Kalman-and-Bayesian-Filters.../code/mkf_internal.py
Roger Labbe 7cd8e11b57 More work on multivariate gaussians.
Not copy edited yet, but more work on making the material on
multivariate gaussian more understandable (mostly by reordering
concepts).
2015-11-25 12:39:15 -08:00

515 lines
16 KiB
Python

# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import book_plots as bp
import filterpy.stats as stats
from filterpy.stats import plot_covariance_ellipse
from matplotlib.patches import Ellipse
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from numpy.random import multivariate_normal
def zs_var_27_6():
zs = [3.59, 1.73, -2.575, 4.38, 9.71, 2.88, 10.08,
8.97, 3.74, 12.81, 11.15, 9.25, 3.93, 11.11,
19.29, 16.20, 19.63, 9.54, 26.27, 23.29, 25.18,
26.21, 17.1, 25.27, 26.86,33.70, 25.92, 28.82,
32.13, 25.0, 38.56, 26.97, 22.49, 40.77, 32.95,
38.20, 40.93, 39.42, 35.49, 36.31, 31.56, 50.29,
40.20, 54.49, 50.38, 42.79, 37.89, 56.69, 41.47, 53.66]
xs = list(range(len(zs)))
return np.array([xs, zs]).T
def zs_var_275():
zs = [-6.947, 12.467, 6.899, 2.643, 6.980, 5.820, 5.788, 10.614, 5.210,
14.338, 11.401, 19.138, 14.169, 19.572, 25.471, 13.099, 27.090,
12.209, 14.274, 21.302, 14.678, 28.655, 15.914, 28.506, 23.181,
18.981, 28.197, 39.412, 27.640, 31.465, 34.903, 28.420, 33.889,
46.123, 31.355, 30.473, 49.861, 41.310, 42.526, 38.183, 41.383,
41.919, 52.372, 42.048, 48.522, 44.681, 32.989, 37.288, 49.141,
54.235, 62.974, 61.742, 54.863, 52.831, 61.122, 61.187, 58.441,
47.769, 56.855, 53.693, 61.534, 70.665, 60.355, 65.095, 63.386]
xs = list(range(len(zs)))
return np.array([xs, zs]).T
def plot_track_ellipses(N, zs, ps, cov, title):
bp.plot_measurements(range(1,N + 1), zs)
plt.plot(range(1, N + 1), ps, c='b', lw=2, label='filter')
plt.legend(loc='best')
plt.title(title)
for i,p in enumerate(cov):
plot_covariance_ellipse(
(i+1, ps[i]), cov=p, variance=4,
axis_equal=False, ec='g', alpha=0.5)
if i == len(cov)-1:
s = ('$\sigma^2_{pos} = %.2f$' % p[0,0])
plt.text (20, 5, s, fontsize=18)
s = ('$\sigma^2_{vel} = %.2f$' % p[1, 1])
plt.text (20, 0, s, fontsize=18)
plt.xlim(-10, 80)
plt.gca().set_aspect('equal')
plt.show()
def show_residual_chart():
est_y = ((164.2-158)*.8 + 158)
ax = plt.axes(xticks=[], yticks=[], frameon=False)
ax.annotate('', xy=[1,159], xytext=[0,158],
arrowprops=dict(arrowstyle='->',
ec='r', lw=3, shrinkA=6, shrinkB=5))
ax.annotate('', xy=[1,159], xytext=[1,164.2],
arrowprops=dict(arrowstyle='-',
ec='k', lw=3, shrinkA=8, shrinkB=8))
ax.annotate('', xy=(1., est_y), xytext=(0.9, est_y),
arrowprops=dict(arrowstyle='->', ec='#004080',
lw=2,
shrinkA=3, shrinkB=4))
plt.scatter ([0,1], [158.0,est_y], c='k',s=128)
plt.scatter ([1], [164.2], c='b',s=128)
plt.scatter ([1], [159], c='r', s=128)
plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red')
plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue')
plt.text (0, 157.8, "prior estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18)
plt.text (1.02, est_y-1.5, "residual", ha='left', va='center',fontsize=18)
plt.text (0.9, est_y, "new estimate ($\hat{x}_{t}$)", ha='right', va='center',fontsize=18)
plt.xlabel('time')
ax.yaxis.set_label_position("right")
plt.ylabel('state')
plt.xlim(-0.5, 1.5)
plt.show()
def plot_gaussian_multiply():
xs = np.arange(-5, 10, 0.1)
mean1, var1 = 0, 5
mean2, var2 = 5, 1
mean, var = stats.mul(mean1, var1, mean2, var2)
ys = [stats.gaussian(x, mean1, var1) for x in xs]
plt.plot(xs, ys, label='M1')
ys = [stats.gaussian(x, mean2, var2) for x in xs]
