6"></span>op<span class="_ _11"> </span>Tiling<span class="_ _11"> </span><span class="ff4">(blo<span class="_ _6"></span>cking,<span class="_ _d"> </span>nest<span class="_ _11"> </span>optimization).<span class="_ _10"> </span>P<span class="_ _3"></span>artition<span class="_ _d"> </span>the<span class="_ _d"> </span>iterations<span class="_ _11"> </span>of<span class="_ _d"> </span>multiple</span></span></div><div class="t m0 x6 hc y122 ff4 fs7 fc0 sc0 ls0 ws0">lo<span class="_ _6"></span>ops<span class="_ _d"> </span>to<span class="_ _d"> </span>exploit<span class="_ _11"> </span>data<span class="_ _d"> </span>lo<span class="_ _6"></span>calit<span class="_ _3"></span>y</div><div class="t m0 x2c ha y123 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>N;<span class="_ _a"> </span>i<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y124 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(j<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>j<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>M;<span class="_ _a"> </span>j<span class="fc5">++</span>)</span></div><div class="t m0 x2d ha y125 ff9 fs6 fc0 sc0 ls0 ws0">a[j<span class="_ _a"> </span><span class="fc5">*<span class="_ _a"> </span></span>N<span class="_ _10"> </span><span class="fc5">+<span class="_ _a"> </span></span>i]<span class="_ _10"> </span><span class="fc5">=<span class="_ _a"> </span></span>...;<span class="_ _a"> </span><span class="ff8 fcb">//<span class="_ _10"> </span>low<span class="_ _a"> </span>locality</span></div><div class="t m0 x2c ha y126 ff9 fs6 fc0 sc0 ls0 ws0">}</div><div class="t m0 x2c ha y127 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(i<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>N;<span class="_ _a"> </span>i<span class="_ _10"> </span><span class="fc5">+=<span class="_ _a"> </span></span>TILE_SIZE)<span class="_ _10"> </span>{</span></div><div class="t m0 x15 ha y128 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(j<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>j<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>M;<span class="_ _a"> </span>j<span class="_ _10"> </span><span class="fc5">+=<span class="_ _a"> </span></span>TILE_SIZE)<span class="_ _10"> </span>{</span></div><div class="t m0 x2d ha y129 ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(k<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>k<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>TILE_SIZE;<span class="_ _a"> </span>k<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x2e ha y12a ff6 fs6 fc6 sc0 ls0 ws0">for<span class="_ _a"> </span><span class="ff9 fc0">(l<span class="_ _a"> </span><span class="fc5">=<span class="_ _10"> </span>0</span>;<span class="_ _a"> </span>l<span class="_ _10"> </span><span class="fc5"><<span class="_ _a"> </span></span>TILE_SIZE;<span class="_ _a"> </span>l<span class="fc5">++</span>)<span class="_ _10"> </span>{</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">34/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf26" class="pf w0 h0" data-page-no="26"><div class="pc pc26 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y2b ff1 fs0 fc0 sc0 ls0 ws0">Lib<span class="_ _8"></span>ra<span class="_ _3"></span>ries<span class="_ _1"> </span>and<span class="_ _1"> </span>Data</div><div class="t m0 x8 h2 y2c ff1 fs0 fc0 sc0 ls0 ws0">Structures</div><a class="l" href="#pf26" data-dest-detail='[38,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:154.437000px;width:241.993000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf26" data-dest-detail='[38,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:120.066000px;width:118.684000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf27" class="pf w0 h0" data-page-no="27"><div class="pc pc27 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1d"> </span>Lib<span class="_ _3"></span>raries<span class="_ _29"> </span>1/3</div><div class="t m0 x1 hc y48 ff1 fs7 fc0 sc0 ls0 ws0">Consider<span class="_ _11"> </span>using<span class="_ _9"> </span>optimized<span class="_ _9"> </span><span class="ff7">external<span class="_ _e"> </span></span>libra<span class="_ _3"></span>ries<span class="_ _11"> </span>for<span class="_ _11"> </span>critical<span class="_ _9"> </span>p<span class="_ _3"></span>rogram<span class="_ _9"> </span>op<span class="_ _6"></span>erations</div><div class="t m0 x10 hc y12b ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Comp<span class="_ _3"></span>ressed<span class="_ _9"> </span>Bitmask:<span class="_ _10"> </span><span class="ff4">set<span class="_ _d"> </span>algebraic<span class="_ _d"> </span>op<span class="_ _6"></span>erations</span></span></div><div class="t m0 x2 h6 y12c ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">BitMagic<span class="_ _e"> </span>Library</span></div><div class="t m0 x2 h6 y12d ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Roaring<span class="_ _e"> </span>Bitmaps</span></div><div class="t m0 x10 hc y12e ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Ordered<span class="_ _9"> </span>Map/Set:<span class="_ _a"> </span><span class="ffd">B+Tree<span class="_ _11"> </span><span class="ff4">as<span class="_ _11"> </span>replacement<span class="_ _d"> </span>for<span class="_ _d"> </span>red-black<span class="_ _d"> </span>tree</span></span></span></div><div class="t m0 x2 h6 y12f ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">STX<span class="_ _e"> </span>B+Tree</span></div><div class="t m0 x2 h6 y130 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Abseil<span class="_ _e"> </span>B-Tree</span></div><div class="t m0 x10 hc y131 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Hash<span class="_ _9"> </span>T<span class="_ _8"></span>able:<span class="_ _a"> </span><span class="ff4 fs4">(replace<span class="_ _d"> </span>for<span class="_ _1b"> </span><span class="ffd">std::unsorted<span class="_ _d"> </span>set/map<span class="_ _c"> </span></span>)</span></span></div><div class="t m0 x2 h6 y132 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Google<span class="_ _e"> </span>Sparse/Dense<span class="_ _e"> </span>Hash<span class="_ _e"> </span>Table</span></div><div class="t m0 x2 h6 y133 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">bytell<span class="_ _e"> </span>hashmap</span></div><div class="t m0 x2 h6 y134 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Facebook<span class="_ _e"> </span>F14<span class="_ _e"> </span>memory<span class="_ _e"> </span>efficient<span class="_ _7"> </span>hash<span class="_ _e"> </span>table</span></div><div class="t m0 x2 h6 y135 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Abseil<span class="_ _e"> </span>Hashmap<span class="_ _d"> </span><span class="fff fs6">(2x-3x<span class="_ _21"> </span>faster)</span></span></div><div class="t m0 x2 h6 y136 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Robin<span class="_ _e"> </span>Hood<span class="_ _e"> </span>Hashing</span></div><div class="t m0 x2 h6 y137 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Comprehensive<span class="_ _e"> </span>C++<span class="_ _e"> </span>Hashmap<span class="_ _e"> </span>Benchmarks<span class="_ _7"> </span>2022</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">35/76</div><a class="l" href="http://bitmagic.io/index.html"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:168.681000px;width:85.678000px;height:10.175000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://roaringbitmap.org/"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:154.933000px;width:80.448000px;height:10.174000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://panthema.net/2007/stx-btree/"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:121.839000px;width:54.296000px;height:7.961000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://abseil.io/docs/cpp/guides/container"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:108.091000px;width:69.987000px;height:7.960000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/sparsehash/sparsehash"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:70.569000px;width:158.903000px;height:11.125000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:56.821000px;width:75.217000px;height:10.175000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://code.fb.com/developer-tools/f14/"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:43.073000px;width:211.207000px;height:10.174000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://abseil.io/docs/cpp/guides/container"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:29.297000px;width:75.217000px;height:10.959000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/martinus/robin-hood-hashing"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:15.576000px;width:96.139000px;height:10.175000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://martin.ankerl.com/2022/08/27/hashmap-bench-01/"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:1.828000px;width:216.437000px;height:10.174000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf28" class="pf w0 h0" data-page-no="28"><div class="pc pc28 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1d"> </span>Lib<span class="_ _3"></span>raries<span class="_ _29"> </span>2/3</div><div class="t m0 x10 hc y5c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Probabilistic<span class="_ _9"> </span>Set<span class="_ _11"> </span>Query:<span class="_ _10"> </span><span class="ff4">Blo<span class="_ _6"></span>om<span class="_ _d"> </span>filter,<span class="_ _11"> </span>‘<span class="ffd">XOR<span class="_ _16"> </span>filter</span>,<span class="_ _d"> </span><span class="ffd">Facebook’s<span class="_ _16"> </span>Ribbon</span></span></span></div><div class="t m0 x6 hc y68 ffd fs7 fc0 sc0 ls0 ws0">Filter<span class="ff4">,<span class="_ _d"> </span></span>Binary<span class="_ _16"> </span>Fuse<span class="_ _16"> </span>filter</div><div class="t m0 x10 hc y138 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Scan,<span class="_ _9"> </span>p<span class="_ _3"></span>rint,<span class="_ _9"> </span>and<span class="_ _9"> </span>fo<span class="_ _3"></span>rmatting:<span class="_ _10"> </span><span class="ffd">fmt<span class="_ _16"> </span>library<span class="ff4">,<span class="_ _d"> </span></span>scn<span class="_ _16"> </span>library<span class="_ _11"> </span><span class="ff4">instead<span class="_ _d"> </span>of<span class="_ _1d"> </span></span>iostream</span></span></div><div class="t m0 x6 hc y139 ff4 fs7 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _11"> </span><span class="ffd">printf/scanf</span></div><div class="t m0 x10 hc y13a ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Random<span class="_ _9"> </span>generato<span class="_ _3"></span>r:<span class="_ _10"> </span><span class="ffd">PCG<span class="_ _d"> </span><span class="ff4">random<span class="_ _11"> </span>generator<span class="_ _d"> </span>instead<span class="_ _d"> </span>of<span class="_ _1d"> </span></span>Mersenne<span class="_ _16"> </span>Twister<span class="_ _11"> </span><span class="ff4">o<span class="_ _3"></span>r</span></span></span></div><div class="t m0 x6 he y13b ffd fs7 fc0 sc0 ls0 ws0">Linear<span class="_ _16"> </span>Congruent</div><div class="t m0 x10 hc y13c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Non-cryptographic<span class="_ _9"> </span>hash<span class="_ _11"> </span>algorithm:<span class="_ _a"> </span><span class="ffd">xxHash<span class="_ _11"> </span><span class="ff4">instead<span class="_ _d"> </span>of<span class="_ _a"> </span></span>CRC</span></span></div><div class="t m0 x10 hc y13d ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Cryptographic<span class="_ _9"> </span>hash<span class="_ _11"> </span>algorithm:<span class="_ _a"> </span><span class="ffd">BLAKE3<span class="_ _11"> </span><span class="ff4">instead<span class="_ _d"> </span>of<span class="_ _a"> </span></span>MD5<span class="_ _d"> </span><span class="ff4">or<span class="_ _d"> </span></span>SHA</span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">36/76</div><a class="l" href="https://arxiv.org/abs/1912.08258"><div class="d m1" style="border-style:none;position:absolute;left:237.132000px;bottom:203.558000px;width:59.265000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/"><div class="d m1" style="border-style:none;position:absolute;left:301.071000px;bottom:203.558000px;width:125.122000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:187.674000px;width:36.356000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/hexops/fastfilter"><div class="d m1" style="border-style:none;position:absolute;left:90.199000px;bottom:187.674000px;width:105.083000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/fmtlib/fmt"><div class="d m1" style="border-style:none;position:absolute;left:193.243000px;bottom:154.159000px;width:64.992000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/eliaskosunen/scnlib/tree/v1.0"><div class="d m1" style="border-style:none;position:absolute;left:262.894000px;bottom:154.159000px;width:64.993000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://www.pcg-random.org/"><div class="d m1" style="border-style:none;position:absolute;left:149.638000px;bottom:105.367000px;width:103.386000px;height:11.689000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://cyan4973.github.io/xxHash/"><div class="d m1" style="border-style:none;position:absolute;left:227.253000px;bottom:56.271000px;width:36.356000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/BLAKE3-team/BLAKE3"><div class="d m1" style="border-style:none;position:absolute;left:204.798000px;bottom:22.757000px;width:36.356000px;height:11.689000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf29" class="pf w0 h0" data-page-no="29"><div class="pc pc29 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _1d"> </span>Lib<span class="_ _3"></span>raries<span class="_ _29"> </span>3/3</div><div class="t m0 x10 hc y13e ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Linea<span class="_ _3"></span>r<span class="_ _9"> </span>Algebra:<span class="_ _a"> </span><span class="ffd">Eigen<span class="ff4">,<span class="_ _d"> </span></span>Armadillo<span class="ff4">,<span class="_ _11"> </span></span>Blaze</span></span></div><div class="t m0 x10 hc y13f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">So<span class="_ _3"></span>rt:</span></div><div class="t m0 x2 h6 y140 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Beating<span class="_ _e"> </span>Up<span class="_ _e"> </span>on<span class="_ _e"> </span>Qsort<span class="ff4">.<span class="_ _a"> </span>Radix-sort<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _d"> </span>non-compa<span class="_ _3"></span>rative<span class="_ _d"> </span>elements<span class="_ _c"> </span>(e.g.<span class="_ _4"> </span><span class="ffd">int<span class="_ _21"> </span></span>,</span></span></div><div class="t m0 x2f h6 y141 ffd fs4 fc0 sc0 ls0 ws0">float<span class="_ _21"> </span><span class="ff4">)</span></div><div class="t m0 x2 h6 y142 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Vectorized<span class="_ _e"> </span>and<span class="_ _e"> </span>performance-portable<span class="_ _e"> </span>Quicksort</span></div><div class="t m0 x10 hc y143 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff6">malloc<span class="_ _9"> </span><span class="ff1">replacement:</span></span></div><div class="t m0 x2 h6 y144 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">tcmalloc<span class="_ _c"> </span><span class="ff4">(Go<span class="_ _6"></span>ogle)</span></span></div><div class="t m0 x2 h6 y145 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">mimalloc<span class="_ _c"> </span><span class="ff4">(Microsoft)</span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">37/76</div><a class="l" href="http://eigen.tuxfamily.org"><div class="d m1" style="border-style:none;position:absolute;left:129.561000px;bottom:182.779000px;width:30.629000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="arma.sourceforge.net"><div class="d m1" style="border-style:none;position:absolute;left:164.864000px;bottom:182.779000px;width:53.538000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://bitbucket.org/blaze-lib/blaze"><div class="d m1" style="border-style:none;position:absolute;left:223.076000px;bottom:182.779000px;width:30.629000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://travisdowns.github.io/blog/2019/05/22/sorting.html"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:136.945000px;width:101.369000px;height:13.938000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:110.223000px;width:237.359000px;height:10.175000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://goog-perftools.sourceforge.net/doc/tcmalloc.html"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:64.676000px;width:43.835000px;height:11.955000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/microsoft/mimalloc"><div class="d m1" style="border-style:none;position:absolute;left:70.987000px;bottom:50.928000px;width:43.835000px;height:11.955000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2a" class="pf w0 h0" data-page-no="2a"><div class="pc pc2a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lib<span class="_ _3"></span>ra<span class="_ _3"></span>ries<span class="_ _a"> </span>and<span class="_ _1d"> </span><span class="ff6">Std<span class="_ _1d"> </span></span>replacements</div><div class="t m0 x10 hc y146 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff6 fcc">Folly</span><span class="ff4">:<span class="_ _10"> </span>P<span class="_ _3"></span>erformance-o<span class="_ _3"></span>riented<span class="_ _d"> </span><span class="ffd">std<span class="_ _11"> </span></span>lib<span class="_ _3"></span>rary<span class="_ _d"> </span>(Facebo<span class="_ _6"></span>ok)</span></div><div class="t m0 x10 hc y147 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff6 fcc">Abseil</span><span class="ff4">:<span class="_ _10"> </span>Op<span class="_ _6"></span>en<span class="_ _d"> </span>source<span class="_ _d"> </span>collection<span class="_ _11"> </span>of<span class="_ _d"> </span>C++<span class="_ _11"> </span>lib<span class="_ _3"></span>raries<span class="_ _d"> </span>dra<span class="_ _3"></span>wn<span class="_ _11"> </span>from<span class="_ _d"> </span>the<span class="_ _11"> </span>most</span></div><div class="t m0 x6 hc y148 ff4 fs7 fc0 sc0 ls0 ws0">fundamental<span class="_ _d"> </span>pieces<span class="_ _11"> </span>of<span class="_ _d"> </span>Go<span class="_ _6"></span>ogle’s<span class="_ _d"> </span>internal<span class="_ _11"> </span>co<span class="_ _6"></span>debase</div><div class="t m0 x10 hc y149 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff6 fcc">Frozen</span><span class="ff4">:<span class="_ _10"> </span>Zero-cost<span class="_ _d"> </span>initialization<span class="_ _11"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>immutable<span class="_ _d"> </span>containers,<span class="_ _11"> </span>fixed-size<span class="_ _d"> </span>containers,</span></div><div class="t m0 x6 hc y14a ff4 fs7 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span>various<span class="_ _d"> </span>algo<span class="_ _3"></span>rithms.