Kalman-and-Bayesian-Filters.../code/ukf_internal.py
Roger Labbe 9b60578728 refactor to minimize code plot size.
Added code to set x,y labels and title, and to set xlim, ylim
in one line.

Also moved some plotting code to the *internal.py files.
2015-07-09 14:28:50 -07:00

305 lines
8.4 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue May 27 21:21:19 2014
@author: rlabbe
"""
from filterpy.kalman import UnscentedKalmanFilter as UKF
from filterpy.kalman import MerweScaledSigmaPoints
import filterpy.stats as stats
from filterpy.stats import plot_covariance_ellipse
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse,Arrow
import math
import numpy as np
def _sigma_points(mean, sigma, kappa):
sigma1 = mean + math.sqrt((1+kappa)*sigma)
sigma2 = mean - math.sqrt((1+kappa)*sigma)
return mean, sigma1, sigma2
def arrow(x1,y1,x2,y2, width=0.2):
return Arrow(x1,y1, x2-x1, y2-y1, lw=1, width=width, ec='k', color='k')
def show_two_sensor_bearing():
circle1=plt.Circle((-4,0),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((4,0),5,color='#E24A33', fill=False, linewidth=5, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
plt.axis('equal')
#plt.xlim((-10,10))
plt.ylim((-6,6))
plt.plot ([-4,0], [0,3], c='#004080')
plt.plot ([4,0], [0,3], c='#E24A33')
plt.text(-4, -.5, "A", fontsize=16, horizontalalignment='center')
plt.text(4, -.5, "B", fontsize=16, horizontalalignment='center')
ax.add_patch(circle1)
ax.add_patch(circle2)
plt.show()
def show_three_gps():
circle1=plt.Circle((-4,0),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((4,0),5,color='#E24A33', fill=False, linewidth=8, alpha=.7)
circle3=plt.Circle((0,-3),6,color='#534543',fill=False, linewidth=13, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
ax.add_patch(circle1)
ax.add_patch(circle2)
ax.add_patch(circle3)
plt.axis('equal')
plt.show()
def show_four_gps():
circle1=plt.Circle((-4,2),5,color='#004080',fill=False,linewidth=20, alpha=.7)
circle2=plt.Circle((5.5,1),5,color='#E24A33', fill=False, linewidth=8, alpha=.7)
circle3=plt.Circle((0,-3),6,color='#534543',fill=False, linewidth=13, alpha=.7)
circle4=plt.Circle((0,8),5,color='#214513',fill=False, linewidth=13, alpha=.7)
fig = plt.gcf()
ax = fig.gca()
ax.add_patch(circle1)
ax.add_patch(circle2)
ax.add_patch(circle3)
ax.add_patch(circle4)
plt.axis('equal')
plt.show()
def show_sigma_transform(with_text=False):
fig = plt.figure()
ax=fig.gca()
x = np.array([0, 5])
P = np.array([[4, -2.2], [-2.2, 3]])
plot_covariance_ellipse(x, P, facecolor='b', alpha=0.6, variance=9)
sigmas = MerweScaledSigmaPoints(2, alpha=.5, beta=2., kappa=0.)
S = sigmas.sigma_points(x=x, P=P)
plt.scatter(S[:,0], S[:,1], c='k', s=80)
x = np.array([15, 5])
P = np.array([[3, 1.2],[1.2, 6]])
plot_covariance_ellipse(x, P, facecolor='g', variance=9, alpha=0.3)
ax.add_artist(arrow(S[0,0], S[0,1], 11, 4.1, 0.6))
ax.add_artist(arrow(S[1,0], S[1,1], 13, 7.7, 0.6))
ax.add_artist(arrow(S[2,0], S[2,1], 16.3, 0.93, 0.6))
ax.add_artist(arrow(S[3,0], S[3,1], 16.7, 10.8, 0.6))
ax.add_artist(arrow(S[4,0], S[4,1], 17.7, 5.6, 0.6))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if with_text:
plt.text(2.5, 1.5, r"$\chi$", fontsize=32)
plt.text(13, -1, r"$\mathcal{Y}$", fontsize=32)
#plt.axis('equal')
plt.show()
def show_2d_transform():
plt.cla()
ax=plt.gca()
ax.add_artist(Ellipse(xy=(2,5), width=2, height=3,angle=70,linewidth=1,ec='k'))
ax.add_artist(Ellipse(xy=(7,5), width=2.2, alpha=0.3, height=3.8,angle=150,fc='g',linewidth=1,ec='k'))
ax.add_artist(arrow(2, 5, 6, 4.8))
ax.add_artist(arrow(1.5, 5.5, 7, 3.8))
ax.add_artist(arrow(2.3, 4.1, 8, 6))
ax.add_artist(arrow(3.3, 5.1, 6.5, 4.3))
ax.add_artist(arrow(1.3, 4.8, 7.2, 6.3))
ax.add_artist(arrow(1.1, 5.2, 8.2, 5.3))
ax.add_artist(arrow(2, 4.4, 7.3, 4.5))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.axis('equal')
plt.xlim(0,10); plt.ylim(0,10)
plt.show()
def show_3_sigma_points():
xs = np.arange(-4, 4, 0.1)
var = 1.5
ys = [stats.gaussian(x, 0, var) for x in xs]
samples = [0, 1.2, -1.2]
for x in samples:
plt.scatter ([x], [stats.gaussian(x, 0, var)], s=80)
plt.plot(xs, ys)
plt.show()
def show_sigma_selections():
ax=plt.gca()
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
x = np.array([2, 5])
P = np.array([[3, 1.1], [1.1, 4]])
points = MerweScaledSigmaPoints(2, .05, 2., 1.)
