Modern C4+
Programming

20. CONTAINERS, ITERATORS,
RANGES, AND ALGORITHMS

Federico Busato
2026-01-06

Table of Contents

Containers and lterators

m Semantic

Sequence Containers
m std::array
m std::vector
m std::deque
m std::list

m std::forward_list

1/69

Table of Contents

Associative Containers
m std: :set
m std: :map

m std::multiset

A Container Adaptors

m std::stack, std::queue, std::priority_queue

H Implement a Custom lterator

m Implement a Simple Iterator

2/69

Table of Contents

@ lterator Notes

Iterator Utility Methods
m std::advance, std: :next
m std::prev, std::distance
m Container Access Methods

m terator Traits

3/69

Table of Contents

B Algorithms Library
m std::find_if, std::sort

m std::accumulate, std::generate, std::remove_if

4/69

Table of Contents

B C++20 Ranges

m Key Concepts

Range View

Range Adaptor

Range Factory

Range Algorithms

m Range Actions

5/69

Containers and
Iterators

Containers and lterators

Container

A container is a class, a data structure, or an abstract data type, whose instances
are collections of other objects

= Containers store objects following specific access rules

An iterator is an object allowing to traverse a container
= [terators are a generalization of pointers

= A pointer is the simplest iterator, and it supports all its operations

C++ Standard Template Library (STL) is strongly based on containers and

iterators 6/69

Reasons to use Standard Containers

= STL containers eliminate redundancy, and save time avoiding writing your own
code (productivity)

= STL containers are implemented correctly, and they do not need to spend time to
debug (reliability)

= STL containers are well-implemented and fast

= STL containers do not require external libraries

= STL containers share common interfaces, making it simple to utilize different

containers without looking up member function definitions

= STL containers are well-documented and easily understood by other developers,

improving the understandability and maintainability

= STL containers are thread safe. Sharing objects across threads preserve the
consistency of the container 7/69

Container Properties

C++ Standard Template Library (STL) Containers have the following properties:

*

Default constructor

Destructor

Copy constructor and assignment (deep copy)
Iterator methods begin() , end()

Support std: :swap

Content-based and order equality (==, !=)

Lexicographic order comparison (>, >=, <,

<)

size() *, empty() , and max_size() methods

except for std: :forward_list

8/69

Iterator Concept

STL containers provide the following methods to get iterator objects:

= begin() returns an iterator pointing to the first element

= end() returns an iterator pointing to the end of the container (i.e. the element after the

last element)

There are different categories of iterators and each of them supports a subset of the

following operations:

Operation Example
Read *it
Write *it =
Increment ity
Decrement it-
Comparison itl < it2

Random access

it + 4, it[2]

9/69

Iterator Categories/Tags

Continouslterator
« contiguos storage

Randomlterator
* random access

Bidirectionallterator
» decrement

ForwardIterator
« increment (multiple)

Inputlterator
* read
* increment
(single)

Outputlterator
* write
10/69

Iterator Semantic

Iterator
= Copy Constructible It(const It&)
= Copy Assignable It operator=(const It&)
= Destructible ~X(O)
= Dereferenceable It_value& operatorx*()

= Pre-incrementable It& operator++()
Input/Output lterator

= Satisfy Iterator

= Equality bool operator==(const It&)

= |nequality bool operator!=(const It&)

= Post-incrementable It operator++(int)
Forward lterator

= Satisfy Input/Output Iterator

= Default constructible It() 11/69

Iterator Semantics

Bidirectional lterator

= Satisfy Forward Iterator
= Pre/post-decrementable It& operator--(), It operator--(int)

Random Access lterator

Satisfy Bidirectional Iterator

Addition /Subtraction

void operator+(const It& it) , void operator+=(const It& it) ,

void operator-(const It& it) , void operator-=(const It& it)

= Comparison
bool operator<(const It& it) , bool operator>(const It& it) ,

bool operator<=(const It& it) , bool operator>=(const It& it)

Subscripting It_value& operator[] (int index)

12/69
anderberg.me/2016/07/04/c-custom-iterators/

anderberg.me/2016/07/04/c-custom-iterators/

Sequence Containers

Sequence containers are data structures storing objects of the same data type in a

linear mean manner

The STL Sequence Container types are:

std:

std:

std:

std:

std:

:array provides a fixed-size contiguous array (on stack)

:vector provides a dynamic contiguous array (constexpr in C++20)
:list provides a double-linked list

:deque provides a double-ended queue (implemented as array-of-array)