</div><div class="t m0 x30 hc y14b ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _16"> </span>curated<span class="_ _16"> </span>list<span class="_ _16"> </span>of<span class="_ _16"> </span>a<span class="_ _3"></span>wesome<span class="_ _7"> </span>header-only</div><div class="t m0 x30 hc y14c ff4 fs7 fc0 sc0 ls0 ws0">C++<span class="_ _d"> </span>libra<span class="_ _3"></span>ries</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">38/76</div><a class="l" href="https://github.com/facebook/folly/blob/master/folly/docs/Overview.md"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:186.729000px;width:30.629000px;height:12.902000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://abseil.io/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:157.806000px;width:36.356000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/serge-sans-paille/frozen"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:113.453000px;width:36.356000px;height:10.932000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/p-ranav/awesome-hpp"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:45.436000px;width:87.032000px;height:22.555000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2b" class="pf w0 h0" data-page-no="2b"><div class="pc pc2b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y2b ff1 fs0 fc0 sc0 ls0 ws0">P<span class="_ _8"></span>erfo<span class="_ _3"></span>rmance</div><div class="t m0 x8 h2 y2c ff1 fs0 fc0 sc0 ls0 ws0">Benchma<span class="_ _8"></span>rking</div><a class="l" href="#pf2b" data-dest-detail='[43,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:154.437000px;width:241.993000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2b" data-dest-detail='[43,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:115.247000px;width:162.763000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2c" class="pf w0 h0" data-page-no="2c"><div class="pc pc2c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>erfo<span class="_ _3"></span>rmance<span class="_ _a"> </span>Benchma<span class="_ _3"></span>rking</div><div class="t m0 x9 h5 y14d ff3 fs3 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>erformance<span class="_ _9"> </span>b<span class="_ _6"></span>enchma<span class="_ _3"></span>rking<span class="_ _1d"> </span>is<span class="_ _1d"> </span>a<span class="_ _9"> </span>non-functional<span class="_ _1d"> </span>test<span class="_ _1d"> </span>fo<span class="_ _6"></span>cused<span class="_ _1d"> </span>on<span class="_ _9"> </span>mea-</div><div class="t m0 x6 h5 y14e ff3 fs3 fc0 sc0 ls0 ws0">suring<span class="_ _11"> </span>the<span class="_ _9"> </span>efficiency<span class="_ _11"> </span>of<span class="_ _9"> </span>a<span class="_ _11"> </span>given<span class="_ _9"> </span>task<span class="_ _11"> </span>or<span class="_ _d"> </span>program<span class="_ _11"> </span>under<span class="_ _11"> </span>a<span class="_ _9"> </span>pa<span class="_ _3"></span>rticular<span class="_ _11"> </span>load</div><div class="t m0 x31 h7 y14f ff1 fs2 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>erfo<span class="_ _3"></span>rmance<span class="_ _e"> </span>b<span class="_ _6"></span>enchma<span class="_ _3"></span>rking<span class="_ _7"> </span>is<span class="_ _e"> </span>ha<span class="_ _3"></span>rd!!</div><div class="t m0 x1 h5 y150 ff3 fs3 fc0 sc0 ls0 ws0">Main<span class="_ _11"> </span>reasons:</div><div class="t m0 x10 h5 y151 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">What<span class="_ _11"> </span>to<span class="_ _9"> </span>test?</span></div><div class="t m0 x10 h5 y152 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">W<span class="_ _3"></span>orkload/Dataset<span class="_ _11"> </span>qualit<span class="_ _3"></span>y</span></div><div class="t m0 x10 h5 y153 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Cache<span class="_ _11"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r</span></div><div class="t m0 x10 h5 y154 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Stable<span class="_ _11"> </span>CPU<span class="_ _9"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance</span></div><div class="t m0 x32 h5 y151 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Program<span class="_ _11"> </span>memory<span class="_ _11"> </span>la<span class="_ _3"></span>yout</span></div><div class="t m0 x32 h5 y152 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Measurement<span class="_ _11"> </span>overhead</span></div><div class="t m0 x32 h5 y153 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Compiler<span class="_ _11"> </span>optimizations</span></div><div class="t m0 x32 h5 y154 ff12 fs3 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff13">Metric<span class="_ _11"> </span>evaluation</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">39/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2d" class="pf w0 h0" data-page-no="2d"><div class="pc pc2d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">What<span class="_ _1d"> </span>to<span class="_ _1d"> </span>T<span class="_ _8"></span>est?</div><div class="t m0 x10 hc y155 ff4 fs7 fc0 sc0 ls0 ws0">1.<span class="_ _7"> </span><span class="ff1">Identify<span class="_ _9"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>metrics<span class="_ _6"></span><span class="ff4">:<span class="_ _a"> </span>The<span class="_ _d"> </span>metric(s)<span class="_ _11"> </span>should<span class="_ _11"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>strongly<span class="_ _d"> </span>related<span class="_ _11"> </span>to<span class="_ _d"> </span>the</span></span></div><div class="t m0 x6 hc y156 ff4 fs7 fc0 sc0 ls0 ws0">sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>p<span class="_ _3"></span>roblem<span class="_ _11"> </span>and<span class="_ _d"> </span>that<span class="_ _11"> </span>allows<span class="_ _d"> </span>a<span class="_ _d"> </span>comparison<span class="_ _d"> </span>across<span class="_ _d"> </span>different<span class="_ _d"> </span>systems,<span class="_ _11"> </span>e.g.</div><div class="t m0 x6 hc y157 ff4 fs7 fc0 sc0 ls0 ws0">elapsed<span class="_ _d"> </span>time<span class="_ _11"> </span>is<span class="_ _d"> </span>not<span class="_ _11"> </span>a<span class="_ _d"> </span>go<span class="_ _6"></span>o<span class="_ _6"></span>d<span class="_ _d"> </span>metric<span class="_ _d"> </span>in<span class="_ _11"> </span>general<span class="_ _d"> </span>for<span class="_ _d"> </span>measuring<span class="_ _d"> </span>the<span class="_ _11"> </span>throughput</div><div class="t m0 x11 h6 y158 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>Matrix<span class="_ _c"> </span>multiplication:<span class="_ _a"> </span>FLoating-p<span class="_ _6"></span>oint<span class="_ _c"> </span>Op<span class="_ _6"></span>eration<span class="_ _c"> </span>Per<span class="_ _c"> </span>Second<span class="_ _c"> </span>(FLOP/S)</div><div class="t m0 x11 h6 y159 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>Graph<span class="_ _c"> </span>traversing:<span class="_ _a"> </span>Edge<span class="_ _c"> </span>p<span class="_ _6"></span>er<span class="_ _c"> </span>Second<span class="_ _d"> </span>(EPS)</div><div class="t m0 x10 hc y15a ff4 fs7 fc0 sc0 ls0 ws0">2.<span class="_ _7"> </span><span class="ff1">Plan<span class="_ _9"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>tests<span class="_ _6"></span><span class="ff4">:<span class="_ _a"> </span>Determine<span class="_ _d"> </span>what<span class="_ _11"> </span>part<span class="_ _d"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>problem<span class="_ _d"> </span>is<span class="_ _d"> </span>relevant<span class="_ _11"> </span>for</span></span></div><div class="t m0 x6 hc y15b ff4 fs7 fc0 sc0 ls0 ws0">solving<span class="_ _d"> </span>the<span class="_ _11"> </span>given<span class="_ _d"> </span>problem,<span class="_ _d"> </span>e.g.<span class="_ _10"> </span>excluding<span class="_ _d"> </span>initialization<span class="_ _d"> </span>process</div><div class="t m0 x11 h6 y15c ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>Supp<span class="_ _6"></span>ose<span class="_ _c"> </span>a<span class="_ _c"> </span>routine<span class="_ _d"> </span>that<span class="_ _c"> </span>requires<span class="_ _d"> </span>different<span class="_ _c"> </span>steps<span class="_ _d"> </span>and<span class="_ _c"> </span>ask<span class="_ _d"> </span>a<span class="_ _c"> </span>memory<span class="_ _c"> </span>buffer<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _d"> </span>each<span class="_ _c"> </span>of</div><div class="t m0 x15 h6 y15d ff4 fs4 fc0 sc0 ls0 ws0">them.<span class="_ _1d"> </span>Memory<span class="_ _c"> </span>allo<span class="_ _6"></span>cations<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _6"></span>e<span class="_ _c"> </span>excluded<span class="_ _d"> </span>as<span class="_ _c"> </span>a<span class="_ _d"> </span>user<span class="_ _c"> </span>could<span class="_ _d"> </span>use<span class="_ _c"> </span>a<span class="_ _d"> </span>memory<span class="_ _c"> </span>po<span class="_ _6"></span>ol</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">40/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2e" class="pf w0 h0" data-page-no="2e"><div class="pc pc2e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">W<span class="_ _3"></span>o<span class="_ _3"></span>rkload/Dataset<span class="_ _a"> </span>Qualit<span class="_ _3"></span>y</div><div class="t m0 x10 hc y15e ff4 fs7 fc0 sc0 ls0 ws0">1.<span class="_ _7"> </span><span class="ff1">Stress<span class="_ _9"> </span>the<span class="_ _11"> </span>most<span class="_ _9"> </span>imp<span class="_ _6"></span>o<span class="_ _3"></span>rtant<span class="_ _9"> </span>cases<span class="ff4">:<span class="_ _10"> </span>Rare<span class="_ _d"> </span>o<span class="_ _3"></span>r<span class="_ _11"> </span>edge<span class="_ _d"> </span>cases<span class="_ _11"> </span>that<span class="_ _d"> </span>are<span class="_ _d"> </span>not<span class="_ _d"> </span>used<span class="_ _11"> </span>in</span></span></div><div class="t m0 x6 hc y15f ff4 fs7 fc0 sc0 ls0 ws0">real-w<span class="_ _3"></span>orld<span class="_ _d"> </span>applications<span class="_ _d"> </span>or<span class="_ _d"> </span>fa<span class="_ _3"></span>r<span class="_ _11"> </span>from<span class="_ _d"> </span>common<span class="_ _11"> </span>usage<span class="_ _d"> </span>are<span class="_ _d"> </span>less<span class="_ _d"> </span>imp<span class="_ _6"></span>ortant,<span class="_ _d"> </span>e.g.<span class="_ _a"> </span>a<span class="_ _11"> </span>graph</div><div class="t m0 x6 hc y160 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>roblem<span class="_ _11"> </span>where<span class="_ _d"> </span>all<span class="_ _11"> </span>vertices<span class="_ _d"> </span>are<span class="_ _d"> </span>not<span class="_ _d"> </span>connected</div><div class="t m0 x10 hc y161 ff4 fs7 fc0 sc0 ls0 ws0">2.<span class="_ _7"> </span><span class="ff1">Use<span class="_ _9"> </span>datasets<span class="_ _11"> </span>that<span class="_ _9"> </span>are<span class="_ _11"> </span>w<span class="_ _3"></span>ell-known<span class="_ _11"> </span>in<span class="_ _9"> </span>the<span class="_ _9"> </span>literature<span class="_ _9"> </span>and<span class="_ _11"> </span>reproducible<span class="ff4">.<span class="_ _10"> </span>Don’t</span></span></div><div class="t m0 x6 hc y162 ff4 fs7 fc0 sc0 ls0 ws0">use<span class="_ _d"> </span>“self-made”<span class="_ _11"> </span>dataset<span class="_ _d"> </span>and,<span class="_ _11"> </span>if<span class="_ _d"> </span>p<span class="_ _6"></span>ossible,<span class="_ _d"> </span>use<span class="_ _11"> </span>public<span class="_ _d"> </span>available<span class="_ _11"> </span>resources</div><div class="t m0 x10 hc y163 ff4 fs7 fc0 sc0 ls0 ws0">3.<span class="_ _7"> </span><span class="ff1">Use<span class="_ _9"> </span>a<span class="_ _11"> </span>reproducible<span class="_ _9"> </span>test<span class="_ _9"> </span>metho<span class="_ _6"></span>dology</span>.<span class="_ _10"> </span>T<span class="_ _8"></span>rying<span class="_ _d"> </span>to<span class="_ _11"> </span>remove<span class="_ _d"> </span>sources<span class="_ _11"> </span>of<span class="_ _d"> </span>“noise”,</div><div class="t m0 x6 hc y164 ff4 fs7 fc0 sc0 ls0 ws0">e.g.<span class="_ _10"> </span>if<span class="_ _d"> </span>the<span class="_ _d"> </span>procedure<span class="_ _11"> </span>is<span class="_ _11"> </span>randomized,<span class="_ _d"> </span>the<span class="_ _11"> </span>test<span class="_ _d"> </span>should<span class="_ _11"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>use<span class="_ _d"> </span>with<span class="_ _11"> </span>the<span class="_ _d"> </span>same<span class="_ _11"> </span>seed.<span class="_ _10"> </span>It</div><div class="t m0 x6 hc y165 ff4 fs7 fc0 sc0 ls0 ws0">is<span class="_ _d"> </span>not<span class="_ _d"> </span>alwa<span class="_ _3"></span>ys<span class="_ _d"> </span>p<span class="_ _6"></span>ossible,<span class="_ _d"> </span>e.g.<span class="_ _10"> </span>OS<span class="_ _11"> </span>scheduler,<span class="_ _d"> </span>atomic<span class="_ _11"> </span>op<span class="_ _6"></span>erations<span class="_ _d"> </span>in<span class="_ _d"> </span>parallel<span class="_ _d"> </span>computing,</div><div class="t m0 x6 hc y166 ff4 fs7 fc0 sc0 ls0 ws0">etc.</div><div class="t m0 x10 hd y167 fff fs6 fc7 sc0 ls0 ws0">see<span class="_ _c"> </span>also<span class="_ _21"> </span><span class="ff9">Reproducibility<span class="_ _10"> </span>in<span class="_ _a"> </span>artificial<span class="_ _10"> </span>intelligence</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">41/76</div><a class="l" href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17248/15864"><div class="d m1" style="border-style:none;position:absolute;left:67.359000px;bottom:1.331000px;width:199.700000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf2f" class="pf w0 h0" data-page-no="2f"><div class="pc pc2f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Cache<span class="_ _1d"> </span>Behavio<span class="_ _3"></span>r<span class="_ _2a"> </span>1/2</div><div class="t m0 x10 hc y168 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Cache<span class="_ _d"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r<span class="_ _d"> </span>is<span class="_ _d"> </span>not<span class="_ _d"> </span>deterministic<span class="ff4">.