Kalman-and-Bayesian-Filters.../code/stats.py
2014-09-01 19:44:18 -07:00

358 lines
9.6 KiB
Python

"""
Author: Roger Labbe
Copyright: 2014
This code performs various basic statistics functions for the
Kalman and Bayesian Filters in Python book. Much of this code
is non-optimal; production code should call the equivalent scipy.stats
functions. I wrote the code in this form to make explicit how the
computations are done. The scipy.stats module has many more useful functions
than what I have written here. In some cases, however, my code is significantly
faster, at least on my machine. For example, gaussian average 794 ns, whereas
stats.norm(), using the frozen form, averages 116 microseconds per call.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import math
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
import scipy.sparse as sp
import scipy.sparse.linalg as spln
import scipy.stats
from matplotlib.patches import Ellipse
_two_pi = 2*math.pi
def gaussian(x, mean, var):
"""returns normal distribution (pdf) for x given a Gaussian with the
specified mean and variance. All must be scalars.
gaussian (1,2,3) is equivalent to scipy.stats.norm(2,math.sqrt(3)).pdf(1)
It is quite a bit faster albeit much less flexible than the latter.
@param x test
Parameters
----------
x : scalar
The value for which we compute the probability
mean : scalar
Mean of the Gaussian
var : scalar
Variance of the Gaussian
Returns
-------
probability : float
probability of x for the Gaussian (mean, var). E.g. 0.101 denotes
10.1%.
"""
return math.exp((-0.5*(x-mean)**2)/var) / math.sqrt(_two_pi*var)
def mul (mean1, var1, mean2, var2):
""" multiply Gaussians (mean1, var1) with (mean2, var2) and return the
results as a tuple (mean,var).
var1 and var2 are variances - sigma squared in the usual parlance.
"""
mean = (var1*mean2 + var2*mean1) / (var1 + var2)
var = 1 / (1/var1 + 1/var2)
return (mean, var)
def add (mean1, var1, mean2, var2):
""" add the Gaussians (mean1, var1) with (mean2, var2) and return the
results as a tuple (mean,var).
var1 and var2 are variances - sigma squared in the usual parlance.
"""
return (mean1+mean2, var1+var2)
def multivariate_gaussian(x, mu, cov):
""" This is designed to replace scipy.stats.multivariate_normal
which is not available before version 0.14. You may either pass in a
multivariate set of data:
multivariate_gaussian (array([1,1]), array([3,4]), eye(2)*1.4)
multivariate_gaussian (array([1,1,1]), array([3,4,5]), 1.4)
or unidimensional data:
multivariate_gaussian(1, 3, 1.4)
In the multivariate case if cov is a scalar it is interpreted as eye(n)*cov
The function gaussian() implements the 1D (univariate)case, and is much
faster than this function.
equivalent calls:
multivariate_gaussian(1, 2, 3)
scipy.stats.multivariate_normal(2,3).pdf(1)
Parameters
----------
x : scalar, or np.array-like
Value to compute the probability for. May be a scalar if univariate,
or any type that can be converted to an np.array (list, tuple, etc).
np.array is best for speed.
mu : scalar, or np.array-like
mean for the Gaussian . May be a scalar if univariate, or any type
that can be converted to an np.array (list, tuple, etc).np.array is
best for speed.
cov : scalar, or np.array-like
Covariance for the Gaussian . May be a scalar if univariate, or any
type that can be converted to an np.array (list, tuple, etc).np.array is
best for speed.
Returns
-------
probability : float
probability for x for the Gaussian (mu,cov)
"""
scipy.stats.multivariate_normal
# force all to numpy.array type
x = np.array(x, copy=False, ndmin=1)
mu = np.array(mu,copy=False, ndmin=1)
nx = len(mu)
cov = _to_cov(cov, nx)
norm_coeff = nx*math.log(2*math.pi) + np.linalg.slogdet(cov)[1]
err = x - mu
if (sp.issparse(cov)):
numerator = spln.spsolve(cov, err).T.dot(err)
else:
numerator = np.linalg.solve(cov, err).T.dot(err)
return math.exp(-0.5*(norm_coeff + numerator))
def plot_gaussian(mean, variance,
mean_line=False,
xlim=None,
xlabel=None,
ylabel=None):
""" plots the normal distribution with the given mean and variance. x-axis
contains the mean, the y-axis shows the probability.
mean_line : draws a line at x=mean
xlim: optionally specify the limits for the x axis as tuple (low,high).
