import numpy as np import pylab as plt from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow def create_predict_update_chart(box_bg = '#CCCCCC', arrow1 = '#88CCFF', arrow2 = '#88FF88'): plt.figure(figsize=(6,6), facecolor='w') ax = plt.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) #ax.set_xlim(0, 10) #ax.set_ylim(0, 10) pc = Circle((4,5), 0.5, fc=box_bg) uc = Circle((6,5), 0.5, fc=box_bg) ax.add_patch (pc) ax.add_patch (uc) plt.text(4,5, "Predict\nStep",ha='center', va='center', fontsize=14) plt.text(6,5, "Update\nStep",ha='center', va='center', fontsize=14) #btm ax.annotate('', xy=(4.1, 4.5), xycoords='data', xytext=(6, 4.5), textcoords='data', size=20, arrowprops=dict(arrowstyle="simple", fc="0.6", ec="none", patchB=pc, patchA=uc, connectionstyle="arc3,rad=-0.5")) #top ax.annotate('', xy=(6, 5.5), xycoords='data', xytext=(4.1, 5.5), textcoords='data', size=20, arrowprops=dict(arrowstyle="simple", fc="0.6", ec="none", patchB=uc, patchA=pc, connectionstyle="arc3,rad=-0.5")) ax.annotate('Measurement ($\mathbf{z_k}$)', xy=(6.3, 5.4), xycoords='data', xytext=(6,6), textcoords='data', size=18, arrowprops=dict(arrowstyle="simple", fc="0.6", ec="none")) ax.annotate('', xy=(4.0, 3.5), xycoords='data', xytext=(4.0,4.5), textcoords='data', size=18, arrowprops=dict(arrowstyle="simple", fc="0.6", ec="none")) ax.annotate('Initial\nConditions ($\mathbf{x_0}$)', xy=(4.0, 5.5), xycoords='data', xytext=(2.5,6.5), textcoords='data', size=18, arrowprops=dict(arrowstyle="simple", fc="0.6", ec="none")) plt.text (4,3.4,'State Estimate ($\mathbf{\hat{x}_k}$)', ha='center', va='center', fontsize=18) plt.axis('equal') #plt.axis([0,8,0,8]) plt.show() def plot_estimate_chart_1(): ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r',shrinkA=6, lw=3,shrinkB=5)) plt.scatter ([0], [158], c='b') plt.scatter ([1], [159], c='r') plt.xlabel('day') plt.ylabel('weight (lbs)') plt.show() def plot_estimate_chart_2(): ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) plt.scatter ([0], [158.0], c='k',s=128) plt.scatter ([1], [164.2], c='b',s=128) plt.scatter ([1], [159], c='r', s=128) plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red') plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue') plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18) plt.xlabel('day') plt.ylabel('weight (lbs)') plt.show() def plot_estimate_chart_3(): ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) ax.annotate('', xy=[1,159], xytext=[1,164.2], arrowprops=dict(arrowstyle='-', ec='k', lw=1, shrinkA=8, shrinkB=8)) est_y = ((164.2-158)*.8 + 158) plt.scatter ([0,1], [158.0,est_y], c='k',s=128) plt.scatter ([1], [164.2], c='b',s=128) plt.scatter ([1], [159], c='r', s=128) plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red') plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue') plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18) plt.text (0.95, est_y, "new estimate ($\hat{x}_{t}$)", ha='right', va='center',fontsize=18) plt.xlabel('day') plt.ylabel('weight (lbs)') plt.show() if __name__ == '__main__': create_predict_update_chart()