Modern C++ Programming

2. Basic Concepts I

Type System, Fundamental Types, and Operators

Federico Busato

Table of Contents

■ The C++ Type System

- Type Categories
- Type Properties ★

2 Fundamental Types Overview

- Arithmetic Types
- Suffix and Prefix
- Non-Standard Arithmetic Types
- void Type
- nullptr

Table of Contents

- **3** Conversion Rules
- 4 auto Keyword

5 C++ Operators

- Operators Precedence
- Prefix/Postfix Increment/Decrement Semantic
- Assignment, Compound, and Comma Operators
- Spaceship Operator <=> ★
- Safe Comparison Operators ★

The C++ Type

System

The C++ Type System

C++ is a **strongly typed** and **statically typed** language

Every entity has a type and that type never changes

Every variable, function, or expression has a **type** in order to be compiled. Users can introduce new types with class or struct

The **type** specifies:

- The amount of memory allocated for the variable (or expression result)
- The kinds of values that may be stored and how the compiler interprets the bit patterns in those values
- The operations that are permitted for those entities and provides semantics

Type Categories

C++ organizes the language types in two main categories:

- Fundamental types (often called *primitive types*): Types provided by the language itself and don't require additional headers
 - Arithmetic types: integer and floating point
 - void
 - nullptr C++11
- Compound types: Composition or references to other types
 - Pointers
 - References
 - Enumerators
 - Arrays
 - struct, class, union
 - Functions

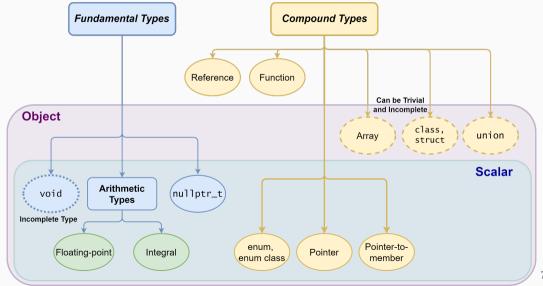
C++ types can be also classified based on their properties:

Objects:

- size: sizeof is defined
- alignment requirement: alignof is defined
- storage duration: describe when an object is allocated and deallocated
- lifetime, bounded by storage duration or temporary
- value, potentially indeterminate
- optionally, a *name*.

<u>Types:</u> Arithmetic, Pointers and nullptr, Enumerators, Arrays, struct, class, union

Scalar:


- Hold a single value and is not composed of other objects
- Trivially Copyable: can be copied bit for bit
- Standard Layout: compatible with C functions and structs
- Implicit Lifetime: no user-provided constructor or destructor

Types: Arithmetic, Pointers and nullptr. Enumerators

 Trivial types: Trivial default/copy constructor, copy assignment operator, and destructor → *Trivially Copyable* Types: Scalar, trivial class types, arrays of such types

Incomplete types: A type that has been declared but not vet defined Types: void, incompletely-defined object types, e.g. struct A; , array of elements of incomplete type

C++ Types Summary

Fundamental Types

Overview

Arithmetic Types - Integral

Native Type	Bytes	Range	Fixed width types <pre><cstdint></cstdint></pre>
bool	1	true, false	
char [†]	1	implementation defined	
signed char	1	-128 to 127	int8_t
unsigned char	1	0 to 255	uint8_t
short	2	-2^{15} to 2^{15} -1	int16_t
unsigned short	2	0 to 2 ¹⁶ -1	uint16_t
int	4	-2^{31} to 2^{31} -1	int32_t
unsigned int	4	0 to 2^{32} -1	uint32_t
long int	4/8		$int32_t/int64_t$
long unsigned int	4/8*		uint32_t/uint64_t
long long int	8	-2^{63} to 2^{63} -1	int64_t
long long unsigned int	8	0 to 2^{64} -1	uint64_t

 $^{^*}$ 4 bytes on Windows64 systems, † signed/unsigned, two-complement from C++11

Arithmetic Types - Floating-Point

Native Type	IEEE	Bytes	Range	Fixed width types C++23 <stdfloat></stdfloat>
(bfloat16)	N	2	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{+38}$	std::bfloat16_t
(float16)	Υ	2	0.00006 to 65,536	std::float16_t
float	Υ	4	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{+38}$	std::float32_t
double	Υ	8	$\pm 2.23 \times 10^{-308} \ to \ \pm 1.8 \times 10^{+308}$	std::float64_t

Arithmetic Types - Short Name

Signed Type	short name
signed char	/
signed short int	short
signed int	int
signed long int	long
signed long long int	long long

Unsigned Type	short name
unsigned char	/
unsigned short int	unsigned short
unsigned int	unsigned
unsigned long int	unsigned long
unsigned long long int	unsigned long long

Arithmetic Types - Suffix (Literals)

