
Modern C++
Programming
15. Code Optimization

Federico Busato

University of Verona, Dept. of Computer Science
2019, v2.01

Agenda

1/84

(1) General Concepts

Optimization Cycle

“If you’re not writing a program, don’t use
a programming language”

Leslie Lamport, Turing Award

“Inside every large program is an algorithm
trying to get out”

Tony Hoare, Turing Award

“Premature optimization is the root of all evil”
Donald Knuth, Turing Award

“Code for correctness first, then optimize!”
2/84

Optimization Cycle

3/84

Asymptotic Complexity 1/2

The asymptotic analysis refers to estimate the execution time or
memory usage as function of the input size (the order of growing)

The asymptotic behavior is opposed to a low-level analysis of the
code (instruction/loop counting/weighting, cache accesses, etc.)

Drawbacks:
• The worst-case is not the average-case
• Asymptotic complexity does not consider small inputs
• The hidden constant can be relevant in practice
• Asymptotic complexity does not consider instructions cost and

hardware details

One example out of them all is the Strassen’s matrix multiplication algorithm...
but
arXiv:1808.07984: Implementing Strassen’s Algorithm with CUTLASS on NVIDIA
Volta GPUs, J. Huang et. al 4/84

Asymptotic Complexity 2/2

Be aware of only real-world problems with small asymptotic
complexity or small size can be solved in a “user” acceptable time

Two examples:

• Sorting : O (n log n), try to sort an array of one billion
elements (4GB)

• Diameter of a (sparse) graph: O
(
V 2)

, just for graphs with a
few hundred thousand vertices it becomes impractical without
advanced techniques

5/84

Ahmdal Law 1/2

Ahmdal Law
The Ahmdal law expresses the maximum improvement possible
by improving a particular part of a system

Observation: The performance of any system is constrained by the
speed or capacity of the slowest point

Improvement (S) = 1

(1− P) + P
S

P : portion of the system that can be improved
S : improvement factor

6/84

Ahmdal Law 2/2

note: s is the portion of the system that cannot be improved

7/84

Performance Bounds 1/2

The performance of a program is bounded by one or more aspects
of its computation. This is also strictly related to the underlying
hardware

• Memory-bound. The program spends its time primarily in
performing memory accesses. The progress is limited by the
memory bandwidth (sometime memory-bound also refers to
the amount of memory available)

• Compute-bound. The program spends its time primarily in
computing arithmetic instructions. The progress is limited by
the speed of the CPU

8/84

Performance Bounds 2/2

• Latency-bound. The program spends its time primarily in
waiting the data are ready (instruction/memory
dependencies). The progress is limited by the latency of the
CPU/memory

• I/O Bound. The program spends its time primarily in
performing I/O operations (network, user input, storage, etc.).
The progress is limited by the speed of the I/O subsystem

9/84

Arithmetic Intensity

Arithmetic Intensity
Arithmetic intensity is the ratio of total operations to total
data movement (bytes)

The naive matrix multiplication algorithm requires n3 · 2
floating-point operations (multiplication + addition), while it
involves

(
n2 · 4B

)
· 3 data movement in bytes

R = ops
bytes = 2n3

12n2 = n
6

which means that for every byte accessed, the algorithm performs
n
6 operations

• Example: N = 10240, R = 210GFlops
1.2GB ≈ 1706

A modern CPU performs 100 GFlops, and has about 50 GB/s
memory bandwidth 10/84

Instruction-Level Parallelism (ILP)

Modern processor architectures are deeply pipelined
Instruction-level parallelism (ILP) is a measure of how many of
the instructions in a computer program can be executed
simultaneously by issuing independent instructions in sequence
(out-of-order)

Instruction pipelining is a technique for implementing ILP within
a single processor

for (int i = 0; i < N; i++) // with no optimizations the loop
sum += A[i] * B[i]; // is exectued in sequence

can be rewritten as:
for (int i = 0; i < N; i += 4) { // here, there are

sum += A[i] * B[i]; // four independent
sum += A[i + 1] * B[i + 1]; // multiplications
sum += A[i + 2] * B[i + 2]; // per iteration
sum += A[i + 3] * B[i + 3];

} 11/84

Little’s Law

The Little’s Law expresses the relation between latency and
throughput. The throughput of a system is equal to the number of
elements in the system divided by the average time spent for each
elements in the system:

L = λW → λ = L
W

• L: average number of customers in a store
• λ: arrival rate (throughput)
• W : average time spent (latency)

