
Modern C++
Programming

6. Basic Concepts IV
Entities, Control Flow, Namespaces, and Attributes

Federico Busato
2026-01-06

Table of Contents

1 Entities

2 Declaration and Definition

3 Enumerators

4 struct, Bitfield, and union
struct

Anonymous and Unnamed struct⋆

Bitfield

union

1/68

Table of Contents

5 Control Flow
if Statement

for and while Loops

Range-based for Loop

switch

Initializing Statement

goto

Avoid Unused Variable Warning

2/68

Table of Contents

6 Namespace
Explicit Global Namespace

Namespace Alias

using-Declaration

using namespace-Directive

inline Namespace ⋆

3/68

Table of Contents

7 Attributes ⋆
[[nodiscard]]

[[indeterminate]]

[[maybe_unused]]

[[deprecated]]

[[noreturn]]

4/68

Entities

Entities

A C++ program is set of language-specific keywords (for, if, new, true, etc.),
identifiers (symbols for variables, functions, structures, namespaces, etc.), expressions
defined as sequence of operators, and literals (constant value tokens)

C++ Entity
An entity is a value, object, reference, function, enumerator, type, class member, or
template

Identifiers and user-defined operators are the names used to refer to entities

Entities also captures the result(s) of an expression

Preprocessor macros are not C++ entities

5/68

Declaration and
Definition

Declaration/Definition

Declaration/Prototype
A declaration (or prototype) introduces an entity with an identifier describing its
type and properties

A declaration is what the compiler and the linker needs to accept references (usage) to
that identifier

Entities can be declared multiple times. All declarations are the same

Definition/Implementation
An entity definition is the implementation of a declaration. It defines the properties
and the behavior of the entity

For each entity, only a single definition is allowed

6/68

Declaration/Definition Function Example

void f(int a, char* b); // function declaration

void f(int a, char*) { // function definition
... // "b" can be omitted if not used

}

void f(int a, char* b); // function declaration
// multiple declarations is valid

f(3, "abc"); // usage

void g(); // function declaration

g(); // linking error "g" is not defined

7/68

Declaration/Definition struct Example

A declaration without a concrete implementation is an incomplete type (as void)

struct A; // declaration 1
struct A; // declaration 2 (ok)

struct B { // declaration and definition
int b;

// A x; // compile error incomplete type
A* y; // ok, pointer to incomplete type

};

struct A { // definition
char c;

}

8/68

Enumerators

Enumerator - enum

Enumerator
An enumerator enum is a data type that groups a set of named integral constants

enum color_t { BLACK, BLUE, GREEN };

color_t color = BLUE;
cout << (color == BLACK); // print false

The problem:
enum color_t { BLACK, BLUE, GREEN };
enum fruit_t { APPLE, CHERRY };

color_t color = BLACK; // int: 0
fruit_t fruit = APPLE; // int: 0
bool b = (color == fruit); // print 'true'!!
// and, most importantly, does the match between a color and
// a fruit make any sense? 9/68

Strongly Typed Enumerator - enum class

enum class (C++11)
enum class (scoped enum) data type is a type safe enumerator that is not implicitly
convertible to int

enum class Color { BLACK, BLUE, GREEN };
enum class Fruit { APPLE, CHERRY };

Color color = Color::BLUE;
Fruit fruit = Fruit::APPLE;

// bool b = (color == fruit) compile error we are trying to match colors with fruits
// BUT, they are different things entirely
// int a1 = Color::GREEN; compile error
// int a2 = Color::RED + Color::GREEN; compile error

int a3 = (int) Color::GREEN; // ok, explicit conversion
10/68

enum/enum class Features

• enum/enum class can be compared
enum class Color { RED, GREEN, BLUE };
cout << (Color::RED < Color::GREEN); // print true

• enum/enum class are automatically enumerated in increasing order
enum class Color { RED, GREEN = -1, BLUE, BLACK };
// (0) (-1) (0) (1)
Color::RED == Color::BLUE; // true

