
Modern C++
Programming
23. Performance Optimization III

Non-Coding Optimizations and Benchmarking

Federico Busato
2025-01-19

Table of Contents

1 Compiler Optimizations
About the Compiler

Compiler Optimization Flags

Floating-point Optimization Flags

Linker Optimization Flags

Architecture Flags

Help the Compiler to Produce Better Code

Compiler Optimization Remarks

Profile Guided Optimization (PGO and AutoFDO)

Post-Processing Binary Optimizer

Polyhedral Optimizations 1/85

Table of Contents

2 Compiler Transformation Techniques
Basic Compiler Transformations

Loop Unswitching

Loop Fusion

Loop Fission

Loop Interchange

Loop Tiling

3 Libraries and Data Structures

2/85

Table of Contents

4 Performance Benchmarking
What to Test?

Workload/Dataset Quality

Cache Behavior

Stable CPU Performance

Multi-Threads Considerations

Program Memory Layout

Measurement Overhead

Compiler Optimizations

Metric Evaluation

3/85

Table of Contents

5 Profiling
gprof

uftrace

callgrind

cachegrind

perf Linux profiler

4/85

Table of Contents

6 Parallel Computing
Concurrency vs. Parallelism

Performance Scaling

Gustafson’s Law

Parallel Programming Languages

5/85

Compiler
Optimizations

About Compiler Optimizations 1/3

"I always say the purpose of optimizing compilers is not to make code
run faster, but to prevent programmers from writing utter **** in the
pursuit of making it run faster“

Rich Felker, musl-libc (libc alternative)

6/85

About Compiler Optimizations 2/3

bool isEven(int number) {
int numberCompare = 0;
bool even = true;
while (number != numberCompare) {

even = !even;
numberCompare++;

}
return even;

}

→
bool isEven(int number) {

return number & 1u;
}

Exploring Clang/LLVM optimization on programming horror 7/85

https://blog.matthieud.me/2020/exploring-clang-llvm-optimization-on-programming-horror/

About Compiler Optimizations 3/3

On the other hand, having a good compiler does not mean that it can fully optimize
any code:

• The compiler does not “understand” the code, as opposed to human

• The compiler is conservative and applies optimizations only if they are safe and do
not affect the correctness of computation

• The compiler is full of models and heuristics that could not match a specific
situation

• The compiler cannot spend large amount of time in code optimization

• The compiler could consider other targets outside performance, e.g. binary size

8/85

About the Compiler 1/2

Important advise: Use an updated version of the compiler
• Newer compiler produces better/faster code

- Effective optimizations
- Support for newer CPU architectures

• New warnings to avoid common errors and better support for existing
error/warnings (e.g. code highlights)

• Faster compiling, less memory usage

• Less compiler bugs: compilers are very complex and they have many bugs

Use an updated version of the linker : e.g. for Link Time Optimization,
gold linker or LLVM linker lld

9/85

About the Compiler 2/2

Which compiler?

Answer: It dependents on the code and on the processor
example: GCC 9 vs. Clang 8

Some compilers can produce optimized code for specific architectures:
• Intel Compiler (commercial): Intel processors

• IBM XL Compiler (commercial): IBM processors/system

• Nvidia NVC++ Compiler (free/commercial): Multi-core processors/GPUs

• gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
• Intel Blog: gcc-x86-performance-hints
• Advanced Optimization and New Capa-bilities of GCC 10

10/85

https://www.phoronix.com/scan.php?page=article&item=gcc9-clang8-hedt&num=1
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints
https://documentation.suse.com/sbp/all/pdf/SBP-GCC-10_color_en.pdf

Compiler Optimization Flags 1/3

-O0 , /Od Disables any optimization
• default behavior
• fast compile time

-O1 , /O1 Enables basic optimizations

-O2 , /O2 Enables advanced optimizations
• some optimization steps are expensive
• can increase the binary size

-O3 Enable aggressive optimizations. Turns on all optimizations specified by
-O2 , plus some more

• -O3 does not guarantee to produce faster code than -O2 *

• it could break floating-point IEEE754 rules in some non-traditional
compilers (nvc++, IBM xlc)

* Performance (Really) Matters, Emery Berger
11/85

https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2020/performance-really-mattters-techtalk.pdf

Compiler Optimization Flags 2/3

-O4 / -O5 It is an alias of -O3 in some compilers, or it can refer to -O3 +
inter-procedural optimizations (basic, full) and high-order transformation
(HOT) optimizer for specialized loop transformations

-Ofast Provides other aggressive optimizations that may violate strict compliance
with language standards. It includes -O3 -ffast-math

-Os , /Os Optimize for size. It enables all -O2 optimizations that do not typically
increase code size (e.g. loop unrolling)

-Oz Aggressively optimize for size

12/85

Compiler Optimization Flags 3/3

-funroll-loops Enables loop unrolling (not included in -O3)

-fprefetch-loop-arrays Emit prefetch instructions in loops (not included in -O3)

-fopt-info Describes optimization passes and missed optimizations
-fopt-info-missed

13/85

Floating-point Optimization Flags 1/2

In general, enabling the following flags implies less floating-point accuracy, breaking
the IEEE754 standard, and it is implementation dependent (not included in -O3)