sigmas = points.sigma_points(x, P)
plot_covariance_ellipse(x, P, facecolor='b', alpha=0.6, variance=[.5])
plt.scatter(sigmas[:,0], sigmas[:, 1], c='k', s=50)
x = np.array([5, 5])
points = MerweScaledSigmaPoints(2, .15, 2., 1.)
sigmas = points.sigma_points(x, P)
plot_covariance_ellipse(x, P, facecolor='b', alpha=0.6, variance=[.5])
plt.scatter(sigmas[:,0], sigmas[:, 1], c='k', s=50)
x = np.array([8, 5])
points = MerweScaledSigmaPoints(2, .4, 2., 1.)
sigmas = points.sigma_points(x, P)
plot_covariance_ellipse(x, P, facecolor='b', alpha=0.6, variance=[.5])
plt.scatter(sigmas[:,0], sigmas[:, 1], c='k', s=50)
plt.axis('equal')
plt.xlim(0,10); plt.ylim(0,10)
plt.show()
def show_sigmas_for_2_kappas():
# generate the Gaussian data
xs = np.arange(-4, 4, 0.1)
mean = 0
sigma = 1.5
ys = [stats.gaussian(x, mean, sigma*sigma) for x in xs]
#generate our samples
kappa = 2
x0,x1,x2 = _sigma_points(mean, sigma, kappa)
samples = [x0,x1,x2]
for x in samples:
p1 = plt.scatter([x], [stats.gaussian(x, mean, sigma*sigma)], s=80, color='k')
kappa = -.5
x0,x1,x2 = _sigma_points(mean, sigma, kappa)
samples = [x0,x1,x2]
for x in samples:
p2 = plt.scatter([x], [stats.gaussian(x, mean, sigma*sigma)], s=80, color='b')
plt.legend([p1,p2], ['$kappa$=2', '$kappa$=-0.5'])
plt.plot(xs, ys)
plt.show()
def plot_sigma_points():
x = np.array([0, 0])
P = np.array([[4, 2], [2, 4]])
sigmas = MerweScaledSigmaPoints(n=2, alpha=.3, beta=2., kappa=1.)
S0 = sigmas.sigma_points(x, P)
Wm0, Wc0 = sigmas.weights()
sigmas = MerweScaledSigmaPoints(n=2, alpha=1., beta=2., kappa=1.)
S1 = sigmas.sigma_points(x, P)
Wm1, Wc1 = sigmas.weights()
def plot_sigmas(s, w, **kwargs):
min_w = min(abs(w))
scale_factor = 100 / min_w
return plt.scatter(s[:, 0], s[:, 1], s=abs(w)*scale_factor, alpha=.5, **kwargs)
plt.subplot(121)
plot_sigmas(S0, Wc0, c='b')
plot_covariance_ellipse(x, P, facecolor='g', alpha=0.2, variance=[1, 4])
plt.title('alpha=0.3')
plt.subplot(122)
plot_sigmas(S1, Wc1, c='b', label='Kappa=2')
plot_covariance_ellipse(x, P, facecolor='g', alpha=0.2, variance=[1, 4])
plt.title('alpha=1')
plt.show()
print(sum(Wc0))
def plot_radar(xs, t, plot_x=True, plot_vel=True, plot_alt=True):
xs = np.asarray(xs)
if plot_x:
plt.figure()
plt.plot(t, xs[:, 0]/1000.)
plt.xlabel('time(sec)')
plt.ylabel('position(km)')
if plot_vel:
plt.figure()
plt.plot(t, xs[:, 1])
plt.xlabel('time(sec)')
plt.ylabel('velocity')
if plot_alt:
plt.figure()
plt.plot(t, xs[:,2])
plt.xlabel('time(sec)')
plt.ylabel('altitude')
plt.show()
def print_sigmas(n=1, mean=5, cov=3, alpha=.1, beta=2., kappa=2):
points = MerweScaledSigmaPoints(n, alpha, beta, kappa)
print('sigmas: ', points.sigma_points(mean, cov).T[0])
Wm, Wc = points.weights()
print('mean weights:', Wm)
print('cov weights:', Wc)
print('lambda:', alpha**2 *(n+kappa) - n)
print('sum cov', sum(Wc))
def plot_rts_output(xs, Ms, t):
plt.figure()
plt.plot(t, xs[:, 0]/1000., label='KF', lw=2)
plt.plot(t, Ms[:, 0]/1000., c='k', label='RTS', lw=2)
plt.xlabel('time(sec)')
plt.ylabel('x')
plt.legend(loc=4)
plt.figure()
plt.plot(t, xs[:, 1], label='KF')
plt.plot(t, Ms[:, 1], c='k', label='RTS')
plt.xlabel('time(sec)')
plt.ylabel('x velocity')
plt.legend(loc=4)
plt.figure()
plt.plot(t, xs[:, 2], label='KF')
plt.plot(t, Ms[:, 2], c='k', label='RTS')
plt.xlabel('time(sec)')
plt.ylabel('Altitude(m)')
plt.legend(loc=4)
np.set_printoptions(precision=4)
print('Difference in position in meters:', xs[-6:-1, 0] - Ms[-6:-1, 0])
if __name__ == '__main__':
#show_2d_transform()
#show_sigma_selections()
show_sigma_transform(True)
#show_four_gps()
#show_sigma_transform()
#show_sigma_selections()