Made-With-ML/madewithml/train.py

257 lines
9.8 KiB
Python

import datetime
import json
from typing import Tuple
import numpy as np
import ray
import ray.train as train
import torch
import torch.nn as nn
import torch.nn.functional as F
import typer
from ray.air import session
from ray.air.config import (
CheckpointConfig,
DatasetConfig,
RunConfig,
ScalingConfig,
)
from ray.air.integrations.mlflow import MLflowLoggerCallback
from ray.data import Dataset
from ray.train.torch import TorchCheckpoint, TorchTrainer
from transformers import BertModel
from typing_extensions import Annotated
from madewithml import data, models, utils
from madewithml.config import MLFLOW_TRACKING_URI, logger
# Initialize Typer CLI app
app = typer.Typer()
def train_step(
ds: Dataset,
batch_size: int,
model: nn.Module,
num_classes: int,
loss_fn: torch.nn.modules.loss._WeightedLoss,
optimizer: torch.optim.Optimizer,
) -> float: # pragma: no cover, tested via train workload
"""Train step.
Args:
ds (Dataset): dataset to iterate batches from.
batch_size (int): size of each batch.
model (nn.Module): model to train.
num_classes (int): number of classes.
loss_fn (torch.nn.loss._WeightedLoss): loss function to use between labels and predictions.
optimizer (torch.optimizer.Optimizer): optimizer to use for updating the model's weights.
Returns:
float: cumulative loss for the dataset.
"""
model.train()
loss = 0.0
ds_generator = ds.iter_torch_batches(batch_size=batch_size, collate_fn=utils.collate_fn)
for i, batch in enumerate(ds_generator):
optimizer.zero_grad() # reset gradients
z = model(batch) # forward pass
targets = F.one_hot(batch["targets"], num_classes=num_classes).float() # one-hot (for loss_fn)
J = loss_fn(z, targets) # define loss
J.backward() # backward pass
optimizer.step() # update weights
loss += (J.detach().item() - loss) / (i + 1) # cumulative loss
return loss
def eval_step(
ds: Dataset, batch_size: int, model: nn.Module, num_classes: int, loss_fn: torch.nn.modules.loss._WeightedLoss
) -> Tuple[float, np.array, np.array]: # pragma: no cover, tested via train workload
"""Eval step.
Args:
ds (Dataset): dataset to iterate batches from.
batch_size (int): size of each batch.
model (nn.Module): model to train.
num_classes (int): number of classes.
loss_fn (torch.nn.loss._WeightedLoss): loss function to use between labels and predictions.
Returns:
Tuple[float, np.array, np.array]: cumulative loss, ground truths and predictions.
"""
model.eval()
loss = 0.0
y_trues, y_preds = [], []
ds_generator = ds.iter_torch_batches(batch_size=batch_size, collate_fn=utils.collate_fn)
with torch.inference_mode():
for i, batch in enumerate(ds_generator):
z = model(batch)
targets = F.one_hot(batch["targets"], num_classes=num_classes).float() # one-hot (for loss_fn)
J = loss_fn(z, targets).item()
loss += (J - loss) / (i + 1)
y_trues.extend(batch["targets"].cpu().numpy())
y_preds.extend(torch.argmax(z, dim=1).cpu().numpy())
return loss, np.vstack(y_trues), np.vstack(y_preds)
def train_loop_per_worker(config: dict) -> None: # pragma: no cover, tested via train workload
"""Training loop that each worker will execute.
Args:
config (dict): arguments to use for training.
"""
# Hyperparameters
dropout_p = config["dropout_p"]
lr = config["lr"]
lr_factor = config["lr_factor"]
lr_patience = config["lr_patience"]
batch_size = config["batch_size"]
num_epochs = config["num_epochs"]
num_classes = config["num_classes"]
# Get datasets
utils.set_seeds()
train_ds = session.get_dataset_shard("train")
val_ds = session.get_dataset_shard("val")
# Model
llm = BertModel.from_pretrained("allenai/scibert_scivocab_uncased", return_dict=False)
model = models.FinetunedLLM(llm=llm, dropout_p=dropout_p, embedding_dim=llm.config.hidden_size, num_classes=num_classes)
model = train.torch.prepare_model(model)
# Training components
loss_fn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=lr_factor, patience=lr_patience)
# Training
batch_size_per_worker = batch_size // session.get_world_size()
for epoch in range(num_epochs):
# Step
train_loss = train_step(train_ds, batch_size_per_worker, model, num_classes, loss_fn, optimizer)
val_loss, _, _ = eval_step(val_ds, batch_size_per_worker, model, num_classes, loss_fn)
scheduler.step(val_loss)
# Checkpoint
metrics = dict(epoch=epoch, lr=optimizer.param_groups[0]["lr"], train_loss=train_loss, val_loss=val_loss)
checkpoint = TorchCheckpoint.from_model(model=model)
session.report(metrics, checkpoint=checkpoint)
@app.command()
def train_model(
experiment_name: Annotated[str, typer.Option(help="name of the experiment for this training workload.")] = None,
dataset_loc: Annotated[str, typer.Option(help="location of the dataset.")] = None,
train_loop_config: Annotated[str, typer.Option(help="arguments to use for training.")] = None,
num_workers: Annotated[int, typer.Option(help="number of workers to use for training.")] = 1,
cpu_per_worker: Annotated[int, typer.Option(help="number of CPUs to use per worker.")] = 1,
gpu_per_worker: Annotated[int, typer.Option(help="number of GPUs to use per worker.")] = 0,
num_samples: Annotated[int, typer.Option(help="number of samples to use from dataset.")] = None,
num_epochs: Annotated[int, typer.Option(help="number of epochs to train for.")] = 1,
batch_size: Annotated[int, typer.Option(help="number of samples per batch.")] = 256,
results_fp: Annotated[str, typer.Option(help="filepath to save results to.")] = None,
) -> ray.air.result.Result:
"""Main train function to train our model as a distributed workload.
