Modern C++

Programming

6. BAsic CONCEPTS IV
ENTITIES, CONTROL FLOW, NAMESPACES, AND ATTRIBUTES

Federico Busato
2026-01-09

Table of Contents

Entities
H Declaration and Definition
Enumerators

A struct, Bitfield, and union
m struct
m Anonymous and Unnamed struct®
m Bitfield
B union

1/68

Table of Contents

H Control Flow

m if Statement

for and while Loops

Range-based for Loop

® switch

Initializing Statement
m goto

m Avoid Unused Variable Warning

2/68

Table of Contents

@ Namespace
m Explicit Global Namespace
m Namespace Alias
m using-Declaration
m using namespace-Directive

m inline Namespace *

3/68

Table of Contents

Attributes ¥

m [[nodiscard]]

m [[indeterminate]]

[[maybe_unused]]

[[deprecated]]

[[noreturn]]

4/68

Entities

Entities

A C++ program is set of language-specific keywords (for, if, new, true, etc.),
identifiers (symbols for variables, functions, structures, namespaces, etc.), expressions
defined as sequence of operators, and literals (constant value tokens)

C++ Entity

An entity is a value, object, reference, function, enumerator, type, class member, or
template

Identifiers and user-defined operators are the names used to refer to entities
Entities also captures the result(s) of an expression

Preprocessor macros are not C++ entities

5/68

Declaration and
Definition

Declaration/Definition

Declaration/Prototype

A declaration (or prototype) introduces an entity with an identifier describing its
type and properties

A declaration is what the compiler and the linker needs to accept references (usage) to
that identifier

Entities can be declared multiple times. All declarations are the same

Definition /Implementation

An entity definition is the implementation of a declaration. It defines the properties
and the behavior of the entity

For each entity, only a single definition is allowed

6/68

Declaration/Definition Function Example

void f(int a, char* b); // function declaration

void f(int a, charx*) { // function definition
// "b" can be omitted if mot used

void f(int a, char* b); // function declaration

// multiple declarations s valid

£(3, "abc"); // usage

void g(); // function declaration

g0 // linking error "g" 4s not defined

7/68

Declaration/Definition struct Example

A declaration without a concrete implementation is an incomplete type (as void)

struct A; // declaration 1
struct A; // declaration 2 (ok)

struct B { // declaration and definition
int b;
// A z; // compile error incomplete type

Ax y; // ok, pointer to incomplete type
i

struct A { // definition

char c;

8/68

Enumerators

Enumerator - enunm

Enumerator

An enumerator enum is a data type that groups a set of named integral constants

enum color_t { BLACK, BLUE, GREEN };
color_t color = BLUE;
cout << (color == BLACK); // print false

The problem:

enum color_t { BLACK, BLUE, GREEN };
enum fruit_t { APPLE, CHERRY };

color_t color = BLACK; // ant: 0
fruit_t fruit = APPLE; // int: 0
bool b = (color == fruit); // print 'true'!!

// and, most importantly, does the match between a color and
// a fruit make any sense? 9/68

Strongly Typed Enumerator - enum class

enum class (C++11)

enum class (scoped enum) data type is a type safe enumerator that is not implicitly
convertible to int

enum class Color { BLACK, BLUE, GREEN };
enum class Fruit { APPLE, CHERRY };

Color color = Color::BLUE;
Fruit fruit = Fruit::APPLE;

// bool b = (color == fruit) compile error we are trying to match colors with fruits
// BUT, they are different things entirely
// int al = Color::GREEN; compile error
// int a2 = Color::RED + Color::GREEN; compile error
int a3 = (int) Color::GREEN; // ok, explicit conversion

10/68

enum/enum class Features

enum/enum class can be compared
enum class Color { RED, GREEN, BLUE };
cout << (Color::RED < Color::GREEN); // print true

enum/enum class are automatically enumerated in increasing order
enum class Color { RED, GREEN = -1, BLUE, BLACK };

// o) 1D o (1D

Color::RED == Color::BLUE; // true

enum/enum class can contain alias
enum class Device { PC = 0, COMPUTER = 0, PRINTER };

C+4++11 enum/enum class allows setting the underlying type
enum class Color : int8_t { RED, GREEN, BLUE };

11/68

enum class Features - C+4++417

s C++17 enum class supports direct-list-initialization

enum class Color { RED, GREEN, BLUE };
Color a{2}; // ok, equal to Color:BLUE

s C++17 enum/enum class support attributes

enum class Color { RED, GREEN, BLUE [[deprecated]] };
auto x = Color::BLUE; // compiler warning