:forward_list provides a single-linked list

While std::string is not included in most container lists, it actually meets the requirements

of a Sequence Container

13/69

embeddedartistry.com

https://embeddedartistry.com/blog/2017/8/2/an-overview-of-c-stl-containers

J'iN elements (fixed)—¢

obj | obj obj obj | obj | obj | obj

v vy v v v v v
Access random elements

Using std::array instead of raw arrays

7 Copy semantic, e.g. return value of a function, stored in container, etc.
% Do not decay to a pointer, prevent function overloading bugs

Y Out-of-bound checks in debug mode if provided by the standard library
2 Allow zero-size arrays

i Increase compile-time/binary size 14/69

Insert at
the end
Delete from obj
the end

obj | obj | obj | obj | obj | obj obj obj

v Y Y Y v v
Access random elements

Other methods:
= resize() resizes the allocated elements of the container
= capacity() number of allocated elements
= reserve() resizes the allocated memory of the container (not size)
= shrink_to_fit() reallocate to remove unused capacity

. . 15/69
= clear() removes all elements from the container (no reallocation) /

Insert at Insert at

the start Delete from the end

obj either end obj

N A ‘_¢

© obj ObJ obj | obj | obj | obj | obj Obl ol

~ IENRRTTTTTTTITE

v vy v v v
Access random elements

Other methods:

= resize() resizes the allocated elements of the container
= shrink_to_fit() reallocate to remove unused capacity
= clear() removes all elements from the container (no reallocation) 16/69

std::list

Insert at any position

v v

v
Only sequential access e . :I = N ES
ob ob ob ob ob
either direction <1 > feq ™ e Y e OP

4 4 4 A 4

Delete any element

Other methods:

= resize() resizes the allocated elements of the container

= shrink_to_fit() reallocate to remove unused capacity

= clear() removes all elements from the container (no reallocation)
= remove() removes all elements satisfying specific criteria

= reverse() reverses the order of the elements

= unique() removes all consecutive duplicate elements

, 17/69
= sort() sorts the container elements

::forward_list

Insert at any position

v v v

Only sequential access —> —> —> —>

yseq obj obj obj obj obj
forwards only

A A A 2

Delete any element’

Other methods:

resize() resizes the allocated elements of the container

shrink_to_fit() reallocate to remove unused capacity

clear () removes all elements from the container (no reallocation)

remove () removes all elements satisfying specific criteria

reverse() reverses the order of the elements

unique () removes all consecutive duplicate elements

sort () sorts the container elements 18/69

Supported Operations and Complexity

CONTAINERS operator[]/at front back

std::array O (1) 0(1) 0()

std::vector 0(1) o1 0(Q)

std::list o1 o)

std: :deque O(1) o1 o0()

std::forward_list 0(1)

SN X e
CONTAINERS 53° £0® i O G &
Q\ﬁ’“’ o® b 909‘“ - ©o® > 'xoe’et eﬁ,&eek‘

std::array
std::vector O (1)* O (1)* O (n) O (n)
std::list O(1) 0(1) O(1) o(1) O(1) 0(1)
std: :deque O (1)* 0(1) O(1) o@1) o@r/omt 0Q)
std::forward_list O (1) O (1) O (1) O(1)

*Amortized time TWorst case (middle insertion) 19/69

std: :array example

#include <algorithm> // std::sort

#include <array>

// std::array supports initialization only through initialization list
std::array<int, 3> arrl = { 5, 2, 3 };

std::array<int, 4> arr2 = { 1, 2 }; // [3]: 0, [4]: O
// std::array<int, 3> arr3 = { 1, 2, 3, 4 }; // compiler error
std::array<int, 3> arr4(arri); // copy comnstructor
std::array<int, 3> arr5 = arri; // assign operator
arr5.£fi11(3); // equal to { 3, 3, 3 }
std: :sort(arrl.begin(), arri.end()); // arri: 2, 3, 5
cout << (arrl >= arrh); // true
cout << sizeof(arrl); // 12
cout << arril.size(); // 3
for (const auto& it : arrl)

cout << it << ", "; // 2, 3, 5
cout << arr1[0]; // 2
cout << arrl.at(0); // 2, throw if the indez is mot within the range

cout << arri.data() [0]; // 2 (raw array) 20/69

std: :vector example

#1include <vector>
#include <algorithm> // std::fill

std: :vector<int> vecl {2, 3, 4 };

std: :vector<std::string> vec2 = { "abc", "efg" };

std: :vector<int> vec3(2); // [0, 0]

std: :vector<int> vec4{2}; /7 [2]

std: :vector<int> vec5(5, -1); // [-1, -1, -1, -1, -1]

std: :fill(vecb5.begin(), vecb.end(), 3); // equal to { 3, 3, 3, 3, 3 }

cout << sizeof(vecl); /7 24
cout << vecl.size(); // 3
for (const auto& it : vecl)

cout << it << ", "; /2, 3, 4
cout << vec1[0]; // 2
cout << vecl.at(0); // 2 (bound check)
cout << vecl.data()[0] // 2 (raw array)
vecl.push_back(5); // (2, 3, 4, 5]