• enum/enum class can contain alias
enum class Device { PC = 0, COMPUTER = 0, PRINTER };

• C++11 enum/enum class allows setting the underlying type
enum class Color : int8_t { RED, GREEN, BLUE };

11/68

enum class Features - C++17

• C++17 enum class supports direct-list-initialization
enum class Color { RED, GREEN, BLUE };
Color a{2}; // ok, equal to Color:BLUE

• C++17 enum/enum class support attributes
enum class Color { RED, GREEN, BLUE [[deprecated]] };
auto x = Color::BLUE; // compiler warning

12/68

enum class Features - C++20

• C++20 allows introducing the enumerator identifiers into the local scope to
decrease the verbosity
enum class Color { RED, GREEN, BLUE };

switch (x) {
using enum Color; // C++20
case RED:
case GREEN:
case BLUE:

}

The same behavior can be emulated in older C++ versions with
enum class Color { RED, GREEN, BLUE };

constexpr auto RED = Color::RED;

13/68

enum/enum class - Common Errors

• enum/enum class should be always initialized
enum class Color { RED, GREEN, BLUE };

Color my_color; // "my_color" may be outside RED, GREEN, BLUE!!

• C++17 Cast from out-of-range values respect to the underlying type of
enum/enum class leads to undefined behavior

enum Color : uint8_t { RED, GREEN, BLUE };

Color value = 256; // undefined behavior

14/68

enum/enum class and constexpr⋆

• C++17 constexpr expressions don’t allow out-of-range values for (only) enum
without explicit underlying type
enum Color { RED };
enum Fruit : int { APPLE };
enum class Device { PC };

// constexpr Color a1 = (Color) -1; compile error
const Color a2 = (Color) -1; // ok
constexpr Fruit a3 = (Fruit) -1; // ok
constexpr Device a4 = (Device) -1; // ok

Construction Rules for enum class Values 15/68

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0138r2.pdf

struct, Bitfield, and
union

struct 1/2

A struct (structure) aggregates different variables into a single unit
struct A {

int x;
char y;

};

It is possible to declare one or more variables after the definition of a struct
struct A {

int x;
} a, b;

Enumerators can be declared within a struct without a name
struct A {

enum {X, Y}
};
A::X; 16/68

struct 2/2

It is possible to declare a struct in a local scope (with some restrictions), e.g.
function scope

int f() {
struct A {

int x;
} a;
return a.x;

}

17/68

Anonymous and Unnamed struct⋆

Unnamed struct : a structure without a name, but with an associated type

Anonymous struct : a structure without a name and type

The C++ standard allows unnamed struct but, contrary to C, does not allow
anonymous struct (i.e. without a name)

struct {
int x;

} my_struct; // unnamed struct, ok

struct S {
int x;
struct { int y; }; // anonymous struct, compiler warning with -Wpedantic

}; // -Wpedantic: diagnose use of non-strict ISO C++ extensions

18/68

Bitfield

Bitfield
A bitfield is a variable of a structure with a predefined bit width. A bitfield can hold
bits instead bytes

struct S1 {
int b1 : 10; // range [0, 1023]
int b2 : 10; // range [0, 1023]
int b3 : 8; // range [0, 255]

}; // sizeof(S1): 4 bytes

struct S2 {
int b1 : 10;
int : 0; // reset: force the next field
int b2 : 10; // to start at bit 32

}; // sizeof(S2): 8 bytes

• Useful to compress different values that have specific ranges (e.g. S1)
• "Free" modulo operation 2x (e.g. S1.b1 modulo 210) 19/68

union 1/2

Union
A union is a special data type that allows to store different data types in the same
memory location

• The union is only as big as necessary to hold its largest data member
• The union is a kind of “overlapping” storage

20/68

union 2/2

union A {
int x;
char y;

