139 lines
3.0 KiB
Python
139 lines
3.0 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
|
|
"""
|
|
Computes the trajectory of a stitched baseball with air drag.
|
|
Takes altitude into account (higher altitude means further travel) and the
|
|
stitching on the baseball influencing drag.
|
|
|
|
This is based on the book Computational Physics by N. Giordano.
|
|
|
|
The takeaway point is that the drag coefficient on a stitched baseball is
|
|
LOWER the higher its velocity, which is somewhat counterintuitive.
|
|
"""
|
|
|
|
|
|
from __future__ import division
|
|
import math
|
|
import matplotlib.pyplot as plt
|
|
from numpy.random import randn
|
|
import numpy as np
|
|
|
|
def a_drag (vel, altitude):
|
|
""" returns the drag coefficient of a baseball at a given velocity (m/s)
|
|
and altitude (m).
|
|
"""
|
|
|
|
v_d = 35
|
|
delta = 5
|
|
y_0 = 1.0e4
|
|
|
|
val = 0.0039 + 0.0058 / (1 + math.exp((vel - v_d)/delta))
|
|
val *= math.exp(-altitude / y_0)
|
|
|
|
return val
|
|
|
|
def compute_trajectory_vacuum (v_0_mph,
|
|
theta,
|
|
dt=0.01,
|
|
noise_scale=0.0,
|
|
x0=0., y0 = 0.):
|
|
theta = math.radians(theta)
|
|
|
|
x = x0
|
|
y = y0
|
|
|
|
v0_y = v_0_mph * math.sin(theta)
|
|
v0_x = v_0_mph * math.cos(theta)
|
|
|
|
xs = []
|
|
ys = []
|
|
|
|
t = dt
|
|
while y >= 0:
|
|
x = v0_x*t + x0
|
|
y = -0.5*9.8*t**2 + v0_y*t + y0
|
|
|
|
xs.append (x + randn() * noise_scale)
|
|
ys.append (y + randn() * noise_scale)
|
|
|
|
t += dt
|
|
|
|
return (xs, ys)
|
|
|
|
|
|
|
|
def compute_trajectory(v_0_mph, theta, v_wind_mph=0, alt_ft = 0.0, dt = 0.01):
|
|
g = 9.8
|
|
|
|
### comput
|
|
theta = math.radians(theta)
|
|
# initial velocity in direction of travel
|
|
v_0 = v_0_mph * 0.447 # mph to m/s
|
|
|
|
# velocity components in x and y
|
|
v_x = v_0 * math.cos(theta)
|
|
v_y = v_0 * math.sin(theta)
|
|
|
|
v_wind = v_wind_mph * 0.447 # mph to m/s
|
|
altitude = alt_ft / 3.28 # to m/s
|
|
|
|
ground_level = altitude
|
|
|
|
x = [0.0]
|
|
y = [altitude]
|
|
|
|
i = 0
|
|
while y[i] >= ground_level:
|
|
|
|
v = math.sqrt((v_x - v_wind) **2+ v_y**2)
|
|
|
|
x.append(x[i] + v_x * dt)
|
|
y.append(y[i] + v_y * dt)
|
|
|
|
v_x = v_x - a_drag(v, altitude) * v * (v_x - v_wind) * dt
|
|
v_y = v_y - a_drag(v, altitude) * v * v_y * dt - g * dt
|
|
i += 1
|
|
|
|
# meters to yards
|
|
np.multiply (x, 1.09361)
|
|
np.multiply (y, 1.09361)
|
|
|
|
return (x,y)
|
|
|
|
|
|
def predict (x0, y0, x1, y1, dt, time):
|
|
g = 10.724*dt*dt
|
|
|
|
v_x = x1-x0
|
|
v_y = y1-y0
|
|
v = math.sqrt(v_x**2 + v_y**2)
|
|
|
|
x = x1
|
|
y = y1
|
|
|
|
|
|
while time > 0:
|
|
v_x = v_x - a_drag(v, y) * v * v_x
|
|
v_y = v_y - a_drag(v, y) * v * v_y - g
|
|
|
|
x = x + v_x
|
|
y = y + v_y
|
|
|
|
time -= dt
|
|
|
|
return (x,y)
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
x,y = compute_trajectory(v_0_mph = 110., theta=35., v_wind_mph = 0., alt_ft=5000.)
|
|
|
|
plt.plot (x, y)
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|