
Modern C++
Programming

2. Preparation

Federico Busato
2024-12-26

Table of Contents

1 Books and References

2 Slide Legend

3 What Editor/ IDE/Compiler Should I Use?

4 How to compile?

5 Hello World
I/O Stream

1/22

Books and
References

Suggested Books

Programming and Principles
using C++ (3nd, C++23)

B. Stroustrup, 2024

Professional C++
(6th, C++23)

S. J. Kleper, N. A. Solter, 2024

Absolute C++ (6th)
W. Savitch, 2015

2/22

More Advanced Books

Effective Modern C++
S. Meyer, 2014

Embracing Modern C++
Safely

J. Lakos, V. Romeo, R.
Khlebnikov, A. Meredith, 2021

Beautiful C++: 30 Core
Guidelines for Writing Clean,

Safe, and Fast Code
J. G. Davidson, K. Gregory, 2021

3/22

References 1/3

(Un)official C++ reference:*
• en.cppreference.com

• C++ Standard Draft

Tutorials:
• Learn C++

• Tutorials Point C++

• en.wikibooks.org/wiki/C++

• yet another insignificant...programming notes

Other resources:
• stackoverflow.com/questions/tagged/c++

* The full C++ standard draft can be found at eel.is/c++draft/full (32 MB!)
4/22

https://en.cppreference.com/w/
https://timsong-cpp.github.io/cppwp/
www.learncpp.com
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b
https://eel.is/c++draft/full

References 3/3

News:
• isocpp.org (Standard C++ Foundation)
• Reddit C++

• cpp.libhunt.com/newsletter/archive

• MeetingCpp Blogroll

Main conferences:
• cppcon.org (slides), (search engine)
• meetingcpp.com (slides)
• isocpp.com conference list

Coding exercises:
• HackerRank C++

• leetcode.com/problemset/algorithms

• open.kattis.com 5/22

https://isocpp.org/
https://www.reddit.com/r/cpp/
https://cpp.libhunt.com/newsletter/archive
https://cppcon.org
https://github.com/CppCon
https://cppcon.programmingarchive.com/
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://isocpp.org/wiki/faq/conferences-worldwide
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/

Slide Legend

Slide Legend 1/2

⋆ Advanced Concepts. In general, they are not fundamental. They can be
related to very specific aspects of the language or provide a deeper
exploration of C++ features.
A beginner reader should skip these sections/slides

⇝ See next. C++ concepts are closely linked, and it is almost impossible to
find a way to explain them without referring to future topics. These slides
should be revisited after reading the suggested topic

� Homework. The slide contains questions/exercises for the reader

6/22

Slide Legend 2/2

this is a code section

This is a language keyword/token and not a program symbol (variable, functions,
etc.). Future references to the token could use a standard code section for better
readability

7/22

Parenthesis and Brackets

{} braces, informally “curly brackets”

[] brackets, informally “square brackets”

() parenthesis, informally “round brackets”

<> angle brackets

twitter.com/lefticus
8/22

https://twitter.com/lefticus/status/1466518147700199430?t=0A8agYBM8b2oAufm1yptpA

What Editor/
IDE/Compiler
Should I Use?

What Compiler Should I Use?

Most popular compilers:
• Microsoft Visual Code (MSVC) is the compiler offered by Microsoft
• The GNU Compiler Collection (GCC) contains the most popular C++ Linux

compiler
• Clang is a C++ compiler based on LLVM Infrastructure available for

Linux/Windows/Apple (default) platforms

Suggested compiler on Linux for beginner: Clang

• Comparable performance with GCC/MSVC and low memory usage
• Expressive diagnostics (examples and propose corrections)
• Strict C++ compliance. GCC/MSVC compatibility (inverse direction is not ensured)
• Includes very useful tools: memory sanitizer, static code analyzer, automatic formatting,

linter, etc. 9/22

Install the Compiler on Linux

Install the last gcc/g++ (v14)

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt update
$ sudo apt install gcc-14 g++-14
$ gcc-14 --version

Install the last clang/clang++ (v19)

$ wget https://apt.llvm.org/llvm.sh
$ chmod +x llvm.sh
$ sudo ./llvm.sh 19
$ clang++ --version

10/22

Install the Compiler on Windows

Microsoft Visual Studio

• Direct Installer: Visual Studio Community 2022

Clang on Windows
Two ways:

• Windows Subsystem for Linux (WSL)
• Run → optionalfeatures
• Select Windows Subsystem for Linux , Hyper-V ,

Virtual Machine Platform
• Run → ms-windows-store: → Search and install Ubuntu 24.04 LTS

• Clang + MSVC Build Tools
• Download Build Tools per Visual Studio
• Install Desktop development with C++ 11/22

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false
https://aka.ms/vs/17/release/vs_BuildTools.exe