12/84

Time-Memory Trade-off

The time-memory trade-off is a way of solving a problem or
calculation in less time by using more storage space (less often the
opposite direction)

Examples:

• Memoization (e.g. used in dynamic programming): returning
the cached result when the same inputs occur again

• Hash table: number of entries vs. efficiency
• Lookup tables: precomputed data instead branches
• Uncompressed data: bitmap image vs. jpeg

13/84

Roofline Model

The Roofline model is a visual performance model used to provide
performance estimates of a given application by showing hardware
limitations, and potential benefit and priority of optimizations

14/84

(1) I/O Operations

I/O Operations

Advise: avoid I/O
In general, Input/Output are one of the most expensive operations

• Use endl for ostream only when it is strictly necessary
(prefer \n)

• Disable synchronization with printf/scanf:
std::ios base::sync with stdio(false)

• Disable IO flushing when mixing istream/ostream calls:
<istream obj>.tie(nullptr);

• Increase IO buffer size:
file.rdbuf()->pubsetbuf(buffer var, buffer size);

15/84

I/O Operations (Example)

#include <iostream>

int main() {
std::ifstream fin;
// --
std::ios_base::sync_with_stdio(false); // sync disable
fin.tie(nullptr); // flush disable

// buffer increase
const int BUFFER_SIZE = 1024 * 1024; // 1 MB
char buffer[BUFFER_SIZE];
fin.rdbuf()->pubsetbuf(buffer, BUFFER_SIZE);
// --
fin.open(filename); // Note: open() after optimizations

// IO operations
fin.close();

} 16/84

printf

• printf is faster than ostream (see speed test link)

• A printf call with the format string %s\n is converted to a
puts() call
printf("%s\n", char_pointer);

• A printf call with a simple format string ending with \n is
converted to a puts() call
printf("Hello World\n");

• No optimization if the string is not ending with \n

• No optimization if one or more % are detected in the format
string

Reference: www.ciselant.de/projects/gcc_printf/gcc_printf.html 17/84

https://github.com/fmtlib/fmt#speed-tests
www.ciselant.de/projects/gcc_printf/gcc_printf.html

Memory Mapped I/O

A memory-mapped file is a segment of virtual memory that has
been assigned a direct byte-for-byte correlation with some portion
of a file

Benefits:

• Orders of magnitude faster than system calls
• Input can be “cached” in RAM memory (page/file cache)
• A file requires disk access only when a new page boundary is

crossed
• Memory-mapping may bypass the page file completely
• Load and store raw data (no parsing/conversion)

18/84

Memory Mapped I/O (Example 1/2)

#if !defined(__linux__)
#error It works only on linux

#endif
#include <fcntl.h> //::open
#include <sys/mman.h> //::mmap
#include <sys/stat.h> //::open
#include <sys/types.h> //::open
#include <unistd.h> //::lseek
// usage: ./exec <file> <byte_size> <mode>
int main(int argc, char* argv[]) {

size_t file_size = std::stoll(argv[2]);
auto is_read = std::string(argv[3]) == "READ";
int fd = is_read ? ::open(argv[1], O_RDONLY) :

::open(argv[1], O_RDWR | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR);

if (fd == -1)
ERROR("::open") // try to get the last byte

if (::lseek(fd, static_cast<off_t>(file_size - 1), SEEK_SET) == -1)
ERROR("::lseek")

if (!is_read && ::write(fd, "", 1) != 1) // try to write
ERROR("::write") 19/84

Memory Mapped I/O (Example 2/2)

auto mm_mode = (is_read) ? PROT_READ : PROT_WRITE;

// Open Memory Mapped file
auto mmap_ptr = static_cast<char*>(

::mmap(nullptr, file_size, mm_mode, MAP_SHARED, fd, 0));

if (mmap_ptr == MAP_FAILED)
ERROR("::mmap");

// Advise sequential access
if (::madvise(mmap_ptr, file_size, MADV_SEQUENTIAL) == -1)

ERROR("::madvise");

// MemoryMapped Operations
// read from/write to "mmap_ptr" as a normal array: mmap_ptr[i]

// Close Memory Mapped file
if (::munmap(mmap_ptr, file_size) == -1)

ERROR("::munmap");
if (::close(fd) == -1)