plt.plot(xs, ys, label='M2')
ys = [stats.gaussian(x, mean, var) for x in xs]
plt.plot(xs, ys, label='M1 x M2')
plt.legend()
plt.show()
def show_position_chart():
""" Displays 3 measurements at t=1,2,3, with x=1,2,3"""
plt.scatter ([1,2,3], [1,2,3], s=128, color='#004080')
plt.xlim([0,4]);
plt.ylim([0,4])
plt.annotate('t=1', xy=(1,1), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.annotate('t=2', xy=(2,2), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.annotate('t=3', xy=(3,3), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.xlabel("X")
plt.ylabel("Y")
plt.xticks(np.arange(1,4,1))
plt.yticks(np.arange(1,4,1))
plt.show()
def show_position_prediction_chart():
""" displays 3 measurements, with the next position predicted"""
plt.scatter ([1,2,3], [1,2,3], s=128, color='#004080')
plt.annotate('t=1', xy=(1,1), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.annotate('t=2', xy=(2,2), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.annotate('t=3', xy=(3,3), xytext=(0,-10),
textcoords='offset points', ha='center', va='top')
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel("Position")
plt.ylabel("Time")
plt.xticks(np.arange(1,5,1))
plt.yticks(np.arange(1,5,1))
plt.scatter ([4], [4], c='g',s=128, color='#8EBA42')
ax = plt.axes()
ax.annotate('', xy=(4,4), xytext=(3,3),
arrowprops=dict(arrowstyle='->',
ec='g',
shrinkA=6, shrinkB=5,
lw=3))
plt.show()
def show_x_error_chart(count):
""" displays x=123 with covariances showing error"""
plt.cla()
plt.gca().autoscale(tight=True)
cov = np.array([[0.03,0], [0,8]])
e = stats.covariance_ellipse (cov)
cov2 = np.array([[0.03,0], [0,4]])
e2 = stats.covariance_ellipse (cov2)
cov3 = np.array([[12,11.95], [11.95,12]])
e3 = stats.covariance_ellipse (cov3)
sigma=[1, 4, 9]
if count >= 1:
stats.plot_covariance_ellipse ((0,0), ellipse=e, variance=sigma)
if count == 2 or count == 3:
stats.plot_covariance_ellipse ((5,5), ellipse=e, variance=sigma)
if count == 3:
stats.plot_covariance_ellipse ((5,5), ellipse=e3, variance=sigma,
edgecolor='r')
if count == 4:
M1 = np.array([[5, 5]]).T
m4, cov4 = stats.multivariate_multiply(M1, cov2, M1, cov3)
e4 = stats.covariance_ellipse (cov4)
stats.plot_covariance_ellipse ((5,5), ellipse=e, variance=sigma,
alpha=0.25)
stats.plot_covariance_ellipse ((5,5), ellipse=e3, variance=sigma,
edgecolor='r', alpha=0.25)
stats.plot_covariance_ellipse (m4[:,0], ellipse=e4, variance=sigma)
#plt.ylim([0,11])
#plt.xticks(np.arange(1,4,1))
plt.xlabel("Position")
plt.ylabel("Velocity")
plt.show()
def show_x_with_unobserved():
""" shows x=1,2,3 with velocity superimposed on top """
# plot velocity
sigma=[0.5,1.,1.5,2]
cov = np.array([[1,1],[1,1.1]])
stats.plot_covariance_ellipse ((2,2), cov=cov, variance=sigma, axis_equal=False)
# plot positions
cov = np.array([[0.003,0], [0,12]])
sigma=[0.5,1.,1.5,2]
e = stats.covariance_ellipse (cov)
stats.plot_covariance_ellipse ((1,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((2,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((3,1), ellipse=e, variance=sigma, axis_equal=False)
# plot intersection cirle
isct = Ellipse(xy=(2,2), width=.2, height=1.2, edgecolor='r', fc='None', lw=4)
plt.gca().add_artist(isct)
plt.ylim([0,11])
plt.xlim([0,4])
plt.xticks(np.arange(1,4,1))
plt.xlabel("Position")
plt.ylabel("Time")
plt.show()
def plot_3d_covariance(mean, cov):
""" plots a 2x2 covariance matrix positioned at mean. mean will be plotted
in x and y, and the probability in the z axis.
