# -*- coding: utf-8 -*- """Copyright 2015 Roger R Labbe Jr. Code supporting the book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the LICENSE.txt file for more information. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import filterpy.stats as stats import matplotlib.pyplot as plt import numpy as np def plot1(): P = np.array([[6, 2.5], [2.5, .6]]) stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2) def plot2(): P = np.array([[6, 2.5], [2.5, .6]]) circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7) ax = plt.gca() ax.add_artist(circle1) plt.xlim(0,10) plt.ylim(0,3) P = np.array([[6, 2.5], [2.5, .6]]) stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2) def plot3(): P = np.array([[6, 2.5], [2.5, .6]]) circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7) ax = plt.gca() ax.add_artist(circle1) plt.xlim(0,10) plt.ylim(0,3) plt.axhline(3, ls='--') stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2) def plot4(): P = np.array([[6, 2.5], [2.5, .6]]) circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7) ax = plt.gca() ax.add_artist(circle1) plt.xlim(0,10) plt.ylim(0,3) plt.axhline(3, ls='--') stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2) plt.scatter([11.4], [2.65],s=200) plt.scatter([12], [3], c='r', s=200) plt.show()