21/69

std::1list example

#include <list>
#include <algorithm> // std::fill

std::1list<int> listl {2, 3,213
std::list<std::string> list2 = { "abc", "efg" };
std::list<int> 1ist3(2); // [0, 0]
std::1list<int> list4{2}; // [2]
std::1list<int> list5(2, -1); /7 [-1, -1]

std::£ill(list5.begin(), list5.end(), 3); // [3, 3]

listl.push_back(5); // (2, 3, 2, 5]

listl.sort(); // [2, 2, 3, 5]

listl.merge(list5); // [2, 2, 3, 3, 3, 5] merge two sorted lists
listl.remove(2); // [-1, -1, 3, 5]

listl.unique();) =, 8, &

listl.reverse(); // [5, 3, -1]

22/69

std: :deque example

#include <deque>
#include <algorithm> // std::fill

std: :deque<int> queuel {2, 3, 2}

std: :deque<std::string> queue2 = { "abc", "efg" };

std: :deque<int> queue3(2) ; // [0, 0]
std: :deque<int> queued{2}; /7 (2]

std: :deque<int> queue5(2, -1); /=10 =11

std::fill(queueb.begin(), queueb.end(), 3); // [3, 3]

queuel.push_front(5); B, By, 8, A
queuel [0] ; // retuns 5

23/69

orward_list example

#include <forward_list>
#include <algorithm> // std::fill

std: :forward_list<int> flistl {2, 3,213
std::forward_list<std::string> flist2 = { "abc", "efg" };
std: :forward_list<int> £1ist3(2); // [0, 0]
std: :forward_list<int> flist4{2}; // [2]
std::forward_list<int> flists(2, -1); // [-1, -1]

std::fill(flist5.begin(), flist5.end(), 4); // [4, 4]

flistl.push_front(5); /7[5, 2, 3, 2]
flistl.insert_after(flistl.begin(), 0); // [5, 0, 2, 3, 2]
flistl.erase_after(flistl.begin()); // [56, 2, 3, 2]

flistl.remove(2); // [5, 3, 3]

flistl.unique(); // [5, 3]

flistl.reverse(); // [3, 5]

flistl.sort(); // [3, 5]

flistl.merge(£flist5); // [3, 4, 4, 5] merge two sorted lists

24/69

Associative
Containers

An associative container is a collection of elements not necessarily indexed with

sequential integers and that supports efficient retrieval of the stored elements through
keys

Keys are unique

= std::set is a collection of sorted unique elements (operator<)
= std::unordered_set is a collection of unsorted unique keys
= std::map is a collection of unique <key, value> pairs, sorted by keys

= std::unordered_map is a collection of unique <key, value> pairs, unsorted

Multiple entries for the same key are permitted

= std::multiset is a collection of sorted elements (operator<)
= std::unordered _multiset is a collection of unsorted elements

= std::multimap is a collection of <key, value> pairs, sorted by keys 25/69

Internal Representation

Sorted associative containers are typically implemented using red-black trees, while
unordered associative containers (C+-+11) are implemented using hash tables

NIL 6 NIL NIL NIL NIL 22\

Red-Black Tree

) Keyl

Hash Function

Hash Table
Hash Table

Stored Value

/7

» Ob2

y Obj4

Lo

ﬁ Obj3
AN

J

/

26/69

Supported Operations and Complexity

XS
-vo
CONTAINERS ~ . . s &
59°° =% o B Y et

Ordered Containers O (log(n)) O (log(n)) O (log(n)) O (log(n)) O (log(n))
Unordered Containers o (1) o (1) o (1) o (1)

* O (n) worst case

count () returns the number of elements with key equal to a specified argument

find () returns the element with key equal to a specified argument

lower_bound() returns an iterator pointing to the first element that is not /ess than
key

upper_bound () returns an iterator pointing to the first element that is greater than key

27/69

Other Methods

Ordered/Unordered containers:

= equal_range() returns a range containing all elements with the given key

std::map, std::unordered_map

= operator[]/at() returns a reference to the element having the specified key in the
container.

