d3800c5a4f
Also some progress in writing about covariances in relation to Kalman filtering.
169 lines
4.6 KiB
Python
169 lines
4.6 KiB
Python
import math
|
|
import numpy as np
|
|
import numpy.linalg as linalg
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
_two_pi = 2*math.pi
|
|
|
|
|
|
def gaussian(x, mean, var):
|
|
"""returns normal distribution for x given a gaussian with the specified
|
|
mean and variance. All must be scalars
|
|
"""
|
|
return math.exp((-0.5*(x-mean)**2)/var) / math.sqrt(_two_pi*var)
|
|
|
|
|
|
def multivariate_gaussian(x, mu, cov):
|
|
""" This is designed to work the same as scipy.stats.multivariate_normal
|
|
which is not available before version 0.14. You may either pass in a
|
|
multivariate set of data:
|
|
multivariate_gaussian (array([1,1]), array([3,4]), eye(2)*1.4)
|
|
multivariate_gaussian (array([1,1,1]), array([3,4,5]), 1.4)
|
|
or unidimensional data:
|
|
multivariate_gaussian(1, 3, 1.4)
|
|
|
|
In the multivariate case if cov is a scalar it is interpreted as eye(n)*cov
|
|
|
|
The function gaussian() implements the 1D (univariate)case, and is much
|
|
faster than this function.
|
|
"""
|
|
|
|
# force all to numpy.array type
|
|
x = _to_array(x)
|
|
mu = _to_array(mu)
|
|
n = mu.size
|
|
cov = _to_cov(cov, n)
|
|
|
|
det = np.sqrt(np.prod(np.diag(cov)))
|
|
frac = _two_pi**(-n/2.) * (1./det)
|
|
fprime = (x - mu)**2
|
|
return frac * np.exp(-0.5*np.dot(fprime, 1./np.diag(cov)))
|
|
|
|
def norm_plot(mean, var):
|
|
min_x = mean - var * 1.5
|
|
max_x = mean + var * 1.5
|
|
|
|
xs = np.arange(min_x, max_x, 0.1)
|
|
ys = [gaussian(x,23,5) for x in xs]
|
|
plt.plot(xs,ys)
|
|
|
|
|
|
def sigma_ellipse(cov, x=0, y=0, sigma=1, num_pts=100):
|
|
""" Takes a 2D covariance matrix and generates an ellipse showing the
|
|
contour plot at the specified sigma value. Ellipse is centered at (x,y).
|
|
num_pts specifies how many discrete points are used to generate the
|
|
ellipse.
|
|
|
|
Returns a tuple containing the ellipse,x, and y, in that order.
|
|
The ellipse is a 2D numpy array with shape (2, num_pts). Row 0 contains the
|
|
x components, and row 1 contains the y coordinates
|
|
"""
|
|
L = linalg.cholesky(cov)
|
|
t = np.linspace(0, _two_pi, num_pts)
|
|
unit_circle = np.array([np.cos(t), np.sin(t)])
|
|
|
|
ellipse = sigma * L.dot(unit_circle)
|
|
ellipse[0] += x
|
|
ellipse[1] += y
|
|
return (ellipse,x,y)
|
|
|
|
def sigma_ellipses(cov, x=0, y=0, sigma=[1,2], num_pts=100):
|
|
L = linalg.cholesky(cov)
|
|
t = np.linspace(0, _two_pi, num_pts)
|
|
unit_circle = np.array([np.cos(t), np.sin(t)])
|
|
|
|
e_list = []
|
|
for s in sigma:
|
|
ellipse = s * L.dot(unit_circle)
|
|
ellipse[0] += x
|
|
ellipse[1] += y
|
|
e_list.append (ellipse)
|
|
return (e_list,x,y)
|
|
|
|
def plot_sigma_ellipse(ellipse,title=None):
|
|
""" plots the ellipse produced from sigma_ellipse."""
|
|
|
|
plt.axis('equal')
|
|
e = ellipse[0]
|
|
x = ellipse[1]
|
|
y = ellipse[2]
|
|
|
|
plt.plot(e[0], e[1])
|
|
plt.scatter(x,y,marker='+') # mark the center
|
|
if title is not None:
|
|
plt.title (title)
|
|
plt.show()
|
|
|
|
def plot_sigma_ellipses(ellipses,title=None,axis_equal=True,x_lim=None,y_lim=None):
|
|
""" plots the ellipse produced from sigma_ellipse."""
|
|
|
|
if x_lim is not None:
|
|
axis_equal = False
|
|
plt.xlim(x_lim)
|
|
|
|
if y_lim is not None:
|
|
axis_equal = False
|
|
plt.ylim(y_lim)
|
|
|
|
if axis_equal:
|
|
plt.axis('equal')
|
|
|
|
for ellipse in ellipses:
|
|
es = ellipse[0]
|
|
x = ellipse[1]
|
|
y = ellipse[2]
|
|
|
|
for e in es:
|
|
plt.plot(e[0], e[1], c='b')
|
|
|
|
plt.scatter(x,y,marker='+') # mark the center
|
|
if title is not None:
|
|
plt.title (title)
|
|
plt.show()
|
|
|
|
|
|
def _to_array(x):
|
|
""" returns any of a scalar, matrix, or array as a 1D numpy array
|
|
Example:
|
|
_to_array(3) == array([3])
|
|
"""
|
|
try:
|
|
x.shape
|
|
if type(x) != np.ndarray:
|
|
x = np.asarray(x)[0]
|
|
return x
|
|
except:
|
|
return np.array(np.mat(x)).reshape(1)
|
|
|
|
def _to_cov(x,n):
|
|
""" If x is a scalar, returns a covariance matrix generated from it
|
|
as the identity matrix multiplied by x. The dimension will be nxn.
|
|
If x is already a numpy array then it is returned unchanged.
|
|
"""
|
|
try:
|
|
x.shape
|
|
if type(x) != np.ndarray:
|
|
x = np.asarray(x)[0]
|
|
return x
|
|
except:
|
|
return np.eye(n) * x
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from scipy.stats import norm
|
|
|
|
# test conversion of scalar to covariance matrix
|
|
x = multivariate_gaussian(np.array([1,1]), np.array([3,4]), np.eye(2)*1.4)
|
|
x2 = multivariate_gaussian(np.array([1,1]), np.array([3,4]), 1.4)
|
|
assert x == x2
|
|
|
|
# test univarate case
|
|
rv = norm(loc = 1., scale = np.sqrt(2.3))
|
|
x2 = multivariate_gaussian(1.2, 1., 2.3)
|
|
x3 = gaussian(1.2, 1., 2.3)
|
|
|
|
assert rv.pdf(1.2) == x2
|
|
assert abs(x2- x3) < 0.00000001
|
|
print "all tests passed"
|