Args:
experiment_name (str): name of the experiment for this training workload.
dataset_loc (str): location of the dataset.
train_loop_config (str): arguments to use for training.
num_workers (int, optional): number of workers to use for training. Defaults to 1.
cpu_per_worker (int, optional): number of CPUs to use per worker. Defaults to 1.
gpu_per_worker (int, optional): number of GPUs to use per worker. Defaults to 0.
num_samples (int, optional): number of samples to use from dataset.
If this is passed in, it will override the config. Defaults to None.
num_epochs (int, optional): number of epochs to train for.
If this is passed in, it will override the config. Defaults to None.
batch_size (int, optional): number of samples per batch.
If this is passed in, it will override the config. Defaults to None.
results_fp (str, optional): filepath to save results to. Defaults to None.
Returns:
ray.air.result.Result: training results.
"""
# Set up
train_loop_config = json.loads(train_loop_config)
train_loop_config["num_samples"] = num_samples
train_loop_config["num_epochs"] = num_epochs
train_loop_config["batch_size"] = batch_size
# Scaling config
scaling_config = ScalingConfig(
num_workers=num_workers,
use_gpu=bool(gpu_per_worker),
resources_per_worker={"CPU": cpu_per_worker, "GPU": gpu_per_worker},
_max_cpu_fraction_per_node=0.8,
)
# Checkpoint config
checkpoint_config = CheckpointConfig(
num_to_keep=1,
checkpoint_score_attribute="val_loss",
checkpoint_score_order="min",
)
# MLflow callback
mlflow_callback = MLflowLoggerCallback(
tracking_uri=MLFLOW_TRACKING_URI,
experiment_name=experiment_name,
save_artifact=True,
)
# Run config
run_config = RunConfig(
callbacks=[mlflow_callback],
checkpoint_config=checkpoint_config,
)
# Dataset
ds = data.load_data(dataset_loc=dataset_loc, num_samples=train_loop_config["num_samples"])
train_ds, val_ds = data.stratify_split(ds, stratify="tag", test_size=0.2)
tags = train_ds.unique(column="tag")
train_loop_config["num_classes"] = len(tags)
# Dataset config
dataset_config = {
"train": DatasetConfig(fit=False, transform=False, randomize_block_order=False),
"val": DatasetConfig(fit=False, transform=False, randomize_block_order=False),
}
# Preprocess
preprocessor = data.CustomPreprocessor()
train_ds = preprocessor.fit_transform(train_ds)
val_ds = preprocessor.transform(val_ds)
train_ds = train_ds.materialize()
val_ds = val_ds.materialize()
# Trainer
trainer = TorchTrainer(
train_loop_per_worker=train_loop_per_worker,
train_loop_config=train_loop_config,
scaling_config=scaling_config,
run_config=run_config,
datasets={"train": train_ds, "val": val_ds},
dataset_config=dataset_config,
preprocessor=preprocessor,
)
# Train
results = trainer.fit()
d = {
"timestamp": datetime.datetime.now().strftime("%B %d, %Y %I:%M:%S %p"),
"run_id": utils.get_run_id(experiment_name=experiment_name, trial_id=results.metrics["trial_id"]),
"params": results.config["train_loop_config"],
"metrics": utils.dict_to_list(results.metrics_dataframe.to_dict(), keys=["epoch", "train_loss", "val_loss"]),
}
logger.info(json.dumps(d, indent=2))
if results_fp: # pragma: no cover, saving results
utils.save_dict(d, results_fp)
return results
if __name__ == "__main__": # pragma: no cover, application
if ray.is_initialized():
ray.shutdown()
ray.init()
app()