12/68

enum class Features - C+4+420

s C++420 allows introducing the enumerator identifiers into the local scope to

decrease the verbosity
enum class Color { RED, GREEN, BLUE };

switch (x) {
using enum Color; // C++20
case RED:
case GREEN:
case BLUE:
}

The same behavior can be emulated in older C+-+ versions with
enum class Color { RED, GREEN, BLUE };

constexpr auto RED = Color::RED;

13/68

enum/enum class - Common Errors

enum/enum class should be always initialized
enum class Color { RED, GREEN, BLUE };

Color my_color; // "my_color"” may be outside RED, GREEN, BLUE!!

C++17 Cast from out-of-range values respect to the underlying type of
enum/enum class leads to undefined behavior
enum Color : uint8_t { RED, GREEN, BLUE };

Color value = 256; // undefined behavior

14/68

enum/enum class and constexpr*

» C+4+17 constexpr expressions don't allow out-of-range values for (only) enum

without explicit underlying type

enum Color { RED };
enum Fruit : int { APPLE };
enum class Device { PC };

// constexpr Color al = (Color) ~-1; compile error
const Color (Color) -1; // ok
constexpr Fruit a3 = (Fruit) -1; // ok

(Device) -1; // ok

»
N
1

constexpr Device a4

Construction Rules for enum class Values 15/68

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0138r2.pdf

struct, Bitfield, and

union

struct

A struct (structure) aggregates different variables into a single unit

struct A {
int X;
char vy;
i

It is possible to declare one or more variables after the definition of a struct
struct A {

int x;
} a, b;

Enumerators can be declared within a struct without a name

struct A {
enum {X, Y}
i

A::X; 16/68

struct

It is possible to declare a struct in a local scope (with some restrictions), e.g.
function scope

int £ {
struct A {
int x;
} a;

return a.x;

17/68

Anonymous and Unnamed struct*

Unnamed struct : a structure without a name, but with an associated type

Anonymous struct : a structure without a name and type

The C+4+ standard allows unnamed struct but, contrary to C, does not allow
anonymous struct (i.e. without a name)

struct {
int x;

} my_struct; // unnamed struct, ok

struct S {
int x;

struct { int y; }; // anonymous struct, comptiler warning with -Wpedantic

g // -Wpedantic: diagnose use of non-strict ISO C++ extensions
18/68

Bitfield

Bitfield
A bitfield is a variable of a structure with a predefined bit width. A bitfield can hold
bits instead bytes

struct S1 {
int bl : 10; // range [0, 1023]
int b2 : 10; // range [0, 1023]
int b3 : 8; // range [0, 255]
}; // sizeof(S1): 4 bytes

struct 82 {
int bl : 10;
int : 0; // reset: force the next field
int b2 : 10; // to start at bit 32

}; // sizeof(S2): 8 bytes

= Useful to compress different values that have specific ranges (e.g. S1)
= "Free" modulo operation 2% (e.g. S1.b1 modulo 21°) 19/68

union 1/2

Union

A union is a special data type that allows to store different data types in the same

memory location

= The union is only as big as necessary to hold its /argest data member
= The union is a kind of “overlapping” storage

union A {
int Xx; A a;
) char y; a.x = OXAABBCCDD

X [0xDD ‘ 0xcc A\{ 0xBB H OXAA]

y | OxDD
Note: little endian 20/68

union

union A {
int x;
char y;

}; // sizeof(4): 4

A a;
a.x = 1023; // bits: 00..000001111111111
a.y = 0; // bits: 00..000001100000000

cout << a.x; // print 512 + 256 = 768

NOTE: Little-Endian encoding maps the bytes of a value in memory in the reverse order. y
maps to the last byte of x

Contrary to struct , C++ allows anonymous union (i.e. without a name)

C++17 introduces std::variant to represent a type-safe union
21/68

Control Flow

if Statement

The if statement executes the first branch if the specified condition is evaluated to
true , the second branch otherwise

» Short-circuiting, left-to-right evaluation:
int array[3];
if (<true expression> || array[2345324] == 0)

// mo error!! even though the index is out-of-bound

= Ternary operator:

<cond> 7 <expressionl> : <expression2>

<expressionl> and <expression2> must return a value of the same or convertible
type
int value = (a ==b) 2a : (b==c ?b : 3); // nested

