
Modern C++
Programming
17. Code Optimization II

Federico Busato

University of Verona, Dept. of Computer Science
2020, v3.0

Table of Context

1 Compiler Optimizations
About the Compiler
Architecture Flags
Optimization Flags
Help the Compiler to Produce Better Code
Profile Guided Optimization (PGO)

2 Libraries and Data Structures
External Libraries
Std Library

1/35

Table of Context

3 Profiling
gprof 1/2
uftrace

callgrind

cachegrind

perf Linux profiler

4 Parallel Computing
Concurrency vs. Parallelism
Performance Scaling
Gustafson’s Law
Parallel Programming Languages

2/35

Compiler
Optimizations

About Compiler Optimizations

”I always say the purpose of optimizing compilers is
not to make code run faster, but to prevent program-
mers from writing utter **** in the pursuit of making
it run faster“

Rich Felker, musl-libc (libc alternative)

Overview on compiler code generation and
transformation:
• Optimizations in C++ Compilers

Matt Godbolt, ACM Queue

3/35

https://dl.acm.org/ft_gateway.cfm?id=3372264&ftid=2096683&dwn=1

About the Compiler 1/2

Important advise: Use an updated version of the compiler

• Newer compiler produces better/faster code
- Effective optimizations
- Support for newer CPU architectures

• New warnings to avoid common errors and better support for
existing error/warnings (e.g. code highlights)

• Faster compiling, less memory usage

• Less compiler bugs: compilers are very complex and they
have many bugs

4/35

About the Compiler 2/2

Which compiler?

Answer: It dependents on the code and on the processor
example: GCC 9 vs. Clang 8

Some compilers can produce optimized code for specific
architectures:

• Intel Compiler (commercial): Intel processors
• IBM XL Compiler (commercial): IBM processors/system
• Nvidia PGI Compiler (free/commercial): Multi-core

processors/GPUs

• gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
• Intel Blog: gcc-x86-performance-hints 5/35

https://www.phoronix.com/scan.php?page=article&item=gcc9-clang8-hedt&num=1
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints

Architecture Flags

32-bits or 64-bits?

-m64 In 64-bit mode the number of available registers increases
from 6 to 14 general and from 8 to 16 XMM. Also all 64-bits
x86 architectures have SSE2 extension by default. 64-bit
applications can use more than 4GB address space

-m32 32-bit mode. It should be combined with -mfpmath=sse to
enable using of XMM registers in floating point instructions
(instead of stack in x87 mode). 32-bit applications can use
less than 4GB address space

It is recommended to use 64-bits for High-Performance Computing
applications and 32-bits for phone and tablets applications

6/35

Optimization Flags 1/4

-O0 Disables any optimization
• default behavior
• fast compile time

-O1 Enables basic optimizations

-O2 Enables advanced optimizations
• some optimization steps are expensive
• can increase the binary size

-O3 Turns on all optimizations specified by -O2, plus some more
• -O3 does not guarantee to produce faster code than -O2
• it could break floating-point IEEE764 rules on some

non-traditional compilers

-O4 For some compilers, it is an alias of -O3 . In other cases
can refers to inter-procedural optimization 7/35

Optimization Flags (floating-point) 2/4

In general, enabling the following flags implies less floating-point
accuracy, breaking the IEEE764 standard, and it is implementation
dependent (not included in -O3)

-fno-trapping-math Disable floating-point exceptions

-ffinite-math-only Disable special conditions for handling inf
and NaN

-funsafe-math-optimizations

Allows breaking floating-point associativity
and enables reciprocal optimization

-ffast-math Enables aggressive floating-point
optimizations. All the previous, flush-to-zero
denormal number, plus others 8/35

Optimization Flags 3/4

-Ofast Provides other aggressive optimizations that may
violate strict compliance with language standards.
It includes -O3 -ffast-math

-Os Optimize for size. It enables all -O2 optimizations
that do not typically increase code size

-funroll-loops Enables loop unrolling (not included in -O3)

-fwhole-program Assume that all non-extern functions and variables
belong only to their compilation unit (see
Link-time-optimization) (only recent compilers)

9/35

Optimization Flags 4/4

-march=native Generates instructions for a specific machine by
determining the processor type at compilation time
(not included in -O3) (e.g. SSE2 , AVX512 , etc.)

