diff --git a/Chapter04_Gaussians/Gaussians.ipynb b/Chapter04_Gaussians/Gaussians.ipynb index 34e55c2..1c14191 100644 --- a/Chapter04_Gaussians/Gaussians.ipynb +++ b/Chapter04_Gaussians/Gaussians.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:f06623f9c65b72eaaa654d00719496d1826c6c5a76a1cb6ee583c4b4844b2cf2" + "signature": "sha256:00a931decd323bc4f252540ee5dd36a369b885268e890c562b4a210ea2fff34b" }, "nbformat": 3, "nbformat_minor": 0, @@ -257,13 +257,13 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 3, "text": [ - "" + "" ] } ], - "prompt_number": 12 + "prompt_number": 3 }, { "cell_type": "heading", @@ -290,7 +290,7 @@ "input": [ "from stats import plot_gaussian\n", "\n", - "plot_gaussian(mean=100, variance=15*15, xlabel='IQ', ylabel='percent')" + "plot_gaussian(mean=100, variance=15*15, xlabel='IQ')" ], "language": "python", "metadata": {}, @@ -298,13 +298,13 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEUCAYAAADTO7pnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFNf6wPHvLr2oIBbAjgVR7IUYVNTYNRrLmHqTmGJL\nvamm3Jti+i+9G29ienGixtiNGiH23rFjBQRRQIrU/f0xq0FD2YXdHdh9P88zz7KzZ2dfjwPvnjlz\nzgEhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIUQNNwE4BBwERlaibBCwBdgJ7DKXqcyxhRBC1BCe\nwDGgPtAEOFKJsu6Ar/nnICAFMFp5bCGEEDZgdNDnRAH7gFTglHnrZGXZQiDHXCYQyKvEsYUQQtiA\nu4M+pyGQBEwGzgPJQAja5SdrytYC1gMtgduAYiuPLYQQwgYclTwum2l+HAuYKlH2ItABaAssAv4A\nDJU4thBCiCpwVPJIQmsNXBZs3lfZsgeAE0A7INGSY//xxx8mg8Fw7W4hhBDlyMjI2DVu3LjO1+53\nVPLYArRH69T2BhoDu82vvY7WUni2grKhaP0caWgJIhyto/xiOce+wmAwEBERYfN/WFBQEPPmzSMm\nJsbmx3YGUj/lk/qpmNRR+exdP/Hx8aX2ITsqeeQD04F15uePlngtmKsvM5VVtinwhflnA/A4WiKh\nnGMLIYSwA0f2ecwxb9eaaGHZjUBHK48thBDCDhx1q65Ts8flMGci9VM+qZ+KSR2VT4/6keRhA3Ji\nl0/qp3xSPxWTOiqfJA8hhBA1giQPIYQQVpPkIYQQwmqSPIQQQlhNkocQQgirSfIQQghhNUkeQggh\nrCbJQwghhNUkeQghhLCaJA8hhBBWk+QhhBDCapI8hBBCWE2ShxBCCKtJ8hBCCGE1SR5CCCGsJslD\nCCGE1SR5CCGEsJoj1zAXQpRgMpnIvpRPYVExBYXFeLjLdzlRc0jyEMJBcvMK+WPHCdbvT2Lr4bOc\nOJtJTl7hldfr1fahbZNAurdpyLDuzWnfLAiDwaBjxEKUTZKHEHZ2LDmDzxfvZsH6o2RdKrjqNW9P\ndzzcjWTnFnAuM5e1+3JZuy+R9+fvICykDvcNjWRC3zb4eMqvqqhe5IwUwk5S0nN4c84W1L8OU1Rs\nAqBLywYM7taUXm1DaNM4kLCmoVrZ1FSSL+SwJ+EcsXtOs2TzcY4lZfDs7HW8N287z9zcA6VPG4xG\naYmI6kGShxA2ZjKZmBN3iJd/2ER6dh5uRgO39gtn0rAOtGkcWOp73IxGGgX50yjIn6HdmzPjzutZ\ntvU4H/++iz3Hz/HYF3H88OcB3p0UQ6vQAAf/i4T4J0keQtjQxZx8Hp8Vx+LNCQD079iYGXddT4vg\nOlYdx93NyMioMEb0bMH89UeZ8eNGth1OYdjz83nlrmgm9G0t/SFCV5I8hLCRo0np3P3OCo4lZeDv\n7cGrd0czrnerKv2RNxgMjI1uxcAuTXnmq7X8tuEoj30Ry+6EVF76Vy/c3eQOLaEPOfOEsIEdR1MY\n/eLvHEvKIKJJXZa8chPj+9iudVDb15OPH+jPO/f3xdPdyNd/7GfiOyvIvqYDXghHkeQhRBXF7TnN\nhFcXcyErjwGdmvD7i6NoGWL7fgmDwcAt/cL55dkRBPp7sXrXKe54aylZufk2/ywhKuLI5DEBOAQc\nBEZWomwjYC2wF9gGDCxRvgjYYd7et13IQpRv/f5EJr6zgpy8Qsb3ac1Xjw3G19vDrp/ZMzyYBS+O\nIjjQj80Hz3L7m8u4mCMJRDiWo5KHJ/AGEI32R7+8P/CllTUABcBUIBIYA3xd4j05QBfz9qhtQxei\ndFsPn+Wut5dzqaCI2we05b1JMQ4bJd4yJIC5/xlJaJDf33HkF1b8RiFsxFHJIwrYB6QCp8xbJyvK\ndgRSgD3mMifRkox9v+IJUYYjienc+dYycvIKGde7FW9M7O3wMRjNG9Zm7vMjCQ70Y9PBZB7+bA3F\n5vEkQtibo5JHQyAJmAwoQDIQUoWyQ9AuXV3uLfQ2P18L9LFl4EJc6/zFS9z19nIycvIZ2r0Z706K\n0W3wXtMGtfn+qaHU8vFg8eYEXvxhoy5xCNfj6Ft1Z5ofxwIVfUUqq2ww8DYwqsS+Rmgtk+7AfKAV\nkHftAYOCgqyPuAIeHh52O7YzcLb6yS8o4uY3fub42Uy6tGrID8+Pw8/bs9LHs0X99A4KQn1xPKOe\nn8OXy/bSI6IJdw8pq2Ff8zjbOWRretWPo5JHEle3HoLN+6wt6w2owONAQokyKebHrUAi0Byts/0q\nM2bMuPJz3759iYmJsTR+IQB49NMVrN1zipC6/vz64vgqJQ5b6tepGR89NITJ7y7hkY9XENm8Ad3D\ny2rcC1G22NhY4uLirjzv379/qeUc1db2BA6g9Wd4A6uB1ubXXkdrWTxbQVkD8CMQB3xW4tiBwCUg\nFy1prDWXzy0ZwMqVK00RERG2/Vfxd7ZPS0uz+bGdgTPVz9y1h3n4szV4ebgx/7830imsfpWPaev6\neWb2Wr5dGU9okB9LZ4yhXh0fmxxXT850DtmDvesnPj6egQMH/iNXOKrPIx+YDqwDVnH1HVHB5q2i\nstHAOGASf9+WGwJEmH/eBcwD7uWaxCFEVR1JTGf6V2sBmHHn9TZJHPbw0r960a11AxLTsnno0z+l\nA13YjSP7POaYt2tNtLDsWrRWybWSgLZVC02IsuXmFzLlw1Xk5BUy5vqW3NY/XO+QyuTp7sYXjwxk\n0DPziNt7hlnL9jB5eEe9wxJOSEaYC1GB137aTPyp84SF1OGNe3pX+wkJgwP9eOf+vgC88csW9h6X\nyz3C9iR5CFGOdfsS+WrFPtzdDHz6wAD8fapHB3lFBndrxr9uiCC/sJgHP1lNbp4MIBS2JclDiDJk\n5ebz+KxYAB69qSsdWtTTOSLrvHD7dbQKDeBwYjpvqVv1Dkc4GUkeQpTh5R83cSo1i44t6vHgqM56\nh2M1Hy93PpzaD6PBwP+W7WXn0VS9QxJORJKHEKWI3X2aH1YfwNPdyPtTHDdnla11CqvP5OEdKDaZ\neGJWHPmFRXqHJJxEzfyNEMKOcvMLeWa2dlvu4+O6Ed64rs4RVc3j47rRvGFt4k+d55OFu/QORzgJ\nSR5CXOOjBTs5kXKRto0DneI2Vx8vd/7vPm3Ktw/m7+DQ6Qs6RyScgSQPIUo4kpjOp+Zv52/c07vG\nXq661vXtQrl9QFsKiop57pt1mEwyeFBUjXP8ZghhAyaTielfraWgqJjb+oXTIzy44jfVIM/c3INA\nfy/W70/i943H9A5H1HCSPIQwm7fuCBvik6hby5tnbumpdzg2F+jvzbPmf9fLP2yS9c9FlUjyEALI\nuVTAaz9vBuD5W3tSt5a3zhHZxy0x4XQOq0/yhWw++G2H3uGIGkyShxDAp4t2k3whh44t6qH0aaN3\nOHZjNBp49e5oDAb4YskejiSm6x2SqKEkeQiXd+ZcFp8t0jrJX/pXL91WBXSUzi3rc2tMOAVFxbz6\n02a9wxE1lCQP4fJe/2UzlwqKuDEqjJ5O1klelieV7vh5e7Bi+wnW70/UOxxRA0nyEC5t6+GzzF9/\nFC8PN5671fk6ycvSIMCXaSO1MSwzftwk634Iq0nyEC7LZDLx0vcbAZg0vANN6tfSOSLHmjy8I8GB\nvuxOOMdvG47qHY6oYSR5CJe1fNsJth9JoV5tHx68sZPe4Ticj5c7Tyk9AG3dj9x8mbZdWE6Sh3BJ\nRcXFvDlnCwCP3NS5xqzTYWvj+7SiXdO6nEnL4stle/UOR9QgkjyES5q79giHzqTTpL4/tw+I0Dsc\n3bgZjfzntigAPlm4i/TsPJ0jEjWFJA/hcvIKinj7120APDGuO14ebjpHpK++HRoT3T6UzJx8Pl+8\nW+9wRA0hyUO4nO9WxXMmLYvwxoGMiW6pdzjVwtNKdwC+XLaXcxm5OkcjagJJHsKlZOXm8+ECbVqO\n6RN64GaUXwGAbq0bMrBLU3LyCvno9516hyNqAPnNES5l1tK9pGVeolvrBgzq2lTvcKqVJ8drrY/v\nVsWTmJalczSiupPkIVxGenYeM5do1/SfubknBoNzT0NircjmQdwYFUZeQRHvy6SJogKSPITL+HLZ\nXi7mFtC7fSi9IkL0DqdaemJ8N4wGA7/EHiQhOUPvcEQ1JslDuISM7Dz+Zx7H8NjYrjpHU321Cg1g\nfJ/WFBaZ+HCB9H2IsknyEC7hq+X7yMzJ5/p2IUS1lVZHeR65qQtuRgNz1x7mREqm3uGIakqSh3B6\nmTn5zFq6B4DHxnbTOZrqr3nD2oyNbkVRsYlPft+ldziimpLkIZzeV8v3kpGTT6+IEOnrsNBDoztj\nNBiYE3eIM+fkzivxT45MHhOAQ8BBYGQlyjYC1gJ7gW3AwEoeW7iQizn5zFqq9XX8e4z0dViqZUgA\no3uFUVBUzCcLpfUh/slRycMTeAOIRvuj/76VZQ1AATAViATGAF9X4tjCxcz+Yx/p2XlEhQdzfTtp\ndVjj4dFdMBjgpzUHSDqfrXc4oppxVPKIAvYBqcAp81bWHNille0IpAB7zGVOoiUNDyuPLVxIVm4+\nM5dop8y/x3aVcR1WatM4kJE9w8gvLL6yTK8Ql7k76HMaAknAZOA8kAyEAKWdkZaUHYJ26aoACLb0\n2EFBQTb5x5Tk4eFht2M7Az3rZ/acjaRn5dGrXWNG9+1QLZNHdT9/Xri7Hws3HeOHPw/yn7v6E1zX\n3+ExVPc60pte9eOo5HHZTPPjWKCidS/LKhsMvA2MMj83VVD+ihkzZlz5uW/fvsTExFgUtKh58vIL\n+Xi+tl7Hs7ddXy0TR00Q2aIBo69vw4L1h3jv1028OekGvUMSdhYbG0tcXNyV5/379y+1nKOSRxJa\na+Cyy60Fa8t6AyrwOJBg7bGnTZt21fO0tLSKI6/A5Wxvi2M5I73q56c1B0i+kE27pnXp0rx2tf3/\nqQnnz7QR7Vmw/hCzFu/gvsFtqVvL26GfXxPqSE+2rp/IyEgiIyOvPI+Pjy+1nKP6PLYA7YH6QBOg\nMXB54YDXgdcsKGsAZgM/AissPLZwQcXFJj5frPV1TB3ZSVodVRTZvB79OzYmJ6+Qb/7Yr3c4oppw\nVPLIB6YD64BVwKMlXgs2bxWVjQbGAZOAHeYtuIJjCxe0csdJjiSmExrkx41RYXqH4xQeGNUZgC+X\n7yXnUoHO0YjqwJF9HnPM27UmWlh2LdodVtYcW7igzxZr90rcP6wDHu4yDtYWrmsbTNdWDdh+JIWf\n1hzk3qGRFb9JODX5zRJOZevhs2w+eJY6vp7c1i9c73CchsFg4MEbtTvgP1+ym4LCYp0jEnqT5CGc\nyueLtO6ufw1sh79PWQ1VURmDujajdWgAiWnZ/LbhiN7hCJ1J8hBO42hSOsu2HcfT3ci9Q9rrHY7T\nMRoNTB2ptT4+XbiL4uKK7rYXzkySh3AaM5fswWSC8b1b0yDAV+9wnNKY6JaE1PXj0Jl0Vu44qXc4\nQkeSPIRTSM3I4de/DgMweURHnaNxXp7ubkwe3gGAjxfuxGSS1oerkuQhnMJXy/eRV1DEkG7NaBUa\noHc4Tu22/m0J8Pdi2+EUNh9M1jscoRNJHqLGy75UwLcrtVGwU6XVYXd+3h7cM1jrU/pYpmt3WZI8\nRI3385qDpGfn0b11Q3qEB1f8BlFlEwe3x8fLndU7T7H/pEwb4ookeYgarbComC+WXp6KRFodjlK3\nlje3xmjjaC5Pey9ciyQPUaMt2nSM0+eyCAupw+CuzfQOx6XcNywSo8HAb+uPkJgmS9W6GouSh6Io\n75ax/1XbhiOE5UwmE5+aBwVOGd4Ro1EmQHSkZg1qM7xncwqLTMxesU/vcISDWdryuL+M/XfZKhAh\nrPXXvkT2nUijfh0fxvVupXc4LmnqCG3Q4Her4rmYk69zNMKRyp0YUVGUMLSp0A3mn0vqQMULOglh\nN5+Z7/S5Z0h7vD0dva6ZAOjcsj7XtQ1m44Fkfoo9yKRhHfQOSThIRS2PI8BhwNf885ES+z4Fnrdr\ndEKUYe/xNOL2nsHXy507B7bTOxyXdnlQ5qyle2TCRBdS7tc1VVWNiqIYgExVVWs5KCYhKjRzidbX\ncVv/tgT4eekcjWsb2LkpLUPqcDQpg0WbjjEmWi4huoIK+zxUVTWhraUhRLVwOvUiCzYcxc1o4H5Z\nV0J3RqOBycO11sfnS3bLlCUuwqIOc1VVh9k7ECEsNWvZXoqKTYy6LozG9aVBXB2M692KerV92Hs8\njXX7E/UORziAxb2MiqL0ANoAl68RGACTqqpf2SMwIUqTnp3Hj38eAGCK+U4foT9vT3fuHtyOt3/d\nxszFe+jdvpHeIQk7syh5KIryJaAAe9DWDC9JkodwmG9X7icnr5C+kY2IbB6kdziihLsGtuPj33ey\netcpDpw6T9smdfUOSdiRpS0PBWivquopewYjRHku5Rfy1XJtMNrUG6XVUd3UreXNLTHhfP3HfmYu\n2cN7k2P0DknYkaWDBHchYzqEzuauPUJqRi7tmwXRp32o3uGIUtw/rAMGA8xfd4TkC9l6hyPsyNKW\nxyFgvaIovwMXSuw3qar6X9uHJcTViotNfG6+PXfqiI4YDDIVSXXUvGFthnVvwZItCcxevo9nbump\nd0jCTixtebgBqwF/oLF5a2LehLC7FdtPcCwpg8b1/BkZde1kB6I6mTJCG2X+3ap4snJlyhJnZVHL\nQ1XVu+0chxDl+sw8AeL9wzrg4S6TQVdn3Vo3pEebhmw5dJafYw9xn4zFcUoW/xYqitJNUZRXFEX5\nwvy8o6IoXewXmhCaLQeT2Xr4LAF+XtzaL1zvcIQFppaYsqSwSKYscUaWTsl+H7AAqAXcat7tD7xv\np7iEuOKzxVqr486BEfh5e+gcjbDEoK7NaBFcm9Pnsli8OUHvcIQdWNryeBboq6rqI0Ched8WQJZu\nE3Z1JDGd5dtO4OXhxj1D2usdjrDQVVOWLJYpS5yRpcnDFzhzzT5PINe24QhxtZnmVsf4Pq2pX8dX\n52iENcb3aU3dWt7sTjjH+v1JeocjbMzS5LES+FRRlAAA80y7LwArrPisCWi3/B4ERlay7NtAMtpI\n95KKgB3mTS6lOYmU9Bx+XXsYgwEmD5d1ImoaH093Jg7Spsv/3PwlQDgPS5PHw0AwkAbUBrKASOAx\nC9/vCbwBRAMDKf8PfHll5wIjSnlPDtDFvD1qYUyimvty+T7yC4sZ2q05LUMC9A5HVMLdg9vj7el2\nZcoS4TwsnVX3vKqqI9DGd/QCWqmqOlxVVUvPhihgH5AKnDJvZc0vUV7ZDWgJTDi5rNx8vlu5H4Ap\nI6Vrraa6PGUJSOvD2Vi1dqeqqklAZS5eNjS/bzJwHu3SUwjatCdVKXuZN7ANrQ/mGeCv0goFBdl+\nIj0PDw+7HdsZVLZ+fpi3mYycfK5v35gh1znvSoGucP48dVtfvl0Vz28bjvLG5ME0qmfdNPquUEdV\noVf9WDqr7jfAMlVVfyqx72ZguKqqd1nxeTPNj2OpeK4sa8o2AlKA7sB8oBWQd22hGTNmXPm5b9++\nxMTIxG3VUUFhER/O3wrAY+OjdI5GVFVYSABjosOZ+9cBPvltK6/d11/vkEQ5YmNjiYuLu/K8f//S\n/78sbXnciNYSKGkB8JmF709Caz1cFkzZLRhryl6WYn7cCiQCzdE6268ybdq0q56npVX9CtjlbG+L\nYzmjytTP3LWHOZ2aSavQAKJaBTp13brK+XPPoLbM/esAsxZv5/4hbant62nxe12ljirL1vUTGRlJ\nZOTfswLEx8eXWs7SDvNstNt1S/JD66i2xBagPVAfbT6sxsDlC6CvA69ZWLY0gYCP+efmaK2QkxbG\nJaoZk8l0ZVDglBEdMBplAkRn0LllfXpFhHAxt4AfVpf+x0jULJa2POYD3ymK8iRwHGgB/J95vyXy\ngenAOvPzkndEBXP1Zanyyn4CjAHqoXWkT0XrQJ+NdpmqCLgXGX9SY8XtOUP8yfM0CPBhbHRrvcMR\nNjRlREc2xCfxv2X7uHdoJJ7ubnqHJKrA0uQxHXgPrVPaC+0P9bfA01Z81hzzdq2JVpR9wLxdq60V\ncYhq7NNF2n0R9wyOxMtD/rg4kwGdmhDeOJCDpy/w2/qjTOjbRu+QRBVYeqtujqqqk9EuVYUAfqqq\nTlZV1dLLVkJUaHdCKmv3JeLn7cGdAyP0DkfYWMkpS2bKlCU1nqV3W8UAJ1VVTQDO2jck4ao+Wai1\nOu4Y0JY6fl46RyPsYUx0S95St3Dg9AX+3HWaAZ1lSaCaytIO87lY3jkuhNUSkjNYsvk4Hm5G7h8m\nU5E4K093N+4dot3J89ni8oZuierOmlV1LlRcRIjKmblkD8UmE2N7tyKkrp/e4Qg7uuOGCPy9PVi/\nP4ldx1L1DkdUkqXJ4xPgOfOEiELYVGpGDnPiDgF/LyIknFdtX09uH6Dd43J5hUhR81h6t9UNaGt3\nTFYUJYG/1/Qwqara1y6RCZfx1fJ95BUUMbhrM1o3CtQ7HOEA9w2N5Mvle1m8OYETKZk0a1Bb75CE\nlSxNHv8rY7/cLiGqJCs3n2/+0CZAnHZjWXNlCmcTGuTPTde34te/DjNr6R5euSta75CElSxKHqqq\nfm3nOISL+uHPA2Tk5NOjTUN6tGmodzjCgaYM78ivfx3m59hDPDa2G3VreesdkrCCNR3mQthUfmER\ns5buBaTV4Yoimtalf8fG5OYV8o15+n1Rc1g6zsMdbUGosUA9VVXbKooyCKivquqP9gxQOK/f1h8l\n6Xw2bRoFMLBzU73DETqYMrIjf+4+zVfL9zFleEd8vKxaJULoyNKWxzvAMPPj5RlvT6CtnSGE1YqL\nTXxmnopkyohOMgGii4puF0rnsPqcv3iJH/88oHc4wgqWJo+bgTGqqs4His37DgPydVFUyqqdJzl0\nJp2Qun6MiW6pdzhCJwaDgYdGdwbgs8W7yS8s0jkiYSlLk0cucO3yX8HAOduGI1zF5QkQ7x8ms6u6\nusFdmxHeOJCk89nMW3tE73CEhSxNHl8DCxVFGQUYFUWJAr4x7xfCKhvjk9h88Cx1fD25vb9MiOzq\njEYDD47SWh8fL9xJUXFxBe8Q1YGlyeMV4BfgLbRO9m+AlVy9iJMQFvlwwQ4A7h0aib+P5SvKCec1\n6rowmjWoRUJyJos2JegdjrCApVOyFwE/AW+jJYx3gJ/M+4Ww2M6jqcTuOYOftwf3DGmvdziimnB3\nM165Xfuj33fKdO01gEXJQ1GUO4ADaB3n7YAJQLyiKHfaMTbhhC63Ou4aGEGgvwwKE39T+rQhONCX\n+JPnWblDVpKu7iy9bPUq0E9V1UGqqt6uquogYADa5SwhLLL/ZBrLt53A28ONScNl2nVxNS8PNyab\nJ8b8cIG0Pqo7S5OHO1rLo6R4QG6TERb7aMFOAG7r35b6dXx1jkZUR7f3b0ugvxfbj6SwIT5J73BE\nOSwdzvkdsFRRlC+AFLTbdO8DvlMUZcDlQqqqrrZ9iMIZHElMZ+GmY3i4GZkyUqZdF6Xz8/bg3qGR\nvP3rNj5asJPr24XqHZIog6XJ4xa0GXRfLrHPgNYHcnOJfS1sFJdwMp8s3IXJBBP6tqFRkL/e4Yhq\nbOLg9ny+aDdxe8+w82gqNwQF6R2SKIWls+o2t3McwokdT05n7trDGA0GmQBRVCjAz4u7BrXjk4W7\neP+37dzQU8YCVUcyq66wu3d/3URRsYmbrm9J84ay6I+o2KRhHfDxcueP7SfZfjhZ73BEKSR5CLs6\nnZrJ18t3YzDAQ+ZRxEJUpF4dH+4e2A6AV77/S+doRGkkeQi7euuXDeQXFDGiZwvaNJYlZoXlpo7s\niK+XO0s2HWXrQbnzqrqR5CHs5nTqRWYv24XBAI+P7aZ3OKKGCartw8TB2iwEr3y/VudoxLUkeQi7\n+XDBTgoKi5nQr520OkSlTBnRET9vD5ZtOcqOoyl6hyNKkOQh7OJESia/xB3EaDTw3G3Reocjaqi6\ntbyZOkprtb47d7vO0YiSHJk8JgCHgIPAyEqWfRtIBvZU4djCAT74bQeFRSZuHdCeNk3kPn1ReY+O\n64m/jyerd51i2+GzeocjzByVPDyBN4BoYCDwfiXLzgVGVOHYwgESkjP49a/DuBkNPCutDlFF9er4\n/t36mCetj+rCUckjCtgHpAKnzFtZo8XKK7sBSKvCsYUDvP/bDoqKTSh9WtMyVPo6RNU9Oq4n/t4e\nrNl9mq3S+qgWLJ2epKoaAknAZOA82qWnEGBXFctaVT7IDtMceHh42O3YNdGhU2nMW3cEdzcjL0wc\nIPVTAamfinl4eBAc5MEDN/XgzZ/X895vu1j2xq16h1Vt6HUOOSp5XDbT/DgWba4sW5W1qPyMGTOu\n/Ny3b19iYmIsOKywxozv11JcbGLisE60CA7QOxzhRB4d15OZi7axZucJVm5PYGBXmUrPHmJjY4mL\ni7vyvH///qWWc1TySEJrDVwWbN5X1bJWlZ82bdpVz9PSrr0CZr3L2d4Wx6rp9iScQ42N19ZlGBpB\nWlqa1E8FpH4qdrmOivOzmTayI6/9vIVnZ62i08s3YTQadI5Of7Y+hyIjI4mMjLzyPD4+vtRyjurz\n2AK0B+oDTYDGwG7za69z9Vro5ZW19tjCgV77eTMAdw9qR6N6MnOusL17BkfSMMCX3QnnWLxF1jrX\nk6OSRz4wHVgHrAIeLfFasHmzpOwnwHogHK1jfGQF5YWDxO09Q9zeM9T29eRBmcNK2ImPlzv/HtsV\ngDfnbKGgsFjniFyXI8d5zAHamLfFJfZPBO6xsOwDQCja7blNgEUVlBcOUFxs4nVzq2PayE7UrSVr\nkwv7uSUmnBbBtUlI1gaiCn3ICHNRZYs2H2N3wjkaBvhy39DIit8gRBV4uBt5SukOaKPOc/MKdY7I\nNUnyEFVSUFjMm3O2AvD4uG74eDn6Bj7hikb2DKNji3qcTc/hqxV79Q7HJUnyEFXyw58HOH42k5Yh\ndbg5po3e4QgXYTQaeObmHgB8/Psuzl+8pHNErkeSh6i0rNx83p+vTRcx/eYeuLvJ6SQcp09kI/pG\nNiIzJ5+0HUVIAAAU6klEQVR3523TOxyXI7/totI++n0XqRm5dG3VgGHdm+sdjnAxBoOB/95+HUaD\ngW9XxnP4zAW9Q3IpkjxEpZxMyWTWUm1y45f+1QuDQQZrCceLaFqXW/uHU1RsYsaPm/QOx6VI8hCV\n8spPm8krKGJsdCu6tmqgdzjChT05vhv+3h6s2nmKuD2n9Q7HZUjyEFbbGJ/E4s0J+Hi5X+m0FEIv\n9ev48vBN2sDUl77fSGGRDBx0BEkewipFxcW88P0GAB4Y2YnQIJmGROjv3iGRNKnvz4HTF/hpjQwc\ndARJHsIqatxh9h5PIzTIjykjOuodjhAAeHu689ytUQD8369bSc/O0zki5yfJQ1gsMyefN+ZsAeC5\nW3rKgEBRrYzs2YLr2gaTlnmJt8wDV4X9SPIQFnv7162kZuTSvXVDRvdqqXc4QlzFYDDwyl3RuBkN\nfLtqP7sTUvUOyalJ8hAW2ZNwjtkr9uNmNPD6PdFya66oliKa1uXeIZGYTPDs7PUUF1uyjpyoDEke\nokLFxSaemb2WYpOJe4a0p11TWTJVVF+Pj+tKcKAvO46mSOe5HUnyEBX6cc0BdhxNJTjQl8fHdtM7\nHCHK5e/jyX9vvw6A137ZLPNe2YkkD1GutMxcXv9Z6yR/4Y7rqOXrqXNEQlRs1HVh9G4fSnpW3pW1\nZoRtSfIQ5Zrx4ybSs/PoG9mIG6PC9A5HCIsYDAZevTsaDzcjP645yMb4JL1DcjqSPESZ/tx1CvWv\nw3h5uPHqROkkFzVLq9CAK0siP/G/OHLzZdEoW5LkIUqVlZvP01+uBbQOyLDgOjpHJIT1HhrdmTaN\nAkhIzuS9edv1DsepSPIQpXrt5y2cScuiY4t6TB4uI8lFzeTl4cY7k2IwGODzxbtl7IcNSfIQ/7Ax\nPolvVu7H3c3AO5P6yiJPokbr2qoB9w2NpKjYxGNfxFFQKBMn2oL8VRBXyc0r5PFZcQA8PLqLjOkQ\nTuGp8d1p1qAW8SfP8/HCnXqH4xQkeYirvD5nC8fPZtK2cSAPje6sdzhC2ISvtwdv3dcHgPfnb2fX\nMbl8VVWSPMQVsbtP8+Wyvbi7GXhvSgye7m56hySEzfRu34h7h7SnsMjEQ5/+SW6e3H1VFZI8BADn\nL17i0ZlrAHhiXHc6tqivb0BC2MEzt/SkTaMAjiZl8MpPsmxtVUjyEJhMJp7631+kpOcSFR7MtBvl\n7irhnHw83floWn883Ix8/cd+Vu88pXdINZYkD8HPsQdZuvU4tXw8+GBqP9yMcloI5xXZvB5PjNfm\naHt8Vixpmbk6R1QzyV8JF3ckMZ3/fqstK/vq3dE0qV9L54iEsL+pIzsSFR5MSnouj3y2RqZurwRH\nJo8JwCHgIDCykmXL2l8E7DBv79soXqeXm1fIpA9WkpNXyE29WjI2upXeIQnhEG5GIx890J9Afy/+\n3H1abt+tBEclD0/gDSAaGEj5f+DLKlveMXKALubtUVsG7qxMJm2NjoOnL9AypA5v3ttb5q4SLqVR\nkD8fTu0PwP+p21i/P1HniGoWRyWPKGAfkAqcMm+drCxb2n7p2a2kn2MPov51GG9PN754ZCD+PjLV\nunA9Azo34aHRnSk2mZj28WpS0nP0DqnGcFTyaAgkAZMBBUgGQqwsW94xvIFtwFqgj13+BU5k7/E0\nnv96PQBv3NObtk3q6hyREPp5Ylw3ekWEkJqRy7SPV1NYJNOXWMLdwZ830/w4Fqioh6pk2Yr2NwJS\ngO7AfKAVkHftAYOCbD/VhoeHh92ObQ8p6dnc98FKLhUUMXFoJ6bc1Muun1fT6sfRpH4q5og6+vH5\ncVz34Gw2xCfx1tydvDN1kN0+y9b0OocclTySuLqlEWzeZ2nZRKBWOcdIMT9uNZdtjtapfpUZM2Zc\n+blv377ExMRYGr9TyMsv5OaX53MqJZOotqG8N63m/IIIYU8hQf789PwYhjz9I58s2Eb75g24Z1hZ\nV9adW2xsLHFxcVee9+/fv9Ryjuoh9QQOoPVbeAOrgdbm115Ha4U8W0HZsvYHApeAXLSksda8/6qb\nt1euXGmKiIiw+T/scrZPS0uz+bFtyWQy8cSsOH6OPURwoB9LZtxEw0Bfu39uTakfvUj9VMyRdfRL\n7EEe+yIODzcjvzw7nKi2ZV1drz7sXT/x8fEMHDjwH7nCUX0e+cB0YB2wiqvviAo2bxWVLWt/BNot\nuruAecC9XJM4BMxatpefYw/h7enG7McHOSRxCFHT3BwTzv3DIikoKua+91dyMiVT75CqLUf2ecwx\nb9eaaEXZ0vavB9pWLTTntnDTMV7+YSMA706KkXmrhCjH87dGcfhMOmt2n+b2t5ax4IVR1K3lrXdY\n1Y6MMHdyG+KTePjTPzGZ4OkJ3Rndq6XeIQlRrbm7GfnsoRuIaFqXY0kZ3PX2cpmBtxSSPJxY/Mnz\n3PPuCvILi7l7UDseGiXrcwhhidq+nnz/1FAa1/Nn+5EUpny0Sm7hvYYkDyd1IiWTO95aSmZOPsN7\ntODlO3vJCHIhrBAc6McPTw8jwN+LlTtO8uT//pI5sEqQ5OGETqdeZMKri0m+kMN1bYP5aJrMlCtE\nZbQKDeCbJ4bg7enGnLhDPDN7LSaTJBCQ5OF0EtOymPDaYk6fy6JrqwbmE9/RY0GFcB7dWzfk68eH\n4O3hxverD/Cfb9dLAkGSh1NJvpDNhNcWcyLlIp3C6vHD08NkziohbKBPZCO+fGwQnu5GZq/Yz0s/\nbHT5BCLJw0kcP5vJmJcWkpCcSWTzIH6cPpzavpI4hLCVfh2bMOvRQXi4GZm1dC/Tv1pLUbHrdqJL\n8nAC8SfPM+bl3zmZepHOYfX5afpwAvy89A5LCKczsEtT/vfvQVcuYT34yZ/kFxbpHZYuJHnUcFsP\nn2X8K4tISc/l+nYh/PLscBnQJIQdDezSlO+fHoa/twe/bzzGPe+sIOdSgd5hOZwkjxps4aZj3Pzq\nYtKz8xjSrRnfPTlU+jiEcIBeESGoz4+gbi1v/tx9mnGvLCL5QrbeYTmUJI8ayGQy8cFvO5jy4Sou\nFRRxW79wvnhkoNxVJYQDdWxRn/n/vZFmDWqxO+EcI/6zgL3Hz+kdlsNI8qhhcvMLeeTzNbylbsVg\ngP/cFsVb9/XB3U3+K4VwtFahASx6+SZ6hjck+UI2N728kKVbEvQOyyHkL04Nciw5g1EvLGDu2iP4\nernz1b8HM2VERxk5LoSO6tby5udnRjC+T2ty8wq57/2VvPzDRgoKnftOLEkeNcTizQkMe24++0+e\np0VwbRa8OIrB3ZrpHZYQAvDycOP9yTH89/Yo3N0MzFyyB+XVRSSdd95+EEke1Vz2pQKe/vIvJn2w\nkqxLBYzo2YKlM8bQrqksWypEdWIwGJg8vCO/PjeS4EA/thw6y+Bn57HESS9jSfKoxjYfTGbQM3P5\nfvUBPNyMvPyvXsx8+AZqyeA/IaqtHuHBrHhtDDEdGnH+4iXuf38lD336JxnZeXqHZlOSPKqhrNx8\nXvx+A2NnLOREykXaNa3L0lfGcO/QSOnfEKIGCKrtw/dPDeOVu67H29ONeeuOMODpuazYdkLv0GxG\n7u2sRkwmE4s3J/DCdxtJvpCN0WDgwdGdeGxsVzzd3fQOTwhhBaPRwMTB7enboRGPfh7L9iMpTHx3\nBYO6NmXGndfTpH4tvUOsEkke1cSRxHRe+G4Da3afBqBzWH1emxhNpzBZMlaImqxlSADz/3sjX/+x\nn/9Tt/LH9pP8tfcMD4/uwqRhHfDxqpl/hmtm1E4kMS2Ld+dt55fYQxSbTNTx9WT6zT24fUBbWYND\nCCfh7mbkvqGR3BgVxss/bOS3DUd5S93Ktyv389jYbtwc06bGjdWS5KGT1IwcZi7ew+wV+7hUUISb\n0cAd/dvy5Pju1Kvjo3d4Qgg7aBjoyycPDuC2/m2Z8eMm9hw/x1Nf/sXnS3bzxLhujIxqUWO+NEry\ncLDjZzP5fPFu5sQdIq9Am43zxqgwnlS60TIkQOfohBCOEN0+lCUzbmLhpmO8pW7lWFIG0z5ezVtq\nbaaM6IjSp3W1n26oekfnJIqLTazbn8h3q+JZuuU4xeZFZIZ2b8bDo7tIv4YQLshoNDC6V0uG92jB\nL3EH+XThLo6fzWT6V2t5Z+427hgQwa39w2kU5K93qKWS5GFH5y9eYk7cIb5fHU9CciYA7m4Gxke3\nYdrIjrRuFKhzhEIIvXm4G7ljQAS3xISzeHMCny7axd7jabw3fzsf/LaDG7o04Y4BEfTr2Lha9YtI\n8rCxzJx8lm87zoL1R4nbe4aiYq2VEVLXj9v6hXNLv3BCq+k3CSGEftzdjIzu1ZJR14Wxfn8S36/W\nrlT8sf0kf2w/Sb3aPtx4XQtGX9eSbq0bYjTqO+ZLkocNnErNZN6aeFbtOEXsntNX+jLcjAZu6Kx9\naxjQuUm1+tYghKieDAYD0e1DiW4fyrmMXH6JO8hPaw6SkJzJ7BX7mb1iP6FBfgzp1owBnZoysndt\nfLw8HB+nwz9RJytXrjRFRETY5FiZOflsPXSWjQeSiN2TyN7jqVdeMxjgurYhjO7VkhE9W7j8qn5B\nQdocXGlpaTpHUj1J/VRM6kgbQLz3eBoLNhxlwcajJKb9PeGij5c7/To1o1d4A6LaBhPRtK5N79iK\nj49n4MCB/8gV0vKoQHGxieMpmexJOMe2w2fZdDCZ/SfOX+n0BvDz9qBPZCgDOjXlhi5NCA700zFi\nIYSzMRgMdGhRjw4t6vHsLT3ZcTSF1btOsWrHKfYcP8fSzUdZuvkoALV8POjRJpie4cF0blmfyOZB\nBPrb/kusI5PHBOAVwAQ8DiyqRFlr91vMZDKRlnmJY8kZHE1KJ/7kefYcP8f+E+fJumZ9Ync3A51b\nNCAqPJgR0RH0iWxC1sUMaz9SCCGsZjQa6Na6Id1aN+TJ8d3Jw5MVW4/xx5bDbD6YzKnULFbvOsXq\nXaeuvKdxPX8imwcR2awerRsF0DIkgObBtfGpwu3Ajrps5QkcAKIAb+BPoJWVZa3df5WVK1eaGjVr\nSWJaFknns0lMyybxfBanUi9yLCmDY0kZZOTklxpQcKAv7ZsF0TmsPlFtQ+jaqsGVKQWCgoKIj4+n\nQYMGlagW5yf1Uz6pn4pJHZXv2vo5k5bF5gPJbDl0VvsCfDKNS/lF/3ifwQCNgvxpGVKHFsF1aBTk\nT2iQH6FB/oTW9aNhoB8e7kbdL1tFAfuAy50Dp4BOwC4ryta2cv8/jh1x/zflBlnLx4OWIQGEhdSh\nTaNALVM3D6J+Hd9y3ycndvmkfson9VMxqaPylayfRkH+jIluxZho7Tt0YVExx5Iy2Hsijb3Hz3E0\nKYNjyRmcTMnk9LksTp/LInbPmX8c02CAhgG+fP9A11I/01HJoyGQBEwGzgPJQAilJ4+yyvpbuf8f\nx/bxcie0rjmzBvkRUtePxvX8CQuuQ1hIHerV9pEpz4UQTsXdzUibxoG0aRzI2Oi/L8oUFBZzMjWT\nY0kZHD+beeVqTGJaNolpWZxNzyH5Qk7Zx3VE8CXMND+OReufsLSstftLPfb53x63eXLw8PBgwIAB\nBATI1CKlkfopn9RPxaSOyleV+gluWJ+ekaW/VlBYRGJaFqcO7yn1dUcljyS01sBlweZ9lpZNBGpZ\nsf8fx87IyNi1bt26TlZHLoQQLiwjI6O0K0QO4wkcA+oDTYDDJV57HXjNgrLW7hdCCOEEJgCHzNuI\nEvtnA19ZWNba/UIIIYQQQgghhBBCCCGEcA0yqMFKiqJEAbPQ7lTbrarqLYqiXDU9iqqqVk+P4kwU\nRXkBrR8K4BdVVV925TpSFOVt4A4gVVXVDuZ9pdaHK9bTtfWjKEoj4BcgAMgDnlZVdaW5rMvVD5R+\nDpn31wIOAu+oqvqOeZ9D6kjmCLeCoihG4Ftgiqqq7YAHFEXxBN4AooGBwPs6hqg7RVFaAP8COgCd\ngbsURWmDa9fRXErcyFHWOePC59JV9QMUAFNVVY0ExgBfg0vXD/yzji57Dth6+Ykj60iSh3W6oWX+\n9QCqqqZhnk5FVdVUVVVPAacURXHl8SSZaL/8PuYtH23sjcvWkaqqG4CS84mXdc645Ll0bf2oqpqi\nquoe888nAU9FUTxw0fqBUs8hFEUJRxuisK3EbofVkUzJbp2mQIaiKEvRplGZhTanVpKiKJZMveL0\nVFVNUxTlA7Q5xozAE0ADpI5KCqb0+vAvY7+r1hOKogwBtqmqWqAoSln15qr18zrwCHAPf8+q4bA6\nkpaHdbzRmoP3AzHAo0AYgKqqM1VVVc3lKpp6xWkpitIcmAI0A1qiJQ9vkDq61jX1UdZ+l60nc7J4\nG5hm3mUCqR8ARVFuBA6ZWxcG/u6/dlgdScvDOsnAflVVTwMoirIN8MLyqVdcQRSwRVXViwCKouwA\nWiB1VFIiVZhqxxUoiuINqGgdvgnm3dZMc+TsegLjFEUZDdQDihVFSQRO4qA6kuRhna1AU0VRAoFs\ntE7h14GJiqLUR/uG3VhV1d06xqi3o8Az5o47N6ArUkfX2gK0v7Y+zHX2j/16BqoHRVEMaDNP/Kiq\n6ooSL5Vab3rEqDdVVf8D/Aeu3N14UVXVnxx5DsllKyuoqpqBdqlqNbAd7eTeA0wH1gGrzK+7LFVV\ntwLzgR1oyXaW+eR12TpSFOUTYD0QrijKKWAIpdSHqqr5pe13diXqp425fp4HxgGTFEXZYd6CXbV+\n4J/nkPmy1T+4ch0JIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQwkKyGJQQDqIoyj60\nmZn9gBygWFXV2uYFfb4EhqFNaf+Sqqpf6BepEBWT6UmEcBBVVdujrY4H0E5V1drmn98EgtAmtBsD\nvKMoSlcdQhTCYpI8hHCs0lr7CvCuqqpZqqpuBpYDNzs2LCGsI8lDCB0pihKE1uo4WmL3MSBcn4iE\nsIwkDyH05Wt+zC2x7xJav4gQ1ZYkDyH0lWN+9Cmxzwet41yIakuShxA6UlU1DUhDW7L3sjDgkD4R\nCWEZWUlQCMcyXPMI2nKr/1YUJRaIAAYBrzg6MCGsIS0PIRzEPM7jPGAC9imKcvnS1HQgHUgGNgGv\nqaq6Q58ohbCMDBIUohoxr0c9HuhtXvZYCCGEqJiiKP30jkEIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGELv4fDKN3j0zi4+cAAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAGJCAYAAACny9QDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wd8VGXCxuH/pGcSINIChBZCEYJAKKEkBAEFQ7GgrIgG\nEEFWsGFjkaILooA0C0VsIci66AKrSA1FepWiQCAklECACISWNmnzfsDlXVYNkHam3NenTM7MOff8\neJi5Z3LO85iOHDliRURERERE7oiL0QFEREREROyRirSIiIiISCGoSIuIiIiIFIKKtIiIiIhIIahI\ni4iIiIgUgoq0iIiIiEghqEiLiIiIiBTCLYv0uXPniIqKolmzZvTq1YujR4/e1o5jYmIICwsjNDSU\nadOm3fj9pUuX6NOnD61btyY0NJQBAwaQmJhY5OOJiIiIiJSmWxbpMWPG0KBBA3bu3ElkZCTDhw+/\n5U7379/PzJkziYmJYenSpSxbtowVK1YAYDabmTBhAtu3b2fHjh2EhIQwatSoIh1PRERERKS0FVik\n09LS2Lp1K4MHD8bDw4P+/fuTnJxMfHx8gTtduXIlXbp0ISgoCH9/f3r37s3y5csB8PT0JCgoCJPJ\nRE5ODnl5efj6+hbpeCIiIiIipa3AIn3y5Ek8PDwwm8307duX06dPU7NmTY4dO1bgTk+cOEFgYCDz\n5s1j0qRJ1K1bl+PHj990n549e9KsWTPWrl3L5MmTi3Q8EREREZHSVmCRzszMxMfHh/T0dBITE7l6\n9So+Pj5kZmYWuNPMzEzMZjOnTp3i5MmT+Pj4kJGRcdN9li5dys6dOwkODmb8+PFFOp6IiIiISGlz\nK2ijt7c36enpVKlShR07dgCQnp6O2WwucKfe3t5kZGQwevRoAGJjY//wMb6+vrzxxhu0b9+eCRMm\n3NHxTp06dXvPUERERESkCGrUqPGHvy+wSNeqVQuLxUJKSgr+/v5kZ2eTlJREYGBggQerXbv2Tadj\nJCQkUKdOnT+8b35+PlarFavVesfHa9iwYYE5bE2FChVYvHgxHTp0MDqK2CGNHykqjSEpCo0fKSp7\nHUNxcXF/uq3AUzt8fX0JDw9n7ty5WCwWoqOjCQgIoH79+jfuExUVxZQpU256XGRkJLGxsSQkJJCS\nksKiRYuIjIwE4KeffmLLli1kZ2eTnp7O9OnTad68OT4+Prd1PBERERERW1DgN9IA48aN4/XXXyc0\nNJSgoCCmT59+0/bk5GSqV69+0++aNGnCsGHD6NevH7m5ufTp0+dGkbZarUydOpWkpCRcXV1p2bLl\nTfNM3+p4IiIiIiK2wHTkyBGr0SEK49SpU3Z5akdcXByVK1c2OorYIY0fKSqNISkKjR8pKnsdQ3Fx\ncX96jrSWCC9l9lb+xbZo/EhRaQxJUWj8SFE52hhSkRYRERERKQQVaRERERGRQlCRFhEREREpBBVp\nEREREZFCUJEWERERESkEFWkRERERkUJQkRYRERERKQQVaRERERGRQlCRFhEREREpBBVpEREREZFC\nUJEWERERESkEFWkRERERkUJQkRYRERERKQQVaRERERGRQlCRFhEREREpBBVpEREREZFCUJEWERER\nESkEFWkRERERkUJQkRYRERERKQQVaRERERGRQlCRFhEREREpBBVpEREREZFCUJEWERERESkEFWkR\nERERkUJQkRYRERERKQQVaRERERGRQlCRFhEREREpBBVpEREREZFCUJEWERERESkEFWkRERERkUJw\nMzqAiIiUDqvVanQEERGHoiItIuIAcvPyOXwqlSOnL3H0zGUSki9zNjWdC1czuZRmwZKTS27e9SJt\n9nSjjLcH5ct4EVDRl4AKvtQP8CO4VgUa1iyPr7eHwc9GRMQ+qEiLiNghq9XKoaRU1u8/xfa4s+yK\nTyEtK+e2HpthySXDkkvK5QziTqXetM3FZKJJYEXCgqsRHlyN1ndXxdPdtSSegoiI3VORFhGxIwdO\nXOD77cdYtvM4J1Ku3rSttn9ZgmtVoG41P+pV86NG5TJULOtN+TJeeHm44l+pEgBJyedIy8rhwpVM\nki+mkXT+GodPpXLw5EUOn0pl37Hz7Dt2nplL91PW7MEDLWvzUNs6hDUKwN1Nl9aIiPyHirSIiI3L\ntOTy/fZEYtbEse/Y+Ru/r1jWm64tahEWXI3Wd1ehyl0+Be7HxcUEQBmzB2XMHlQt78M9gRVvuk9G\nVg47jpxj88EzbPj5NHGnUvlmYzzfbIynsp83T3VqyFOdGuJ/l7n4n6iIiJ1RkRYRsVGX0rL4fOVB\nvlx9kMvpFgD8fDx5uF0QPVrXIbSBP64uxfsNsdnLnY5Na9CxaQ3G9G1NwpnLfL8tkSXbEjl29grT\nFu/ho+/20bNNHYb1bMrdNcoX6/FFROyJirSIiI1JvZbF3BW/8OWqgzfOew4JqkRU50Y82LYO3h6l\n99Jdt5ofrzzaguG9mrP10Fm+XH2QVT+dZPGWBJZsTeDBNkEMfySEegF3lVomERFboSItImIjsnPz\niI49xPTFe7iakQ1AROMAXn4khNZ3VzU0m8lkIiy4GmHB1Th9/hpzlv/MgnWH+W5bIt9vT+QvEfUZ\n+XgrKpXTKR8i4jxUpEVEbEDsnpP8fcF2jp+7fgFh+8YBvPZYC1rW8zc42e9Vr1SGd/qH8VyPpnz0\n3T7++eMRFm6IZ/nO4wzv1ZyBXRrrokQRcQoq0iIiBjp/JYPR87byw47jANSpWo63nmxD52Y1MJlM\nBqcrWEAFXyYODOfZbvfw9vxtrN13inELdvD1+iNMG9KB5nUrGx1RRKREqUiLiBjAarWyaHMCb321\njctpFsyebrzeuyVP3x9sd9/m1qlSjpjXH2DN3iTemr+No2cu89Db3/PX7vfw6qMt8CrFc7pFREqT\nXt1ERErZpbQsXv90Eyt2nwCgwz0BTHqmPTUqlTE2WBHdF1KTsOBqTP3XT3yy/Bdm/fAzq/ck8fHQ\njr+bZk9ExBHY19ceIiJ2bnvcWe4fuZgVu09Qxtudac92YMGISLsv0f/h7eHG6L6t+fdbPalbzY+E\nM5d58O3v+HzlAaxWq9HxRESKlYq0iEgpyM+3Mn3xHnpPWMbZ1HSa163M6nd78XiH+jZ/LnRhtKjn\nz6oJjzDg/kZk5+Yzdv42Bs2I5VJaltHRRESKjYq0iEgJu5qRzTPTY5my6CesWHnxoWYsHtOTmpXL\nGh2tRHl5uDFhQBhzX7qPsmYPVu4+SbfR/yYuKdXoaCIixeKWRfrcuXNERUXRrFkzevXqxdGjR29r\nxzExMYSFhREaGsq0adNu/P7EiRM888wztG7dmnbt2jFixAjS0tJubI+KiqJJkyaEhIQQEhLCiBEj\nCvG0RERsQ8KZy/QY+29W7zmJn48nX73xACP+0sruLigsiu6hgaya8AhNAiuSdP4aD779HSt2HTc6\nlohIkd3ylXzMmDE0aNCAnTt3EhkZyfDhw2+50/379zNz5kxiYmJYunQpy5YtY8WKFQCkp6fTs2dP\n1q5dy7p167BYLEycOPGmx48dO5a9e/eyd+9eJk2aVMinJiJirI2/nKbH2H+TePYKDWuUZ9n4h7m3\nSQ2jYxmiZuWyLB7bk15hdcmw5DJoxhqmLfpJ502LiF0rsEinpaWxdetWBg8ejIeHB/379yc5OZn4\n+PgCd7py5Uq6dOlCUFAQ/v7+9O7dm+XLlwMQHBzMww8/jK+vL15eXvTo0YN9+/bd9Hi9sIqIvVu4\nIZ6o91dyLTOH7qGBfP/2g9T2d+xTOW7F28OND5+7lzF9W+NiMjF18R5embuRnNx8o6OJiBRKgUX6\n5MmTeHh4YDab6du3L6dPn6ZmzZocO3aswJ2eOHGCwMBA5s2bx6RJk6hbty7Hj//xn/H27t1LgwYN\nbvrdtGnTaNOmDQMHDiQxMfEOn5KIiHGs1usXFb4ydwO5eVae696EOS90xuzlbnQ0m2Aymfhr9yZ8\n+WoXvD3d+GZjPE9PXUV6Vo7R0URE7liB80hnZmbi4+NDeno6iYmJXL16FR8fHzIzMwvcaWZmJmaz\nmYSEBM6cOUNERAQZGRm/u9+BAwdYsmQJCxcuvPG7ESNGUL9+ffLy8pg1axZDhw5l2bJluLn9PmqF\nChVu93naBHf362+k9pZbbIPGj+3Lzcvn+Q9XEr3qZ1xcTEz763389cEWRse6wZbG0OP3VaBODX8e\nGfst638+zRMTV7JkfG8q+/kYHU3+hC2NH7FPjjiGCizS3t7epKenU6VKFXbs2AFcP8fZbDYXuFNv\nb28yMjIYPXo0ALGxsb97zOnTp3nxxReZPHkyNWr8/zmDjRs3vvHzK6+8woIFCzh27Bj169f/3XHG\njx9/4+eIiAg6dOhQYC4RkZKSnZPHgEnfs3jzEbw93Yj524P0bPv71y35f60aVGPD9H70GLWQn46e\n497h81n+Xh9qV/EzOpqIOLENGzawcePGG7c7duz4p/ctsEjXqlULi8VCSkoK/v7+ZGdnk5SURGBg\nYIEBateufdPpHwkJCdSpU+fG7YsXLzJo0CCGDx9OeHh4gfsymUx/es700KFDb7p98eLFAvdltP98\nArP1nGKbNH5sV1Z2LkM+XMuavUmU8XZn/huRtKpfweb+rWxxDPl5wpIx3en3/ip+Pn6Bzq9+xbej\nu1PLwacGtEe2OH7EvtjLGGrcuPFNX+zGxcX96X0LPEfa19eX8PBw5s6di8ViITo6moCAgJu+HY6K\nimLKlCk3PS4yMpLY2FgSEhJISUlh0aJFREZGAnDt2jUGDRrEE088Qc+ePW963LVr19iwYQPZ2dlk\nZ2fz8ccfU7FiRerWrXv7z15EpBRlZOUwYOpq1uxNws/Xk29GdadVfX+jY9mVSuXMLHyzOy3qVSb5\nYhq9xv1A4tnLRscSEbmlW05/N27cOOLj4wkNDWXlypVMnz79pu3Jycm/+2TRpEkThg0bRr9+/ejZ\nsyfdunW7UaTXrFlDXFwcM2bMuDFXdPPmzQHIyclhxowZtG7dmvDwcPbt28fs2bNxdXUtrucrIlJs\n0rNyiHp/JZsOJFOpnDf/GtWDJoGVjI5ll8qaPfjHiEja3F2Fc5fSeeydH4g/fcnoWCIiBTIdOXLE\nLueaO3XqFA0bNjQ6xh2xlz9piG3S+LEtmdm59Ht/JVsPnaXKXT4sfLMbdavZ9rm99jCGMrJyGDBt\nNVsOnqFCWS8Wje5BvYC7jI4l2Mf4Edtmr2MoLi7upuv5/pvzLK0lIlJMLDl5DJ4ey9ZDZ/H3M/Ov\n0d1tvkTbC7OXO/Ne60qHewK4eDWLPu+tIOnXq0bHEhH5QyrSIiJ3ICc3n2Efr2P9z6epUNaLhW92\nI7BKOaNjORRvDzc+H97lxmkej7+7nLOp6UbHEhH5HRVpEZHblJefz8tzfmTF7hOUM3vw9d+66bSD\nEuLt6Ub0q11pVqcSSeev0ee95Vy8WvAaBiIipU1FWkTkNlitVt6av41/b0vE18udBX+LJLiW4ywq\nYIvKmD2Y/8YD3F39LhLOXKbvpBVczcg2OpaIyA0q0iIit2Hm0v18ufoQHm4ufPlqF0KCKhsdySmU\nL+PF1yO7EVilLAdOXGTwjFiyc/OMjiUiAqhIi4jc0jcb43lv4S5MJvhoaEfaNapmdCSnUtnPzD9G\nRFKpnDebD57h1bkb/3ShLhGR0qQiLSJSgPX7T/Hap9eXih0X1ZYerevc4hFSEmpWLsv81x/Ax8ud\nxVsSmLhwl9GRRERUpEVE/syBExd49oM15OVbGdazKQO7Nr71g6TE3BNYkbkvdcbN1cTHS/cTHXvI\n6Egi4uRUpEVE/kDKpQz6T1lNhiWXXmF1Gfl4K6MjCXBvkxpMfiYCgNHztrB2X5LBiUTEmalIi4j8\nj8zsXAZOW825S+m0qu/PlMERmEwmo2PJbx7vUJ9XezXHaoWhH63jyOlUoyOJiJNSkRYR+S9Wq5Xh\nczaw79h5alTy5fPh9+Pp7mp0LPkfw3s158E2dUjLyuHpqatJvZZldCQRcUIq0iIi/2Xa4j0s3XEM\n39+Wqq5Q1tvoSPIHTCYT04Z0oGmdipz89RrPfrBG0+KJSKlTkRYR+c132xKZtngPLiYTs1/oTIPq\n5Y2OJAX4z1Li/n5mtsWdZXT0Vk2LJyKlSkVaRAQ4cOIir3yyAYC3nmpDp2Y1DE4kt6NqeR++eKUL\nXu6uLFh/mC9WHTQ6kog4ERVpEXF6l9KyGDwjlqycPPp0qM8zXYONjiR3oFlQJaYN6QDA3xdsZ3vc\nWYMTiYizUJEWEaeWl5/P8zPXk3T+Gk3rVGTCgDDN0GGHHmobxLCeTcnLt/LXj9Zy7lK60ZFExAmo\nSIuIU5u6aA8//nya8mW8+PSl+/HycDM6khTSG71bEhZcjfNXMhnywVpdfCgiJU5FWkSc1qrdJ/jg\n33txMZmY9XwnAir6Gh1JisDN1YVZwzpRtbwPu4+mMH7BDqMjiYiDU5EWEaeUePYyL835EYCRj7ei\nfeMAYwNJsahYzpu5L92Hu6sLX6w+yOItCUZHEhEHpiItIk4nMzuXIR+s5VpmDt1aBfJcjyZGR5Ji\n1LxuZcb1awvA659t5FDSRYMTiYijUpEWEafz9vxtxJ1KJbBKWaYP0fLfjiiqc0N6t69HVnYef/1w\nLelZOUZHEhEHpCItIk7lu22JfLXuMJ7ursx54T58vT2MjiQlwGQy8d7T4TSofheJZ68wKnqL0ZFE\nxAGpSIuI0zh+7gpvfLYJuL7oSuPaFQxOJCXJ29ON2S90wsvDlW83HeVfm44aHUlEHIyKtIg4BUtO\nHs99tI60rBy6hwbSr3NDoyNJKWhQvTzv9G8HwMgvN5Nw5rLBiUTEkahIi4hTeOcfO/jlxAVqVirD\nlME6L9qZ9OnQgIfbBpFhyeW5j9aSlZ1rdCQRcRAq0iLi8JbvOs4Xqw/i7urCnBc7U9as86Kdiclk\nYuLAcGr7l+VQUirj/6H5pUWkeKhIi4hDS76YxmtzNwIwum9rmtapZHAiMUIZswezX+iEu6sL0bGH\nWL7ruNGRRMQBqEiLiMPKy8/npdk/ciUjm/tCavJM12CjI4mBmgRWYkzf1gC8NncjZy6mGZxIROyd\nirSIOKxPlv3CtrizVCzrzVSdFy3AwK7B3BdSkysZ2bz8yQby861GRxIRO6YiLSIO6ZfjF5j87W4A\npg2JoGI5b4MTiS0wmUxMHRxBxbLebDl4hk9X/mJ0JBGxYyrSIuJwMi25PD9rPTl5+Qy4vxGdm9U0\nOpLYkIrlvJkyuD0AExfu0hLiIlJoKtIi4nDe+XoHCWcuU6+aH6N/OydW5L/d37wWT3W6m+zcfF6Y\nuV5T4olIoahIi4hDWbsviejYQ7i7uvDxsE54e7gZHUls1FtPtiGwSlkOn77EpG92Gx1HROyQirSI\nOIwLVzJ55ZPrU92N+EtLLQEuBTJ7ufPx0E64upiYu+IXNh1INjqSiNgZFWkRcQhWq5WRX27mwtVM\n2jasypBuTYyOJHagWVAlhvdqDsDLczZwKS3L4EQiYk9UpEXEIfx7ayLLd53A18udGUM64OKiqe7k\n9rzwYDNa1KvMuUvpjI3ZZnQcEbEjKtIiYvfOXUpn9LytALz1VBuqVypjcCKxJ26uLsz46714ebiy\neEsCK3efMDqSiNgJFWkRsWtWq5URn2/mcrqFTk1r8MS9DYyOJHaoTpVyvPl4KAAjPt9M6jWd4iEi\nt6YiLSJ27ZuNR1mzN4lyZg8mD2qv1Qul0J7uEkybu6tw4Wrmjb9wiIgUREVaROxW8sU03pp/vfCM\n69eOquV9DE4k9szFxcS0IR0we7rx3bZEfthxzOhIImLjVKRFxC5ZrVZe/3Qj1zJz6NqiFo+G1zU6\nkjiAWpXLMuqJ64v4jPxyCxeuZBqcSERsmYq0iNilr9YdZsMvyfj5ejJxYLhO6ZBi069zQ8KCq5F6\nLYuRX27BarUaHUlEbJSKtIjYnVPnrzFuwXYA3h0QRmU/s8GJxJG4uJiYOjgCHy93lu86zvfbdYqH\niPwxFWkRsStWq5U3PttEhiWXHq0DeahtkNGRxAHVqFSGsU9eP8XjzegtnL+SYXAiEbFFKtIiYle+\n2XiUjQeun9IxoX+Y0XHEgT3Z8W463BPA5TSLZvEQkT+kIi0iduPXyxn8/avrK8+Ni2pLxXLeBicS\nR2YymZj8THvMnm78sOM4q7RQi4j8j1sW6XPnzhEVFUWzZs3o1asXR48eva0dx8TEEBYWRmhoKNOm\nTbvx+xMnTvDMM8/QunVr2rVrx4gRI0hLSyvy8UTE8Y2K3sqVjGw6Na1BrzDN0iElr3qlMox8vBVw\n/RSPK+kWgxOJiC25ZZEeM2YMDRo0YOfOnURGRjJ8+PBb7nT//v3MnDmTmJgYli5dyrJly1ixYgUA\n6enp9OzZk7Vr17Ju3TosFgsTJ04s0vFExPEt23mc5buO4+Plrlk6pFT1v78RLepV5tylDCZ8vdPo\nOCJiQwos0mlpaWzdupXBgwfj4eFB//79SU5OJj4+vsCdrly5ki5duhAUFIS/vz+9e/dm+fLlAAQH\nB/Pwww/j6+uLl5cXPXr0YN++fUU6nog4tsvpFkZFbwHgzT6hBFT0NTiROBNXFxemDIrAw82FBesP\ns/XQGaMjiYiNKLBInzx5Eg8PD8xmM3379uX06dPUrFmTY8cKngroxIkTBAYGMm/ePCZNmkTdunU5\nfvz4H9537969NGjQoEjHExHHNm7Bds5fySS0gT/9Ojc0Oo44ofrV7+LFh0MAeP2zTWRacg1OJCK2\nwK2gjZmZmfj4+JCenk5iYiJXr17Fx8eHzMyCV3rKzMzEbDaTkJDAmTNniIiIICPj91MHHThwgCVL\nlrBw4cJCHa9ChQq3+zxtgru7O2B/ucU2OOv4WbPnOAs3xOPp7spnrz1IpUrO9fyLk7OOoeIytn8n\nVuxO4uCJ88xafoh3B3U0OlKp0viRonLEMVRgkfb29iY9PZ0qVaqwY8cO4Po5zmZzwYsfeHt7k5GR\nwejRowGIjY393WNOnz7Niy++yOTJk6lRo0ahjjd+/PgbP0dERNChQ4cCc4mIfUnLzGbYBysBGPVk\nOPVrOM6Lr9gfD3dX5gyPpMPw+cxYvJNHI+6mRf2qRscSkWK2YcMGNm7ceON2x45//qG5wCJdq1Yt\nLBYLKSkp+Pv7k52dTVJSEoGBgQUGqF279k2nYyQkJFCnTp0bty9evMigQYMYPnw44eHhhT7e0KFD\nb7p98eLFAnMZ7T+fwGw9p9gmZxw/b83fxsmUKwTXqkC/jnWd6rmXBGccQ8WtTkVPBnVtzNwVvzBo\nylJWjH8EdzfnmElW40eKyl7GUOPGjWncuPGN23FxcX963wL/9/v6+hIeHs7cuXOxWCxER0cTEBBA\n/fr1b9wnKiqKKVOm3PS4yMhIYmNjSUhIICUlhUWLFhEZGQnAtWvXGDRoEE888QQ9e/a84+OJiHPY\nm/grn686gOtvyzU7S1kR2/f6Yy2oWakMcUmpzF623+g4ImKgW74zjRs3jvj4eEJDQ1m5ciXTp0+/\naXtycvLvPlk0adKEYcOG0a9fP3r27Em3bt1uFOk1a9YQFxfHjBkzCAkJISQkhObNm9/28UTE8eXm\n5fPGZ5uwWuHZyHu4J7Ci0ZFEbjB7uTN5UHsAZizZS+LZywYnEhGjmI4cOWI1OkRhnDp1ioYN7evq\nfXv5k4bYJmcaP3OW/cz4f+ygRiVf1k18DLOXu9GRHIIzjaHSMPyTDXyzMZ6w4GosHNnN4ec21/iR\norLXMRQXF3fjer7/pb+ViohNOX3+GlMW/QTAuwPCVaLFZo3p25q7fD3ZcvAMizYnGB1HRAygIi0i\nNsNqtfJm9BYyLbn0bF2HTs3++BsAEVtQvowXY59sA8DfF2wn9VqWwYlEpLSpSIuIzVi+6wRr952i\njLc7f49qa3QckVvq3b4ebRtWJfVaFu/+U8uHizgbFWkRsQlXM7IZM28rACP7hOJ/V8Hz1YvYApPJ\nxMSB4Xi4ufD1j0fYHnfW6EgiUopUpEXEJkz+dhcplzMICapMVCf7upBYnFvdan48/2AzAEZ8sRlL\nTp7BiUSktKhIi4jh9iT8SnTsIVxdTEweFI6Li2PPfiCOZ1jPptSpWo6EM5eZ/YPmlhZxFirSImKo\nnNx83vj8+pzRQ7rdQ6OaWgZc7I+XhxsTn76+Uu+H3+3j2LkrBicSkdKgIi0ihvp81QHiklKpUcmX\nV3q1MDqOSKGFBVejd/t6WHLyGPnFZqxWu1ymQUTugIq0iBjm1P/MGe3t6WZwIpGiGftkG+7y9WTz\nwTMs2ZpodBwRKWEq0iJiiP+eM/rBNpozWhxD+TJejOnbGoC3v9rGpTTNLS3iyFSkRcQQy3YeZ92+\nU5Q1e/D2U5ozWhzHXyLq0+buKly8msWErzW3tIgjU5EWkVKXlpnNW/O3ATDy8VaaM1ocislkYtIz\n7XF3vT639K4j54yOJCIlREVaRErd1EV7OHcpg5CgSjylOaPFAdWt5sfQnk0BGBm9hdy8fIMTiUhJ\nUJEWkVIVl5TK56sOYDLBu0+Hac5ocVgvPNiMGpV8iUtK5cvVB42OIyIlQEVaRErN9QsMN5OXb6X/\nfY1oEljJ6EgiJcbb043x/doB8P6/fuJsarrBiUSkuKlIi0ip+XbTUXYeSaFiWW/e6N3S6DgiJe7+\n5rXo2qIW6Vk5jFuw3eg4IlLMVKRFpFRcTrfwztc7ABjdN5RyPp4GJxIpHeOi2uLl4cr324+x8UCy\n0XFEpBipSItIqZj8zW4uXs2idYMqPBZez+g4IqWmeqUyvPxwcwBGRW/BkpNncCIRKS4q0iJS4n4+\nfp6YtYdwdTHx7tNhmEy6wFCcy5Du91C3mh/Hzl5hzrKfjY4jIsVERVpESlRefj4jv9iC1QqDHmjM\n3TXKGx1JpNR5uLkyYcD1Cw8//Pdekn69anAiESkOKtIiUqL+sf4I+46dp8pdZl7p1dzoOCKGCQ8O\n4OG2QWTl5DH2twWJRMS+qUiLSIm5eDWTiQt3AfDWU23w9fYwOJGIscY+2QZfL3di9ySx+qeTRscR\nkSJSkRbfJGT0AAAgAElEQVSREvPuP3dyOd1C+8YB9Gxdx+g4Iobzv8t8Y+rHMTFbybTkGpxIRIpC\nRVpESsSuI+f454Z4PNxcmDCgnS4wFPlN//sbEVyrAqcvpPHBd3uNjiMiRaAiLSLFLjcvn5HRWwD4\na/cmBFX1MziRiO1wc3Xh3afDAJjzw88knLlscCIRKSwVaREpdtGxh4hLSqV6RV9efCjE6DgiNqdl\nPX/63tuAnLx83ozegtVqNTqSiBSCirSIFKuUSxm8/+1uAMb3a4e3p5vBiURs08g+ofj5erLl4Bm+\n337M6DgiUggq0iJSrMb/YztpWTncF1KTLi1qGR1HxGaVL+PFqD6hALz91TauZmQbnEhE7pSKtIgU\nm80Hk1myNREvd1fG92trdBwRm9enQwOa163Mr5czmbLoJ6PjiMgdUpEWkWKRnZvHqOitALzwUDNq\nVi5rcCIR2+fiYuK9p8NxMZn4ctVBDpy4aHQkEbkDKtIiUiw+XfELCWcuE1ilLM/1aGp0HBG70bh2\nBQbc34h8q5U3ozeTn68LD0XshYq0iBRZ8oU0pi+5Ph/uhP5heLq7GpxIxL683rsllcp589PRX/lm\nY7zRcUTkNqlIi0iRvf3VNjItuXQPDaRDk+pGxxGxO2XNHox9sg0AE/65k0tpWQYnEpHboSItIkWy\nbt8plu86gdnTjbefamN0HBG79Ui7INo2rErqtSwmLtxldBwRuQ0q0iJSaFnZuYyJuX6B4auPtqBa\nBV+DE4nYL5PJxLsDwnBzNbFg/WH2JZ43OpKI3IKKtIgU2qyl+zmRcpUG1e/ima6NjY4jYvfqV7+L\nwQ/cg9UKI7/cTF5+vtGRRKQAKtIiUignUq7y8dL9AEwYEIa7m15ORIrD8F7NqVreh5+PX2D+2sNG\nxxGRAuidT0TumNVqZcy8rVhy8ugVVpe2DasaHUnEYfh4ufP3qOsLGk3+ZhcXrmQanEhE/oyKtIjc\nsVU/nWTd/lOUNXswpm9ro+OIOJxurWpzb5PqXMnI5p2vdxgdR0T+hIq0iNyRjKwcxsZsA+CN3i2p\n7Gc2OJGI4zGZTIzv3w4PNxe+3XSUnUfOGR1JRP6AirSI3JEPvttH8sU0gmtVIKpzQ6PjiDisOlXK\nMbTn9VVC3/xyC7l5uvBQxNaoSIvIbUs4c5lPlv0MwLtPh+HmqpcQkZL0/IPNqFmpDHGnUvli9UGj\n44jI/9C7oIjcFqvVyqjoLeTk5fPEvQ1oWc/f6EgiDs/bw43x/dsBMOVfP3E2Nd3gRCLy31SkReS2\nLN1xjM0Hz+Dn68mbfUKNjiPiNO4LqUnXFrVIz8ph3ILtRscRkf+iIi0it5SWmc3fv7r+Bj7y8VaU\nL+NlcCIR5zIuqi1eHq58v/0Ymw4kGx1HRH6jIi0itzRt8R7OXcogJKgSfe+92+g4Ik6neqUyvPRw\nCACjordgyckzOJGIwG0U6XPnzhEVFUWzZs3o1asXR48eva0dx8TEEBYWRmhoKNOmTbtp26xZs+je\nvTsNGzZkyZIlN22LioqiSZMmhISEEBISwogRI+7g6YhIcTt8KpXPVh7AZLp+gaGLi8noSCJOaUi3\nJgRVLUfi2SvMXf6L0XFEhNso0mPGjKFBgwbs3LmTyMhIhg8ffsud7t+/n5kzZxITE8PSpUtZtmwZ\nK1asuLG9Zs2ajB49muDgYEym378pjx07lr1797J3714mTZp0h09JRIrLfy4wzMu30q9zI5oEVjI6\nkojT8nR3ZcKAMABm/HsPp89fMziRiBRYpNPS0ti6dSuDBw/Gw8OD/v37k5ycTHx8fIE7XblyJV26\ndCEoKAh/f3969+7N8uXLb2zv0aMHbdu2xcPD4w8fb7VaC/FURKS4Ld6SwPbD56hQ1os3/tLS6Dgi\nTq994wAebFOHrOw8xs7fZnQcEafnVtDGkydP4uHhgdlspm/fvrzzzjvUrFmTY8eOUb9+/T993IkT\nJ2jVqhXz5s3j3LlztGjRgh9++OG2Q02bNo2pU6fSqFEjRo0aRVBQ0B/er0KFCre9T1vg7u4O2F9u\nsQ2lPX4up2Ux4Z+7AHhvUCeCalYrleNKydFrkGOY/nwk6/Z/yqqfTrIz4RKRreuWynE1fqSoHHEM\nFVikMzMz8fHxIT09ncTERK5evYqPjw+ZmZkF7jQzMxOz2UxCQgJnzpwhIiKCjIyM2wo0YsQI6tev\nT15eHrNmzWLo0KEsW7YMN7ffRx0/fvyNnyMiIujQocNtHUNEbm1czCZSLqXTtlF1nrrvHqPjiMhv\nAiqWYcxT4Yz4dB3DZ8dyb7NaeHu6Gx1LxGFs2LCBjRs33rjdsWPHP71vgUXa29ub9PR0qlSpwo4d\nOwBIT0/HbDYXGMDb25uMjAxGjx4NQGxs7C0f8x+NGze+8fMrr7zCggUL/vQb8KFDh950++LFi7d1\nDKP85xOYrecU21Sa4+fAiQvMWboHVxcT46JCuXQptcSPKSVPr0GO4/HwQKJXlifuVCrjotfz2mMt\nSvyYGj9SVPYyhho3bnxTH42Li/vT+xZ4jnStWrWwWCykpKQAkJ2dTVJSEoGBgQUGqF27NseOHbtx\nOyEhgTp16txW+P9lMpl0zrRIKcrPtzLyyy3kW6083SWYRjUd509wIo7C3c2Fd5++fuHhrB/2c+zc\nFYMTiTinAou0r68v4eHhzJ07F4vFQnR0NAEBATd9OxwVFcWUKVNuelxkZCSxsbEkJCSQkpLCokWL\niIyMvLE9NzcXi8VCfn4+OTk5WCwWrFYr165dY8OGDWRnZ5Odnc3HH39MxYoVqVu3dM7/EhFYuPEI\nexJ+xd/PzGuPlvy3XCJSOKENqtC7fT0sOXmMmbdVXzqJGOCW09+NGzeO+Ph4QkNDWblyJdOnT79p\ne3Jy8u++om/SpAnDhg2jX79+9OzZk27dut1UpEePHk3Tpk3Zv38/Y8aMoWnTpuzevZucnBxmzJhB\n69atCQ8PZ9++fcyePRtXV9dieroiUpBLaVlM+HonAGOfbE0Z8x/PrCMitmH0E60pZ/bgx59Ps3zX\nCaPjiDgd05EjR+zyI+ypU6do2LCh0THuiL2cGyS2qTTGz4jPN/HVusO0a1SVb97s/ofzvIv90muQ\nY4qOPcSo6C1ULe/Dhvd74+NVMhceavxIUdnrGIqLi6NGjRp/uE1LhIsIAPsSz7Ng/WHcXE1M6B+m\nEi1iJ6I6302TwIqcTU1nxpI9RscRcSoq0iJCXn4+I7/cjNUKz0beQ/3qdxkdSURuk6uLC+89HY7J\nBHNX/EL86UtGRxJxGirSIsJX6w7z8/ELVC3vw8uPNDc6jojcoWZBlXiy493k5ll5M3qLLjwUKSUq\n0iJO7sKVTCYtvL6C4d+j2pbY+ZUiUrL+9ngrypfxYlvcWZZsTTQ6johTUJEWcXLjv97BlYxs7m1S\nnW6tahsdR0QK6S5fL0b1CQVg3ILtXM3INjiRiONTkRZxYlsOnuFfm47i6e7KhAG6wFDE3v0loj4t\n6lXm/JVMpvxrt9FxRByeirSIk7Lk5DHyy80AvPhQM2r7lzU4kYgUlYuLifeeDsfFZOLL1Yc4cMK+\nphkTsTcq0iJOavYP+0k8e4W61fx4rkdTo+OISDEJrlWBp7sGk2+18mb0ZvLzdeGhSElRkRZxQsfP\nXeHD7/YB8N7TYXi6a/VQEUfy2qMtqOznzU9Hf+WbjfFGxxFxWCrSIk7GarUyKnoLlpw8Hmtfj3aN\nqhkdSUSKWVmzB2P7tgHgna93kHoty+BEIo5JRVrEyXy//RgbfknGz8eTMU+0NjqOiJSQh9sF0a5R\nVS6lWZj4zS6j44g4JBVpESdyJd3C219tA2DUE6FULOdtcCIRKSkmk4l3B4Th5mriH+sP89PRFKMj\niTgcFWkRJzL52938ejmTlvX86dOhgdFxRKSE1Qu4i792b4rVCiM+30xObr7RkUQcioq0iJPYl3ie\neWsO4eZqYuLAcFxcNGe0iDN4+eEQalUuQ9ypVD5d8YvRcUQcioq0iBPIzctnxBebsFrh2ch7aFiz\nvNGRRKSUeHu68d7T4QBMXfwTSb9eNTiRiONQkRZxAtGx1xdmCKjgy/BHmhsdR0RKWYcm1XmkXRBZ\n2XmM/HILVqvmlhYpDirSIg7uzMU0Jn97fangdwa0w+zlbnAiETHCW0+1oZzZgx9/Ps33248ZHUfE\nIahIizi4t+ZvJz0rhwda1qJL81pGxxERg1QqZ2Z03+tTXr41fxuX0y0GJxKxfyrSIg5szd4klu86\njtnTjXH92hkdR0QM1qdDA0Ib+HP+Sibv/nOn0XFE7J6KtIiDSs/K4c0vtwDw6qMtCKjga3AiETGa\ni4uJSQPb4+7qwoJ1h9l15JzRkUTsmoq0iIOa9O1uki+mcU/tigx6oLHRcUTERtSvfhdDezYF4I3P\nN5Gdm2dwIhH7pSIt4oD2Jv7KF6sO4Opi4v1B7XFz1X91Efl/Lz7UjNr+ZYlPvsycZT8bHUfEbund\nVcTB5OTm8/qn/z9n9D2BFY2OJCI2xsvDjYkDr88tPWPJXo6fu2JwIhH7pCIt4mDmLPuZuFOp1Kpc\nhlcfbWF0HBGxUe0bB/BY+3pYcjS3tEhhqUiLOJDEs5eZvmQPABMHhuPt6WZwIhGxZWP7tuYuX082\nHUhm8ZYEo+OI2B0VaREHYbVaGfH5Ziw5eTzWvh4R91Q3OpKI2LgKZb0Z07cNAG9/tZ3Ua1kGJxKx\nLyrSIg7inxuOsC3uLBXKevHWk22MjiMiduIvEfUIC65G6rUs3pq/zeg4InZFRVrEAfx6OYPxC3YA\n8Pen2lK+jJfBiUTEXphMJiY/0x4vD1cWb0lgzd4koyOJ2A0VaREHMDZmG1cysunYpDoPtwsyOo6I\n2Jna/mV5o3dLAP72xWauZWQbnEjEPqhIi9i51XtOsnTHMbw93XhvYDgmk8noSCJihwY90JiQoEqc\nTU3n3YVaPlzkdqhIi9ixaxnZN5YBf6N3S2pUKmNwIhGxV64uLrw/KAI3VxMxa+LYHnfW6EgiNk9F\nWsSOTfxmF2dT02lapyLPdA02Oo6I2LmGNcvzwoMhALz22UYys3MNTiRi21SkRezUtrizRMcews3V\nxPuDInB10X9nESm6Fx5qRv0AP46fu8r0xXuMjiNi0/TOK2KHMi25vPbpRgBeeDCE4FoVDE4kIo7C\n092VKYMjMJmur5T68/HzRkcSsVkq0iJ2aOI3uziRcpWGNcrz4sPNjI4jIg6mRT1/nunamLx8K6/O\n3UhObr7RkURskoq0iJ3ZdeQcn686gKuLiWlDIvBwczU6kog4oBG9W1Kjki+HklKZs+xno+OI2CQV\naRE7kmnJ4ZVPN2K1wtCeTWkSWMnoSCLioMxe7kweFAHA9CV7OJx0weBEIrZHRVrEjoyL2cSxs1eo\nH+DH8EeaGx1HRBxcROMA+nSojyUnj8FTl5Gbp1M8RP6birSIndh5+AwfLNmFi8nEtCEd8HTXKR0i\nUvLGPtmGquV92HXkLDMWaaEWkf+mIi1iB7Kyc3l22jLy860M6XYPIUGVjY4kIk6inI8nUwa3B2Dc\n/E0cOZ1qcCIR26EiLWIHpi/Zy+Gki9QLKM+rj7UwOo6IOJl7m9RgYGRTsnPyeHnOBs3iIfIbFWkR\nG7f/2Hlm/7AfkwnmvtoNbw83oyOJiBOaOKgTNSqX5efjF5j1w36j44jYBBVpERtmycnjlU82kJdv\n5YWHW9G2UXWjI4mIkyrr48mcl7sBMH3xHg4lXTQ4kYjxVKRFbNjURT9x+PQlavuX5e3+EUbHEREn\n17l5bfrd15CcvHyd4iGCirSIzdp55ByzftiPi8nEB8/di9nL3ehIIiKMfqI1NSr5cvDkRT76bq/R\ncUQMdcsife7cOaKiomjWrBm9evXi6NGjt7XjmJgYwsLCCA0NZdq0aTdtmzVrFt27d6dhw4YsWbKk\nWI4n4kjSs3J4ec6PWK0w7MGmtKznb3QkEREAfLzcmfZsBwA++G4vB05ooRZxXrcs0mPGjKFBgwbs\n3LmTyMhIhg8ffsud7t+/n5kzZxITE8PSpUtZtmwZK1asuLG9Zs2ajB49muDgYEwmU5GPJ+Joxi3Y\nzslfr9GoZnle6aWFV0TEtrRrVI2BXYLJzbPy8pwNWHLyjI4kYogCi3RaWhpbt25l8ODBeHh40L9/\nf5KTk4mPjy9wpytXrqRLly4EBQXh7+9P7969Wb58+Y3tPXr0oG3btnh4eBTL8UQcybp9p/hq3WE8\n3Fz48LmOeLhp4RURsT0jH29Fbf+yxJ1KZfK3u42OI2KIAov0yZMn8fDwwGw207dvX06fPk3NmjU5\nduxYgTs9ceIEgYGBzJs3j0mTJlG3bl2OHz9+yzCFPZ6Io0i9lsVrn24E4I3eLWlYs7zBiURE/pjZ\ny50Pn7sXVxcTnyz/ma2HzhgdSaTUFTghbWZmJj4+PqSnp5OYmMjVq1fx8fEhMzOzwJ1mZmZiNptJ\nSEjgzJkzREREkJGRccswd3q8ChUq3HKftsTd/frFYvaWW0rPy3O/I+VyBu2CqzPyqXtxdf3/z7oa\nP1JUGkNSFH80frpUqMCIJy7y7oItDJ+7id2zB+Ln62VURLFxjvgaVGCR9vb2Jj09nSpVqrBjxw4A\n0tPTMZvNBe7U29ubjIwMRo8eDUBsbOwtH1OY440fP/7GzxEREXTo0OGWxxCxVd/8eIhvN8Th4+XO\nZ6/1uKlEi4jYqpFPtGP1rmPsjj/LyzNjiR7R0+hIIkWyYcMGNm7ceON2x44d//S+BRbpWrVqYbFY\nSElJwd/fn+zsbJKSkggMDCwwQO3atW86HSMhIYE6dercMvidHm/o0KE33b540bYnh//PJzBbzyml\n72xqOi9+tAqAt55sQzmPvN+NE40fKSqNISmKgsbPtGfD6TpqCf9cf5CIYH8eahtU2vHEDtjLa1Dj\nxo1p3LjxjdtxcXF/et8Cv/Ly9fUlPDycuXPnYrFYiI6OJiAggPr169+4T1RUFFOmTLnpcZGRkcTG\nxpKQkEBKSgqLFi0iMjLyxvbc3FwsFgv5+fnk5ORgsViwWq23dTwRR5Ofb+XVuRu4nG6hU7Ma9O3Y\nwOhIIiJ3JKiqH2P7tgZg5BebOXMxzeBEIqXjln87HjduHPHx8YSGhrJy5UqmT59+0/bk5OTffbJo\n0qQJw4YNo1+/fvTs2ZNu3brdVKRHjx5N06ZN2b9/P2PGjKFp06bs3r37to4n4mg+XfkLG35JpnwZ\nL6YMivjdlJAiIvYgqnNDOjerwZWMbIZ/soH8fKvRkURKnOnIkSN2OdJPnTpFw4YNjY5xR+zlTxpS\neg6cuECPsd+Rk5fPl690oUuLWn96X40fKSqNISmK2xk/v17OoPPfFpF6LYu3n2rD4Mh7Siue2AF7\nfQ2Ki4ujRo0af7hNVzOJGCQjK4dhM9eTk5dP//saFViiRUTsQWU/M1MGtQfgvYW7OHwq1eBEIiVL\nRVrEIG8v2E7CmcvUD/BjzJOtjY4jIlIsuraszRP3NsCSk8fzM9eTmZ1rdCSREqMiLWKAFbuOs2Dd\nYTzdXZn5fCe8PQqcQEdExK78PaotgVWur3o4fsEOo+OIlBgVaZFSdjY1ndc+2wTAm31CaVTTcSam\nFxEB8PFyZ/bznXF3dWHemkOs2HXr1Y1F7JGKtEgpysvP58XZ67mcZqFT0xo80zXY6EgiIiXinsCK\njHoiFIDXPt1E8gVNiSeOR0VapBTN/uFnth46S8Wy3kwboqnuRMSxDXqgMZ2b1eByuoXnZ60jNy/f\n6EgixUpFWqSU7DpyjsnfXp8vfdqQCCqVMxucSESkZJlMJqYP6YC/n5mdR1KYsWSv0ZFEipWKtEgp\nSL2WxXMfryMv38pfuzehc7OaRkcSESkVFcp689HQjphM8MG/97It7qzRkUSKjYq0SAnLz7fy8pwf\nOZuaTvO6lfnbX1oZHUlEpFSFBVfjhQebkW+18vzM9aReyzI6kkixUJEWKWFzV/zC2n2n8PPxZM4L\nnXF30387EXE+rz7agpb1/Dl3KV1LiIvD0Du6SAnaFZ/Cu//cCcD0v3YgoKKvwYlERIzh5urCzGEd\n8fPxZM3eJGYv2290JJEiU5EWKSGp17IY+vFa8vKtDOl2D12aawlwEXFu1SuV4YPn7gVg4sLdbD10\nxthAIkWkIi1SAqxWK8M/2cCZi+mEBFVm5OOhRkcSEbEJ94XU5Pnfzpce+vE6Ui5lGB1JpNBUpEVK\nwCfLf2HN3iTKmT2Y80InnRctIvJfXn+sBW0bVuX8lUyGzdT80mK/9O4uUsy2Hjrz/+dFD+lA9Upl\nDE4kImJb3FxdmPV8Jyr7ebMt7izv/zbHvoi9UZEWKUZnLqbx3EfX54t+vmdTurasbXQkERGbVNnP\nzOznO+PqYuLjpfuJ3XPS6Egid0xFWqSYWHLyePaDtVy4mkn7xgG88ZeWRkcSEbFpbRpWZcRvr5Uv\nzf6RpF+vGpxI5M6oSIsUk7fmb2Nv4q8EVPBl1vOdcHXRfy8RkVt5rntT7m9ekysZ2Qz+YA2Zllyj\nI4ncNr3TixSDhRvimb82Dk93Vz59+T7Kl/EyOpKIiF1wcTEx46/3Utu/LAdOXOSNzzdhtWqxFrEP\nKtIiRfTL8QuM/HIzAO8OCKNpnUoGJxIRsS9+Pp58Pvx+zJ5uLN6SwNwVvxgdSeS2qEiLFEHqtSwG\nzYjFkpPHk53ups+9DYyOJCJil+6uUf7GYi3v/GMnGw8kGxtI5DaoSIsUUm5ePkM/XsfpC2mEBFVi\nfL92RkcSEbFr3VoF8tLDIeRbrTz30VpdfCg2T0VapJDGLdjOpgPJVCzrzScv3Yenu6vRkURE7N5r\nj7bgvpCaXE6zMHB6LBlZOUZHEvlTKtIihfDVujg+X3UQDzcXPht+PwEVfI2OJCLiEFxcTHw0tCNB\nVcsRl5TKK3M36uJDsVkq0iJ3aFvcWUZFbwFg4sD2tKrvb3AiERHHUtbswRevdMHXy52lO47x8ff7\njY4k8odUpEXuQNKvVxk8I5bcPCtDut3D4x3qGx1JRMQh1a3mx0fDOmIywcRvdrF813GjI4n8joq0\nyG1Ky8zm6amruZRmoVPTGox6ItToSCIiDq1L81qMfLwVAC/MWs/+Y+cNTiRyMxVpkduQl5/PC7N+\n5PDpS9St5sdMrVwoIlIqhvZoSp8O9cnKzuPpqas5czHN6EgiN6gJiNyGcQt2sHrPSfx8PIl+tQtl\nzR5GRxIRcQomk4n3BobTtmFVUi5nMGDqatI1k4fYCBVpkVv4fOUBPlt5AHdXFz59+T4Cq5QzOpKI\niFPxcHP97fW3LAdPXuT5mevJy883OpaIirRIQVbtPsFbX20DYOqzEbRrVM3gRCIizukuXy/mvdYV\nPx9PVu85yYSvdxodSURFWuTP7E38laEz12G1wuuPteDR8HpGRxIRcWpBVf2Y+9J9uLma+GT5L3yx\n6oDRkcTJqUiL/IGkX68yYMpqsrLz6NOhPi89HGJ0JBERAcKCqzFlcAQAY+dvY9lOTYsnxlGRFvkf\nl9MtRL2/igtXM2nfOICJA9tjMpmMjiUiIr/p3b4+f/tLK6zW69Pi7Th81uhI4qRUpEX+S6YllwFT\nVpFw5jINa5Rn7kv34e6m/yYiIrbm+Qeb0v++Rlhyrk+Ld+R0qtGRxAmpIYj8Jic3nyEfrmFXfArV\nKvgw7/WumuZORMRGmUwmxvdvS2TL2lzJyObJSSs1x7SUOhVpESA/38qrn25g7b5T3OXrydd/60ZA\nBV+jY4mISAFcXVz4aFhHWtX352xqOlGTV3Il3WJ0LHEiKtLi9KxWK+P+sZ1FmxMwe7ox/40HqFvN\nz+hYIiJyG7w93Pjy1S7Uq+bH4dOX6Pf+KjK0YIuUEhVpcXozl+7n0xXXF1z5fPj9hARVNjqSiIjc\ngbt8vVgwIpJqFXzYfTSFZ6bHYsnJMzqWOAEVaXFq/1h/mPcW7sJkgg+H3kvEPdWNjiQiIoUQUNGX\nf47sRsWy3mw8kMywj9eRm6fVD6VkqUiL01q8JYE3Pt8EwIQBYTzYJsjgRCIiUhRBVf34emQk5cwe\nrNh9glfmbiA/32p0LHFgKtLilJbuOMZLs3/EaoW//aUV/e9rZHQkEREpBo1qVmD+Gw9g9nRj0eYE\nxsRsxWpVmZaSoSItTmf1Tyd5fuY68q1Whj/SnBceamZ0JBERKUYt6vnzxStd8HR3JTr2EO8t3KUy\nLSVCRVqcyvr9pxjy4Rpy86wM69mUVx9tbnQkEREpAe0bBzDnxc64upiYuXQ/k77drTItxU5FWpzG\npgPJDJoeS3ZuPs880JiRj7fS0t8iIg6sS/NazH7hepn+6Lt9KtNS7FSkxSlsPpjM09NWk5WTR1Tn\nhvz9qTYq0SIiTqB7aKDKtJSYWxbpc+fOERUVRbNmzejVqxdHjx69rR3HxMQQFhZGaGgo06ZNu2nb\njh076Nq1KyEhIQwbNoy0tP9f0jMqKoomTZoQEhJCSEgII0aMuMOnJHKz9ftP0f/9VWRacnm8Q33e\nHRCmEi0i4kRUpqWk3LJIjxkzhgYNGrBz504iIyMZPnz4LXe6f/9+Zs6cSUxMDEuXLmXZsmWsWLEC\ngMzMTF566SVefPFFtm3bhslkYurUqTc9fuzYsezdu5e9e/cyadKkQj41kesXFg787ZvoJzvdzZRB\nEbi4qESLiDib/y3TE79RmZaiK7BIp6WlsXXrVgYPHoyHhwf9+/cnOTmZ+Pj4Ane6cuVKunTpQlBQ\nEP7+/vTu3Zvly5cD17+NLlu2LN27d8fLy4uBAwfe2PYfGthSHH7YcYzBH/x2TnTXYCYNDP+/9u48\nPKryfv/4exKyzGTfAyEJCSSQEHbZMcgiIQEUi1qlgi0uraJdFGtrVVCoP+Fra60tVmxV6oKtgLIj\nuAAKiBj2EAJZIAnZyL7v8/sjMjWSRA3gZLlf1zUXk3PmzHwmfK7kzpnnPI9CtIhIN/b1MP23jUdY\n8nKgzjUAAB7xSURBVObnyhxyWdoM0ufOncPe3h6TycTcuXPJzMwkKCiI1NTUNp/07NmzhISEsHr1\napYvX06/fv1IS0sDIC0tjdDQUOLj47nrrrsIDg6mpKSEoqIiy/F//vOfGTNmDAsWLCAlJeUKvE3p\nbt7bm8x9L35MfYOZ+2YM5ql5YzWcQ0REmDEqhJd/OQU7Wxv+uf0Ei17ZQ0OjVkCU9unR1s6qqiqc\nnJyoqKggJSWF0tJSnJycqKqqavNJq6qqMJlMJCcnk5WVRXR0NJWVlQBUVlZiMpnIz88nJSUFe3t7\ny3YPDw8effRRwsPDaWhoYOXKldx///1s2bKFHj0uLdXLy6u979sq7OzsgM5Xd2fz6rajPPjSJ5jN\n8Pu543hy3rVdIkSrf+RyqYfkcnSl/rljuhd+Pl7c+vQ63tl9mtoGA68/egP2drbWLq1L60o9dFGb\nQdpoNFJRUYG/vz8HDhwAoKKiApPJ1OaTGo1GKisrefzxxwHYuXOn5RiTyURlZSUxMTHExMRQUlJi\n2Q4QFRVleZ6HHnqIt956i9TUVMLDwy95naVLl1ruR0dHM3HixG99w9J1mc1mVvxnP4tf3wPAkjuj\n+d3t46xclYiIdETXjwhhyzO3cdOT77L+syTKq9fxzuM3YXK0s3ZpYmW7d+9mz549lq8nTZrU6mPb\nDNLBwcHU1NSQm5uLn58ftbW1pKenExIS0mYBffr0aTb8Izk5mdDQUMu+NWvWNNvn5uaGh4dHi89l\nMBhaHb90//33N/u6oKCgzbqs7eJfYB29zs6osdHMkjf3868PEjAYYNmd4/np9f271Pda/SOXSz0k\nl6Mr9k9/fyP/fSyOucu3sePLVKY/+iarF03H1WRv7dK6pM7SQ1FRUc1O7CYmJrb62DbHSDs7OzNh\nwgRWrVpFTU0Nr7/+OgEBAc3ODs+bN4/nnnuu2XGxsbHs3LmT5ORkcnNzWbduHbGxsQCMGTOGsrIy\nNm/eTGVlJa+++ipxcXEAlJWVsXv3bmpra6mtreVvf/sb3t7e9OvX7/t/F6TbqK1v4MGVn/CvDxKw\n72HDSw9O4afXR1q7LBER6QSi+niz/olZ9PR04oukXH709CayCsq//UARvsP0d08//TSnT59m1KhR\nbN++neeff77Z/vPnz1/yl8XgwYNZuHAh8+fPZ9asWcTFxVmCtNFo5IUXXuDFF19k3Limj90ffvhh\nAOrq6vjLX/7C6NGjmTBhAkeOHOGll17C1lZjlqRlFdV1/PS5D3h/fwpOjna88dvpzBodau2yRESk\nE+nXy533n5xFv17uJGYUMmvxRhLTC61dlnQChqSkpE4570tGRgYRERHWLuN76SwfaXQWuUWV/OzP\nH3A0NR9vVyNv/nY6g0K8rV3WVaP+kculHpLL0R36p6i8mgV/3sEXSbm4GO145dfXc21UgLXL6jI6\naw8lJiYSGBjY4j4tES6d0sn0AmYufp+jqfkE+bjw/uJZXTpEi4jI1efh7Mia38Uxc3QIZVV1zFux\nnXWffbcVnaV7UpCWTuejI+nMfmoTWQUVXBPmx+anbyTE383aZYmISBfgaN+Dlx6Ywr2xg6hraOSX\nL+3ihfcPa+EWaZGCtHQqr+1I4KfP7aCiuo7ZY/vyn8fi8HI1WrssERHpQmxsDCy+Y8xXi3nBine/\n5IG/f0JVbb21S5MOps3p70Q6ivqGRp5683Ne3ZEAwG9uGs7Dc4Z3iYVWRESkY7p7ehRBPi48sPIT\n3t+fQlpuCf/6zTR6ejpZuzTpIHRGWjq8wrJq5i7fxqs7mqa3++t917Ho5hEK0SIictVNGxHMhsU3\nEOTjwtHUfGY88T6HU/KsXZZ0EArS0qEdT8tn+h/eY29CFj5uRv7z2AzmTAizdlkiItKNRAR5smXp\nbMZG9CS3uJI5Szezfm+ytcuSDkBBWjqsdz89zeynNnK+oJxhfX3ZtuwmRvX3t3ZZIiLSDXm6NM3o\nMW9KBDV1TQuBPfnvfdTWN1i7NLEiBWnpcOrqG3li9T5+/Y/dVNc18JPJA1j3xEyNSRMREauy62HD\nswsm8MzPxmNna8O/PkhgztLNnNdKiN2WgrR0KJkXypizbJNlPPSKu65lxV3X4mCn1S1FRKRjuHNq\nJO8tnkWAlzOHkvOIeWw9u45lWLsssQIFaekwth1MY9pj64k/k0dPTyfWPj6Tn0weYO2yRERELjGs\nry/b/3gTk4cEUlRewx0rtvPc2ngaGhutXZr8gBSkxeqqa+t5fPVe7v7Lh5RU1jJteDA7nvkRI8L8\nrF2aiIhIqzxdHFm9KIZHbh4BwPPvHeLHz2zVUI9uREFarColu5gblmzktR0nsbO14al5Y3n1oevx\ndHG0dmkiIiLfysbGwK9vGs7bv4vDx83I/sRspv1+PZsPpFq7NPkBKEiLVZjNZv794Uli/vAeCecK\n6OPnysanbuDu6VGaH1pERDqd6KgAPvx/c5gyNJDiihp+/tePeGjVbsqraq1dmlxFCtLyg8surOCO\nFdv5/Wt7qaqp56Zxfdm+7CYGh/hYuzQREZF283YzsnpRDH/86Xgc7Wz5z+7TxPzhPQ4lawGXrkpB\nWn4wZrOZ9XuTmfLoWnYdy8TD2YF//HIKf1s4GReTvbXLExERuWwGg4GfXh/JtmU3ERnkydncUm5c\nspE/rjlAVW29tcuTK0xBWn4Q+SVV/PyvH/Hgyk8oqaxl6rAgPl5+M7NGh1q7NBERkSsuvLcHm5+e\nzX0zBgOwcvMxYh5bz8HTuVauTK4kBWm5qsxmM+/sSmLiI++y5Ys0nBzt+NM90bz+8DR83U3WLk9E\nROSqcbCz5fG5o9mw5AbCermTkl3CTU9vZPEb+6msrrN2eXIFKEjLVZOSXcwtf9zCw6/sobiihusG\n9+ajZ+dw23X9dUGhiIh0G8P7+fLBMz/iwRuHYmMw8M/tJ5j6+3VaxKUL6GHtAqTrqa1vYOWmo/x1\nwxFq6hrwcnXkqTvGMntcXwVoERHplhzsbPndrSOJG9mHh17eQ2JGIT9Zvp0Zo0JYcscYenk5W7tE\naQcFabmiPj6SwZI395OSXQLAjyeG8/jtozUvtIiICDA4xIety2bzr+0n+NP6Q2z5Io1Pjmbw8JwR\n3BUThV0PDRboTBSk5YpIzSnhqTc/58PD6QCE9nTj2Z9NYPzAXlauTEREpGOx72HLfTOHcMOYvix5\ncz9bD55l6dsH+O+e0yydP06/OzsRBWm5LOVVtfx1wxFWbT1OXUMjzo52/OZHw1kQMxD7HrbWLk9E\nRKTDCvB25pVfX8/HRzJ44t/7SMos4tZntnD98CAev300/Xq5W7tE+RYK0tIudfWNvL3rFH957xB5\nxVVA0zCO3906UrNxiIiIfA+ThwYyLnIOL289zt83HWXnoXQ+OZrBvCkRPPSjERoe2YEpSMv30tho\nZtOBVFa8+yVnc0sBGNbXl6V3jmVYX18rVyciItI5Odr34Fezh3H7df15bm08a3Yl8dqOk6z99AwP\n3jiUn10/EJOjnbXLlG9QkJbvxGw28+mJ8zzzzkGOn80HmsZBX7wCWbNxiIiIXD5fdxMr7r6WBTED\nWfb2AT45lskz7xzklW0neOCGodwxeQCO9opvHYX+J6RNFwP08+8d4oukptWY/NxNPDRnOLdN7E8P\nW11dLCIicqUNCPTkzUdj2X0skxXvfsmR1AssfmM/L20+xq9mD+W26/rrWqQOQEFaWmQ2m/nkaCbP\nv3eIQ8l5ALg7OXDfzMHcFROF0UGtIyIicrVNHNyb6EEB7DyUzv+t/ZKT6YX8/rW9/H3TUe6fNYRb\no8Mx6gy11eg7L800NDayI/4cL248wtHUpiEcni6O/DxuEHdOjcTFZG/lCkVERLoXg8HAtBHBTB0W\nxJaDafxpbTxnsop57LW9/HndIe6eHsX8qRG4OTlYu9RuR0FaAKisruM/e07zz+0nLBcR+rgZ+cWM\nwcyfEqELHERERKzMxsbArNGhxI3sw9aDZ/n7xqMcP5vPs/89yN83HWH+1EgWxAzE38PJ2qV2GwrS\n3VxOUQWv7TjJmx8lUlxRA0CQjwv3xEZx+3UDNIRDRESkg7G1sWHW6FBmjgrh0xPn+dumo+xNyOLv\nm47y8tZjxI0MYUFMFNeE+WoygKtMKakbamw089nJLN78KJEP4s9S32AG4JowP+6NG8T0a4KxtdFF\nhCIiIh2ZwWAgelBvogf15nBKHi9tPsb2L8+y8fNUNn6eyqA+3vxsWiQ3ju2rmT6uEn1Xu5HCsmr+\nu+c0b3yUaBm+YWtjYMaoEH4eN4gRYX5WrlBERETaY1hfX1b9airnC8p546NE3vr4FMfP5vPQqj0s\nffsAP57Yn9smhhMW4GHtUrsUBekurr6hkc8SzvPunjNsPZhGbX0jAD09nfjJ5AHcfl1/jaUSERHp\nIgK8nPndrSP59exhbNifyms7Ejh+Np9/bDnGP7YcY3g/X26b2J8bxoRqAoErQEG6CzKbzSScK2Td\nZ2d4f3+yZQlvg6FpGdJ5UyKYPCRQc0CLiIh0UY72PfjxxHBujQ7jUHIe/9l9mg37UziUnMeh5Dye\nfGMfM0aFcPO14YyL6KlM0E4K0l3I2dxStnyRyvrPkjmVWWTZ3sfPlZuvDePmCWEE+rhYsUIRERH5\nIRkMBkaE+TEizI8ld4xh68GzvLM7if2J2az7LJl1nyXj7WpkxqgQbhwbyshwf2xsdIHid6Ug3cmd\nOV/Eli/S2HrwLAnnCizb3Z0duHFMX+ZM6MfwfrpqV0REpLszOdo1nVi7NoxzeaW8u6fpk+u0nFJW\nf3iS1R+exN/DiVljQpgxKpTh/Xw0+cC3UJDuZBoaGzmScoGPjmSw7WAap88XW/Y5Odpx/bAgZo0J\nZfLQQC0dKiIiIi0K9nVl0c0jeHjOcBLOFbBhfwobP08lM7+cV7ad4JVtJ/B2NTJ1WCDThgdzbVSA\n1pRogYJ0J1BYVs2uY5l8fCSdXccyKSqvsexzM9kzbUQwcaNCiI4K0PQ2IiIi8p0ZDAai+ngT1ceb\nx24bxaHkPDZ+nsqO+HOkXyjjnd2neWf3aRztbJkQFcDkoYFERwXQx89Vn3ajIN0hVdfWE38mj/2J\n2ew6lsmR1DzM5v/tD/JxYfLQQK4fHsT4yADseuhjFxEREbk83xxPffp8ER/En2NHfDqHU/L48HA6\nHx5OByDQx5noqN5MiOrFhIEBeLo4Wrl661CQ7gCqa+s5nHKBfSez2J+YzaHkPGrqGiz77XvYMGZA\nTyYPDWTSkED69nTTX4EiIiJy1RgMBvr39qR/b09+eeMw8oor+fBwOruPZ/JZQhYZF8p565NTvPXJ\nKQwGGNTHmzEDejKqvx8jw/3xdjNa+y38IBSkf2Bms5nzBeUcSs7j8FdT0BxLy28WnA0GGBjsxdiI\nnowf2Ivxkb1w0rgkERERsRJfdxNzJw1g7qQBNDQ2cuJsAXuOn2fPiUy+PJ3LsbR