ERROR("::close");
}

20/84

Low-Level Parsing 1/2

Consider using optimized (low-level) numeric conversion routines:

template<int N, unsigned MUL, int INDEX = 0>
struct fastStringToIntStr;

inline unsigned fastStringToUnsigned(const char* str, int length) {
switch(length) {

case 10: return fastStringToIntStr<10, 1000000000>::aux(str);
case 9: return fastStringToIntStr< 9, 100000000>::aux(str);
case 8: return fastStringToIntStr< 8, 10000000>::aux(str);
case 7: return fastStringToIntStr< 7, 1000000>::aux(str);
case 6: return fastStringToIntStr< 6, 100000>::aux(str);
case 5: return fastStringToIntStr< 5, 10000>::aux(str);
case 4: return fastStringToIntStr< 4, 1000>::aux(str);
case 3: return fastStringToIntStr< 3, 100>::aux(str);
case 2: return fastStringToIntStr< 2, 10>::aux(str);
case 1: return fastStringToIntStr< 1, 1>::aux(str);
default: return 0;

}
} 21/84

Low-Level Parsing 2/2

template<int N, unsigned MUL, int INDEX>
struct fastStringToIntStr {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0') * MUL +

fastStringToIntStr<N - 1, MUL / 10, INDEX + 1>::aux(str);
}

};

template<unsigned MUL, int INDEX>
struct fastStringToIntStr<1, MUL, INDEX> {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0');

}

};

22/84

(3) Locality and
Memory Access Patterns

Memory Locality

Source:
“Accelerating Linear Algebra on Small Matrices from Batched BLAS to Large Scale Solvers”,
ICL, University of Tennessee 23/84

Memory Locality

Access to memory dominates other costs in a processor

• Spatial Locality refers to the use of data elements within
relatively close storage locations e.g. scan arrays in increasing
order, matrices by row

• Temporal Locality refers to the reuse of specific data within
a relatively small time duration, and, as consequence, exploit
lower levels of the memory hierarchy (caches)

24/84

Spatial Locality Example 1/2

A, B, C matrices of size N × N
C = A * B
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; i++) {
int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[k][j];
C[i][j] = sum;

}
}

C = A * BT

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; i++) {

int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[j][k];
C[i][j] = sum;

}
}

25/84

Spatial Locality Example 2/2

Benchmark:

N 128 256 512 1024

A * BT

A * B
Speedup

26/84

Memory-Oriented Optimizations

Head vs. Stack:
• Dynamic heap allocation is expensive: implementation

dependent and interaction with the operating system
• Many small heap allocation are more expensive than one large

memory allocation
• Stack memory is smaller but faster...

Maximize cache utilization:
• Prefer small data types
• Prefer std::vector<bool> over array of bool
• Prefer std::bitset<N> over std::vector<bool> if the

data size is known in advance or bounded

note: modern processors have several MBs of (L1) cache

27/84

Cache Optimization Example

Speeding up a random-access function

lemire.me/blog/2019/04/27

28/84

https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/

Internal Structure Alignment

struct A1 {
char x1; // offset 0
double y1; // offset 8!! (not 1)
char x2; // offset 16
double y2; // offset 24
char x3; // offset 32
double y3; // offset 40
char x4; // offset 48
double y4; // offset 56
char x5; // offset 64 (byte 65)

}

struct A2 { // internal alignment
char x1; // offset 0
char x2; // offset 1
char x3; // offset 2
char x4; // offset 3
char x5; // offset 4
double y1; // offset 8
double y2; // offset 16
double y3; // offset 24
double y4; // offset 32 (byte 40)

}

Considering an array of structures, there are two problems:

• We are wasting 40% of memory in the first case
• In common x64 processors the cache line is 64 bytes. For the

first structure A1, every access involves two cache line
operations

29/84

External Structure Alignment (Padding)

Considering the previous example for the structure A2, random
loads from an array of structure A2 leads to one or two cache line
operations depending on the alignment at a specific index, e.g.

index 0 → one cache line load
index 1 → two cache line loads

It is possible to fix the structure alignment in two ways:

• The memory padding refers to introduce extra bytes at the
end of the data structure to enforce the memory alignment
e.g. add a char array of size 24 to the structure A2. It can be
also extended to 2D (or N-D) data structures such as dense
matrices

• Align keyword or attribute allows specifying the alignment
requirement of a type or an object (next slide) 30/84

External Structure Alignment (alignas keyword)

C++ allows specifying the alignment requirement in three ways:

• C++03 (GCC/Clang) attribute ((aligned(N)))

• C++11 alignas(N)

• C++17 aligned new (e.g. new int[2, 16])

struct alignas(16) A2 { // C++11
int x, y;

}; // __attribute__((aligned(16))); // in C++03

Final note: Data alignment is also important to exploit hardware
vector instructions (SIMD) like SSE, AVX, etc.

