
Modern C++
Programming
20. Containers, Iterators,

Ranges, and Algorithms

Federico Busato
2026-01-06

Table of Contents

1 Containers and Iterators
Semantic

2 Sequence Containers
std::array

std::vector

std::deque

std::list

std::forward_list

1/69

Table of Contents

3 Associative Containers
std::set

std::map

std::multiset

4 Container Adaptors
std::stack, std::queue, std::priority_queue

5 Implement a Custom Iterator
Implement a Simple Iterator

2/69

Table of Contents

6 Iterator Notes

7 Iterator Utility Methods
std::advance, std::next

std::prev, std::distance

Container Access Methods

Iterator Traits

3/69

Table of Contents

8 Algorithms Library
std::find_if, std::sort

std::accumulate, std::generate, std::remove_if

4/69

Table of Contents

9 C++20 Ranges
Key Concepts

Range View

Range Adaptor

Range Factory

Range Algorithms

Range Actions

5/69

Containers and
Iterators

Containers and Iterators

Container
A container is a class, a data structure, or an abstract data type, whose instances
are collections of other objects
• Containers store objects following specific access rules

Iterator
An iterator is an object allowing to traverse a container
• Iterators are a generalization of pointers

• A pointer is the simplest iterator, and it supports all its operations

C++ Standard Template Library (STL) is strongly based on containers and
iterators 6/69

Reasons to use Standard Containers

• STL containers eliminate redundancy, and save time avoiding writing your own
code (productivity)

• STL containers are implemented correctly, and they do not need to spend time to
debug (reliability)

• STL containers are well-implemented and fast

• STL containers do not require external libraries

• STL containers share common interfaces, making it simple to utilize different
containers without looking up member function definitions

• STL containers are well-documented and easily understood by other developers,
improving the understandability and maintainability

• STL containers are thread safe. Sharing objects across threads preserve the
consistency of the container 7/69

Container Properties

C++ Standard Template Library (STL) Containers have the following properties:

• Default constructor

• Destructor

• Copy constructor and assignment (deep copy)

• Iterator methods begin() , end()

• Support std::swap

• Content-based and order equality (==, !=)

• Lexicographic order comparison (>, >=, <, <=)

• size() ∗, empty() , and max_size() methods
∗ except for std::forward_list

8/69

Iterator Concept

STL containers provide the following methods to get iterator objects:

• begin() returns an iterator pointing to the first element

• end() returns an iterator pointing to the end of the container (i.e. the element after the
last element)

There are different categories of iterators and each of them supports a subset of the
following operations:

Operation Example

Read *it
Write *it =
Increment it++
Decrement it–
Comparison it1 < it2
Random access it + 4 , it[2] 9/69

Iterator Categories/Tags

10/69

Iterator Semantic 1/2

Iterator
• Copy Constructible It(const It&)
• Copy Assignable It operator=(const It&)

• Destructible ∼X()
• Dereferenceable It_value& operator*()

• Pre-incrementable It& operator++()

Input/Output Iterator
• Satisfy Iterator
• Equality bool operator==(const It&)

• Inequality bool operator!=(const It&)

• Post-incrementable It operator++(int)

Forward Iterator
• Satisfy Input/Output Iterator
• Default constructible It() 11/69

Iterator Semantics 2/2

Bidirectional Iterator

• Satisfy Forward Iterator
• Pre/post-decrementable It& operator- -(), It operator- -(int)

Random Access Iterator

• Satisfy Bidirectional Iterator

• Addition/Subtraction
void operator+(const It& it) , void operator+=(const It& it) ,
void operator-(const It& it) , void operator-=(const It& it)

• Comparison
bool operator<(const It& it) , bool operator>(const It& it) ,
bool operator<=(const It& it) , bool operator>=(const It& it)

• Subscripting It_value& operator[](int index)

anderberg.me/2016/07/04/c-custom-iterators/
12/69

anderberg.me/2016/07/04/c-custom-iterators/

Sequence Containers

Overview

Sequence containers are data structures storing objects of the same data type in a
linear mean manner

The STL Sequence Container types are:

• std::array provides a fixed-size contiguous array (on stack)

• std::vector provides a dynamic contiguous array (constexpr in C++20)

• std::list provides a double-linked list

• std::deque provides a double-ended queue (implemented as array-of-array)