<span class="_ _10"> </span>Different<span class="_ _d"> </span>executions<span class="_ _d"> </span>lead<span class="_ _d"> </span>to<span class="_ _d"> </span>different<span class="_ _11"> </span>hit<span class="_ _d"> </span>rates</span></span></div><div class="t m0 x10 hc y169 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">After<span class="_ _d"> </span>a<span class="_ _11"> </span>data<span class="_ _d"> </span>is<span class="_ _11"> </span>loaded<span class="_ _d"> </span>from<span class="_ _11"> </span>the<span class="_ _11"> </span>main<span class="_ _d"> </span>memory<span class="_ _8"></span>,<span class="_ _d"> </span>it<span class="_ _d"> </span>remains<span class="_ _11"> </span>in<span class="_ _d"> </span>the<span class="_ _11"> </span>cache<span class="_ _d"> </span>until<span class="_ _11"> </span>it</span></div><div class="t m0 x6 hc y16a ff4 fs7 fc0 sc0 ls0 ws0">expires<span class="_ _d"> </span>or<span class="_ _d"> </span>is<span class="_ _d"> </span>evicted<span class="_ _11"> </span>to<span class="_ _d"> </span>make<span class="_ _d"> </span>ro<span class="_ _6"></span>om<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>new<span class="_ _d"> </span>content</div><div class="t m0 x10 hc y16b ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Executing<span class="_ _d"> </span>the<span class="_ _11"> </span>same<span class="_ _d"> </span>routine<span class="_ _11"> </span>multiple<span class="_ _d"> </span>times,<span class="_ _11"> </span>the<span class="_ _11"> </span>first<span class="_ _d"> </span>run<span class="_ _11"> </span>is<span class="_ _d"> </span>much<span class="_ _11"> </span>slo<span class="_ _3"></span>wer<span class="_ _d"> </span>than<span class="_ _d"> </span>the</span></div><div class="t m0 x6 hc y16c ff4 fs7 fc0 sc0 ls0 ws0">other<span class="_ _d"> </span>ones<span class="_ _11"> </span>due<span class="_ _d"> </span>to<span class="_ _11"> </span>the<span class="_ _d"> </span>cache<span class="_ _11"> </span>effect<span class="_ _d"> </span>(wa<span class="_ _3"></span>rmup<span class="_ _d"> </span>run)</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">42/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf30" class="pf w0 h0" data-page-no="30"><div class="pc pc30 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Cache<span class="_ _1d"> </span>Behavio<span class="_ _3"></span>r<span class="_ _2a"> </span>2/2</div><div class="t m0 x1 hc y16d ffc fs7 fc0 sc0 ls0 ws0">There<span class="_ _d"> </span>is<span class="_ _11"> </span>no<span class="_ _d"> </span>a<span class="_ _11"> </span>systematic<span class="_ _d"> </span>wa<span class="_ _3"></span>y<span class="_ _d"> </span>to<span class="_ _11"> </span>flush<span class="_ _d"> </span>the<span class="_ _11"> </span>cache<span class="ff4">.<span class="_ _10"> </span>Some<span class="_ _d"> </span>techniques<span class="_ _11"> </span>to<span class="_ _d"> </span>ensure<span class="_ _11"> </span>more</span></div><div class="t m0 x1 hc y16e ff4 fs7 fc0 sc0 ls0 ws0">reliable<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>results<span class="_ _d"> </span>are</div><div class="t m0 x10 hc y16f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">overwrite<span class="_ _d"> </span>all<span class="_ _11"> </span>data<span class="_ _d"> </span>involved<span class="_ _11"> </span>in<span class="_ _d"> </span>the<span class="_ _11"> </span>computation<span class="_ _11"> </span>b<span class="_ _6"></span>et<span class="_ _3"></span>w<span class="_ _3"></span>een<span class="_ _11"> </span>each<span class="_ _d"> </span>runs</span></div><div class="t m0 x10 hc y170 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">read/write<span class="_ _d"> </span>b<span class="_ _6"></span>et<span class="_ _3"></span>ween<span class="_ _d"> </span>t<span class="_ _3"></span>wo<span class="_ _d"> </span>buffers<span class="_ _d"> </span>of<span class="_ _11"> </span>size<span class="_ _d"> </span>at<span class="_ _11"> </span>least<span class="_ _11"> </span>the<span class="_ _d"> </span>size<span class="_ _11"> </span>of<span class="_ _d"> </span>the<span class="_ _11"> </span>la<span class="_ _3"></span>rgest<span class="_ _11"> </span>cache</span></div><div class="t m0 x10 hc y171 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">some<span class="_ _d"> </span>processors,<span class="_ _d"> </span>such<span class="_ _d"> </span>as<span class="_ _11"> </span>ARM,<span class="_ _d"> </span>provide<span class="_ _d"> </span>sp<span class="_ _6"></span>ecific<span class="_ _d"> </span>instructions<span class="_ _d"> </span>to<span class="_ _11"> </span><span class="ffc">invalidate<span class="_ _9"> </span></span>the</span></div><div class="t m0 x6 hc y172 ff4 fs7 fc0 sc0 ls0 ws0">cache<span class="_ _2b"> </span><span class="ffd">builtin<span class="_ _2c"> </span>clear<span class="_ _9"> </span>cache()<span class="_ _c"> </span></span>,<span class="_ _2b"> </span><span class="ffd">clear<span class="_ _9"> </span>cache()</span></div><div class="t m0 x1 h6 y173 ffc fs4 fc0 sc0 ls0 ws0">Note:<span class="_ _a"> </span><span class="ff4">manual<span class="_ _d"> </span>cache<span class="_ _c"> </span>invalidation<span class="_ _d"> </span>must<span class="_ _c"> </span>consider<span class="_ _d"> </span>cache<span class="_ _c"> </span>lo<span class="_ _6"></span>calit<span class="_ _3"></span>y<span class="_ _d"> </span>(e.g.<span class="_ _1d"> </span>L1<span class="_ _c"> </span>p<span class="_ _6"></span>er<span class="_ _c"> </span>CPU<span class="_ _d"> </span>core)<span class="_ _c"> </span>and</span></div><div class="t m0 x1 h6 y174 ff4 fs4 fc0 sc0 ls0 ws0">compiler<span class="_ _c"> </span>optimizations<span class="_ _d"> </span>that<span class="_ _c"> </span>can<span class="_ _d"> </span>remove<span class="_ _c"> </span>useless<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _c"> </span>(solution:<span class="_ _1d"> </span>use<span class="_ _d"> </span>global<span class="_ _c"> </span>variables<span class="_ _c"> </span>and</div><div class="t m0 xb h6 y175 ffd fs4 fc0 sc0 ls0 ws0">volatile<span class="_ _21"> </span><span class="ff4">)</span></div><div class="t m0 x10 hd y176 fff fs6 fc7 sc0 ls0 ws0">see:<span class="_ _9"> </span><span class="ff9">Is<span class="_ _a"> </span>there<span class="_ _10"> </span>a<span class="_ _a"> </span>way<span class="_ _a"> </span>to<span class="_ _10"> </span>flush<span class="_ _a"> </span>the<span class="_ _10"> </span>entire<span class="_ _a"> </span>CPU<span class="_ _a"> </span>cache<span class="_ _10"> </span>related<span class="_ _a"> </span>to<span class="_ _a"> </span>a<span class="_ _10"> </span>program?</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">43/76</div><a class="l" href="https://stackoverflow.com/questions/48527189/is-there-a-way-to-flush-the-entire-cpu-cache-related-to-a-program"><div class="d m1" style="border-style:none;position:absolute;left:53.102000px;bottom:0.903000px;width:312.677000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf31" class="pf w0 h0" data-page-no="31"><div class="pc pc31 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stable<span class="_ _1d"> </span>CPU<span class="_ _1d"> </span>Perfo<span class="_ _3"></span>rmance<span class="_ _2d"> </span>1/4</div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">One<span class="_ _d"> </span>of<span class="_ _11"> </span>the<span class="_ _d"> </span>first<span class="_ _11"> </span>source<span class="_ _d"> </span>of<span class="_ _11"> </span>fluctuation<span class="_ _d"> </span>in<span class="_ _11"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>measurement<span class="_ _d"> </span>is<span class="_ _11"> </span>due<span class="_ _d"> </span>to<span class="_ _11"> </span>unstable</div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">CPU<span class="_ _d"> </span>frequency</div><div class="t m0 x1 hc y177 ff1 fs7 fc0 sc0 ls0 ws0">Dynamic<span class="_ _11"> </span>frequency<span class="_ _9"> </span>scaling<span class="ff4">,<span class="_ _11"> </span>also<span class="_ _d"> </span>known<span class="_ _d"> </span>as<span class="_ _d"> </span><span class="ffc">CPU<span class="_ _11"> </span>throttling</span>,<span class="_ _d"> </span>automatically<span class="_ _11"> </span>decreases</span></div><div class="t m0 x1 hc y178 ff4 fs7 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>CPU<span class="_ _11"> </span>frequency<span class="_ _d"> </span>for:</div><div class="t m0 x12 h6 y179 ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Po<span class="_ _3"></span>w<span class="_ _3"></span>er<span class="_ _d"> </span>saving,<span class="_ _c"> </span>extending<span class="_ _d"> </span>battery<span class="_ _c"> </span>life</span></div><div class="t m0 x12 h6 y17a ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Decrease<span class="_ _c"> </span>fan<span class="_ _d"> </span>noise<span class="_ _c"> </span>and<span class="_ _d"> </span>chip<span class="_ _c"> </span>heat</span></div><div class="t m0 x12 h6 y17b ffb fs4 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Prevent<span class="_ _c"> </span>high<span class="_ _d"> </span>frequency<span class="_ _c"> </span>damage</span></div><div class="t m0 x1 hc y17c ff4 fs7 fc0 sc0 ls0 ws0">Mo<span class="_ _6"></span>dern<span class="_ _d"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cesso<span class="_ _3"></span>rs<span class="_ _11"> </span>also<span class="_ _d"> </span>comprise<span class="_ _d"> </span>advanced<span class="_ _d"> </span>technologies<span class="_ _11"> </span>to<span class="_ _d"> </span>automatically<span class="_ _11"> </span><span class="ff1">raise<span class="_ _9"> </span>CPU</span></div><div class="t m0 x1 hc y17d ff1 fs7 fc0 sc0 ls0 ws0">op<span class="_ _6"></span>erating<span class="_ _11"> </span>frequency<span class="_ _9"> </span>when<span class="_ _9"> </span>demanding<span class="_ _9"> </span>tasks<span class="_ _11"> </span>are<span class="_ _11"> </span>running<span class="_ _11"> </span><span class="ff4">(e.g.<span class="_ _10"> </span>Intel<span class="ffb">®<span class="_ _d"> </span></span>T<span class="_ _3"></span>urbo</span></div><div class="t m0 x1 hc y17e ff4 fs7 fc0 sc0 ls0 ws0">Bo<span class="_ _6"></span>ost).<span class="_ _a"> </span>Such<span class="_ _11"> </span>technologies<span class="_ _d"> </span>allow<span class="_ _d"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cesso<span class="_ _3"></span>rs<span class="_ _11"> </span>to<span class="_ _d"> </span>run<span class="_ _11"> </span>with<span class="_ _d"> </span>the<span class="_ _11"> </span><span class="ffc">highest<span class="_ _d"> </span>p<span class="_ _6"></span>ossible<span class="_ _d"> </span>frequency</span></div><div class="t m0 x1 hc y17f ff4 fs7 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _11"> </span>limited<span class="_ _d"> </span>amount<span class="_ _11"> </span>of<span class="_ _d"> </span>time<span class="_ _11"> </span>dep<span class="_ _6"></span>ending<span class="_ _d"> </span>on<span class="_ _d"> </span>different<span class="_ _11"> </span>factors<span class="_ _d"> </span>lik<span class="_ _3"></span>e<span class="_ _11"> </span><span class="ffc">t<span class="_ _3"></span>yp<span class="_ _6"></span>e<span class="_ _d"> </span>of<span class="_ _11"> </span>wo<span class="_ _3"></span>rkload<span class="ff4">,</span></span></div><div class="t m0 x1 hc y180 ffc fs7 fc0 sc0 ls0 ws0">numb<span class="_ _6"></span>er<span class="_ _d"> </span>of<span class="_ _d"> </span>active<span class="_ _11"> </span>co<span class="_ _3"></span>res<span class="ff4">,<span class="_ _11"> </span></span>p<span class="_ _6"></span>o<span class="_ _3"></span>wer<span class="_ _d"> </span>consumption<span class="ff4">,<span class="_ _d"> </span></span>temp<span class="_ _6"></span>erature<span class="ff4">,<span class="_ _d"> </span>etc.</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">44/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf32" class="pf w0 h0" data-page-no="32"><div class="pc pc32 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stable<span class="_ _1d"> </span>CPU<span class="_ _1d"> </span>Perfo<span class="_ _3"></span>rmance<span class="_ _2d"> </span>2/4</div><div class="t m0 x1 hc y181 ff4 fs7 fc0 sc0 ls0 ws0">Get<span class="_ _d"> </span>CPU<span class="_ _11"> </span>info:</div><div class="t m0 x10 hc y182 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">CPU<span class="_ _d"> </span>characteristics<span class="_ _0"></span><span class="ff4">:</span></span></div><div class="t m0 x2c hf y183 ff6 fs7 fc0 sc0 ls0 ws0">lscpu</div><div class="t m0 x10 hc y184 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Monito<span class="_ _3"></span>r<span class="_ _11"> </span>CPU<span class="_ _d"> </span>clo<span class="_ _6"></span>cks<span class="_ _d"> </span>in<span class="_ _11"> </span>real-time<span class="_ _6"></span><span class="ff4">:</span></span></div><div class="t m0 x2c hf y185 ff6 fs7 fc0 sc0 ls0 ws0">cpupower<span class="_ _16"> </span>monitor<span class="_ _16"> </span>-m<span class="_ _16"> </span>Mperf</div><div class="t m0 x10 hc y186 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Get<span class="_ _d"> </span>CPU<span class="_ _11"> </span>clo<span class="_ _6"></span>cks<span class="_ _d"> </span>info<span class="_ _6"></span><span class="ff4">:</span></span></div><div class="t m0 x2c hf y187 ff6 fs7 fc0 sc0 ls0 ws0">cpupower<span class="_ _16"> </span>frequency-info</div><div class="t m0 x6 hc y188 ff4 fs7 fc0 sc0 ls0 ws0">see<span class="_ _d"> </span>“<span class="ffd">cpufreq<span class="_ _16"> </span>governors</span>”</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">45/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf33" class="pf w0 h0" data-page-no="33"><div class="pc pc33 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stable<span class="_ _1d"> </span>CPU<span class="_ _1d"> </span>Perfo<span class="_ _3"></span>rmance<span class="_ _2d"> </span>3/4</div><div class="t m0 x10 hc y5c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Disable<span class="_ _d"> </span>T<span class="_ _8"></span>urb<span class="_ _6"></span>o<span class="_ _d"> </span>Bo<span class="_ _6"></span>ost</span></div><div class="t m0 x2c h9 y68 ff6 fs4 fc0 sc0 ls0 ws0">echo<span class="_ _e"> </span>1<span class="_ _e"> </span>>><span class="_ _e"> </span>/sys/devices/system/cpu/intel<span class="_ _11"> </span>pstate/no<span class="_ _11"> </span>turbo</div><div class="t m0 x10 hc y189 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Disable<span class="_ _d"> </span>hyp<span class="_ _6"></span>er<span class="_ _d"> </span>threading</span></div><div class="t m0 x2c h9 y18a ff6 fs4 fc0 sc0 ls0 ws0">echo<span class="_ _e"> </span>0<span class="_ _e"> </span>><span class="_ _e"> </span>/sys/devices/system/cpu/cpuX/online</div><div class="t m0 x6 hc y18b ff4 fs7 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _11"> </span>through<span class="_ _d"> </span>BIOS</div><div class="t m0 x10 hc y18c ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Use<span class="_ _9"> </span><span class="ff4">“<span class="ffd">performance</span>”<span class="_ _11"> </span></span>scaling<span class="_ _d"> </span>governor</span></div><div class="t m0 x2c hf y18d ff6 fs7 fc0 sc0 ls0 ws0">sudo<span class="_ _16"> </span>cpupower<span class="_ _16"> </span>frequency-set<span class="_ _16"> </span>-g<span class="_ _16"> </span>performance</div><div class="t m0 x10 hc y18e ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Set<span class="_ _d"> </span>CPU<span class="_ _11"> </span>affinity<span class="_ _1d"> </span><span class="ff4">(CPU-Program<span class="_ _11"> </span>binding)<span class="_ _17"> </span><span class="ff6 fs4">taskset<span class="_ _e"> </span>-c<span class="_ _e"> </span><cpu<span class="_ _11"> </span>id><span class="_ _7"> </span><program></span></span></span></div><div class="t m0 x10 hc y18f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Set<span class="_ _d"> </span>process<span class="_ _11"> </span>prio<span class="_ _3"></span>rit<span class="_ _3"></span>y<span class="_ _4"> </span><span class="ff6 fs4">sudo<span class="_ _e"> </span>nice<span class="_ _e"> </span>-n<span class="_ _7"> </span>-5<span class="_ _e"> </span>taskset<span class="_ _e"> </span>-c<span class="_ _e"> </span><cpu<span class="_ _11"> </span>id><span class="_ _7"> </span><process></span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">46/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf34" class="pf w0 h0" data-page-no="34"><div class="pc pc34 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stable<span class="_ _1d"> </span>CPU<span class="_ _1d"> </span>Perfo<span class="_ _3"></span>rmance<span class="_ _2d"> </span>4/4</div><div class="t m0 x10 hc y190 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Disable<span class="_ _d"> </span>address<span class="_ _11"> </span>space<span class="_ _d"> </span>randomization</span></div><div class="t m0 x2c h9 y191 ff6 fs4 fc0 sc0 ls0 ws0">echo<span class="_ _e"> </span>0<span class="_ _e"> </span>|<span class="_ _e"> </span>sudo<span class="_ _e"> </span>tee<span class="_ _7"> </span>/proc/sys/kernel/randomize<span class="_ _11"> </span>va<span class="_ _11"> </span>space</div><div class="t m0 x10 hc y192 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Drop<span class="_ _d"> </span>file<span class="_ _11"> </span>system<span class="_ _d"> </span>cache<span class="_ _1d"> </span><span class="ff4">(if<span class="_ _11"> </span>the<span class="_ _d"> </span>b<span class="_ _6"></span>enchma<span class="_ _3"></span>rk<span class="_ _11"> </span>involves<span class="_ _d"> </span>IO<span class="_ _11"> </span>ops)</span></span></div><div class="t m0 x2c h9 y193 ff6 fs4 fc0 sc0 ls0 ws0">echo<span class="_ _e"> </span>3<span class="_ _e"> </span>|<span class="_ _e"> </span>sudo<span class="_ _e"> </span>tee<span class="_ _7"> </span>/proc/sys/vm/drop<span class="_ _11"> </span>caches;<span class="_ _e"> </span>sync</div><div class="t m0 x10 hc y194 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">CPU<span class="_ _d"> </span>isolation</span></div><div class="t m0 x6 hc y195 ff4 fs7 fc0 sc0 ls0 ws0">don’t<span class="_ _d"> </span>schedule<span class="_ _11"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cess<span class="_ _d"> </span>and<span class="_ _11"> </span>don’t<span class="_ _d"> </span>run<span class="_ _11"> </span>kernels<span class="_ _d"> </span>code<span class="_ _11"> </span>on<span class="_ _11"> </span>the<span class="_ _d"> </span>selected<span class="_ _11"> </span>CPUs.