
Modern C++
Programming

21. Advanced Topics I

Federico Busato
2026-01-09

Table of Contents

1 Move Semantic
lvalues and rvalues references

Move Semantic

std::move

Class Declaration Semantic

2 Universal Reference and Perfect Forwarding
Universal Reference

Reference Collapsing Rules

Perfect Forwarding

1/59

Table of Contents

3 Value Categories

4 &, && Ref-qualifiers and volatile Overloading
&, && Ref-qualifiers Overloading

volatile Overloading

5 Copy Elision and RVO/NVRO

2/59

Table of Contents

6 Type Deduction
Pass-by-Reference

Pass-by-Pointer

Pass-by-Value

auto Deduction

auto(x): Decay-copy

7 const Correctness

3/59

Move Semantic

Overview

Move semantics refers in transferring ownership of resources
from one object to another

Copy semantics duplicates the resource, move semantics does not.

4/59

lvalue and rvalue 1/3

In C++ every expression is either an rvalue or an lvalue

• a lvalue (left) represents an expression that occupies some identifiable location in
memory

• a rvalue (right) is an expression that does not represent an object occupying some
identifiable location in memory

int x = 5; // "x" is an lvalue, "5" is an rvalue
int y = 10; // "y" is an lvalue

int z = (x * y); // "z" is an lvalue, (x * y) is an rvalue

5/59

lvalues and rvalues 2/3

C++11 introduces a new kind of reference called rvalue reference X&&

• An rvalue reference only binds to an rvalue, that is a temporary
• An lvalue reference only binds to an lvalue

• A const lvalue reference binds to both lvalue and rvalue

int x = 5; // "x" is an lvalue
int& r1 = x; // "r1" is an lvalue reference
// int& r2 = 5; // compile error, "5" is an rvalue
const int& cr = (x * y); // "cr" is an const lvalue reference

int&& rv = (x * y); // "rv" is an rvalue reference, "(x * y)" is an rvalue
// int&& rv1 = x; // compile error, "x" is NOT an rvalue

6/59

lvalues and rvalues 3/3

struct A {};

void f(A& a) {} // lvalue reference

void g(const A& a) {} // const lvalue reference

void h(A&& a) {} // rvalue reference

A a;
f(a); // ok, f() can modify "a"
g(a); // ok, f() cannot modify "a"
// h(a); // compile error f() does not accept lvalues

// f(A{}); // compile error f() does not accept rvalues
g(A{}); // ok, f() cannot modify the object A{}
h(A{}); // ok, f() can modify the object A{}

7/59

Move Semantic - The Problem 1/2

include <algorithm>
class Array { // Array Wrapper
public:

Array() = default;

Array(int size) : _size{size}, _array{new int[size]} {}

Array(const Array& obj) : _size{obj._size}, _array{new int[obj._size]} {
// EXPENSIVE COPY (deep copy)
std::copy(obj._array, obj._array + _size, _array);

}

∼Array() { delete[] _array; }
private:

int _size;
int* _array;

};
8/59

Move Semantic - The Problem 2/2

include <vector>

int main() {
std::vector<Array> vector;
vector.push_back(Array{1000}); // call push_back(const Array&)

} // expensive copy

Before C++11: Array{1000} is created, passed by const-reference, copied, and
then destroyed

Note: Array{1000} is no more used outside push_back

After C++11: Array{1000} is created, and moved to vector (fast!)

9/59

Move Semantic 1/3

Class prototype with support for move semantic:

class X {
public:

X(); // default constructor

X(const X& obj); // copy constructor

X(X&& obj); // move constructor

X& operator=(const X& obj); // copy assign operator

X& operator=(X&& obj); // move assign operator

∼X(); // destructor
};

10/59

Move Semantic 2/3

Move constructor semantic
X(X&& obj);

(1) Shallow copy of obj data members (in contrast to deep copy)
(2) Release any obj resources and reset all data members (pointer to nullptr, size to 0,

etc.)

