Modern C++

Programming

21. ADVANCED Toprics I

Federico Busato
2026-01-09

Table of Contents

Move Semantic
m lvalues and rvalues references
m Move Semantic
m std: :move

m Class Declaration Semantic

H Universal Reference and Perfect Forwarding
m Universal Reference
m Reference Collapsing Rules

m Perfect Forwarding

1/59

Table of Contents

Value Categories

A &, && Ref-qualifiers and volatile Overloading
m &, && Ref-qualifiers Overloading

m volatile Overloading

H Copy Elision and RVO/NVRO

2/59

Table of Contents

[@ Type Deduction
m Pass-by-Reference
m Pass-by-Pointer
m Pass-by-Value
m auto Deduction

m auto(x): Decay-copy

const Correctness

3/59

Move Semantic

Move semantics refers in transferring ownership of resources
from one object to another

Copy semantics duplicates the resource, move semantics does not.

4/59

lvalue and rvalue

In C++ every expression is either an rvalue or an lvalue

= a lvalue (left) represents an expression that occupies some identifiable location in

memory

= a rvalue (right) is an expression that does not represent an object occupying some

identifiable location in memory

int x = 5; // "z" 4is an lvalue, "5" is an rvalue

int y = 10; // "y" is an lvalue

int z = (x * y); // "2" is an lvalue, (z * y) 4is an rvalue

5/59

lvalues and rvalues

C+-+11 introduces a new kind of reference called rvalue reference X&&
= An rvalue reference only binds to an rvalue, that is a temporary
= An lvalue reference only binds to an lvalue

= A const lvalue reference binds to both Ivalue and rvalue

int x =5; // "z" is an lvalue
int& rl = x; // "r1" 4s an lvalue reference
// int& r2 = 5; // compile error, "5" is an rvalue

const int& cr = (x * y); // "cr" is an const lvalue reference

int&& v = (x * y); // "rv" is an rvalue reference, "(z * y)" is an Tvalue
// int&& rvl = x; // compile error, "z" is NOT an rvalue

6/59

lvalues and rvalues

struct A {};

void f(A% a) {} // lvalue reference

void g(const A& a) {} // const lvalue reference

void h(A&& a) {3} // rvalue reference
A a;

f(a); // ok, f(O can modify "a"
g(a); // ok, f() cannot modify "a"

// h(a); // compile error f() does not accept lvalues

// fAAL}Y); // compile error f() does mot accept Tvalues
g(A{}); // ok, f() cannot modify the object A{}

h(A{}); // ok, f() can modify the object A{} 7/59

Move Semantic - The Problem

#include <algorithm>
class Array { // Array Wrapper
public:

Array() = default;

Array(int size) : _size{sizel}, _array{new int[sizell} {}

Array(const Array& obj) : _size{obj._size}, _array{new int[obj._size]l} {
// EXPENSIVE COPY (deep copy)

std: :copy(obj._array, obj._array + _size, _array);

~Array() { delete[] _array; }
private:

int _size;

int* _array;

8/59
13 /

Move Semantic - The Problem

#include <vector>

int main() {

std: :vector<Array> vector;

vector.push_back(Array{1000}); // call push_back(const Arrayé&)
} // expensive copy

Before C++11: Array{1000} is created, passed by const-reference, copied, and

then destroyed

Note: Array{1000} is no more used outside push_back

After C++11: Array{1000} is created, and moved to vector (fast!)

9/59

Move Semantic

Class prototype with support for move semantic:

class X {

public:
X0 // default constructor
X(const X& obj); // copy constructor
X(X&& obj); // move constructor

X& operator=(const X& obj); // copy assign operator

X& operator=(X&& obj); // move assign operator

~X0O; // destructor

10/59

Move Semantic

Move constructor semantic
X(X&& obj);

(1) Shallow copy of obj data members (in contrast to deep copy)
(2) Release any obj resources and reset all data members (pointer to nullptr, size to O,
etc.)