31/84

(4) Arithmetic

Hardware Notes

• Instruction throughput greatly depends on processor model
and characteristics

• Subtraction is implemented as an addition

• Addition, subtraction, and bitwise operations are computed by
the ALU and they have very similar throughput

• Multiplication and addition are computed by the same
hardware component for decreasing circuit area →
multiplication and addition can be fused in a single operation

• Modern processors provide separated units for floating-point
computation (FPU)

32/84

Data Types

• Integral types are faster than floating-point types

• 32-bit types are faster than 64-bit types

• 64-bit integral types are slightly slower than 32-bit integral
types (modern processors widely support 64-bit operations)

• Single precision floating-points are up to three times faster
than double precision floating-points

• In general, 32-bit type operations are hardware-implemented,
while 64-bit op. requires multiple operations (both for integral
and floating-point)

• Small integral types are slower than 32-bit integer, but they
require less memory → cache/memory efficiency

33/84

Data Types

• Data type conversions may be expensive
• signed/unsigned conversion have no cost
• all operations on small integral type (char, short) require a

conversion
• integer to floating-point is fast, floating-point to integer is slow

• Increment ++ is faster than sum *

• Prefer prefix operator (++var) instead of the postfix
operator (var++) *

• Use the assignment composite operators (a += b) instead
of operators combined with assignment (a = a + b) *

* the compiler automatically applied such optimization whenever possible 34/84

Power-of-Two Multiplication/Division/Modulo

• Prefer shift for power-of-two multiplications (a � b) and
divisions (a � b) only for run-time values *

- unsigned operations are faster than signed operations
(deal with negative number)

• Prefer bitwise and a % b → a & (b - 1) for
power-of-two modulo operations only for run-time values *

* the compiler automatically applies such optimizations if b is known at
compile-time. Bitwise operations make the code harder to read

35/84

Other Notes

• Keep near constant values/variables → the compiler can
merge their values

• Constant multiplication and division can be heavily
optimized by the compiler, even for non-trivial values

36/84

Other Notes

• Multiplication is much faster than division*
not optimized:

// "value" is floating-point (dynamic)
for (int i = 0; i < N; i++)

A[i] = B[i] / value;

optimized:
div = 1.0 / value; // div is floating-point
for (int i = 0; i < N; i++)

A[i] = B[i] * div;

* Multiplying by the inverse is not the same as the division
see lemire.me/blog/2019/03/12

37/84

https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/

Exploit Hardware Instructions

Most compilers provide hardware-intrinsic instructions:
builtin popcount(x) count the number of one bits

builtin clz(x) (count leading zeros) counts the number of
one bits preceding the most significant zero bit

builtin ctz(x) (count trailing zeros) counts the number of
one bits following the least significant zero bit

builtin ffs(x) (find first set) index of the least significant
one bit

Usage example: compute integer log2

inline unsigned log2(unsigned x) {
return 31 - __builtin_clz(x);

}

Reference: gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
38/84

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Low-Level Implementations

Collection of low-level implementations/optimization of
common operations:

• Bit Twiddling Hacks
graphics.stanford.edu/∼seander/bithacks.html

• The Aggregate Magic Algorithms
aggregate.org/MAGIC

• Hackers Delight Book
www.hackersdelight.org

39/84

https://graphics.stanford.edu/~seander/bithacks.html
http://aggregate.org/MAGIC/
http://www.hackersdelight.org/

Low-Level Information

The same instruction/operation may take different
clock-cycles on different architectures/CPU type

• Agner Fog - Instruction tables (latencies, throughputs)
www.agner.org/optimize/instruction tables.pdf

• Latency, Throughput, and Port Usage Information
uops.info/table.html

40/84

http://www.agner.org/optimize/instruction_tables.pdf
http://uops.info/table.html

(7) Control Flow

Control Flow

• Avoid run-time recursion (very expensive). Prefer instead
iterative algorithms (see next slides)

• Prefer switch statements instead of multiple if . If the
compiler does not use a jump-table, the cases are evaluated in
order of appearance → the most frequent cases should be placed
before

• Prefer square brackets syntax [] over pointer arithmetic
operations for array access to facilitate compiler loop
optimizations (polyhedral loop transformations)

• Prefer signed integer for loop indexing. The compiler
optimizes more aggressively such loops since integer overflow is
not defined 41/84