Туре	SUFFIX	Example	Notes
int	/	2	
unsigned int	u, U	3u	
long int	1, L	8L	
long unsigned	ul, UL	2ul	
long long int	11, LL	411	
long long unsigned int	ull, ULL	7ULL	
float	f, F	3.0f	only decimal numbers
double		3.0	only decimal numbers

C++23 Type	SUFFIX	Example	Notes
std::bfloat16_t	bf16, BF16	3.0bf16	only decimal numbers
std::float16_t	f16, F16	3.0f16	only decimal numbers
std::float32_t	f32, F32	3.0f32	only decimal numbers
std::float64_t	f64, F64	3.0f64	only decimal numbers
std::float128_t	f128, F128	3.0f128	only decimal numbers

Arithmetic Types - Prefix (Literals)

Representation	PREFIX	Example	
Binary C++14	0ъ	0b010101	
Octal	0	0307	
Hexadecimal	Ox or OX	OxFFA010	

C++14 also allows *digit separators* for improving the readability 1'000'000

Other Arithmetic Types

- C++ also provides long double (no IEEE-754) of size 8/12/16 bytes depending on the implementation
- Reduced precision floating-point supports before C++23:
 - Some compilers provide support for half (16-bit floating-point) (GCC for ARM: __fp16 ,
 LLVM compiler: half)
 - Some modern CPUs and GPUs provide half instructions
 - Software support: OpenGL, Photoshop, Lightroom, half.sourceforge.net
- C++ does not provide 128-bit integers even if some architectures support it.
 clang and gcc allow 128-bit integers as compiler extension (__int128)

void Type

void is an incomplete type (not defined) without a value

- void indicates also a function with no return type or no parameterse.g. void f(), f(void)
- In C sizeof(void) == 1 (GCC), while in C++ sizeof(void) does not compile!!

```
int main() {
// sizeof(void); // compile error
}
```

nullptr Keyword

C++11 introduces the keyword nullptr to represent a null pointer (0x0) and replacing the NULL macro

nullptr is an object of type $nullptr_t \rightarrow safer$

Conversion Rules

Conversion Rules

Implicit type conversion rules, applied in order, before any operation:

 \otimes : any operation (*, +, /, -, %, etc.)

(A) Floating point promotion

 ${\tt floating_type} \, \otimes \, {\tt integer_type} \, \to \, {\tt floating_type}$

(B) Implicit integer promotion

 $small_integral_type := any \ signed/unsigned \ integral \ type \ small=integral_type \ \otimes \ small_integral_type \ \to \ int$

(C) Size promotion

 ${\tt small_type} \, \otimes \, {\tt large_type} \, \to \, {\tt large_type}$

(D) Sign promotion

 ${ t signed_type} \otimes { t unsigned_type}
ightarrow { t unsigned_type}$

Examples and Common Errors

```
float f = 1.0f;
unsigned u = 2;
int i = 3;
short s = 4;
uint8_t c = 5; // unsigned char
f * u; // float × unsigned \rightarrow float: 2.0f
s * c: // short \times unsigned char \rightarrow int: 20
u * i; // unsigned \times int \rightarrow unsigned: 6u
+c; // unsigned char \rightarrow int: 5
```

Integers are not floating points!

```
int b = 7;
float a = b / 2;  // a = 3 not 3.5!!
int c = b / 2.0; // again c = 3 not 3.5!!
```

Implicit Promotion

Integral data types smaller than 32-bit are *implicitly* promoted to <code>int</code>, independently if they are *signed* or *unsigned*

• Unary +, -, \sim and Binary +, -, &, etc. promotion:

```
char a = 48;  // '0'
cout << a;  // print '0'
cout << +a;  // print '48'
cout << (a + 0);  // print '48'

uint8_t a1 = 255;
uint8_t b1 = 255;
cout << (a1 + b1);  // print '510' (no overflow)</pre>
```

auto **Keyword**

C++11 The auto keyword specifies that the type of the variable will be automatically deduced by the compiler (from its initializer)

```
auto a = 1 + 2;  // 1 is int, 2 is int, 1 + 2 is int!
// -> 'a' is "int"
auto b = 1 + 2.0; // 1 is int, 2.0 is double. 1 + 2.0 is double
// -> 'b' is "double"
```

```
auto can be very useful for maintainability and for hiding complex type definitions
for (auto i = k; i < size; i++)
...</pre>
```

On the other hand, it may make the code less readable if excessively used because of type hiding

```
Example: auto x = 0; in general makes no sense (x is int)
```

In C++11/C++14, auto (as well as decltype) can be used to define function output types

```
auto g(int x) \rightarrow int { return x * 2; } // C++11
// "-> int" is the deduction type
// a better way to express it is:
auto g2(int x) \rightarrow decltype(x * 2) { return x * 2; } // C++11
auto h(int x) { return x * 2; } // C++14
int x = g(3); // C++11
```