If not specified, limits will be automatically chosen to be 'nice'
xlabel : optional label for the x-axis
ylabel : optional label for the y-axis
"""
sigma = math.sqrt(variance)
n = scipy.stats.norm(mean, sigma)
if xlim is None:
min_x = n.ppf(0.001)
max_x = n.ppf(0.999)
else:
min_x = xlim[0]
max_x = xlim[1]
xs = np.arange(min_x, max_x, (max_x - min_x) / 1000)
plt.plot(xs,n.pdf(xs))
plt.xlim((min_x, max_x))
if mean_line:
plt.axvline(mean)
if xlabel:
plt.xlabel(xlabel)
if ylabel:
plt.ylabel(ylabel)
def covariance_ellipse(P, deviations=1):
""" returns a tuple defining the ellipse representing the 2 dimensional
covariance matrix P.
Parameters
----------
P : nd.array shape (2,2)
covariance matrix
deviations : int (optional, default = 1)
# of standard deviations. Default is 1.
Returns (angle_radians, width_radius, height_radius)
"""
U,s,v = linalg.svd(P)
orientation = math.atan2(U[1,0],U[0,0])
width = deviations*math.sqrt(s[0])
height = deviations*math.sqrt(s[1])
assert width >= height
return (orientation, width, height)
def is_inside_ellipse(x,y, ex, ey, orientation, width, height):
co = np.cos(orientation)
so = np.sin(orientation)
xx = x*co + y*so
yy = y*co - x*so
return (xx / width)**2 + (yy / height)**2 <= 1.
return ((x-ex)*co - (y-ey)*so)**2/width**2 + \
((x-ex)*so + (y-ey)*co)**2/height**2 <= 1
def plot_covariance_ellipse(mean, cov=None, variance = 1.0,
ellipse=None, title=None, axis_equal=True,
facecolor='none', edgecolor='#004080',
alpha=1.0):
""" plots the covariance ellipse where
mean is a (x,y) tuple for the mean of the covariance (center of ellipse)
cov is a 2x2 covariance matrix.
variance is the normal sigma^2 that we want to plot. If list-like,
ellipses for all ellipses will be ploted. E.g. [1,2] will plot the
sigma^2 = 1 and sigma^2 = 2 ellipses.
ellipse is a (angle,width,height) tuple containing the angle in radians,
and width and height radii.
You may provide either cov or ellipse, but not both.
plt.show() is not called, allowing you to plot multiple things on the
same figure.
"""
assert cov is None or ellipse is None
assert not (cov is None and ellipse is None)
if cov is not None:
ellipse = covariance_ellipse(cov)
if axis_equal:
plt.axis('equal')
if title is not None:
plt.title (title)
if np.isscalar(variance):
variance = [variance]
ax = plt.gca()
angle = np.degrees(ellipse[0])
width = ellipse[1] * 2.
height = ellipse[2] * 2.
for var in variance:
sd = np.sqrt(var)
e = Ellipse(xy=mean, width=sd*width, height=sd*height, angle=angle,
facecolor=facecolor,
edgecolor=edgecolor,
alpha=alpha,
lw=2)
ax.add_patch(e)
plt.scatter(mean[0], mean[1], marker='+') # mark the center
def _to_cov(x,n):
""" If x is a scalar, returns a covariance matrix generated from it
as the identity matrix multiplied by x. The dimension will be nxn.
If x is already a numpy array then it is returned unchanged.
"""
try:
x.shape
if type(x) != np.ndarray:
x = np.asarray(x)[0]
return x
except:
return np.eye(n) * x
def do_plot_test():
from numpy.random import multivariate_normal
p = np.array([[32, 15],[15., 40.]])
x,y = multivariate_normal(mean=(0,0), cov=p, size=5000).T
sd = 2
a,w,h = covariance_ellipse(p,sd)
print (np.degrees(a), w, h)
count = 0
color=[]
for i in range(len(x)):
if is_inside_ellipse(x[i], y[i], 0, 0, a, w, h):
color.append('b')
count += 1
else:
color.append('r')
plt.scatter(x,y,alpha=0.2, c=color)
plt.axis('equal')
plot_covariance_ellipse(mean=(0., 0.),
cov = p,
variance=sd*sd,
facecolor='none')
print (count / len(x))
if __name__ == '__main__':
from scipy.stats import norm
do_plot_test()
#test_gaussian()
# test conversion of scalar to covariance matrix
x = multivariate_gaussian(np.array([1,1]), np.array([3,4]), np.eye(2)*1.4)
x2 = multivariate_gaussian(np.array([1,1]), np.array([3,4]), 1.4)
assert x == x2
# test univarate case
rv = norm(loc = 1., scale = np.sqrt(2.3))
x2 = multivariate_gaussian(1.2, 1., 2.3)
x3 = gaussian(1.2, 1., 2.3)
assert rv.pdf(1.2) == x2
assert abs(x2- x3) < 0.00000001
cov = np.array([[1.0, 1.0],
[1.0, 1.1]])
plt.figure()
P = np.array([[2,0],[0,2]])
plot_covariance_ellipse((2,7), cov=cov, variance=[1,2], facecolor='g', title='my title', alpha=.2)
plt.show()
print("all tests passed")