}; // sizeof(A): 4

A a;
a.x = 1023; // bits: 00..000001111111111
a.y = 0; // bits: 00..000001100000000
cout << a.x; // print 512 + 256 = 768

NOTE: Little-Endian encoding maps the bytes of a value in memory in the reverse order. y

maps to the last byte of x

Contrary to struct , C++ allows anonymous union (i.e. without a name)

C++17 introduces std::variant to represent a type-safe union
21/68

Control Flow

if Statement

The if statement executes the first branch if the specified condition is evaluated to
true , the second branch otherwise

• Short-circuiting, left-to-right evaluation:
int array[3];
if (<true expression> || array[2345324] == 0)
// no error!! even though the index is out-of-bound

• Ternary operator :
<cond> ? <expression1> : <expression2>

<expression1> and <expression2> must return a value of the same or convertible
type
int value = (a == b) ? a : (b == c ? b : 3); // nested

22/68

for and while Loops

• for: use when number of iterations is known
for ([init]; [cond]; [increment]) {

...
}

• while: use when number of iterations is not known
while (cond) {

...
}

• do while: use when number of iterations is not known, but there is
at least one iteration
do {
...
} while (cond);

23/68

for Loop Features and Jump Statements

• C++ allows multiple initializations and increments in the declaration:
for (int i = 0, k = 0; i < 10; i++, k += 2)

...

• Infinite loop:
for (;;) // also while(true);

...

• Jump statements (break, continue, return):
for (int i = 0; i < 10; i++) {

if (<condition>)
break; // exit from the loop

if (<condition>)
continue; // continue with a new iteration and exec. i++

return; // exit from the function
}

24/68

Range-based for Loop 1/3

C++11 introduces the range-based for loop to simplify the verbosity of traditional
for loop constructs. They are equivalent to the for loop operating over a range of
values, but safer

The range-based for loop avoids the user to specify start, end, and increment of the
loop

for (int v : { 3, 2, 1 }) // INITIALIZER LIST
cout << v << " "; // print: 3 2 1

int values[] = { 3, 2, 1 };
for (int v : values) // ARRAY OF VALUES

cout << v << " "; // print: 3 2 1

for (auto c : "abcd") // RAW STRING
cout << c << " "; // print: a b c d

25/68

Range-based for Loop ⇝ 2/3

Range-based for loop can be applied in three cases:

• Fixed-size array int array[3] , "abcd"

• Branch Initializer List {1, 2, 3}

• Any object with begin() and end() methods

std::vector vec{1, 2, 3, 4};

for (auto x : vec) {
cout << x << ", ";

// print: "1, 2, 3, 4,"

int matrix[2][4];
for (auto& row : matrix) {

for (auto element : row)
cout << "@";

cout << "\n";
}
// print: @@@@
// @@@@

26/68

Range-based for Loop ⇝ 3/3

C++17 extends the concept of range-based loop for structure binding

struct A {
int x;
int y;

};

A array[] = { {1,2}, {5,6}, {7,1} };
for (auto [x1, y1] : array)

cout << x1 << "," << y1 << " "; // print: 1,2 5,6 7,1

27/68

switch 1/2

The switch statement evaluates an expression (int , char , enum class , enum)
and executes the statement associated with the matching case value
char x = ...
switch (x) {

case 'a': y = 1; break;
default: return -1;

}

Switch scope common error:
int x = 1;
switch (1) {

case 0: int x; // nearest scope
case 1: cout << x; // undefined!!
case 2: { int y; } // ok

// case 3: cout << y; // compile error
}

28/68

switch - Fall-Through 2/2

char x = ...
switch (x) {

case 'a': // valid fall-through
case 'b': x++; // compiler warning!!
case 'c': return 0;
default: return -1;

}

C++17 [[fallthrough]] attribute

char x = ...
switch (x) {

case 'a': x++; [[fallthrough]]; // C++17: avoid warning
case 'b': return 0;
default: return -1;