= operator[] if the key is not found, it returns a new element

= at() if the key is not found, raises an exception

Unordered containers:
= bucket_count() returns the number of buckets in the container

= reserve() sets the number of buckets to the number needed to accommodate at least
count elements without exceeding maximum load factor and rehashes the container 28/69

std: :set example

#1include <set>

std: :set<int> setl {5, 2, 3, 2, 7 };
std: :set<int> set2 = { 2, 3, 2 };
std::set<std::string> set3 = { "abc", "efg" };
std: :set<int> set4d; // empty set
set2.erase(2); /[3]
set3.insert ("hij"); // ["abc", "efg", "hij"]
for (const auto& it : setl)

cout << it << " "; // 2, 3, 5, 7 (sorted)

auto
cout
auto
cout
setl.

auto

search = setl.find(2);
<< search != setl.end();

it = setl.lower_bound(4);
<< *it;

count (2);

it_pair = setl.equal_range(2);

// iterator
// true

// 5
// 1, note:
// iterator

it can only be 0 or 1
between [2, 3)

29/69

std: :map example

#1include <map>

std: :map<std::string, int> mapl { {"bb", 5}, {"aa", 3} };

std: :map<double, int> map2; // empty map
cout << mapi["aa"]; // prints 3
mapl["dd"] = 3; // insert <"dd", 3>
mapl["dd"] = 7; // change <"dd", 7>
cout << mapi["cc"]; // insert <"cc", 0>
for (const auto& it : mapl)

cout << it.second << " "; // 3, 5, 0, 7
mapl.insert({"jj", 1}); // insert pair
auto search = mapl.find("jj"); // iterator
cout << (search != mapl.end()); // true
auto it = mapl.lower_bound("bb");
cout << (*it).second; // 5

30/69

std: :multiset example

#include <set> // std::multiset

std: :multiset<int> msetl {1, 2, 5, 2, 2}; // 1, 2, 2, 2, &5
std: :multiset<double> mset2; // empty set

msetl.insert(5);
for (const auto& it : msetl)

cout << it << " ", // 1, 2, 2, 2, 5, b
cout << msetl.count(2); // 3
auto it = msetl.find(5); // iterator
cout << *it; // 5
it = msetl.lower_bound(4);
cout << *it; // 5

31/69

Container Adaptors

Container adaptors are interfaces for reducing the number of functionalities normally

available in a container

The underlying container of a container adaptors can be optionally specified in the
declaration

The STL Container Adaptors are:

= std::stack LIFO data structure
default underlying container: std: :deque

= std::queue FIFO data structure
default underlying container: std::deque

= std::priority_queue (max) priority queue

default underlying container: std: :vector
32/69

Container Adaptors Methods

std: :stack interface for a FILO (first-in, last-out) data structure
= top() accesses the top element
= push() inserts element at the top
= pop() removes the top element

std: :queue interface for a FIFO (first-in, first-out) data structure
= front() access the first element
= back() access the last element
= push() inserts element at the end
= pop() removes the first element

std: :priority_queue interface for a priority queue data structure (lookup to the
largest element by default)

= top() accesses the top element

= push() inserts an element on the proper, sorted position

= pop() removes the first/top element 33/69

Container Adaptor Examples

#1include <stack> // <=
#1include <queue> // <-— also include priority_queue

std: :stack<int> stackl;

stackl.push(1); stackl.push(4); // [1, 4]
stackl.top(); /7 4

stackl.pop(); /7 [1]

std: :queue<int> queuel;

queuel.push(1); queuel.push(4); // [1, 4]
queuel.front(; // 1

queuel.pop(); /7 4]

std: :priority_queue<int> pqueuel;

pqueuel.push(1); pqueuel.push(5); pqueuel.push(4); // [5, 4, 1]
pqueuel.top(); // 5

pqueuel.pop(); /7 4, 1]

34/69

Implement a Custom
Iterator

Implement a Simple Iterator

Goal: implement a simple iterator to iterate over a List of elements:

#include <iostream>
#include <algorithm>
// Il List implementation here

int main() {
List list;
list.push_back(2);
list.push_back(4);
list.push_back(7);
std::cout << *std::find(list.begin(), list.end(), 4); // print 4

for (const auto& it : list) // range-based loop

std::cout << it << " ", /2, 4, 7

Range-based loops require: begin() , end() , pre-increment ++it , not equal comparison

it !'= end() , dereferencing *it 35/69

Implement a Simple lterator (List declaration)

using value_t = int;

struct List {

struct Node {
value_t _value;

Node* _next;

F3

// Internal Node Structure
// Node walue

// Pointer to next node

Node* _head { nullptr }; // head of the list
Node* _tail { nullptr }; // tail of the list

void push_back(const value_t& value); // insert a value at the end

// !! here we have to define the List iterator "It"