• std::forward_list provides a single-linked list

While std::string is not included in most container lists, it actually meets the requirements
of a Sequence Container

embeddedartistry.com
13/69

https://embeddedartistry.com/blog/2017/8/2/an-overview-of-c-stl-containers

std::array

Using std::array instead of raw arrays

Copy semantic, e.g. return value of a function, stored in container, etc.
Do not decay to a pointer, prevent function overloading bugs
Out-of-bound checks in debug mode if provided by the standard library
Allow zero-size arrays
Increase compile-time/binary size 14/69

std::vector

Other methods:
• resize() resizes the allocated elements of the container
• capacity() number of allocated elements
• reserve() resizes the allocated memory of the container (not size)
• shrink_to_fit() reallocate to remove unused capacity
• clear() removes all elements from the container (no reallocation) 15/69

std::deque

Other methods:
• resize() resizes the allocated elements of the container
• shrink_to_fit() reallocate to remove unused capacity
• clear() removes all elements from the container (no reallocation) 16/69

std::list

Other methods:
• resize() resizes the allocated elements of the container
• shrink_to_fit() reallocate to remove unused capacity
• clear() removes all elements from the container (no reallocation)
• remove() removes all elements satisfying specific criteria
• reverse() reverses the order of the elements
• unique() removes all consecutive duplicate elements
• sort() sorts the container elements

17/69

std::forward_list

Other methods:
• resize() resizes the allocated elements of the container
• shrink_to_fit() reallocate to remove unused capacity
• clear() removes all elements from the container (no reallocation)
• remove() removes all elements satisfying specific criteria
• reverse() reverses the order of the elements
• unique() removes all consecutive duplicate elements
• sort() sorts the container elements 18/69

Supported Operations and Complexity

CONTAINERS operator[]/at front back

std::array O (1) O (1) O (1)
std::vector O (1) O (1) O (1)
std::list O (1) O (1)
std::deque O (1) O (1) O (1)
std::forward_list O (1)

CONTAINERS
push_front

pop_front

push_back

pop_back

insert(it)

erase(it)

std::array
std::vector O (1)∗ O (1)∗ O (n) O (n)
std::list O (1) O (1) O (1) O (1) O (1) O (1)
std::deque O (1)∗ O (1) O (1) O (1) O (1)∗/O (n)† O (1)
std::forward_list O (1) O (1) O (1) O (1)
∗Amortized time †Worst case (middle insertion) 19/69

std::array example
include <algorithm> // std::sort
include <array>
// std::array supports initialization only through initialization list
std::array<int, 3> arr1 = { 5, 2, 3 };
std::array<int, 4> arr2 = { 1, 2 }; // [3]: 0, [4]: 0
// std::array<int, 3> arr3 = { 1, 2, 3, 4 }; // compiler error
std::array<int, 3> arr4(arr1); // copy constructor
std::array<int, 3> arr5 = arr1; // assign operator

arr5.fill(3); // equal to { 3, 3, 3 }
std::sort(arr1.begin(), arr1.end()); // arr1: 2, 3, 5
cout << (arr1 >= arr5); // true

cout << sizeof(arr1); // 12
cout << arr1.size(); // 3
for (const auto& it : arr1)

cout << it << ", "; // 2, 3, 5
cout << arr1[0]; // 2
cout << arr1.at(0); // 2, throw if the index is not within the range
cout << arr1.data()[0]; // 2 (raw array) 20/69

std::vector example
include <vector>
include <algorithm> // std::fill

std::vector<int> vec1 { 2, 3, 4 };
std::vector<std::string> vec2 = { "abc", "efg" };
std::vector<int> vec3(2); // [0, 0]
std::vector<int> vec4{2}; // [2]
std::vector<int> vec5(5, -1); // [-1, -1, -1, -1, -1]

std::fill(vec5.begin(), vec5.end(), 3); // equal to { 3, 3, 3, 3, 3 }
cout << sizeof(vec1); // 24
cout << vec1.size(); // 3
for (const auto& it : vec1)

cout << it << ", "; // 2, 3, 4

cout << vec1[0]; // 2
cout << vec1.at(0); // 2 (bound check)
cout << vec1.data()[0] // 2 (raw array)
vec1.push_back(5); // [2, 3, 4, 5]

