6f1fd2f16f
I used to add .\code to the path, which was an absurd hack. Now all code is imported with import code.foo.
620 lines
19 KiB
Python
620 lines
19 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""Copyright 2015 Roger R Labbe Jr.
|
|
|
|
|
|
Code supporting the book
|
|
|
|
Kalman and Bayesian Filters in Python
|
|
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
|
|
|
|
|
|
This is licensed under an MIT license. See the LICENSE.txt file
|
|
for more information.
|
|
"""
|
|
|
|
|
|
from __future__ import (absolute_import, division, print_function,
|
|
unicode_literals)
|
|
|
|
|
|
from book_format import figsize
|
|
from contextlib import contextmanager
|
|
import matplotlib as mpl
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import sys
|
|
import time
|
|
|
|
try:
|
|
import seaborn
|
|
except:
|
|
pass
|
|
|
|
""" If the plot is inline (%matplotlib inline) we need to
|
|
do special processing for the interactive_plot context manager,
|
|
otherwise it outputs a lot of extra <matplotlib.figure.figure
|
|
type output into the notebook."""
|
|
|
|
IS_INLINE = mpl.get_backend().find('backend_inline') != -1
|
|
|
|
|
|
def end_interactive(fig):
|
|
""" end interaction in a plot created with %matplotlib notebook """
|
|
|
|
if IS_INLINE:
|
|
return
|
|
|
|
fig.canvas.draw()
|
|
time.sleep(1.)
|
|
plt.close(fig)
|
|
|
|
|
|
@contextmanager
|
|
def interactive_plot(close=True, fig=None):
|
|
if fig is None and not IS_INLINE:
|
|
fig = plt.figure()
|
|
|
|
yield
|
|
try:
|
|
# if the figure only uses annotations tight_output
|
|
# throws an exception
|
|
if not IS_INLINE: plt.tight_layout()
|
|
except:
|
|
pass
|
|
|
|
if not IS_INLINE:
|
|
plt.show()
|
|
|
|
if close and not IS_INLINE:
|
|
end_interactive(fig)
|
|
|
|
|
|
def plot_errorbars(bars, xlims, ylims=(0, 2)):
|
|
|
|
i = 0.0
|
|
for bar in bars:
|
|
plt.errorbar([bar[0]], [i], xerr=[bar[1]], fmt='o', label=bar[2] , capthick=2, capsize=10)
|
|
i += 0.2
|
|
|
|
plt.ylim(*ylims)
|
|
plt.xlim(xlims[0], xlims[1])
|
|
show_legend()
|
|
plt.gca().axes.yaxis.set_ticks([])
|
|
plt.show()
|
|
|
|
|
|
def plot_errorbar1():
|
|
with figsize(y=2):
|
|
plt.figure()
|
|
plot_errorbars([(160, 8, 'A'), (170, 8, 'B')],
|
|
xlims=(145, 185), ylims=(-1, 1))
|
|
plt.show()
|
|
plt.savefig('../figs/gh_errorbar1.png', pad_inches=0.)
|
|
|
|
|
|
def plot_errorbar2():
|
|
with figsize(y=2):
|
|
plt.figure()
|
|
plot_errorbars([(160, 3, 'A'), (170, 9, 'B')],
|
|
xlims=(145, 185), ylims=(-1, 1))
|
|
plt.savefig('../figs/gh_errorbar2.png', pad_inches=0.)