}

29/68

Initializing Statement

Control flow with initializing statement aims at simplifying complex actions before
the condition evaluation and restrict the scope of a variable which is visible only in the
control flow body

C++17 introduces if statement with initializer
if (int ret = x + y; ret < 10)

cout << ret;

C++17 introduces switch statement with initializer
switch (auto i = f(); x) {

case 1: return i + x;

C++20 introduces range-for loop statement with initializer

for (int i = 0; auto x : {'A', 'B', 'C'})
cout << i++ << ":" << x << " "; // print: 0:A 1:B 2:C 30/68

goto 1/4

When goto could be useful:
bool flag = true;
for (int i = 0; i < N && flag; i++) {

for (int j = 0; j < M && flag; j++) {
if (<condition>)

flag = false;
}

}

become:
for (int i = 0; i < N; i++) {

for (int j = 0; j < M; j++) {
if (<condition>)

goto LABEL;
}

}
LABEL: ;

31/68

goto 2/4

Best solution:

bool my_function(int M, int M) {
for (int i = 0; i < N; i++) {

for (int j = 0; j < M; j++) {
if (<condition>)

return false;
}

}
return true;

}

32/68

goto 3/4

33/68

goto 4/4

34/68

Avoid Unused Variable Warning 1/3

Most compilers issue a warning when a variable is unused. There are different
situations where a variable is expected to be unused

// EXAMPLE 1: macro dependency
int f(int value) {

int x = value;
if defined(ENABLE_SQUARE_PATH)

return x * x;
else

return 0;
endif
}

35/68

Avoid Unused Variable Warning⋆ 2/3

// EXAMPLE 2: constexpr dependency (MSVC)
template<typename T>
int f(T value) {

if constexpr (sizeof(value) >= 4)
return 1;

else
return 2;

}

// EXAMPLE 3: decltype dependency (MSVC)
template<typename T>
int g(T value) {

using R = decltype(value);
return R{};

}

36/68

Avoid Unused Variable Warning 3/3

There are different ways to solve the problem depending on the standard used

• Before C++17: static_cast<void>(var)

• C++17 [[maybe_unused]] attribute

• C++26 auto _

[[maybe_unused]] int x = value;
int y = 3;
static_cast<void>(y);
auto _ = 3;
auto _ = 4; // _ repetition is not an error

void f([[maybe_unused]] int x) {}

37/68

Namespace

Overview

The problem: Named entities, such as variables, functions, and compound types declared
outside any block has global scope, meaning that its name/symbol is valid anywhere in
the code

Namespaces � allow grouping named entities that otherwise would have global
scope into narrower scopes, giving them namespace scope

Namespaces provide a method for preventing name conflicts in large projects. Symbols
declared inside a namespace block are placed in a named scope that prevents them from
being mistaken for symbols with identical names

38/68

https://en.cppreference.com/w/cpp/language/namespace

Namespace Syntax

namespace [<name>] {

<identifier> // variable, function, struct, type, etc.

} // namespace <name>

<name>::<identifier> // use the identifier

The operator :: is called scope resolution operator and it allows accessing
identifiers that are defined in other namespaces

39/68

Namespace Example 1
include <iostream>
namespace my_namespace1 {
void f() {

std::cout << "my_namespace1" << std::endl;
}
} // namespace my_namespace1

namespace my_namespace2 {
void f() {

std::cout << "my_namespace2" << std::endl;
}
} // namespace my_namespace2

int main () {
my_namespace1::f(); // print "my_namespace1"
my_namespace2::f(); // print "my_namespace2"

// f(); // compile error f() is not visible
}

40/68

Namespace - Alternative Syntax

It is also possible to declare entities in a preexisting namespace by adding the name as
a prefix:
namespace <name> {}
<name>::<identifier>

include <iostream>
namespace my_namespace1 {}

void my_namespace2::f() { std::cout << "my_namespace2" << std::endl; }

int main () {
my_namespace1::f(); // print "my_namespace1"