It begin() { return It{_head}; 1} // begin of the list

It end() { return It{nullptr}; } // end of the list

36/69

Implement a Simple lterator (List definition)

void List::push_back(const value_t& value) {

auto new_node = new Node{value, nullptr};
if (_head == nullptr) { // empty list

_head = new_node; // head is updated

_tail = _head;

return;
}
assert(_tail != nullptr);
_tail->_next = new_node; // add new node at the end
_tail new_node; // tail is updated

37/69

Implement a Simple lterator (Iterator declaration)

struct It {
Node* _ptr; // internal pointer

It(Node* ptr); // Constructor
value_t& operator*(); // Deferencing

// Not equal -> stop traversing
friend bool operator!=(const It& itA, const It& itB);

It& operator++(); // Pre-increment
It operator++(int); // Post-increment

// !l Type traits here

L 38/69

Implement a Simple lterator (Iterator definition)

List::It::It(Node*x ptr) :_ptr(ptr) {}
value_t& Lis::It::operator*() { return _ptr->_value; }

bool operator!=(const It& itA, const It& itB) {
return itA._ptr != itB._ptr;

List::It& List::It::operator++() {
_ptr = _ptr->_next;
return *this;

}

List::It List::It::operator++(int) {
auto tmp = *this;
++(*this) ;

return tmp;
39/69

Implement a Simple Iterator (Type Traits) 6/6

The type traits of an iterator describe its properties, e.g. the type of the value held,
and they are widely used in the std algorithms

std::iterator class template defines the type traits for an iterator. It has been
deprecated in C++17, so users need to provide the type traits explicitly

#1include <iterator>

// !l Type traits
using iterator_category = std::forward_iterator_tag;

using difference_type = std::ptrdiff_t;
using value_type = value_t;
using pointer = value_tx*;
using reference = value_t&;

internalpointers.com/post/writing-custom-iterators-modern-cpp

Preparation for std::iterator Being Deprecated 40/69

https://internalpointers.com/post/writing-custom-iterators-modern-cpp
https://stackoverflow.com/questions/37031805/preparation-for-stditerator-being-deprecated

Iterator Notes

Common Errors

Modify a container with a “active” iterators

#1include <vector>
std::vector<int> vec{1l, 2, 3, 4, 5};

for (auto x : vec)
vec.push_back(x) ; // iterator invalidation!!

41/69

Iterator Utility
Methods

Iterator Operations

= std::advance(InputIt& it, Distance n)

Increments a given iterator it by n elements
- InputIt must support input iterator requirements
- Modifies the iterator
- Returns void
- More general than adding a value it + 4
- No performance loss if it satisfies random access iterator requirements

= std::next(ForwardIt it, Distance n) C++11

Returns the n-th successor of the iterator
- ForwardIt must support forward iterator requirements
- Does not modify the iterator
- More general than adding a value it + 4
- The compiler should optimize the computation if it satisfies random access iterator

requirements
- Supports negative values if it satisfies bidirectional iterator requirements 42/69

Iterator Operations

= std::prev(Bidirectionallt it, Distance n) C+-+11

Returns the n-th predecessor of the iterator
- InputIt must support bidirectional iterator requirements
- Does not modify the iterator
- More general than adding a value it + 4
- The compiler should optimize the computation if it satisfies random access iterator

requirements

= std::distance(InputIt start, InputIt end)

Returns the number of elements from start to last
- InputIt must support input iterator requirements
- Does not modify the iterator
- More general than adding iterator difference it2 - itil
- The compiler should optimize the computation if it satisfies random access iterator
requirements
- C++11 Supports negative values if it satisfies random iterator requirements 43/69

#1include <iterator>

#include <iostream>

#include <vector>
#include <forward_list>

int main() {

/7

std::vector<int> vector { 1, 2, 3 }; // random access iterator

auto itl = std::next(vector.begin(), 2);
auto it2 = std::prev(vector.end(), 2);

std: :cout << *itl; // 3
std::cout << *it2; // 2

std::cout << std::distance(it2, it1); // 1

std::advance(it2, 1);
std::cout << *it2; // 3

e

std: :forward_list<int> list { 1, 2, 3 }; // forward iterator

std::prev(list.end(), 1);

// compile error

44/69

Container Access Methods

C++11 provides a generic interface for containers, plain arrays, and std::initializer_list

to access to the corresponding iterator.
Standard method .begin() , .end() etc., are not supported by plain array and initializer list

= std::begin begin iterator = std::end end iterator

= std::cbegin begin const iterator = std::cend end const iterator

= std::rbegin begin reverse iterator = std::rend end reverse iterator

= std::crbegin begin const reverse iterator = std::crend end const reverse iterator