-fno-signaling-nans

-fno-trapping-math Disable floating-point exceptions

-mfma -ffp-contract=fast Force floating-point expression contraction such as
forming of fused multiply-add operations

-ffinite-math-only Disable special conditions for handling inf and NaN

-fassociative-math Assume floating-point associative behavior
14/85

Floating-point Optimization Flags 2/2

-funsafe-math-optimizations Allows breaking floating-point associativity and
enables reciprocal optimization

-ffast-math Enables aggressive floating-point optimizations. All
the previous, flush-to-zero denormal number, plus
others

Beware of fast-math
Semantics of Floating Point Math in GCC

15/85

https://simonbyrne.github.io/notes/fastmath/
https://gcc.gnu.org/wiki/FloatingPointMath

Linker Optimization Flags

-flto Enables Link Time Optimizations (Interprocedural Optimization). The
linker merges all modules into a single combined module for
optimization

• the linker must support this feature: GNU ld v2.21++ or gold version,
to check with ld –version

• it can significantly improve the performance
• in general, it is a very expensive step, even longer than the object

compilations

-fwhole-program Assume that the current compilation unit represents the whole
program being compiled → Assume that all non-extern functions and
variables belong only to their compilation unit

Ubuntu 21.04 To Turn On LTO Optimizations For Its Packages 16/85

https://www.phoronix.com/scan.php?page=news_item&px=Ubuntu-21.04-LTO-Packages

Architecture Flags - 32-bits or 64-bits? 1/4

Architecture-oriented optimizations are not included in other flags (-O3)

-m64 In 64-bit mode the number of available registers increases from 6 to 14 general
and from 8 to 16 XMM. Also, all 64-bits x86 architectures have SSE2 extension by
default. 64-bit applications can use more than 4GB address space

-m32 32-bit mode. It should be combined with -mfpmath=sse to enable using of XMM
registers in floating point instructions (instead of stack in x87 mode). 32-bit
applications can use less than 4GB address space

It is recommended to use 64-bits for High-Performance Computing applications and
32-bits for phone and tablets applications

17/85

Architecture Flags 2/4

-march=<arch> Generates instructions for a specific processor to exploit exclusive
hardware features. <arch> represents the minimum hardware
supported by the binaries (not portable)

-mtune=<tune_arch> Specifies the target microarchitecture. Generates optimized code
for a class of processors without exploiting specific hardware
features. Binaries are still compatibles with other processors, e.g.
earlier CPUs in the architecture family (maybe slower than
-march)

-mcpu=<tune_arch> Deprecated synonym for -mtune for x86-64 processors, optimizes
for both a particular architecture and microarchitecture on Arm

-mfpu<fp_hw> (Arm) Optimize for a specific floating-point hardware
-m<instr_set> (x86-64) Optimize for a specific instruction set 18/85

Architecture Flags 3/4

<arch> armv9-a , armv7-a+neon-vfpv4 , znver4 , core2 , skylake

<tune_arch> cortex-a9 , neoverse-n2 , generic , intel

<instr_set> see2 , avx512
<fp_hw> neon , neon-fp-armv8

• <tune_arch> should be always greater than <arch>

• In general, -mtune is set to generic if not specified
• -march=native , -mtune=native , -mcpu=native : Allows the compiler to

determine the processor type (not always accurate)
• Especially with new compilers, prefer auto-vectorization to explicit vector

intrinsics

• GCC Arm options, GCC X86-64 options
• Compiler flags across architectures: -march, -mtune, and -mcpu
• NVIDIA Grace CPU Benchmarking Guide, Arm Vector Instructions: SVE and NEON

19/85

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/compiler-flags-across-architectures-march-mtune-and-mcpu
https://nvidia.github.io/grace-cpu-benchmarking-guide/developer/vectorization.html

Architecture Flags - Function Targets 4/4

GCC and Clang provide the attributes target and target_clones to automatically
generate different instruction set backends that are dispatched at runtime

• target accepts different target options than specified on the command line.
The original target command-line options are ignored

• target_clones accepts different targets in addition to the options specified on
the command line

__attribute__ ((__target__ ("sse4.1,arch=core2")))
void f1() {}

__attribute__ ((__target_clones__ ("sse4.1,avx,default")))
void f2() {}

GCC documentation
Clang documentation

20/85

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-target-function-attribute
https://clang.llvm.org/docs/AttributeReference.html#target

Help the Compiler to Produce Better Code

• Grouping variables and functions related to each other in the same translation unit

• Define global variables and functions in the translation unit in which they are
used more often

• Global variables and functions that are not used by other translation units should
have internal linkage (anonymous namespace/ static function)

Static library linking helps the linker to optimize the code across different
modules (link-time optimizations). Dynamic linking prevents these kinds of
optimizations

21/85

Compiler Optimization Remarks 1/3

Recent compilers can provide insights, called optimization remarks, into the
optimizations applied (or not applied) during the compilation process.

The reports help developers understand how the compiler transforms code and identify
areas where optimizations are not applied. Such information is useful to improve
performance, memory usage, and binary size.