|
|
|
|
def plot_errorbar3():
|
|
with figsize(y=2):
|
|
plt.figure()
|
|
plot_errorbars([(160, 1, 'A'), (170, 9, 'B')],
|
|
xlims=(145, 185), ylims=(-1, 1))
|
|
plt.savefig('../figs/gh_errorbar3.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_hypothesis1():
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
plt.errorbar([1, 2, 3], [170, 161, 169],
|
|
xerr=0, yerr=10, fmt='bo', capthick=2, capsize=10)
|
|
|
|
plt.plot([1, 3], [180, 160], color='g', ls='--')
|
|
plt.plot([1, 3], [170, 170], color='g', ls='--')
|
|
plt.plot([1, 3], [160, 175], color='g', ls='--')
|
|
plt.plot([1, 2, 3], [180, 152, 179], color='g', ls='--')
|
|
plt.xlim(0,4); plt.ylim(150, 185)
|
|
plt.xlabel('day')
|
|
plt.ylabel('lbs')
|
|
plt.tight_layout()
|
|
plt.savefig('../figs/gh_hypothesis1.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_hypothesis2():
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
plt.errorbar(range(1, 11), [169, 170, 169,171, 170, 171, 169, 170, 169, 170],
|
|
xerr=0, yerr=6, fmt='bo', capthick=2, capsize=10)
|
|
plt.plot([1, 10], [169, 170.5], color='g', ls='--')
|
|
plt.xlim(0, 11); plt.ylim(150, 185)
|
|
plt.xlabel('day')
|
|
plt.ylabel('lbs')
|
|
plt.savefig('../figs/gh_hypothesis2.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_hypothesis3():
|
|
weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6,
|
|
169.6, 167.4, 166.4, 171.0, 171.2, 172.6]
|
|
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
|
|
plt.errorbar(range(1, 13), weights,
|
|
xerr=0, yerr=6, fmt='o', capthick=2, capsize=10)
|
|
|
|
plt.xlim(0, 13); plt.ylim(145, 185)
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
plt.savefig('../figs/gh_hypothesis3.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_hypothesis4():
|
|
weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6,
|
|
169.6, 167.4, 166.4, 171.0, 171.2, 172.6]
|
|
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
ave = np.sum(weights) / len(weights)
|
|
plt.errorbar(range(1,13), weights, label='weights',
|
|
yerr=6, fmt='o', capthick=2, capsize=10)
|
|
plt.plot([1, 12], [ave,ave], c='r', label='hypothesis')
|
|
plt.xlim(0, 13); plt.ylim(145, 185)
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
show_legend()
|
|
plt.savefig('../figs/gh_hypothesis4.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_hypothesis5():
|
|
weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6,
|
|
169.6, 167.4, 166.4, 171.0, 171.2, 172.6]
|
|
|
|
xs = range(1, len(weights)+1)
|
|
line = np.poly1d(np.polyfit(xs, weights, 1))
|
|
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
plt.errorbar(range(1, 13), weights, label='weights',
|
|
yerr=5, fmt='o', capthick=2, capsize=10)
|
|
plt.plot (xs, line(xs), c='r', label='hypothesis')
|
|
plt.xlim(0, 13); plt.ylim(145, 185)
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
show_legend()
|
|
plt.savefig('../figs/gh_hypothesis5.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_estimate_chart_1():
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
ax = plt.axes()
|
|
ax.annotate('', xy=[1,159], xytext=[0,158],
|
|
arrowprops=dict(arrowstyle='->', ec='r',shrinkA=6, lw=3,shrinkB=5))
|
|
plt.scatter ([0], [158], c='b')
|
|
plt.scatter ([1], [159], c='r')
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