Branch

Pipelines are an essential element in modern processors. Some
processors have up to 20 pipeline stages (14/16 typically)

The downside to long pipelines includes the danger of pipeline
stalls that waste CPU time, and the time it takes to reload the
pipeline on conditional branch operations (if , while , for)

42/84

Minimize Branch Overhead

• Branch prediction: technique to guess which way a branch takes.
It requires hardware support and it is generically based on dynamic
history of code executing

• Branch predication: a conditional branch is substituted by a
sequence of instructions from both paths of the branch. Only the
instructions associated to a predicate (boolean value), that
represents the direction of the branch, are actually executed
int x = (condition) ? A[i] : B[i];
P = (condition) // P: predicate
@P x = A[i];
@!P x = B[i];

• Speculative execution: execute both sides of the conditional
branch to better utilize the computer resources and commit the
results associated to the branch taken 43/84

Loop Hoisting 1/4

Loop hoisting optimization

Wrong:

for (int i = 0; i < 100; i++)
a[i] = x + y;

Correct:
v = x + y
for (int i = 0; i < 100; i++)

a[i] = v;

Loop hoisting is also important in the evaluation of loop conditions
Wrong:
// "x" never changes
for (int i = 0; i < f(x); i++)

a[i] = y;

Correct:
int limit = f(x)
for (int i = 0; i < limit; i++)

a[i] = y;

In the worst case, f(x) is evaluated every iteration (especially
when it belongs to another translation unit)

the compiler already applies such optimization when it is safe (it does not
change the program semantic) 44/84

Loop Hoisting (version 1) 2/4

Do not hoist pointer computation!!

Example: matrix multiplication N x N

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++)
C[i * N + j] += A[i * N + k] * B[k * N + j];

}
}

continue...

45/84

Loop Hoisting (version 2) 3/4

The following code is equivalent and it apparently minimizes the
number of instructions

remember A[i] = A + i * sizeof(A type)

auto A_ptr = A;
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
auto B_ptr = B + j;
for (int k = 0; k < N; k++) {

*C_ptr += *(A_ptr) * (*B_ptr);
A_ptr++;
B_ptr += N;

}
C_ptr++;

}
A_ptr += N;

} 46/84

Loop Hoisting (version 1 vs. 2) 4/4

The version 2 (with pointer hoisting) is slower than
version 1

47/84

Loop Unrolling 1/2

Loop unrolling (or unwinding) is a loop transformation technique
which optimizes the code by removing (or reducing) loop iterations

The optimization produces better code at the expense of binary
size

Example:
for (int i = 0; i < N; i++)

sum += A[i];

can be rewritten as:
for (int i = 0; i < N; i += 8) {

sum += A[i];
sum += A[i + 1];
sum += A[i + 2];
sum += A[i + 3];
...

} // we suppose N is a multiple of 8 48/84

Loop Unrolling 2/2

Loop unrolling notes:

+ Improve instruction-level parallelism (ILP)
+ Allow vector (SIMD) instructions
+ Reduce control instructions and branches
- Increase compile-time/binary size
- Require more instruction decoding
- Use more memory and instruction cache

Unroll directive The Intel, IBM, and clang compilers (but not GCC)
provide the preprocessing directive #pragma unroll (to insert above
the loop) to force loop unrolling. The compiler already applies the
optimization in most cases

see lemire.me/blog/2019/04/12 49/84

https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/

Loop Unswitching and Fusion

Loop Unswitching
for (i = 0; i < N; i++) {

if (x)
a[i] = 0;

else
b[i] = 0;

}

if (x) {
for (i = 0; i < N; i++)

a[i] = 0;
}
else {

for (i = 0; i < N; i++)
b[i] = 0;

}

Loop Fusion (Jamming)
for (i = 0; i < 300; i++)

a[i] = a[i] + 3;
for (i = 0; i < 300; i++)

b[i] = b[i] + 4;

for (i = 0; i < 300; i++) {
a[i] = a[i] + 3;
b[i] = b[i] + 4;

}

Loop unswitching and loop fusion do not produce better code, but loop
merging/splitting has implications on cache usage

In many cases, the compiler already applies these optimizations 50/84

(7) Functions

Functions

Function calls require two jumps, in addition to stack memory
manipulation.

