Modern C++ Programming

20. Performance Optimization I Basic Concepts

Federico Busato

2023-11-29

1 Introduction

- Moore's Law
- Moore's Law Limitations
- Reasons for Optimizing

2 Basic Concepts

- Asymptotic Complexity
- Time-Memory Trade-off
- Developing Cycle
- Ahmdal's Law
- Throughput, Bandwidth, Latency
- Performance Bounds
- Arithmetic Intensity

3 Basic Architecture Concepts

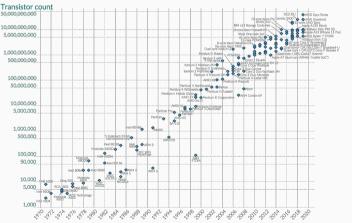
- Instruction-Level Parallelism
- Little's Law
- Data-Level Parallelism (DLP)
- Thread-Level Parallelism (TLP)
- Single Instruction Multiple Threads (SIMT)
- RISC, CISC Instruction Sets

4 Memory Hierarchy

- Memory Hierarchy Concepts
- Memory Locality

Introduction

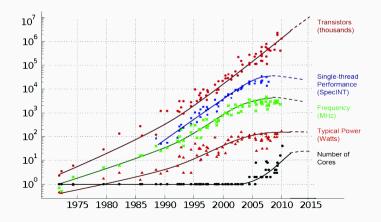
It is hard for people today to comprehend how slow an original IBM PC was. By some measures, a 4090 is a billion times faster, which means a PC working continuously for 40 years could be replaced by one second of modern computing. And yet, this could be done.

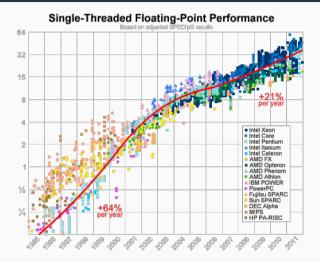


A favorite illustration of Moore's Law, comparing computers in the 1960s and today:

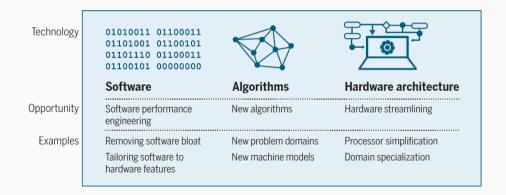
The Apollo Guidance Computer, which took us to the moonc is worse than a standard Anker USB-C charger. The charger has 48x the clock speed & 1.8x more memory than the AGC! forrestheller.com/Apollo-11-

Moore's Law


"The number of <u>transistors</u> incorporated in a chip will approximately double every 24 months." (40% per year)


Gordon Moore, Intel co-founder

Moore's Law


The Moore's Law is not (yet) dead but the same concept is not true for *clock frequency*, *single-thread performance*, *power consumption*, and *cost*. How we can provide value?

Single-Thread Performance Trend

A Look Back at Single-Threaded CPU Performance Herb Sutter, The Free Lunch Is Over Higher performance over time is not merely dictated by the number of transistors. Specific hardware improvements, software engineering, and algorithms play a crucial rule in driving the computer performance.

Specialized Hardware

Reduced precision, matrix multiplication engine, and sparsity provided orders of magnitude performance improvement for AI applications

Forget Moore's Law. Algorithms drive technology forward

"Algorithmic improvements make more efficient use of existing resources and allow computers to do a task faster, cheaper, or both. Think of how easy the smaller MP3 format made music storage and transfer. That compression was because of an algorithm."

Heeding Huang's Law

Forget Moore's Law

What will drive computer performance after Moore's law?