Move assignment semantic
X& operator=(X&& obj);

(1) Release any resources of this

(2) Shallow copy of obj data members (in contrast to deep copy)

(3) Release any obj resources and reset all data members (pointer to nullptr, size to 0,
etc.)

(4) Return *this

11/59

Move Semantic

Move constructor
Array (Array&& obj) {

_size = obj._size; //
_array = obj._array; //
obj._size = 0; //
obj._array = nullptr; //

}

Move assignment
Array& operator=(Array&& obj) {

delete[] _array; //
_size = obj._size; //
_array = obj._array; //
obj._array = nullptr; //
obj._size = 0; //
return *this; //

(1)
(1
2
2

(1)
2
2
(3)
(3
4)

shallow copy
shallow copy
release obj (no more wvalid)

release obj

release this
shallow copy
shallow copy
release obj
release obj

return *this

12/59

std: :move

C++11 provides the method std::move (<utility>) to indicate that an
object may be “moved from”
It allows to efficient transfer resources from an object to another one

#include <wvector>

int main() {
std: :vector<Array> vector;
vector.push_back(Array{1000}); // call "push_back(Array&&)"

Array arr{1000};
vector.push_back(arr); // call "push_back(const Array&)"

vector.push_back(std::move(arr)); // call "push_back(Array&&)"
// efficient!!

// "arr" is nmot more wvalid here 13/59

Move Semantic Notes

If an object requires the copy constructor/assignment, then it should also define the
move constructor/assignment. The opposite could not be true

The defaulted move constructor/assignment =default recursively applies the move
semantic to its base class and data members.

Important: it does not release the resources. It is very dangerous for classes with
manual resource management

// Suppose: Array(Array&&) = default;

Array x{10};

Array y = std::move(x); // call the move constructor

// "z" calls ~Array() when it is out of scope, but nmow the internal pointer

// "_array" ts NOT nullptr -> double free or corruption!!

14/59

Move Semantic and Code Reuse

Some operations can be expressed as a function of the move semantic

A% operator=(const A& other) {
*this = A{other}; // copy constructor + move assignment

return *this;

}
void init(... /* any paramters */) {

*this = A{...}; // user-declared constructor + move assignment
}

15/59

Class Declaration Semantic - Compiler Implicit

Special Members

compiler implicitly declares

default AT copy copy move move
constructor constructor |assignment | constructor | assignment

Nothing | defaulted | defaulted | defaulted | defaulted | defaulted | defaulted

Any not
constructor| declared
default user
constructor | declared

defaulted | defaulted | defaulted | defaulted | defaulted

defaulted | defaulted | defaulted | defaulted | defaulted

user
declared

not glel

destructor | defaulted dearesl | essrs

defaulted | defaulted

copy not o
constructor| declared | defaulted Bggoiared defaulied

(%2}
]
=
«©
[
@
©
~
©
(%2}
=J

nol
declared | declared

copy user not not
assignment defaulted | defaulted | defaulted BN ..o | declared

move not
constructor| declared

move
assignment

user not
declared | declared

not user
declared | declared

defaulted deleted deleted

defaulted | defaulted deleted deleted

Everything You Ever Wanted To Know About Move Semantics

A Quick Note of Copy and Move Control in C++

https://howardhinnant.github.io/bloomberg_2016.pdf
https://coyorkdow.github.io/c++/2023/01/15/C++_constructors.html

Class Declaration Semantic

User-declared Entity

Meaning / Implications

non- static const members

reference members

destructor

copy constructor/assignment

move constructor/assignment

Copy/Move constructors are not trivial (not provided by the
compiler). Copy/move assignment is not supported

Copy/Move constructors/assignment are not trivial (not
provided by the compiler)

The resource management is not trivial. Copy
constructor/assignment is very likely to be implemented

Resource management is not trivial. Move
constructors/assignment need to be implemented by the user

There is an efficient way to move the object. Copy
constructor/assignment cannot fall back safely to copy
constructors/assignment, so they are deleted