21/69

std::list example

include <list>
include <algorithm> // std::fill

std::list<int> list1 { 2, 3, 2 };
std::list<std::string> list2 = { "abc", "efg" };
std::list<int> list3(2); // [0, 0]
std::list<int> list4{2}; // [2]
std::list<int> list5(2, -1); // [-1, -1]
std::fill(list5.begin(), list5.end(), 3); // [3, 3]

list1.push_back(5); // [2, 3, 2, 5]
list1.sort(); // [2, 2, 3, 5]
list1.merge(list5); // [2, 2, 3, 3, 3, 5] merge two sorted lists
list1.remove(2); // [-1, -1, 3, 5]
list1.unique(); // [-1, 3, 5]
list1.reverse(); // [5, 3, -1]

22/69

std::deque example

include <deque>
include <algorithm> // std::fill

std::deque<int> queue1 { 2, 3, 2 };
std::deque<std::string> queue2 = { "abc", "efg" };
std::deque<int> queue3(2); // [0, 0]
std::deque<int> queue4{2}; // [2]
std::deque<int> queue5(2, -1); // [-1, -1]
std::fill(queue5.begin(), queue5.end(), 3); // [3, 3]

queue1.push_front(5); // [5, 2, 3, 2]
queue1[0]; // retuns 5

23/69

std::forward_list example

include <forward_list>
include <algorithm> // std::fill

std::forward_list<int> flist1 { 2, 3, 2 };
std::forward_list<std::string> flist2 = { "abc", "efg" };
std::forward_list<int> flist3(2); // [0, 0]
std::forward_list<int> flist4{2}; // [2]
std::forward_list<int> flist5(2, -1); // [-1, -1]
std::fill(flist5.begin(), flist5.end(), 4); // [4, 4]

flist1.push_front(5); // [5, 2, 3, 2]
flist1.insert_after(flist1.begin(), 0); // [5, 0, 2, 3, 2]
flist1.erase_after(flist1.begin()); // [5, 2, 3, 2]
flist1.remove(2); // [5, 3, 3]
flist1.unique(); // [5, 3]
flist1.reverse(); // [3, 5]
flist1.sort(); // [3, 5]
flist1.merge(flist5); // [3, 4, 4, 5] merge two sorted lists

24/69

Associative
Containers

Overview

An associative container is a collection of elements not necessarily indexed with
sequential integers and that supports efficient retrieval of the stored elements through
keys

Keys are unique

• std::set is a collection of sorted unique elements (operator<)
• std::unordered_set is a collection of unsorted unique keys
• std::map is a collection of unique <key, value> pairs, sorted by keys

• std::unordered_map is a collection of unique <key, value> pairs, unsorted

Multiple entries for the same key are permitted

• std::multiset is a collection of sorted elements (operator<)
• std::unordered_multiset is a collection of unsorted elements
• std::multimap is a collection of <key, value> pairs, sorted by keys

• std::unordered_multimap is a collection of <key, value> pairs

25/69

Internal Representation

Sorted associative containers are typically implemented using red-black trees, while
unordered associative containers (C++11) are implemented using hash tables

Red-Black Tree Hash Table
26/69

Supported Operations and Complexity

CONTAINERS

insert
erase

count
find lower_bound

upper_bound

Ordered Containers O (log(n)) O (log(n)) O (log(n)) O (log(n)) O (log(n))

Unordered Containers O (1)∗ O (1)∗ O (1)∗ O (1)∗

∗ O (n) worst case

• count() returns the number of elements with key equal to a specified argument
• find() returns the element with key equal to a specified argument
• lower_bound() returns an iterator pointing to the first element that is not less than

key
• upper_bound() returns an iterator pointing to the first element that is greater than key

27/69

Other Methods

Ordered/Unordered containers:

• equal_range() returns a range containing all elements with the given key

std::map, std::unordered_map

• operator[]/at() returns a reference to the element having the specified key in the
container.

• operator[] if the key is not found, it returns a new element

• at() if the key is not found, raises an exception

Unordered containers:

• bucket_count() returns the number of buckets in the container

• reserve() sets the number of buckets to the number needed to accommodate at least
count elements without exceeding maximum load factor and rehashes the container 28/69

std::set example

include <set>

std::set<int> set1 { 5, 2, 3, 2, 7 };
std::set<int> set2 = { 2, 3, 2 };
std::set<std::string> set3 = { "abc", "efg" };
std::set<int> set4; // empty set

set2.erase(2); // [3]
set3.insert("hij"); // ["abc", "efg", "hij"]
for (const auto& it : set1)

cout << it << " "; // 2, 3, 5, 7 (sorted)

auto search = set1.find(2); // iterator
cout << search != set1.end(); // true
auto it = set1.lower_bound(4);
cout << *it; // 5
set1.count(2); // 1, note: it can only be 0 or 1
auto it_pair = set1.equal_range(2); // iterator between [2, 3)