51/84

Function Optimizations 1/2

Argument Passing:

pass-by-value small data types (≤ 8/16 bytes).
The data are copied into registers, instead of stack

pass-by-pointer introduces one level of indirection.
They should be used only for raw pointers
(potentially NULL)

pass-by-reference may introduce one level of indirection.
pass-by-reference is more efficient than
pass-by-pointer as it facilitates variable
elimination by the compiler, and the function code
does not require checking for NULL pointer

52/84

Function Optimizations 2/2

• const modifier applied to pointers and references help the
compiler to optimize the code since the data never change and
are read-only

• Keep small the number of function parameters

• Consider combining several function parameters in a structure. It
allows copying parameter into stack more efficiently

• inline decorator: increase inlining compiler heuristic threshold
(not force), and allow breaking the one definition rule (ODR) →
inlining in multiple translation units

53/84

restrict pointers

GCC/Clang/Visual Code: restrict

54/84

C++ Objects

Variable/Object Scope

Declare local variable in the inner most scope
• the compiler will be able to fit them into registers instead stack
• it improves readability

Wrong:

int i, x;
for (i = 0; i < N; i++) {

x = value * 5;
sum += x;

}

Correct:

for (int i = 0; i < N; i++) {
int x = value * 5;
sum += x;

}

Exception! Built-in type variables and passive structures should
be placed in the inner most loop, while objects with constructors
should be placed outside loops

for (int i = 0; i < N; i++) {
std::string str("prefix_");
std::cout << str + value[i];

} // str call CTOR/DTOR N times

std::string str("prefix_");
for (int i = 0; i < N; i++) {

std::cout << str + value[i];
} 55/84

C++ Objects

• Prefer initializations instead of assignments (also for
variables)

• Prefer move semantic instead of copy constructor. Mark
copy constructor as =delete (sometimes it is hard to see,
e.g. implicit)

• Avoid multiple + operations between objects to avoid
temporary storage (need example)

• Mark final all virtual functions that are not overridden

• Avoid dynamic operations: exceptions, dynamic cast,
smart pointer

56/84

Object Implicit Conversion

#include <algorithm> // std::copy
struct A { // big object

int array[10000];
};

struct B {
int array[10000];

B(const A& a) {
std::copy(a.array, a.array + 10000, array)

}
};

void f(const B& b) {}

int main() {
B b;
f(b); // no cost
A a;
f(a); // very costly

} 57/84

(4) Compiler
Optimizations

Compiler Flags 1/3

”I always say the purpose of optimizing compilers is
not to make code run faster, but to prevent program-
mers from writing utter **** in the pursuit of making
it run faster“

Rich Felker, musl-libc (libc alternative)

58/84

Compiler Flags 1/3

Important advise: Use an updated version of the compiler

• Newer compiler produces better code
- Effective optimizations
- Support for newer CPU architectures

• New warnings to avoid common errors
• Better support for existing error/warnings

(e.g. code highlights), less bugs, and faster compiling

Some compilers can produce better code for specific architectures:
• Intel Compiler (commercial): Intel processors
• IBM XL Compiler (commercial): IBM processors/system
• Nvidia PGI Compiler (free/commercial): Multi-core

processors/GPUs

• gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
• Intel Blog: gcc-x86-performance-hints 59/84

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints

Compiler Flags 1/3

32-bits or 64-bits?

-m64 In 64-bit mode the number of available registers increases
from 6 to 14 general and from 8 to 16 XMM. Also all 64-bits
x86 architectures have SSE2 extension by default. 64-bit
applications can use more than 4GB address space

-m32 32-bit mode. It should be combined with -mfpmath=sse to
enable using of XMM registers in floating point instructions
(instead of stack in x87 mode). 32-bit applications can use
less than 4GB address space

It is recommended to use 64-bits for High-Performance Computing
applications and 32-bits for phone and tablets applications

60/84

Compiler Flags (Optimization Level) 2/3

-O3 turns on all optimizations specified by -O2, plus some
more. -O3 does not guarantee to produce faster code
than -O2

-ffast-math enables high level optimizations and aggressive
optimizations on arithmetic calculations (like floating
point re-association) → in general, it implies less
floating-point accuracy (not included in -O3)

-Ofast provides other aggressive optimizations that may violate
strict compliance with language standards. It includes
-O3 -ffast-math

-Os Optimize for size. It enables all -O2 optimizations that
do not typically increase code size

61/84

Compiler Flags (Additional Flags) 3/3

-funroll-loops enables loop unrolling (not included in -O3)

-march=native generate instructions for a specific machine by
determining the processor type at compilation time
(not included in -O3)