<span class="_ _10"> </span>GRUB</div><div class="t m0 x6 hc y196 ff4 fs7 fc0 sc0 ls0 ws0">options:<span class="_ _4"> </span><span class="ff6 fs4">isolcpus=<cpu<span class="_ _11"> </span>ids>,rcu<span class="_ _11"> </span>nocbs=<cpu<span class="_ _11"> </span>ids></span></div><div class="t m0 x12 hd y197 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">How<span class="_ _a"> </span>to<span class="_ _10"> </span>get<span class="_ _a"> </span>consistent<span class="_ _a"> </span>results<span class="_ _10"> </span>when<span class="_ _a"> </span>benchmarking<span class="_ _a"> </span>on<span class="_ _10"> </span>Linux?</span></div><div class="t m0 x12 hd y198 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">How<span class="_ _a"> </span>to<span class="_ _10"> </span>run<span class="_ _a"> </span>stable<span class="_ _a"> </span>benchmarks</span></div><div class="t m0 x12 hd y199 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Best<span class="_ _a"> </span>Practices<span class="_ _10"> </span>When<span class="_ _a"> </span>Benchmarking<span class="_ _a"> </span>CUDA<span class="_ _10"> </span>Applications</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">47/76</div><a class="l" href="https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:38.452000px;width:270.311000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://archive.fosdem.org/2017/schedule/event/python_stable_benchmark/attachments/slides/1813/export/events/attachments/python_stable_benchmark/slides/1813/howto_run_stable_benchmarks.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:25.849000px;width:133.798000px;height:7.373000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:9.261000px;width:237.360000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf35" class="pf w0 h0" data-page-no="35"><div class="pc pc35 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Multi-Threads<span class="_ _1d"> </span>Considerations</div><div class="t m0 x10 hc y19a ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _1a"> </span><span class="ffd">numactl<span class="_ _7"> </span>--interleave=all</span></div><div class="t m0 x6 hc y19b ffd fs7 fc0 sc0 ls0 ws0">NUMA<span class="ff4">:<span class="_ _d"> </span>Non-Uniform<span class="_ _d"> </span>Memo<span class="_ _3"></span>ry<span class="_ _11"> </span>A<span class="_ _3"></span>ccess<span class="_ _11"> </span>(e.g.<span class="_ _10"> </span>multi-so<span class="_ _6"></span>ck<span class="_ _3"></span>et<span class="_ _d"> </span>system)</span></div><div class="t m0 x6 hc y19c ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>default<span class="_ _11"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r<span class="_ _d"> </span>is<span class="_ _11"> </span>to<span class="_ _d"> </span>allo<span class="_ _6"></span>cate<span class="_ _d"> </span>memory<span class="_ _d"> </span>in<span class="_ _d"> </span>the<span class="_ _11"> </span>same<span class="_ _d"> </span>no<span class="_ _6"></span>de<span class="_ _d"> </span>as<span class="_ _11"> </span>a<span class="_ _11"> </span>thread<span class="_ _d"> </span>is</div><div class="t m0 x6 hc y19d ff4 fs7 fc0 sc0 ls0 ws0">scheduled<span class="_ _d"> </span>to<span class="_ _11"> </span>run<span class="_ _d"> </span>on,<span class="_ _11"> </span>and<span class="_ _d"> </span>this<span class="_ _11"> </span>wo<span class="_ _3"></span>rks<span class="_ _d"> </span>well<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _d"> </span>sma<span class="_ _6"></span>ll<span class="_ _d"> </span>amounts<span class="_ _d"> </span>of<span class="_ _11"> </span>memo<span class="_ _3"></span>ry<span class="_ _8"></span>.<span class="_ _10"> </span>How<span class="_ _3"></span>ever,</div><div class="t m0 x6 hc y19e ff4 fs7 fc0 sc0 ls0 ws0">when<span class="_ _d"> </span>you<span class="_ _d"> </span>w<span class="_ _3"></span>ant<span class="_ _11"> </span>to<span class="_ _d"> </span>allo<span class="_ _6"></span>cate<span class="_ _d"> </span>more<span class="_ _d"> </span>than<span class="_ _d"> </span>a<span class="_ _11"> </span>single<span class="_ _d"> </span>no<span class="_ _6"></span>de<span class="_ _d"> </span>memory<span class="_ _8"></span>,<span class="_ _d"> </span>it<span class="_ _d"> </span>is<span class="_ _11"> </span>no<span class="_ _11"> </span>longer</div><div class="t m0 x6 hc y19f ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _6"></span>ossible.<span class="_ _a"> </span>This<span class="_ _11"> </span>option<span class="_ _d"> </span>sets<span class="_ _11"> </span>interleaved<span class="_ _d"> </span>memory<span class="_ _d"> </span>allo<span class="_ _6"></span>cations<span class="_ _d"> </span>among<span class="_ _11"> </span><span class="ffd">NUMA<span class="_ _d"> </span></span>no<span class="_ _6"></span>des</div><div class="t m0 x10 hc y1a0 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _1a"> </span><span class="ffd">export<span class="_ _7"> </span>OMP<span class="_ _9"> </span>NUM<span class="_ _9"> </span>THREADS=96<span class="_ _17"> </span><span class="ff4">Set<span class="_ _11"> </span>the<span class="_ _11"> </span>numb<span class="_ _6"></span>er<span class="_ _d"> </span>of<span class="_ _d"> </span>threads<span class="_ _11"> </span>in<span class="_ _d"> </span>an<span class="_ _11"> </span>Op<span class="_ _6"></span>enMP</span></span></div><div class="t m0 x6 hc y1a1 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">48/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf36" class="pf w0 h0" data-page-no="36"><div class="pc pc36 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Program<span class="_ _1d"> </span>Memo<span class="_ _3"></span>ry<span class="_ _1d"> </span>Lay<span class="_ _3"></span>out</div><div class="t m0 x1 hc y16d ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _d"> </span>small<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>change<span class="_ _d"> </span>mo<span class="_ _6"></span>difies<span class="_ _d"> </span>the<span class="_ _11"> </span>memory<span class="_ _c"> </span>program<span class="_ _d"> </span>lay<span class="_ _3"></span>out</div><div class="t m0 x1 hc y16e ffa fs7 fc0 sc0 ls0 ws0">→<span class="_ _d"> </span><span class="ff4">large<span class="_ _d"> </span>impact<span class="_ _d"> </span>on<span class="_ _11"> </span>cache<span class="_ _d"> </span>(up<span class="_ _11"> </span>to<span class="_ _d"> </span>40%)</span></div><div class="t m0 x10 hc y16f ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Linking</span></div><div class="t m0 x11 hc y170 ff4 fs7 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>link<span class="_ _d"> </span>order<span class="_ _d"> </span><span class="ffa">→<span class="_ _d"> </span></span>changes<span class="_ _11"> </span>function<span class="_ _d"> </span>addresses</div><div class="t m0 x11 hc y171 ff4 fs7 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>upgrade<span class="_ _d"> </span>a<span class="_ _11"> </span>libra<span class="_ _3"></span>ry</div><div class="t m0 x10 hc y1a2 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Environment<span class="_ _9"> </span>V<span class="_ _3"></span>ariable<span class="_ _11"> </span>Size<span class="ff4">:<span class="_ _10"> </span>moves<span class="_ _d"> </span>the<span class="_ _11"> </span>p<span class="_ _3"></span>rogram<span class="_ _11"> </span>stack</span></span></div><div class="t m0 x11 hc y1a3 ff4 fs7 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>run<span class="_ _d"> </span>in<span class="_ _11"> </span>a<span class="_ _d"> </span>new<span class="_ _11"> </span>directory</div><div class="t m0 x11 hc y1a4 ff4 fs7 fc0 sc0 ls0 ws0">-<span class="_ _7"> </span>change<span class="_ _d"> </span>username</div><div class="t m0 x1 hd y1a5 ffe fs6 fc7 sc0 ls0 ws0">•<span class="ff9">Performance<span class="_ _a"> </span>Matters<span class="fff">,<span class="_ _c"> </span><span class="ff14">E.<span class="_ _c"> </span>Berger</span>,<span class="_ _c"> </span>CppCon20</span></span></div><div class="t m0 x1 hd y1a6 ffe fs6 fc7 sc0 ls0 ws0">•<span class="ff9">Producing<span class="_ _a"> </span>Wrong<span class="_ _a"> </span>Data<span class="_ _10"> </span>Without<span class="_ _a"> </span>Doing<span class="_ _10"> </span>Anything<span class="_ _a"> </span>Obviously<span class="_ _a"> </span>Wrong!<span class="fff">,<span class="_ _c"> </span><span class="ff14">Mytko<span class="_ _3"></span>wicz<span class="_ _c"> </span>et<span class="_ _c"> </span>al.<span class="fff">,</span></span></span></span></div><div class="t m0 x1 hd y1a7 fff fs6 fc7 sc0 ls0 ws0">ASPLOS’09</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">49/76</div><a class="l" href="https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf"><div class="d m1" style="border-style:none;position:absolute;left:34.916000px;bottom:32.296000px;width:178.986000px;height:11.407000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw"><div class="d m1" style="border-style:none;position:absolute;left:34.518000px;bottom:19.444000px;width:391.675000px;height:10.212000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:5.053000px;width:47.890000px;height:12.000000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf37" class="pf w0 h0" data-page-no="37"><div class="pc pc37 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Measurement<span class="_ _1d"> </span>Overhead</div><div class="t m0 x1 hc y1a8 ff1 fs7 fc0 sc0 ls0 ws0">Time-measuring<span class="_ _11"> </span>functions<span class="_ _9"> </span>could<span class="_ _9"> </span>intro<span class="_ _6"></span>duce<span class="_ _9"> </span>significant<span class="_ _11"> </span>overhead<span class="_ _9"> </span>for<span class="_ _11"> </span>small</div><div class="t m0 x1 hc y1a9 ff1 fs7 fc0 sc0 ls0 ws0">computation</div><div class="t m0 xb hc y1aa ffd fs7 fc0 sc0 ls0 ws0">std::chrono::high<span class="_ _9"> </span>resolution<span class="_ _9"> </span>clock::now()<span class="_ _c"> </span><span class="ff4">/</span></div><div class="t m0 xb hc y1ab ffd fs7 fc0 sc0 ls0 ws0">std::chrono::system<span class="_ _9"> </span>clock::now()<span class="_ _17"> </span><span class="ff4">rely<span class="_ _d"> </span>on<span class="_ _11"> </span>libra<span class="_ _3"></span>ry/OS-p<span class="_ _3"></span>rovided<span class="_ _11"> </span>functions<span class="_ _d"> </span>to</span></div><div class="t m0 x1 hc y1ac ff4 fs7 fc0 sc0 ls0 ws0">retrieve<span class="_ _d"> </span>timestamps<span class="_ _11"> </span>(e.g.<span class="_ _4"> </span><span class="ffd">clock<span class="_ _9"> </span>gettime<span class="_ _c"> </span></span>)<span class="_ _d"> </span>and<span class="_ _11"> </span>their<span class="_ _d"> </span>execution<span class="_ _11"> </span>can<span class="_ _d"> </span>take<span class="_ _d"> </span>several<span class="_ _d"> </span>clo<span class="_ _6"></span>ck</div><div class="t m0 x1 hc y1ad ff4 fs7 fc0 sc0 ls0 ws0">cycles</div><div class="t m0 x1 hc y1ae ff4 fs7 fc0 sc0 ls0 ws0">Consider<span class="_ _d"> </span>using<span class="_ _11"> </span>a<span class="_ _d"> </span><span class="ff1">b<span class="_ _6"></span>enchma<span class="_ _3"></span>rking<span class="_ _9"> </span>framewo<span class="_ _3"></span>rk<span class="ff4">,<span class="_ _d"> </span>such<span class="_ _11"> </span>as<span class="_ _d"> </span><span class="ffd">Google<span class="_ _16"> </span>Benchmark<span class="_ _11"> </span></span>o<span class="_ _3"></span>r</span></span></div><div class="t m0 x1 hc y1af ffd fs7 fc0 sc0 ls0 ws0">nanobench<span class="_ _d"> </span><span class="ff4">(<span class="_ _c"> </span></span>std::chrono<span class="_ _17"> </span><span class="ff4">based),<span class="_ _d"> </span>to<span class="_ _11"> </span>retrieve<span class="_ _d"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re<span class="_ _11"> </span>counters<span class="_ _d"> </span>and<span class="_ _11"> </span>get<span class="_ _d"> </span>basic</span></div><div class="t m0 x1 hc y1b0 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rofiling<span class="_ _11"> </span>info</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">50/76</div><a class="l" href="https://github.com/google/benchmark"><div class="d m1" style="border-style:none;position:absolute;left:274.744000px;bottom:69.107000px;width:93.629000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://nanobench.ankerl.com/"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:52.961000px;width:53.538000px;height:14.505000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf38" class="pf w0 h0" data-page-no="38"><div class="pc pc38 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _1d"> </span>Optimizations</div><div class="t m0 x1 hc y1b1 ff1 fs7 fc0 sc0 ls0 ws0">Compiler<span class="_ _11"> </span>optimizations<span class="_ _9"> </span>could<span class="_ _9"> </span>distort<span class="_ _11"> </span>the<span class="_ _9"> </span>actual<span class="_ _9"> </span>b<span class="_ _6"></span>enchma<span class="_ _3"></span>rk</div><div class="t m0 x10 hc y1b2 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Dead<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>elimination:<span class="_ _e"> </span><span class="ff4">the<span class="_ _11"> </span>compiler<span class="_ _d"> </span>discards<span class="_ _d"> </span>co<span class="_ _6"></span>de<span class="_ _d"> </span>that<span class="_ _d"> </span>do<span class="_ _6"></span>es<span class="_ _d"> </span>not<span class="_ _11"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rm<span class="_ _d"> </span>“useful”</span></span></div><div class="t m0 x6 hc y1b3 ff4 fs7 fc0 sc0 ls0 ws0">computation</div><div class="t m0 x10 hc y1b4 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Constant<span class="_ _d"> </span>propagation/Loop<span class="_ _11"> </span>optimization:<span class="_ _e"> </span><span class="ff4">the<span class="_ _d"> </span>compiler<span class="_ _11"> </span>is<span class="_ _d"> </span>able<span class="_ _11"> </span>to<span class="_ _d"> </span>pre-compute<span class="_ _d"> </span>the</span></span></div><div class="t m0 x6 hc y1b5 ff4 fs7 fc0 sc0 ls0 ws0">result<span class="_ _d"> </span>of<span class="_ _11"> </span>simple<span class="_ _d"> </span>co<span class="_ _6"></span>des</div><div class="t m0 x10 hc y1b6 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffc">Instruction<span class="_ _d"> </span>order:<span class="_ _10"> </span><span class="ff4">the<span class="_ _d"> </span>compiler<span class="_ _11"> </span>can<span class="_ _11"> </span>even<span class="_ _d"> </span>move<span class="_ _11"> </span>the<span class="_ _d"> </span>time-measuring<span class="_ _11"> </span>functions</span></span></div><div class="t m0 x10 ha y1b7 ff9 fs6 fc7 sc0 ls0 ws0">Microbenchmarking<span class="_ _a"> </span>Is<span class="_ _a"> </span>Tricky</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">51/76</div><a class="l" href="https://lucisqr.substack.com/p/microbenchmarking-is-tricky"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:4.635000px;width:129.091000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf39" class="pf w0 h0" data-page-no="39"><div class="pc pc39 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Other<span class="_ _1d"> </span>Considerations</div><div class="t m0 x1 hc y1b8 ff1 fs7 fc0 sc0 ls0 ws0">The<span class="_ _11"> </span>actual<span class="_ _9"> </span>values<span class="_ _9"> </span>for<span class="_ _11"> </span>a<span class="_ _9"> </span>b<span class="_ _6"></span>enchma<span class="_ _3"></span>rk<span class="_ _9"> </span>could<span class="_ _11"> </span>significantly<span class="_ _9"> </span>affect<span class="_ _9"> </span>the<span class="_ _9"> </span>results<span class="ff4">.