29/69

std::map example

include <map>

std::map<std::string, int> map1 { {"bb", 5}, {"aa", 3} };
std::map<double, int> map2; // empty map

cout << map1["aa"]; // prints 3
map1["dd"] = 3; // insert <"dd", 3>
map1["dd"] = 7; // change <"dd", 7>
cout << map1["cc"]; // insert <"cc", 0>
for (const auto& it : map1)

cout << it.second << " "; // 3, 5, 0, 7

map1.insert({"jj", 1}); // insert pair
auto search = map1.find("jj"); // iterator
cout << (search != map1.end()); // true
auto it = map1.lower_bound("bb");
cout << (*it).second; // 5

30/69

std::multiset example

include <set> // std::multiset

std::multiset<int> mset1 {1, 2, 5, 2, 2}; // 1, 2, 2, 2, 5
std::multiset<double> mset2; // empty set

mset1.insert(5);
for (const auto& it : mset1)

cout << it << " "; // 1, 2, 2, 2, 5, 5
cout << mset1.count(2); // 3

auto it = mset1.find(5); // iterator
cout << *it; // 5

it = mset1.lower_bound(4);
cout << *it; // 5

31/69

Container Adaptors

Overview

Container adaptors are interfaces for reducing the number of functionalities normally
available in a container

The underlying container of a container adaptors can be optionally specified in the
declaration

The STL Container Adaptors are:

• std::stack LIFO data structure
default underlying container: std::deque

• std::queue FIFO data structure
default underlying container: std::deque

• std::priority_queue (max) priority queue
default underlying container: std::vector

32/69

Container Adaptors Methods

std::stack interface for a FILO (first-in, last-out) data structure
• top() accesses the top element
• push() inserts element at the top
• pop() removes the top element

std::queue interface for a FIFO (first-in, first-out) data structure
• front() access the first element
• back() access the last element
• push() inserts element at the end
• pop() removes the first element

std::priority_queue interface for a priority queue data structure (lookup to the
largest element by default)

• top() accesses the top element
• push() inserts an element on the proper, sorted position
• pop() removes the first/top element 33/69

Container Adaptor Examples

include <stack> // <--
include <queue> // <-- also include priority_queue

std::stack<int> stack1;
stack1.push(1); stack1.push(4); // [1, 4]
stack1.top(); // 4
stack1.pop(); // [1]

std::queue<int> queue1;
queue1.push(1); queue1.push(4); // [1, 4]
queue1.front(); // 1
queue1.pop(); // [4]

std::priority_queue<int> pqueue1;
pqueue1.push(1); pqueue1.push(5); pqueue1.push(4); // [5, 4, 1]
pqueue1.top(); // 5
pqueue1.pop(); // [4, 1]

34/69

Implement a Custom
Iterator

Implement a Simple Iterator 1/6

Goal: implement a simple iterator to iterate over a List of elements:

include <iostream>
include <algorithm>
// !! List implementation here

int main() {
List list;
list.push_back(2);
list.push_back(4);
list.push_back(7);
std::cout << *std::find(list.begin(), list.end(), 4); // print 4

for (const auto& it : list) // range-based loop
std::cout << it << " "; // 2, 4, 7

}

Range-based loops require: begin() , end() , pre-increment ++it , not equal comparison
it != end() , dereferencing *it 35/69

Implement a Simple Iterator (List declaration) 2/6

using value_t = int;

struct List {
struct Node { // Internal Node Structure

value_t _value; // Node value
Node* _next; // Pointer to next node

};
Node* _head { nullptr }; // head of the list
Node* _tail { nullptr }; // tail of the list

void push_back(const value_t& value); // insert a value at the end

// !! here we have to define the List iterator "It"

It begin() { return It{_head}; } // begin of the list
It end() { return It{nullptr}; } // end of the list

};
36/69

Implement a Simple Iterator (List definition) 3/6

void List::push_back(const value_t& value) {
auto new_node = new Node{value, nullptr};
if (_head == nullptr) { // empty list

_head = new_node; // head is updated
_tail = _head;

return;
}
assert(_tail != nullptr);
_tail->_next = new_node; // add new node at the end
_tail = new_node; // tail is updated

