# -*- coding: utf-8 -*- """ Created on Fri May 2 11:48:55 2014 @author: rlabbe """ from __future__ import division from __future__ import print_function import copy import numpy as np import bar_plot import numpy.random as random import matplotlib.pyplot as plt ''' should this be a class? seems like both sense and update are very problem specific ''' class DiscreteBayes1D(object): def __init__(self, world_map, belief=None): self.world_map = copy.deepcopy(world_map) self.N = len(world_map) if belief is None: # create belief, make all equally likely self.belief = np.empty(self.N) self.belief.fill (1./self.N) else: self.belief = copy.deepcopy(belief) # This will be used to temporarily store calculations of the new # belief. 'k' just means 'this iteration'. self.belief_k = np.empty(self.N) assert self.belief.shape == self.world_map.shape def _normalize (self): s = sum(self.belief) self.belief = self.belief/s def sense(self, Z, pHit, pMiss): for i in range (self.N): hit = (self.world_map[i] ==Z) self.belief_k[i] = self.belief[i] * (pHit*hit + pMiss*(1-hit)) # copy results to the belief vector using swap-copy idiom self.belief, self.belief_k = self.belief_k, self.belief self._normalize() def update(self, U, kernel): N = self.N kN = len(kernel) width = int((kN - 1) / 2) self.belief_k.fill(0) for i in range(N): for k in range (kN): index = (i + (width-k)-U) % N #print(i,k,index) self.belief_k[i] += self.belief[index] * kernel[k] # copy results to the belief vector using swap-copy idiom self.belief, self.belief_k = self.belief_k, self.belief def add_noise (Z, count): n= len(Z) for i in range(count): j = random.randint(0,n) Z[j] = random.randint(0,2) def animate_three_doors (loops=5): world = np.array([1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0]) #world = np.array([1,1,1,1,1]) #world = np.array([1,0,1,0,1,0]) f = DiscreteBayes1D(world) measurements = np.tile(world,loops) add_noise(measurements, 4) for m in measurements: f.sense (m, .8, .2) f.update(1, (.05, .9, .05)) bar_plot.plot(f.belief) plt.pause(0.01) def _test_filter(): def is_near_equal(a,b): try: assert sum(abs(a-b)) < 0.001 except: print(a, b) assert False def test_update_1(): f = DiscreteBayes1D(np.array([0,0,1,0,0]), np.array([0,0,.8,0,0])) f.update (1, [1]) is_near_equal (f.belief, np.array([0,0,0,.8,0])) f.update (1, [1]) is_near_equal (f.belief, np.array([0,0,0,0,.8])) f.update (1, [1]) is_near_equal (f.belief, np.array([.8,0,0,0,0])) f.update (-1, [1]) is_near_equal (f.belief, np.array([0,0,0,0,.8])) f.update (2, [1]) is_near_equal (f.belief, np.array([0,.8,0,0,0])) f.update (5, [1]) is_near_equal (f.belief, np.array([0,.8,0,0,0])) def test_undershoot(): f = DiscreteBayes1D(np.array([0,0,1,0,0]), np.array([0,0,.8,0,0])) f.update (2, [.2, .8,0.]) is_near_equal (f.belief, np.array([0,0,0,.16,.64])) def test_overshoot(): f = DiscreteBayes1D(np.array([0,0,1,0,0]), np.array([0,0,.8,0,0])) f.update (2, [0, .8, .2]) is_near_equal (f.belief, np.array([.16,0,0,0,.64])) test_update_1() test_undershoot() if __name__ == "__main__": _test_filter() #animate_three_doors(loops=1)