Move assignment semantic
X& operator=(X&& obj);

(1) Release any resources of this
(2) Shallow copy of obj data members (in contrast to deep copy)
(3) Release any obj resources and reset all data members (pointer to nullptr, size to 0,

etc.)
(4) Return *this

11/59

Move Semantic 3/3

Move constructor
Array(Array&& obj) {

_size = obj._size; // (1) shallow copy
_array = obj._array; // (1) shallow copy
obj._size = 0; // (2) release obj (no more valid)
obj._array = nullptr; // (2) release obj

}

Move assignment
Array& operator=(Array&& obj) {

delete[] _array; // (1) release this
_size = obj._size; // (2) shallow copy
_array = obj._array; // (2) shallow copy
obj._array = nullptr; // (3) release obj
obj._size = 0; // (3) release obj
return *this; // (4) return *this

} 12/59

std::move

C++11 provides the method std::move (<utility>) to indicate that an
object may be “moved from”
It allows to efficient transfer resources from an object to another one

include <vector>

int main() {
std::vector<Array> vector;
vector.push_back(Array{1000}); // call "push_back(Array&&)"

Array arr{1000};
vector.push_back(arr); // call "push_back(const Array&)"

vector.push_back(std::move(arr)); // call "push_back(Array&&)"
// efficient!!

// "arr" is not more valid here
}

13/59

Move Semantic Notes

If an object requires the copy constructor/assignment, then it should also define the
move constructor/assignment. The opposite could not be true

The defaulted move constructor/assignment =default recursively applies the move
semantic to its base class and data members.
Important: it does not release the resources. It is very dangerous for classes with
manual resource management

// Suppose: Array(Array&&) = default;
Array x{10};
Array y = std::move(x); // call the move constructor
// "x" calls ∼Array() when it is out of scope, but now the internal pointer
// "_array" is NOT nullptr -> double free or corruption!!

14/59

Move Semantic and Code Reuse

Some operations can be expressed as a function of the move semantic

A& operator=(const A& other) {
*this = A{other}; // copy constructor + move assignment
return *this;

}

void init(... /* any paramters */) {
*this = A{...}; // user-declared constructor + move assignment

}

15/59

Class Declaration Semantic - Compiler Implicit

Everything You Ever Wanted To Know About Move Semantics
A Quick Note of Copy and Move Control in C++

16/59

https://howardhinnant.github.io/bloomberg_2016.pdf
https://coyorkdow.github.io/c++/2023/01/15/C++_constructors.html

Class Declaration Semantic

User-declared Entity Meaning / Implications

non- static const members
Copy/Move constructors are not trivial (not provided by the
compiler). Copy/move assignment is not supported

reference members
Copy/Move constructors/assignment are not trivial (not
provided by the compiler)

destructor
The resource management is not trivial. Copy
constructor/assignment is very likely to be implemented

copy constructor/assignment
Resource management is not trivial. Move
constructors/assignment need to be implemented by the user

move constructor/assignment
There is an efficient way to move the object. Copy
constructor/assignment cannot fall back safely to copy
constructors/assignment, so they are deleted

17/59

Universal Reference
and Perfect
Forwarding

Universal Reference 1/3

The && syntax has two different meanings depending on the context it is used

• rvalue reference
• Universal reference: Either rvalue reference or lvalue reference

Universal references (also called forwarding references) are rvalues that appear in a
type-deducing context. T&& , auto&& accept any expression regardless it is an lvalue
or rvalue and preserve the const property

void f1(int&& t) {} // rvalue reference

template<typename T>
void f2(T&& t) {} // universal reference

int&& v1 = ...; // rvalue reference
auto&& v2 = ...; // universal reference

18/59

Universal Reference 2/3

int f_copy();
int& f_ref();
const int& f_const_ref();

auto c1 = f_copy(); // lvalue, T=int
// auto c2 = f_ref(); // compile error
auto c3 = f_const_ref(); // lvalues (decay), T=int
// auto& r1 = f_copy(); // compile error
auto& r2 = f_ref(); // lvalue ref, T=int&
// auto& r3 = f_const_ref(); // compile error
const auto& cr1 = f_copy(); // not modifiable, T=const int&
const auto& cr2 = f_ref(); // not modifiable, T=const int&
const auto& cr3 = f_const_ref(); // not modifiable, T=const int&
auto&& u1 = f_copy(); // T=int&
auto&& u2 = f_ref(); // T=int&
auto&& u3 = f_const_ref(); // not modifiable, T=const int&

19/59

Universal Reference 3/3

struct A {};
void f1(A&& a) {} // rvalue only

template<typename T>
void f2(T&& t) {} // universal reference

A a;
f1(A{}); // ok
// f1(a); // compile error (only rvalue)
f2(A{}); // universal reference
f2(a); // universal reference

A&& a2 = A{}; // ok
// A&& a3 = a; // compile error (only rvalue)
auto&& a4 = A{}; // universal reference
auto&& a5 = a; // universal reference