17/59

Universal Reference
and Perfect
Forwarding

niversal Reference

The && syntax has two different meanings depending on the context it is used

= rvalue reference
= Universal reference: Either rvalue reference or Ivalue reference

Universal references (also called forwarding references) are rvalues that appear in a
type-deducing context. T&& , auto&& accept any expression regardless it is an lvalue

or rvalue and preserve the const property

void f1(int&& t) {} // rvalue reference

template<typename T>
void £2(T&& t) {} // universal reference

int&& v1 ces // rvalue reference

auto&& v2 = ...; // universal reference

18/59

Universal Reference

int f_copy();
int& f ref();
const int& f_const_ref();

auto cl = f_copy(O; // lvalue, T=int

// auto c2 = f.ref(; // compile error

auto c3 = f_const_ref(); // lvalues (decay), T=int

// auto& rl = f_copy(); // compile error

auto& r2 =f ref(); // lvalue ref, T=int&

// auto& r3 = f_const_ref(); // compile error

const auto& crl = f_copy(); // not modifiable, T=const int&
const auto& cr2 = f_ref(); // not modifiable, T=const int&
const auto& cr3 = f_const_ref(); // not modifiable, T=const int&
auto&& ul = f_copy(Q); // T=int&

auto&& u2 = f_ref(); // T=int&

auto&& u3 = f_const_ref(); // not modifiable, T=const int&

19/59

Universal Reference

struct A {};
void £1(A&& a) {} // rvalue only

template<typename T>
void £2(T&& t) {} // untiversal reference

A a;

£1(A{3; // ok

// f1(a); // compile error (only rvalue)
£2(A{}); // universal reference

f2(a); // universal reference

Ax& a2 = A{}; // ok

// Ak& a3 = a; // compile error (only rvalue)
auto&& a4 = A{}; // universal reference

auto&& ab

a; // universal reference

20/59

versal Reference - Misleading Cases

template<typename T>
void f(std::vector<T>&&) {} // rvalue reference

template<typename T>
void f(const T&&) {} // rvalue reference (const)

const auto&& v = ...; // const rvalue reference

21/59

Reference Collapsing Rules

Before C++11 (C++498, C++03), it was not allowed to take a reference to a

reference (A& & causes a compile error)

C++11, by contrast, introduces the following reference collapsing rules:

template<typename T>
void £(T&) {} // compile error in C++98/03 (with gcc),
// no_errors in C++11 (and clang with C++98/03)
int a = 3; /7
f<int&>(a); //

Type Reference Result
A& & — A&
A& && — A&
A&& & - A&
A&& && - A&&

22/59

Perfect Forwarding

Perfect forwarding allows preserving argument value category and const/volatile

modifiers

std::forward (<utility>) forwards the argument to another function with the
value category it had when passed to the calling function (perfect forwarding)

#include <utility> // std::forward
template<typename T> void f(T& t) { cout << "lvalue"; }
template<typename T> void f(T&& t) { cout << "rvalue"; } // overloading

template<typename T> void gl(T&& obj) { f(obj); } // call only f(T&)
template<typename T> void g2(T&& obj) { f(std::forward<T>(obj)); }

struct A{};
f (A{10}); // print "rvalue"
g1(A{10}); // print "lvalue"!!

g2(A{10}); // print "rvalue"
23/59

Value Categories

Taxonomy (simplified)

Every expression is either an rvalue or an lvalue

= An lvalue (/eft value of an assignment for historical reason or locator value)

represents an expression that occupies an identity, namely a memory location
(it has an address)