<span class="_ _10"> </span>F<span class="_ _3"></span>or</span></div><div class="t m0 x1 hc y1b9 ff4 fs7 fc0 sc0 ls0 ws0">instance,<span class="_ _d"> </span>a<span class="_ _11"> </span>GEMM<span class="_ _d"> </span>op<span class="_ _6"></span>eration<span class="_ _d"> </span>could<span class="_ _11"> </span>sho<span class="_ _3"></span>w<span class="_ _11"> </span>2X<span class="_ _d"> </span>p<span class="_ _6"></span>erformance<span class="_ _d"> </span>betw<span class="_ _3"></span>een<span class="_ _11"> </span>matrices<span class="_ _d"> </span>filled<span class="_ _11"> </span>with</div><div class="t m0 x1 hc y1ba ff4 fs7 fc0 sc0 ls0 ws0">zeros<span class="_ _d"> </span>and<span class="_ _11"> </span>random<span class="_ _d"> </span>values<span class="_ _11"> </span>due<span class="_ _d"> </span>to<span class="_ _11"> </span>the<span class="_ _d"> </span>effect<span class="_ _11"> </span>on<span class="_ _11"> </span>p<span class="_ _6"></span>o<span class="_ _3"></span>w<span class="_ _3"></span>er<span class="_ _11"> </span>consumption</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">52/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3a" class="pf w0 h0" data-page-no="3a"><div class="pc pc3a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>1/6</div><div class="t m0 x1 hc y1bb ff4 fs7 fc0 sc0 ls0 ws0">After<span class="_ _d"> </span>extracting<span class="_ _11"> </span>and<span class="_ _d"> </span>collecting<span class="_ _11"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _d"> </span>results,<span class="_ _11"> </span>it<span class="_ _d"> </span>is<span class="_ _11"> </span>fundamental<span class="_ _11"> </span>to</div><div class="t m0 x1 hc y1bc ff4 fs7 fc0 sc0 ls0 ws0">rep<span class="_ _6"></span>o<span class="_ _3"></span>rt/summa<span class="_ _3"></span>rize<span class="_ _11"> </span>them<span class="_ _d"> </span>in<span class="_ _11"> </span>a<span class="_ _d"> </span>wa<span class="_ _3"></span>y<span class="_ _11"> </span>to<span class="_ _d"> </span>fully<span class="_ _11"> </span>understand<span class="_ _d"> </span>the<span class="_ _11"> </span>exp<span class="_ _6"></span>eriment,<span class="_ _d"> </span>p<span class="_ _3"></span>rovide</div><div class="t m0 x1 hc y1bd ff4 fs7 fc0 sc0 ls0 ws0">interp<span class="_ _3"></span>retable<span class="_ _11"> </span>insights,<span class="_ _d"> </span>ensure<span class="_ _11"> </span>reliability<span class="_ _5"></span>,<span class="_ _11"> </span>and<span class="_ _11"> </span>compa<span class="_ _3"></span>re<span class="_ _11"> </span>different<span class="_ _d"> </span>observations,<span class="_ _11"> </span>e.g.<span class="_ _10"> </span>co<span class="_ _6"></span>des,</div><div class="t m0 x1 hc y1be ff4 fs7 fc0 sc0 ls0 ws0">algo<span class="_ _3"></span>rithms,<span class="_ _11"> </span>systems,<span class="_ _d"> </span>etc.</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">53/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3b" class="pf w0 h0" data-page-no="3b"><div class="pc pc3b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>2/6</div><div class="t m0 x28 hd y1bf ff1 fs6 fc0 sc0 ls0 ws0">Metric<span class="_ _2f"> </span>F<span class="_ _3"></span>ormula<span class="_ _30"> </span>Description</div><div class="t m0 x33 hd y1c0 ff1 fs6 fc0 sc0 ls0 ws0">Arithmetic<span class="_ _c"> </span>mean<span class="_ _31"> </span><span class="fff">¯<span class="_ _32"></span><span class="ff14">x<span class="_ _d"> </span><span class="fff">=</span></span></span></div><div class="t m0 x34 h11 y1c1 ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x35 h12 y1c2 ff16 fs4 fc0 sc0 ls0 ws0">P</div><div class="t m0 x35 h13 y1c3 ff15 fs8 fc0 sc0 ls0 ws0">i<span class="_ _6"> </span><span class="ff5">=1</span></div><div class="t m0 x36 h14 y1c0 ff14 fs6 fc0 sc0 ls0 ws0">x</div><div class="t m0 x37 h11 y1c4 ff15 fs8 fc0 sc0 ls0 ws0">i</div><div class="t m0 x38 hd y1c0 fff fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>or<span class="_ _21"> </span>sum<span class="_ _6"></span>ma<span class="_ _3"></span>rizing<span class="_ _c"> </span>costs,<span class="_ _21"> </span>e.g.<span class="_ _1d"> </span>exec.<span class="_ _9"> </span>times,<span class="_ _c"> </span>floating<span class="_ _c"> </span>point<span class="_ _c"> </span>ops,<span class="_ _c"> </span>etc.</div><div class="t m0 x33 hd y1c5 ff1 fs6 fc0 sc0 ls0 ws0">Ha<span class="_ _3"></span>rmonic<span class="_ _d"> </span>mean</div><div class="t m0 x39 h14 y1c6 ff14 fs6 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3a h11 y1c7 ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x30 h12 y1c8 ff16 fs4 fc0 sc0 ls0 ws0">P</div><div class="t m0 x30 h13 y1c9 ff15 fs8 fc0 sc0 ls0 ws0">i<span class="_ _6"> </span><span class="ff5">=1</span></div><div class="t m0 x34 hd y1ca fff fs6 fc0 sc0 ls0 ws0">1</div><div class="t m0 x34 h14 y1cb ff14 fs6 fc0 sc0 ls0 ws0">x</div><div class="t m0 x3b h11 y1cc ff15 fs8 fc0 sc0 ls0 ws0">i</div><div class="t m0 x38 hd y1c5 fff fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>or<span class="_ _21"> </span>sum<span class="_ _6"></span>ma<span class="_ _3"></span>rizing<span class="_ _c"> </span>rates,<span class="_ _21"> </span>e.g.<span class="_ _1d"> </span>flop/s</div><div class="t m0 x33 hd y1cd ff1 fs6 fc0 sc0 ls0 ws0">Geometric<span class="_ _c"> </span>mean</div><div class="t m0 x30 h15 y1ce ff15 fs9 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3c h12 y1cf ff16 fs4 fc0 sc0 ls0 ws0">r</div><div class="t m0 x35 h11 y1d0 ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3d h12 y1d1 ff16 fs4 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x3d h13 y1d2 ff15 fs8 fc0 sc0 ls0 ws0">i<span class="_ _6"> </span><span class="ff5">=1</span></div><div class="t m0 x3b h14 y1cd ff14 fs6 fc0 sc0 ls0 ws0">x</div><div class="t m0 x36 h11 y1d3 ff15 fs8 fc0 sc0 ls0 ws0">i</div><div class="t m0 x38 hd y1d4 fff fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>or<span class="_ _21"> </span>sum<span class="_ _6"></span>ma<span class="_ _3"></span>rizing<span class="_ _c"> </span>rates.<span class="_ _9"> </span>Ha<span class="_ _3"></span>rmonic<span class="_ _c"> </span>mean<span class="_ _c"> </span>should<span class="_ _c"> </span>be<span class="_ _c"> </span>preferred.</div><div class="t m0 x38 hd y1d5 fff fs6 fc0 sc0 ls0 ws0">Commonly<span class="_ _c"> </span>used<span class="_ _21"> </span>for<span class="_ _21"> </span>comparing<span class="_ _c"> </span>speedup</div><div class="t m0 x33 hd y1d6 ff1 fs6 fc0 sc0 ls0 ws0">Standa<span class="_ _3"></span>rd<span class="_ _d"> </span>deviation</div><div class="t m0 x3e hd y1d7 ff17 fs6 fc0 sc0 ls0 ws0">σ<span class="_ _21"> </span><span class="fff">=</span></div><div class="t m0 x3d h15 y1d8 ff15 fs9 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3f h12 y1d9 ff16 fs4 fc0 sc0 ls0 ws0">P</div><div class="t m0 x3a h16 y1da ff15 fs9 fc0 sc0 ls0 ws0">i<span class="_ _6"> </span><span class="ff5">=1</span></div><div class="t m0 x34 h13 y1db ff5 fs8 fc0 sc0 ls0 ws0">(<span class="ff15">x</span></div><div class="t m0 x40 h15 y1dc ff15 fs9 fc0 sc0 ls0 ws0">i</div><div class="t m0 x36 h13 y1db ff18 fs8 fc0 sc0 ls0 ws0">−<span class="ff15">x<span class="_ _6"> </span><span class="ff5">)</span></span></div><div class="t m0 x41 h16 y1dd ff5 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x34 h13 y1de ff15 fs8 fc0 sc0 ls0 ws0">n<span class="ff18">−<span class="ff5">1</span></span></div><div class="t m0 x38 hd y1d6 fff fs6 fc0 sc0 ls0 ws0">Measure<span class="_ _c"> </span>of<span class="_ _21"> </span>the<span class="_ _c"> </span>spread<span class="_ _21"> </span>of<span class="_ _c"> </span>normally<span class="_ _21"> </span>distributed<span class="_ _c"> </span>samples</div><div class="t m0 x33 hd y1df ff1 fs6 fc0 sc0 ls0 ws0">Co<span class="_ _6"></span>efficient<span class="_ _c"> </span>of</div><div class="t m0 x33 hd y1e0 ff1 fs6 fc0 sc0 ls0 ws0">V<span class="_ _3"></span>ariation</div><div class="t m0 x3c hd y1e1 ff14 fs6 fc0 sc0 ls0 ws0">std<span class="_ _0"></span><span class="ff17">.</span>dev</div><div class="t m0 x27 hd y1e2 ff14 fs6 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>rith<span class="_ _6"></span><span class="ff17">.</span>mean</div><div class="t m0 x38 hd y1df fff fs6 fc0 sc0 ls0 ws0">Rep<span class="_ _3"></span>resents<span class="_ _c"> </span>the<span class="_ _c"> </span>stability<span class="_ _21"> </span>of<span class="_ _c"> </span>a<span class="_ _c"> </span>set<span class="_ _c"> </span>of<span class="_ _21"> </span>normally<span class="_ _21"> </span>distributed</div><div class="t m0 x38 hd y1e0 fff fs6 fc0 sc0 ls0 ws0">measurement<span class="_ _c"> </span>results.<span class="_ _9"> </span>No<span class="_ _3"></span>rmalized<span class="_ _c"> </span>standard<span class="_ _21"> </span>deviation</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">54/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3c" class="pf w0 h0" data-page-no="3c"><div class="pc pc3c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>3/6</div><div class="t m0 x6 hd y1bf ff1 fs6 fc0 sc0 ls0 ws0">Metric<span class="_ _33"> </span>F<span class="_ _3"></span>ormula<span class="_ _34"> </span>Description</div><div class="t m0 x33 hd y1e3 ff1 fs6 fc0 sc0 ls0 ws0">Confidence<span class="_ _21"> </span>intervals</div><div class="t m0 x33 hd y1e4 ff1 fs6 fc0 sc0 ls0 ws0">of<span class="_ _c"> </span>the<span class="_ _d"> </span>mean</div><div class="t m0 x30 hd y1e5 ff14 fs6 fc0 sc0 ls0 ws0">z<span class="_ _c"> </span><span class="fff">=<span class="_ _21"> </span></span>t</div><div class="t m0 x36 h12 y1e6 ff16 fs4 fc0 sc0 ls0 ws0"></div><div class="t m0 x37 hd y1e5 ff14 fs6 fc0 sc0 ls0 ws0">n<span class="_ _35"> </span><span class="ff19">−<span class="_ _35"> </span><span class="fff">1<span class="ff17">,</span></span></span></div><div class="t m0 x42 h17 y1e7 ff1a fs8 fc0 sc0 ls0 ws0">α</div><div class="t m0 x42 h13 y1e8 ff5 fs8 fc0 sc0 ls0 ws0">2</div><div class="t m0 x43 h12 y1e6 ff16 fs4 fc0 sc0 ls0 ws0"></div><div class="t m0 x25 hd y1e9 ff14 fs6 fc0 sc0 ls0 ws0">CI<span class="_ _c"> </span><span class="fff">=</span></div><div class="t m0 x3d h12 y1ea ff16 fs4 fc0 sc0 ls0 ws0">h</div><div class="t m0 x34 hd y1e9 fff fs6 fc0 sc0 ls0 ws0">¯<span class="_ _32"></span><span class="ff14">x<span class="_ _21"> </span><span class="ff19">−</span></span></div><div class="t m0 x44 h11 y1eb ff15 fs8 fc0 sc0 ls0 ws0">z<span class="_ _6"> </span><span class="ff1a">σ</span></div><div class="t m0 x44 h18 y1ec ff18 fs8 fc0 sc0 ls0 ws0">√</div><div class="t m0 x45 h11 y1ed ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x46 hd y1e9 ff17 fs6 fc0 sc0 ls0 ws0">,<span class="_ _36"> </span><span class="fff">¯<span class="_ _32"></span><span class="ff14">x<span class="_ _21"> </span><span class="fff">+</span></span></span></div><div class="t m0 x47 h11 y1eb ff15 fs8 fc0 sc0 ls0 ws0">z<span class="_ _6"> </span><span class="ff1a">σ</span></div><div class="t m0 x47 h18 y1ec ff18 fs8 fc0 sc0 ls0 ws0">√</div><div class="t m0 x48 h11 y1ed ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x49 h12 y1ea ff16 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x4a hd y1c0 fff fs6 fc0 sc0 ls0 ws0">Measure<span class="_ _c"> </span>of<span class="_ _21"> </span>reliability<span class="_ _21"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>exp<span class="_ _6"></span>eriment.<span class="_ _11"> </span>The<span class="_ _c"> </span>concept</div><div class="t m0 x4a hd y1e3 fff fs6 fc0 sc0 ls0 ws0">is<span class="_ _c"> </span>interp<span class="_ _3"></span>reted<span class="_ _c"> </span>as<span class="_ _c"> </span>the<span class="_ _c"> </span>p<span class="_ _3"></span>robability<span class="_ _21"> </span>(e.g.<span class="_ _9"> </span><span class="ff17">α<span class="_ _21"> </span></span>=<span class="_ _21"> </span>95%)<span class="_ _21"> </span>that</div><div class="t m0 x4a hd y1e4 fff fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>observed<span class="_ _21"> </span>confidential<span class="_ _c"> </span>interval<span class="_ _c"> </span>contains<span class="_ _c"> </span>the<span class="_ _c"> </span>true</div><div class="t m0 x4a hd y1ee fff fs6 fc0 sc0 ls0 ws0">mean</div><div class="t m0 x33 hd y1ef ff1 fs6 fc0 sc0 ls0 ws0">Median</div><div class="t m0 x4b hd y1f0 fff fs6 fc0 sc0 ls0 ws0">value<span class="_ _c"> </span>at<span class="_ _21"> </span>p<span class="_ _6"></span>osition<span class="_ _c"> </span><span class="ff14">n<span class="ff17">/</span></span>2</div><div class="t m0 x23 hd y1f1 fff fs6 fc0 sc0 ls0 ws0">after<span class="_ _c"> </span>so<span class="_ _3"></span>rting<span class="_ _c"> </span>all<span class="_ _c"> </span>data</div><div class="t m0 x4a hd y1f0 fff fs6 fc0 sc0 ls0 ws0">Rank<span class="_ _c"> </span>measures<span class="_ _21"> </span>are<span class="_ _21"> </span>more<span class="_ _c"> </span>robust<span class="_ _21"> </span>with<span class="_ _c"> </span>regard<span class="_ _21"> </span>to</div><div class="t m0 x4a hd y1f1 fff fs6 fc0 sc0 ls0 ws0">outliers<span class="_ _c"> </span>but<span class="_ _21"> </span>do<span class="_ _c"> </span>not<span class="_ _c"> </span>consider<span class="_ _c"> </span>all<span class="_ _c"> </span>measured<span class="_ _21"> </span>values</div><div class="t m0 x33 hd y1f2 ff1 fs6 fc0 sc0 ls0 ws0">Quantile:</div><div class="t m0 x33 hd y1f3 ff1 fs6 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>ercentile/Quartile</div><div class="t m0 x4c hd y1f2 fff fs6 fc0 sc0 ls0 ws0">value<span class="_ _21"> </span>at<span class="_ _21"> </span>a<span class="_ _c"> </span>given<span class="_ _21"> </span>position</div><div class="t m0 x23 hd y1f3 fff fs6 fc0 sc0 ls0 ws0">after<span class="_ _c"> </span>so<span class="_ _3"></span>rting<span class="_ _c"> </span>all<span class="_ _c"> </span>data</div><div class="t m0 x4a hd y1f4 fff fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>percentiles/quartiles<span class="_ _21"> </span>provide<span class="_ _21"> </span>information<span class="_ _c"> </span>about</div><div class="t m0 x4a hd y1f5 fff fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>sp<span class="_ _3"></span>read<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>data<span class="_ _21"> </span>and<span class="_ _c"> </span>the<span class="_ _c"> </span>skew.<span class="_ _11"> </span>It<span class="_ _c"> </span>indicates<span class="_ _c"> </span>the</div><div class="t m0 x4a hd y1f6 fff fs6 fc0 sc0 ls0 ws0">value<span class="_ _c"> </span>below<span class="_ _21"> </span>which<span class="_ _c"> </span>a<span class="_ _c"> </span>given<span class="_ _c"> </span>p<span class="_ _6"></span>ercentage<span class="_ _21"> </span>of<span class="_ _c"> </span>data<span class="_ _c"> </span>falls</div><div class="t m0 x33 hd y1f7 ff1 fs6 fc0 sc0 ls0 ws0">Minumum/</div><div class="t m0 x33 hd y1f8 ff1 fs6 fc0 sc0 ls0 ws0">Maximum</div><div class="t m0 x30 hd y1f9 fff fs6 fc0 sc0 ls0 ws0">min<span class="_ _37"> </span><span class="ff17">/<span class="_ _37"> </span></span>max</div><div class="t m0 x4d h11 y1fa ff15 fs8 fc0 sc0 ls0 ws0">n</div><div class="t m0 x4d h13 y1fb ff15 fs8 fc0 sc0 ls0 ws0">i<span class="_ _6"> </span><span class="ff5">=1</span></div><div class="t m0 x38 hd y1f9 fff fs6 fc0 sc0 ls0 ws0">(<span class="ff14">x</span></div><div class="t m0 x4e h11 y1fc ff15 fs8 fc0 sc0 ls0 ws0">i</div><div class="t m0 x4f hd y1f9 fff fs6 fc0 sc0 ls0 ws0">)</div><div class="t m0 x4a hd y1f7 fff fs6 fc0 sc0 ls0 ws0">Provide<span class="_ _c"> </span>the<span class="_ _21"> </span>low<span class="_ _3"></span>er/upp<span class="_ _6"></span>er<span class="_ _c"> </span>bounds<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>data,<span class="_ _21"> </span>namely</div><div class="t m0 x4a hd y1f8 fff fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>range<span class="_ _21"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>values</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">55/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3d" class="pf w0 h0" data-page-no="3d"><div class="pc pc3d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>4/6</div><div class="t m0 x36 hd y1fd ff1 fs6 fc0 sc0 ls0 ws0">Confidence<span class="_ _c"> </span>Interval<span class="_ _38"> </span>Z</div><div class="t m0 x44 hd y1fe fff fs6 fc0 sc0 ls0 ws0">80%<span class="_ _39"> </span>1.282</div><div class="t m0 x44 hd y1ff fff fs6 fc0 sc0 ls0 ws0">85%<span class="_ _39"> </span>1.440</div><div class="t m0 x44 hd y200 fff fs6 fc0 sc0 ls0 ws0">90%<span class="_ _39"> </span>1.645</div><div class="t m0 x44 hd y201 fff fs6 fc0 sc0 ls0 ws0">95%<span class="_ _39"> </span>1.960</div><div class="t m0 x44 hd y202 fff fs6 fc0 sc0 ls0 ws0">99%<span class="_ _39"> </span>2.576</div><div class="t m0 x44 hd y203 fff fs6 fc0 sc0 ls0 ws0">99.5%<span class="_ _3a"> </span>2.807</div><div class="t m0 x44 hd y204 fff fs6 fc0 sc0 ls0 ws0">99.9%<span class="_ _3a"> </span>3.291</div><div class="t m0 x1 hc y205 ff4 fs7 fc0 sc0 ls0 ws0">Some<span class="_ _d"> </span>metrics<span class="_ _11"> </span>assume<span class="_ _d"> </span>a<span class="_ _11"> </span>normal<span class="_ _c"> </span>distribution<span class="_ _11"> </span><span class="ffa">→<span class="_ _11"> </span></span>the<span class="_ _d"> </span>arithmetic<span class="_ _d"> </span>mean,<span class="_ _d"> </span>median<span class="_ _11"> </span>and<span class="_ _d"> </span>mo<span class="_ _6"></span>de</div><div class="t m0 x1 hc y206 ff4 fs7 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>re<span class="_ _11"> </span>all<span class="_ _d"> </span>equal</div><div class="t m0 x50 hc y207 ffa fs7 fc0 sc0 ls0 ws0">|<span class="_ _6"></span><span class="ff4">¯<span class="_ _3b"></span><span class="ffc">x<span class="_ _d"> </span><span class="ffa">−<span class="_ _3c"> </span></span>median<span class="ffa">|</span></span></span></div><div class="t m0 x4e hc y208 ff4 fs7 fc0 sc0 ls0 ws0">max<span class="_ _35"> </span>(<span class="_ _6"></span>¯<span class="_ _3b"></span><span class="ffc">x<span class="_ _15"></span><span class="ff1b">,<span class="_ _36"> </span></span>median<span class="ff4">)</span></span></div><div class="t m0 x1 hc y209 ff4 fs7 fc0 sc0 ls0 ws0">If<span class="_ _d"> </span>the<span class="_ _11"> </span><span class="ffc">relative<span class="_ _d"> </span>difference<span class="_ _11"> </span>b<span class="_ _6"></span>et<span class="_ _3"></span>ween<span class="_ _d"> </span>the<span class="_ _d"> </span>mean<span class="_ _d"> </span>and<span class="_ _11"> </span>median<span class="_ _11"> </span><span class="ff4">is<span class="_ _11"> </span>la<span class="_ _3"></span>rger<span class="_ _11"> </span>than<span class="_ _d"> </span>1%,<span class="_ _11"> </span>values<span class="_ _d"> </span>are</span></span></div><div class="t m0 x1 hc y20a ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>robably<span class="_ _11"> </span>not<span class="_ _d"> </span>normally<span class="_ _d"> </span>distributed</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">56/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3e" class="pf w0 h0" data-page-no="3e"><div class="pc pc3e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>5/6</div><div class="t m0 x1 hc y48 ff1 fs7 fc0 sc0 ls0 ws0">Minimum/Maximum<span class="_ _11"> </span>vs.