Reasons for Optimizing

- In the first decades, the *computer performance was extremely limited*. Low-level optimizations were essential to fully exploit the hardware
- Modern systems provide much higher performance, but we cannot more rely on hardware improvement on short-period
- Performance and efficiency add market value (fast program for a given task), e.g. search, page loading, etc.
- Optimized code uses less resources, e.g. in a program that runs on a server for months or years, a small reduction in the execution time/power consumption translates in a big saving of power consumption

Software Optimization is Complex

- Optimization is complicated and surprising
- Doing something sensible had opposite effect
- We often try clever things that don't work

• How about trying something silly then?

25 / 72

from "Speed is Found in the Minds of People", Andrei Alexandrescu, CppCon 2019

References

- Optimized C++, Kurt Guntheroth
- Awesome C/C++ performance optimization resources, Bartlomiej Filipek
- Optimizing C++, wikibook
- Optimizing software in C++, Agner Fog
- Hacker Delight (2nd), Henry S. Warren
- Algorithmica: Algorithms for Modern Hardware
- What scientists must know about hardware to write fast code

Basic Concepts

The **asymptotic analysis** refers to estimate the execution time or memory usage as function of the input size (the *order of growing*)

The *asymptotic behavior* is opposed to a *low-level analysis* of the code (instruction/loop counting/weighting, cache accesses, etc.)

Drawbacks:

- The *worst-case* is not the *average-case*
- Asymptotic complexity does not consider small inputs (think to *insertion sort*)
- The hidden constant can be relevant in practice
- Asymptotic complexity does not consider instructions cost and hardware details

Be aware that only **real-world problems** with a small asymptotic complexity or small size can be solved in a *"user" acceptable time*

Three examples:

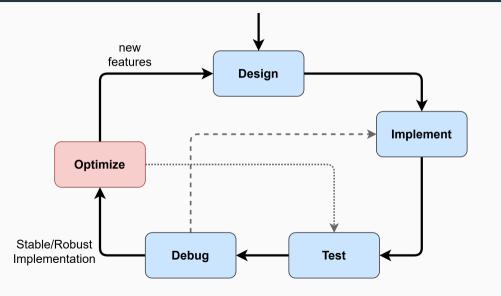
- Sorting: $\mathcal{O}(n \log n)$, try to sort an array of some billion elements
- Diameter of a (sparse) graph: O (V²), just for graphs with a few hundred thousand vertices it becomes impractical without advanced techniques
- Matrix multiplication: O (N³), even for small sizes N (e.g. 8K, 16K), it requires special accelerators (e.g. GPU, TPU, etc.) for achieving acceptable performance

The **time-memory trade-off** is a way of solving a problem or calculation in less time by using more storage space (less often the opposite direction)

Examples:

- Memoization (e.g. used in dynamic programming): returning the cached result when the same inputs occur again
- *Hash table*: number of entries vs. efficiency
- Lookup tables: precomputed data instead branches
- Uncompressed data: bitmap image vs. jpeg

"If you're not writing a program, don't use a programming language" Leslie Lamport, *Turing Award*

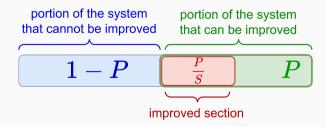

"First solve the problem, then write the code"

"Inside every large program is an algorithm trying to get out" **Tony Hoare**, Turing Award

"Premature optimization is the root of all evil"

Donald Knuth, Turing Award

"Code for correctness first, then optimize!"

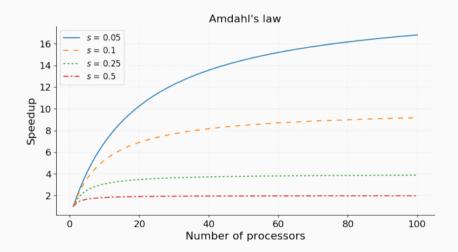

- One of the most important phase of the optimization cycle is the application profiling for finding regions of code that are *critical for performance* (hotspot)
 - \rightarrow Expensive code region (absolute)
 - \rightarrow Code regions executed many times (cumulative)
- Most of the times, there is no the perfect algorithm for all cases (e.g. insertion, merge, radix sort). Optimizing also refers in finding the correct heuristics for different program inputs/platforms instead of modifying the existing code