= An rvalue is movable; an Ivalue is not

24/59

Taxonomy

glvalue (generalized Ivalue) is an expression that has an identity

Ivalue is a glvalue but it is not movable (it is not an xvalue). An named rvalue

reference is a lvalue

xvalue (eXpiring) has an identity and it is movable. It is a glvalue that denotes an
object whose resources can be reused. An unnamed rvalue reference is a

xvalue

prvalue (pure rvalue) doesn't have identity, but is movable. It is an expression

whose evaluation initializes an object or computes the value of an operand

of an operator

rvalue is movable. It is a prvalue or an xvalue

en.cppreference.com/w/cpp/language/value_category 25/59

https://en.cppreference.com/w/cpp/language/value_category

Taxonomy

glvalue rvalue

Ilvalue {xvalue

26/59

struct A {
int x;

13

void f(A&&) {3}

A& g();

Y
int a = 4; // "a" is an lvalue, "4" is a prvalue

f(A{4D); // "AL4}" is a prvalue

A%& b = A{3}; // "A&& b" is a named rvalue reference — lvalue
A c{4};

f(std::move(c)); // "std::move(c)" 1is a zvalue

f(A{}.x); // "A{}.z" is a zvalue

gO; // "A&&" is a zvalue

27/59

&, && Ref-qualifiers
and volatile
Overloading

&, && Ref-qualifiers Overloading

C++11 allows overloading member functions depending on the lvalue/rvalue property
of their object. This is also known as ref-qualifiers overloading and can be useful for

optimization purposes, namely, moving a variable instead of copying it

struct A {

// woid f() {} // already covered by "f() &"
void £() & {3
void £() && {}

g

A ai;

al.£Q; // call "fO &"
AMY.£O; // call "f() &&"

std: :move(al) .£0; // call "f() &&"
28/59

&, && Ref-qualifiers Overloading

Ref-qualifiers overloading can be also combined with const methods

struct A {

// woid f() const {} // already covered by "f() const &"
void f() const & {}
void £() const && {}

5

const A ail;
al.fQ; // call "f() const &"

std::move(al) .£(); // call "f() const &&"

29/59

&, && Ref-qualifiers Overloading

A simple example where ref-qualifiers overloading is useful

struct ArrayWrapper {
ArrayWrapper (/*params*/) { /* something expensive */ }

ArrayWrapper copy() const & { /* expensive copy with std::copy() */ }

ArrayWrapper copy() const && { /* just move the pointer as the original

object is no more used */ }

30/59

volatile Overloading

struct A {

//
//
//
//
Ig

void f£()
void £()
void £()
void f()
void f()
void f()
void f()

{3
volatile {} // e.g. propagate wvolatile to data members
const volatile 18
volatile & {} // combining ref-qualifier and volatile
const volatile & {} // overloading is also fine
volatile && {F

const wolatile && {}

volatile A ail;

al.f();

// call "f() volatile”

const volatile A a2;

a2.fQ;

// call "f() const wolatile”

Member Function Overloading: Choices You Didn’t Know You Had L)

https://crascit.com/2015/11/29/member-function-overloading-choices-you-didnt-know-you-had/

Copy Elision and
RVO/NVRO

Copy Elision and RVO/NVRO

Copy elision is a compiler optimization technique that eliminates unnecessary

creation, destruction, copying, and moving of temporary objects
Copy elision can be also applied to avoid unnecessary object copies when returning
objects from functions. Such optimizations are:

= RVO (Return Value Optimization) means the compiler is allowed to avoid
creating temporary objects for return values

= NRVO (Named Return Value Optimization) means the compiler is allowed to
return an object (with automatic storage duration) without invoking copy/move

constructors

32/59

RVO Example

Returning an object from a function is very expensive without RVO/NVRO:

struct Obj {
Obj() = default;

Obj(const 0bj&) { // non-trivial

cout << "copy constructor\n";
};
Obj £() { return Obj{}; } // first copy
auto x1 = £(); // second copy (create "z")

If provided, the compiler uses the move constructor instead of copy constructor

33/59

RVO - Where it works

RVO Copy elision is always guaranteed if the operand is a prvalue of the same class

type and the copy constructor is trivial and non-deleted

struct Trivial {
Trivial() = default;
Trivial (const Trivial&) = default;