#include <iterator>

#1include <iostream>

int main() {
int array[] = { 1, 2, 3 };

for (auto it = std::crbegin(array); it != std::crend(array); it++)

45/69
std::cout << *it << ", "; // 3, 2, 1 /

Iterator Traits

std::iterator_traits allows retrieving iterator properties
= difference_type a type that can be used to identify distance between iterators

= value_type the type of the values that can be obtained by dereferencing the
iterator. This type is void for output iterators

= pointer defines a pointer to the type iterated over value_type
= reference defines a reference to the type iterated over value_type
= iterator_category the category of the iterator. Must be one of iterator

category tags

46/69

Iterator Traits

#1include <iterator>

template<typename T>
void f(const T& list) {

using D = std::iterator_traits<T>:

using V = std::iterator_traits<T>:
using P = std::iterator_traits<T>:
using R = std::iterator_traits<T>:

// C 4s Bidirectionallterator

using C = std::iterator_traits<T>:

int main() {
std::list<double> list;
f(list);

:difference_type;

:value_type;
:pointer;

:reference;

:iterator_category;

// D is std::ptrdiff_t
// (pointer difference)
// (signed size_t)

// V is double

// P is doublex*

// R is double&

47/69

Algorithms Library

STL Algorithms Library

C++ STL Algorithms library

The algorithm library provides functions for a variety of purposes (e.g. searching,
sorting, counting, manipulating) that operate on ranges of elements

= STL Algorithm library allow great flexibility which makes included functions
suitable for solving real-world problem

= The user can adapt and customize the STL through the use of function objects

= Library functions work independently on containers and plain array

= Many of them support constexpr in C++20

48/69

Examples

#1include <algorithm>
#include <vector>
struct Unary {
bool operator() (int value) {
return value <= 6 && value >= 3;

1
struct Descending {
bool operator() (int a, int b) {
return a > b;

Irg

int main() {
std: :vector<int> vector { 7, 2, 9, 4 };
// returns an tterator pointing to the first element in the range[3, 6]
std: :find_if (vector.begin(), vector.end(), Unary());
// sort in descending order : { 9, 7, 4, 2 };

std: :sort(vector.begin(), vector.end(), Descending());
" 49/69

Examples

#include <algorithm> // it includes also std::multiplies
#1include <vector>
#include <cstdlib> // std::rand
#1include <numeric> // std::accumulate
struct Unary {
bool operator() (int value) { return value > 100; }
173
int main() {
std: :vector<int> vector { 7, 2, 9, 4 };
int product = std::accumulate(vector.begin(), vector.end(), // product = 504
1, std::multiplies<int>());
std: :generate(vector.begin(), vector.end(), std::rand);

// now wvector has 4 random values

// remove all wvalues > 100 using Erase-remove tdiom
auto new_end = std::remove_if(vector.begin(), vector.end(), Unary());
// elements are removed, but vector size s still unchanged

vector.erase(new_end, vector.end()); // shrink vector to finish removal

by 50/69

STL Algorithms Library (Possible Implementations)

std::find
template<class Inputlt, class T>
InputIt find(InputIt first, InputIt last, const T& value) {
for (; first != last; ++first) {
if (xfirst == value)
return first;

}

return last;

}

std: :generate

template<class ForwardIt, class Generator>
void generate(ForwardIt first, ForwardIt last, Generator g) {
while (first != last)
xfirst++ = g();

51/69

Algorithm Library

= swap(vl, v2) Swaps the values of two objects
» min(x, y) Finds the minimum value between x and y
= max(x, y) Finds the maximum value between x and y

= min_element (begin, end) (returns a pointer)

Finds the minimum element in the range [begin, end)

= max_element(begin, end) (returns a pointer)

Finds the maximum element in the range [begin, end)

= minmax_element (begin, end) C++11 (returns pointers <min,max>)
Finds the minimum and the maximum element in the range [begin, end)

52/69

en.cppreference.com/w/cpp/algorithm

Algorithm Library

equal (beginl, endl, begin2)
Determines if two sequences are the same in
[beginl, endl), [begin2, begin2 + endl - beginl)

mismatch(beginl, endl, begin2) (returns pointers <posl,pos2>)
Finds the first position where two ranges differ in
[beginl, endl), [begin2, begin2 + endl - beginl)

find(begin, end, value) (returns a pointer)

Finds the first element in the range [begin, end) equal to value

count (begin, end, value)

Counts the number of elements in the range [begin, end) equal to value
53/69

Algorithm Library 3/5

= sort(begin, end) (in-place)
Sorts the elements in the range [begin, end) in ascending order