Ahmdal's Law

The **Ahmdal's law** expresses the maximum improvement possible by improving a particular part of a system

Observation: The performance of any system is constrained by the speed of the slowest point

 ${\cal S}$: improvement factor expressed as a factor of ${\cal P}$


Ahmdal's Law

Overall Improvement =
$$\frac{1}{(1-P) + \frac{P}{S}}$$

$\mathbf{P}\setminus\mathbf{S}$	25%	50%	75%	2x	3x	4x	5x	10x	∞
10%	1.02x	1.03x	1.04×	1.05×	1.07×	1.08×	1.09×	1.10×	1.11×
20%	1.04×	1.07×	1.09×	1.11x	1.15x	1.18x	1.19×	1.22x	1.25×
30%	1.06x	1.11x	1.15x	1.18x	1.25x	1.29x	1.31x	1.37x	1.49×
40%	1.09x	1.15x	1.20x	1.25x	1.36x	1.43x	1.47x	1.56x	1.67×
50%	1.11x	1.20x	1.27x	1.33x	1.50x	1.60×	1.66x	1.82x	2.00×
60%	1.37x	1.25x	1.35x	1.43x	1.67x	1.82x	1.92x	2.17x	2.50×
70%	1.16×	1.30×	1.43x	1.54×	1.88×	2.10×	2.27x	2.70×	3.33x
80%	1.19x	1.36x	1.52x	1.67x	2.14x	2.50x	2.78x	3.57x	5.00×
90%	1.22x	1.43x	1.63x	1.82x	2.50x	3.08x	3.57x	5.26x	10.00×

20/50

Ahmdal's Law

note: \boldsymbol{s} is the portion of the system that cannot be improved

The **throughput** is the rate at which operations are performed

Peak throughput: (CPU speed in Hz) x (CPU instructions per cycle) x (number of CPU cores) x (number of CPUs per node)

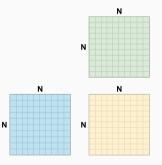
NOTE: modern processors have more than one computation unit

The **memory bandwidth** is the amount of data that can be loaded from or stored into a particular memory space

Peak bandwidth: (Frequency in Hz) x (Bus width in bit / 8) x (Pump rate, memory type multiplier)

The **latency** is the amount of time needed for an operation to complete

The performance of a program is *bounded* by one or more aspects of its computation. This is also strictly related to the underlying hardware


- Memory-bound. The program spends its time primarily in performing *memory* accesses. The performance is limited by the *memory bandwidth* (rarely memory-bound also refers to the amount of memory available)
- **Compute-bound** (Math-bound). The program spends its time primarily in computing *arithmetic instructions*. The performance is limited by the *speed of the CPU*

- Latency-bound. The program spends its time primarily in waiting *the data are ready* (instruction/memory dependencies). The performance is limited by the *latency of the CPU/memory*
- I/O Bound. The program spends its time primarily in performing I/O operations (network, user input, storage, etc.). The performance is limited by the speed of the I/O subsystem

Arithmetic Intensity

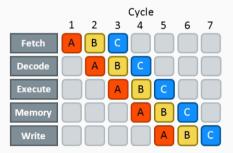
Arithmetic/Operational Intensity is the ratio of total operations to total data movement (bytes or words)

The naive matrix multiplication algorithm requires $N^3 \cdot 2$ floating-point operations* (multiplication + addition), while it involves $(N^2 \cdot 4B) \cdot 3$ data movement

* What Is a Flop?

$$R = \frac{ops}{bytes} = \frac{2n^3}{12n^2} = \frac{n}{6}$$

which means that for every byte accessed, the algorithm performs $\frac{n}{6}$ operations \rightarrow compute-bound