-mtune=native Generates instructions for a specific machine and
for earlier CPUs in the architecture family (may be
slower than -march=native)

-flto Enables Link Time Optimizations (Interprocedural
Optimization). The linker merges all modules into
a single combined module for optimization

• the linker must support this feature: GNU ld v2.21++
or gold version, to check with ld --version

• it can significantly improve the performance
• in general, it is a very expensive step, even longer than

the object compilations 10/35

Matrix Multiplication Example

A * B

N 128 256 512 1024

V0
V1
V2
V3
V4
Speedup

V0 -O0
V1 -O3
V2 -O3 + restrit pointers
V3 -O3 -march=native + restrit pointers
V4 -O3 -march=native -funroll-loops + restrit pointers 11/35

Help the Compiler to Produce Better Code

Grouping related variables and functions in same translation
units

• Private functions and variables in the same translation units

• Define every global variable in the translation unit in which it
is used more often

• Declare in an anonymous namespace the variables and
functions that are global to translation unit, but not used by
other translation units

• Put in the same translation unit all the function definitions
belonging to the same bottleneck

Static library linking helps the linker to optimize the code
across different modules (link-time optimizations). Dynamic
linking prevents these kind of optimizations 12/35

Profile Guided Optimization (PGO) 1/2

Profile Guided Optimization (PGO) is a compiler technique
aims at improving the application performance by reducing
instruction-cache problems, reducing branch mispredictions, etc.
PGO provides information to the compiler about areas of an
application that are most frequently executed

It consists in the following steps:

(1) Compile and instrument the code

(2) Run the program by exercising the most used/critical paths

(3) Compile again the code and exploit the information produced
in the previous step

The particular options to instrument and compile the code are
compiler specific 13/35

Profile Guided Optimization (PGO) 2/2

GCC

$ gcc -fprofile-generate my_prog.c my_prog # program instrumentation
$./my_prog # run the program (most critial/common path)
$ gcc -fprofile-use -O3 my_prog.c my_prog # use instrumentation info

Clang

$ clang++ -fprofile-instr-generate my_prog.c my_prog
$./my_prog
$ xcrun llvm-profdata merge -output default.profdata default.profraw
$ clang++ -fprofile-instr-use=default.profdata -O3 my_prog.c my_prog

e.g. Firefox and Google Chrome support PGO building 14/35

Libraries and Data
Structures

External Libraries 1/2

Consider using optimized external libraries for critical
program operations

• malloc replacement:
• tcmalloc (Google),
• mimalloc (Microsoft)

• Linear Algebra: Eigen, Armadillo, Blaze

• Map/Set: B+Tree as replacement for red-black tree
(std::map) (better locality, less pointers)

• STX B+Tree
• Abseil B-Tree

15/35

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/microsoft/mimalloc
http://eigen.tuxfamily.org
arma.sourceforge.net
https://bitbucket.org/blaze-lib/blaze
https://panthema.net/2007/stx-btree/
https://abseil.io/docs/cpp/guides/container

External Libraries 2/2

• Hash Table: (replace for std::unsorted set/map)
• Google Sparse/Dense Hash Table
• bytell hashmap
• Facebook F14 memory efficient hash table
• Abseil Hashmap (2x-3x faster)

• Print and formatting: fmt library instead of iostream or
printf

• Random generator: PCG random generator instead of
Mersenne Twister or Linear Congruent