}

41/68

Special Namespaces

• All functionalities and data types provided with the standard library (distributed
along with the compiler) are declared within the std namespace

• The global namespace can be specified with ::identifier and can be useful to
prevent conflicts with surrounding namespaces

• It is also possible to define a namespace without a name. The concept refers to
anonymous (or unnamed) namespace
See "Translation Unit I" lecture for more details

42/68

Nested Namespaces

namespace my_namespace1 {
void f() { cout << "my_namespace1::f()"; }

namespace my_namespace2 {

void f() { cout << "my_namespace1::my_namespace2::f()"; }

} // namespace my_namespace2
} // namespace my_namespace1

my_namespace1::my_namespace2::f();

C++17 allows nested namespace definitions with a less verbose syntax:
namespace my_namespace1::my_namespace2 {

void h();
}

43/68

Explicit Global Namespace

The explicit global namespace syntax ::identifier can be useful to prevent conflicts
with surrounding namespaces
void f() { cout << "global::f()"; }

namespace my_namespace {

void f() { cout << "my_namespace::f()"; }

void g() {
f(); // print "my_namespace::f()"
::f(); // print "global::f()"

}

} // namespace my_namespace

44/68

Namespace Alias

Namespace alias allows declaring an alternate name for an existing namespace
namespace very_long_namespace {
namespace even_longer {

void g() {}
} // namespace even_longer
} // namespace very_long_namespace

namespace ns1 = very_long_namespace::even_longer; // namespace alias

int main() {
namespace ns2 = very_long_namespace::even_longer; // namespace alias

// available only in this scope
ns1::g();
ns2::g();

}
45/68

using-Declaration 1/2

The using -declaration introduces a specific name/system from a namespace into the
current scope. This is useful for improving code readability and reducing verbosity

The using -declaration is roughly equivalent of declaring the name/system in the
current scope

Syntax:

namespace <name> {
<identifier>

}

using <name>::<identifier>;
<identifier>;

46/68

using-Declaration 2/2

namespace my_namespace {

void f() { cout << "my_namespace::f()"; }

struct S {};

using T = int;

} // namespace my_namespace

using my_namespace::f;
using my_namespace::S;
using my_namespace::T;
f(); // print "my_namespace::f()"
S s;
T x;
// struct S {}; // compile error "struct S" already defined by my_namespace::T 47/68

using namespace-Directive

The using namespace -directive introduces all the identifiers in a scope without
having to specify them explicitly with the namespace name

Similarly to using -declaration, it is useful for improving code readability and reducing
verbosity. On the other hand, it could make the code bug-prone because of the
complex name lookup rules, especially if coupled with function overloadding

It is generally recommended not to write using namespace , especially at the global
level. Otherwise, it defeats the purpose of the namespace

48/68

using namespace-Directive

namespace my_namespace {

void f() { cout << "my_namespace::f()"; }

struct S {};

} // namespace my_namespace

int main () {
using namespace my_namespace;
f(); // print "my_namespace::f()"
S s;

}

49/68

using namespace-Directive vs. using-declaration

namespace A { int x = 0; }

namespace B {
int y = 3;
int x = 7;

}
int main () {

using namespace A;
int x = 3; // ok!! even if it is already defined in my_namespace
using B::y;

// int y = 5; // compiler error!! "y" is already defined in this scope
}
void f() {

using B::x;
using namespace A;
cout << x; // print 7, B::x has higher priority

} 50/68

using namespace-Directive Transitive Property 1/3

using namespace -directive has the transitive property for its identifiers when used
into another namespace
namespace A {

void f() { cout << "A::f()"; }
}

namespace B {
using namespace A;

}

int main() {
using namespace B;
f(); // ok, print "A::f()"