8jqXls2rbcQD6\n9nRjVH9/Rob7M7K/HyF+rlZ+B1eHgvRVVlRezclzhRxNvUBCRjFfnMoiq6D8ksdFBHkyLqIn4yJ7\nMXqAPx7O3fMjEhEREenYbG1sGBLqw5BQHx68cShVNfV8kZTDwdO5fHE6h0PJeaRkl5CSXcKaXUkA\nuJrsGR7ekxFh/oT1dGZIiDeBPi6d/hN2BekrpLHRTEZ+GQnnCiy3k+cKOd9CaHYz2TOsny/D+/ky\nrK8vQ/v6dNuxRSIiItK5GR16MHFwbyYO7g1AXX0jCecKOJCUzcGkXOKTc8krrmLXkXPsOnLOcpy7\nswOD+3gTGezFgEAPBvT2pF+AO8ZONHFC56m0g6itb+BsTinJ2cUkZzXdUrJKSM4qpry67pLHO9rb\nEhHoRVQfL6KHhjJ6QC88HM2a7FxERES6JLseNgzt68PQvj78PK5pW05RBWkXaog/k82BkxkcTb1A\nQWk1e06cZ8+J85ZjbQwGgv1ciAhsGp8dFuBOqL8bIf6uOBs73pLmCtItqKyuI/1CWdMt7+K/paRk\nl3Aut5SGRnOLx/m6GxkY5MXAYC8ig5v+DfF3tUxm7uXlBUBBQUGLx4uIiIh0Rf4eTgzsF8TMsWEU\nFBRgNpvJKqzgWOoFTmUWkZRRxKmMQlJzSkjLKSUtp5StB882ew5fdyMhfk2hOsTfjdCebgT7uhLg\n7Yybyd4qw0S6XZCub2gkr7iSnKJKcooqyCmsIKeoksz8ctLzysi4UEZ+aVWrxxsMEOzrQt9e7vTr\n6U5YgDv9ernTt6cbXq7d4wpVERERkcthMBgI8HImwMuZ2JEhlu01dQ2kZBdz6qtgnZJdTFpOKWdz\nS8krriKvuIoDSTmXPJ+zox29vZ0J+OrW29uZ3t4uBHg74+9uwsfdhIPdlV+o7luDdE5ODo888gjH\njx8nNDSU5cuXExYW9q1P/O9//5uXX36Zuro6brvtNh566CHLvgMHDvDkk0+Sl5fHuHHjWL58Oc7O\nzu1+vfqGRgrLqikoraagrIqC0upmX+cUNoXm3KJKLpRU0Whu+YzyRfY9bOjt40KQjwuBPi4E+zb9\nG9rTjRB/t041dkdERESks3CwsyUyyIvIIK9m2xsbzWQVlJOaW0paTglpOSWkZpeQcaGMzPxyyqvr\nOJVZxKnMolaf293ZAV83I77upq/djPi5m/B2M+LlYsTTxREPF4fvvDq0ISkpqc1Uec899xAcHMxv\nf/tbVq9ezYYNG9i8eXObT3r06FHuvfde3n77bZydnZk7dy6LFi0iNjaWqqoqJk2axBNPPMGUKVNY\ntGgRPj4+LF68+Hu9XkZGBvf+6ziFpdUUV9Rcsr/VN2wAHzcj/h5OTTdPE37uJgK8nQnycSHI1xU/\nd9NVGcPs5eVFYmIivr6+V/y5petT/8jlUg/J5VD/yOW6Wj1kNpsprqjhfH45mV/dLt4/X1BGblEV\nF0oqWx2a2xJXk31TqHZ25P9uDycwMLDFx7V5arW8vJx9+/axbNky7O3tufPOO1m5ciWnT58mPDy8\n1eO2b9/OtGnT6Nu3LwC33HILW7duJTY2lgMHDuDq6sqMGTMAWLBgAffddx+LFy/+3q+Xml0CNA1M\n93BxwMvFES/Xpr8mvFwd8XIx4uXqiJ+H6avgbMLHzWTVlQD1Q0guh/pHLpd6SC6H+kcu19XoIYPB\ngIdzU+iN6uPd4mMaG80UllWTV1JJXnGlJVznFVeSW1zZNIqhtIrCshoKy6oprayltLKWs7mlQOuZ\nt80gfe7cOezt7TGZTMydO5dly5YRFBREampqm0H67NmzjBw5ktWrV5OTk8OIESMsZ5XT0tIIDQ0l\nPj6elStXsmLFCkpKSigqKiIrK+t7vd6uFTfj5WrEzcneckGfiIiIiMjX2dgY8HYz4u1mvGTYyDc1\nNpopqWwK1IWl1dDY+nCRNoN0VVUVTk5OVFRUkJKSQmlpKU5OTlRVtX4x3sXjTCYTycnJZGVlER0d\nTWVlJQCVlZWYTCby8/NJSUnB3t7esv37vt6Ywf3arKOjsbOzY/Lkybi7u1u7FOmE1D9yudRDcjnU\nP3K5OlMP+Xzt/meffdbq49oM0kajkYqKCvz9/Tlw4AAAFRUVmEymNl/caDRSWVnJ448/DsDOnTst\nx5hMJiorK4mJiSEmJoaSkhLL9u/7em29MRERERGRq6nNIB0cHExNTQ25ubn4+flRW1tLeno6ISEh\nbR1Gnz59SE1NtXydnJxMaGioZd+aNWua7XNzc8PDwwM7O7vv/HqtDfoWEREREfkhtDmw2NnZmQkT\nJrBq1Spqamp4/fXXCQgIaDZeed68eTz33HPNjouNjWXnzp0kJyeTm5vLunXriI2NBWDMmDGUlZWx\nefNmKisrefXVV4mLi/vOryciIiIi0hF86xV6Tz/9NKdPn2bUqFFs376d559/vtn+8+fPX7JS3+DB\ng1m4cCHz589n1qxZxMXFWYK00WjkhRde4MUXX2TcuHEAPPzww9/59UREREREOoJvnUdaREREREQu\npTnjRERERETaQUFaRERERKQdFKRFRERERNqhzenvpP3q6urYsmULCQkJmM1mhgwZwqxZs2hoaGDD\nhg0kJCTg6OhIbGwsUVFR1i5XOqCcnBw2btxIbm4uLi4uTJs2jcjISPWQtCgxMZE9e/aQnZ3NoEGD\nmDNnDsC39sv+/fvZvXs3DQ0NjBw5kmnTplnrLYgVtdY/n376KV9++SXl5eW4u7szdepUIiIiLMep\nf+Si1nrooqqqKp5//nnCwsK45ZZbLNs7ew8pSF8lW7dupaioiF/96lc4OTlx4cIFAPbt20deXh6P\nPPII2dnZvPHGGwQGBuLm5mbliqWjWbt2LVFRUdx7770kJyfz1ltv8cgjjxAfH68ekks4Ojpy7bXX\nkpKSQm1trWV7Wz9zMjIy+Pjjj7nnnntwdHTklVdeoVevXvrDrBtqrX9sbGyYO3cufn5+pKens3r1\nahYuXIinp6f6R5pprYcu2rlzJ56enhgMBsu2rtBDGtpxFdTV1XHkyBFmzpyJs7MzBoMBX19fAE6c\nOMHYsWNxdHQkJCSEwMBATp48aeWKpSPKz8+3/DDp168fdnZ2FBUVqYekRSEhIURGRmI0Gpttb6tf\nEhISGDhwIL6+vri6ujJixAiOHTtmjfLFylrrn/Hjx+Pn5wdAUFAQnp6eZGdnA+ofaa61HoKmqZKL\niooIDw/HbP7fZHFdoYd0RvoqyM/PB+DkyZPs378fk8nE1KlTiYyMJD8/H29vb959910GDBiAr6+v\n5fEiXxcWFsaJEyeIjo4mJSUFBwcHS7+oh6Q1X/8lBbTZL/n5+fTp04d9+/ZRUlJCcHBwp/slJlfW\nN/vn66qqqsjPz7ecGFL/SEu+2UNms5ktW7Ywe/Zsjh8/3mxfV+ghnZG+CmpqamhoaKCoqIhFixYx\nc+ZM1q5dS1lZGXV1ddjb25Obm0tpaSkODg4tfgQiMn36dOLj41myZAlr1qzhxhtvxM7OTj0kbfr6\nx6ZAm/1SW1uLvb09RUVFFBYWqpfkkv75ug0bNjB8+HB8fHwA9Y+07Js9FB8fj7+/P76+vpfs6wo9\npDPSV4GdnR1ms5nx48fTo0cPQkND8fb2JiMjwxKEHnjgAQC2bNmCg4ODlSuWjqauro7XXnuNuLg4\nIiIiSE9P56233uL+++9XD0mbvnk2qK1+sbe3p7a2lhkzZgBNn6LZ29v/sAVLh9LaGekdO3ZQVVXV\n7CIx9Y+05Os9VF1dze7du/nFL35xyT7oGj2kIH0VeHp6trrP29ubvLw8evXqBUBeXl6zK6BFAHJz\nc6mpqSEyMhKA4OBgPDw8SE9PVw9Jm755xqetfvH29rZcCH1x38WzjdI9tXRGeu/evaSkpHDXXXdh\na2tr2a7+kZZ8vYeKioooLi7m2WefbfaYvLw8Fi5c2CV6SEM7rgKj0UifPn3Yu3cvDQ0NpKWlkZ+f\nT2BgIFFRUXz++edUV1eTmppKRkaGJSyJXOTh4UF9fT2JiYmYzWYyMzO5cOECvr6+6iFpUWNjI3V1\ndTQ2NmI2m6mvr6ehoaHNfomKiuLkyZPk5eVRWlpKfHw8gwYNsvI7EWtorX8OHTrEwYMHmT9//iVn\nCtU/8nUt9ZCfnx9Lly613CZNmsSQIUNYuHAh0DV6yJCUlNT6lQXSbkVFRaxbt46srCxcXV2JiYkh\nIiJCcwDLd3bq1Cl27txJcXExTk5OREdHc80116iHpEWHDh3ivffea7Zt0qRJTJw48Vvnkd61axeN\njY2dcg5XuTJa65/Dhw9TVlaGjc3/zrtNnDiRiRMnAuof+Z/Wemjy5MmWrz/++GMKCwu5+eabLds6\new8pSIuIiIiItIOGdoiIiIiItIOCtIiIiIhIOyhIi4iIiIi0g4K0iIiIiEg7KEiLiIiIiLSDgrSI\niIiISDsoSIuIiIiItIOCtIiIiIhIOyhIi4iIiIi0Qw9rFyAiIlfOunXrOHLkyCXbFyxYQEhICGVl\nZWzevJnk5GQAwsLCmDVrFk5OTj90qSIinZ6WCBcR6UKqq6upr6/n+PHjbN26lUcffRQAo9GIra0t\nq1atoqqqijlz5mA2m1m/fj1OTk7cfffdVq5cRKTz0dAOEZEuxNHREWdnZxwcHABwdnbG2dkZW1tb\nsrKyyMjIIDY2lt69exMYGMj06dM5d+4cOTk5Vq5cRKTzUZAWEekmzp8/D0Dv3r0t2wICAprtExGR\n705BWkSkm6ioqACahnlcdPH+xX0iIvLdKUiLiAgGg8HaJYiIdDoK0iIi3cTFmTmqqqos2y7e16wd\nIiLfn4K0iEg3cXE8dGZmpmXbxbHRgYGBVqlJRKQz0zzSIiJdSHV1NXV1dVRXVwNQXl6O2WzGZDLR\nq1cvAgMD2bZtm2Vs9LZt2wgJCcHHx8eaZYuIdEqaR1pEpAv5tgVZysvL2bRpE2fOnKGurg4fHx/u\nvvtuTCaTFaoVEencFKRFRLqpM2fO8PbbbxMTE8OYMWOsXY6ISKejIC0i0o0lJSVhMBgIDw+3diki\nIp2OxkiLiHRj/fv3t3YJIiKdlmbtEBERERFpBwVpEREREZF2UJAWEREREWkHBWkRERERkXZQkBYR\nERERaYf/D6h3NdZCj76ZAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 13 + "prompt_number": 4 }, { "cell_type": "markdown", @@ -359,7 +359,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "

Don't be dissuaded by the equation if you haven't seen it before; you will not need to memorize or manipulate it. The computation of this function is stored in stats.py. \n", + "

Don't be dissuaded by the equation if you haven't seen it before; you will not need to memorize or manipulate it. The computation of this function is stored in `stats.py` with the function `gaussian(x, mean, var)`.\n", "\n", "> **Optional:** Let's remind ourselves how to look at a function stored in a file by using the *%load* magic. If you type *%load -s gaussian stats.py* into a code cell and then press CTRL-Enter, the notebook will create a new input cell and load the function into it.\n", "\n", @@ -384,11 +384,53 @@ "cell_type": "code", "collapsed": false, "input": [ - "from stats import gaussian\n", - "plot_gaussian(22,4,mean_line=True,xlabel='$^{\\circ}C$',ylabel=\"Percent\")\n", + "from stats import gaussian, norm_cdf\n", + "plot_gaussian(22, 4, mean_line=True, xlabel='$^{\\circ}C$')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGKCAYAAAD65AyPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0lNXCxeHfm94IJZTQQxEIBEjoSEcUgyKCYgEBRbgq\nKMUGKFgoiooigoooCChSbagIotJLQu8QOiRAKAmE9DLz/REvn1wltIQzk+xnLddKZibv7PEwMzuT\n855j7du3z46IiIiIiPyDi+kAIiIiIiKOSmVZREREROQKVJZFRERERK5AZVlERERE5ApUlkVERERE\nrkBlWURERETkClSWRURERESu4Kpl+dSpU/To0YPQ0FC6dOnC/v37r3rQFStW8MADD1C/fn1at27N\np59+etn1ERERtG/fnrCwMPr3709iYuKNPwIRERERkTxy1bI8YsQIqlevTmRkJOHh4QwePPiqB01O\nTubFF19k/fr1zJ07l4ULF7Jw4UIAUlJSGDhwIAMGDGDdunVYlsX7779/849ERERERCSX5ViWExMT\nWbt2LX379sXDw4NevXoRExNDVFRUjgcNDw+nadOmuLu7U6pUKVq0aMHWrVuB7E+V/f39ueeee/Dy\n8qJ3794sWrQo9x6RiIiIiEguybEsHz16FA8PD3x8fOjWrRvR0dFUqFCBQ4cOXdedbN26lRo1agBw\n+PBhKleuzKZNm3jyySepWLEiFy5cID4+/sYfhYiIiIhIHsixLKekpODr60tSUhIHDx4kISEBX19f\nUlJSrvkOZs2aRUZGBp07d750TB8fH86ePcvBgwfx8PAAsqduiIiIiIg4ErecrvT29iYpKYnAwEAi\nIiIASEpKwsfH55oOvmLFCqZOnco333yDu7s7AD4+PiQnJ9O+fXvat2/PhQsXLl3+v44fP35dD0ZE\nRERE5EaUL1/+Xy/PsSxXrFiRtLQ0YmNjKVWqFOnp6Rw7doxKlSpd9Q43b97Ma6+9xtSpUwkMDLx0\neVBQEN98882l7w8cOEDhwoUpWrTovx4nODj4ivcREBDAd999R6tWra6aRxyDxsy5aLzMstvt7IuO\n57fNR1m6+RjbDp0hy2b/19sW8fXk/C9DAQjsPI6LKekkpWb86229PFxpWqM0d9avyJ1hFSgT4Jdn\nj0FypueYc9F4OZfrGa89e/Zc8bocy7Kfnx/NmzdnypQpvPzyy8yYMYOyZctSrVq1S7fp0aMHdevW\n5cUXX7x02d69exk4cCAfffQRVatWveyYjRs35uLFi/z888+0bduWadOm0aFDh6s+CBGRguL0+WS+\nW3OAuSv2ERVz/tLlri4WdSoVp/5tJalZIYAqpQtTKbAwxQp54ebqQtmy2bfbNKkbAGkZWZw5n8yh\nUxc4cOI8O46cY+P+WA6dvMCy7dEs2x7NK1+uoWlwaR5qWY17G1XCx8vdxEMWEXFYOZZlgJEjR/LS\nSy/RqFEjqlSpwvjx4y+7PiYmhnLlyl122YwZM4iPj6d3796XLmvYsCFTpkzB29ubCRMmMGLECIYP\nH06zZs144YUXcunhiIg4r51HzvLZoh0sXH+QzKzsT5CLFfLirnoVuLNeRVqElMX3Osqsp7sr5UoU\nolyJQrSs/f+v02cuJPPn1uMs3XyMZduPs27PSdbtOclrM9fyWNtgerevpU+bRUT+Yu3bt+/f/6bn\nAI4fP37VaRh79uyhZMmStzCV3AyNmXPReN0a2w6d4Z15G1ixIwbI/gS5XVgFHm5ZjbahFXB3u7bN\nVsuWLQNATMyJa77vhOR0fo44xJwV+9i0/zQAbq4WDza/jecfqE9ZleY8peeYc9F4OZfrGa89e/Zc\ncc6y05dlgHPnzt2qSHKTNGbOReOVtw6ePM+78zfyc8RhAHy93OnWpjp92odQrkSh6z7ejZTlv9t6\n8AyfLdrOL5GHybLZ8XR35fE7a/LsfaEUK+R1Q8eUnOk55lw0Xs7lesYrp7J81WkYIiKSu5JTM/jg\nu81M+XUHWTY7Xu6u9G5fi34d61LUz1wpDa1Sgk+fu4PDpy7w3oJN/LjuIJ8t2sGc5ft45dFGdGtd\nAxcXy1g+ERETVJZFRG6hP7Ye45Uv1xB9NhHLgm6tqzO4Sz2HmiNcKbAwnzzblmfuqcOYOZGs2hnD\nkKmrmb9yP+882Zwa5YuZjigicsuoLIuI3AIJyem8On0N3605AEBIUADv9G5BaJUShpNdWe1KxZk9\nNJyfIw/z2sy1bNwfS/tXv2NQ53oM6BSKq8u1zaUWEXFmKssiInksct8pnvtkGdFnE/H2dOOlB+vz\nZPsQ3Fwdv2xalkXHxpVpVbscb8+NZObvexi3YBMrd0Tz0TNtKH8Dc6tFRJyJ479Si4g4qSybjXEL\nNvHAqJ+JPptI3crFWTKmM091qOMURfnv/H08ePuJ5swe1oFSRXyI3BfLncO+ZeH6g6ajiYjkKed6\ntRYRcRLnk9Lo9d4Sxn+/GTt2nr0vlB9ev48qpYuYjnZTWoaU5fexD3B3g4pcTMngmYl/MuqbCDKz\nbKajiYjkCZVlEZFctvd4HPeM+IFl26Mp6ufJ7KEdGPZwQzzcXE1HyxXFCnnxxaA7Gd3rdtxcLSb/\nsp3u7/xK3MVU09FERHKdyrKISC76bfNROr7+I0diEwgJCmDx6M60CClrOlausyyLJ+6qxdxh91Dc\n35vVu07QYcT37I+JNx1NRCRXqSyLiOSSr/7Yw5MfLCU5LZPOt1fhh9fuu6HNRZxJk+DSLBp9P3Ur\nF+f4mUTuf/MnIvaeNB1LRCTXqCyLiNwku93O2HkbGDptNTa7nee71GNivzZ4exaMBYfKBvjx7fCO\ntK9fkfNJaTw69ld+ijhkOpaISK5QWRYRuQlZNhvPT1nJxB+34upiMa5vC154oD6WVbB2uvP2dOPz\nQe3o1a4maRlZPDPxD6b/tst0LBGRm6ayLCJygzIybTz78TLmrYzC29ON6S+059HWNUzHMsbVxYUx\nj9/OK480xG6HV2esZfIv203HEhG5KSrLIiI3IC0ji6c++p2F6w/h5+XO7CHhtA0tbzqWcZZl0b9j\nKGN