20/59

Universal Reference - Misleading Cases

template<typename T>
void f(std::vector<T>&&) {} // rvalue reference

template<typename T>
void f(const T&&) {} // rvalue reference (const)

const auto&& v = ...; // const rvalue reference

21/59

Reference Collapsing Rules

Before C++11 (C++98, C++03), it was not allowed to take a reference to a
reference (A& & causes a compile error)

C++11, by contrast, introduces the following reference collapsing rules:
template<typename T>
void f(T&) {} // compile error in C++98/03 (with gcc),

// no errors in C++11 (and clang with C++98/03)
int a = 3; //
f<int&>(a); //

Type Reference Result

A& & → A&
A& && → A&
A&& & → A&
A&& && → A&&

22/59

Perfect Forwarding

Perfect forwarding allows preserving argument value category and const/volatile
modifiers

std::forward (<utility>) forwards the argument to another function with the
value category it had when passed to the calling function (perfect forwarding)

include <utility> // std::forward
template<typename T> void f(T& t) { cout << "lvalue"; }
template<typename T> void f(T&& t) { cout << "rvalue"; } // overloading

template<typename T> void g1(T&& obj) { f(obj); } // call only f(T&)
template<typename T> void g2(T&& obj) { f(std::forward<T>(obj)); }

struct A{};
f (A{10}); // print "rvalue"
g1(A{10}); // print "lvalue"!!
g2(A{10}); // print "rvalue"

23/59

Value Categories

Taxonomy (simplified)

Every expression is either an rvalue or an lvalue

• An lvalue (left value of an assignment for historical reason or locator value)
represents an expression that occupies an identity, namely a memory location
(it has an address)

• An rvalue is movable; an lvalue is not

24/59

Taxonomy 1/2

glvalue (generalized lvalue) is an expression that has an identity

lvalue is a glvalue but it is not movable (it is not an xvalue). An named rvalue
reference is a lvalue

xvalue (eXpiring) has an identity and it is movable. It is a glvalue that denotes an
object whose resources can be reused. An unnamed rvalue reference is a
xvalue

prvalue (pure rvalue) doesn’t have identity, but is movable. It is an expression
whose evaluation initializes an object or computes the value of an operand
of an operator

rvalue is movable. It is a prvalue or an xvalue

en.cppreference.com/w/cpp/language/value_category 25/59

https://en.cppreference.com/w/cpp/language/value_category

Taxonomy 2/2

26/59

Examples

struct A {
int x;

};

void f(A&&) {}
A&& g();
//--
int a = 4; // "a" is an lvalue, "4" is a prvalue
f(A{4}); // "A{4}" is a prvalue

A&& b = A{3}; // "A&& b" is a named rvalue reference → lvalue

A c{4};
f(std::move(c)); // "std::move(c)" is a xvalue
f(A{}.x); // "A{}.x" is a xvalue
g(); // "A&&" is a xvalue

27/59

&, && Ref-qualifiers
and volatile
Overloading

&, && Ref-qualifiers Overloading 1/3

C++11 allows overloading member functions depending on the lvalue/rvalue property
of their object. This is also known as ref-qualifiers overloading and can be useful for
optimization purposes, namely, moving a variable instead of copying it

struct A {
// void f() {} // already covered by "f() &"

void f() & {}
void f() && {}

};

A a1;
a1.f(); // call "f() &"

A{}.f(); // call "f() &&"
std::move(a1).f(); // call "f() &&"

28/59

&, && Ref-qualifiers Overloading 2/3

Ref-qualifiers overloading can be also combined with const methods

struct A {
// void f() const {} // already covered by "f() const &"

void f() const & {}
void f() const && {}

};

const A a1;
a1.f(); // call "f() const &"

std::move(a1).f(); // call "f() const &&"

29/59

&, && Ref-qualifiers Overloading 3/3

A simple example where ref-qualifiers overloading is useful

struct ArrayWrapper {
ArrayWrapper(/*params*/) { /* something expensive */ }

ArrayWrapper copy() const & { /* expensive copy with std::copy() */ }
ArrayWrapper copy() const && { /* just move the pointer as the original

object is no more used */ }
};

30/59

volatile Overloading

struct A {
void f() {}
void f() volatile {} // e.g. propagate volatile to data members
void f() const volatile {}

// void f() volatile & {} // combining ref-qualifier and volatile
// void f() const volatile & {} // overloading is also fine
// void f() volatile && {}
// void f() const volatile && {}
};

volatile A a1;
a1.f(); // call "f() volatile"

const volatile A a2;
a2.f(); // call "f() const volatile"