ax.xaxis.grid(True, which="major", linestyle='dotted')
|
|
ax.yaxis.grid(True, which="major", linestyle='dotted')
|
|
plt.tight_layout()
|
|
plt.savefig('../figs/gh_estimate1.png', pad_inches=0.1)
|
|
|
|
|
|
def plot_estimate_chart_2():
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
ax = plt.axes()
|
|
ax.annotate('', xy=[1,159], xytext=[0,158],
|
|
arrowprops=dict(arrowstyle='->',
|
|
ec='r', lw=3, shrinkA=6, shrinkB=5))
|
|
plt.scatter ([0], [158.0], c='k',s=128)
|
|
plt.scatter ([1], [164.2], c='b',s=128)
|
|
plt.scatter ([1], [159], c='r', s=128)
|
|
plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red')
|
|
plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue')
|
|
plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18)
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
ax.xaxis.grid(True, which="major", linestyle='dotted')
|
|
ax.yaxis.grid(True, which="major", linestyle='dotted')
|
|
plt.savefig('../figs/gh_estimate2.png', pad_inches=0.1)
|
|
|
|
def plot_estimate_chart_3():
|
|
with figsize(y=2.5):
|
|
plt.figure()
|
|
ax = plt.axes()
|
|
ax.annotate('', xy=[1,159], xytext=[0,158],
|
|
arrowprops=dict(arrowstyle='->',
|
|
ec='r', lw=3, shrinkA=6, shrinkB=5))
|
|
|
|
ax.annotate('', xy=[1,159], xytext=[1,164.2],
|
|
arrowprops=dict(arrowstyle='-',
|
|
ec='k', lw=3, shrinkA=8, shrinkB=8))
|
|
|
|
est_y = ((164.2-158)*.8 + 158)
|
|
plt.scatter ([0,1], [158.0,est_y], c='k',s=128)
|
|
plt.scatter ([1], [164.2], c='b',s=128)
|
|
plt.scatter ([1], [159], c='r', s=128)
|
|
plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red')
|
|
plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue')
|
|
plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18)
|
|
plt.text (0.95, est_y, "new estimate ($\hat{x}_{t}$)", ha='right', va='center',fontsize=18)
|
|
plt.xlabel('day')
|
|
plt.ylabel('weight (lbs)')
|
|
ax.xaxis.grid(True, which="major", linestyle='dotted')
|
|
ax.yaxis.grid(True, which="major", linestyle='dotted')
|
|
plt.savefig('../figs/gh_estimate3.png', pad_inches=0.1)
|
|
|
|
|
|
|
|
def create_predict_update_chart(box_bg = '#CCCCCC',
|
|
arrow1 = '#88CCFF',
|
|
arrow2 = '#88FF88'):
|
|
plt.figure(figsize=(4, 2.), facecolor='w')
|
|
#plt.figure(figsize=(14,12.5), facecolor='w')
|
|
ax = plt.axes((0, 0, 1, 1),
|
|
xticks=[], yticks=[], frameon=False)
|
|
|
|
pc = Circle((4,5), 0.7, fc=box_bg)
|
|
uc = Circle((6,5), 0.7, fc=box_bg)
|
|
ax.add_patch (pc)
|
|
ax.add_patch (uc)
|
|
|
|
plt.text(4,5, "Predict\nStep",ha='center', va='center', fontsize=12)
|
|
plt.text(6,5, "Update\nStep",ha='center', va='center', fontsize=12)
|
|
|
|
#btm arrow from update to predict
|
|
ax.annotate('',
|
|
xy=(4.1, 4.5), xycoords='data',
|
|
xytext=(6, 4.5), textcoords='data',
|
|
size=20,
|
|
arrowprops=dict(arrowstyle="simple",
|
|
fc="0.6", ec="none",
|
|
patchB=pc,
|
|
patchA=uc,
|
|
connectionstyle="arc3,rad=-0.5"))
|
|
#top arrow from predict to update
|
|
ax.annotate('',
|
|
xy=(6, 5.5), xycoords='data',
|
|
xytext=(4.1, 5.5), textcoords='data',
|
|
size=20,
|
|
arrowprops=dict(arrowstyle="simple",
|
|
fc="0.6", ec="none",
|
|
patchB=uc,
|
|
patchA=pc,
|
|
connectionstyle="arc3,rad=-0.5"))
|
|
|
|
|
|
ax.annotate('Measurement ($\mathbf{z_k}$)',
|
|