22/68

for and while Loops

= for: use when number of iterations is known

for ([init]; [cond]; [increment]) {

}

= while: use when number of iterations is not known
while (cond) {

}

= do while: use when number of iterations is not known, but there is

at least one iteration
do {

} while (cond);

23/68

for Loop Features and Jump Statements

= C++ allows multiple initializations and increments in the declaration:
for (int i = 0, k = 0; i < 10; i++, k += 2)

= Infinite loop:
for (;;) // also while(true);

= Jump statements (break, continue, return):
for (int i = 0; i < 10; i++) {
if (<condition>)
break; // exit from the loop
if (<condition>)
continue; // continue with a new iteration and exec. i++

return; // exit from the function
24/68

Range-based for Loop 1/3

C++11 introduces the range-based for loop to simplify the verbosity of traditional
for loop constructs. They are equivalent to the for loop operating over a range of

values, but safer

The range-based for loop avoids the user to specify start, end, and increment of the
loop

for (int v : { 3, 2, 1 }) // INITIALIZER LIST
cout << v << " ", // print: 3 2 1

int values[] ={ 3, 2, 1 };
for (int v : values) // ARRAY OF VALUES
cout << v << " "; // print: 3 2 1

for (auto c : "abcd") // RAW STRING

cout << ¢ << " " int: a b c d
u // print: a b c 25/68

Range-based for Loop ~~

Range-based for loop can be applied in three cases:
= Fixed-size array int array[3], "abcd"
= Branch Initializer List {1, 2, 3}

= Any object with begin() and end() methods

std::vector vec{l, 2, 3, 4}; int matrix[2] [4];

for (auto& row : matrix) {
for (auto x : vec) { for (auto element : row)

cout << x << " " cout << "@";

// prant: "1, 2, 3, 4," cout << "\n";

}

// print: ©OQ@

/7 0000

26/68

Range-based for Loop ~~

C++17 extends the concept of range-based loop for structure binding

struct A {
int x;
int y;
g

A array[] = { {1,2}, {5,6}, {7,1} };
for (auto [x1, yl1] : array)
cout << x1 << "," <yl <" ", // print: 1,2 5,6 7,1

27/68

switch

The switch statement evaluates an expression (int, char, enum class, enum)
and executes the statement associated with the matching case value

char x = ...
switch (x) {

case 'a': y = 1; break;
default: return -1;

}

Switch scope common error:

int x = 1;

switch (1) {
case 0: int x; // mearest scope
case 1: cout << x; // undefined!!
case 2: { int y; } // ok

// case 3: cout << y; // compile error

}

28/68

switch - Fall-Through

char x = ...
switch (x) {
case 'a': // wvalid fall-through

case 'b': x++; // compiler warning!!
case 'c': return O;
default: return -1;

}
C++17 [[fallthroughl] attribute

char x = ...

switch (x) {
case 'a': x++; [[fallthroughll; // C++17: avoid warning
case 'b': return 0;

default: return -1;

29/68

Initializing Statement

Control flow with initializing statement aims at simplifying complex actions before
the condition evaluation and restrict the scope of a variable which is visible only in the

control flow body

C++17 introduces if statement with initializer

if (int ret = x + y; ret < 10)
cout << ret;

C+-417 introduces switch statement with initializer

switch (auto i = £(); x) {
case 1: return i + x;

C++20 introduces range-for loop statement with initializer

for (int i = 0; auto x : {'A', 'B', 'C'})
cout << it++ << ":" < x K"y // print: 0:A 1:B 2:C 30/68

When goto could be useful:

bool flag = true;
for (int i = 0; i < N && flag; i++) {
for (int j = 0; j < M && flag; j++) {
if (<condition>)
flag = false;

}

become:
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if (<condition>)
goto LABEL;

LABEL:

>

31/68

Best solution:

bool my_function(int M, int M) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if (<condition>)

return false;

}

return true;

32/68

Junior: what's wrong
with goto command?

goto command:

33/68

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE ONE LITILE
GO0, INSTEAD

Q%

EH, SCREW GOD PRACTICE.

HOW BAD CAN 1T BE?

