# -*- coding: utf-8 -*- """ Computes the trajectory of a stitched baseball with air drag. Takes altitude into account (higher altitude means further travel) and the stitching on the baseball influencing drag. This is based on the book Computational Physics by N. Giordano. The takeaway point is that the drag coefficient on a stitched baseball is LOWER the higher its velocity, which is somewhat counterintuitive. """ from __future__ import division import math import matplotlib.pyplot as plt from numpy.random import randn import numpy as np def a_drag (vel, altitude): """ returns the drag coefficient of a baseball at a given velocity (m/s) and altitude (m). """ v_d = 35 delta = 5 y_0 = 1.0e4 val = 0.0039 + 0.0058 / (1 + math.exp((vel - v_d)/delta)) val *= math.exp(-altitude / y_0) return val def compute_trajectory_vacuum (v_0_mph, theta, dt=0.01, noise_scale=0.0, x0=0., y0 = 0.): theta = math.radians(theta) x = x0 y = y0 v0_y = v_0_mph * math.sin(theta) v0_x = v_0_mph * math.cos(theta) xs = [] ys = [] t = dt while y >= 0: x = v0_x*t + x0 y = -0.5*9.8*t**2 + v0_y*t + y0 xs.append (x + randn() * noise_scale) ys.append (y + randn() * noise_scale) t += dt return (xs, ys) def compute_trajectory(v_0_mph, theta, v_wind_mph=0, alt_ft = 0.0, dt = 0.01): g = 9.8 ### comput theta = math.radians(theta) # initial velocity in direction of travel v_0 = v_0_mph * 0.447 # mph to m/s # velocity components in x and y v_x = v_0 * math.cos(theta) v_y = v_0 * math.sin(theta) v_wind = v_wind_mph * 0.447 # mph to m/s altitude = alt_ft / 3.28 # to m/s ground_level = altitude x = [0.0] y = [altitude] i = 0 while y[i] >= ground_level: v = math.sqrt((v_x - v_wind) **2+ v_y**2) x.append(x[i] + v_x * dt) y.append(y[i] + v_y * dt) v_x = v_x - a_drag(v, altitude) * v * (v_x - v_wind) * dt v_y = v_y - a_drag(v, altitude) * v * v_y * dt - g * dt i += 1 # meters to yards np.multiply (x, 1.09361) np.multiply (y, 1.09361) return (x,y) def predict (x0, y0, x1, y1, dt, time): g = 10.724*dt*dt v_x = x1-x0 v_y = y1-y0 v = math.sqrt(v_x**2 + v_y**2) x = x1 y = y1 while time > 0: v_x = v_x - a_drag(v, y) * v * v_x v_y = v_y - a_drag(v, y) * v * v_y - g x = x + v_x y = y + v_y time -= dt return (x,y) if __name__ == "__main__": x,y = compute_trajectory(v_0_mph = 110., theta=35., v_wind_mph = 0., alt_ft=5000.) plt.plot (x, y) plt.show()