Modern C++

Programming

2. PREPARATION

Federico Busato
2026-01-06

Table of Contents

Books and References
Slide Legend

What Editor/ IDE/Compiler Should | Use?
B How to compile?

H Hello World
m |/O Stream

1/24

Books and
References

Suggested Books

BJARNE STROUSTRUP

THE CREATOR OF Ct+

PROGRAMMING

Principles and Practice Using C++

SECOND EDITION

Programming and Principles
using C++ (3nd, C++23)
B. Stroustrup, 2024

MARC GREGOIRE

WILEY

Professional C++
(6th, C+-+23)
M. Gregoire, 2024

RDCQ, TE L.
ABSOLUTE C++
ST EprToN

Walter Savitch

Absolute C++ (6th)
W. Savitch, 2015

2/24

More Advanced Books

OREILLY"

. s“‘“““‘"”’l”
BeAuTIFUL C++]
Modern C++
Effective Modern C++ Embracing Modern C++ Beautiful C++: 30 Core
S. Meyer, 2014 Safely Guidelines for Writing Clean,
J. Lakos, V. Romeo, R. Safe, and Fast Code

Khlebnikov, A. Meredith, 2021 J. G. Davidson, K. Gregory, 2021
3/24

References

(Un)official C++ reference:

= en.cppreference.com@
= C++ Standard Draft @

Tutorials:

= Learn C++@
= Tutorials Point C++@
= en.wikibooks.org/wiki/C++ @

= yet another insignificant...programming notes @

Other resources:

= stackoverflow.com/questions/tagged/c++ @

4/24

https://en.cppreference.com/w/
https://eel.is/c++draft/
www.learncpp.com
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b

References

News:

= isocpp.org@: Standard C++ Foundation
= Reddit C++@

= LibHunt @ and Awesome C++ Weekly @

= MeetingCpp Blogroll &

= Accu Overload Journal @&

Coding exercises:

= HackerRank C++
= leetcode.com/problemset/algorithms &

= open.kattis.com@

5/24

https://isocpp.org/
https://www.reddit.com/r/cpp/
https://www.libhunt.com/
https://cpp.libhunt.com/newsletter/archive
https://accu.org/journals/nonmembers/overload_issue_members/
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/

References

Main conferences:
= CppCon @: slides @, search engine
= CppNow &: slides
= MeetingCpp @: slides &
= CppNorth @: slides @
= Accu®@: slides @

= isocpp.com conference list@

6/24

https://cppcon.org
https://github.com/CppCon
https://cppcon.programmingarchive.com/
https://cppnow.org/
https://github.com/boostcon
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://cppnorth.ca/
https://github.com/CppNorth/CppNorth_Slides
https://accu.org/
https://github.com/CppNorth/CppNorth_Slides
https://isocpp.org/wiki/faq/conferences-worldwide

Slide Legend

Slide Legend 1/2

* Advanced Concepts. In general, they are not fundamental. They can be
related to very specific aspects of the language or provide a deeper
exploration of C4++ features.

A beginner reader should skip these sections/slides.

~> See next. C++ concepts are closely linked, and it is almost impossible to
find a way to explain them without referring to future topics. These slides
should be revisited after reading the suggested topic.

@A Homework. The slide contains questions/exercises for the reader.

7/24

Slide Legend

this is a code section

This is a language keyword/token and not a program symbol (variable, functions,
etc.). Future references to the token could use a standard code section for better
readability.

8/24

Parenthesis and Brackets

{} braces, informally “curly brackets”
[1 brackets, informally “square brackets”
() parenthesis, informally “round brackets”

<> angle brackets

: - 9/24
twitter.com/lefticus

https://twitter.com/lefticus/status/1466518147700199430?t=0A8agYBM8b2oAufm1yptpA

What Editor/
IDE/Compiler
Should | Use?

What Compiler Should | Use?

Most popular compilers:
= Microsoft Visual Code (MSVC) is the compiler offered by Microsoft
= The GNU Compiler Collection (GCC) contains the most popular C++ Linux

compiler

= Clang is a C++ compiler based on LLVM Infrastructure available for
Linux/Windows/Apple (default) platforms

Suggested compiler on Linux for beginner: Clang

= Comparable performance with GCC/MSVC and low memory usage
= Expressive diagnostics (examples and propose corrections)
= Strict C++ compliance. GCC/MSVC compatibility (inverse direction is not ensured)

= Includes very useful tools: memory sanitizer, static code analyzer, automatic formatting,

linter, etc. 10/24

Install the Compiler on Linux

Install the last gcc/g++ (v14)

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt update

$ sudo apt install gcc-14 g++-14

$ gcc-14 --version

Install the last clang/clang++ (v21)

$ wget https://apt.llvm.org/llvm.sh
$ chmod +x 1lvm.sh
$ sudo ./1lvm.sh 21
$ clang++ --version

11/24

Install the Compiler on Windows

Microsoft Visual Studio

s Direct Installer: Visual Studio Community 2026

Clang on Windows

= Windows Subsystem for Linux (WSL)
= Windows Powershell — wsl -install -d Ubuntu-24.04
= Enable-WindowsOptionalFeature -Online -FeatureName
VirtualMachinePlatform -All -NoRestart
= Enable virtualization support in UEFI/BIOS:
Intel Virtualization Technology (VT-x) (Intel) or SVM Mode (AMD)

= Clang + MSVC Build Tools
= Download Build Tools per Visual Studio

= Install Desktop development with C++
12/24

https://visualstudio.microsoft.com/downloads/
https://aka.ms/vs/17/release/vs_BuildTools.exe

What Editor/IDE/Compiler Should | Use?