Typical examples of optimization passes include:

• licm : Loop invariant code motion
• loop-vectorize : Loop vectorization optimization
• size-info : number of IR instructions
• gvn : Global value numbering
• inline : Function inlining
• loop-unroll : Loop unrolling

22/85

Compiler Optimization Remarks 2/3

GCC (documentation)

• -fopt-info , -fopt-info-<filter> Print applied and missed optimization passes.
<filter> can be missed , optimized , all , note (verbose)

• -fopt-info-<optimization>-<filter> Print a specific optimization pass

Clang (documentation)

• -Rpass , -Rpass=<optimization> Print applied optimization passes

• -Rpass-missed , -Rpass-missed=<optimization> Print missed optimization passes

• -Rpass-analysis , -Rpass-analysis=<optimization> Print applied and missed
optimization passes

• -fsave-optimization-record Save optimization reports. Then use opt-viewer.py
(llvm suite) or opt-viewer2 to generate a html file for a better visualization 23/85

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#index-fopt-info
https://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports
https://github.com/OfekShilon/optview2

Compiler Optimization Remarks 3/3

Optimization remarks are also available on Compiler Explorer

• Loop Optimizations: interpreting the compiler optimization report
• Generating compiler optimization remarks in LLVM
• Optimization Remarks - "Remarks Helping the Compiler Generate Better Code" 24/85

https://godbolt.org/z/Mfrsx3Ez1
https://johnnysswlab.com/loop-optimizations-interpreting-the-compiler-optimization-report/
https://community.ibm.com/community/user/powerdeveloper/blogs/archana-ravindar/2022/08/12/llvm-optimization-remarks
https://www.youtube.com/watch?v=prC1Pe-F8Jo

Profile Guided Optimization (PGO) 1/2

Profile Guided Optimization (PGO), also called Feedback-Directed Optimization
(FDO), is a compiler technique aims at improving the application performance by
reducing instruction-cache problems, reducing branch mispredictions, etc. PGO
provides information to the compiler about areas of an application that are most
frequently executed

It consists in the following steps:

(1) Compile and instrument the code

(2) Run the program by exercising the most used/critical paths

(3) Compile again the code and exploit the information produced in the previous step

The particular options to instrument and compile the code are compiler specific
25/85

Profile Guided Optimization (PGO) 2/2

GCC

$ gcc -fprofile-generate my_prog.c my_prog # program instrumentation
$./my_prog # run the program (most critial/common path)
$ gcc -fprofile-use -O3 my_prog.c my_prog # use instrumentation info

Clang

$ clang++ -fprofile-instr-generate my_prog.c my_prog
$./my_prog
$ xcrun llvm-profdata merge -output default.profdata default.profraw
$ clang++ -fprofile-instr-use=default.profdata -O3 my_prog.c my_prog

Clang PGO can be combined with the optimization remark flag -fshow-diagnostics-hotness to
show code chucks heavily optimized by the compiler (hotness)

e.g. Firefox and Google Chrome support PGO building
26/85

PGO and LTO Performance

SPEC 2017 built with GCC 10.2 and -O2

27/85

Automatic Feedback-Directed Optimization (AutoFDO)

Feedback-Directed Optimization (PGO/FDO) often shows high runtime overhead,
require to recompile the binaries, and present difficulties in generating representative
training data set

Automatic Feedback-Directed Optimization (AutoFDO) instead works by
sampling hardware performance monitors on production machines and using those
profiles to guide optimization

Some applications showed up to 10% performance improvements. Clang AutoFDO has
been also used to optimize the Linux kernel resulting in 5%-10% performance speedup

• AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications

• AutoFDO tutorial

• Clang AutoFDO & Propeller Optimization Support Sent In For Linux 6.13 28/85

https://research.google/pubs/autofdo-automatic-feedback-directed-optimization-for-warehouse-scale-applications/
https://research.google/pubs/autofdo-automatic-feedback-directed-optimization-for-warehouse-scale-applications/
https://gcc.gnu.org/wiki/AutoFDO/Tutorial
https://www.phoronix.com/news/Kbuild-Clang-AutoFDO-Linux-6.13

Post-Processing Binary Optimizer 1/2

The code layout in the final binary can be further optimized with a post-link binary
optimizer and layout optimization like BOLT or Propeller (sampling or
instrumentation profile)

BOLT: A Practical Binary Optimizer for Data Centers and Beyond
LLVM-project/BOLT 29/85

https://github.com/facebookincubator/BOLT
https://github.com/google/llvm-propeller
https://research.facebook.com/publications/bolt-a-practical-binary-optimizer-for-data-centers-and-beyond/
https://github.com/llvm/llvm-project/tree/main/bolt

Post-Processing Binary Optimizer 2/2

The many faces of LLVM PGO and FDO
BOLT optimization technology could bring obvious performance uplift on arm server

30/85

https://aaupov.github.io/blog/2023/07/09/pgo
https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/bolt-optimization-technology

Polyhedral Optimizations 1/2

Polyhedral optimization is a compilation technique that
rely on the representation of programs, especially those involving
nested loops and arrays, in parametric polyhedra. Thanks to
combinatorial and geometrical optimizations on these objects, the
compiler is able to analyze and optimize the programs including automatic
parallelization, data locality, memory management, SIMD instructions, and code
generation for hardware accelerators