Parameters
----------
mean : 2x1 tuple-like object
mean for x and y coordinates. For example (2.3, 7.5)
cov : 2x2 nd.array
the covariance matrix
"""
# compute width and height of covariance ellipse so we can choose
# appropriate ranges for x and y
o,w,h = stats.covariance_ellipse(cov,3)
# rotate width and height to x,y axis
wx = abs(w*np.cos(o) + h*np.sin(o))*1.2
wy = abs(h*np.cos(o) - w*np.sin(o))*1.2
# ensure axis are of the same size so everything is plotted with the same
# scale
if wx > wy:
w = wx
else:
w = wy
minx = mean[0] - w
maxx = mean[0] + w
miny = mean[1] - w
maxy = mean[1] + w
xs = np.arange(minx, maxx, (maxx-minx)/40.)
ys = np.arange(miny, maxy, (maxy-miny)/40.)
xv, yv = np.meshgrid (xs, ys)
zs = np.array([100.* stats.multivariate_gaussian(np.array([x,y]),mean,cov) \
for x, y in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
maxz = np.max(zs)
#ax = plt.figure().add_subplot(111, projection='3d')
ax = plt.gca(projection='3d')
ax.plot_surface(xv, yv, zv, rstride=1, cstride=1, cmap=cm.autumn)
ax.set_xlabel('X')
ax.set_ylabel('Y')
x = mean[0]
zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov)
for _, y in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
ax.contour(xv, yv, zv, zdir='x', offset=minx-1, cmap=cm.binary)
y = mean[1]
zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov)
for x, _ in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
ax.contour(xv, yv, zv, zdir='y', offset=maxy, cmap=cm.binary)
def plot_3d_sampled_covariance(mean, cov):
""" plots a 2x2 covariance matrix positioned at mean. mean will be plotted
in x and y, and the probability in the z axis.
Parameters
----------
mean : 2x1 tuple-like object
mean for x and y coordinates. For example (2.3, 7.5)
cov : 2x2 nd.array
the covariance matrix
"""
# compute width and height of covariance ellipse so we can choose
# appropriate ranges for x and y
o,w,h = stats.covariance_ellipse(cov,3)
# rotate width and height to x,y axis
wx = abs(w*np.cos(o) + h*np.sin(o))*1.2
wy = abs(h*np.cos(o) - w*np.sin(o))*1.2
# ensure axis are of the same size so everything is plotted with the same
# scale
if wx > wy:
w = wx
else:
w = wy
minx = mean[0] - w
maxx = mean[0] + w
miny = mean[1] - w
maxy = mean[1] + w
count = 1000
x,y = multivariate_normal(mean=mean, cov=cov, size=count).T
xs = np.arange(minx, maxx, (maxx-minx)/40.)
ys = np.arange(miny, maxy, (maxy-miny)/40.)
xv, yv = np.meshgrid (xs, ys)
zs = np.array([100.* stats.multivariate_gaussian(np.array([xx,yy]),mean,cov) \
for xx,yy in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
ax = plt.figure().add_subplot(111, projection='3d')
ax.scatter(x,y, [0]*count, marker='.')