Popular C++ IDE (Integrated Development Environment):

Microsoft Visual Studio @ Most popular IDE and compiler (MSVC) for Windows .
Clion @ (free for non-commercial use). Powerful IDE with a lot of options.
QT-Creator @. Fast C++ IDE.

XCode @. Default IDE on Mac OS

Cevelop @ C+-+ IDE based on Eclipse.

13/24

https://visualstudio.microsoft.com/it/vs/features/cplusplus/
https://www.jetbrains.com/clion/
https://developer.apple.com/xcode/
www.cevelop.com

What Editor/IDE/Compiler Should | Use?

Standalone GUI-based coding editors:

Microsoft Visual Studio Code @ (VSCode)

Cursor @ is an Al-powered code editor designed to enhance the software development
process. Based on Microsoft Visual Studio Code.

Void Editor @ is an open-source Cursor alternative.

Windsurf @ Windsurf Editor is an Al-powered editor designed to deeply integrate artificial
intelligence into the coding workflow.

Sublime @ is a sophisticated, high-performance text editor.
Lapce @ is a modern, open-source code editor written in Rust, designed for speed.

Zed @ is a high-performance code editor built from scratch in Rust, focusing on speed,
collaboration, and Al integration
14/24

https://code.visualstudio.com/
https://www.cursor.com/
https://github.com/voideditor/void
https://windsurf.com/editor
www.sublimetext.com
https://lapce.dev/
https://zed.dev/

What Editor/IDE/Compiler Should | Use?

Standalone text-based coding editors (powerful, but needs expertise):
= Vim@
= Emacs @
= NeoVim @

= Helix @

Not suggested: Notepad, Gedit, and other similar editors (lack of support for
programming)

15/24

https://www.vim.org/
https://www.gnu.org/software/emacs/
https://neovim.io/
https://helix-editor.com/

What Editor/IDE/Compiler Should | Use? 3/3

Visual Studio Code
Visual Studio
Notepad++

Intelli) IDEA

Vim

Cursor

PyCharm

Android Studio
Jupyter Nb/JupyterLab
Neovim

Nano

Sublime Text

Xcode

StackOverflow Developer Survey 2025

https://survey.stackoverflow.co/2025/technology#1-dev-id-es

How to compile?

How to Compile?

Compile C++11, C++14, C4++17, C++420, C++23, C++26 programs:

g+t+ -std=c++11 <program.cpp> -o program
g++ -std=c++14 <program.cpp> -o program

g+t+ -std=c++<version> <program.cpp> -o program

Any C++ standard is backward compatible*

C++ is also backward compatible with C in most case, except if it contains C+-+
keywords (new, template, class, typename, etc.)

We can potentially compile a pure C program in C++26

*except for very minor deprecated features 17/24

C++ Standard

C++11 C++14 C++17 C++20

Compiler]] }]
Core Library Core Library Core Library Core Library
gt+ 4.8.1 5.1 5.1 5.1 7.1 9.0 11 14
clang++ SH3) 33 3.4 S5 5.0 11.0 19+ 19+
MSVC 19.0 19.0 19.10 19.0 19.15 19.15 19.29+ 19.29

C++23, C++426 are working in progress

en.cppreference.com/w/cpp/compiler_support 18/24

https://en.cppreference.com/w/cpp/compiler_support

Hello World

Hello World

C code with printf :

#1include <stdio.h>

int main() {

printf("Hello World!\n");

}

printf
prints on standard output

C++ code with streams :

#include <iostream>

int main() {
std::cout << "Hello World!'\n";
¥

cout
represents the standard output stream

19/24

Hello World

The previous example can be written with the global std namespace:

#include <iostream>
using namespace std;

int main() {
cout << "Hello World!\n";

Note: For sake of space and for improving the readability, we intentionally omit the
std namespace in most slides

20/24

1/O Stream (std:cout)

std::cout is an example of output stream. Data is redirected to a destination, in
this case the destination is the standard output

C: #include <stdio.h>
int main() {
int a = 4;
double b = 3.0;

char c[] = "hello";
printf("%d %f %s\n", a, b, c);

¥
Ctt #incluée <iostream>
int main() {
int a = 4;
double b = 3.0;
char c[] = "hello";
std::cout << a << " " << b <K<K " " <K ¢ << "\n"; 21/24

1/O Stream (Why should we prefer 1/0 stream?) 2/3

= Type-safe: The type of object provided to the | /O stream is known statically by the
compiler. In contrast, printf uses % fields to figure out the types dynamically

= Less error prone: With |/O Stream, there are no redundant % tokens that have to
be consistent with the actual objects passed to 1/O stream. Removing redundancy
removes a class of errors

= Extensible: The C++ /O Stream mechanism allows new user-defined types to be
passed to |/O stream without breaking existing code

= Comparable performance: If used correctly may be faster than C I/O (printf ,

scanf , etc.)

22/24

I/O Stream (Common C errors)

= Forget the number of parameters:
printf("long phrase %d long phrase %d", 3);

= Use the wrong format:
int a = 3;
...many lines of code...
printf(" %f", a);

= The Y%c conversion specifier does not automatically skip any leading white space:

scanf ("%d", &varl);
scanf (" %c", &var2);

23/24

std: :print

C++23 introduces an improved version of printf function std::print based on
formatter strings that provides all benefits of C++4 stream and is less verbose

#include <print>

int main() {
std: :print("Hello World! {}, {}, {}\n", 3, 411, "aa");
// print "Hello World! 3 4 aa"

Iy

This will be the default way to print when the C++-23 standard will be widely adopted

24/24

	Books and References
	Slide Legend
	What Editor/ IDE/Compiler Should I Use?
	How to compile?
	Hello World
	I/O Stream