Polly is a high-level loop and data-locality optimizer and optimization infrastructure
for LLVM

PLUTO is an automatic parallelization tool based on the polyhedral model

see also Using Polly with Clang
31/85

https://polly.llvm.org/
http://pluto-compiler.sourceforge.net/
https://polly.llvm.org/docs/UsingPollyWithClang.html

Polyhedral Optimizations 2/2

Loop Optimizations in LLVM: The Good, The Bad, and The Ugly
32/85

https://llvm.org/devmtg/2018-10/slides/Kruse-LoopTransforms.pdf

Compiler
Transformation
Techniques

Help the Compiler to Produce Better Code

Overview on compiler code generation and transformation:

• Optimizations in C++ Compilers
Matt Godbolt, ACM Queue

• Compiler Optimizations

33/85

https://dl.acm.org/ft_gateway.cfm?id=3372264&ftid=2096683&dwn=1
http://compileroptimizations.com/category/address_optimization.htm

Basic Compiler Transformations 1/3

• Constant folding. Direct evaluation constant expressions at compile-time
const int K = 100 * 1234 / 2;

• Constant propagation. Substituting the values of known constants in
expressions at compile-time
const int K = 100 * 1234 / 2;
const int J = K * 25;

• Common subexpression elimination. Avoid computing identical and redundant
expressions
int x = y * z + v;
int y = y * z + k; // y * z is redundant

34/85

Compiler Transformations 2/3

• Induction variable elimination. Eliminate variables whose values are dependent
(induction)
for (int i = 0; i < 10; i++)

x = i * 8;
// "x" can be derived by knowing the value of "i"

• Dead code elimination. Elimination of code which is executed but whose result
is never used, e.g. dead store
int a = b * c;
... // "a" is never used, "b * c" is not computed

Unreachable code elimination instead involves removing code that is never
executed

35/85

Compiler Transformations 3/3

• Use-define chain. Avoid computations related to a variable that happen before
its definition
x = i * k + l;
x = 32; // "i * k + l" is not needed

• Peephole optimization. Replace a small set of low-level instructions with a
faster sequence of instructions with better performance and the same semantic.
The optimization can involve pattern matching
imul eax, eax, 8 // a * 8
sal eax, 3 // a << 3 (shift)

36/85

Loop Unswitching

• Loop Unswitching. Split the loop to improve data locality, reduce loop
instructions (especially branches), and allow additional optimizations
for (i = 0; i < N; i++) {

if (x)
a[i] = 0;

else
b[i] = 0;

}

if (x) {
for (i = 0; i < N; i++)

a[i] = 0; // use memset
}
else {

for (i = 0; i < N; i++)
b[i] = 0; // use memset

}
37/85

Loop Fusion

• Loop Fusion (jamming). Merge multiple loops to improve data locality and
perform additional optimizations
for (i = 0; i < 300; i++)

a[i] = a[i] + sqrt(i);
for (i = 0; i < 300; i++)

b[i] = b[i] + sqrt(i);

for (i = 0; i < 300; i++) {
a[i] = a[i] + sqrt(i); // sqrt(i) is computed only
b[i] = b[i] + sqrt(i); // one time

}

38/85

Loop Fission

• Loop Fission (distribution). Split a loop in multiple loops to
for (i = 0; i < size; i++) {

a[i] = b[rand()]; // cache pollution
c[i] = d[rand()];

}

for (i = 0; i < size; i++)
a[i] = b[rand()]; // better cache utilization

for (i = 0; i < size; i++)
c[i] = d[rand()];

39/85

Loop Interchange

• Loop Interchange. Exchange the order of loop iterations to improve data locality
and perform additional optimizations (e.g. vectorization)
for (i = 0; i < 1000000; i++) {

for (j = 0; j < 100; j++)
a[j * x + i] = ...; // low locality

}

for (j = 0; j < 100; j++) {
for (i = 0; i < 1000000; i++)

a[j * x + i] = ...; // high locality
}

40/85

Loop Tiling

• Loop Tiling (blocking, nest optimization). Partition the iterations of multiple
loops to exploit data locality
for (i = 0; i < N; i++) {

for (j = 0; j < M; j++)
a[j * N + i] = ...; // low locality

}

for (i = 0; i < N; i += TILE_SIZE) {
for (j = 0; j < M; j += TILE_SIZE) {

for (k = 0; k < TILE_SIZE; k++) {
for (l = 0; l < TILE_SIZE; l++) {

41/85

Libraries and Data
Structures

External Libraries and Data Structures 1/4

Consider using optimized external libraries for critical program operations

Compressed Bitmask: set algebraic operations

• BitMagic Library

• Roaring Bitmaps

Ordered Map/Set: B+Tree as replacement for red-black tree

• STX B+Tree

• Abseil B-Tree

42/85

http://bitmagic.io/index.html
http://roaringbitmap.org/
https://panthema.net/2007/stx-btree/
https://abseil.io/docs/cpp/guides/container

External Libraries and Data Structures 2/4

Hash Table: (replace for std::unsorted_set/map)

• Google Sparse/Dense Hash Table

• bytell hashmap

• Facebook F14 memory efficient hash table

• Abseil Hashmap (2x-3x faster)