13

// sigle instance
Trivial £1() {
return Trivial{}; // Guarantee RVO
}
// distinct instances and run-time selection
Trivial f2(bool b) {
return b ? Trivial{} : Trivial{}; // Guarantee RVO

34/59

Guaranteed Copy Elision (C+417)

In C+-+17, RVO Copy elision is always guaranteed if the operand is a prvalue of the
same class type, even if the copy constructor is not trivial or deleted

struct S1 {

S10) = default;

S1(const S1&) = delete; // deleted
i
struct S2 {

S20) = default;

S2(const S2&) {} // mon-trivial
i

81 £() { return Si1{}; }
52 g() { return S2{}; }

auto x1 = £(); // compile error in C++1,

auto x2 = g(); // RVO only in C++17 /)

RVO Example - Where it does NOT work

NRVO is not always guaranteed even in C++417

O0bj f10 {
0bj a;
return a; // most compilers apply NRVO

0bj f2(bool v) {
0bj a;
if (v)
return a; // copy/move constructor
return 0bj{}; // RVO
}

GCC 14 adds the flag -Wnvro to diagnose when NVRO is not possible

= New C++ features in GCC 14 36/59
= Improving Copy and Move Elision (Visual Studio 2022 version 17.4 Preview 3)

https://developers.redhat.com/articles/2024/05/15/new-c-features-gcc-14#new_and_improved_warnings
https://devblogs.microsoft.com/cppblog/improving-copy-and-move-elision/

RVO Example - Where it does NOT work

0bj £3(bool v) {

Obj a, b;

return v 7 a : b; // copy/move constructor
}
0bj £40 {

0bj a;

return std::move(a); // force move constructor
I
0bj £50) {

static Obj a;

return a; // only copy constructor s possible
¥

37/59

RVO Example - Where it does NOT work

Obj

Obj

Obj

Obj

£6(0bj& a) {

return a; // copy constructor (a reference cannot be elided)

£7(const Obj& a) {

return a; // copy constructor (a reference cannot be elided)

£8(const Obj a) {

return a; // copy constructor (a const object cannot be elided)

£9(0bj&& a) {

return a; // copy constructor (the object is instantiated in the function)

38/59

Type Deduction

Type Deduction

When you call a template function, you may omit any template argument that
the compiler can determine or deduce (inferred) by the usage and context of
that template function call [IBM]

= The compiler tries to deduce a template argument by comparing the type of the
corresponding template parameter with the type of the argument used in the func-
tion call

= Similar to function default parameters, (any) template parameters can be deduced

only if they are at end of the parameter list

Full Story: IBM Knowledge Center

39/59

template<typename T>
int addi(T a, T b) { return a + b; }

template<typename T, typename R>
int add2(T a, R b) { return a + b; }

template<typename T, int B>
int add3(T a) { return a + B; }

template<int B, typename T>
int add4(T a) { return a + B; }

addi(1, 2); // ok
// add1(1, 2u); // the compiler expects the same type
add2(1, 2u); // ok (add2 is more generic)

add3<int, 2>(1); // "int" cannot be deduced
add4<2>(1); // ok

40/59

Type Deduction - Pass by-Reference

Type deduction with references

template<typename T>
void £(T& a) {}

template<typename T>
void g(const T& a) {}

int x = 3;

int& y = X;

const int& z = x;

tx); //T: oant

£f(y); // T: ant

£f(z); // T: const int // <-— !! 4t works...but it does not

gx); // T: int // for "f(int& a)"!!