• Non-cryptographic hash algorithm: xxHash instead of CRC

• Cryptographic hash algorithm: BLAKE3 instead of MD5 or
SHA 16/35

https://github.com/sparsehash/sparsehash
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://code.fb.com/developer-tools/f14/
https://abseil.io/docs/cpp/guides/container
https://github.com/fmtlib/fmt
http://www.pcg-random.org/
https://cyan4973.github.io/xxHash/
https://github.com/BLAKE3-team/BLAKE3

std Library 1/3

• Avoid old C library routines such as qsort , bsearch , etc.
Prefer instead std::sort , std::binary search

• std::sort is based on a hybrid sorting algorithm. Quick-sort /
head-sort (introsort), merge-sort / insertion, etc. depending on
the std implementation

• std::fill applies ::memset and std::copy applies
::memcpy if the input/output are continuous in memory

• Set std::vector size during the object construction (or use
the reserve() method) if the number of elements to insert is
known in advance

• Prefer std::array instead of dynamic heap allocation
17/35

std Library 2/3

• Prefer std::find() for small array, std::lower bound ,
std::upper bound , std::binary search for large sorted array

• Use std container member functions (e.g. obj.find())
instead of external ones (e.g. std::find()). Example:
std::set O(log(n)) vs. O(n)

• Be aware of container properties, e.g. vector.push vector(v) ,
instead of vector.insert(vector.begin(), v)

• Use noexcept decorator → program is aborted if an error
occurred instead of raising an exception. see
Bitcoin: 9% less memory: make SaltedOutpointHasher
noexcept

18/35

https://github.com/bitcoin/bitcoin/pull/16957
https://github.com/bitcoin/bitcoin/pull/16957

std Library 3/3

• Most data structures are implemented over the heap memory.
Consider re-implement them by using the stack memory if the
number of elements to insert is small (e.g. queue)

• Prefer lambda expression (or struct function) instead of
std::function or function pointer

19/35

Profiling

Overview

A code profiler is a form of dynamic program analysis which aims at
investigating the program behavior to find performance bottleneck.
A profiler is crucial in saving time and effort during the development
and optimization process of an application

Code profilers are generally based on the following methodologies:
• Instrumentation Instrumenting profilers insert special code at the

beginning and end of each routine to record when the routine starts
and when it exits. With this information, the profiler aims to measure
the actual time taken by the routine on each call.
Problem: The timer calls take some time themselves

• Sampling The operating system interrupts the CPU at regular in-
tervals (time slices) to execute process switches. At that point, a
sampling profiler will record the currently-executed instruction

20/35

gprof

gprof is a profiling program which collects and arranges timing
statistics on a given program. It uses a hybrid of instrumentation
and sampling programs to monitor function calls

Website: sourceware.org/binutils/docs/gprof/

Usage:
• Code Instrumentation

$ g++ -pg [flags] <source_files>

Important: -pg is required also for linking and it is not supported by clang

• Run the program (it produces the file gmon.out)
• Run gprof on gmon.out

$ gprof <executable> gmon.out

• Inspect gprof output 21/35

https://sourceware.org/binutils/docs/gprof/

gprof 2/2

gprof output

gprof can be also used for showing the call graph statistics

$ gprof -q <executable> gmon.out

22/35

uftrace

The uftrace tool is to trace and analyze execution of a program
written in C/C++

Website: github.com/namhyung/uftrace

$ gcc -pg <program>.cpp
$ uftrace record <executable>
$ uftrace replay

Flame graph output in html and svg

23/35

https://github.com/namhyung/uftrace

callgrind

callgrind is a profiling tool that records the call history among
functions in a program’s run as a call-graph. By default, the
collected data consists of the number of instructions executed

Website: valgrind.org/docs/manual/cl-manual.html

Usage:

• Profile the application with callgrind

$ valgrind --tool callgrind <executable> <args>

• Inspect callgrind.out.XXX file, where XXX will be the
process identifier

24/35

http://valgrind.org/docs/manual/cl-manual.html

cachegrind

cachegrind simulates how your program interacts with a
machine’s cache hierarchy and (optionally) branch predictor

Website: valgrind.org/docs/manual/cg-manual.html

Usage:

