62 lines
1.7 KiB
Python
62 lines
1.7 KiB
Python
|
import tempfile
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from madewithml import utils
|
||
|
|
||
|
|
||
|
def test_set_seed():
|
||
|
utils.set_seeds()
|
||
|
a = np.random.randn(2, 3)
|
||
|
b = np.random.randn(2, 3)
|
||
|
utils.set_seeds()
|
||
|
x = np.random.randn(2, 3)
|
||
|
y = np.random.randn(2, 3)
|
||
|
assert np.array_equal(a, x)
|
||
|
assert np.array_equal(b, y)
|
||
|
|
||
|
|
||
|
def test_save_and_load_dict():
|
||
|
with tempfile.TemporaryDirectory() as dp:
|
||
|
d = {"hello": "world"}
|
||
|
fp = Path(dp, "d.json")
|
||
|
utils.save_dict(d=d, path=fp)
|
||
|
d = utils.load_dict(path=fp)
|
||
|
assert d["hello"] == "world"
|
||
|
|
||
|
|
||
|
def test_pad_array():
|
||
|
arr = np.array([[1, 2], [1, 2, 3]], dtype="object")
|
||
|
padded_arr = np.array([[1, 2, 0], [1, 2, 3]])
|
||
|
assert np.array_equal(utils.pad_array(arr), padded_arr)
|
||
|
|
||
|
|
||
|
def test_collate_fn():
|
||
|
batch = {
|
||
|
"ids": np.array([[1, 2], [1, 2, 3]], dtype="object"),
|
||
|
"masks": np.array([[1, 1], [1, 1, 1]], dtype="object"),
|
||
|
"targets": np.array([3, 1]),
|
||
|
}
|
||
|
processed_batch = utils.collate_fn(batch)
|
||
|
expected_batch = {
|
||
|
"ids": torch.tensor([[1, 2, 0], [1, 2, 3]], dtype=torch.int32),
|
||
|
"masks": torch.tensor([[1, 1, 0], [1, 1, 1]], dtype=torch.int32),
|
||
|
"targets": torch.tensor([3, 1], dtype=torch.int64),
|
||
|
}
|
||
|
for k in batch:
|
||
|
assert torch.allclose(processed_batch[k], expected_batch[k])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"d, keys, list",
|
||
|
[
|
||
|
({"a": [1, 2], "b": [1, 2]}, ["a", "b"], [{"a": 1, "b": 1}, {"a": 2, "b": 2}]),
|
||
|
({"a": [1, 2], "b": [1, 2]}, ["a"], [{"a": 1}, {"a": 2}]),
|
||
|
],
|
||
|
)
|
||
|
def test_dict_to_list(d, keys, list):
|
||
|
assert utils.dict_to_list(d, keys=keys) == list
|