}

37/69

Implement a Simple Iterator (Iterator declaration) 4/6

struct It {
Node* _ptr; // internal pointer

It(Node* ptr); // Constructor

value_t& operator*(); // Deferencing

// Not equal -> stop traversing
friend bool operator!=(const It& itA, const It& itB);

It& operator++(); // Pre-increment

It operator++(int); // Post-increment

// !! Type traits here
};

38/69

Implement a Simple Iterator (Iterator definition) 5/6

List::It::It(Node* ptr) :_ptr(ptr) {}

value_t& Lis::It::operator*() { return _ptr->_value; }

bool operator!=(const It& itA, const It& itB) {
return itA._ptr != itB._ptr;

}

List::It& List::It::operator++() {
_ptr = _ptr->_next;
return *this;

}
List::It List::It::operator++(int) {

auto tmp = *this;
++(*this);
return tmp;

}
39/69

Implement a Simple Iterator (Type Traits) 6/6

The type traits of an iterator describe its properties, e.g. the type of the value held,
and they are widely used in the std algorithms

std::iterator class template defines the type traits for an iterator. It has been
deprecated in C++17, so users need to provide the type traits explicitly

include <iterator>

// !! Type traits
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = value_t;
using pointer = value_t*;
using reference = value_t&;

internalpointers.com/post/writing-custom-iterators-modern-cpp
Preparation for std::iterator Being Deprecated 40/69

https://internalpointers.com/post/writing-custom-iterators-modern-cpp
https://stackoverflow.com/questions/37031805/preparation-for-stditerator-being-deprecated

Iterator Notes

Common Errors

Modify a container with a “active” iterators

include <vector>

std::vector<int> vec{1, 2, 3, 4, 5};
for (auto x : vec)

vec.push_back(x); // iterator invalidation!!

41/69

Iterator Utility
Methods

Iterator Operations 1/2

• std::advance(InputIt& it, Distance n)
Increments a given iterator it by n elements

- InputIt must support input iterator requirements
- Modifies the iterator
- Returns void
- More general than adding a value it + 4
- No performance loss if it satisfies random access iterator requirements

• std::next(ForwardIt it, Distance n) C++11
Returns the n-th successor of the iterator

- ForwardIt must support forward iterator requirements
- Does not modify the iterator
- More general than adding a value it + 4
- The compiler should optimize the computation if it satisfies random access iterator

requirements
- Supports negative values if it satisfies bidirectional iterator requirements 42/69

Iterator Operations 2/2

• std::prev(BidirectionalIt it, Distance n) C++11
Returns the n-th predecessor of the iterator

- InputIt must support bidirectional iterator requirements
- Does not modify the iterator
- More general than adding a value it + 4
- The compiler should optimize the computation if it satisfies random access iterator

requirements

• std::distance(InputIt start, InputIt end)
Returns the number of elements from start to last

- InputIt must support input iterator requirements
- Does not modify the iterator
- More general than adding iterator difference it2 - it1
- The compiler should optimize the computation if it satisfies random access iterator

requirements
- C++11 Supports negative values if it satisfies random iterator requirements 43/69

Examples

include <iterator>
include <iostream>
include <vector>
include <forward_list>
int main() {

std::vector<int> vector { 1, 2, 3 }; // random access iterator

auto it1 = std::next(vector.begin(), 2);
auto it2 = std::prev(vector.end(), 2);
std::cout << *it1; // 3
std::cout << *it2; // 2
std::cout << std::distance(it2, it1); // 1

std::advance(it2, 1);
std::cout << *it2; // 3

//--------------------------------------
std::forward_list<int> list { 1, 2, 3 }; // forward iterator

// std::prev(list.end(), 1); // compile error
}

44/69

Container Access Methods

C++11 provides a generic interface for containers, plain arrays, and std::initializer_list
to access to the corresponding iterator.
Standard method .begin() , .end() etc., are not supported by plain array and initializer list

• std::begin begin iterator
• std::cbegin begin const iterator
• std::rbegin begin reverse iterator
• std::crbegin begin const reverse iterator

• std::end end iterator
• std::cend end const iterator
• std::rend end reverse iterator
• std::crend end const reverse iterator

include <iterator>
include <iostream>

int main() {
int array[] = { 1, 2, 3 };

for (auto it = std::crbegin(array); it != std::crend(array); it++)
std::cout << *it << ", "; // 3, 2, 1

}

45/69

Iterator Traits 1/2

std::iterator_traits allows retrieving iterator properties

• difference_type a type that can be used to identify distance between iterators

• value_type the type of the values that can be obtained by dereferencing the
iterator. This type is void for output iterators

