Kalman-and-Bayesian-Filters.../code/adaptive_internal.py
Roger Labbe 1610678354 Worked on the IMM section.
It is more complete, but not finished.
2016-01-31 20:12:29 -08:00

134 lines
3.7 KiB
Python

# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import book_plots as bp
from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow
import matplotlib.pyplot as plt
import numpy as np
def plot_track_and_residuals(t, xs, z_xs, res):
plt.subplot(121)
if z_xs is not None:
bp.plot_measurements(t, z_xs, label='z')
bp.plot_filter(t, xs)
plt.legend(loc=2)
plt.xlabel('time (sec)')
plt.ylabel('X')
plt.title('estimates vs measurements')
plt.subplot(122)
# plot twice so it has the same color as the plot to the left!
plt.plot(t, res)
plt.plot(t, res)
plt.xlabel('time (sec)')
plt.ylabel('residual')
plt.title('residuals')
plt.show()
def plot_markov_chain():
plt.figure(figsize=(4,4), facecolor='w')
ax = plt.axes((0, 0, 1, 1),
xticks=[], yticks=[], frameon=False)
#ax.set_xlim(0, 10)
#ax.set_ylim(0, 10)
box_bg = '#DDDDDD'
kf1c = Circle((4,5), 0.5, fc=box_bg)
kf2c = Circle((6,5), 0.5, fc=box_bg)
ax.add_patch (kf1c)
ax.add_patch (kf2c)
plt.text(4,5, "Straight",ha='center', va='center', fontsize=14)
plt.text(6,5, "Turn",ha='center', va='center', fontsize=14)
#btm
plt.text(5, 3.9, ".05", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(4.1, 4.5), xycoords='data',
xytext=(6, 4.5), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="arc3,rad=-0.5"))
#top
plt.text(5, 6.1, ".03", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(6, 5.5), xycoords='data',
xytext=(4.1, 5.5), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="arc3,rad=-0.5"))
plt.text(3.5, 5.6, ".97", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(3.9, 5.5), xycoords='data',
xytext=(3.55, 5.2), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="angle3,angleA=150,angleB=0"))
plt.text(6.5, 5.6, ".95", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(6.1, 5.5), xycoords='data',
xytext=(6.45, 5.2), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
fc="0.2", ec="k",
connectionstyle="angle3,angleA=-150,angleB=2"))
plt.axis('equal')
plt.show()
def turning_target(N=600, turn_start=400):
""" simulate a moving target blah"""
#r = 1.
dt = 1.
phi_sim = np.array(
[[1, dt, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, dt],
[0, 0, 0, 1]])
gam = np.array([[dt**2/2, 0],
[dt, 0],
[0, dt**2/2],
[0, dt]])
x = np.array([[2000, 0, 10000, -15.]]).T
simxs = []
for i in range(N):
x = np.dot(phi_sim, x)
if i >= turn_start:
x += np.dot(gam, np.array([[.075, .075]]).T)
simxs.append(x)
simxs = np.array(simxs)
return simxs
if __name__ == "__main__":
d = turning_target()