• Robin Hood Hashing

• Comprehensive C++ Hashmap Benchmarks 2022

• An Extensive Benchmark of C and C++ Hash Tables

43/85

https://github.com/sparsehash/sparsehash
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://code.fb.com/developer-tools/f14/
https://abseil.io/docs/cpp/guides/container
https://github.com/martinus/robin-hood-hashing
https://martin.ankerl.com/2022/08/27/hashmap-bench-01/
https://jacksonallan.github.io/c_cpp_hash_tables_benchmark/

External Libraries and Data Structures 3/4

• Probabilistic Set Query: Bloom filter, ‘XOR filter , Facebook’s Ribbon
Filter , Binary Fuse filter

• Scan, print, and formatting: fmt library , scn library instead of
iostream or printf/scanf

• Random generator: PCG /Xoshiro random generators instead of Mersenne
Twister or Linear Congruent

• Integer hash function instead of a random generator if the period length is not a
concern hash-prospector

• Non-cryptographic hash algorithm: xxHash instead of CRC

• Cryptographic hash algorithm: BLAKE3 instead of MD5 or SHA 44/85

https://arxiv.org/abs/1912.08258
https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/
https://engineering.fb.com/2021/07/09/data-infrastructure/ribbon-filter/
https://github.com/hexops/fastfilter
https://github.com/fmtlib/fmt
https://github.com/eliaskosunen/scnlib/tree/v1.0
http://www.pcg-random.org/
https://prng.di.unimi.it/
https://github.com/skeeto/hash-prospector
https://cyan4973.github.io/xxHash/
https://github.com/BLAKE3-team/BLAKE3

External Libraries and Data Structures 4/4

• Search: Performance comparison: linear search vs binary search

• Linear Algebra: Eigen , Armadillo , Blaze

• Sort:
• Beating Up on Qsort . Radix-sort for non-comparative elements (e.g. int ,

float)
• Vectorized and performance-portable Quicksort

• malloc replacement:
• tcmalloc (Google)
• mimalloc (Microsoft)

45/85

https://dirtyhandscoding.github.io/posts/performance-comparison-linear-search-vs-binary-search.html
http://eigen.tuxfamily.org
arma.sourceforge.net
https://bitbucket.org/blaze-lib/blaze
https://travisdowns.github.io/blog/2019/05/22/sorting.html
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/microsoft/mimalloc

Libraries and Std replacements

• Folly: Performance-oriented std library (Facebook)

• Abseil: Open source collection of C++ libraries drawn from the most
fundamental pieces of Google’s internal codebase

• Frozen: Zero-cost initialization for immutable containers, fixed-size containers,
and various algorithms.

A curated list of awesome header-only
C++ libraries

46/85

https://github.com/facebook/folly/blob/master/folly/docs/Overview.md
https://abseil.io/
https://github.com/serge-sans-paille/frozen
https://github.com/p-ranav/awesome-hpp

Performance
Benchmarking

Performance Benchmarking

Performance benchmarking is a non-functional test focused on mea-
suring the efficiency of a given task or program under a particular load

Performance benchmarking is hard!!

Main reasons:

• What to test?
• Workload/Dataset quality
• Cache behavior
• Stable CPU performance

• Program memory layout
• Measurement overhead
• Compiler optimizations
• Metric evaluation

47/85

What to Test?

1. Identify performance metrics: The metric(s) should be strongly related to the
specific problem and that allows a comparison across different systems, e.g.
elapsed time is not a good metric in general for measuring the throughput

- Matrix multiplication: FLoating-point Operation Per Second (FLOP/S)
- Graph traversing: Edge per Second (EPS)

2. Plan performance tests: Determine what part of the problem is relevant for
solving the given problem, e.g. excluding initialization process

- Suppose a routine that requires different steps and ask a memory buffer for each of
them. Memory allocations should be excluded as a user could use a memory pool

48/85

Workload/Dataset Quality

1. Stress the most important cases: Rare or edge cases that are not used in
real-world applications or far from common usage are less important, e.g. a graph
problem where all vertices are not connected

2. Use datasets that are well-known in the literature and reproducible. Don’t
use “self-made” dataset and, if possible, use public available resources

3. Use a reproducible test methodology. Trying to remove sources of “noise”,
e.g. if the procedure is randomized, the test should be use with the same seed. It
is not always possible, e.g. OS scheduler, atomic operations in parallel computing,
etc.

see also Reproducibility in artificial intelligence
49/85

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17248/15864

Cache Behavior 1/2

• Cache behavior is not deterministic. Different executions lead to different hit rates

• After a data is loaded from the main memory, it remains in the cache until it
expires or is evicted to make room for new content

• Executing the same routine multiple times, the first run is much slower than the
other ones due to the cache effect (warmup run)

50/85

Cache Behavior 2/2

There is no a systematic way to flush the cache. Some techniques to ensure more
reliable performance results are

• overwrite all data involved in the computation between each runs
• read/write between two buffers of size at least the size of the largest cache
• some processors, such as ARM, provide specific instructions to invalidate the

cache __builtin___clear_cache() , __clear_cache()