g(y); // T: int // (only non-const references)

g(2); // T: int // <-- note the difference 41/59

Type Deduction - Pass by-Pointer

Type deduction with pointers

template<typename T>
void £(T* a) {}

template<typename T>
void g(const T* a) {}

intx* x = nullptr;

const int* y = nullptr;

auto Zz = nullptr;

f(x); // T: int

£(y); // T: const int

// f(z); // compile error, z: "nullptr_t != T*"
g(x); // T: int

g(y); // T: int <-- note the difference

// g(z); // compile error, z: "nullptr_t != T*" 42/59

Type Deduction - Pass by-Pointer

template<typename T>

void f(const T* a) {} // pointer to const-values

template<typename T>
void g(T* const a) {} // const pointer

int* X = nullptr;
const intx* y = nullptr;
int* const z = nullptr;

const int* const w = nullptr;
£(x); // T: int

f(y); // T: ant
f£(z); // T: int
g(x); // T: dnt
g(y); // T: const int
g(z); // T: int

43/59
g(w); // T: const int /

Type Deduction - Pass by-Value

Type deduction with values

template<typename T>
void £(T a) {}

template<typename T>
void g(const T a) {}

int X = 2;

3;

const int& z = y;

tx); //T: oant

f(y); // T: 4nt!! (drop const)

£(z); // T: int!! (drop const&)

gx); // T: int

gly); // T: int

g(2); // T: int!! (drop reference) 44/59

const int vy

Type Deduction - Pass by-Value

template<typename T>
void £(T a) {}

intx* X = nullptr;

const int* y = nullptr;

int* const z = x;

f(x); // T = intx

£(y); // T = const int*

£(z); // T = int*x !! (const drop)

45/59

Type Deduction - Array

Type deduction with arrays

template<typename T, int N>
void f(T (%array) [N1) {} // type and size deduced

template<typename T>
void g(T array) {}

int x[3] = {};

const int y[3] {};

f(x); // T: int, N: 3

f(y); // T: const int, N: 3
g(x); // T: int*

gly); // T: const int*

46/59

Type Deduction - Conflicts

template<typename T>
void add(T a, T b) {}

template<typename T, typename R>
void add(T a, R b) {}

template<typename T>
void add(T a, char b) {}

add(2, 3.0f); // call add(T, R)
add(2, 3); // call add(T, T)
add<int>(2, 3); // call add(T, T)
add<int, int>(2, 3); // call add(T, R)
add(2, 'b'); // call add(T, char) -> nearest match

47/59

Type Deduction - Conflicts

template<typename T, int N>
void f(T& array) {}

template<typename T>
void f(T* array) {}

int x[37:
template<typename T, int N>

void g(T& array) {3}

template<typename T>
void g(T array) {}

int x[3];
g(x); // call g(T) not g(T&) !!

48/59

auto Deduction

= auto x = copy by-value/by-const value

= auto& x = copy by-reference/by-const-refernce
= auto* x = copy by-pointer/by-const-pointer

= auto&& x = copy by-universal reference

= decltype(auto) x = automatic type deduction

int f1(int& x) { return x; }
int& £f2(int& x) { return x; }
auto £f3(int& x) { return x; }
decltype(auto) f4(int& x) { return x; }

int v = 3;

int x1 = £1(v);

int& x2 = f2(v);

// ant& 3 = f3(); // compile error 'z' 4is copied by-value

int& x4 = f4(v); 49/59

auto(x): Decay-copy

The problem: implement a function to remove the first element of a container

template<typename T>
void pop_vi(T& x) {
std: :remove(x.begin(), x.end(), x.front()); // undefined behavior!!

This is undefined behavior because

= x.front() returns a reference
= std::remove takes the element to remove by-const-reference

= std::remove modifies the container, invalidating iterators and references. The
reference must not be an element of the range [first, last)

50/59

auto(x): Decay-copy

Sub-optimal solutions:

template<typename T>

void pop_v2(T& x) {
auto tmp = x.front(); // lvalue copy
std: :remove(x.begin(), x.end(), tmp); // ok

i

template<typename T>
void pop_v3(T& x) {
using R = std::decay_t<decltype(x.front())>; // verbose/non-trivial solution

std: :remove(x.begin(), x.end(), R(x)); // ok, create a temporary (rvalue)
} // copy
// decltype(z. front()) -> retrieve the type of z.front()
// std::decay_t -> get the 'decay' type as pass by-value,
V4 e.g. 'const int' to 'int'