\ goto main-sub3;

IJJ

CONPILE

34/68

Avoid Unused Variable Warning

Most compilers issue a warning when a variable is unused. There are different
situations where a variable is expected to be unused

// EXAMPLE 1: macro dependency
int f(int value) {
int x = value;
#4f defined (ENABLE_SQUARE_PATH)
return x * X;
#else
return 0O;
#endif
}

35/68

Avoid Unused Variable Warning*

// EXAMPLE 2: constexpr dependency (MSVC)
template<typename T>
int £(T value) {
if constexpr (sizeof(value) >= 4)
return 1;
else

return 2;

}

// EXAMPLE 3: decltype dependency (MSVC)
template<typename T>
int g(T value) {

using R = decltype(value);

return R{};

36/68

Avoid Unused Variable Warning

There are different ways to solve the problem depending on the standard used
= Before C++17: static_cast<void>(var)
s C++17 [[maybe_unused]] attribute
= C++426 auto _

[[maybe_unused]] int x = value;

int y = 3;
static_cast<void>(y);

auto _ = 3;

auto _ = 4; // _ repetition is not an error

void f([[maybe_unused]] int x) {}

37/68

Namespace

The problem: Named entities, such as variables, functions, and compound types declared
outside any block has global scope, meaning that its name/symbol is valid anywhere in
the code

Namespaces = allow grouping named entities that otherwise would have global
scope into narrower scopes, giving them namespace scope

Namespaces provide a method for preventing name conflicts in large projects. Symbols

declared inside a namespace block are placed in a named scope that prevents them from
being mistaken for symbols with identical names

38/68

https://en.cppreference.com/w/cpp/language/namespace

Namespace Syntax

namespace [<name>] {

<identifier> // wariable, function, struct, type, etc.
} // namespace <name>

<name>: :<identifier> // use the tdentifier

The operator :: is called scope resolution operator and it allows accessing
identifiers that are defined in other namespaces

39/68

Namespace Example 1

#1include <tostream>
namespace my_namespacel {
void £() {
std::cout << "my_namespacel" << std::endl;
}

} // namespace my_namespacel

namespace my_namespace2 {
void £() {

std::cout << "my_namespace2" << std::endl;
}

} // namespace my_namespace2

int main () {
my_namespacel::£(); // print "my_namespacel”
my_namespace2::£(); // print "my_namespace2"

/7 fO; // compile error f() is not visible

40/68
17

Namespace - Alternative Syntax

It is also possible to declare entities in a preexisting namespace by adding the name as
a prefix:

namespace <name> {}
<name>: :<identifier>

#include <iostream>

namespace my_namespacel {}
void my_namespace2::f() { std::cout << "my_namespace2" << std::endl; }

int main () {

my_namespacel::£(); // print "my_namespacel"

41/68

Special Namespaces

= All functionalities and data types provided with the standard library (distributed
along with the compiler) are declared within the std namespace

= The global namespace can be specified with ::identifier and can be useful to
prevent conflicts with surrounding namespaces

= |t is also possible to define a namespace without a name. The concept refers to
anonymous (or unnamed) namespace

See "Translation Unit I" lecture for more details

42/68

Nested Namespaces

namespace my_namespacel {
void £() { cout << "my_namespacel::f()"; }

namespace my_namespace2 {
void £() { cout << "my_namespacel::my_namespace2::f()"; }

} // namespace my_namespace2

} // namespace my_namespacel

my_namespacel: :my_namespace2::£();

C++17 allows nested namespace definitions with a less verbose syntax:

namespace my_namespacel: :my_namespace2 {
void h();

43/68

Explicit Global Namespace

The explicit global namespace syntax ::identifier can be useful to prevent conflicts
with surrounding namespaces

void £() { cout << "global::f()"; }
namespace my_namespace {

void £() { cout << "my_namespace::f()"; }
void g() {

£0); // print "my_namespace::f()"
:fQ; // print "global::f()"

} // namespace my_namespace

44/68

Namespace Alias

Namespace alias allows declaring an alternate name for an existing namespace

namespace very_long_namespace {
namespace even_longer {

void g {}
} // namespace even_longer

} // namespace very_long namespace
namespace nsl = very_long_namespace::even_longer; // mamespace alias

int main() {
namespace ns2 = very_long_namespace: :even_longer; // namespace alias
// available only in this scope
nsl::gQ);
ns2::g0);

45/68

using-Declaration 1/2

The using -declaration introduces a specific name/system from a namespace into the
current scope. This is useful for improving code readability and reducing verbosity

The using -declaration is roughly equivalent of declaring the name/system in the

current scope
Syntax:

namespace <name> {
<identifier>

using <name>::<identifier>;

<identifier>;

46/68

using-Declaration

namespace my_namespace {

void £() { cout << "my_namespace::f()"; }
struct S {};

using T = int;

} // namespace my_namespace

using my_namespace::f;

using my_namespace: :S;

using my_namespace::T;

£0; // print "my_namespace::f()"

S s;

T x;