Member Function Overloading: Choices You Didn’t Know You Had 31/59

https://crascit.com/2015/11/29/member-function-overloading-choices-you-didnt-know-you-had/

Copy Elision and
RVO/NVRO

Copy Elision and RVO/NVRO

Copy elision is a compiler optimization technique that eliminates unnecessary
creation, destruction, copying, and moving of temporary objects

Copy elision can be also applied to avoid unnecessary object copies when returning
objects from functions. Such optimizations are:

• RVO (Return Value Optimization) means the compiler is allowed to avoid
creating temporary objects for return values

• NRVO (Named Return Value Optimization) means the compiler is allowed to
return an object (with automatic storage duration) without invoking copy/move
constructors

32/59

RVO Example

Returning an object from a function is very expensive without RVO/NVRO:

struct Obj {
Obj() = default;

Obj(const Obj&) { // non-trivial
cout << "copy constructor\n";

}
};

Obj f() { return Obj{}; } // first copy

auto x1 = f(); // second copy (create "x")

If provided, the compiler uses the move constructor instead of copy constructor

33/59

RVO - Where it works

RVO Copy elision is always guaranteed if the operand is a prvalue of the same class
type and the copy constructor is trivial and non-deleted

struct Trivial {
Trivial() = default;
Trivial(const Trivial&) = default;

};

// sigle instance
Trivial f1() {

return Trivial{}; // Guarantee RVO
}
// distinct instances and run-time selection
Trivial f2(bool b) {

return b ? Trivial{} : Trivial{}; // Guarantee RVO
}

34/59

Guaranteed Copy Elision (C++17)

In C++17, RVO Copy elision is always guaranteed if the operand is a prvalue of the
same class type, even if the copy constructor is not trivial or deleted

struct S1 {
S1() = default;
S1(const S1&) = delete; // deleted

};
struct S2 {

S2() = default;
S2(const S2&) {} // non-trivial

};

S1 f() { return S1{}; }
S2 g() { return S2{}; }

auto x1 = f(); // compile error in C++14
auto x2 = g(); // RVO only in C++17 35/59

RVO Example - Where it does NOT work 1/3

NRVO is not always guaranteed even in C++17

Obj f1() {
Obj a;
return a; // most compilers apply NRVO

}

Obj f2(bool v) {
Obj a;
if (v)

return a; // copy/move constructor
return Obj{}; // RVO

}

GCC 14 adds the flag -Wnvro to diagnose when NVRO is not possible

• New C++ features in GCC 14
• Improving Copy and Move Elision (Visual Studio 2022 version 17.4 Preview 3)

36/59

https://developers.redhat.com/articles/2024/05/15/new-c-features-gcc-14#new_and_improved_warnings
https://devblogs.microsoft.com/cppblog/improving-copy-and-move-elision/

RVO Example - Where it does NOT work 2/3

Obj f3(bool v) {
Obj a, b;
return v ? a : b; // copy/move constructor

}

Obj f4() {
Obj a;
return std::move(a); // force move constructor

}

Obj f5() {
static Obj a;
return a; // only copy constructor is possible

}

37/59

RVO Example - Where it does NOT work 3/3

Obj f6(Obj& a) {
return a; // copy constructor (a reference cannot be elided)

}

Obj f7(const Obj& a) {
return a; // copy constructor (a reference cannot be elided)

}

Obj f8(const Obj a) {
return a; // copy constructor (a const object cannot be elided)

}

Obj f9(Obj&& a) {
return a; // copy constructor (the object is instantiated in the function)

}

38/59

Type Deduction

Type Deduction

When you call a template function, you may omit any template argument that
the compiler can determine or deduce (inferred) by the usage and context of
that template function call [IBM]

• The compiler tries to deduce a template argument by comparing the type of the
corresponding template parameter with the type of the argument used in the func-
tion call

• Similar to function default parameters, (any) template parameters can be deduced
only if they are at end of the parameter list

Full Story: IBM Knowledge Center

39/59

Example

template<typename T>
int add1(T a, T b) { return a + b; }

template<typename T, typename R>
int add2(T a, R b) { return a + b; }

template<typename T, int B>
int add3(T a) { return a + B; }

template<int B, typename T>
int add4(T a) { return a + B; }

add1(1, 2); // ok
// add1(1, 2u); // the compiler expects the same type
add2(1, 2u); // ok (add2 is more generic)
add3<int, 2>(1); // "int" cannot be deduced
add4<2>(1); // ok

