# -*- coding: utf-8 -*- """Copyright 2015 Roger R Labbe Jr. Code supporting the book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the LICENSE.txt file for more information. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import book_plots as bp import filterpy.stats as stats from filterpy.stats import plot_covariance_ellipse from matplotlib.patches import Ellipse import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import numpy as np from numpy.random import multivariate_normal def zs_var_27_6(): zs = [3.59, 1.73, -2.575, 4.38, 9.71, 2.88, 10.08, 8.97, 3.74, 12.81, 11.15, 9.25, 3.93, 11.11, 19.29, 16.20, 19.63, 9.54, 26.27, 23.29, 25.18, 26.21, 17.1, 25.27, 26.86,33.70, 25.92, 28.82, 32.13, 25.0, 38.56, 26.97, 22.49, 40.77, 32.95, 38.20, 40.93, 39.42, 35.49, 36.31, 31.56, 50.29, 40.20, 54.49, 50.38, 42.79, 37.89, 56.69, 41.47, 53.66] xs = list(range(len(zs))) return np.array([xs, zs]).T def zs_var_275(): zs = [-6.947, 12.467, 6.899, 2.643, 6.980, 5.820, 5.788, 10.614, 5.210, 14.338, 11.401, 19.138, 14.169, 19.572, 25.471, 13.099, 27.090, 12.209, 14.274, 21.302, 14.678, 28.655, 15.914, 28.506, 23.181, 18.981, 28.197, 39.412, 27.640, 31.465, 34.903, 28.420, 33.889, 46.123, 31.355, 30.473, 49.861, 41.310, 42.526, 38.183, 41.383, 41.919, 52.372, 42.048, 48.522, 44.681, 32.989, 37.288, 49.141, 54.235, 62.974, 61.742, 54.863, 52.831, 61.122, 61.187, 58.441, 47.769, 56.855, 53.693, 61.534, 70.665, 60.355, 65.095, 63.386] xs = list(range(len(zs))) return np.array([xs, zs]).T def plot_track_ellipses(N, zs, ps, cov, title): bp.plot_measurements(range(1,N + 1), zs) plt.plot(range(1, N + 1), ps, c='b', lw=2, label='filter') plt.legend(loc='best') plt.title(title) for i,p in enumerate(cov): plot_covariance_ellipse( (i+1, ps[i]), cov=p, variance=4, axis_equal=False, ec='g', alpha=0.5) if i == len(cov)-1: s = ('$\sigma^2_{pos} = %.2f$' % p[0,0]) plt.text (20, 5, s, fontsize=18) s = ('$\sigma^2_{vel} = %.2f$' % p[1, 1]) plt.text (20, 0, s, fontsize=18) plt.xlim(-10, 80) plt.gca().set_aspect('equal') plt.show() def show_residual_chart(show_eq=True, show_H=False): est_y = ((164.2-158)*.8 + 158) ax = plt.axes(xticks=[], yticks=[], frameon=False) ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) ax.annotate('', xy=[1,159], xytext=[1,164.2], arrowprops=dict(arrowstyle='-', ec='k', lw=3, shrinkA=8, shrinkB=8)) ax.annotate('', xy=(1., est_y), xytext=(0.9, est_y), arrowprops=dict(arrowstyle='->', ec='#004080', lw=2, shrinkA=3, shrinkB=4)) plt.scatter ([0,1], [158.0,est_y], c='k',s=128) plt.scatter ([1], [164.2], c='b',s=128) plt.scatter ([1], [159], c='r', s=128) plt.text (1.05, 158.8, r"prior $(\bar{x}_t)$", ha='center',va='top',fontsize=18,color='red') plt.text (0.5, 159.6, "prediction", ha='center',va='top',fontsize=18,color='red') plt.text (1.0, 164.4, r"measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue') plt.text (0, 157.8, r"posterior ($x_{t-1}$)", ha='center', va='top',fontsize=18) plt.text (1.02, est_y-1.5, "residual($y$)", ha='left', va='center',fontsize=18) if show_eq: if show_H: plt.text (1.02, est_y-2.2, r"$y=z-H\bar x_t$", ha='left', va='center',fontsize=18) else: plt.text (1.02, est_y-2.2, r"$y=z-\bar x_t$", ha='left', va='center',fontsize=18) plt.text (0.9, est_y, "new estimate ($x_t$)", ha='right', va='center',fontsize=18) plt.text (0.8, est_y-0.5, "(posterior)", ha='right', va='center',fontsize=18) if show_eq: plt.text (0.75, est_y-1.2, r"$\bar{x}_t + Ky$", ha='right', va='center',fontsize=18) plt.xlabel('time') ax.yaxis.set_label_position("right") plt.ylabel('state') plt.xlim(-0.5, 1.5) plt.show() def plot_gaussian_multiply(): xs = np.arange(-5, 10, 0.1) mean1, var1 = 0, 5 mean2, var2 = 5, 1 mean, var = stats.mul(mean1, var1, mean2, var2) ys = [stats.gaussian(x, mean1, var1) for x in xs] plt.plot(xs, ys, label='M1') ys = [stats.gaussian(x, mean2, var2) for x in xs] plt.plot(xs, ys, label='M2') ys = [stats.gaussian(x, mean, var) for x in xs] plt.plot(xs, ys, label='M1 x M2') plt.legend() plt.show() def show_position_chart(): """ Displays 3 measurements at t=1,2,3, with x=1,2,3""" plt.scatter ([1,2,3], [1,2,3], s=128, color='#004080') plt.xlim([0,4]); plt.ylim([0,4]) plt.annotate('t=1', xy=(1,1), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.annotate('t=2', xy=(2,2), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.annotate('t=3', xy=(3,3), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.xlabel("X") plt.ylabel("Y") plt.xticks(np.arange(1,4,1)) plt.yticks(np.arange(1,4,1)) plt.show() def show_position_prediction_chart(): """ displays 3 measurements, with the next position predicted""" plt.scatter ([1,2,3], [1,2,3], s=128, color='#004080') plt.annotate('t=1', xy=(1,1), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.annotate('t=2', xy=(2,2), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.annotate('t=3', xy=(3,3), xytext=(0,-10), textcoords='offset points', ha='center', va='top') plt.xlim([0,5]) plt.ylim([0,5]) plt.xlabel("Position") plt.ylabel("Time") plt.xticks(np.arange(1,5,1)) plt.yticks(np.arange(1,5,1)) plt.scatter ([4], [4], c='g',s=128, color='#8EBA42') ax = plt.axes() ax.annotate('', xy=(4,4), xytext=(3,3), arrowprops=dict(arrowstyle='->', ec='g', shrinkA=6, shrinkB=5, lw=3)) plt.show() def show_x_error_chart(count): """ displays x=123 with covariances showing error""" plt.cla() plt.gca().autoscale(tight=True) cov = np.array([[0.03,0], [0,8]]) e = stats.covariance_ellipse (cov) cov2 = np.array([[0.03,0], [0,4]]) e2 = stats.covariance_ellipse (cov2) cov3 = np.array([[12,11.95], [11.95,12]]) e3 = stats.covariance_ellipse (cov3) sigma=[1, 4, 9] if count >= 1: stats.plot_covariance_ellipse ((0,0), ellipse=e, variance=sigma) if count == 2 or count == 3: stats.plot_covariance_ellipse ((5,5), ellipse=e, variance=sigma) if count == 3: stats.plot_covariance_ellipse ((5,5), ellipse=e3, variance=sigma, edgecolor='r') if count == 4: M1 = np.array([[5, 5]]).T m4, cov4 = stats.multivariate_multiply(M1, cov2, M1, cov3) e4 = stats.covariance_ellipse (cov4) stats.plot_covariance_ellipse ((5,5), ellipse=e, variance=sigma, alpha=0.25) stats.plot_covariance_ellipse ((5,5), ellipse=e3, variance=sigma, edgecolor='r', alpha=0.25) stats.plot_covariance_ellipse (m4[:,0], ellipse=e4, variance=sigma) plt.ylim((-9, 16)) #plt.ylim([0,11]) #plt.xticks(np.arange(1,4,1)) plt.xlabel("Position") plt.ylabel("Velocity") plt.show() def show_x_with_unobserved(): """ shows x=1,2,3 with velocity superimposed on top """ # plot velocity sigma=[0.5,1.,1.5,2] cov = np.array([[1,1],[1,1.1]]) stats.plot_covariance_ellipse ((2,2), cov=cov, variance=sigma, axis_equal=False) # plot positions cov = np.array([[0.003,0], [0,12]]) sigma=[0.5,1.,1.5,2] e = stats.covariance_ellipse (cov) stats.plot_covariance_ellipse ((1,1), ellipse=e, variance=sigma, axis_equal=False) stats.plot_covariance_ellipse ((2,1), ellipse=e, variance=sigma, axis_equal=False) stats.plot_covariance_ellipse ((3,1), ellipse=e, variance=sigma, axis_equal=False) # plot intersection cirle isct = Ellipse(xy=(2,2), width=.2, height=1.2, edgecolor='r', fc='None', lw=4) plt.gca().add_artist(isct) plt.ylim([0,11]) plt.xlim([0,4]) plt.xticks(np.arange(1,4,1)) plt.xlabel("Position") plt.ylabel("Time") plt.show() def plot_3d_covariance(mean, cov): """ plots a 2x2 covariance matrix positioned at mean. mean will be plotted in x and y, and the probability in the z axis. Parameters ---------- mean : 2x1 tuple-like object mean for x and y coordinates. For example (2.3, 7.5) cov : 2x2 nd.array the covariance matrix """ # compute width and height of covariance ellipse so we can choose # appropriate ranges for x and y o,w,h = stats.covariance_ellipse(cov,3) # rotate width and height to x,y axis wx = abs(w*np.cos(o) + h*np.sin(o))*1.2 wy = abs(h*np.cos(o) - w*np.sin(o))*1.2 # ensure axis are of the same size so everything is plotted with the same # scale if wx > wy: w = wx else: w = wy minx = mean[0] - w maxx = mean[0] + w miny = mean[1] - w maxy = mean[1] + w xs = np.arange(minx, maxx, (maxx-minx)/40.) ys = np.arange(miny, maxy, (maxy-miny)/40.) xv, yv = np.meshgrid (xs, ys) zs = np.array([100.* stats.multivariate_gaussian(np.array([x,y]),mean,cov) \ for x, y in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) maxz = np.max(zs) #ax = plt.figure().add_subplot(111, projection='3d') ax = plt.gca(projection='3d') ax.plot_surface(xv, yv, zv, rstride=1, cstride=1, cmap=cm.autumn) ax.set_xlabel('X') ax.set_ylabel('Y') x = mean[0] zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov) for _, y in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) ax.contour(xv, yv, zv, zdir='x', offset=minx-1, cmap=cm.binary) y = mean[1] zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov) for x, _ in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) ax.contour(xv, yv, zv, zdir='y', offset=maxy, cmap=cm.binary) def plot_3d_sampled_covariance(mean, cov): """ plots a 2x2 covariance matrix positioned at mean. mean will be plotted in x and y, and the probability in the z axis. Parameters ---------- mean : 2x1 tuple-like object mean for x and y coordinates. For example (2.3, 7.5) cov : 2x2 nd.array the covariance matrix """ # compute width and height of covariance ellipse so we can choose # appropriate ranges for x and y o,w,h = stats.covariance_ellipse(cov,3) # rotate width and height to x,y axis wx = abs(w*np.cos(o) + h*np.sin(o))*1.2 wy = abs(h*np.cos(o) - w*np.sin(o))*1.2 # ensure axis are of the same size so everything is plotted with the same # scale if wx > wy: w = wx else: w = wy minx = mean[0] - w maxx = mean[0] + w miny = mean[1] - w maxy = mean[1] + w count = 1000 x,y = multivariate_normal(mean=mean, cov=cov, size=count).T xs = np.arange(minx, maxx, (maxx-minx)/40.) ys = np.arange(miny, maxy, (maxy-miny)/40.) xv, yv = np.meshgrid (xs, ys) zs = np.array([100.