}

51/68

using namespace-Directive Transitive Property ⋆ 2/3

The unqualified name lookup is the mechanism by which the compiler searches for
the declaration of an identifier without using any explicit scope qualifiers like the ::
operator

Unqualified name lookup and using namespace-Directive:
Every name from namespace-name is visible as if it is declared in the nearest
enclosing namespace which contains both the using -directive and namespace-name

52/68

using namespace-Directive Transitive Property ⋆ 3/3

namespace A { int i = 0; }

namespace C {

int i = 3;
namespace B {

using namespace A; // unqualified name lookup of A within B:
int x = i; // it is the nearest enclosing namespace which contains

} // namespace B // both A and B -> global namespace
// "int x = i" -> "int x = C::i" because C has higher

} // namespace C // precedence than the global namespace

int main() {
using namespace B;
cout << C::B::x; // print "3"

}
53/68

inline Namespace ⋆

inline namespace is a concept similar to library versioning. It is a mechanism that
makes a nested namespace look and act as if all its declarations were in the
surrounding namespace
namespace my_namespace1 {

inline namespace V99 { void f(int) {} } // most recent version
namespace V98 { void f(int) {} }

} // namespace my_namespace1

using namespace my_namespace1;
V98::f(1); // call V98
V99::f(1); // call V99
f(1); // call default version (V99)

54/68

Attributes ⋆

C++ Attribute Overview 1/2

C++ attributes provide additional information to the compiler to enforce constraints
or enable code optimization

Attributes are annotation on top of standard code that can be applied to functions,
variables, classes, enumerator, types, etc.

C++11 introduces a standardized syntax for attributes: [[my-attribute]]

__attribute__((always_inline)) // < C++11, GCC/Clang/GNU compilers
__forceinline // < C++11, MSVC

[[gnu::always_inline]] // C++11, GCC/Clang/GNU compilers
[[msvc::forceinline]] // C++11, MSVC

55/68

C++ Attribute Overview 2/2

In addtion, C++11 and later add standard attributes � such as maybe_unused ,
deprecated , nodiscard for functions

C++23 adds the such attributes to lambda expressions

auto lambda = [] [[nodiscard]] (){ return 4; };

lambda(); // compiler warning
auto x = lambda(); // ok

56/68

https://en.cppreference.com/w/cpp/language/attributes

[[nodiscard]] Attribute 1/3

C++17 introduces the attribute [[nodiscard]] to issue a warning if the return
value of a function is discarded (not handled)

C++20 extends the attribute by allowing to add a reason
[[nodiscard("reason")]]

[[nodiscard]] bool empty();

empty(); // WARNING "discard return value"

57/68

[[nodiscard]] Attribute 2/3

[[nodiscard]] can be also be applied to enumerators enum / enum class and
structures struct / class

enum class [[nodiscard]] MyEnum { EnumValue };

struct [[nodiscard]] MyStruct {};

MyEnum f() { return MyEnum::EnumValue; }

MyStruct g() {
MyStruct s;
return s;

}

f(); // WARNING "discard return value"
g(); // WARNING "discard return value"

58/68

[[nodiscard]] Attribute 3/3

[[nodiscard]] can be also be applied to class constructors

MyStruct g() {
[[nodiscard]] MyStruct() {}
[[nodiscard]] MyStruct(const MyStruct&) {}

}

MyStruct{}; // WARNING "discard return value"
MyStruct s{};
static_cast<MyStruct>(s); // WARNING "discard return value" for

// MyStruct(const MyStruct&)

59/68

[[indeterminate]] Attribute 1/2

C++26 introduces the concept of erroneous behavior � to highlight conditions that
don’t make a program stable and predictable. Compilers are encouraged to diagnose
the problem

Reading a value from a non-initialized variable is a case of erroneous behavior
(undefined behavior in previous standards)

int x, y; // undefined value
x = 3; // ok
f(x); // ok
f(y); // erroneous behavior