= merge(beginl, endl, begin2, end2, output)
Merges two sorted ranges [beginl, end1), [begin2, end2), and store the results in
[output, output + endl - startl)

= unique(begin, end) (in-place)
Removes consecutive duplicate elements in the range [begin, end)

= binary search(begin, end, value)
Determines if an element value exists in the (sorted) range [begin, end)

= accumulate(begin, end, value)
Sums up the range [begin, end) of elements with initial value (common case equal to
zero)

= partial_sum(begin, end, output) (in—place)54

Computes the inclusive prefix-sum of the range [begin, end) /69

Algorithm Library

fill(begin, end, value)
Fills a range of elements [begin, end) with value

iota(begin, end, value) C++11
Fills the range [begin, end) with successive increments of the starting value

copy(beginl, endl, begin2)

Copies the range of elements [beginl, endl) to the new location
[begin2, begin2 + endl - beginl)

swap_ranges (beginl, endl, begin2)

Swaps two ranges of elements

[beginl, endl), [begin2, begin2 + endl - beginl)

remove (begin, end, value)

Removes elements equal to value in the range [begin, end)

includes(beginl, endl, begin2, end2)
Checks if the (sorted) set [beginl, endl) is a subset of [begin2, end2)

(in-place)

55,/69

Algorithm Library

= set_difference(beginl, endl, begin2, end2, output)
Computes the difference between two (sorted) sets

= set_intersection(beginl, endl, begin2, end2, output)
Computes the intersection of two (sorted) sets

= set_symmetric_difference(beginl, endl, begin2, end2, output)

Computes the symmetric difference between two (sorted) sets

= set_union(beginl, endl, begin2, end2, output)
Computes the union of two (sorted) sets

= make_heap(begin, end) Creates a max heap out of the range of elements
= push_heap(begin, end) Adds an element to a max heap

= pop_heap(begin, end) Remove an element (top) to a max heap y
56/69

Algorithm Library - Other Examples

#include <algorithm>

int a std::max(2, 5); // a =5
{7y B, =i, @, g

{8, 2, 0, 3, 7};

int array1[]

int array2[]

int b = *std::max_element(arrayl, arrayl + 5); // b =7
auto c = std::minmax_element(arrayl, arrayl + 5);

//*c. first = -1, *c.second = 7

bool d = std::equal(arrayl, arrayl + 5, array2); // d = false

std: :sort(arrayl, arrayl + 5); // [-1, 3, 6, 6, 7]
std: :unique(arrayl, arrayl + 5); /7 [-1, 3, 6, 7]
int e = std::accumulate(arrayl, arrayl + 4, 0); // 15
std::partial_sum(arrayl, arrayl + 4, arrayl); // [-1, 2, 8, 15]
std::iota(arrayl, arrayl + 5, 2); // (2, 3, 4, 5, 6]

57/69
std: :make_heap(array2, array2 + 5); /7 [8, 7, 0, 3, 2] /

C++420 Ranges

C++420 Ranges

Ranges are an abstraction that allows to operate on elements of data structures

uniformly. They are an extension of the standard iterators

A range is an object that provides begin() and end() methods (an iterator + a

sentinel)

begin() returns an iterator, which can be incremented until it reaches end()

template<typename T>

concept range = requires(T& t) {
ranges: :begin(t) ;
ranges: :end(t) ;

13

= An Overview of Standard Ranges

= Range, Algorithms, Views, and Actions - A Comprehensive Guide

= Eric Nielbler - Range v3 58/69
= Range by Example

https://raw.githubusercontent.com/CppCon/CppCon2019/master/Presentations/an_overview_of_standard_ranges/an_overview_of_standard_ranges__tristan_brindle__cppcon_2019.pdf
https://raw.githubusercontent.com/CppCon/CppCon2019/master/Presentations/range_algorithms_views_and_actions_a_comprehensive_guide/range_algorithms_views_and_actions_a_comprehensive_guide__dvir_yitzchaki__cppcon_2019.pdf
https://github.com/ericniebler/range-v3
https://github.com/JeffGarland/range_by_example

Key Concepts

Range View

Range Adaptors

Range Factory

Range Algorithms

Range Action

is a range defined on top of another range

are utilities to transform a range into a view

is a view that contains no elements

are library-provided functions that directly operate on ranges

(corresponding to std iterator algorithm)

is an object that modifies the underlying data of a range

59/69

Range View

A range view is a range defined on top of another range that transforms the
underlying way to access internal data

= Views do not own any data
= copy, move, assignment operations perform in constant time
= Views are composable