Note: manual cache invalidation must consider cache locality (e.g. L1 per CPU core) and
compiler optimizations that can remove useless code (solution: use global variables and
volatile)

see: Is there a way to flush the entire CPU cache related to a program?
51/85

https://stackoverflow.com/questions/48527189/is-there-a-way-to-flush-the-entire-cpu-cache-related-to-a-program

Stable CPU Performance 1/5

One of the first source of fluctuation in performance measurement is due to unstable
CPU frequency

Dynamic frequency scaling, also known as CPU throttling, automatically decreases
the CPU frequency for:

• Power saving, extending battery life
• Decrease fan noise and chip heat
• Prevent high frequency damage

Modern processors also comprise advanced technologies to automatically raise CPU
operating frequency when demanding tasks are running (e.g. Intel® Turbo
Boost). Such technologies allow processors to run with the highest possible frequency
for limited amount of time depending on different factors like type of workload,
number of active cores, power consumption, temperature, etc.

52/85

Stable CPU Performance 2/5

Get CPU info:

• CPU characteristics:
lscpu

• Monitor CPU clocks in real-time:
cpupower monitor -m Mperf

• Get CPU clocks info:
cpupower frequency-info
see “cpufreq governors”

53/85

Stable CPU Performance 3/5

• Disable Turbo Boost
echo 1 » /sys/devices/system/cpu/intel_pstate/no_turbo

• Disable hyper threading
echo 0 > /sys/devices/system/cpu/cpuX/online

or through BIOS

• Use “performance” scaling governor and max frequency and use ‘userspace‘
governor to specify a fixed frequency
sudo cpupower frequency-set -g performance or
sudo cpufreq-set -f <frequency> , e.g. 3200000 (3.2 GHz)

54/85

Stable CPU Performance 4/5

• Use ‘userspace‘ governor to specify a fixed frequency
sudo cpufreq-set -g userspace
sudo cpufreq-set -u <frequency> , e.g. 3200000 (3.2 GHz)

• Set CPU affinity (CPU-Program binding) taskset -c <cpu_id> <program>

• Set process priority sudo nice -n -5 taskset -c <cpu_id> <process>

NVIDIA Grace Performance Tuning Guide 55/85

https://docs.nvidia.com/grace-performance-tuning-guide.pdf

Stable CPU Performance 5/5

• Disable address space randomization
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

• Drop file system cache (if the benchmark involves IO ops)
echo 3 | sudo tee /proc/sys/vm/drop_caches; sync

• CPU isolation
don’t schedule process and don’t run kernels code on the selected CPUs. GRUB
options: isolcpus=<cpu_ids>,rcu_nocbs=<cpu_ids>

• How to get consistent results when benchmarking on Linux?

• How to run stable benchmarks

• Best Practices When Benchmarking CUDA Applications 56/85

https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux
https://archive.fosdem.org/2017/schedule/event/python_stable_benchmark/attachments/slides/1813/export/events/attachments/python_stable_benchmark/slides/1813/howto_run_stable_benchmarks.pdf
https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf

Multi-Threads Considerations

• numactl –interleave=all
NUMA: Non-Uniform Memory Access (e.g. multi-socket system)
The default behavior is to allocate memory in the same node as a thread is
scheduled to run on, and this works well for small amounts of memory. However,
when you want to allocate more than a single node memory, it is no longer
possible. This option sets interleaved memory allocations among NUMA nodes

• export OMP_NUM_THREADS=96 Set the number of threads in an OpenMP
program

57/85

Program Memory Layout

A small code change modifies the memory program layout
→ large impact on cache (up to 40%)

• Linking
- link order → changes function addresses
- upgrade a library

• Environment Variable Size: moves the program stack
- run in a new directory
- change username

•Performance Matters, E. Berger, CppCon20
•Producing Wrong Data Without Doing Anything Obviously Wrong!, Mytkowicz et al.,
ASPLOS’09 58/85

https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw

Measurement Overhead

Time-measuring functions could introduce significant overhead for small
computation

std::chrono::high_resolution_clock::now() /
std::chrono::system_clock::now() rely on library/OS-provided functions to
retrieve timestamps (e.g. clock_gettime) and their execution can take several clock
cycles

Consider using a benchmarking framework, such as Google Benchmark or
nanobench (std::chrono based), to retrieve hardware counters and get basic
profiling info

59/85

https://github.com/google/benchmark
https://nanobench.ankerl.com/

Compiler Optimizations

Compiler optimizations could distort the actual benchmark

• Dead code elimination: the compiler discards code that does not perform “useful”
computation

• Constant propagation/Loop optimization: the compiler is able to pre-compute the
result of simple codes

• Instruction order: the compiler can even move the time-measuring functions

Microbenchmarking Is Tricky 60/85

https://lucisqr.substack.com/p/microbenchmarking-is-tricky

Other Considerations

The actual values for a benchmark could significantly affect the results. For
instance, a GEMM operation could show 2X performance between matrices filled with
zeros and random values due to the effect on power consumption

61/85

Metric Evaluation 1/6

After extracting and collecting performance results, it is fundamental to
report/summarize them in a way to fully understand the experiment, provide
interpretable insights, ensure reliability, and compare different observations, e.g. codes,
algorithms, systems, etc.