// struct S {}; // compile error "struct S" already defined by my_namespace::T 47/68

using namespace-Directive

The using namespace -directive introduces all the identifiers in a scope without
having to specify them explicitly with the namespace name

Similarly to using -declaration, it is useful for improving code readability and reducing
verbosity. On the other hand, it could make the code bug-prone because of the

complex name lookup rules, especially if coupled with function overloadding

It is generally recommended not to write using namespace , especially at the global
level. Otherwise, it defeats the purpose of the namespace

48/68

using namespace-Directive

namespace my_namespace {
void £() { cout << "my_namespace::f()"; }
struct S {};
} // namespace my_namespace
int main () {
using namespace my_namespace;

£0); // print "my_namespace::f()"
S s;

49/68

using namespace-Directive vs. using-declaration

namespace A { int x = 0; }

namespace B {
int y

]
w

int x

I
~

int main () {

using namespace A;

int x = 3; // ok!! even if it is already defined in my_namespace
using B::y;
// int y =5; // compiler error!! "y" 4is already defined in this scope
}
void £() {

using B::x;
using namespace A;

cout << x; // print 7, B::x has higher priority
) 50,/68

using namespace-Directive Transitive Property 1/3

using namespace -directive has the transitive property for its identifiers when used

into another namespace

namespace A {
void £() { cout << "A::f()"; }

namespace B {

using namespace A;

int main() {
using namespace B;
£Q0; // ok, print "A::f()"

51/68

using namespace-Directive Transitive Property *

The unqualified name lookup is the mechanism by which the compiler searches for
the declaration of an identifier without using any explicit scope qualifiers like the
operator

Unqualified name lookup and using namespace-Directive:

Every name from namespace-name is visible as if it is declared in the nearest

enclosing namespace which contains both the using -directive and namespace-name

52/68

using namespace-Directive Transitive Property *

namespace A { int i = 0; }
namespace C {

int i = 3;
namespace B {
using namespace A; // unqualified name lookup of A within B:
int x = i; // it is the nearest enclosing namespace which contains
} // namespace B // both A and B -> global namespace
// "int © = 1" -> "4nt © = C::1" because C has higher

} // namespace C // precedence than the global namespace

int main() {
using namespace B;
cout << C::B::x; // print "3"

53/68

inline Namespace *

inline namespace is a concept similar to library versioning. It is a mechanism that
makes a nested namespace look and act as if all its declarations were in the

surrounding namespace

namespace my_namespacel {

inline namespace V99 { void f(int) {} } // most recent version
namespace V98 { void f(int) {} }

} // namespace my_namespacel

using namespace my_namespacel;

vo8::£(1); // call V98

V99::£(1); // call V99

£(1); // call default version (V99)

54/68

Attributes X

C++4 Attribute Overview 1/2

C++ attributes provide additional information to the compiler to enforce constraints
or enable code optimization

Attributes are annotation on top of standard code that can be applied to functions,
variables, classes, enumerator, types, etc.

C++11 introduces a standardized syntax for attributes: [[my-attribute]]

__attribute__((always_inline)) // < C++11, GCC/Clang/GNU compilers

__forceinline // < C++11, MSVC
[[gnu::always_inline]] // C++11, GCC/Clang/GNU compilers
[[msvc: :forceinline]] // C++11, MSVC

55/68

C++4 Attribute Overview 2/2

In addtion, C++11 and later add standard attributes @ such as maybe_unused ,

deprecated , nodiscard for functions

C++23 adds the such attributes to lambda expressions

auto lambda = [] [[nodiscard]] (){ return 4; };

lambda() ; // compiler warning
auto x = lambda(); // ok

56,68

https://en.cppreference.com/w/cpp/language/attributes

[[nodiscard]] Attribute

C++17 introduces the attribute [[nodiscard]] to issue a warning if the return
value of a function is discarded (not handled)

C+-+20 extends the attribute by allowing to add a reason

[[nodiscard("reason")]]

[[nodiscard]] bool empty();

empty(); // WARNING "discard return value”

57/68

[[nodiscard]] Attribute

[[nodiscard]] can be also be applied to enumerators enum / enum class and

structures struct / class

enum class [[nodiscard]] MyEnum { EnumValue };
struct [[nodiscard]] MyStruct {};

MyEnum £() { return MyEnum::EnumValue; }
MyStruct g {

MyStruct s;

return s;