40/59

Type Deduction - Pass by-Reference

Type deduction with references

template<typename T>
void f(T& a) {}

template<typename T>
void g(const T& a) {}

int x = 3;
int& y = x;
const int& z = x;
f(x); // T: int
f(y); // T: int
f(z); // T: const int // <-- !! it works...but it does not
g(x); // T: int // for "f(int& a)"!!
g(y); // T: int // (only non-const references)
g(z); // T: int // <-- note the difference 41/59

Type Deduction - Pass by-Pointer 1/2

Type deduction with pointers

template<typename T>
void f(T* a) {}

template<typename T>
void g(const T* a) {}

int* x = nullptr;
const int* y = nullptr;
auto z = nullptr;
f(x); // T: int
f(y); // T: const int
// f(z); // compile error, z: "nullptr_t != T*"
g(x); // T: int
g(y); // T: int <-- note the difference
// g(z); // compile error, z: "nullptr_t != T*" 42/59

Type Deduction - Pass by-Pointer 2/2

template<typename T>
void f(const T* a) {} // pointer to const-values

template<typename T>
void g(T* const a) {} // const pointer

int* x = nullptr;
const int* y = nullptr;
int* const z = nullptr;
const int* const w = nullptr;
f(x); // T: int
f(y); // T: int
f(z); // T: int
g(x); // T: int
g(y); // T: const int
g(z); // T: int
g(w); // T: const int

43/59

Type Deduction - Pass by-Value 1/2

Type deduction with values

template<typename T>
void f(T a) {}

template<typename T>
void g(const T a) {}

int x = 2;
const int y = 3;
const int& z = y;
f(x); // T: int
f(y); // T: int!! (drop const)
f(z); // T: int!! (drop const&)
g(x); // T: int
g(y); // T: int
g(z); // T: int!! (drop reference) 44/59

Type Deduction - Pass by-Value 2/2

template<typename T>
void f(T a) {}

int* x = nullptr;
const int* y = nullptr;
int* const z = x;
f(x); // T = int*
f(y); // T = const int*
f(z); // T = int* !! (const drop)

45/59

Type Deduction - Array

Type deduction with arrays

template<typename T, int N>
void f(T (&array)[N]) {} // type and size deduced

template<typename T>
void g(T array) {}

int x[3] = {};
const int y[3] = {};
f(x); // T: int, N: 3
f(y); // T: const int, N: 3
g(x); // T: int*
g(y); // T: const int*

46/59

Type Deduction - Conflicts 1/2

template<typename T>
void add(T a, T b) {}

template<typename T, typename R>
void add(T a, R b) {}

template<typename T>
void add(T a, char b) {}

add(2, 3.0f); // call add(T, R)
add(2, 3); // call add(T, T)
add<int>(2, 3); // call add(T, T)
add<int, int>(2, 3); // call add(T, R)
add(2, 'b'); // call add(T, char) -> nearest match

47/59

Type Deduction - Conflicts 2/2

template<typename T, int N>
void f(T& array) {}

template<typename T>
void f(T* array) {}

int x[3];
f(x); // call f(T*) not f(T&) !!template<typename T, int N>
void g(T& array) {}

template<typename T>
void g(T array) {}

int x[3];
g(x); // call g(T) not g(T&) !!

48/59

auto Deduction

• auto x = copy by-value/by-const value
• auto& x = copy by-reference/by-const-refernce
• auto* x = copy by-pointer/by-const-pointer
• auto&& x = copy by-universal reference
• decltype(auto) x = automatic type deduction

int f1(int& x) { return x; }
int& f2(int& x) { return x; }
auto f3(int& x) { return x; }
decltype(auto) f4(int& x) { return x; }

int v = 3;
int x1 = f1(v);
int& x2 = f2(v);
// int& x3 = f3(v); // compile error 'x' is copied by-value
int& x4 = f4(v); 49/59

auto(x): Decay-copy 1/3

The problem: implement a function to remove the first element of a container

template<typename T>
void pop_v1(T& x) {

std::remove(x.begin(), x.end(), x.front()); // undefined behavior!!
}

This is undefined behavior because

• x.front() returns a reference
• std::remove takes the element to remove by-const-reference
• std::remove modifies the container, invalidating iterators and references. The

reference must not be an element of the range [first, last)