What Editor/IDE/Compiler Should I Use? 1/3

Popular C++ IDE (Integrated Development Environment):
• Microsoft Visual Studio (MSVC) (link). Most popular IDE for Windows
• Clion (link). (free for student). Powerful IDE with a lot of options
• QT-Creator (link). Fast (written in C++), simple
• XCode. Default on Mac OS
• Cevelop (Eclipse) (link)

Standalone GUI-based coding editors:
• Microsoft Visual Studio Code (VSCode) (link)
• Sublime (link)
• Lapce (link)
• Zed (link)

12/22

https://visualstudio.microsoft.com/it/vs/features/cplusplus/
www.cevelop.com
https://code.visualstudio.com/
www.sublimetext.com
https://lapce.dev/
https://zed.dev/

What Editor/IDE/Compiler Should I Use? 2/3

Standalone text-based coding editors (powerful, but needs expertise):

• Vim
• Emacs
• NeoVim (link)
• Helix (link)

Not suggested : Notepad, Gedit, and other similar editors (lack of support for
programming)

13/22

https://neovim.io/
https://helix-editor.com/

What Editor/IDE/Compiler Should I Use? 3/3

StackOverflow Developer Survey 2024
14/22

https://survey.stackoverflow.co/2024/technology/#1-integrated-development-environment

How to compile?

How to Compile?

Compile C++11, C++14, C++17, C++20, C++23, C++26 programs:
g++ -std=c++11 <program.cpp> -o program
g++ -std=c++14 <program.cpp> -o program
g++ -std=c++<version> <program.cpp> -o program

Any C++ standard is backward compatible*

C++ is also backward compatible with C in most case, except if it contains C++
keywords (new, template, class, typename, etc.)
We can potentially compile a pure C program in C++26

*except for very minor deprecated features 15/22

C++ Standard

Compiler
C++11 C++14 C++17 C++20

Core Library Core Library Core Library Core Library

g++ 4.8.1 5.1 5.1 5.1 7.1 9.0 11 14

clang++ 3.3 3.3 3.4 3.5 5.0 11.0 19+ 19+

MSVC 19.0 19.0 19.10 19.0 19.15 19.15 19.29+ 19.29

C++23, C++26 are working in progress

en.cppreference.com/w/cpp/compiler support 16/22

https://en.cppreference.com/w/cpp/compiler_support

Hello World

Hello World 1/2

C code with printf :

#include <stdio.h>

int main() {
printf("Hello World!\n");

}

printf
prints on standard output

C++ code with streams :

#include <iostream>

int main() {
std::cout << "Hello World!\n";

}

cout
represents the standard output stream

17/22

Hello World 2/2

The previous example can be written with the global std namespace:

#include <iostream>

using namespace std;
int main() {

cout << "Hello World!\n";
}

Note: For sake of space and for improving the readability, we intentionally omit the
std namespace in most slides

18/22

I/O Stream (std::cout) 1/3

std::cout is an example of output stream. Data is redirected to a destination, in
this case the destination is the standard output

#include <stdio.h>
int main() {

int a = 4;
double b = 3.0;
char c[] = "hello";
printf("%d %f %s\n", a, b, c);

}

#include <iostream>
int main() {

int a = 4;
double b = 3.0;
char c[] = "hello";
std::cout << a << " " << b << " " << c << "\n";

}
19/22

C:

C++:

I/O Stream (Why should we prefer I/O stream?) 2/3

• Type-safe: The type of object provided to the I/O stream is known statically by the
compiler. In contrast, printf uses % fields to figure out the types dynamically

• Less error prone: With I/O Stream, there are no redundant % tokens that have to
be consistent with the actual objects passed to I/O stream. Removing redundancy
removes a class of errors

• Extensible: The C++ I/O Stream mechanism allows new user-defined types to be
passed to I/O stream without breaking existing code

• Comparable performance: If used correctly may be faster than C I/O (printf ,
scanf , etc.) .

20/22

I/O Stream (Common C errors) 3/3

• Forget the number of parameters:
printf("long phrase %d long phrase %d", 3);

• Use the wrong format:
int a = 3;
...many lines of code...
printf(" %f", a);

• The %c conversion specifier does not automatically skip any leading white space:
scanf("%d", &var1);
scanf(" %c", &var2);

21/22

std::print

C++23 introduces an improved version of printf function std::print based on
formatter strings that provides all benefits of C++ stream and is less verbose

#include <print>

int main() {
std::print("Hello World! {}, {}, {}\n", 3, 4ll, "aa");
// print "Hello World! 3 4 aa"

}

This will be the default way to print when the C++23 standard is widely adopted

22/22

	Books and References
	Slide Legend
	What Editor/ IDE/Compiler Should I Use?
	How to compile?
	Hello World
	I/O Stream