-mtune=native generate instructions for a specific machine and for
earlier CPUs in the architecture family (may be
slower than -march=native)

-flto enable Link Time Optimizations (Interprocedural
Optimization) where the linker merges all modules
into a single combined module for optimization
Note: The linker must support this feature: GNU ld v2.21++
or gold version, to check with ld --version

62/84

Help the Compiler to Produce Better Code

Grouping related variables and functions in same translation
units

• Private functions and variables in the same translation units

• Define every global variable in the translation unit in which it
is used more often

• Declare in an anonymous namespace the variables and
functions that are global to translation unit, but not used by
other translation units

• Put in the same translation unit all the function definitions
belonging to the same bottleneck

63/84

Profile Guided Optimization (PGO) 1/2

Profile Guided Optimization (PGO) is a compiler technique
aims at improving the application performance by reducing
instruction-cache problems, reducing branch mispredictions, etc.
PGO provides information to the compiler about areas of an
application that are most frequently executed

It consists in the following steps:

(1) Compile and instrument the code

(2) Run the program by exercising the most used/critical paths

(3) Compile again the code and exploit the information produced
in the previous step

The particular options to instrument and compile the code are
compiler specific 64/84

Profile Guided Optimization (PGO) 2/2

GCC

$ gcc -fprofile-generate my_prog.c my_prog # program instrumentation
$./my_prog # run the program (most critial/common path)
$ gcc -fprofile-use -O3 my_prog.c my_prog # use instrumentation info

Clang

$ clang++ -fprofile-instr-generate my_prog.c my_prog
$./my_prog
$ xcrun llvm-profdata merge -output default.profdata default.profraw
$ clang++ -fprofile-instr-use=default.profdata -O3 my_prog.c my_prog

e.g. Firefox and Google Chrome support PGO building 65/84

(5) Libraries and
Data Structures

External Libraries

Consider using optimized external libraries for critical
program operations

Popular libraries:

• malloc replacement: tcmalloc

• Linear Algebra: Eigen, Armadillo, Blaze

• Map/Set: B+Tree as replace for std::map

• Hash Table: (replace for std::unsorted set/map)
• Google Sparse/Dense Hash Table
• bytell hashmap
• Facebook F14 memory efficient hash table

• Print and formatting: fmt library

• Random generator PCG random generator 66/84

http://eigen.tuxfamily.org
arma.sourceforge.net
https://bitbucket.org/blaze-lib/blaze
https://panthema.net/2007/stx-btree/
https://github.com/sparsehash/sparsehash
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://code.fb.com/developer-tools/f14/
https://github.com/fmtlib/fmt
http://www.pcg-random.org/

C++ Default Library

• Avoid old C library routines such as qsort, bsearch, etc. Prefer
instead std::sort , std::binary search

• std::fill applies ::memset if inputs are continuous iterators

• Set std::vector size during the object construction (or use
the reserve() method) if the number of elements to insert is
known in advance

• Prefer std::array instead of dynamic heap allocation

• Most data structures are implemented over the heap. Consider
re-implement them over the stack if the number of elements to
insert is small (e.g. queue)

• Prefer lambda expression (or struct function) instead of
std::function or function pointer 67/84

Profiling

Overview

A code profiler is a form of dynamic program analysis which aims at
investigating the program behavior to find performance bottleneck.
A profiler is crucial in saving time and effort during the development
and optimization process of an application

Code profilers are generally based on the following methodologies:
• Instrumentation Instrumenting profilers insert special code at the

beginning and end of each routine to record when the routine starts
and when it exits. With this information, the profiler aims to measure
the actual time taken by the routine on each call.
Problem: The timer calls take some time themselves

• Sampling The operating system interrupts the CPU at regular in-
tervals (time slices) to execute process switches. At that point, a
sampling profiler will record the currently-executed instruction

68/84

gprof

gprof is a profiling program which collects and arranges timing
statistics on a given program. It uses a hybrid of instrumentation
and sampling programs to monitor function calls

Website: sourceware.org/binutils/docs/gprof/

Usage:

• Code Instrumentation
$ g++ -pg [flags] <source_files>

Important: -pg is required also for linking and it is not supported by clang

• Run the program (it produces the file gmon.out)
• Run gprof on gmon.out

$ gprof <executable> gmon.out

• Inspect gprof output 69/84

https://sourceware.org/binutils/docs/gprof/

callgrind

callgrind is a profiling tool that records the call history among
functions in a program’s run as a call-graph. By default, the
collected data consists of the number of instructions executed