• pointer defines a pointer to the type iterated over value_type

• reference defines a reference to the type iterated over value_type

• iterator_category the category of the iterator. Must be one of iterator
category tags

46/69

Iterator Traits 2/2

include <iterator>

template<typename T>
void f(const T& list) {

using D = std::iterator_traits<T>::difference_type; // D is std::ptrdiff_t
// (pointer difference)
// (signed size_t)

using V = std::iterator_traits<T>::value_type; // V is double
using P = std::iterator_traits<T>::pointer; // P is double*
using R = std::iterator_traits<T>::reference; // R is double&

// C is BidirectionalIterator
using C = std::iterator_traits<T>::iterator_category;

}

int main() {
std::list<double> list;
f(list);

} 47/69

Algorithms Library

STL Algorithms Library

C++ STL Algorithms library

The algorithm library provides functions for a variety of purposes (e.g. searching,
sorting, counting, manipulating) that operate on ranges of elements

• STL Algorithm library allow great flexibility which makes included functions
suitable for solving real-world problem

• The user can adapt and customize the STL through the use of function objects

• Library functions work independently on containers and plain array

• Many of them support constexpr in C++20

48/69

Examples 1/2
include <algorithm>
include <vector>
struct Unary {

bool operator()(int value) {
return value <= 6 && value >= 3;

}
};
struct Descending {

bool operator()(int a, int b) {
return a > b;

}
};

int main() {
std::vector<int> vector { 7, 2, 9, 4 };
// returns an iterator pointing to the first element in the range[3, 6]
std::find_if(vector.begin(), vector.end(), Unary());
// sort in descending order : { 9, 7, 4, 2 };
std::sort(vector.begin(), vector.end(), Descending());

} 49/69

Examples 2/2

include <algorithm> // it includes also std::multiplies
include <vector>
include <cstdlib> // std::rand
include <numeric> // std::accumulate
struct Unary {

bool operator()(int value) { return value > 100; }
};
int main() {

std::vector<int> vector { 7, 2, 9, 4 };
int product = std::accumulate(vector.begin(), vector.end(), // product = 504

1, std::multiplies<int>());
std::generate(vector.begin(), vector.end(), std::rand);
// now vector has 4 random values

// remove all values > 100 using Erase-remove idiom
auto new_end = std::remove_if(vector.begin(), vector.end(), Unary());
// elements are removed, but vector size is still unchanged
vector.erase(new_end, vector.end()); // shrink vector to finish removal

} 50/69

STL Algorithms Library (Possible Implementations)

std::find
template<class InputIt, class T>
InputIt find(InputIt first, InputIt last, const T& value) {

for (; first != last; ++first) {
if (*first == value)

return first;
}
return last;

}

std::generate
template<class ForwardIt, class Generator>
void generate(ForwardIt first, ForwardIt last, Generator g) {

while (first != last)
*first++ = g();

}
51/69

Algorithm Library 1/5

• swap(v1, v2) Swaps the values of two objects

• min(x, y) Finds the minimum value between x and y

• max(x, y) Finds the maximum value between x and y

• min_element(begin, end) (returns a pointer)

Finds the minimum element in the range [begin, end)

• max_element(begin, end) (returns a pointer)

Finds the maximum element in the range [begin, end)

• minmax_element(begin, end) C++11 (returns pointers <min,max>)

Finds the minimum and the maximum element in the range [begin, end)

en.cppreference.com/w/cpp/algorithm
52/69

Algorithm Library 2/5

• equal(begin1, end1, begin2)
Determines if two sequences are the same in
[begin1, end1), [begin2, begin2 + end1 - begin1)

• mismatch(begin1, end1, begin2) (returns pointers <pos1,pos2>)

Finds the first position where two ranges differ in
[begin1, end1), [begin2, begin2 + end1 - begin1)

• find(begin, end, value) (returns a pointer)

Finds the first element in the range [begin, end) equal to value

• count(begin, end, value)
Counts the number of elements in the range [begin, end) equal to value

53/69

Algorithm Library 3/5

• sort(begin, end) (in-place)
Sorts the elements in the range [begin, end) in ascending order

• merge(begin1, end1, begin2, end2, output)
Merges two sorted ranges [begin1, end1), [begin2, end2), and store the results in
[output, output + end1 - start1)

• unique(begin, end) (in-place)
Removes consecutive duplicate elements in the range [begin, end)