62/85

Metric Evaluation 2/6

Metric Formula Description

Arithmetic mean x̄ =
n∑

i=1
xi For summarizing costs, e.g. exec. times, floating point ops, etc.

Harmonic mean n
n∑

i=1

1
xi

For summarizing rates, e.g. flop/s

Geometric mean n

√
n∏

i=1
xi

For summarizing rates. Harmonic mean should be preferred.
Commonly used for comparing speedup

Standard deviation
σ =

n∑
i=1

(xi −x)2

n−1
Measure of the spread of normally distributed samples

Coefficient of
Variation

std .dev
arith.mean

Represents the stability of a set of normally distributed
measurement results. Normalized standard deviation

63/85

Metric Evaluation 3/6

Metric Formula Description

Confidence intervals
of the mean

z = t
(
n − 1, α

2

)
CI =

[
x̄ − zσ√

n , x̄ + zσ√
n

] Measure of reliability of the experiment. The concept
is interpreted as the probability (e.g. α = 95%) that
the observed confidential interval contains the true
mean

Median
value at position n/2
after sorting all data

Rank measures are more robust with regard to
outliers but do not consider all measured values

Quantile:
Percentile/Quartile

value at a given position
after sorting all data

The percentiles/quartiles provide information about
the spread of the data and the skew. It indicates the
value below which a given percentage of data falls

Minumum/
Maximum

min / maxn
i=1 (xi)

Provide the lower/upper bounds of the data, namely
the range of the values 64/85

Metric Evaluation 4/6

Confidence Interval Z

80% 1.282
85% 1.440
90% 1.645
95% 1.960
99% 2.576
99.5% 2.807
99.9% 3.291

Some metrics assume a normal distribution → the arithmetic mean, median and mode
are all equal

|x̄ − median|
max (x̄ , median)

If the relative difference between the mean and median is larger than 1%, values are
probably not normally distributed 65/85

Metric Evaluation 5/6

Minimum/Maximum vs. Arithmetic mean. The minimum/maximum could be used
to get the best outcome of an experiment, namely the measure with the least noise.
On the other hand, the arithmetic mean considers all values and could better represent
the behavior of the experiment.

If the skewness of the distribution is symmetrical (e.g. normal, binomial) then the
arithmetic mean is a superior statistic, while the minimum/maximum could be useful
in the opposite case (e.g. log-normal distribution)

66/85

Metric Evaluation 6/6

• Benchmarking: minimum vs average

• Scientific Benchmarking of Parallel Computing Systems

• Benchmarking C++ Code
67/85

https://blog.kevmod.com/2016/06/10/benchmarking-minimum-vs-average/
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking.pdf
https://raw.githubusercontent.com/CppCon/CppCon2015/master/Presentations/Benchmarking%20C%2B%2B%20Code/Benchmarking%20C%2B%2B%20Code%20-%20Bryce%20Adelstein%20Lelbach%20-%20CppCon%202015.pdf

Profiling

Overview

A code profiler is a form of dynamic program analysis which aims at investigating the
program behavior to find performance bottleneck. A profiler is crucial in saving time
and effort during the development and optimization process of an application

Code profilers are generally based on the following methodologies:

• Instrumentation Instrumenting profilers insert special code at the beginning and
end of each routine to record when the routine starts and when it exits. With this
information, the profiler aims to measure the actual time taken by the routine on
each call.
Problem: The timer calls take some time themselves

• Sampling The operating system interrupts the CPU at regular intervals (time slices)
to execute process switches. At that point, a sampling profiler will record the
currently-executed instruction 68/85

gprof

gprof is a profiling program which collects and arranges timing statistics on a given
program. It uses a hybrid of instrumentation and sampling programs to monitor
function calls

Website: sourceware.org/binutils/docs/gprof/

Usage:
• Code Instrumentation

$ g++ -pg [flags] <source_files>

Important: -pg is required also for linking and it is not supported by clang

• Run the program (it produces the file gmon.out)
• Run gprof on gmon.out

$ gprof <executable> gmon.out

• Inspect gprof output 69/85

https://sourceware.org/binutils/docs/gprof/

gprof 2/2

gprof output

gprof can be also used for showing the call graph statistics

$ gprof -q <executable> gmon.out

70/85

uftrace

The uftrace tool is to trace and analyze execution of a program written in C/C++

Website: github.com/namhyung/uftrace

$ gcc -pg <program>.cpp
$ uftrace record <executable>
$ uftrace replay

Flame graph output in html and svg

71/85

https://github.com/namhyung/uftrace

callgrind

callgrind is a profiling tool that records the call history among functions in a
program’s run as a call-graph. By default, the collected data consists of the number of
instructions executed

Website: valgrind.org/docs/manual/cl-manual.html

Usage:

• Profile the application with callgrind

$ valgrind --tool callgrind <executable> <args>

• Inspect callgrind.out.XXX file, where XXX will be the process identifier

72/85

http://valgrind.org/docs/manual/cl-manual.html

cachegrind

cachegrind simulates how your program interacts with a machine’s cache hierarchy
and (optionally) branch predictor

Website: valgrind.org/docs/manual/cg-manual.html

Usage:
• Profile the application with cachegrind

$ valgrind --tool cachegrind --branch-sim=yes <executable> <args>

• Inspect the output (cache misses and rate)
- l1 L1 instruction cache
- D1 L1 data cache
- LL Last level cache