<span class="_ _e"> </span>Arithmetic<span class="_ _11"> </span>mean.<span class="_ _10"> </span><span class="ff4">The<span class="_ _d"> </span>minimum/maximum<span class="_ _d"> </span>could<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>used</span></div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">to<span class="_ _d"> </span>get<span class="_ _11"> </span>the<span class="_ _d"> </span>b<span class="_ _6"></span>est<span class="_ _d"> </span>outcome<span class="_ _11"> </span>of<span class="_ _d"> </span>an<span class="_ _11"> </span>exp<span class="_ _6"></span>eriment,<span class="_ _d"> </span>namely<span class="_ _d"> </span>the<span class="_ _11"> </span>measure<span class="_ _d"> </span>with<span class="_ _11"> </span>the<span class="_ _11"> </span>least<span class="_ _d"> </span>noise.</div><div class="t m0 x1 hc yc4 ff4 fs7 fc0 sc0 ls0 ws0">On<span class="_ _d"> </span>the<span class="_ _11"> </span>other<span class="_ _d"> </span>hand,<span class="_ _11"> </span>the<span class="_ _d"> </span>arithmetic<span class="_ _d"> </span>mean<span class="_ _d"> </span>considers<span class="_ _11"> </span>all<span class="_ _d"> </span>values<span class="_ _11"> </span>and<span class="_ _d"> </span>could<span class="_ _11"> </span>b<span class="_ _6"></span>etter<span class="_ _d"> </span>represent</div><div class="t m0 x1 hc y20b ff4 fs7 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r<span class="_ _11"> </span>of<span class="_ _d"> </span>the<span class="_ _11"> </span>exp<span class="_ _6"></span>eriment.</div><div class="t m0 x1 hc y20c ff4 fs7 fc0 sc0 ls0 ws0">If<span class="_ _d"> </span>the<span class="_ _11"> </span><span class="ffc">sk<span class="_ _3"></span>ewness<span class="_ _a"> </span><span class="ff4">of<span class="_ _d"> </span>the<span class="_ _11"> </span>distribution<span class="_ _11"> </span>is<span class="_ _d"> </span></span>symmetrical<span class="_ _a"> </span><span class="ff4">(e.g.<span class="_ _10"> </span>normal,<span class="_ _d"> </span>binomial)<span class="_ _d"> </span>then<span class="_ _11"> </span>the</span></span></div><div class="t m0 x1 hc y20d ff4 fs7 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>rithmetic<span class="_ _11"> </span>mean<span class="_ _d"> </span>is<span class="_ _11"> </span>a<span class="_ _d"> </span>sup<span class="_ _6"></span>erior<span class="_ _d"> </span>statistic,<span class="_ _d"> </span>while<span class="_ _d"> </span>the<span class="_ _11"> </span>minimum/maximum<span class="_ _d"> </span>could<span class="_ _11"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>useful</div><div class="t m0 x1 hc y20e ff4 fs7 fc0 sc0 ls0 ws0">in<span class="_ _d"> </span>the<span class="_ _11"> </span>opp<span class="_ _6"></span>osite<span class="_ _d"> </span>case<span class="_ _d"> </span>(e.g.<span class="_ _10"> </span>log-normal<span class="_ _d"> </span>distribution)</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">57/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf3f" class="pf w0 h0" data-page-no="3f"><div class="pc pc3f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Metric<span class="_ _1d"> </span>Evaluation<span class="_ _2e"> </span>6/6</div><div class="t m0 x12 hd y20f ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Benchmarking:<span class="_ _12"> </span>minimum<span class="_ _a"> </span>vs<span class="_ _10"> </span>average</span></div><div class="t m0 x12 hd y210 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Scientific<span class="_ _a"> </span>Benchmarking<span class="_ _10"> </span>of<span class="_ _a"> </span>Parallel<span class="_ _a"> </span>Computing<span class="_ _10"> </span>Systems</span></div><div class="t m0 x12 hd y211 ffe fs6 fc7 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff9">Benchmarking<span class="_ _a"> </span>C++<span class="_ _10"> </span>Code</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">58/76</div><a class="l" href="https://blog.kevmod.com/2016/06/10/benchmarking-minimum-vs-average/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:32.204000px;width:157.335000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:17.608000px;width:251.482000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://raw.githubusercontent.com/CppCon/CppCon2015/master/Presentations/Benchmarking%20C%2B%2B%20Code/Benchmarking%20C%2B%2B%20Code%20-%20Bryce%20Adelstein%20Lelbach%20-%20CppCon%202015.pdf"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:3.013000px;width:100.847000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf40" class="pf w0 h0" data-page-no="40"><div class="pc pc40 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 yd4 ff1 fs0 fc0 sc0 ls0 ws0">Profiling</div><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:132.432000px;width:97.010000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf41" class="pf w0 h0" data-page-no="41"><div class="pc pc41 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Overview</div><div class="t m0 x1 hc y212 ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _d"> </span><span class="ff1">co<span class="_ _6"></span>de<span class="_ _9"> </span>p<span class="_ _3"></span>rofiler<span class="_ _11"> </span><span class="ff4">is<span class="_ _11"> </span>a<span class="_ _d"> </span>form<span class="_ _d"> </span>of<span class="_ _d"> </span><span class="ffc">dynamic<span class="_ _11"> </span>p<span class="_ _3"></span>rogram<span class="_ _11"> </span>analysis<span class="_ _1d"> </span><span class="ff4">which<span class="_ _11"> </span>aims<span class="_ _d"> </span>at<span class="_ _11"> </span>investigating<span class="_ _d"> </span>the</span></span></span></span></div><div class="t m0 x1 hc y213 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram<span class="_ _a"> </span>b<span class="_ _6"></span>ehavio<span class="_ _3"></span>r<span class="_ _a"> </span>to<span class="_ _a"> </span>find<span class="_ _a"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _d"> </span>b<span class="_ _6"></span>ottleneck.<span class="_ _4"> </span>A<span class="_ _9"> </span>profiler<span class="_ _1d"> </span>is<span class="_ _a"> </span>crucial<span class="_ _a"> </span>in<span class="_ _a"> </span>saving<span class="_ _a"> </span>time</div><div class="t m0 x1 hc y214 ff4 fs7 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span>effort<span class="_ _d"> </span>during<span class="_ _d"> </span>the<span class="_ _11"> </span>development<span class="_ _d"> </span>and<span class="_ _11"> </span>optimization<span class="_ _d"> </span>process<span class="_ _11"> </span>of<span class="_ _d"> </span>an<span class="_ _11"> </span>application</div><div class="t m0 x1 hc y215 ff4 fs7 fc0 sc0 ls0 ws0">Co<span class="_ _6"></span>de<span class="_ _d"> </span>p<span class="_ _3"></span>rofilers<span class="_ _11"> </span>a<span class="_ _3"></span>re<span class="_ _11"> </span>generally<span class="_ _d"> </span>based<span class="_ _11"> </span>on<span class="_ _11"> </span>the<span class="_ _d"> </span>following<span class="_ _d"> </span>metho<span class="_ _6"></span>dologies:</div><div class="t m0 x10 hc y216 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Instrumentation<span class="_ _9"> </span><span class="ff4">Instrumenting<span class="_ _9"> </span>profilers<span class="_ _11"> </span>insert<span class="_ _9"> </span>sp<span class="_ _6"></span>ecial<span class="_ _11"> </span>co<span class="_ _6"></span>de<span class="_ _9"> </span>at<span class="_ _9"> </span>the<span class="_ _9"> </span>b<span class="_ _6"></span>eginning<span class="_ _9"> </span>and</span></span></div><div class="t m0 x6 hc y217 ff4 fs7 fc0 sc0 ls0 ws0">end<span class="_ _d"> </span>of<span class="_ _11"> </span>each<span class="_ _11"> </span>routine<span class="_ _d"> </span>to<span class="_ _11"> </span>record<span class="_ _d"> </span>when<span class="_ _d"> </span>the<span class="_ _11"> </span>routine<span class="_ _11"> </span>starts<span class="_ _d"> </span>and<span class="_ _d"> </span>when<span class="_ _11"> </span>it<span class="_ _d"> </span>exits.<span class="_ _e"> </span>With<span class="_ _11"> </span>this</div><div class="t m0 x6 hc y218 ff4 fs7 fc0 sc0 ls0 ws0">info<span class="_ _3"></span>rmation,<span class="_ _9"> </span>the<span class="_ _9"> </span>profiler<span class="_ _11"> </span>aims<span class="_ _9"> </span>to<span class="_ _9"> </span>measure<span class="_ _9"> </span>the<span class="_ _9"> </span>actual<span class="_ _9"> </span>time<span class="_ _9"> </span>tak<span class="_ _3"></span>en<span class="_ _9"> </span>by<span class="_ _11"> </span>the<span class="_ _9"> </span>routine<span class="_ _9"> </span>on</div><div class="t m0 x6 hc y219 ff4 fs7 fc0 sc0 ls0 ws0">each<span class="_ _d"> </span>call.</div><div class="t m0 x6 hc y21a ffd fs7 fc0 sc0 ls0 ws0">Problem:<span class="_ _10"> </span><span class="ff4">The<span class="_ _d"> </span>timer<span class="_ _d"> </span>calls<span class="_ _11"> </span>take<span class="_ _d"> </span>some<span class="_ _d"> </span>time<span class="_ _11"> </span>themselves</span></div><div class="t m0 x10 hc y21b ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff1">Sampling<span class="_"> </span><span class="ff4">The<span class="_"> </span>operating<span class="_"> </span>system<span class="_"> </span>interrupts<span class="_"> </span>the<span class="_"> </span>CPU<span class="_"> </span>at<span class="_"> </span>regula<span class="_ _3"></span>r<span class="_"> </span>intervals<span class="_"> </span>(time<span class="_"> </span>slices)</span></span></div><div class="t m0 x6 hc y21c ff4 fs7 fc0 sc0 ls0 ws0">to<span class="_ _e"> </span>execute<span class="_ _e"> </span>process<span class="_ _e"> </span>switches.<span class="_ _3d"> </span>A<span class="_ _3"></span>t<span class="_ _e"> </span>that<span class="_ _7"> </span>p<span class="_ _6"></span>oint,<span class="_ _7"> </span>a<span class="_ _e"> </span>sampling<span class="_ _e"> </span>profiler<span class="_ _10"> </span>will<span class="_ _e"> </span>record<span class="_ _10"> </span>the</div><div class="t m0 x6 hc y21d ff4 fs7 fc0 sc0 ls0 ws0">currently-executed<span class="_ _d"> </span>instruction</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">59/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf42" class="pf w0 h0" data-page-no="42"><div class="pc pc42 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h19 y7 ff6 fs3 fc1 sc0 ls0 ws0">gprof</div><div class="t m0 x1 hc y48 ff6 fs7 fc0 sc0 ls0 ws0">gprof<span class="_ _d"> </span><span class="ff4">is<span class="_ _11"> </span>a<span class="_ _d"> </span>profiling<span class="_ _d"> </span>p<span class="_ _3"></span>rogram<span class="_ _11"> </span>which<span class="_ _d"> </span>collects<span class="_ _11"> </span>and<span class="_ _d"> </span>arranges<span class="_ _d"> </span>timing<span class="_ _d"> </span>statistics<span class="_ _11"> </span>on<span class="_ _11"> </span>a<span class="_ _d"> </span>given</span></div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram.<span class="_ _10"> </span>It<span class="_ _11"> </span>uses<span class="_ _d"> </span>a<span class="_ _11"> </span>hyb<span class="_ _3"></span>rid<span class="_ _11"> </span>of<span class="_ _d"> </span>instrumentation<span class="_ _11"> </span>and<span class="_ _d"> </span>sampling<span class="_ _11"> </span>programs<span class="_ _d"> </span>to<span class="_ _d"> </span>monitor</div><div class="t m0 x1 hc yc4 ffc fs7 fc0 sc0 ls0 ws0">function<span class="_ _d"> </span>calls</div><div class="t m0 x14 hc y20b ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ffd fs4">sourceware.org/binutils/docs/gprof/</span></div><div class="t m0 x1 hc y20c ff1 fs7 fc0 sc0 ls0 ws0">Usage:</div><div class="t m0 x10 hc y21e ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Co<span class="_ _6"></span>de<span class="_ _d"> </span>Instrumentation</span></div><div class="t m0 x51 ha y21f ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">g++<span class="_ _a"> </span><span class="fc4">-pg<span class="_ _10"> </span></span>[flags]<span class="_ _a"> </span><source_files></span></div><div class="t m0 x6 hd y220 fff fs6 fc0 sc0 ls0 ws0">Imp<span class="_ _6"></span>o<span class="_ _3"></span>rtant:<span class="_ _3e"> </span><span class="ff9">-pg<span class="_ _1b"> </span></span>is<span class="_ _c"> </span>required<span class="_ _21"> </span>also<span class="_ _c"> </span>for<span class="_ _21"> </span>linking<span class="_ _c"> </span>and<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _21"> </span>not<span class="_ _c"> </span>supp<span class="_ _6"></span>o<span class="_ _3"></span>rted<span class="_ _c"> </span>by<span class="_ _21"> </span><span class="ff9">clang</span></div><div class="t m0 x10 hc y221 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">R<span class="_ _3"></span>un<span class="_ _11"> </span>the<span class="_ _d"> </span>program<span class="_ _d"> </span>(it<span class="_ _d"> </span>produces<span class="_ _11"> </span>the<span class="_ _d"> </span>file<span class="_ _11"> </span><span class="ffd">gmon.out</span>)</span></div><div class="t m0 x10 hc y222 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">R<span class="_ _3"></span>un<span class="_ _11"> </span><span class="ffd">gprof<span class="_ _d"> </span></span>on<span class="_ _11"> </span><span class="ffd">gmon.out</span></span></div><div class="t m0 x51 ha y223 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">gprof<span class="_ _a"> </span><span class="fc0"><executable><span class="_ _10"> </span>gmon.out</span></span></div><div class="t m0 x10 hc y224 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Insp<span class="_ _6"></span>ect<span class="_ _d"> </span><span class="ffd">gprof<span class="_ _d"> </span></span>output</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">60/76</div><a class="l" href="https://sourceware.org/binutils/docs/gprof/"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:157.219000px;width:185.056000px;height:11.782000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf43" class="pf w0 h0" data-page-no="43"><div class="pc pc43 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff6 fs3 fc1 sc0 ls0 ws0">gprof<span class="_ _3f"> </span><span class="ff1">2/2</span></div><div class="t m0 x1 hc y225 ffd fs7 fc0 sc0 ls0 ws0">gprof<span class="_ _d"> </span><span class="ff4">output</span></div><div class="t m0 x2d hc y226 ffd fs7 fc0 sc0 ls0 ws0">gprof<span class="_ _d"> </span><span class="ff4">can<span class="_ _11"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>also<span class="_ _d"> </span>used<span class="_ _11"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>showing<span class="_ _d"> </span>the<span class="_ _d"> </span>call<span