# -*- coding: utf-8 -*- """ Created on Mon Jun 1 18:13:23 2015 @author: rlabbe """ from filterpy.common import plot_covariance_ellipse from filterpy.kalman import UnscentedKalmanFilter as UKF from filterpy.kalman import MerweScaledSigmaPoints from math import tan, sin, cos, sqrt, atan2, radians import matplotlib.pyplot as plt from numpy import array import numpy as np from numpy.random import randn, seed def normalize_angle(x): x = x % (2 * np.pi) # force in range [0, 2 pi) if x > np.pi: # move to [-pi, pi] x -= 2 * np.pi return x def residual_h(aa, bb): y = aa - bb for i in range(0, len(y), 2): y[i + 1] = normalize_angle(y[i + 1]) return y def residual_x(a, b): y = a - b y[2] = normalize_angle(y[2]) return y def move(x, u, dt, wheelbase): h = x[2] v = u[0] steering_angle = u[1] dist = v*dt if abs(steering_angle) > 0.001: b = dist / wheelbase * tan(steering_angle) r = wheelbase / tan(steering_angle) # radius sinh = sin(h) sinhb = sin(h + b) cosh = cos(h) coshb = cos(h + b) return x + array([-r*sinh + r*sinhb, r*cosh - r*coshb, b]) else: return x + array([dist*cos(h), dist*sin(h), 0]) def state_mean(sigmas, Wm): x = np.zeros(3) sum_sin = np.sum(np.dot(np.sin(sigmas[:, 2]), Wm)) sum_cos = np.sum(np.dot(np.cos(sigmas[:, 2]), Wm)) x[0] = np.sum(np.dot(sigmas[:, 0], Wm)) x[1] = np.sum(np.dot(sigmas[:, 1], Wm)) x[2] = atan2(sum_sin, sum_cos) return x def z_mean(sigmas, Wm): z_count = sigmas.shape[1] x = np.zeros(z_count) for z in range(0, z_count, 2): sum_sin = np.sum(np.dot(np.sin(sigmas[:, z+1]), Wm)) sum_cos = np.sum(np.dot(np.cos(sigmas[:, z+1]), Wm)) x[z] = np.sum(np.dot(sigmas[:,z], Wm)) x[z+1] = atan2(sum_sin, sum_cos) return x def fx(x, dt, u): return move(x, u, dt, wheelbase) def Hx(x, landmark): """ takes a state variable and returns the measurement that would correspond to that state. """ hx = [] for lmark in landmark: px, py = lmark dist = sqrt((px - x[0])**2 + (py - x[1])**2) angle = atan2(py - x[1], px - x[0]) hx.extend([dist, normalize_angle(angle - x[2])]) return np.array(hx) m = array([[5., 10], [10, 5], [15, 15], [20., 16], [0, 30], [50, 30], [40, 10]]) #m = array([[5, 10], [10, 5], [15, 15], [20, 5],[5,5], [8, 8.4]])#, [0, 30], [50, 30], [40, 10]]) #m = array([[5, 10], [10, 5]])#, [0, 30], [50, 30], [40, 10]]) #m = array([[5., 10], [10, 5]]) #m = array([[5., 10], [10, 5]]) sigma_r = .3 sigma_h = .1#radians(.5)#np.radians(1) #sigma_steer = radians(10) dt = 0.1 wheelbase = 0.5 points = MerweScaledSigmaPoints(n=3, alpha=.1, beta=2, kappa=0, subtract=residual_x) #points = JulierSigmaPoints(n=3, kappa=3) ukf= UKF(dim_x=3, dim_z=2*len(m), fx=fx, hx=Hx, dt=dt, points=points, x_mean_fn=state_mean, z_mean_fn=z_mean, residual_x=residual_x, residual_z=residual_h) ukf.x = array([2, 6, .3]) ukf.P = np.diag([.1, .1, .05]) ukf.R = np.diag([sigma_r**2, sigma_h**2]* len(m)) ukf.Q =np.eye(3)*.00001 u = array([1.1, 0.]) xp = ukf.x.copy() plt.cla() plt.scatter(m[:, 0], m[:, 1]) cmds = [[v, .0] for v in np.linspace(0.001, 1.1, 30)] cmds.extend([cmds[-1]]*50) v = cmds[-1][0] cmds.extend([[v, a] for a in np.linspace(0, np.radians(2), 15)]) cmds.extend([cmds[-1]]*100) cmds.extend([[v, a] for a in np.linspace(np.radians(2), -np.radians(2), 15)]) cmds.extend([cmds[-1]]*200) cmds.extend([[v, a] for a in np.linspace(-np.radians(2), 0, 15)]) cmds.extend([cmds[-1]]*150) seed(12) cmds = np.array(cmds) cindex = 0 u = cmds[0] track = [] std = 16 while cindex < len(cmds): u = cmds[cindex] xp = move(xp, u, dt, wheelbase) # simulate robot track.append(xp) ukf.predict(fx_args=u) if cindex % 20 == 0: plot_covariance_ellipse((ukf.x[0], ukf.x[1]), ukf.P[0:2, 0:2], std=std, facecolor='b', alpha=0.58) #print(cindex, ukf.P.diagonal()) #print(ukf.P.diagonal()) z = [] for lmark in m: d = sqrt((lmark[0] - xp[0])**2 + (lmark[1] - xp[1])**2) + randn()*sigma_r bearing = atan2(lmark[1] - xp[1], lmark[0] - xp[0]) a = normalize_angle(bearing - xp[2] + randn()*sigma_h) z.extend([d, a]) #if cindex % 20 == 0: # plt.plot([lmark[0], lmark[0] - d*cos(a+xp[2])], [lmark[1], lmark[1]-d*sin(a+xp[2])], color='r') if cindex == 1197: plt.plot([lmark[0], lmark[0] - d2*cos(a2+xp[2])], [lmark[1], lmark[1] - d2*sin(a2+xp[2])], color='r') plt.plot([lmark[0], lmark[0] - d*cos(a+xp[2])], [lmark[1], lmark[1] - d*sin(a+xp[2])], color='k') ukf.update(np.array(z), hx_args=(m,)) if cindex % 20 == 0: plot_covariance_ellipse((ukf.x[0], ukf.x[1]), ukf.P[0:2, 0:2], std=std, facecolor='g', alpha=0.5) cindex += 1 track = np.array(track) plt.plot(track[:, 0], track[:,1], color='k') plt.axis('equal') plt.title("UKF Robot localization") plt.show()