Website: valgrind.org/docs/manual/cl-manual.html

Usage:

• Profile the application with callgrind

$ valgrind --tool callgrind <executable> <args>

• Inspect callgrind.out.XXX file, where XXX will be the
process identifier

70/84

http://valgrind.org/docs/manual/cl-manual.html

cachegrind

cachegrind simulates how your program interacts with a
machine’s cache hierarchy and (optionally) branch predictor

Website: valgrind.org/docs/manual/cg-manual.html

Usage:

• Profile the application with cachegrind

$ valgrind --tool cachegrind --branch-sim=yes <executable> <args>

• Inspect the output (cache misses and rate)
- l1 L1 instruction cache
- D1 L1 data cache
- LL Last level cache

71/84

http://valgrind.org/docs/manual/cg-manual.html

kcachegrind and qcachegrindwin (View)

KCachegrind (linux) and Qcachegrind (windows) provide a
graphical interface for browsing the performance results of
callgraph

•kcachegrind.sourceforge.net/html/Home.html

•sourceforge.net/projects/qcachegrindwin

72/84

http://kcachegrind.sourceforge.net/html/Home.html
https://sourceforge.net/projects/qcachegrindwin/

gprof2dot (View)

gprof2dot is a Python script to convert the output from many
profilers into a dot graph

Website: github.com/jrfonseca/gprof2dot

73/84

https://github.com/jrfonseca/gprof2dot

Linux profiler

Linux profiler Perf- A Performance Monitoring and Analysis Tool
for Linux e Performance Monitoring Unit in the CPU

Perf uses statistical profiling, where it polls the program and sees
what function is working

sudo apt install linux-tools

https://perf.wiki.kernel.org/index.php/Main_Page man
perf-subcommand

74/84

https://perf.wiki.kernel.org/index.php/Main_Page

Linux profiler

$ perf perf record ./fib

[perf record: Woken up 10 times to write data] [perf record:
Captured and wrote 2.336 MB perf.data (60690 samples)]

perf report

To get the call graph $ perf record -g ./fib perf record -g
’graph,0.5,caller’

perf record –call-graph dwarf – yourapp perf report -g graph
–no-children

75/84

Hotspot

a GUI for the Linux perf profiler

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

flare graph
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

76/84

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

(8) Parallel Computing

Concurrency vs. Parallelism

Concurrency
A system is said to be concurrent if it can support two or more
actions in progress at the same time. Multiple processing units
work on different tasks independently

Parallelism
A system is said to be parallel if it can support two or more
actions executing simultaneously. Multiple processing units work
on the same problem and their interaction can effect the final
result

Note: parallel computation requires rethinking original sequential
algorithms (e.g. avoid race conditions)

77/84

Performance Scaling

Strong Scaling
The strong scaling defined how the compute time decreases
increasing the number of processors for a fixed total problem
size

Weak Scaling
The weak scaling defined how the compute time decrease
increasing the number of processors for a fixed total problem size
per processor

Strong scaling is hard to achieve because of computation units
communication. Strong scaling is in contrast to the Amdahl’s Law

78/84

Gustafson’s Law

Gustafson’s Law
Increasing number of processor units allow solving larger
problems in the same time (the computation time is constant)

Multiple problem instances can run concurrently with more
computational resources

79/84

Parallel Programming Languages 1/2

Most popular parallel programming languages based on
C++:

C++11 Threads (+ Parallel STL) (Free)

OpenMP (Free, directive based)

OpenACC (Free, directive based)

CUDA (Free)

OpenCL (Free)

Intel TBB (Commercial)

Intel Cilk Plus (Commercial)

KoKKos (Free)
80/84

Parallel Programming Languages 2/2

81/84

Compile Time

Compile Time 1/3

i686-linux-gnu-ld.gold
slides.com/onqtam/faster builds

82/84

https://manpages.ubuntu.com/manpages/bionic/man1/i686-linux-gnu-ld.gold.1.html
https://slides.com/onqtam/faster_builds/

Compile Time 2/3

83/84

Compile Time 3/3

tmpfs

ccache

precompiled header (PCH)

84/84

	(1) General Concepts
	(1) I/O Operations
	 (3) Locality and Memory Access Patterns
	(4) Arithmetic
	(7) Control Flow
	(7) Functions
	C++ Objects
	(4) Compiler Optimizations
	(5) Libraries and Data Structures
	Profiling
	(8) Parallel Computing
	Compile Time