xy=(6.3, 5.6), xycoords='data',
|
|
xytext=(6,6), textcoords='data',
|
|
size=14,
|
|
arrowprops=dict(arrowstyle="simple",
|
|
fc="0.6", ec="none"))
|
|
|
|
# arrow from predict to state estimate
|
|
ax.annotate('',
|
|
xy=(4.0, 3.8), xycoords='data',
|
|
xytext=(4.0,4.3), textcoords='data',
|
|
size=12,
|
|
arrowprops=dict(arrowstyle="simple",
|
|
fc="0.6", ec="none"))
|
|
|
|
ax.annotate('Initial\nConditions ($\mathbf{x_0}$)',
|
|
xy=(4.05, 5.7), xycoords='data',
|
|
xytext=(2.5, 6.5), textcoords='data',
|
|
size=14,
|
|
arrowprops=dict(arrowstyle="simple",
|
|
fc="0.6", ec="none"))
|
|
|
|
plt.text (4, 3.7,'State Estimate ($\mathbf{\hat{x}_k}$)',
|
|
ha='center', va='center', fontsize=14)
|
|
plt.axis('equal')
|
|
plt.xlim(2,10)
|
|
plt.savefig('../figs/gh_predict_update.png', pad_inches=0.1)
|
|
|
|
|
|
def show_residual_chart(show_eq=True, show_H=False):
|
|
plt.figure(figsize=(11, 3.), facecolor='w')
|
|
est_y = ((164.2-158)*.8 + 158)
|
|
|
|
ax = plt.axes(xticks=[], yticks=[], frameon=False)
|
|
ax.annotate('', xy=[1,159], xytext=[0,158],
|
|
arrowprops=dict(arrowstyle='->',
|
|
ec='r', lw=3, shrinkA=6, shrinkB=5))
|
|
|
|
ax.annotate('', xy=[1,159], xytext=[1,164.2],
|
|
arrowprops=dict(arrowstyle='-',
|
|
ec='k', lw=3, shrinkA=8, shrinkB=8))
|
|
|
|
ax.annotate('', xy=(1., est_y), xytext=(0.9, est_y),
|
|
arrowprops=dict(arrowstyle='->', ec='#004080',
|
|
lw=2,
|
|
shrinkA=3, shrinkB=4))
|
|
|
|
|
|
plt.scatter ([0,1], [158.0,est_y], c='k',s=128)
|
|
plt.scatter ([1], [164.2], c='b',s=128)
|
|
plt.scatter ([1], [159], c='r', s=128)
|
|
plt.text (1.05, 158.8, r"prior $(\bar{x}_t)$", ha='center',va='top',fontsize=18,color='red')
|
|
plt.text (0.5, 159.6, "prediction", ha='center',va='top',fontsize=18,color='red')
|
|
plt.text (1.0, 164.4, r"measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue')
|
|
plt.text (0, 157.8, r"posterior ($x_{t-1}$)", ha='center', va='top',fontsize=18)
|
|
plt.text (1.02, est_y-1.5, "residual($y$)", ha='left', va='center',fontsize=18)
|
|
if show_eq:
|
|
if show_H:
|
|
plt.text (1.02, est_y-2.2, r"$y=z-H\bar x_t$", ha='left', va='center',fontsize=18)
|
|
else:
|
|
plt.text (1.02, est_y-2.2, r"$y=z-\bar x_t$", ha='left', va='center',fontsize=18)
|
|
plt.text (0.9, est_y, "new estimate ($x_t$)", ha='right', va='center',fontsize=18)
|
|
plt.text (0.8, est_y-0.5, "(posterior)", ha='right', va='center',fontsize=18)
|
|
if show_eq:
|
|
plt.text (0.75, est_y-1.2, r"$\bar{x}_t + Ky$", ha='right', va='center',fontsize=18)
|
|
plt.xlabel('time')
|
|
ax.yaxis.set_label_position("right")
|
|
plt.ylabel('state')
|
|
plt.xlim(-0.1, 1.5)
|
|
if show_H:
|
|
plt.savefig('../figs/residual_chart_with_h.png', pad_inches=0.1)
|
|
else:
|
|
plt.savefig('../figs/residual_chart.png', pad_inches=0.1)
|
|
|
|
|
|
|
|
def show_legend():
|
|
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
|
|
|
|
|
def bar_plot(pos, x=None, ylim=(0,1), title=None, c='#30a2da',
|
|
**kwargs):
|
|
""" plot the values in `pos` as a bar plot.
|
|
|
|
**Parameters**
|
|
|
|
pos : list-like
|
|
list of values to plot as bars
|
|
|
|
x : list-like, optional
|
|
If provided, specifies the x value for each value in pos. If not
|
|
provided, the first pos element is plotted at x == 0, the second
|
|
at 1, etc.