Ν	Operations	Data Movement	Ratio	Exec. Time
512	$268 \cdot 10^6$	3 MB	85	2 ms
1024	$2\cdot 10^9$	12 MB	170	21 ms
2048	$17\cdot 10^9$	50 MB	341	170 ms
4096	$137\cdot 10^9$	201 MB	682	1.3 s
8192	$1\cdot 10^{12}$	806 MB	1365	11 s
16384	$9\cdot 10^{12}$	3 GB	2730	90 s

A modern CPU performs 100 GFlops, and has about 50 GB/s memory bandwidth 26/50

Basic Architecture Concepts

Modern processor architectures are deeply pipelined \rightarrow superscalar processor **Instruction-Level Parallelism (ILP)** is a measure of how many instructions in a computer program can be executed simultaneously by issuing *independent* instructions in sequence (*out-of-order*)

Instruction pipelining is a technique for implementing ILP within a single processor

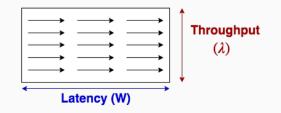
2/3

Microarchitecture	Pipeline		
wiicroarchitecture	stages		
Core	14		
Bonnell	16		
Sandy Bridge	14		
Silvermont	14 to 17		
Haswell	14		
Skylake	14		
Kabylake	14		

The pipeline efficiency is affected by

- Instruction stalls, e.g. cache miss, an execution unit not available, etc.
- Bad speculation, branch misprediction

for (int i = 0; i < N; i++) // with no optimizations, the loop
C[i] = A[i] * B[i]; // is executed in sequence</pre>


can be rewritten as:

ILP and Little's Law

The **Little's Law** expresses the relation between *latency* and *throughput*. The *throughput* of a system λ is equal to the number of elements in the system divided by the average time spent (*latency*) W for each element in the system:

$$L = \lambda W \rightarrow \lambda = \frac{L}{W}$$

- L: average number of customers in a store
- λ: arrival rate (throughput)
- W: average time spent (latency)

Data-Level Parallelism (DLP) refers to the execution of the same operation on multiple data in parallel

Vector processors or *array processors* provide SIMD (*Single Instruction-Multiple Data*) or vector instructions for exploiting data-level parallelism

The popular vector instruction sets are:

MMX *MultiMedia eXtension*. 80-bit width (Intel, AMD)

SSE (SSE2, SSE3, SSE4) Streaming SIMD Extensions. 128-bit width (Intel, AMD)

AVX (AVX, AVX2, AVX-512) Advanced Vector Extensions. 512-bit width (Intel, AMD)

NEON Media Processing Engine. 128-bit width (ARM)

SVE (SVE, SVE2) Scalable Vector Extension. 128-2048 bit width (ARM)

A **thread** is a single sequential execution flow within a program with its state (instructions, data, PC, register state, and so on)

Thread-level parallelism (TLP) refers to the execution of separate computation *"thread"* on different processing units (e.g. CPU cores)

An alternative approach to the classical data-level parallelism is **Single Instruction Multiple Threads (SIMT)**, where multiple threads execute the same instruction simultaneously, with each thread operating on different data.

GPUs are successful examples of SIMT architectures.

SIMT can be thought of as an evolution of *SIMD* (Single Instruction Multiple Data). *SIMD* requires that all data processed by the instruction be of the same type and requires no dependencies or inter-thread communication. On the other hand, **SIMT** is more flexible and does not have these restrictions. Each thread has access to its own memory and can operate independently. The **Instruction Set Architecture** (ISA) is an abstract model of the CPU to represent its behavior. It consists of addressing modes, instructions, data types, registers, memory architecture, interrupt, etc. It does not defined how an instruction is processed

The **microarchitecture** (μ arch) is the implementation of an **ISA** which includes pipelines, caches, etc.