class="_ _d"> </span>graph<span class="_ _11"> </span>statistics</span></div><div class="t m0 x10 ha y227 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">gprof<span class="_ _a"> </span><span class="fc0">-q<span class="_ _10"> </span><executable><span class="_ _a"> </span>gmon.out</span></span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">61/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf44" class="pf w0 h0" data-page-no="44"><div class="pc pc44 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h19 y7 ff6 fs3 fc1 sc0 ls0 ws0">uftrace</div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span><span class="ffd">uftrace<span class="_ _11"> </span></span>to<span class="_ _6"></span>ol<span class="_ _d"> </span>is<span class="_ _d"> </span>to<span class="_ _11"> </span>trace<span class="_ _d"> </span>and<span class="_ _11"> </span>analyze<span class="_ _d"> </span>execution<span class="_ _11"> </span>of<span class="_ _d"> </span>a<span class="_ _11"> </span>program<span class="_ _d"> </span>written<span class="_ _d"> </span>in<span class="_ _11"> </span>C/C++</div><div class="t m0 x14 hc y228 ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ffd">github.com/namhyung/uftrace</span></div><div class="t m0 x10 he y229 ff1c fs7 fc8 sc0 ls0 ws0">$<span class="_ _16"> </span><span class="ffd fc0">gcc<span class="_ _16"> </span>-pg<span class="_ _16"> </span><program>.cpp</span></div><div class="t m0 x10 he y22a ff1c fs7 fc8 sc0 ls0 ws0">$<span class="_ _16"> </span><span class="ffd fc4">uftrace<span class="_ _16"> </span><span class="fc0">record<span class="_ _16"> </span><executable></span></span></div><div class="t m0 x10 he y22b ff1c fs7 fc8 sc0 ls0 ws0">$<span class="_ _16"> </span><span class="ffd fc4">uftrace<span class="_ _16"> </span><span class="fc0">replay</span></span></div><div class="t m0 x1 hc y22c ff4 fs7 fc0 sc0 ls0 ws0">Flame<span class="_ _d"> </span>graph<span class="_ _11"> </span>output<span class="_ _d"> </span>in<span class="_ _11"> </span><span class="ffd">html<span class="_ _d"> </span></span>and<span class="_ _11"> </span><span class="ffd">svg</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">62/76</div><a class="l" href="https://github.com/namhyung/uftrace"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:182.717000px;width:156.629000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf45" class="pf w0 h0" data-page-no="45"><div class="pc pc45 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h19 y7 ff6 fs3 fc1 sc0 ls0 ws0">callgrind</div><div class="t m0 x1 hc y22d ff6 fs7 fc0 sc0 ls0 ws0">callgrind<span class="_ _d"> </span><span class="ff4">is<span class="_ _11"> </span>a<span class="_ _d"> </span>profiling<span class="_ _d"> </span>to<span class="_ _6"></span>ol<span class="_ _d"> </span>that<span class="_ _d"> </span>records<span class="_ _d"> </span>the<span class="_ _d"> </span>call<span class="_ _11"> </span>histo<span class="_ _3"></span>ry<span class="_ _11"> </span>among<span class="_ _d"> </span>functions<span class="_ _11"> </span>in<span class="_ _11"> </span>a</span></div><div class="t m0 x1 hc y22e ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram’s<span class="_ _11"> </span>run<span class="_ _d"> </span>as<span class="_ _11"> </span>a<span class="_ _d"> </span>call-graph.<span class="_ _10"> </span>By<span class="_ _11"> </span>default,<span class="_ _d"> </span>the<span class="_ _11"> </span>collected<span class="_ _d"> </span>data<span class="_ _11"> </span>consists<span class="_ _d"> </span>of<span class="_ _11"> </span>the<span class="_ _11"> </span>numb<span class="_ _6"></span>er<span class="_ _d"> </span>of</div><div class="t m0 x1 hc y22f ff4 fs7 fc0 sc0 ls0 ws0">instructions<span class="_ _d"> </span>executed</div><div class="t m0 x14 hc y230 ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ffd fs4">valgrind.org/docs/manual/cl-manual.html</span></div><div class="t m0 x1 hc y231 ff1 fs7 fc0 sc0 ls0 ws0">Usage:</div><div class="t m0 x10 hc y232 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Profile<span class="_ _d"> </span>the<span class="_ _11"> </span>application<span class="_ _d"> </span>with<span class="_ _11"> </span><span class="ffd">callgrind</span></span></div><div class="t m0 x51 ha y233 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc0">valgrind<span class="_ _a"> </span>--tool<span class="_ _10"> </span><span class="fc4">callgrind<span class="_ _a"> </span></span><executable><span class="_ _10"> </span><args></span></div><div class="t m0 x10 hc y234 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Insp<span class="_ _6"></span>ect<span class="_ _d"> </span><span class="ffd">callgrind.out.XXX<span class="_ _d"> </span></span>file,<span class="_ _11"> </span>where<span class="_ _d"> </span><span class="ffd">XXX<span class="_ _11"> </span></span>will<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>the<span class="_ _11"> </span>process<span class="_ _11"> </span>identifier</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">63/76</div><a class="l" href="http://valgrind.org/docs/manual/cl-manual.html"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:145.749000px;width:205.977000px;height:11.782000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf46" class="pf w0 h0" data-page-no="46"><div class="pc pc46 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h19 y7 ff6 fs3 fc1 sc0 ls0 ws0">cachegrind</div><div class="t m0 x1 hc y48 ff6 fs7 fc0 sc0 ls0 ws0">cachegrind<span class="_ _d"> </span><span class="ff4">simulates<span class="_ _11"> </span>ho<span class="_ _3"></span>w<span class="_ _11"> </span>your<span class="_ _d"> </span>p<span class="_ _3"></span>rogram<span class="_ _d"> </span>interacts<span class="_ _11"> </span>with<span class="_ _11"> </span>a<span class="_ _d"> </span>machine’s<span class="_ _11"> </span>cache<span class="_ _d"> </span>hierarchy</span></div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span>(optionally)<span class="_ _11"> </span>b<span class="_ _3"></span>ranch<span class="_ _11"> </span>predicto<span class="_ _3"></span>r</div><div class="t m0 x14 hc y177 ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ffd fs4">valgrind.org/docs/manual/cg-manual.html</span></div><div class="t m0 x1 hc y235 ff1 fs7 fc0 sc0 ls0 ws0">Usage:</div><div class="t m0 x10 hc y236 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Profile<span class="_ _d"> </span>the<span class="_ _11"> </span>application<span class="_ _d"> </span>with<span class="_ _11"> </span><span class="ffd">cachegrind</span></span></div><div class="t m0 x51 h1a y237 ff1d fs5 fc8 sc0 ls0 ws0">$<span class="_ _9"> </span><span class="ff1e fc0">valgrind<span class="_ _1d"> </span>--tool<span class="_ _1d"> </span><span class="fc4">cachegrind<span class="_ _9"> </span></span>--branch-sim=yes<span class="_ _1d"> </span><executable><span class="_ _1d"> </span><args></span></div><div class="t m0 x10 hc y238 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ff4">Insp<span class="_ _6"></span>ect<span class="_ _d"> </span>the<span class="_ _d"> </span>output<span class="_ _11"> </span>(cache<span class="_ _d"> </span>misses<span class="_ _11"> </span>and<span class="_ _d"> </span>rate)</span></div><div class="t m0 x11 h6 y239 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _1a"> </span><span class="ffd">l1<span class="_ _1b"> </span></span>L1<span class="_ _c"> </span>instruction<span class="_ _d"> </span>cache</div><div class="t m0 x11 h6 y23a ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _1a"> </span><span class="ffd">D1<span class="_ _1b"> </span></span>L1<span class="_ _c"> </span>data<span class="_ _d"> </span>cache</div><div class="t m0 x11 h6 y23b ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _1a"> </span><span class="ffd">LL<span class="_ _1b"> </span></span>Last<span class="_ _c"> </span>level<span class="_ _d"> </span>cache</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">64/76</div><a class="l" href="http://valgrind.org/docs/manual/cg-manual.html"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:167.346000px;width:205.977000px;height:11.782000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf47" class="pf w0 h0" data-page-no="47"><div class="pc pc47 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff6 fs3 fc1 sc0 ls0 ws0">kcachegrind<span class="_ _1d"> </span><span class="ff1">and<span class="_ _1d"> </span></span>qcachegrindwin<span class="_ _1d"> </span><span class="ff1">(View)</span></div><div class="t m0 x1 hc y23c ff6 fs7 fc0 sc0 ls0 ws0">KCachegrind<span class="_ _d"> </span><span class="ff4">(linux)<span class="_ _11"> </span>and<span class="_ _d"> </span></span>Qcachegrind<span class="_ _11"> </span><span class="ff4">(windo<span class="_ _3"></span>ws)<span class="_ _11"> </span>provide<span class="_ _d"> </span>a<span class="_ _d"> </span>graphical<span class="_ _d"> </span>interface<span class="_ _11"> </span>for</span></div><div class="t m0 x1 hc y23d ff4 fs7 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>rowsing<span class="_ _d"> </span>the<span class="_ _d"> </span>p<span class="_ _6"></span>erfo<span class="_ _3"></span>rmance<span class="_ _11"> </span>results<span class="_ _d"> </span>of<span class="_ _a"> </span><span class="ffd">callgraph</span></div><div class="t m0 x52 hd y23e ffe fs6 fc0 sc0 ls0 ws0">•<span class="ff9">kcachegrind.sourceforge.net/html/Home.html</span></div><div class="t m0 x52 hd y23f ffe fs6 fc0 sc0 ls0 ws0">•<span class="ff9">sourceforge.net/projects/qcachegrindwin</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">65/76</div><a class="l" href="http://kcachegrind.sourceforge.net/html/Home.html"><div class="d m1" style="border-style:none;position:absolute;left:62.496000px;bottom:177.530000px;width:199.701000px;height:10.212000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://sourceforge.net/projects/qcachegrindwin/"><div class="d m1" style="border-style:none;position:absolute;left:62.496000px;bottom:161.949000px;width:185.579000px;height:10.211000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf48" class="pf w0 h0" data-page-no="48"><div class="pc pc48 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff6 fs3 fc1 sc0 ls0 ws0">gprof2dot<span class="_ _1d"> </span><span class="ff1">(View)</span></div><div class="t m0 x1 hc y48 ff6 fs7 fc0 sc0 ls0 ws0">gprof2dot<span class="_ _d"> </span><span class="ff4">is<span class="_ _11"> </span>a<span class="_ _d"> </span>Python<span class="_ _11"> </span>script<span class="_ _d"> </span>to<span class="_ _11"> </span>convert<span class="_ _d"> </span>the<span class="_ _11"> </span>output<span class="_ _d"> </span>from<span class="_ _11"> </span>many<span class="_ _11"> </span>p<span class="_ _3"></span>rofilers<span class="_ _11"> </span>into<span class="_ _d"> </span>a<span class="_ _11"> </span>dot</span></div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">graph</div><div class="t m0 x14 hc y177 ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ff9 fs6">github.com/jrfonseca/gprof2dot</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">66/76</div><a class="l" href="https://github.com/jrfonseca/gprof2dot"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:167.568000px;width:143.213000px;height:11.560000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf49" class="pf w0 h0" data-page-no="49"><div class="pc pc49 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff6 fs3 fc1 sc0 ls0 ws0">perf<span class="_ _1d"> </span><span class="ff1">Linux<span class="_ _1d"> </span>profiler<span class="_ _40"> </span>1/2</span></div><div class="t m0 x1 hc y48 ff6 fs7 fc0 sc0 ls0 ws0">Perf<span class="_ _d"> </span><span class="ff4">is<span class="_ _d"> </span>p<span class="_ _6"></span>erformance<span class="_ _c"> </span>monitoring<span class="_ _d"> </span>and<span class="_ _d"> </span>analysis<span class="_ _d"> </span>to<span class="_ _6"></span>ol<span class="_ _d"> </span>for<span class="_ _d"> </span>Linux.<span class="_ _a"> </span>It<span class="_ _11"> </span>uses<span class="_ _d"> </span>statistical<span class="_ _11"> </span>p<span class="_ _3"></span>rofiling,</span></div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">where<span class="_ _d"> </span>it<span class="_ _11"> </span>p<span class="_ _6"></span>olls<span class="_ _d"> </span>the<span class="_ _d"> </span>program<span class="_ _d"> </span>and<span class="_ _d"> </span>sees<span class="_ _11"> </span>what<span class="_ _d"> </span>function<span class="_ _11"> </span>is<span class="_ _d"> </span>wo<span class="_ _3"></span>rking</div><div class="t m0 x14 hc y177 ff4 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ebsite:<span class="_ _10"> </span><span class="ffd">perf.wiki.kernel.org/index.php/Main<span class="_ _9"> </span>Page</span></div><div class="t m0 x10 ha y240 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">perf<span class="_ _a"> </span><span class="fc0">record<span class="_ _10"> </span>-g<span class="_ _a"> </span><executable><span class="_ _10"> </span><args><span class="_ _a"> </span><span class="ff8 fcd">//<span class="_ _a"> </span>or</span></span></span></div><div class="t m0 x10 ha y241 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">perf<span class="_ _a"> </span><span class="fc0">record<span class="_ _10"> </span>--call-graph<span class="_ _a"> </span>dwarf<span class="_ _10"> </span><executable></span></span></div><div class="t m0 x10 ha y242 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">perf<span class="_ _a"> </span><span class="fc0">report<span class="_ _10"> </span><span class="ff8 fcd">//<span class="_ _a"> </span>or</span></span></span></div><div class="t m0 x10 ha y243 ff10 fs6 fc8 sc0 ls0 ws0">$<span class="_ _a"> </span><span class="ff9 fc4">perf<span class="_ _a"> </span><span class="fc0">report<span class="_ _10"> </span>-g<span class="_ _a"> </span>graph<span class="_ _10"> </span>--no-children</span></span></div><div class="t m0 x10 ha y244 ff9 fs6 fc7 sc0 ls0 ws0">Linux<span class="_ _a"> </span>perf<span class="_ _a"> </span>for<span class="_ _10"> </span>Qt<span class="_ _a"> </span>developers</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">67/76</div><a class="l" href="https://perf.wiki.kernel.org/index.php/Main_Page"><div class="d m1" style="border-style:none;position:absolute;left:84.888000px;bottom:167.136000px;width:229.479000px;height:11.992000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.kdab.com/wp-content/uploads/stories/Linux_perf_for_Qt_developers.pdf"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:4.193000px;width:133.798000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4a" class="pf w0 h0" data-page-no="4a"><div class="pc pc4a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff6 fs3 fc1 sc0 ls0 ws0">perf<span class="_ _1d"> </span><span class="ff1">Linux<span class="_ _1d"> </span>profiler<span class="_ _40"> </span>2/2</span></div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">Data<span class="_ _d"> </span>collected<span class="_ _11"> </span>b<span class="_ _3"></span>y<span class="_ _11"> </span><span class="ff6">perf<span class="_ _11"> </span></span>can<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>visualized<span class="_ _11"> </span>by<span class="_ _d"> </span>using<span class="_ _d"> </span>flame<span class="_ _11"> </span>graphs,<span class="_ _d"> </span>see:</div><div class="t m0 x1 he y72 ffd fs7 fc0 sc0 ls0 ws0">Speedscope:<span class="_ _20"> </span>visualize<span class="_ _16"> </span>what<span class="_ _16"> </span>your<span class="_ _16"> </span>program<span class="_ _16"> </span>is<span class="_ _16"> </span>doing<span class="_ _16"> </span>and<span class="_ _16"> </span>where<span class="_ _16"> </span>it<span class="_ _16"> </span>is</div><div class="t m0 x1 he yc4 ffd fs7 fc0 sc0 ls0 ws0">spending<span class="_ _16"> </span>time</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">68/76</div><a class="l" href="https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:188.172000px;width:398.843000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/"><div class="d m1" style="border-style:none;position:absolute;left:27.350000px;bottom:172.590000px;width:76.447000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4b" class="pf w0 h0" data-page-no="4b"><div class="pc pc4b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Other<span class="_ _1d"> </span>Profilers</div><div class="t m0 x1 hc y245 ff4 fs7 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>ree<span class="_ _11"> </span>profiler:</div><div class="t m0 x10 hc y246 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Hotspot</span></div><div class="t m0 x1 hc y247 ff4 fs7 fc0 sc0 ls0 ws0">Prop<span class="_ _3"></span>rietary<span class="_ _d"> </span>p<span class="_ _3"></span>rofiler:</div><div class="t m0 x10 hc y248 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">Intel<span class="_ _16"> </span>VTune</span></div><div class="t m0 x10 hc y249 ffb fs7 fc0 sc0 ls0 ws0">•<span class="_ _7"> </span><span class="ffd">AMD<span class="_ _16"> </span>CodeAnalyst</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">69/76</div><a class="l" href="https://www.kdab.com/hotspot-gui-linux-perf-profiler/"><div class="d m1" style="border-style:none;position:absolute;left:49.168000px;bottom:139.646000px;width:42.084000px;height:10.951000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4c" class="pf w0 h0" data-page-no="4c"><div class="pc pc4c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 yd4 ff1 fs0 fc0 sc0 ls0 ws0">P<span class="_ _8"></span>a<span class="_ _3"></span>rallel<span class="_ _1"> </span>Computing</div><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:105.775000px;bottom:132.432000px;width:218.157000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4d" class="pf w0 h0" data-page-no="4d"><div class="pc pc4d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Concurrency<span class="_ _1d"> </span>vs.