50/59

auto(x): Decay-copy 2/3

Sub-optimal solutions:

template<typename T>
void pop_v2(T& x) {

auto tmp = x.front(); // lvalue copy
std::remove(x.begin(), x.end(), tmp); // ok

}

template<typename T>
void pop_v3(T& x) {

using R = std::decay_t<decltype(x.front())>; // verbose/non-trivial solution
std::remove(x.begin(), x.end(), R(x)); // ok, create a temporary (rvalue)

} // copy
// decltype(x.front()) -> retrieve the type of x.front()
// std::decay_t -> get the 'decay' type as pass by-value,
// e.g. 'const int' to 'int'

51/59

auto(x): Decay-copy 3/3

C++23 introduces auto(x) decay-copy utility to express the rvalue copy in a clear
way

template<typename T>
void pop_v4(T& x) {

std::remove(x.begin(), x.end(), auto(x.front())); // ok, rvalue copy
} // equivalent to R(x)

auto(x): decay-copy in the language 52/59

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0849r8.html

const Correctness

const Correctness

const correctness refers to guarantee object/variable const consistency throughout
its lifetime and ensuring safety from unintentional modifications

References:

• Isocpp: const-correctness

• GotW: Const-Correctness

• Abseil: Meaningful ‘const’ in Function Declarations

• const is a contract

• Why const Doesn’t Make C Code Faster

• Constant Optimization?

53/59

https://isocpp.org/wiki/faq/const-correctness
http://www.gotw.ca/gotw/006.htm
https://abseil.io/tips/109
https://quuxplusone.github.io/blog/2019/01/03/const-is-a-contract/
https://theartofmachinery.com/2019/08/12/c_const_isnt_for_performance.html
http://www.gotw.ca/gotw/081.htm

Basic Rules 1/2

• const entities do not change their values at run-time. This does not imply that
they are evaluated at compile-time

• const T* is different from T* const . The first case means “the content does
not change”, while the later “the value of the pointer does not change”

• Pass by-const-value and by-value parameters imply the same function signature

• Return by-const-value and by-value have different meaning

• const_cast can break const-correctness

54/59

Basic Rules 2/2

const and member functions:

• const member functions do not change the internal status of an object

• mutable fields can be modified by a const member function (they should not
change the external view)

const and code optimization:

• const keyword purpose is for correctness (type safety), not for performance

• const may provide performance advantages in a few cases, e.g. non-trivial copy
semantic

55/59

Function Declarations Example

void f(int);
void f(const int); // the declaration is exactly the same of

// "void f(int)"!!
void f(int*);
void f(const int*); // different declaration

void f(int&);
void f(const int&); // different declaration

int f();
// const int f(); // compile error conflicting declaration

56/59

const Return Example

const int const_value = 3;

const int& f2() { return const_value; }
// int& f1() { return const_value; } // WRONG

int f3() { return const_value; } // ok

struct A {
void f() { cout << "non-const"; }
void f() const { cout << "const"; }

};

const A getA() { return A{}; }

auto a = getA(); // "a" is a copy
a.f(); // print "non-const"

getA().f(); // print "const" 57/59

struct Example

struct A { // struct A_const { // equal to "const A"
int* ptr; // int* const ptr;
int value; // const int value;

}; // };

void f(A a) {
a.value = 3;
a.ptr[0] = 3;

}
void g(const A a) { // the same with g(const A&)
// a.value = 3; // compile error

a.ptr[0] = 3; // "const" does not apply to the "ptr" content!!
}

A a{new int[10]};
f(a); // ok
g(a); // compile error 58/59

Member Functions Example

struct A {
int value = 0;

int& f1() { return value; }
const int& f2() { return value; }

// int& f3() const { return value; } // compile error, const violation
const int& f4() const { return value; }

int f5() const { return value; } // ok, return by-copy
const int f6() const { return value; } // ok, return by-copy

};

59/59

	Move Semantic
	lvalues and rvalues references
	Move Semantic
	std::move
	Class Declaration Semantic

	Universal Reference and Perfect Forwarding
	Universal Reference
	Reference Collapsing Rules
	Perfect Forwarding

	Value Categories
	&, && Ref-qualifiers and volatile Overloading
	&, && Ref-qualifiers Overloading
	volatile Overloading

	Copy Elision and RVO/NVRO
	Type Deduction
	Pass-by-Reference
	Pass-by-Pointer
	Pass-by-Value
	auto Deduction
	auto(x): Decay-copy

	const Correctness