Complex Instruction Set Computer (CISC)

- Complex instructions for special tasks even if used infrequently
- Assembly instructions follow software. Little compiler effort for translating high-level language into assembly
- Initially designed for saving cost of computer memory and disk storage (1960)
- High number of instructions with different size
- Instructions require complex micro-ops decoding (translation) for exploiting ILP
- Multiple low-level instructions per clock but with high latency

Hardware implications

- High number of transistors
- Extra logic for decoding. Heat dissipation
- Hard to scale

Reduced Instruction Set Computer (RISC)

- Simple instructions
- Small number of instructions with fixed size
- 1 clock per instruction
- Assembly instructions does not follow software
- No instruction decoding

Hardware implications

- High ILP, easy to schedule
- Small number of transistors
- Little power consumption
- Easy to scale

x86 Instruction set

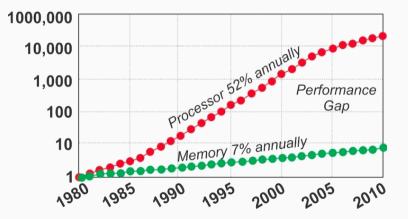
MOV AX, 15; AH = 00, AL = 0Fh AAA; AH = 01, AL = 05 RET

ARM Instruction set

MOV R3, # 10 AND R2, R0, # OxF CMP R2, R3 IT LT BLT elsebranch ADD R2. # 6 ADD R1. #1 elsebranch: END

ARM vs x86: What's the difference between the two processor architectures?

CISC vs. RISC


- Hardware market:
 - RISC (ARM, IBM): Qualcomm Snapdragon, Amazon Graviton, Nvidia Grace, Nintendo Switch, Fujitsu Fukaku, Apple M1, Apple Iphone/Ipod/Mac, Tesla Full Self-Driving Chip, PowerPC
 - CISC (Intel, AMD): all x86-64 processors
- Software market:
 - RISC: Android, Linux, Apple OS, Windows
 - CISC: Windows, Linux
- Power consumption:
 - CISC: Intel i5 10th Generation: 64W
 - RISC: Arm-based smartphone < 5W

"Incidentally, the first ARM1 chips required so little power, when the first one from the factory was plugged into the development system to test it, the microprocessor immediately sprung to life by drawing current from the IO interface – before its own power supply could be properly connected."

Happy birthday, ARM1. It is 35 years since Britain's Acorn RISC Machine chip sipped power for the first time

Memory Hierarchy

Access to memory dominates other costs in a processor

The efficiency of computer architectures is limited by the **Memory Wall** problem, namely the memory is the slowest part of the system

Moving data to and from main memory consumes the vast majority of *time* and *energy* of the system

An A100 GPU has 2 TB/s main memory bandwidth, an even million times the 2 MB/s bandwidth of an original Apple 2. Computation is a billion times higher, which is why we have cache hierarchies.

Memory Hierarchy

Modern architectures rely on complex memory hierarchy (primary memory, caches, registers, scratchpad memory, etc.). Each level has different characteristics and constrains (size, latency, bandwidth, concurrent accesses, etc.)

1 byte of RAM (1946)

IBM 5MB hard drive (1956)

	Intel Haswell E5-2650 v3	Intel KNL 7250 DDR5 MCDRAM	ARM Cortex A57			
Memory hierarchies	10 cores 368 Gflop/s 105 Watts	68 cores 2662 Gflop/s 215 Watts	4 cores 32 Gflop/s 7 Watts			
REGISTERS	16/core AVX2	32/core AVX-512	32/core			
L1 CACHE & GPU SHARED MEMORY	32 KB/core	32 KB/core	32 KB/core			
L2 CACHE	256 KB/core	1024 KB/2cores	2 MB			
L3 CACHE	25 MB	016 GB	N/A			
MAIN MEMORY	64 GB	384 16 GB	4 GB			
Main Memory BW	68 GB/s 5.4 flops/byte	115 421 GB/s 23 6 Flops/byte	26 GB/s 1.2 flops/byte			
PCI EXPRESS GEN3x16 NVLINK	16 GB/s 23 flops/byte	16 GB/s 166 flops/byte	16 GB/s 2 flops/byte			
	12 GB/s 30 flops/byte	12 GB/s 221 flops/byte	12 GB/s 2.6 flops/byte			
Memory hierarchies for different type of architectures Flops per byte transfer (all flop rates for 64 bit operand						