In C++20, auto can be also used to define function input

```
void f(auto x) {}
// equivalent to templates but less expensive at compile-time

//-----
f(3); // 'x' is int
f(3.0); // 'x' is double
```

C++ Operators

Operators Overview

Precedence	Operator	Description	Associativity
1	a++ a	Suffix/postfix increment and decrement	Left-to-right
2	+a -a ++aa ! not \sim	Plus/minus, Prefix increment/decrement, Logical/Bitwise Not	Right-to-left
3	a*b a/b a%b	Multiplication, division, and remainder	Left-to-right
4	a+b a-b	Addition and subtraction	Left-to-right
5	« »	Bitwise left shift and right shift	Left-to-right
6	< <= > >=	Relational operators	Left-to-right
7	== !=	Equality operators	Left-to-right
8	&	Bitwise AND	Left-to-right
9	^	Bitwise XOR	Left-to-right
10		Bitwise OR	Left-to-right
11	&& and	Logical AND	Left-to-right
12	or	Logical OR	Left-to-right
13	= += -= *= /= %= <<= >>= &= ^= =	Assignment and Compound operators	Right-to-left

Operators precedence &:

- Unary operators have higher precedence than binary operators
- Standard math operators (+, *, etc.) have <u>higher</u> precedence than comparison, bitwise, and logic operators
- Bitwise and logic operators have higher precedence than comparison operators
- Bitwise operators have <u>higher</u> precedence than **logic** operators
- Compound assignment operators += , -= , *= , /= , %= , ^= , != , &= , >>= , <<= have <u>lower priority</u>
- The **comma** operator has the lowest precedence (see next slides)

Examples:

```
a + b * 4;
                 // a + (b * 4)
a * b / c % d; // ((a * b) / c) % d
a + b < 3 >> 4; // (a + b) < (3 >> 4)
a && b && c || d; // (a && b && c) // d
a and b and c or d: // (a && b && c) // d
a | b & c | | e & & d; // ((a | (b & c)) | / (e & & d)
```

Important: sometimes parenthesis can make an expression verbose... but they can help!

Prefix/Postfix Increment Semantic

Prefix Increment/Decrement ++i, --i

- (1) Update the value
- (2) Return the new (updated) value

Postfix Increment/Decrement i++, i--

- (1) Save the old value (temporary)
- (2) Update the value
- (3) Return the old (original) value

Prefix/Postfix increment/decrement semantic applies not only to built-in types but also to objects

Operation Ordering Undefined Behavior *

Expressions with undefined (implementation-defined) behavior:

```
int i = 0;
i = ++i + 2; // until C++11: undefined behavior
                 // since C++11: i = 3
i = 0;
i = i+++2: // until C++17: undefined behavior
                 // since C++17: i = 3
f(i = 2, i = 1); // until C++17: undefined behavior
                 // since C++17: i = 2
i = 0:
a[i] = ++i; // until C++17: undefined behavior
                 // since C++17: a[1] = 1
f(++i, ++i); // undefined behavior
i = ++i + i++; // undefined behavior
```

Assignment, Compound, and Comma Operators

Assignment and **compound assignment** operators have *right-to-left associativity* and their expressions return the assigned value

The **comma operator** has *left-to-right associativity*. It evaluates the left expression, discards its result, and returns the right expression

```
int a = 5, b = 7;
int x = (3, 4); // discards 3, then x=4
int y = 0;
int z;
z = y, x; // z=y (0), then returns x (4)
27/29
```

Spaceship Operator <=> ★

C++20 provides the **three-way comparison operator** <=> , also called *spaceship operator*, which allows comparing two objects similarly of strcmp. The operator returns an object that can be directly compared with a positive, 0, or negative integer value

```
(3 <=> 5) == 0; // false
('a' <=> 'a') == 0; // true
(3 <=> 5) < 0; // true
(7 <=> 5) < 0; // false
```

The semantic of the *spaceship operator* can be extended to any object (see next lectures) and can greatly simplify the comparison operators overloading

Safe Comparison Operators ★

C++20 introduces a set of functions <utility> to safely compare integers of different types (signed, unsigned)

```
bool cmp_equal(T1 a, T2 b)
bool cmp_not_equal(T1 a, T2 b)
bool cmp_less(T1 a, T2 b)
bool cmp_greater(T1 a, T2 b)
bool cmp_less_equal(T1 a, T2 b)
bool cmp_greater_equal(T1 a, T2 b)
```

example:

```
#include <utility>
unsigned a = 4;
int b = -3;
bool v1 = (a > b);  // false!!!, see next slides
bool v2 = std::cmp_greater(a, b); // true
```