# -*- coding: utf-8 -*- """ Created on Sun May 18 11:09:23 2014 @author: rlabbe """ from __future__ import division import numpy as np import matplotlib.pyplot as plt def plot_transfer_func(data, f, gaussian, num_bins=300): ys = f(data) x0 = gaussian[0] in_std = np.sqrt(gaussian[1]) y = f(x0) m = np.mean(ys) std = np.std(ys) in_lims = [x0-in_std*3, x0+in_std*3] out_lims = [y-std*3, y+std*3] #plot output h = np.histogram(ys, num_bins, density=False) plt.subplot(2,2,4) plt.plot(h[0], h[1][1:], lw=4) plt.ylim(out_lims[1], out_lims[0]) plt.gca().xaxis.set_ticklabels([]) plt.title('output') plt.axhline(np.mean(ys), ls='--', lw=2) plt.axhline(f(x0), lw=1) # plot transfer function plt.subplot(2,2,3) x = np.arange(in_lims[0], in_lims[1], 0.1) y = f(x) plt.plot (x,y) isct = f(x0) plt.plot([x0, x0, in_lims[1]], [out_lims[1], isct, isct], color='r', lw=1) plt.xlim(in_lims) plt.ylim(out_lims) #plt.axis('equal') plt.title('function') # plot input h = np.histogram(data, num_bins, density=True) plt.subplot(2,2,1) plt.plot(h[1][1:], h[0], lw=4) plt.xlim(in_lims) plt.gca().yaxis.set_ticklabels([]) plt.title('input') plt.show() if __name__ == "__main__": from numpy.random import normal import numpy as np x0 = (1, 1) data = normal(loc=x0[0], scale=x0[1], size=500000) def g(x): return x*x return (np.cos(3*(x/2+0.7)))*np.sin(0.7*x)-1.6*x return -2*x #plot_transfer_func (data, g, lims=(-3,3), num_bins=100) plot_transfer_func (data, g, gaussian=x0, num_bins=100)