* stats.multivariate_gaussian(np.array([xx,yy]),mean,cov) \ for xx,yy in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) ax = plt.figure().add_subplot(111, projection='3d') ax.scatter(x,y, [0]*count, marker='.') ax.set_xlabel('X') ax.set_ylabel('Y') x = mean[0] zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov) for _, y in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) ax.contour(xv, yv, zv, zdir='x', offset=minx-1, cmap=cm.binary) y = mean[1] zs = np.array([100.* stats.multivariate_gaussian(np.array([x, y]),mean,cov) for x, _ in zip(np.ravel(xv), np.ravel(yv))]) zv = zs.reshape(xv.shape) ax.contour(xv, yv, zv, zdir='y', offset=maxy, cmap=cm.binary) def plot_3_covariances(): P = [[2, 0], [0, 2]] plt.subplot(131) plt.gca().grid(b=False) plt.gca().set_xticks([0,1,2,3,4]) plot_covariance_ellipse((2, 7), cov=P, facecolor='g', alpha=0.2, title='|2 0|\n|0 2|', axis_equal=False) plt.ylim((4, 10)) plt.gca().set_aspect('equal', adjustable='box') plt.subplot(132) plt.gca().grid(b=False) plt.gca().set_xticks([0,1,2,3,4]) P = [[2, 0], [0, 9]] plt.ylim((4, 10)) plt.gca().set_aspect('equal', adjustable='box') plot_covariance_ellipse((2, 7), P, facecolor='g', alpha=0.2, axis_equal=False, title='|2 0|\n|0 9|') plt.subplot(133) plt.gca().grid(b=False) plt.gca().set_xticks([0,1,2,3,4]) P = [[2, 1.2], [1.2, 2]] plt.ylim((4, 10)) plt.gca().set_aspect('equal', adjustable='box') plot_covariance_ellipse((2, 7), P, facecolor='g', alpha=0.2, axis_equal=False, title='|2 1.2|\n|1.2 2|') plt.tight_layout() plt.show() def plot_correlation_covariance(): P = [[4, 3.9], [3.9, 4]] plot_covariance_ellipse((5, 10), P, edgecolor='k', variance=[1, 2**2, 3**2]) plt.xlabel('X') plt.ylabel('Y') plt.gca().autoscale(tight=True) plt.axvline(7.5, ls='--', lw=1) plt.axhline(12.5, ls='--', lw=1) plt.scatter(7.5, 12.5, s=1500, alpha=0.5) plt.title('|4.0 3.9|\n|3.9 4.0|') plt.show() def plot_track(ps, actual, zs, cov, std_scale=1, plot_P=True, y_lim=None, dt=1., xlabel='time', ylabel='position', title='Kalman Filter'): count = len(zs) zs = np.asarray(zs) cov = np.asarray(cov) std = std_scale*np.sqrt(cov[:,0,0]) std_top = np.minimum(actual+std, [count + 10]) std_btm = np.maximum(actual-std, [-50]) std_top = actual + std std_btm = actual - std bp.plot_track(actual,c='k') bp.plot_measurements(range(1, count + 1), zs) bp.plot_filter(range(1, count + 1), ps) plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4) plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4) plt.fill_between(range(len(std_top)), std_top, std_btm, facecolor='yellow', alpha=0.2, interpolate=True) plt.legend(loc=4) plt.xlabel(xlabel) plt.ylabel(ylabel) if y_lim is not None: plt.ylim(y_lim) else: plt.ylim((-50, count + 10)) plt.xlim((0,count)) plt.title(title) plt.show() if plot_P: ax = plt.subplot(121) ax.set_title("$\sigma^2_x$ (pos variance)") plot_covariance(cov, (0, 0)) ax = plt.subplot(122) ax.set_title("$\sigma^2_\dot{x}$ (vel variance)") plot_covariance(cov, (1, 1)) plt.show() def plot_covariance(P, index=(0, 0)): ps = [] for p in P: ps.append(p[index[0], index[1]]) plt.plot(ps) if __name__ == "__main__": #show_position_chart() plot_3d_covariance((2,7), np.array([[8.,0],[0,1.]])) #plot_3d_sampled_covariance([2,7], [[8.,0],[0,4.]]) #show_residual_chart() #show_position_chart() #show_x_error_chart(4)