C++26 introduces the [[indeterminate]] attribute to explicitly declare a variable
that can be potentially be read as non-initialized

60/68

https://wg21.link/p2795

[[indeterminate]] Attribute 2/2

int y [[indeterminate]]; // deliberately uninitialized

f(y); // undefined behaviorstruct A {
int x [[indeterminate]]; // deliberately uninitialized

};
A a;
f(a); // undefined behaviorvoid g([[indeterminate]] v) {

f(v); // undefined behavior
}
int x;
g(x);

61/68

[[maybe_unused]] Attribute 1/2

[[maybe_unused]] � applies to

• Variables
• Structure binding
• Functions parameters and return value
• Types
• Classes and structures
• Enumerators and single value enumerators

The limits of [[maybe_unused]] 62/68

https://en.cppreference.com/w/cpp/language/attributes/maybe_unused
https://www.sandordargo.com/blog/2024/06/05/the-limits-of-maybe-unused

[[maybe_unused]] Attribute 2/2

[[maybe_unused]] int x1;

[[maybe_unused]] auto [x2, x3] = ...;

[[maybe_unused]] int f([[maybe_unused]] int x4);

struct [[maybe_unused]] S {};

using MyInt [[maybe_unused]] = int;

enum [[maybe_unused]] Enum {
E1 [[maybe_unused]];

};

enum class [[maybe_unused]] EnumClass {
E2 [[maybe_unused]];

};
63/68

[[deprecated]] Attribute 1/4

C++14 allows to deprecate, namely discourage, use of entities by adding the
[[deprecated]] � attribute, optionally with a message
[[deprecated("reason")]] . It applies to:

• Functions
• Variables
• Classes and structures
• Enumerators
• Single value enumerator in C++17
• Types
• Namespaces

64/68

https://en.cppreference.com/w/cpp/language/attributes/deprecated

[[deprecated]] Attribute 2/4

[[deprecated]] void f() {}

struct [[deprecated]] S1 {};

using MyInt [[deprecated]] = int;

struct S2 {
[[deprecated]] int var = 3;
[[deprecated]] static constexpr int var2 = 4;

};

f(); // compiler warning
S1 s1; // compiler warning
MyInt i; // compiler warning
S2{}.var; // compiler warning
S2::var2; // compiler warning

65/68

[[deprecated]] Attribute and Enumerator 3/4

C++17 allows to deprecate individual enumerator values

enum [[deprecated]] E { EnumValue }; // C++14

enum class MyEnum { A, B [[deprecated]] = 42 }; // C++17

auto x = EnumValue; // compiler warning
MyEnum::B; // compiler warning

66/68

[[deprecated]] Attribute and Namespace 4/4

C++17 allows defining attribute on namespaces

namespace [[deprecated("please use my_namespace_v2")]] my_namespace {

void f() {}

} // namespace my_namespace

my_namespace::f(); // compiler warning

67/68

[[noreturn]] Attribute

[[noreturn]] indicates that a function does not return (e.g. program termination)
and the compiler should issue a compiler warning if the code contains other statements
that cannot be executed because it means a wrong user intention

[[noreturn]] void g() { std::exit(0); }

g(); // WARNING: no code should be exectuted after calling this function

y = x + 1;

68/68

	Entities
	Declaration and Definition
	Enumerators
	struct, Bitfield, and union
	struct
	Anonymous and Unnamed struct
	Bitfield
	union

	Control Flow
	if Statement
	for and while Loops
	Range-based for Loop
	switch
	Initializing Statement
	goto
	Avoid Unused Variable Warning

	Namespace
	Explicit Global Namespace
	Namespace Alias
	using-Declaration
	using namespace-Directive
	inline Namespace

	Attributes
	[[nodiscard]]
	[[indeterminate]]
	[[maybe_unused]]
	[[deprecated]]
	[[noreturn]]