= Views are lazy evaluated

Syntax:

range/view | view

60,/69

Range View

#1include <iostream>
#include <ranges>

#1include <vector>
std::vector<int> v{1, 2, 3, 4};

for (int x : v | std::views::reverse)
std::cout << x << " "; // print: "4, 3, 2, 1"

auto rv2 = v | std::views::reverse; // cheap, it does mot copy "v"

auto rv3 = v | std::views::drop(2) | // drop the first two elements
std: :views: :reverse;
for (int x : rv3) // lazy evaluated
std::cout << x << " "; // print: "4, 3"

61/69

Range Adaptor 1/2

Range Adaptors are utilities to transform a range into a view with custom behaviors

= Range adaptors produce lazily evaluated views

= Range adaptors can be chained or composed (pipeline)

Syntax:

adaptor(range/view, args...)
adaptor(args...) (range/view)
range/view | adaptor(args...) // preferred syntax

62,/69

Range Adaptor

#include <ranges>

#1include <vector>
std::vector<int> v{1, 2, 3, 4};

for (int x : std::ranges::reverse_view(v)) // adaptor
cout << x << " ", // print: "4, 3, 2, 1"

auto rv2 = std::ranges::reverse_view(v); // cheap, it does mot copy "v"
auto rv3 = std::ranges::reverse_view(
std: :ranges: :drop_view(2, v)); // drop the first two elements

for (int x : rv3) // lazy evaluated
cout << x << " ", // print: "4, 3"

63/69

Range Factory

Range Factory produces a view that contains no elements
#1include <ranges>

for (int x : std::ranges::iota_view{l, 4}) // factory (adaptor)
cout << x << " ", // print: "1, 2, 3, 4"

for (int x : std::views::repeat('a', 4)) // factory (view)
cout << x << " ", // print: "a, a, a, a"

64,/69

Range Algorithms

The range algorithms are almost identical to the corresponding iterator-pair

algorithms in the std namespace, except that they have concept-enforced constraints
and accept range arguments

= Range algorithms are immediately evaluated
= Range algorithms can work directly on containers (begin() , end() are no
more explicitly needed) and view

#include <algorithm>

#1include <vector>

std::vector<int> vec{3, 2, 1};
std: :ranges: :sort(vec); // 1, 2, 3

Std Library - Range Algorithms 65/69

https://en.cppreference.com/w/cpp/header/algorithm

Algorithm Operators and Projections

#include <algorithm>

#1include <vector>

struct Data {
char valuel;
int value2;

13

std::vector<int> vec{4, 2, 5};
auto cmp = [](auto a, auto b) { return a > b; }; // Unary boolean predicate

std: :ranges::sort(vec, cmp); // 5, 4, 2

std: :vector<Data> vec2{{'a', 4}, {'b', 2}, {'c', 5}};
std: :ranges: :sort(vec2, {}, &Data::value2); // Projection: 2, 4, 5
// L', 2}, {'a', 4}, {'c’, 5}

66,69

Algorithms and Views

// sum of the squares of the first 'count' numbers
auto sum_of_squares(int count) {
auto squares = std::views::iota(l, count) |
std::views: :transform([] (int x) { return x * x; });

return std::ranges::fold_left_first(squares, std::plus{});

67,69

Range Actions

The range actions mimic std algorithms and range algorithms adding the
composability property

= Range actions are eager evaluated
= Range algorithms work directly on ranges

= Not included in the std library

68,/69

Range Actions

#include <algorithm>

#include <wvector>

std: :vector<int> vec{3, 5, 6, 3, 5}
// in-place
vec = vec | actions::sort // 3, 3, 5, 5, 6

| actions::unique; // 3, 5, 6

vec |= actiomns::sort // 3, 3, b, 5, 6
| actions::unique; // 3, 5, 6
// out-of-place
auto vec2 = std::move(vec) | actionms::sort // 3, 3, 5, 5, 6
| actions::unique; // 3, 5, 6

69,/69

	Containers and Iterators
	Semantic

	Sequence Containers
	std::array
	std::vector
	std::deque
	std::list
	std::forward_list

	Associative Containers
	std::set
	std::map
	std::multiset

	Container Adaptors
	std::stack, std::queue, std::priority_queue

	Implement a Custom Iterator
	Implement a Simple Iterator

	Iterator Notes
	Iterator Utility Methods
	std::advance, std::next
	std::prev, std::distance
	Container Access Methods
	Iterator Traits

	Algorithms Library
	std::find_if, std::sort
	std::accumulate, std::generate, std::remove_if

	C++20 Ranges
	Key Concepts
	Range View
	Range Adaptor
	Range Factory
	Range Algorithms
	Range Actions