<span class="_ _16"> </span>Pa<span class="_ _3"></span>rallelism</div><div class="t m0 xb hc y24a ff1 fs7 fc1 sc0 ls0 ws0">Concurrency</div><div class="t m0 xb hc y24b ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _d"> </span>system<span class="_ _11"> </span>is<span class="_ _d"> </span>said<span class="_ _11"> </span>to<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span><span class="ff1">concurrent<span class="_ _11"> </span></span>if<span class="_ _d"> </span>it<span class="_ _11"> </span>can<span class="_ _11"> </span>supp<span class="_ _6"></span>o<span class="_ _3"></span>rt<span class="_ _d"> </span>tw<span class="_ _3"></span>o<span class="_ _d"> </span>or<span class="_ _d"> </span>mo<span class="_ _3"></span>re<span class="_ _11"> </span>actions<span class="_ _d"> </span>in<span class="_ _11"> </span>progress</div><div class="t m0 xb hc y24c ff4 fs7 fc0 sc0 ls0 ws0">at<span class="_ _d"> </span>the<span class="_ _11"> </span>same<span class="_ _d"> </span>time.<span class="_ _10"> </span>Multiple<span class="_ _11"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cessing<span class="_ _d"> </span>units<span class="_ _11"> </span>w<span class="_ _3"></span>ork<span class="_ _d"> </span>on<span class="_ _d"> </span>different<span class="_ _11"> </span>tasks<span class="_ _d"> </span>indep<span class="_ _6"></span>endently</div><div class="t m0 xb hc y24d ff1 fs7 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>arallelism</div><div class="t m0 xb hc y24e ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _d"> </span>system<span class="_ _11"> </span>is<span class="_ _d"> </span>said<span class="_ _11"> </span>to<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span><span class="ff1">parallel<span class="_ _d"> </span></span>if<span class="_ _d"> </span>it<span class="_ _11"> </span>can<span class="_ _d"> </span>supp<span class="_ _6"></span>o<span class="_ _3"></span>rt<span class="_ _11"> </span>tw<span class="_ _3"></span>o<span class="_ _d"> </span>or<span class="_ _d"> </span>mo<span class="_ _3"></span>re<span class="_ _11"> </span>actions<span class="_ _d"> </span>executing</div><div class="t m0 xb hc y24f ff4 fs7 fc0 sc0 ls0 ws0">simultaneously<span class="_ _8"></span>.<span class="_ _10"> </span>Multiple<span class="_ _d"> </span>processing<span class="_ _11"> </span>units<span class="_ _d"> </span>wo<span class="_ _3"></span>rk<span class="_ _d"> </span>on<span class="_ _11"> </span>the<span class="_ _d"> </span>same<span class="_ _11"> </span>problem<span class="_ _d"> </span>and<span class="_ _d"> </span>their</div><div class="t m0 xb hc y250 ff4 fs7 fc0 sc0 ls0 ws0">interaction<span class="_ _d"> </span>can<span class="_ _11"> </span>effect<span class="_ _d"> </span>the<span class="_ _11"> </span>final<span class="_ _d"> </span>result</div><div class="t m0 x1 hc y251 ff4 fs7 fc0 sc0 ls0 ws0">Note:<span class="_ _10"> </span>pa<span class="_ _3"></span>rallel<span class="_ _11"> </span>computation<span class="_ _d"> </span>requires<span class="_ _11"> </span>rethinking<span class="_ _d"> </span>original<span class="_ _d"> </span>sequential<span class="_ _d"> </span>algorithms<span class="_ _d"> </span>(e.g.</div><div class="t m0 x1 hc y252 ff4 fs7 fc0 sc0 ls0 ws0">avoid<span class="_ _d"> </span>race<span class="_ _11"> </span>conditions)</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">70/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4e" class="pf w0 h0" data-page-no="4e"><div class="pc pc4e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>erfo<span class="_ _3"></span>rmance<span class="_ _a"> </span>Scaling</div><div class="t m0 xb hc y253 ff1 fs7 fc1 sc0 ls0 ws0">Strong<span class="_ _11"> </span>Scaling</div><div class="t m0 xb hc y254 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span><span class="ff1">strong<span class="_ _9"> </span>scaling<span class="_ _11"> </span></span>defined<span class="_ _d"> </span>how<span class="_ _d"> </span>the<span class="_ _d"> </span>compute<span class="_ _11"> </span>time<span class="_ _11"> </span>decreases<span class="_ _d"> </span>increasing<span class="_ _11"> </span>the<span class="_ _d"> </span>numb<span class="_ _6"></span>er</div><div class="t m0 xb hc y255 ff4 fs7 fc0 sc0 ls0 ws0">of<span class="_ _d"> </span>processors<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>a<span class="_ _d"> </span>fixed<span class="_ _11"> </span>total<span class="_ _d"> </span>problem<span class="_ _d"> </span>size</div><div class="t m0 xb hc y256 ff1 fs7 fc1 sc0 ls0 ws0">W<span class="_ _3"></span>eak<span class="_ _9"> </span>Scaling</div><div class="t m0 xb hc y257 ff4 fs7 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span><span class="ff1">weak<span class="_ _11"> </span>scaling<span class="_ _11"> </span></span>defined<span class="_ _d"> </span>how<span class="_ _d"> </span>the<span class="_ _d"> </span>compute<span class="_ _11"> </span>time<span class="_ _d"> </span>decrease<span class="_ _11"> </span>increasing<span class="_ _d"> </span>the<span class="_ _11"> </span>numb<span class="_ _6"></span>er<span class="_ _d"> </span>of</div><div class="t m0 xb hc y258 ff4 fs7 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>ro<span class="_ _6"></span>cesso<span class="_ _3"></span>rs<span class="_ _11"> </span>for<span class="_ _d"> </span>a<span class="_ _d"> </span>fixed<span class="_ _d"> </span>total<span class="_ _11"> </span>problem<span class="_ _d"> </span>size<span class="_ _d"> </span>p<span class="_ _6"></span>er<span class="_ _d"> </span>processor</div><div class="t m0 x1 hc y259 ffc fs7 fc0 sc0 ls0 ws0">Strong<span class="_ _d"> </span>scaling<span class="_ _a"> </span><span class="ff4">is<span class="_ _d"> </span>ha<span class="_ _3"></span>rd<span class="_ _d"> </span>to<span class="_ _d"> </span>achieve<span class="_ _d"> </span>b<span class="_ _6"></span>ecause<span class="_ _d"> </span>of<span class="_ _d"> </span>computation<span class="_ _d"> </span>units<span class="_ _d"> </span>communication.<span class="_ _10"> </span><span class="ffc">Strong</span></span></div><div class="t m0 x1 hc y25a ffc fs7 fc0 sc0 ls0 ws0">scaling<span class="_ _a"> </span><span class="ff4">is<span class="_ _11"> </span>in<span class="_ _d"> </span>contrast<span class="_ _11"> </span>to<span class="_ _d"> </span>the<span class="_ _11"> </span>Amdahl’s<span class="_ _d"> </span>Law</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">71/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf4f" class="pf w0 h0" data-page-no="4f"><div class="pc pc4f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">Gustafson’s<span class="_ _1d"> </span>La<span class="_ _3"></span>w</div><div class="t m0 xb hc y25b ff1 fs7 fc1 sc0 ls0 ws0">Gustafson’s<span class="_ _11"> </span>Law</div><div class="t m0 xb hc y25c ff4 fs7 fc0 sc0 ls0 ws0">Increasing<span class="_ _d"> </span>numb<span class="_ _6"></span>er<span class="_ _d"> </span>of<span class="_ _11"> </span>p<span class="_ _3"></span>ro<span class="_ _6"></span>cesso<span class="_ _3"></span>r<span class="_ _11"> </span>units<span class="_ _d"> </span>allow<span class="_ _d"> </span>solving<span class="_ _d"> </span>larger<span class="_ _d"> </span>problems<span class="_ _d"> </span>in<span class="_ _d"> </span>the<span class="_ _d"> </span>same<span class="_ _11"> </span>time</div><div class="t m0 xb hc y25d ff4 fs7 fc0 sc0 ls0 ws0">(the<span class="_ _d"> </span>computation<span class="_ _11"> </span>time<span class="_ _d"> </span>is<span class="_ _11"> </span>constant)</div><div class="t m0 x1 hc y25e ff4 fs7 fc0 sc0 ls0 ws0">Multiple<span class="_ _d"> </span>problem<span class="_ _d"> </span>instances<span class="_ _d"> </span>can<span class="_ _11"> </span>run<span class="_ _d"> </span>concurrently<span class="_ _11"> </span>with<span class="_ _d"> </span>more<span class="_ _d"> </span>computational<span class="_ _d"> </span>resources</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">72/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf50" class="pf w0 h0" data-page-no="50"><div class="pc pc50 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>a<span class="_ _3"></span>rallel<span class="_ _a"> </span>Programming<span class="_ _1d"> </span>Platfo<span class="_ _3"></span>rms<span class="_ _a"> </span>and<span class="_ _1d"> </span>APIs<span class="_ _41"> </span>1/3</div><div class="t m0 x53 hc y25f ff1 fs7 fc0 sc0 ls0 ws0">C++11<span class="_ _11"> </span>Threads<span class="_ _16"> </span><span class="ff4">(+<span class="_ _d"> </span>Pa<span class="_ _3"></span>rallel<span class="_ _d"> </span>STL)<span class="_ _11"> </span>free,<span class="_ _d"> </span>multi-core<span class="_ _d"> </span>CPUs</span></div><div class="t m0 x51 hc y260 ff1 fs7 fc0 sc0 ls0 ws0">Op<span class="_ _6"></span>enMP<span class="_ _e"> </span><span class="ff4">free,<span class="_ _11"> </span>directive-based,<span class="_ _d"> </span>multi-core<span class="_ _d"> </span>CPUs<span class="_ _d"> </span>and<span class="_ _11"> </span>GPUs<span class="_ _d"> </span>(last<span class="_ _11"> </span>versions)</span></div><div class="t m0 x2c hc y261 ff1 fs7 fc0 sc0 ls0 ws0">Op<span class="_ _6"></span>enA<span class="_ _3"></span>CC<span class="_ _7"> </span><span class="ff4">free,<span class="_ _d"> </span>directive-based,<span class="_ _11"> </span>multi-core<span class="_ _d"> </span>CPUs<span class="_ _d"> </span>and<span class="_ _d"> </span>GPUs</span></div><div class="t m0 x54 hc y262 ff1 fs7 fc0 sc0 ls0 ws0">Khronos<span class="_ _11"> </span>Op<span class="_ _6"></span>enCL<span class="_ _7"> </span><span class="ff4">free,<span class="_ _11"> </span>multi-co<span class="_ _3"></span>re<span class="_ _11"> </span>CPUs,<span class="_ _d"> </span>GPUs,<span class="_ _11"> </span>FPGA</span></div><div class="t m0 x5 hc y263 ff1 fs7 fc0 sc0 ls0 ws0">Nvidia<span class="_ _11"> </span>CUDA<span class="_ _e"> </span><span class="ff4">free,<span class="_ _11"> </span>Nvidia<span class="_ _d"> </span>GPUs</span></div><div class="t m0 x12 hc y264 ff1 fs7 fc0 sc0 ls0 ws0">AMD<span class="_ _11"> </span>ROCm<span class="_ _16"> </span><span class="ff4">free,<span class="_ _d"> </span>AMD<span class="_ _11"> </span>GPUs</span></div><div class="t m0 x55 hc y265 ff1 fs7 fc0 sc0 ls0 ws0">HIP<span class="_ _7"> </span><span class="ff4">free,<span class="_ _d"> </span>heterogeneous-compute<span class="_ _11"> </span>Interface<span class="_ _d"> </span>for<span class="_ _d"> </span>AMD/Nvidia<span class="_ _d"> </span>GPUs</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">73/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf51" class="pf w0 h0" data-page-no="51"><div class="pc pc51 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>a<span class="_ _3"></span>rallel<span class="_ _a"> </span>Programming<span class="_ _1d"> </span>Platfo<span class="_ _3"></span>rms<span class="_ _a"> </span>and<span class="_ _1d"> </span>APIs<span class="_ _41"> </span>2/3</div><div class="t m0 xb hc y25f ff1 fs7 fc0 sc0 ls0 ws0">Khronos<span class="_ _11"> </span>SyCL<span class="_ _16"> </span><span class="ff4">free,<span class="_ _d"> </span>abstraction<span class="_ _11"> </span>la<span class="_ _3"></span>yer<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>Op<span class="_ _6"></span>enCL,<span class="_ _d"> </span>Op<span class="_ _6"></span>enMP<span class="_ _8"></span>,<span class="_ _d"> </span>C/C++<span class="_ _11"> </span>lib<span class="_ _3"></span>raries,</span></div><div class="t m0 x31 hc y266 ff4 fs7 fc0 sc0 ls0 ws0">multi-co<span class="_ _3"></span>re<span class="_ _11"> </span>CPUs<span class="_ _d"> </span>and<span class="_ _11"> </span>GPUs</div><div class="t m0 x20 hc y267 ff1 fs7 fc0 sc0 ls0 ws0">K<span class="_ _3"></span>oKKos<span class="_ _11"> </span>(Sandia)<span class="_ _7"> </span><span class="ff4">free,<span class="_ _d"> </span>abstraction<span class="_ _11"> </span>lay<span class="_ _3"></span>er<span class="_ _d"> </span>for<span class="_ _d"> </span>multi-co<span class="_ _3"></span>re<span class="_ _11"> </span>CPUs<span class="_ _d"> </span>and<span class="_ _11"> </span>GPUs</span></div><div class="t m0 x56 hc y268 ff1 fs7 fc0 sc0 ls0 ws0">Raja<span class="_ _11"> </span>(LLNL)<span class="_ _16"> </span><span class="ff4">free,<span class="_ _d"> </span>abstraction<span class="_ _11"> </span>la<span class="_ _3"></span>yer<span class="_ _d"> </span>fo<span class="_ _3"></span>r<span class="_ _11"> </span>multi-core<span class="_ _c"> </span>CPUs<span class="_ _11"> </span>and<span class="_ _11"> </span>GPUs</span></div><div class="t m0 x57 hc y269 ff1 fs7 fc0 sc0 ls0 ws0">Intel<span class="_ _11"> </span>TBB<span class="_ _16"> </span><span class="ff4">commercial,<span class="_ _d"> </span>multi-core<span class="_ _d"> </span>CPUs</span></div><div class="t m0 x11 hc y26a ff1 fs7 fc0 sc0 ls0 ws0">OneAPI<span class="_ _7"> </span><span class="ff4">free,<span class="_ _d"> </span>Data<span class="_ _11"> </span>Pa<span class="_ _3"></span>rallel<span class="_ _d"> </span>C++<span class="_ _d"> </span>(DPC++)<span class="_ _11"> </span>built<span class="_ _d"> </span>up<span class="_ _6"></span>on<span class="_ _d"> </span>C++<span class="_ _11"> </span>and<span class="_ _11"> </span>SYCL,</span></div><div class="t m0 x31 hc y26b ff4 fs7 fc0 sc0 ls0 ws0">CPUs,<span class="_ _d"> </span>GPUs,<span class="_ _11"> </span>FPGA,<span class="_ _d"> </span>accelerators</div><div class="t m0 x58 hc y26c ff1 fs7 fc0 sc0 ls0 ws0">MPI<span class="_ _7"> </span><span class="ff4">free,<span class="_ _d"> </span>de-facto<span class="_ _11"> </span>standard<span class="_ _c"> </span>for<span class="_ _d"> </span>distributed<span class="_ _d"> </span>system</span></div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">74/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf52" class="pf w0 h0" data-page-no="52"><div class="pc pc52 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>a<span class="_ _3"></span>rallel<span class="_ _a"> </span>Programming<span class="_ _1d"> </span>Platfo<span class="_ _3"></span>rms<span class="_ _a"> </span>and<span class="_ _1d"> </span>APIs<span class="_ _41"> </span>3/3</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">75/76</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
<div id="pf53" class="pf w0 h0" data-page-no="53"><div class="pc pc53 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h5 y7 ff1 fs3 fc1 sc0 ls0 ws0">A<span class="_ _1d"> </span>Nice<span class="_ _1d"> </span>Example</div><div class="t m0 x1 hc y48 ff4 fs7 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>ccelerates<span class="_ _11"> </span>computational<span class="_ _d"> </span>chemistry<span class="_ _11"> </span>simulations<span class="_ _d"> </span>from<span class="_ _11"> </span>14<span class="_ _d"> </span>hours<span class="_ _11"> </span>to<span class="_ _11"> </span>47<span class="_ _d"> </span>seconds<span class="_ _11"> </span>with</div><div class="t m0 x1 hc y72 ff4 fs7 fc0 sc0 ls0 ws0">Op<span class="_ _6"></span>enA<span class="_ _3"></span>CC<span class="_ _d"> </span>on<span class="_ _11"> </span>GPUs<span class="_ _d"> </span>(<span class="ffa">∼<span class="_ _c"> </span></span>1<span class="ff1b">,<span class="_ _36"> </span></span>000<span class="ffc">x<span class="_ _10"> </span></span>Speedup)</div><div class="t m0 x10 ha y26d ff9 fs6 fc7 sc0 ls0 ws0">Accelerating<span class="_ _a"> </span>Prediction<span class="_ _a"> </span>of<span class="_ _10"> </span>Chemical<span class="_ _a"> </span>Shift<span class="_ _10"> </span>of<span class="_ _a"> </span>Protein<span class="_ _a"> </span>Structures<span class="_ _10"> </span>on<span class="_ _a"> </span>GPUs</div><div class="t m0 x13 h8 y11 ff5 fs5 fc0 sc0 ls0 ws0">76/76</div><a class="l" href="https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1"><div class="d m1" style="border-style:none;position:absolute;left:34.722000px;bottom:7.558000px;width:336.214000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
||
</div>
|
||
<div class="loading-indicator">
|
||
<img alt="" src=""/>
|
||
</div>
|
||
</body>
|
||
</html>
|