|
|
|
|
ylim : (lower, upper), default = (0,1)
|
|
specifies the lower and upper limits for the y-axis
|
|
|
|
title : str, optional
|
|
If specified, provides a title for the plot
|
|
|
|
c : color, default='#30a2da'
|
|
Color for the bars
|
|
|
|
**kwargs : keywords, optional
|
|
extra keyword arguments passed to ax.bar()
|
|
|
|
"""
|
|
|
|
ax = plt.gca()
|
|
if x is None:
|
|
x = np.arange(len(pos))
|
|
ax.bar(x, pos, color=c, **kwargs)
|
|
if ylim:
|
|
plt.ylim(ylim)
|
|
plt.xticks(np.asarray(x)+0.4, x)
|
|
if title is not None:
|
|
plt.title(title)
|
|
|
|
|
|
def plot_belief_vs_prior(belief, prior, **kwargs):
|
|
""" plots two discrete probability distributions side by side, with
|
|
titles "belief" and "prior"
|
|
"""
|
|
|
|
plt.subplot(121)
|
|
bar_plot(belief, title='belief', **kwargs)
|
|
plt.subplot(122)
|
|
bar_plot(prior, title='prior', **kwargs)
|
|
|
|
|
|
def plot_prior_vs_posterior(prior, posterior, reverse=False, **kwargs):
|
|
""" plots two discrete probability distributions side by side, with
|
|
titles "prior" and "posterior"
|
|
"""
|
|
if reverse:
|
|
plt.subplot(121)
|
|
bar_plot(posterior, title='posterior', **kwargs)
|
|
plt.subplot(122)
|
|
bar_plot(prior, title='prior', **kwargs)
|
|
else:
|
|
plt.subplot(121)
|
|
bar_plot(prior, title='prior', **kwargs)
|
|
plt.subplot(122)
|
|
bar_plot(posterior, title='posterior', **kwargs)
|
|
|
|
|
|
def set_labels(title=None, x=None, y=None):
|
|
""" helps make code in book shorter. Optional set title, xlabel and ylabel
|
|
"""
|
|
if x is not None:
|
|
plt.xlabel(x)
|
|
if y is not None:
|
|
plt.ylabel(y)
|
|
if title is not None:
|
|
plt.title(title)
|
|
|
|
|
|
def set_limits(x, y):
|
|
""" helper function to make code in book shorter. Set the limits for the x
|
|
and y axis.
|
|
"""
|
|
|
|
plt.gca().set_xlim(x)
|
|
plt.gca().set_ylim(y)
|
|
|
|
def plot_predictions(p, rng=None, label='Prediction'):
|
|
if rng is None:
|
|
rng = range(len(p))
|
|
plt.scatter(rng, p, marker='v', s=40, edgecolor='r',
|
|
facecolor='None', lw=2, label=label)
|
|
|
|
|
|
|
|
def plot_kf_output(xs, filter_xs, zs, title=None, aspect_equal=True):
|
|
plot_filter(filter_xs[:, 0])
|
|
plot_track(xs[:, 0])
|
|
|
|
if zs is not None:
|
|
plot_measurements(zs)
|
|
show_legend()
|
|
set_labels(title=title, y='meters', x='time (sec)')
|
|
if aspect_equal:
|
|
plt.gca().set_aspect('equal')
|
|
plt.xlim((-1, len(xs)))
|
|
plt.show()
|
|
|
|
|
|
def plot_measurements(xs, ys=None, color='k', lw=2, label='Measurements',
|
|
lines=False, **kwargs):
|
|
""" Helper function to give a consistant way to display
|
|
measurements in the book.
|
|
"""
|
|
|
|
plt.autoscale(tight=True)
|
|
if lines:
|
|
if ys is not None:
|
|
return plt.plot(xs, ys, color=color, lw=lw, ls='--', label=label, **kwargs)
|
|
else:
|
|
return plt.plot(xs, color=color, lw=lw, ls='--', label=label, **kwargs)
|
|
else:
|
|
if ys is not None:
|
|
return plt.scatter(xs, ys, edgecolor=color, facecolor='none',
|
|
lw=2, label=label, **kwargs),
|
|
else:
|
|
return plt.scatter(range(len(xs)), xs, edgecolor=color, facecolor='none',
|
|
lw=2, label=label, **kwargs),
|
|
|
|
|
|
def plot_residual_limits(Ps, stds=1.):
|
|
""" plots standand deviation given in Ps as a yellow shaded region. One std
|
|
by default, use stds for a different choice (e.g. stds=3 for 3 standard
|
|
deviations.