• Profile the application with cachegrind

$ valgrind --tool cachegrind --branch-sim=yes <executable> <args>

• Inspect the output (cache misses and rate)
- l1 L1 instruction cache
- D1 L1 data cache
- LL Last level cache

25/35

http://valgrind.org/docs/manual/cg-manual.html

kcachegrind and qcachegrindwin (View)

KCachegrind (linux) and Qcachegrind (windows) provide a
graphical interface for browsing the performance results of
callgraph

•kcachegrind.sourceforge.net/html/Home.html

•sourceforge.net/projects/qcachegrindwin

26/35

http://kcachegrind.sourceforge.net/html/Home.html
https://sourceforge.net/projects/qcachegrindwin/

gprof2dot (View)

gprof2dot is a Python script to convert the output from many
profilers into a dot graph

Website: github.com/jrfonseca/gprof2dot

27/35

https://github.com/jrfonseca/gprof2dot

perf Linux profiler

Perf is performance monitoring and analysis tool for Linux. It uses
statistical profiling, where it polls the program and sees what
function is working

Website: perf.wiki.kernel.org/index.php/Main Page

$ perf record -g <executable> <args> // or
$ perf record --call-graph dwarf <executable>
$ perf report // or
$ perf report -g graph --no-children

Linux perf for Qt developers 28/35

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kdab.com/wp-content/uploads/stories/Linux_perf_for_Qt_developers.pdf

Other Profilers

Free profiler:

• Hotspot

Proprietary profiler:

• Intel VTune

• AMD CodeAnalyst

29/35

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

Parallel Computing

Concurrency vs. Parallelism

Concurrency
A system is said to be concurrent if it can support two or more
actions in progress at the same time. Multiple processing units
work on different tasks independently

Parallelism
A system is said to be parallel if it can support two or more
actions executing simultaneously. Multiple processing units work
on the same problem and their interaction can effect the final
result

Note: parallel computation requires rethinking original sequential
algorithms (e.g. avoid race conditions)

30/35

Performance Scaling

Strong Scaling
The strong scaling defined how the compute time decreases
increasing the number of processors for a fixed total problem
size

Weak Scaling
The weak scaling defined how the compute time decrease
increasing the number of processors for a fixed total problem size
per processor

Strong scaling is hard to achieve because of computation units
communication. Strong scaling is in contrast to the Amdahl’s Law

31/35

Gustafson’s Law

Gustafson’s Law
Increasing number of processor units allow solving larger
problems in the same time (the computation time is constant)

Multiple problem instances can run concurrently with more
computational resources

32/35

Parallel Programming Languages 1/2

C++11 Threads (+ Parallel STL) free, multi-core CPUs

OpenMP free, directive-based, multi-core CPUs and GPUs
(last versions)

OpenACC free, directive-based, multi-core CPUs and GPUs

CUDA free, C++ extension, GPUs

OpenCL free, C++ extension, multi-core CPUs and GPUs

Intel TBB commercial, C++ extension, multi-core CPUs

Intel Cilk Plus commercial, C++ extension, multi-core CPUs

KoKKos free, C++ extension, multi-core CPUs and GPUs 33/35

Parallel Programming Languages 2/2

34/35

A Nice Example

Accelerates computational chemistry simulations from 14 hours to
47 seconds with OpenACC on GPUs (∼ 1, 000x Speedup)

link: Accelerating Prediction of Chemical Shift of Protein
Structures on GPUs 35/35

https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1

	Compiler Optimizations
	About the Compiler
	Architecture Flags
	Optimization Flags
	Help the Compiler to Produce Better Code
	Profile Guided Optimization (PGO)

	Libraries and Data Structures
	External Libraries
	Std Library

	Profiling
	gprof1/2
	uftrace
	callgrind
	cachegrind
	perf Linux profiler

	Parallel Computing
	Concurrency vs. Parallelism
	Performance Scaling
	Gustafson's Law
	Parallel Programming Languages

