# -*- coding: utf-8 -*- """Copyright 2015 Roger R Labbe Jr. Code supporting the book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the LICENSE.txt file for more information. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import book_plots as bp import matplotlib.pyplot as plt def plot_dog_track(xs, measurement_var, process_var): N = len(xs) bp.plot_track([0, N-1], [1, N]) bp.plot_measurements(xs, label='Sensor') bp.set_labels('variance = {}, process variance = {}'.format( measurement_var, process_var), 'time', 'pos') plt.ylim([0, N]) bp.show_legend() plt.show() def print_gh(predict, update, z): predict_template = ' {: 7.3f} {: 8.3f}' update_template = '{: 7.3f} {: 7.3f}\t {:.3f}' print(predict_template.format(predict[0], predict[1]),end='\t') print(update_template.format(update[0], update[1], z)) def print_variance(positions): print('Variance:') for i in range(0, len(positions), 5): print('\t{:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( *[v[1] for v in positions[i:i+5]]))