|
|
"""
|
|
|
|
std = np.sqrt(Ps) * stds
|
|
|
|
plt.plot(-std, color='k', ls=':', lw=2)
|
|
plt.plot(std, color='k', ls=':', lw=2)
|
|
plt.fill_between(range(len(std)), -std, std,
|
|
facecolor='#ffff00', alpha=0.3)
|
|
|
|
|
|
def plot_track(xs, ys=None, label='Track', c='k', lw=2, **kwargs):
|
|
if ys is not None:
|
|
return plt.plot(xs, ys, color=c, lw=lw, ls=':', label=label, **kwargs)
|
|
else:
|
|
return plt.plot(xs, color=c, lw=lw, ls=':', label=label, **kwargs)
|
|
|
|
|
|
def plot_filter(xs, ys=None, c='#013afe', label='Filter', var=None, **kwargs):
|
|
#def plot_filter(xs, ys=None, c='#6d904f', label='Filter', vars=None, **kwargs):
|
|
|
|
|
|
if ys is None:
|
|
ys = xs
|
|
xs = range(len(ys))
|
|
|
|
plt.plot(xs, ys, color=c, label=label, **kwargs)
|
|
|
|
if var is None:
|
|
return
|
|
|
|
var = np.asarray(var)
|
|
|
|
std = np.sqrt(var)
|
|
std_top = ys+std
|
|
std_btm = ys-std
|
|
|
|
plt.plot(xs, ys+std, linestyle=':', color='k', lw=2)
|
|
plt.plot(xs, ys-std, linestyle=':', color='k', lw=2)
|
|
plt.fill_between(xs, std_btm, std_top,
|
|
facecolor='yellow', alpha=0.2)
|
|
|
|
|
|
|
|
|
|
def _blob(x, y, area, colour):
|
|
"""
|
|
Draws a square-shaped blob with the given area (< 1) at
|
|
the given coordinates.
|
|
"""
|
|
hs = np.sqrt(area) / 2
|
|
xcorners = np.array([x - hs, x + hs, x + hs, x - hs])
|
|
ycorners = np.array([y - hs, y - hs, y + hs, y + hs])
|
|
plt.fill(xcorners, ycorners, colour, edgecolor=colour)
|
|
|
|
def hinton(W, maxweight=None):
|
|
"""
|
|
Draws a Hinton diagram for visualizing a weight matrix.
|
|
Temporarily disables matplotlib interactive mode if it is on,
|
|
otherwise this takes forever.
|
|
"""
|
|
reenable = False
|
|
if plt.isinteractive():
|
|
plt.ioff()
|
|
|
|
plt.clf()
|
|
height, width = W.shape
|
|
if not maxweight:
|
|
maxweight = 2**np.ceil(np.log(np.max(np.abs(W)))/np.log(2))
|
|
|
|
plt.fill(np.array([0, width, width, 0]),
|
|
np.array([0, 0, height, height]),
|
|
'gray')
|
|
|
|
plt.axis('off')
|
|
plt.axis('equal')
|
|
for x in range(width):
|
|
for y in range(height):
|
|
_x = x+1
|
|
_y = y+1
|
|
w = W[y, x]
|
|
if w > 0:
|
|
_blob(_x - 0.5,
|
|
height - _y + 0.5,
|
|
min(1, w/maxweight),
|
|
'white')
|
|
elif w < 0:
|
|
_blob(_x - 0.5,
|
|
height - _y + 0.5,
|
|
min(1, -w/maxweight),
|
|
'black')
|
|
if reenable:
|
|
plt.ion()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
plot_errorbar1()
|
|
plot_errorbar2()
|
|
plot_errorbar3()
|
|
plot_hypothesis1()
|
|
plot_hypothesis2()
|
|
plot_hypothesis3()
|
|
plot_hypothesis4()
|
|
plot_hypothesis5()
|
|
plot_estimate_chart_1()
|
|
plot_estimate_chart_2()
|
|
plot_estimate_chart_3()
|
|
create_predict_update_chart()
|
|
show_residual_chart()
|
|
show_residual_chart(True, True)
|
|
plt.close('all')
|
|
|
|
'''p = [0.2245871, 0.06288015, 0.06109133, 0.0581008, 0.09334062, 0.2245871,
|
|
0.06288015, 0.06109133, 0.0581008, 0.09334062]*2
|
|
bar_plot(p)
|
|
plot_measurements(p)''' |