• binary search(begin, end, value)
Determines if an element value exists in the (sorted) range [begin, end)

• accumulate(begin, end, value)
Sums up the range [begin, end) of elements with initial value (common case equal to
zero)

• partial_sum(begin, end, output) (in-place)
Computes the inclusive prefix-sum of the range [begin, end) 54/69

Algorithm Library 4/5

• fill(begin, end, value)
Fills a range of elements [begin, end) with value

• iota(begin, end, value) C++11
Fills the range [begin, end) with successive increments of the starting value

• copy(begin1, end1, begin2)
Copies the range of elements [begin1, end1) to the new location
[begin2, begin2 + end1 - begin1)

• swap_ranges(begin1, end1, begin2)
Swaps two ranges of elements
[begin1, end1), [begin2, begin2 + end1 - begin1)

• remove(begin, end, value) (in-place)
Removes elements equal to value in the range [begin, end)

• includes(begin1, end1, begin2, end2)
Checks if the (sorted) set [begin1, end1) is a subset of [begin2, end2) 55/69

Algorithm Library 5/5

• set_difference(begin1, end1, begin2, end2, output)
Computes the difference between two (sorted) sets

• set_intersection(begin1, end1, begin2, end2, output)
Computes the intersection of two (sorted) sets

• set_symmetric_difference(begin1, end1, begin2, end2, output)
Computes the symmetric difference between two (sorted) sets

• set_union(begin1, end1, begin2, end2, output)
Computes the union of two (sorted) sets

• make_heap(begin, end) Creates a max heap out of the range of elements

• push_heap(begin, end) Adds an element to a max heap

• pop_heap(begin, end) Remove an element (top) to a max heap
56/69

Algorithm Library - Other Examples

include <algorithm>

int a = std::max(2, 5); // a = 5
int array1[] = {7, 6, -1, 6, 3};
int array2[] = {8, 2, 0, 3, 7};

int b = *std::max_element(array1, array1 + 5); // b = 7
auto c = std::minmax_element(array1, array1 + 5);
//*c.first = -1, *c.second = 7
bool d = std::equal(array1, array1 + 5, array2); // d = false

std::sort(array1, array1 + 5); // [-1, 3, 6, 6, 7]
std::unique(array1, array1 + 5); // [-1, 3, 6, 7]
int e = std::accumulate(array1, array1 + 4, 0); // 15
std::partial_sum(array1, array1 + 4, array1); // [-1, 2, 8, 15]
std::iota(array1, array1 + 5, 2); // [2, 3, 4, 5, 6]
std::make_heap(array2, array2 + 5); // [8, 7, 0, 3, 2]

57/69

C++20 Ranges

C++20 Ranges

Ranges are an abstraction that allows to operate on elements of data structures
uniformly. They are an extension of the standard iterators

A range is an object that provides begin() and end() methods (an iterator + a
sentinel)

begin() returns an iterator, which can be incremented until it reaches end()

template<typename T>
concept range = requires(T& t) {

ranges::begin(t);
ranges::end(t);

};

• An Overview of Standard Ranges
• Range, Algorithms, Views, and Actions - A Comprehensive Guide
• Eric Nielbler - Range v3
• Range by Example

58/69

https://raw.githubusercontent.com/CppCon/CppCon2019/master/Presentations/an_overview_of_standard_ranges/an_overview_of_standard_ranges__tristan_brindle__cppcon_2019.pdf
https://raw.githubusercontent.com/CppCon/CppCon2019/master/Presentations/range_algorithms_views_and_actions_a_comprehensive_guide/range_algorithms_views_and_actions_a_comprehensive_guide__dvir_yitzchaki__cppcon_2019.pdf
https://github.com/ericniebler/range-v3
https://github.com/JeffGarland/range_by_example

Key Concepts

Range View is a range defined on top of another range

Range Adaptors are utilities to transform a range into a view

Range Factory is a view that contains no elements

Range Algorithms are library-provided functions that directly operate on ranges
(corresponding to std iterator algorithm)

Range Action is an object that modifies the underlying data of a range

59/69

Range View 1/2

A range view is a range defined on top of another range that transforms the
underlying way to access internal data