51/59

auto(x): Decay-copy

C++23 introduces auto(x) decay-copy utility to express the rvalue copy in a clear

way

template<typename T>
void pop_v4(T& x) {
std: :remove(x.begin(), x.end(), auto(x.front())); // ok, rvalue copy
} // equivalent to R(z)

auto(x): decay-copy in the language 52/59

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0849r8.html

const Correctness

const Correctness

const correctness refers to guarantee object/variable const consistency throughout
its lifetime and ensuring safety from unintentional modifications

References:

= Isocpp: const-correctness

= GotW: Const-Correctness

= Abseil: Meaningful ‘const’ in Function Declarations
= const is a contract

= Why const Doesn’t Make C Code Faster

= Constant Optimization?

53/59

https://isocpp.org/wiki/faq/const-correctness
http://www.gotw.ca/gotw/006.htm
https://abseil.io/tips/109
https://quuxplusone.github.io/blog/2019/01/03/const-is-a-contract/
https://theartofmachinery.com/2019/08/12/c_const_isnt_for_performance.html
http://www.gotw.ca/gotw/081.htm

Basic Rules 1/2

= const entities do not change their values at run-time. This does not imply that
they are evaluated at compile-time

= const Tx is different from T*x const . The first case means “the content does
not change”, while the later “the value of the pointer does not change”

= Pass by-const-value and by-value parameters imply the same function signature
= Return by-const-value and by-value have different meaning

= const_cast can break const-correctness

54/59

Basic Rules

const and member functions:

= const member functions do not change the internal status of an object

» mutable fields can be modified by a const member function (they should not
change the external view)
const and code optimization:

» const keyword purpose is for correctness (type safety), not for performance

= const may provide performance advantages in a few cases, e.g. non-trivial copy
semantic

55/59

Function Declarations Example

void f(int);

void f(const int); // the declaration is ezactly the same of
// "oid f(int)"!!

void f(int*);

void f(const intx); // different declaration

void f(int&);
void f(const int&); // different declaration

int £0;
// const int f(); // compile error conflicting declaration

56,/59

const Return Example

const int const_value = 3;

const int& f2() { return const_value; }

// int& 10 { return const_value; } // WRONG
int £f3() { return const_value; } // ok
struct A {
void f£() { cout << "non-const"; }
void f() const { cout << "const"; }
Ig

const A getA() { return A{}; }

auto a = getA(); // "a" is a copy
a.f(; // print "non-const"

getA().£0); // print "const"

57/59

struct Example

struct A {
int* ptr;
int value;

13

void f(A a) {

a.value = 3;
a.ptr[0] = 3;
}
void g(const A a)
// a.value = 3;
a.ptr[0] = 3;
}

A a{new int[10]};
f(a); // ok

// struct A_const { // equal to "const A"

// int* const ptr;
// const int walue;
/) F;

{ // the same with g(const A&)

// compile error
// "const" does mot apply to the "ptr" content!!

g(a); // compile error

58/59

Member Functions Example

struct A {
int value = 0;

int& £f1() { return value; }
const int& f2() { return value; }

// int& f30 const { return value; } // compile error, const violation

const int& f4() const { return value; }

int £5() const { return value; } // ok, return by-copy
const int f6() const { return value; } // ok, return by-copy

59/59

	Move Semantic
	lvalues and rvalues references
	Move Semantic
	std::move
	Class Declaration Semantic

	Universal Reference and Perfect Forwarding
	Universal Reference
	Reference Collapsing Rules
	Perfect Forwarding

	Value Categories
	&, && Ref-qualifiers and volatile Overloading
	&, && Ref-qualifiers Overloading
	volatile Overloading

	Copy Elision and RVO/NVRO
	Type Deduction
	Pass-by-Reference
	Pass-by-Pointer
	Pass-by-Value
	auto Deduction
	auto(x): Decay-copy

	const Correctness