Source:

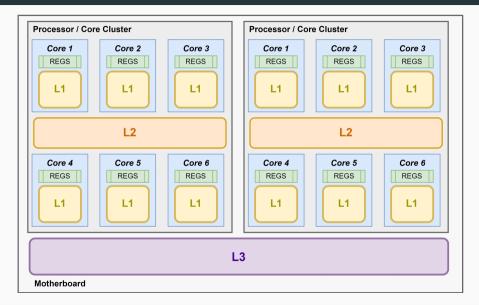
"Accelerating Linear Algebra on Small Matrices from Batched BLAS to Large Scale Solvers",

ICL, University of Tennessee

Intel Alder Lake 12th-gen Core-i9-12900k (Q1'21) + DDR4-3733 example:

Hierarchy level	Size	Latency	Latency Ratio	Bandwidth	Bandwidth Ratio
L1 cache	192 KB	1 ns	1.0×	1,600 GB/s	1.0×
L2 cache	1.5 MB	3 ns	3×	1,200 GB/s	1.3×
L3 cache	12 MB	6 - 20 ns	6-20×	900 GB/s	1.7×
DRAM	/	50 - 90 ns	50-90×	80 GB/s	20×
SDD Disk (swap)	/	$70 \mu s$	$10^5 \times$	2 GB/s	800×
HDD Disk (swap)	/	10 ms	10 ⁷ ×	2 GB/s	800×

- en.wikichip.org/wiki/WikiChip
- Memory Bandwidth Napkin Math


A **cache** is a small and fast memory located close to the processor that stores frequently used instructions and data. It is part of the processor package and takes 40 to 60 percent of the chip area

Characteristics and content:

Registers Program counter (PC), General purpose registers, Instruction Register (IR), etc.

- L1 Cache Instruction cache and data cache, private/exclusive per CPU core, located on-chip
- **L2 Cache** Private/exclusive per single CPU core or a cluster of cores, located off-chip
- L3 Cache Shared between all cores and located off-chip (e.g. motherboard), up to 128/256 MB

Memory Hierarchy Concepts

A **cache line** or **cache block** is the unit of data transfer between the cache and main memory, namely the memory is loaded at the *granularity* of a cache line. The typical size of the cache line is 64 bytes. A cache line can be further organized in banks or sectors

Cache access type:

Hot Closest-processor cached, L1

Warm L2 or L3 caches

Cold First load, cache empty

Memory Hierarchy Concepts

- A cache hit occurs when a requested data is *successfully found* in the cache memory
- The **cache hit rate** is the number of *cache hits divided by the number of memory requests*
- A cache miss occurs when a requested data is *not found* in the cache memory
- The **miss penalty** refers to the *extra time required to load the data* into cache from the main memory when a cache miss occurs
- A page fault occurs when a requested data is in the process address space, but it is not currently located in the main memory (swap/pagefile)
- Page thrashing occurs when page faults are frequent and the OS spends significant time to swap data in and out the physical RAM

- Spatial Locality refers to the use of data elements within <u>relatively close storage locations</u> e.g. scan arrays in increasing order, matrices by row. It involves mechanisms such as *memory prefetching* and *access granularity* When spatial locality is low, many words in the cache line are not used
- Temporal Locality refers to the reuse of the same data within a relatively <u>small time duration</u>, and, as consequence, exploit lower levels of the memory hierarchy (caches), e.g. multiple sparse accesses

Heavily used memory locations can be accessed more quickly than less heavily used locations