• Views do not own any data

• copy, move, assignment operations perform in constant time

• Views are composable

• Views are lazy evaluated

Syntax:

range/view | view

60/69

Range View 2/2

include <iostream>
include <ranges>
include <vector>

std::vector<int> v{1, 2, 3, 4};

for (int x : v | std::views::reverse)
std::cout << x << " "; // print: "4, 3, 2, 1"

auto rv2 = v | std::views::reverse; // cheap, it does not copy "v"

auto rv3 = v | std::views::drop(2) | // drop the first two elements
std::views::reverse;

for (int x : rv3) // lazy evaluated
std::cout << x << " "; // print: "4, 3"

61/69

Range Adaptor 1/2

Range Adaptors are utilities to transform a range into a view with custom behaviors

• Range adaptors produce lazily evaluated views
• Range adaptors can be chained or composed (pipeline)

Syntax:

adaptor(range/view, args...)
adaptor(args...)(range/view)
range/view | adaptor(args...) // preferred syntax

62/69

Range Adaptor 2/2

include <ranges>
include <vector>

std::vector<int> v{1, 2, 3, 4};

for (int x : std::ranges::reverse_view(v)) // adaptor
cout << x << " "; // print: "4, 3, 2, 1"

auto rv2 = std::ranges::reverse_view(v); // cheap, it does not copy "v"

auto rv3 = std::ranges::reverse_view(
std::ranges::drop_view(2, v)); // drop the first two elements

for (int x : rv3) // lazy evaluated
cout << x << " "; // print: "4, 3"

63/69

Range Factory

Range Factory produces a view that contains no elements

include <ranges>

for (int x : std::ranges::iota_view{1, 4}) // factory (adaptor)
cout << x << " "; // print: "1, 2, 3, 4"

for (int x : std::views::repeat('a', 4)) // factory (view)
cout << x << " "; // print: "a, a, a, a"

64/69

Range Algorithms

The range algorithms are almost identical to the corresponding iterator-pair
algorithms in the std namespace, except that they have concept-enforced constraints
and accept range arguments

• Range algorithms are immediately evaluated
• Range algorithms can work directly on containers (begin() , end() are no

more explicitly needed) and view

include <algorithm>
include <vector>

std::vector<int> vec{3, 2, 1};
std::ranges::sort(vec); // 1, 2, 3

Std Library - Range Algorithms 65/69

https://en.cppreference.com/w/cpp/header/algorithm

Algorithm Operators and Projections

include <algorithm>
include <vector>

struct Data {
char value1;
int value2;

};

std::vector<int> vec{4, 2, 5};
auto cmp = [](auto a, auto b) { return a > b; }; // Unary boolean predicate
std::ranges::sort(vec, cmp); // 5, 4, 2

std::vector<Data> vec2{{'a', 4}, {'b', 2}, {'c', 5}};
std::ranges::sort(vec2, {}, &Data::value2); // Projection: 2, 4, 5

// {'b', 2}, {'a', 4}, {'c', 5}

66/69

Algorithms and Views

// sum of the squares of the first 'count' numbers
auto sum_of_squares(int count) {

auto squares = std::views::iota(1, count) |
std::views::transform([](int x) { return x * x; });

return std::ranges::fold_left_first(squares, std::plus{});
}

67/69

Range Actions 1/2

The range actions mimic std algorithms and range algorithms adding the
composability property

• Range actions are eager evaluated
• Range algorithms work directly on ranges
• Not included in the std library

68/69

Range Actions 2/2

include <algorithm>
include <vector>

std::vector<int> vec{3, 5, 6, 3, 5}
// in-place
vec = vec | actions::sort // 3, 3, 5, 5, 6

| actions::unique; // 3, 5, 6

vec |= actions::sort // 3, 3, 5, 5, 6
| actions::unique; // 3, 5, 6

// out-of-place
auto vec2 = std::move(vec) | actions::sort // 3, 3, 5, 5, 6

| actions::unique; // 3, 5, 6

69/69

	Containers and Iterators
	Semantic

	Sequence Containers
	std::array
	std::vector
	std::deque
	std::list
	std::forward_list

	Associative Containers
	std::set
	std::map
	std::multiset

	Container Adaptors
	std::stack, std::queue, std::priority_queue

	Implement a Custom Iterator
	Implement a Simple Iterator

	Iterator Notes
	Iterator Utility Methods
	std::advance, std::next
	std::prev, std::distance
	Container Access Methods
	Iterator Traits

	Algorithms Library
	std::find_if, std::sort
	std::accumulate, std::generate, std::remove_if

	C++20 Ranges
	Key Concepts
	Range View
	Range Adaptor
	Range Factory
	Range Algorithms
	Range Actions