ax.set_xlabel('X')
ax.set_ylabel('Y')
x = mean[0]
zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov)
for _, y in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
ax.contour(xv, yv, zv, zdir='x', offset=minx-1, cmap=cm.binary)
y = mean[1]
zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov)
for x, _ in zip(np.ravel(xv), np.ravel(yv))])
zv = zs.reshape(xv.shape)
ax.contour(xv, yv, zv, zdir='y', offset=maxy, cmap=cm.binary)
def plot_3_covariances():
P = [[2, 0], [0, 2]]
plt.subplot(131)
plt.gca().grid(b=False)
plt.gca().set_xticks([0,1,2,3,4])
plot_covariance_ellipse((2, 7), cov=P, facecolor='g', alpha=0.2,
title='|2 0|\n|0 2|', axis_equal=False)
plt.ylim((4, 10))
plt.gca().set_aspect('equal', adjustable='box')
plt.subplot(132)
plt.gca().grid(b=False)
plt.gca().set_xticks([0,1,2,3,4])
P = [[2, 0], [0, 9]]
plt.ylim((4, 10))
plt.gca().set_aspect('equal', adjustable='box')
plot_covariance_ellipse((2, 7), P, facecolor='g', alpha=0.2,
axis_equal=False, title='|2 0|\n|0 9|')
plt.subplot(133)
plt.gca().grid(b=False)
plt.gca().set_xticks([0,1,2,3,4])
P = [[2, 1.2], [1.2, 2]]
plt.ylim((4, 10))
plt.gca().set_aspect('equal', adjustable='box')
plot_covariance_ellipse((2, 7), P, facecolor='g', alpha=0.2,
axis_equal=False,
title='|2 1.2|\n|1.2 2|')
plt.tight_layout()
plt.show()
def plot_correlation_covariance():
P = [[4, 3.9], [3.9, 4]]
plot_covariance_ellipse((5, 10), P, edgecolor='k',
variance=[1, 2**2, 3**2])
plt.xlabel('X')
plt.ylabel('Y')
plt.gca().autoscale(tight=True)
plt.axvline(7.5, ls='--', lw=1)
plt.axhline(12.5, ls='--', lw=1)
plt.scatter(7.5, 12.5, s=1500, alpha=0.5)
plt.title('|4.0 3.9|\n|3.9 4.0|')
plt.show()
def plot_track(ps, actual, zs, cov, std_scale=1,
plot_P=True, y_lim=None, dt=1.,
xlabel='time', ylabel='position',
title='Kalman Filter'):
count = len(zs)
zs = np.asarray(zs)
cov = np.asarray(cov)
std = std_scale*np.sqrt(cov[:,0,0])
std_top = np.minimum(actual+std, [count + 10])
std_btm = np.maximum(actual-std, [-50])
std_top = actual + std
std_btm = actual - std
bp.plot_track(actual,c='k')
bp.plot_measurements(range(1, count + 1), zs)
bp.plot_filter(range(1, count + 1), ps)
plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4)
plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4)
plt.fill_between(range(len(std_top)), std_top, std_btm,
facecolor='yellow', alpha=0.2, interpolate=True)
plt.legend(loc=4)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if y_lim is not None:
plt.ylim(y_lim)
else:
plt.ylim((-50, count + 10))
plt.xlim((0,count))
plt.title(title)
plt.show()
if plot_P:
ax = plt.subplot(121)
ax.set_title("$\sigma^2_x$ (pos variance)")
plot_covariance(cov, (0, 0))
ax = plt.subplot(122)
ax.set_title("$\sigma^2_\dot{x}$ (vel variance)")
plot_covariance(cov, (1, 1))
plt.show()
def plot_covariance(P, index=(0, 0)):
ps = []
for p in P:
ps.append(p[index[0], index[1]])
plt.plot(ps)
if __name__ == "__main__":
#show_position_chart()
plot_3d_covariance((2,7), np.array([[8.,0],[0,1.]]))
#plot_3d_sampled_covariance([2,7], [[8.,0],[0,4.]])
#show_residual_chart()
#show_position_chart()
#show_x_error_chart(4)