£ ; // WARNING "discard return value"

g0 ; // WARNING "discard return value"
58/68

[[nodiscard]] Attribute

[[nodiscard]] can be also be applied to class constructors

MyStruct g {
[[nodiscard]] MyStruct() {}
[[nodiscard]] MyStruct(const MyStruct&) {}

MyStruct{}; // WARNING "discard return value"

MyStruct s{};

static_cast<MyStruct>(s); // WARNING "discard return value" for
// MyStruct (const MyStruct&)

59/68

[[indeterminate]] Attribute 1/2

C+-+26 introduces the concept of erroneous behavior @ to highlight conditions that
don’'t make a program stable and predictable. Compilers are encouraged to diagnose
the problem

Reading a value from a non-initialized variable is a case of erroneous behavior
(undefined behavior in previous standards)

int x, y; // undefined value

x = 3; // ok
£(x); // ok
f(y); // erroneous behavior

C++26 introduces the [[indeterminate]] attribute to explicitly declare a variable
that can be potentially be read as non-initialized

60,/68

https://wg21.link/p2795

[[indeterminate]] Attribute

int y [[indeterminatel]; // deliberately uninitialized

struct A {
int x [[indeterminatel]; // deliberately uninitialized
g
A a;
void g([[indeterminate]] v) {
f(v); // undefined behavior
I
int x;

g(x);

61/68

[[maybe_unused]] Attribute

[[maybe_unused]] = applies to

= Variables

= Structure binding

= Functions parameters and return value
= Types

= Classes and structures

= Enumerators and single value enumerators

The limits of [[maybe_unused]] 62/68

https://en.cppreference.com/w/cpp/language/attributes/maybe_unused
https://www.sandordargo.com/blog/2024/06/05/the-limits-of-maybe-unused

[[maybe_unused]] Attribute

[[maybe_unused]] int x1;
[[maybe_unused]] auto [x2, x3] = ...;
[[maybe_unused]] int f([[maybe_unused]] int x4);
struct [[maybe_unused]] S {};
using MyInt [[maybe_unused]] = int;
enum [[maybe_unused]] Enum {
El [[maybe_unused]];

i

enum class [[maybe_unused]] EnumClass {

E2 [[maybe_unused]]; 63/68

13

[[deprecated]] Attribute

C+-+14 allows to deprecate, namely discourage, use of entities by adding the
[[deprecated]] @ attribute, optionally with a message

[[deprecated("reason")]] . It applies to:

= Functions

= Variables

= Classes and structures

= Enumerators

= Single value enumerator in C++417
= Types

= Namespaces

64,/68

https://en.cppreference.com/w/cpp/language/attributes/deprecated

[[deprecated]] Attribute

[[deprecated]] void £() {}

struct [[deprecated]] S1 {};

using MyInt [[deprecated]] int;
struct 82 {
[[deprecated]] int var = 3;
[[deprecated]] static constexpr int var2 = 4;

g
£0; // compiler warning
S1 sl; // compiler warning

MyInt i; // compiler warning
S2{}.var; // compiler warning

S2::var2; // compiler warning 6568

[[deprecated]] Attribute and Enumerator

C+-+17 allows to deprecate individual enumerator values

enum [[deprecated]] E { EnumValue }; // Ct++14
enum class MyEnum { A, B [[deprecated]] = 42 }; // C++17

auto x = EnumValue; // compiler warning
MyEnum: :B; // compiler warning

66,68

[[deprecated]] Attribute and Namespace

C++17 allows defining attribute on namespaces

namespace [[deprecated("please use my_namespace_v2")]] my_namespace {
void £() {}
} // namespace my_namespace

my_namespace: :£(); // compiler warning

67/68

[[noreturn]] Attribute

[[noreturn]] indicates that a function does not return (e.g. program termination)
and the compiler should issue a compiler warning if the code contains other statements

that cannot be executed because it means a wrong user intention

[[noreturn]] void g() { std::exit(0); }
g(); // WARNING: no code should be ezectuted after calling this function

y=x+1;

68,/68

	Entities
	Declaration and Definition
	Enumerators
	struct, Bitfield, and union
	struct
	Anonymous and Unnamed struct
	Bitfield
	union

	Control Flow
	if Statement
	for and while Loops
	Range-based for Loop
	switch
	Initializing Statement
	goto
	Avoid Unused Variable Warning

	Namespace
	Explicit Global Namespace
	Namespace Alias
	using-Declaration
	using namespace-Directive
	inline Namespace

	Attributes
	[[nodiscard]]
	[[indeterminate]]
	[[maybe_unused]]
	[[deprecated]]
	[[noreturn]]

