Kalman-and-Bayesian-Filters.../code/ukf_internal.py
Roger Labbe 08328f0f0b Expanded ILS coverage.
Fixed notation for a priori and a posteriori variables.
Explained how to compute H matrix by linearizing.
2015-03-01 11:16:59 -08:00

199 lines
5.3 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue May 27 21:21:19 2014
@author: rlabbe
"""
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse,Arrow
import stats
import numpy as np
import math
from filterpy.kalman import UnscentedKalmanFilter as UKF
from stats import plot_covariance_ellipse
def _sigma_points(mean, sigma, kappa):
sigma1 = mean + math.sqrt((1+kappa)*sigma)
sigma2 = mean - math.sqrt((1+kappa)*sigma)
return mean, sigma1, sigma2
def arrow(x1,y1,x2,y2, width=0.2):
return Arrow(x1,y1, x2-x1, y2-y1, lw=1, width=width, ec='k', color='k')
def show_two_sensor_bearing():
circle1=plt.Circle((-4,0),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((4,0),5,color='#E24A33', fill=False, linewidth=5, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
plt.axis('equal')
#plt.xlim((-10,10))
plt.ylim((-6,6))
plt.plot ([-4,0], [0,3], c='#004080')
plt.plot ([4,0], [0,3], c='#E24A33')
plt.text(-4, -.5, "A", fontsize=16, horizontalalignment='center')
plt.text(4, -.5, "B", fontsize=16, horizontalalignment='center')
ax.add_patch(circle1)
ax.add_patch(circle2)
plt.show()
def show_three_gps():
circle1=plt.Circle((-4,0),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((4,0),5,color='#E24A33', fill=False, linewidth=8, alpha=.7)
circle3=plt.Circle((0,-3),6,color='#534543',fill=False, linewidth=13, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
ax.add_patch(circle1)
ax.add_patch(circle2)
ax.add_patch(circle3)
plt.axis('equal')
plt.show()
def show_four_gps():
circle1=plt.Circle((-4,2),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((5.5,1),5,color='#E24A33', fill=False, linewidth=8, alpha=.7)
circle3=plt.Circle((0,-3),6,color='#534543',fill=False, linewidth=13, alpha=.7)
circle4=plt.Circle((0,8),5,color='#214513',fill=False, linewidth=13, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
ax.add_patch(circle1)
ax.add_patch(circle2)
ax.add_patch(circle3)
ax.add_patch(circle4)
plt.axis('equal')
plt.show()
def show_sigma_transform():
fig = plt.figure()
ax=fig.gca()
x = np.array([0, 5])
P = np.array([[4, -2.2], [-2.2, 3]])
plot_covariance_ellipse(x, P, facecolor='b', variance=9, alpha=0.5)
S = UKF.sigma_points(x=x, P=P, kappa=0)
plt.scatter(S[:,0], S[:,1], c='k', s=80)
x = np.array([15, 5])
P = np.array([[3, 1.2],[1.2, 6]])
plot_covariance_ellipse(x, P, facecolor='g', variance=9, alpha=0.5)
ax.add_artist(arrow(S[0,0], S[0,1], 11, 4.1, 0.6))
ax.add_artist(arrow(S[1,0], S[1,1], 13, 7.7, 0.6))
ax.add_artist(arrow(S[2,0], S[2,1], 16.3, 0.93, 0.6))
ax.add_artist(arrow(S[3,0], S[3,1], 16.7, 10.8, 0.6))
ax.add_artist(arrow(S[4,0], S[4,1], 17.7, 5.6, 0.6))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
#plt.axis('equal')
plt.show()
def show_2d_transform():
ax=plt.gca()
ax.add_artist(Ellipse(xy=(2,5), width=2, height=3,angle=70,linewidth=1,ec='k'))
ax.add_artist(Ellipse(xy=(7,5), width=2.2, alpha=0.3, height=3.8,angle=150,linewidth=1,ec='k'))
ax.add_artist(arrow(2, 5, 6, 4.8))
ax.add_artist(arrow(1.5, 5.5, 7, 3.8))
ax.add_artist(arrow(2.3, 4.1, 8, 6))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.axis('equal')
plt.xlim(0,10); plt.ylim(0,10)
plt.show()
def show_3_sigma_points():
xs = np.arange(-4, 4, 0.1)
var = 1.5
ys = [stats.gaussian(x, 0, var) for x in xs]
samples = [0, 1.2, -1.2]
for x in samples:
plt.scatter ([x], [stats.gaussian(x, 0, var)], s=80)
plt.plot(xs, ys)
plt.show()
def show_sigma_selections():
ax=plt.gca()
ax.add_artist(Ellipse(xy=(2,5), alpha=0.5, width=2, height=3,angle=0,linewidth=1,ec='k'))
ax.add_artist(Ellipse(xy=(5,5), alpha=0.5, width=2, height=3,angle=0,linewidth=1,ec='k'))
ax.add_artist(Ellipse(xy=(8,5), alpha=0.5, width=2, height=3,angle=0,linewidth=1,ec='k'))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.scatter([1.5,2,2.5],[5,5,5],c='k', s=50)
plt.scatter([2,2],[4.5, 5.5],c='k', s=50)
plt.scatter([4.8,5,5.2],[5,5,5],c='k', s=50)
plt.scatter([5,5],[4.8, 5.2],c='k', s=50)
plt.scatter([7.2,8,8.8],[5,5,5],c='k', s=50)
plt.scatter([8,8],[4,6],c='k' ,s=50)
plt.axis('equal')
plt.xlim(0,10); plt.ylim(0,10)
plt.show()
def show_sigmas_for_2_kappas():
# generate the Gaussian data
xs = np.arange(-4, 4, 0.1)
mean = 0
sigma = 1.5
ys = [stats.gaussian(x, mean, sigma*sigma) for x in xs]
#generate our samples
kappa = 2
x0,x1,x2 = _sigma_points(mean, sigma, kappa)
samples = [x0,x1,x2]
for x in samples:
p1 = plt.scatter([x], [stats.gaussian(x, mean, sigma*sigma)], s=80, color='k')
kappa = -.5
x0,x1,x2 = _sigma_points(mean, sigma, kappa)
samples = [x0,x1,x2]
for x in samples:
p2 = plt.scatter([x], [stats.gaussian(x, mean, sigma*sigma)], s=80, color='b')
plt.legend([p1,p2], ['$kappa$=2', '$kappa$=-0.5'])
plt.plot(xs, ys)
plt.show()
if __name__ == '__main__':
show_four_gps()
#show_sigma_transform()
#show_sigma_selections()