73/85

http://valgrind.org/docs/manual/cg-manual.html

kcachegrind and qcachegrindwin (View)

KCachegrind (linux) and Qcachegrind (windows) provide a graphical interface for
browsing the performance results of callgraph

•kcachegrind.sourceforge.net/html/Home.html

•sourceforge.net/projects/qcachegrindwin

74/85

http://kcachegrind.sourceforge.net/html/Home.html
https://sourceforge.net/projects/qcachegrindwin/

gprof2dot (View)

gprof2dot is a Python script to convert the output from many profilers into a dot
graph

Website: github.com/jrfonseca/gprof2dot

75/85

https://github.com/jrfonseca/gprof2dot

perf Linux profiler 1/2

Perf is performance monitoring and analysis tool for Linux. It uses statistical profiling,
where it polls the program and sees what function is working

Website: perf.wiki.kernel.org/index.php/Main_Page

$ perf record -g <executable> <args> // or
$ perf record --call-graph dwarf <executable>
$ perf report // or
$ perf report -g graph --no-children

Linux perf for Qt developers 76/85

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kdab.com/wp-content/uploads/stories/Linux_perf_for_Qt_developers.pdf

perf Linux profiler 2/2

Data collected by perf can be visualized by using flame graphs, see:
Speedscope: visualize what your program is doing and where it is
spending time

77/85

https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/
https://johnysswlab.com/speedscope-visualize-what-your-program-is-doing-and-where-it-is-spending-time/

Other Profilers

Free profiler:

• Hotspot

Proprietary profiler:

• Intel VTune

• AMD CodeAnalyst

78/85

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

Parallel Computing

Concurrency vs. Parallelism

Concurrency
A system is said to be concurrent if it can support two or more actions in progress
at the same time. Multiple processing units work on different tasks independently

Parallelism
A system is said to be parallel if it can support two or more actions executing
simultaneously. Multiple processing units work on the same problem and their
interaction can effect the final result

Note: parallel computation requires rethinking original sequential algorithms (e.g.
avoid race conditions)

79/85

Performance Scaling

Strong Scaling
The strong scaling defined how the compute time decreases increasing the number
of processors for a fixed total problem size

Weak Scaling
The weak scaling defined how the compute time decrease increasing the number of
processors for a fixed total problem size per processor

Strong scaling is hard to achieve because of computation units communication. Strong
scaling is in contrast to the Amdahl’s Law

80/85

Gustafson’s Law

Gustafson’s Law
Increasing number of processor units allow solving larger problems in the same time
(the computation time is constant)

Multiple problem instances can run concurrently with more computational resources

81/85

Parallel Programming Platforms and APIs 1/3

C++11 Threads (+ Parallel STL) free, multi-core CPUs

OpenMP free, directive-based, multi-core CPUs and GPUs (last versions)

OpenACC free, directive-based, multi-core CPUs and GPUs

Khronos OpenCL free, multi-core CPUs, GPUs, FPGA

Nvidia CUDA free, Nvidia GPUs

AMD ROCm free, AMD GPUs

HIP free, heterogeneous-compute Interface for AMD/Nvidia GPUs
82/85

Parallel Programming Platforms and APIs 2/3

Khronos SyCL free, abstraction layer for OpenCL, OpenMP, C/C++ libraries,
multi-core CPUs and GPUs

KoKKos (Sandia) free, abstraction layer for multi-core CPUs and GPUs

Raja (LLNL) free, abstraction layer for multi-core CPUs and GPUs

Intel TBB commercial, multi-core CPUs

OneAPI free, Data Parallel C++ (DPC++) built upon C++ and SYCL,
CPUs, GPUs, FPGA, accelerators

MPI free, de-facto standard for distributed system
83/85

Parallel Programming Platforms and APIs 3/3

84/85

A Nice Example

Accelerates computational chemistry simulations from 14 hours to 47 seconds with
OpenACC on GPUs (∼ 1, 000x Speedup)

Accelerating Prediction of Chemical Shift of Protein Structures on GPUs 85/85

https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1

	Compiler Optimizations
	About the Compiler
	Compiler Optimization Flags
	Floating-point Optimization Flags
	Linker Optimization Flags
	Architecture Flags
	Help the Compiler to Produce Better Code
	Compiler Optimization Remarks
	Profile Guided Optimization (PGO and AutoFDO)
	Post-Processing Binary Optimizer
	Polyhedral Optimizations

	Compiler Transformation Techniques
	Basic Compiler Transformations
	Loop Unswitching
	Loop Fusion
	Loop Fission
	Loop Interchange
	Loop Tiling

	Libraries and Data Structures
	Performance Benchmarking
	What to Test?
	Workload/Dataset Quality
	Cache Behavior
	Stable CPU Performance
	Multi-Threads Considerations
	Program Memory Layout
	Measurement Overhead
	Compiler Optimizations
	Metric Evaluation

	Profiling
	gprof
	uftrace
	callgrind
	cachegrind
	perf Linux profiler

	Parallel Computing
	Concurrency vs. Parallelism
	Performance Scaling
	Gustafson's Law
	Parallel Programming Languages