7Nwdg1DcR2cvn2e2Gk4mI3BiVZRGR65SWkUWf8UtZsukoRXw9mfvKPTSsHmg6lkPpcUcw459q\nhYtlMW7BJt6Zv1GFWUScksqyiMh1yMi08czEP/hz23GKFfJi3qv3EFqlhOlYDumhltWY1L8Nri4W\nE3/cykc/bjUdSUTkuqksi4hcoyybjUGTl//tE+UO1KoYYDqWQ+vUtAoT+7XBsuDd+Rv5/NcdpiOJ\niFwXlWURkWtgt9sZOnU1P6w7iK+XO18PuZuaFVSUr0WnplUY16clAG98vZ5vlu01nEhE5NqpLIuI\nXIXdbs8uecv34eXuyowX2xNWpaTpWE7lkdbVGdmjKQAvT13FD2sPGE4kInJtVJZFRK5i8i/b+WLx\nTtxdXfhi8J00DS5tOpJTevLuEIY81AC7HQZOXs6qnTGmI4mIXJXKsohIDn5cd5DRsyMBmPBMa9rU\n1fJwN2NApzD+E16bzCw7fT9cyt7jcaYjiYjkSGVZROQKIvaeZNDk5QCM6NaYTk2rmA2UT4zo1pgO\nDStxMSWDx95dzMm4JNORRESuSGVZRORf7I+Jp/cHS0nPtPH4nTV5qkNt05HyDRcXi4/6tabBbaU4\nGZdEz/cWczE53XQsEZF/pbIsIvI/ziWk0OO9xZxPSuOuehUZ2bMplmWZjpWveHu48eULd1Ep0J/d\nx+J4euIfZGbZTMcSEfkHlWURkb/JyLTxnwm/c/xMIqGVS/DJs21xddFLZV4oVsiLr18Op1ghL5Zv\nj+atOZGmI4mI/IPeAURE/ua1r9ayfu8pShXxYerzd+Lt6WY6Ur4WVMqfzwe2w83V4rNFO5i/Ksp0\nJBGRy6gsi4j85as/9jDz9z14urvyxeA7CSzqazpSgdAkuDSjet4OwJCpq9ly8LThRCIi/09lWUSE\n7JUvhs9YA8A7TzanXlVtOnIr9WxXkx53BJOWkUWf8UuJjU82HUlEBFBZFhHhxLlE+k74PXvt3/AQ\nuraoZjpSgTSyZ1MaVw/kVHwyfT5cSnpmlulIIiIqyyJSsGVk2ug36U/OJaTSIqQswx9tbDpSgeXh\n5sqUge0oE+DL5gOnL20GIyJiksqyiBRoY+dtYENULIFFffm4fxvcXPWyaFLxwt58NqAd7q4uTF28\nk58iDpmOJCIFnN4VRKTAWrLxCJN/2Y6ri8Xk59oS4O9tOpIA9aqW5LXu2Z/wvzhlJQdPnjecSEQK\nMpVlESmQjp1OYPBnKwB45ZFGNKweaDiR/N0Td9Xi3saVSEzN4KkJf5CSlmk6kogUUCrLIlLgpGVk\n8dRHf3AhOZ329StqK2sHZFkW4/q0pHLpwuw5Hserf61UIiJyq6ksi0iBM3LWerYfPkuFEoX44KlW\n2sraQRXy8WDKgHZ4ebgyd0UUP6w9YDqSiBRAKssiUqD8tvko05fuxsPNhc8G3kERX0/TkSQHwRWK\n8WaPpgAMnbaa42cuGk4kIgWNyrKIFBinzyfzwpSVAAx9uCF1KpUwnEiuRfc2NQhvEMTFlAye/XgZ\nmVk205FEpABRWRaRAsFmszP4sxXEXUylZUhZ+t6tecrOwrIs3u3TgsCiPmzcH8uEH7aYjiQiBYjK\nsogUCNN+28Xy7dEU9fNk/NOtcHHRPGVnUqyQFxOeaY1lwYffbyFy3ynTkUSkgFBZFpF8b/exc4yZ\nHQHAuL4tCSzqaziR3IjmtcrS/9662Ox2nvtkGReS0kxHEpECQGVZRPK1lPRMnvt4GemZNrq3rcHd\nDYJMR5Kb8OKDDQitXILos4m8Ol3LyYlI3lNZFpF87Z15G9gbHU+V0oV5o3sT03HkJrm7uTCxfxu8\nPd34fu1Bfok8bDqSiORzKssikm9F7D3JF4t34upiMbFfG3y83E1HklxQObAwwx9pBGQvJ3f2Qorh\nRCKSn6ksi0i+lJyawfNTVmK3w3OdQqlbWcvE5Sc929Wkea0yxF1MZci0VdjtdtORRCSfUlkWkXzp\n7bkbOBKbQHCFYgy8P8x0HMllLi4WH/ynFX5e7izeeJTv1mh3PxHJGyrLIpLvrN19gmm/7cLN1eLD\np1rj4eZqOpLkgbLF/RjZM3t3v+Ez1nIyLslwIhHJj1SWRSRfSUrN4PkpKwAY2CmMkKAAw4kkLz3U\nshrtwiqQkJzOS5+v1HQMEcl1Kssikq+MmR3J8TOJ1KoYwHOdNP0iv7Msi3efbEERX0+WbY9m7ooo\n05FEJJ9RWRaRfGPVzhhm/L4bd1cXPny6Fe5ueokrCEoV9WFUr9sBGDlrPbHxyYYTiUh+oncSEckX\nklIzeOmLlQAM7lKPmhU0/aIg6Xx7FdrWLc+F5HSGz1hrOo6I5CMqyyKSL4xbsInjZxIJCQqgf8e6\npuPILWZZFmN7N8fXy51FGw7z6wZtViIiuUNlWUSc3rZDZ/hi8U5cLIv3+rTAzVUvbQVR2eJ+DHu4\nIQCvTl/LhaQ0w4lEJD/QO4qIOLWMTBsvfbEKm91O3/AQ6lTS5iMFWa92Nal/W0lizyczZnak6Tgi\nkg+oLIuIU/ti8Q52HT1H+RJ+vPhAfdNxxDAXF4txfVri4ebCrGV7Wbv7hOlIIuLkVJZFxGkdPZ3A\nuG83ATC2d3N8vNwNJxJHUK1cUQb8tWzgS1+sIiU903AiEXFmKssi4pTsdjtDpq4mNT2LLs2q0rpO\nedORxIH0v68uNcoV5UhsAh9+t9l0HBFxYirLIuKUFqzez6qdMRTx8+SNx5qYjiMOxsPNlff6tsSy\nYPKi7eyLjjMdSUSclMqyiDiduIupvPn1egBe796EAH9vw4nEEdWrWpLH2gaTmWVn2LQ12gpbRG6I\nyrKIOJ0xsyOIT0yjea0ydG1xm+k44sCGPtyQ4v7eROw7xbyV+03HEREnpLIsIk5lQ1Qsc1ZE4e7q\nwpjHm2FZlulI4sCK+HryWvfGAIyeHUHcxVTDiUTE2agsi4jTyMyy8cqXqwF45t46VC1TxHAicQZd\nmlXl9pqlibuYyti5G0zHEREno7IsIk5jxtLd7D4WR7nifpeWBhO5GsuyePuJ5ri7Zq+9vHF/rOlI\nIuJEVJZFxCnExifz3oKNAIzqeTvenm6GE4kzqVqmCE/fWweAodNWk5llM5xIRJyFyrKIOIXRsyO4\nmJJBu7AK3FW/ouk44oQGdgqjQolC7DkWx9QlO03HEREnobIsIg5v7e4TfLfmAF7urozq2dR0HHFS\n3p5ujH78dgDe/3Yzp+KTDCcSEWegsiwiDi09M4tXvlwDwLOdQqlQ0t9wInFmd4RW4O4GFUlKzWDM\n7EjTcUTECagsi4hD++LXnew/cZ5Kgf48c08d03EkH3i9exO83F35bs0BIvedMh1HRBycyrKIOKwT\n5xIZ//1mAMb0aoaXh07qk5tXoaQ/z9xbF4DhM9aSZdPJfiJyZSrLIuKwxsyOJDktkw4NK9GqTjnT\ncSQf6d+xLmUD/Nh19Byz/txrOo6IODCVZRFxSJH7TvHDuoN4ubvy+l87sInkFm9PN15/rAkA78zf\nqJ39ROSKVJZFxOFk2WyMmLkWgGfurUu5EoUMJ5L8qEPDIJrVKsP5xLRLa3iLiPwvlWURcThzV0Sx\n88g5ygT40r9jXdNxJJ+yLItRPZvi6mLx9R972XnknOlIIuKAVJZFxKFcSEpj7LwNAAx/tLF26pM8\nVb1cMZ64qxY2u50RM9dgt9tNRxIRB6OyLCIOZfz3mzmXkErj6oHc16Sy6ThSALzwQH2K+3sTuS+W\nH9YeNB1HRBzMVcvyqVOn6NGjB6GhoXTp0oX9+/df9aB2u51BgwbRqlUratSowYkTJy67vkaNGoSF\nhV36b/78+Tf+CEQk3zhw4jxf/rYLy4KRPZtiWZbpSFIA+Pt48MojDYHsbdWTUjMMJxIRR3LVsjxi\nxAiqV69OZGQk4eHhDB48+JoOXL9+fT766KMrXr9w4UK2bNnCli1b6Nq167UnFpF8yW6388ZX68jM\nstOtTQ1CgoqbjiQFSNcW1QitXIJT8cl88vM203FExIHkWJYTExNZu3Ytffv2xcPDg169ehETE0NU\nVFSOB7Usix49elCrVq0r3kbzwkTk737fcoxl26Px9/FgSNcGpuNIAePiYvHGX0vJTf55OzFnEw0n\nEhFHkWNZPnr0KB4eHvj4+NCtWzeio6OpUKEChw4duuk77t69O82bN2fYsGEkJupFSaQgS8/M4o2v\n1wPwfJd6BPh7G04kBVHDv+bJp2Zk8fbcSNNxRMRB5HiaeUpKCr6+viQlJXHw4EESEhLw9fUlJSXl\npu507ty51K5dm3PnzjF06FBGjx7N2LFj//W2AQEBVzyOu7v7VW8jjkVj5lxu1Xh9MD+CI7EJVC8f\nwAuPtMDdzTVP7y+/0/Prxr33THuWbJrC92sPMvihZjSqUSZP70+vic5F4+Vccmu8cizL3t7eJCUl\nERgYSEREBABJSUn4+Pjc1J3WrZu9bmqJEiUYNGgQffr0ueJtR40adenrli1b0qpVq5u6bxFxLKfP\nJ/H27DUAjHvqDhVlMapiqcIM6NKI9+au4+XP/mDZB4/pRFORfGjFihWsXLny0vdt2rS54m1zLMsV\nK1YkLS2N2NhYSpUqRXp6OseOHaNSpUq5l5ac5y/369fvsu/Pnfv/ReP/+5vC3y8Tx6Yxcy63Yrxe\nnbaai8np3BFannqVCuvfxk3J/hRU/w9vTp87qzF98VbW74nhy1820KlplTy7L70mOheNl3PJabxC\nQkIICQm59P2ePXuueJwc5yz7+fnRvHlzpkyZQlpaGtOnT6ds2bJUq1bt0m169OjBuHHj/vGz6enp\npKWlAZCWlnbp66ioKHbv3k1WVhbx8fFMmjSJtm3b5hRDRPKpfdFxzPpzL64uFiO6NTYdRwQAP28P\nhjyUfZLp6NkRpKRnGk4kIiZddem4kSNHEhUVRaNGjVi8eDHjx4+/7PqYmJh/bex333039evXx7Is\nwsPDCQ0NBbLb/YABA2jQoAH33nsvJUqUYPjw4bn0cETEmYz+JhKb3U73tjW4rWxR03FELnmoZTVq\nVQzgxLkkpizaYTqOiBh01X1kAwMD+eqrr654/Z9//nldlzdt2pTff//9GuOJSH61ckc0f247TiFv\nd17oUt90HJHLuLq48Hr3Jjz01i9MWriVR1pVp1TRmztfR0Sck7a7FpFbLstmY+Ss7JOGn+sUSvHC\nWipOHE+zWmVoX78iyWmZvDt/g+k4ImKIyrKI3HLzVkax53gc5Yr78WT7kKv/gIghw7s1xt3Vhbkr\no9hx+KzpOCJigMqyiNxSSakZvDt/IwDDHm6Il8dVZ4OJGFM5sDBP3FULux3enLVeu8+KFEAqyyJy\nS33y8zZOn08hrErJPF2SSyS3DOocRlE/T9btOcnijUdMxxGRW0xlWURumRPnEpn8y3YAXn+siTZ7\nEKdQ2NeTFx/IPgl1zJxIMjJthhOJyK2ksiwit8y78zeSmp7FPY0q0bBaKdNxRK5Z97bBVAr05/Cp\nBGYt22s6jojcQirLInJL7Dh8lvmr9uPu6sIrjzQyHUfkuri7/f+/2w++28TF5HTDiUTkVlFZFpE8\nZ7fbeXPWegCeuKsWQaX8DScSuX7hDYJoWK0U5xJS+eTnbabjiMgtorIsInlu6eZjrNtzkiJ+ngzs\nHGY6jsgNsSyL4X9tyz7l1x2cjEsynEhEbgWVZRHJUxmZNkbPzt6A5PnO9Sji62k4kciNa3BbKTo0\nrERqehbjFmw0HUdEbgGVZRHJU3NW7OPgyQsElfKnR7tg03FEbtqwRxri5moxb+V+9hyLMx1HRPKY\nyrKI5Jnk1Aw++G4TAEMfboiHm6vhRCI3r3JgYXreUROb3c5bcyJNxxGRPKayLCJ55vPFOzl9PoXQ\nyiW4t1El03FEcs2gzmEU8nbnz23HWbUzxnQcEclDKssikifiLqbyyU/ZKwa88kgjbUAi+UqAvzf9\nO4YCMHp2BDabtsEWya9UlkUkT0z4YQuJqRm0qVOOZrXKmI4jkuv63B1CYFFfdh45x/drD5iOIyJ5\nRGVZRHLdsdMJzFi6G8uCYdqARPIpb083Xu7aAIB35m0kNT3TcCIRyQsqyyKS695bsImMLBudb69K\nrYoBpuOI5JkHW1QluEIxYs4l8uVvu0zHEZE8oLIsIrnqv3+S9nBzufSpm0h+5eriwvBHs/968tGP\nW4m7mGo4kYjkNpVlEclVY+dGYrdDz3Y1KV+ikOk4InmudZ3ytAwpS0JyOhN+2GI6jojkMpVlEck1\nq3fFsGx7NH5e7gy8X9taS8Hx6qONsSyYsXQ3R08nmI4jIrlIZVlEcoX9bxs09OtYl2KFvAwnErl1\nQoICeKD5bWRk2Ri3YJPpOCKSi1SWRSRX/Bx5mG2HzlKyiDd97w4xHUfklnvpgfp4uLnw3ZoD7Dxy\nznQcEcklKssictMyMm2MnbsBgOe71MfHy91wIpFbr1yJQvS6syaQPXdfRPIHlWURuWnfLN/LkdgE\nKpcuzCOtqpuOI2LMgE7Z22Av2x7Nml0nTMcRkVygsiwiNyUpNYPx320GYOhDDXF308uKFFzFCnnx\nzL11AXhrTiR2u7bBFnF2elcTkZvy+a87OHMhhbAqJejQMMh0HBHj+t4dQski3mw9dIZfIg+bjiMi\nN0llWURu2LmEFD79eTvw36WzLMOJRMzz8XJncOd6AIydt4GMTJvhRCJyM1SWReSGTfhxK4mpGbQN\nLU/T4NKm44g4jEdb16BSoD+HTyUwZ8U+03FE5CaoLIvIDTl2OoGZS3djWTDs4Yam44g4FHc3F4Y8\nlP28+OC7TSSnZhhOJCI3SmVZRG7Iews2kZFl44Hmt1GzQoDpOCIO595GlQitXILT51P4YslO03FE\n5AapLIvIddt55CzfrTmAh5sLLz1Q33QcEYdkWRbDHsn+dPmTn7YRdzHVcCIRuREqyyJy3d7+awOS\nXnfWpFyJQobTiDiu5rXK0rpOOS6mZDDxx62m44jIDVBZFpHrsmpnDMu3R1PI250BncJMxxFxeP+d\n0z996S6iz1w0nEZErpfKsohcM5vNzltzsrfx7dexLsUKeRlOJOL4QoKK0/n2KqRn2hj37SbTcUTk\nOqksi8g1+znyENsPn6VUER/6tA8xHUfEabzUtQHuri4sWL2fPcfiTMcRkeugsiwi1yQj08Y78zYC\n8PwD9fDxcjecSMR5VCzpT487grHbszcqERHnobIsItdk1rK9HIlNoHLpwjzSqrrpOCJOZ+D9Yfh6\nufP7lmOs33PSdBwRuUYqyyJyVUmpGYz/bjOQfbKSm6teOkSuV/HC3jzdoTYAY+ZEYrfbDScSkWuh\ndzwRuaopi3ZwNiGFsColCW8QZDqOiNP6T4faFPf3ZvOB0yzZdNR0HBG5BirLIpKj0+eT+PSX7QC8\n+mgjLMsynEjEefl5ezCoc/aSi2/P3UBmls1wIhG5GpVlEcnR2G/WkpSawR2h5WkaXNp0HBGn171t\nDSqWLMSBE+f5aukO03FE5CpUlkXkig6eiOfzRVuwLBj2cCPTcUTyBQ83V17u2gCA0V+vJiUtw3Ai\nEcmJyrKIXNGbM1eRkWnjwea3EVyhmOk4IvnGfU2qEBIUQMzZi3yyUBuViDgylWUR+Vc7Dp9l3vLd\neLq78tKDDUzHEclXXFwsXvnrrzXvzV3H+aQ0w4lE5EpUlkXkX/13W+tn7qtP2eJ+htOI5D8ta5el\nTWhFziemMenHrabjiMgVqCyLyD+s3BHNyp0xFPb15KWHm5qOI5IvWZbF6N6tAZj22y5iziUazSMi\n/05lWUQuY7PZeWtO9na8Lz7UhAB/b8OJRPKv+tVK07VVMGkZWXzwreYuizgilWURucxPEYfYceQs\ngUV96N9Jc5VF8tobvVri5moxb+V+9kXHmY4jIv9DZVlELknPzOLd+RsBeOGB+vh4uRtOJJL/VSlT\nlMfaBmOz2xk7d6PpOCLyP1SWReSSb/7cy5HYBKqWKcJDLauZjiNSYAzqHIaPpxu/bT5K5L5TpuOI\nyN+oLIvvhAl+AAAgAElEQVQIAIkp6Yz/fgsAQx9qgJurXh5EbpUShX14+p46AIyZHYndbjecSET+\nS++GIgLAlEU7OJuQQr2qJbm7QZDpOCIFzlMdahPg78XG/bH8tumo6Tgi8heVZRHhzIVkJi/aAcCr\njzTCsizDiUQKHj9vDwbdHwbA23M3kJllM5xIREBlWUSACT9sISk1g3ZhFWgSXNp0HJEC67E7gqlQ\nohD7T5xn/qoo03FEBJVlkQLv8KkLfPXHHiwLhj3c0HQckQLNw82VIQ9lL9k4bsFmUtIyDScSEZVl\nkQLu3fkbycyy07VFNWqUL2Y6jkiBd1+TKoQEBXAqPolpv+00HUekwFNZFinAth48w8L1h/B0d+XF\nB+ubjiMigIuLxauPNAJg0sJtxCemGk4kUrCpLIsUUHa7nTFzIgDofVctygb4GU4kIv/VsnY5WoSU\nJSE5nUkLt5mOI1KgqSyLFFDLt0ezdvdJCvt48GynUNNxROR/vPJI9jkEX/62i5iziYbTiBRcKssi\nBZDNZmfMnEgAnusUShFfT8OJROR/1alUgk5Nq5CWkcW4bzeZjiNSYKksixRA3605wJ5jcZQJ8OWJ\nu2qZjiMiV/By1wa4uVrMXxXFnmNxpuOIFEgqyyIFTGp6Ju/O3wjASw82wMvDzXAiEbmSoFL+9Lgj\nGLsdxs7bYDqOSIGksixSwMz4fTcx5xIJLl+MB5pXNR1HRK5i0P318PVy5/ctx4jYe9J0HJECR2VZ\npAC5kJTGRz9uBWDYIw1xddFLgIijK17Ym6c71AZgzJxI7Ha74UQiBYveKUUKkE9+2sb5xDSaBpem\nbd3ypuOIyDX6T4faFPf3ZtP+0yzZdNR0HJECRWVZpIA4cS6RLxZn7wb26qONsCzLcCIRuVZ+3h4M\n7hwGwNtzN5CZZTOcSKTgUFkWKSA++G4zqRlZ3NOoEmFVSpqOIyLXqVvbGgSV8ufAifPMWxllOo5I\ngaGyLFIAREXHM3dFFG6uFkMfbmg6jojcAA83V17u2gCA97/dREpapuFEIgWDyrJIAfD23A3Y7Ha6\ntwmmcmBh03FE5AZ1bFyZOpWKcyo+malLdpqOI1IgqCyL5HOR+07x2+aj+Hi6MbhLmOk4InITXFws\nXnmkEQAf/7SNuIuphhOJ5H8qyyL5mN1uZ9Q3EQA8fU8dShT2MZxIRG5Wi5CytKpdloTkdCYt3Go6\njki+p7Isko8t3niEzQdOU9zfm6f+WqdVRJzffz9d/vK3XUSfuWg4jUj+prIskk9lZtl4e2729riD\nO4fh5+1hOJGI5JaQoOLc37QK6Zk23vt2k+k4IvmayrJIPjVnxT4OnrxAUCl/urcNNh1HRHLZyw81\nwN3VhW9X72fnkXOm44jkW1cty6dOnaJHjx6EhobSpUsX9u/ff9WD2u12Bg0aRKtWrahRowYnTpy4\n7PqIiAjat29PWFgY/fv3JzEx8cYfgYj8Q1JqBu//9WnTkIca4O6m34tF8puKJf3pdWdN7HYY9c16\nbYMtkkeu+g46YsQIqlevTmRkJOHh4QwePPiaDly/fn0++uijf1yekpLCwIEDGTBgAOvWrcOyLN5/\n//3rTy4iVzT5l+2cPp9CWJUSdGxc2XQcEckjA+8Po7CPB6t3nWDZtmjTcUTypRzLcmJiImvXrqVv\n3754eHjQq1cvYmJiiIrKeecgy7Lo0aMHtWrV+sd1ERER+Pv7c8899+Dl5UXv3r1ZtGjRzT0KEbnk\nVHwSn/6yHYDXujfRttYi+VixQl4MuD97SchR36zXNtgiecAtpyuPHj2Kh4cHPj4+dOvWjdGjR1Oh\nQgUOHTpEtWrVbugODx8+TOXKldm0aROffPIJ7777LhcuXCA+Pp6iRYv+4/YBAQFXPJa7u/tVbyOO\nRWOW916dGUFKWib3N6tG+O3//IX1emi8nJPGy3nkxnPsxUdaMPOPvUTFnOfnTTE8GR6aW/Hkf+g1\n0bnk1njlWJZTUlLw9fUlKSmJgwcPkpCQgK+vLykpKTd8hykpKfj4+HD27FkOHjyIh0f2GfrJycn/\nWpZHjRp16euWLVvSqlWrG75vkfxux6HTzPhtO26uLozu3dp0HBG5BTw93BjduzU93v6RkTNX8XDr\nmlr9RuQqVqxYwcqVKy9936ZNmyveNsey7O3tTVJSEoGBgUREZG9skJSUhI/PjW9s4OPjQ3JyMu3b\nt6d9+/ZcuHDh0uX/pl+/fpd9f+7c/5/x+9/fFP5+mTg2jVneemnyb9jt0KtdMEW97Df9/1nj5WzK\nABovZ5Jbz7E2tUoQVqUkWw6e5q2vlvPCA/VzI578D70mOpecxiskJISQkJBL3+/Zs+eKx8lxznLF\nihVJS0sjNjYWgPT0dI4dO0alSpVuKDRAUFAQhw4duvT9gQMHKFy48L9+qiwi12759uMs3x6Nv48H\ngzrXMx1HRG4hy7J4rXtjAD79ZTun4pMMJxLJP3Isy35+fjRv3pwpU6aQlpbG9OnTKVu27GXzlXv0\n6MG4ceP+8bPp6emkpaUBkJaWdunrxo0bc/HiRX7++WeSk5OZNm0aHTp0yM3HJFLgZNlsjJqV/def\n5+4LpVghL8OJRORWa1Q9kA4Ng0hJy2TcAm1UIpJbrrp03MiRI4mKiqJRo0YsXryY8ePHX3Z9TEzM\nv368fffdd1O/fn0syyI8PJzQ0OwTDry9vZkwYQITJ07k9ttvB+CFF17IjcciUmDNWxnF3uh4ygb4\n0bv9zZ3UJyLOa9gjjXBztZizYh+7j2mqgEhuyHHOMkBgYCBfffXVFa//888/r+tygEaNGrFkyZJr\niCciV5OUmsF787M/RRr2cEO8PK76tBaRfKpyYGF6tavJ1CW7GDM7kllDwk1HEnF62tZLxMl99st2\nYs8nU7dycTo1rWI6jogYNqhzPfx9PFi+PZrl24+bjiPi9FSWRZxYbHwyn/y1AcmIbk1wcdEGJCIF\nXbFCXgzolD31cfQ3kWTZtFGJyM1QWRZxYuMWbCQlLZP29SvSNLi06Tgi4iCeuKsW5Yr7sed4HPNX\n7jcdR8SpqSyLOKk9x+KYsyIKVxeLVx5pZDqOiDgQLw83hj7UEIB3528kOTXDcCIR56WyLOKkxsyO\nwGa30+OOYKqWKWI6jog4mE5Nq1C3cnFizyfz2aIdpuOIOC2VZREntGJ7NMu2R+Pn5c7zXbQBiYj8\nk4uLxYhuTQD45OdtxMYnG04k4pxUlkWcTGaWjTdnrQfguU6hBPh7G04kIo6qaXBp2tevSHJaJu/M\n32A6johTUlkWcTKzlu1lX3Q85Uv40efukKv/gIgUaMO7Ncbd1YV5K6PYfviM6TgiTkdlWcSJnE9K\n4735GwEY/mhjbUAiIldVObAwvdvXwm6H12auw263m44k4lRUlkWcyIffbyY+MY0mNQK5p1El03FE\nxEkM6lyPAH8vNkTF8lPEIdNxRJyKyrKIkzhw4jxf/rYLy4I3ezTFsrQBiYhcG38fD17u2gDI3qgk\nJT3TcCIR56GyLOIkRn0TQWaWnUdaVSckqLjpOCLiZB5tXZ3gCsWIOZfIZ3/t/CkiV6eyLOIEVmyP\n5vctx/DzcmfIQw1MxxERJ+Tq4sKbjzUFYNJP2zgZl2Q4kYhzUFkWcXCZWTbe+HodAAPuD6VEYR/D\niUTEWTWrVYbwBkGkpGUydp6WkhO5FirLIg7u6z/2EBVznoolC9Hn7tqm44iIkxverTEebi4sWLWf\nLQdPm44j4vBUlkUc2PmkNN77dhOQ/Qbn6e5qOJGIOLugUv6X1mh//SstJSdyNSrLIg5s/HebOZ+Y\nRtPg0oQ3CDIdR0TyiQGdwihR2JtN+0/zw9qDpuOIODSVZREHdeDEeaYv1VJxIpL7Cvl4XDpZeMyc\nSFLStJScyJWoLIs4qDdnrSczy0631jWoVTHAdBwRyWcealmNWhUDOBmXxKc/bzMdR8RhqSyLOKCl\nm4/y59bjFPJ2v7SRgIhIbnJ1cWFkj+yl5D7+eRsx5xINJxJxTCrLIg4mNT2TN75eD8ALD9SneGFv\nw4lEJL9qElyaexpVIjU9i9HfRJiOI+KQVJZFHMxni3ZwJDaB6uWK8vidtUzHEZF87rVujfHycGXh\n+kOs2XXCdBwRh6OyLOJAYs4m8tGPWwAY1fN23N30FBWRvFWuRCGeuy8UgOEz1pCRaTOcSMSx6J1Y\nxIGM/GY9qelZdGxcmWa1ypiOIyIFxNP31CGolD9RMef5cuku03FEHIrKsoiDWLUzhp8jDuPt6caI\n7o1NxxGRAsTLw403/zrZ7/0Fm4iNTzacSMRxqCyLOICMTBsjZqwFYECnUMoG+BlOJCIFTbuwCrQL\nq0BiagZj5uhkP5H/UlkWcQBfLt3F/hPnCSrlz1Md6piOIyIF1Js9muLp7sq3qw8Que+U6TgiDkFl\nWcSw0+eTeX/BJgBG9sx+oxIRMSGolD/P3Jv9C/ur09eQZdPJfiIqyyKGjZkTSWJqBnfWq8AdoRVM\nxxGRAu7ZjtlTwXYfi+Or3/eYjiNinMqyiEEbomJZsGo/nu6uvPFYU9NxRETw9nTjjR5NAHh3/kbO\nJaQYTiRilsqyiCGZWTaGfbkagKc61CaolL/hRCIi2cIbBNGqdlkuJKfz9twNpuOIGKWyLGLI1CU7\n2XMsjvIl/BjQKcx0HBGRSyzLYmTP23F3dWH28n1s3B9rOpKIMSrLIgbEnEtk3F8n9Y15vBnenm6G\nE4mIXK5qmSI8dU/2yX5Dp67Wzn5SYKksixjwxlfrSE7LpEPDSjqpT0Qc1qD7w6hQohB7jscxdclO\n03FEjFBZFrnFlm4+yqINR/D1cufNv06iERFxRN6ebox5vBkA477dRMzZRMOJRG49lWWRWyglLZPh\nf+3U9+KD9SmjnfpExMG1DS3PvY0rkZKWyYiZa03HEbnlVJZFbqEPv99M9NlEalYoRu+7apmOIyJy\nTd54rCl+Xu4s2XSUJRuPmI4jckupLIvcIvui45i8aDuWBe882QI3Vz39RMQ5lC7my8tdGwAwfOZa\nklIzDCcSuXX0bi1yC9jtdoZNW0Nmlp3H2gZTr2pJ05FERK7L43fVpE6l4pw4l8QH3202HUfkllFZ\nFrkF5q3cT8S+UxT392boww1NxxERuW6uLi6M7d0cF8vi8193sOvoOdORRG4JlWWRPBZ3MZVR36wH\n4LXujSni62k4kYjIjalbuQSP31mTLJudodNWY7PZTUcSyXMqyyJ57M1Z64lPTOP2mqXp0qyq6Tgi\nIjflpa4NKFXEh80HTjNr2V7TcUTynMqySB5asT2aBav24+XuyjtPtsCyLNORRERuir+PB2/2bArA\nW3MiORWfZDiRSN5SWRbJI0mpGQyZtgqA5x+oR+XAwoYTiYjkjnsbVaJdWAUSktN5dfoa7HZNx5D8\nS2VZJI+8O38jx88kUqtiAP8Jr2M6johIrrEsi7efaIaflzuLNx7ll8jDpiOJ5BmVZZE8sPnAaaYu\n2Ymri8X7fVvi7qanmojkL2UC/Hj10UYAvDp9LfGJqYYTieQNvYOL5LL0zCxe+nwldjs81aE2tSsV\nNx1JRCRPPNY2mCY1AjmbkMLIWRGm44jkCZVlkVz2yU/b2BsdT1Apf57vUt90HBGRPOPiYvFunxZ4\nursyb2UUK7ZHm44kkutUlkVy0f6YeCb8sAWAd59sgbenm+FEIiJ5q0rpIjzfpR4AQ6at0lbYku+o\nLIvkEpvNzktfrCI908ajravTrFYZ05FERG6JpzrUISQogONnEnl3/kbTcURylcqySC6ZvnQXG6Ji\nKVnEm+HdGpuOIyJyy7i7ufB+35a4ulhMXbKTTftjTUcSyTUqyyK54PCpC4yZEwnAW48305bWIlLg\nhAQV5+l76mC3wwtTVpKanmk6kkiuUFkWuUlZNhuDP1tBanoWXZpVJbxhJdORRESMGNylHlXLFGH/\nifOMW7DJdByRXKGyLHKTvli8kw1RsZQq4sPIv7aAFREpiLw93Bj/VCtcLIvJi7azYd8p05FEbprK\nsshNOHDiPO/Oyz6Z5Z0nm1PUz8twIhERs+pVLUm/jnWx22HQZytI1uoY4uRUlkVuUJbNxqDJK0jN\nyOKhltW4s15F05FERBzC813qEVy+GEdiE3h77gbTcURuisqyyA2a/Mt2thw8TWBRX954rInpOCIi\nDsPT3ZUPn26Fm6vFtN92sWbXCdORRG6YyrLIDdgXHXfp5JVxfVtQWKtfiIhcJiSoOAM7hQHwwucr\nSExJN5xI5MaoLItcp4zM7OkX6Zk2urWuTpu65U1HEhFxSM91CqN2UHGOn0lk5DcRpuOI3BCVZZHr\nNPHHLWw/fJayAX681l3TL0RErsTdzYUJz7TCw82FWX/uZfn246YjiVw3lWWR67Bpfywf/rAFy4IP\nnmpJIR8P05FERBxa9XLFePHB+kD2ZiVxF1MNJxK5PirLItcoMSWdAZ8uJ8tm56kOdWheq6zpSCIi\nTuHpe+rQsFopTsUnM2TqKux2u+lIItdMZVnkGr3x9XqOxCZQs0IxXu7awHQcERGn4eriwsR+bSjk\n7c6iDUeYuyLKdCSRa6ayLHINft1wmNnL9+Hp7sqk/m3wdHc1HUlExKmUL1GIMY83A2DEzLUcOnXB\ncCKRa6OyLHIVp+KTePGLVQC8+kgjqpcrZjiRiIhz6tKsKp2aViE5LZMBnywjI9NmOpLIVaksi+TA\nZrPz/GcrOJ+YRus65XjirlqmI4mIOC3Lsnj7iWaUDfBjy8EzjP9+s+lIIlelsiySgy9/28WKHTEU\n9fPkg/+0wsXFMh1JRMSpFfb1ZMIzrbEsmPjjViL3nTIdSSRHKssiV7Dj8FlGz85eRP+9Pi0oVdTH\ncCIRkfyhaXBp+ncMxWa389wny7iQlGY6ksgVqSyL/IvElHSenvgH6Zk2erYLJrxhJdORRETylRce\nqEfdysWJPpvIi59rOTlxXCrLIv/DbrczdNpqjsQmEFyhGK9rlz4RkVzn4ebKJ8/egZ+XO4s2HGbG\n73tMRxL5VyrLIv9j7ooovl97EB9PNyY/dwdeHm6mI4mI5EtBpfx5r28LAN78eh07j5wznEjkn1SW\nRf4mKjqeV2esAeCtJ5pRtUwRw4lERPK3+5pUoccdwaRn2nh64u8kpqSbjiRyGZVlkb+kpGfyzMQ/\nSE3P4sEWt9G1RTXTkURECoTXH2tCcIViHD6VwJCpqzV/WRzKVcvyqVOn6NGjB6GhoXTp0oX9+/df\n04FnzpxJs2bNaNSoER988MFl19WoUYOwsLBL/82fP//G0ovkote/Wsfe6HiqlC7MW3/tMiUiInnP\n2yN72puPpxs/rDvInBX7TEcSueSqZXnEiBFUr16dyMhIwsPDGTx48FUPum3bNj7++GNmzpzJTz/9\nxC+//MKvv/562W0WLlzIli1b2LJlC127dr3xRyCSCxas2s+sP/fi6e7Kp8/dga+Xu+lIIiIFStUy\nRRjbuzkAw6evZc+xOMOJRLLlWJYTExNZu3Ytffv2xcPDg169ehETE0NUVFSOB128eDF33XUXVapU\noVSpUnTt2pVFixZddhv9iUUcxe5j5xgyLXs761E9b6dWxQDDiURECqYHmt/Gw62qkZqRRd8JS0lI\n1vxlMS/Hsnz06FE8PDzw8fGhW7duREdHU6FCBQ4dOpTjQY8cOUKlSpWYMWMG77zzDlWrVuXw4cOX\n3aZ79+40b96cYcOGkZiYePOPROQGXEhKo++Hv5OansXDrarRrU1105FERAq0Mb2aXZq/PGjycmw2\nfbgmZuW4JlZKSgq+vr4kJSVx8OBBEhIS8PX1JSUlJceDpqSk4OPjw4EDBzhx4gQtW7YkOTn50vVz\n586ldu3anDt3jqFDhzJ69GjGjh37r8cKCLjyp3zu7u5XvY04FkcaM5vNzlMTv+VIbAKhVUox+fmO\neHtq+sXfOdJ4ybXTeDkPPcf+3YI3unL7c9NZsuko0//cz0sPNzUdCdB4OZvcGq8cy7K3tzdJSUkE\nBgYSEZG97W9SUhI+Pjlv++vt7U1ycjLDhw8HYOnSpZf9TN26dQEoUaIEgwYNok+fPlc81qhRoy59\n3bJlS1q1anWVhyRybcbNW8/P6w9QxM+Tb4Z3VlEWEXEQVcoU5cuXO9Ll9QW8PmMl9W4rzR31gkzH\nknxkxYoVrFy58tL3bdq0ueJtcyzLFStWJC0tjdjYWEqVKkV6ejrHjh2jUqWct/4NCgq6bKrGgQMH\nqFy58hVvn9P85X79+l32/blz/79g+X9/U/j7ZeLYHGXMVu2M4Y0Z2U+SCU+3prBHlvFMjshRxkuu\nVRlA4+VM9By7ssZVizK4cz3Gf7+Zx976niVjulC2uJ/RTBov55LTeIWEhBASEnLp+z17rryDZI5z\nlv38/GjevDlTpkwhLS2N6dOnU7ZsWapV+//1Z3v06MG4ceMu+7nw8HCWLl3KgQMHiI2N5dtvvyU8\nPByAqKgodu/eTVZWFvHx8UyaNIm2bdtew0MWyR0x5xLpN+lPbHY7gzqH0S6sgulIIiLyLwZ3CaNN\nnXLEJ6bRd8JSUtMzTUeSAuiqS8eNHDmSqKgoGjVqxOLFixk/fvxl18fExPyjsdepU4f+/fvTs2dP\nOnbsSIcOHS6V5bi4OAYMGECDBg249957KVGixKXpGiJ5LSUtkyc/WErcxVRa1S7L813qmY4kIiJX\n4OriwsT+bShfwo9th84yYsZaraYlt5y1b98+h/1Xd/z4cYKDg694vf4c4nxMjpndbqffpD9ZuP4Q\nQaX8+enNThQr5HXLczgTPcecS9my2dMwYmJOGE4i10rPsWuz4/BZ7n9zIakZWYzq2ZTe7UOu/kN5\nQOPlXK5nvPbs2UP58uX/9Tptdy0FxsSFW1m4/hB+Xu5Me/5OFWURESdRu1JxxvVtCcAbX69n5Y5o\nw4mkIFFZlgJhycYjvDNvI5YFE/u3oXq5YqYjiYjIdejcrCrPdQoly2bn6Y/+4ODJ86YjSQGhsiz5\n3t7jcTz36XIAhj7UkLvqVTQbSEREbsjLDzagff2KXEhO54n3f+NCUprpSFIAqCxLvhZ3MZUn3v+N\npNQM7m9ahf4d65qOJCIiN8jFxWJivzYEly/GwZMX6DfpTzKzbKZjST6nsiz5VlpGFv+Z8DvHzlyk\nTqXijPtPSyzLMh1LRERugq+XO1++cBfFCnmxfHs0o2dHmI4k+ZzKsuRLdrudFz9fybo9JylVxIep\ng+/E2yPHPXhERMRJlC9RiC8GtcPd1YXPf93JjN93m44k+ZjKsuRL477dxHdrDuDr5c7Ml9pTJsDs\nrk8iIpK7GtcozTtPNgdg+PS1LN181HAiya9UliXfmbN8Hx9+vwVXF4vJz91BSFBx05FERCQPPNyq\nOoM718Nmt/PMpD/ZduiM6UiSD6ksS76yckc0Q6atAmDM481oG/rvC4yLiEj+8MID9eja4jZS0jLp\n+d4Sjp1OMB1J8hmVZck39hyL4z8Tficzy06/e+vQ444r7/4oIiL5g2VZvNunBS1CynI2IYUe7y0h\nPjHVdCzJR1SWJV+IOZdIj/cWczElg46NKzPs4UamI4mIyC3i4ebKlIHtCC5fjAMnztNn/FLSMrJM\nx5J8QmVZnF7cxVS6jf2Vk3FJNKxWig+fboWLi5aIExEpSPx9PJj5UnsCi/qyfu8pnv14GVk2rcEs\nN09lWZxaYko6j737KwdOnCe4fDGmv9geLy0RJyJSIJUJ8OOrl9vj7+PBog2HGTJ1NXa73XQscXIq\ny+K00jKy6D1+KdsOnaViyULMGhJOEV9P07FERMSgmhUCmPFie7w8XJm9fB+jZ0eqMMtNUVkWp5Rl\ns/Hsx3+yZtcJShbxZvawDpQq6mM6loiIOIBG1QP5fOCduLlaTP5lOx//tM10JHFiKsvidOx2O0On\nrmbRhiP4+3gwa0g4FUv6m44lIiIOpG1oeT56pg2WBW/P3cBM7fInN0hlWZyK3W7nzVnr+Wb5Prw8\nXJn5YntqVggwHUtERBxQp6ZVeOvxZgC8Mn0NP647aDiROCOVZXEadrudMbMj+fzXnbi7uvD5wDtp\nWD3QdCwREXFgPdvVZOhDDbHb4blPlvFL5GHTkcTJqCyLU7Db7Yydt5FPf9mOm6vFlIHttDufiIhc\nk2fvq8uz94WSZbPTb9If/LpBhVmuncqyOIVx325i0sKtuLpYTH7uDu6qX9F0JBERcRKWZTH0oQb0\n71iXzCw7T0/8gyUbj5iOJU5CZVkc3vjvNvPh91twdbH4+Nm2hDesZDqSiIg4GcuyGPZwQ565pw6Z\nWXae+ugPftt01HQscQIqy+LQPvx+M+O+3YSLZTGxXxs6Nq5sOpKIiDgpy7J49dFGPNWhNhlZNv4z\n4XeWblZhlpypLItDstvtvD13A+8t2IRlwYdPt6JT0yqmY4mIiJOzLIsR3RrTNzzkUmHWHGbJicqy\nOBy73c7rX627NEd5Ur82PND8NtOxREQkn7Asi9e7N6HP3SGkZ9p46qM/WLBqv+lY4qBUlsWhZNls\nvPzFKqYu2YWHmwufD2zH/bdXNR1LRETyGcuyeOOxJgy8P4wsm52Bk5czfak2LpF/UlkWh5GRaWPg\np8svbTjy5Qt30b5BkOlYIiKST1mWxctdGzCiW2MAXp2+hkkLtxpOJY5GZVkcQnJqBk+O/43v1x7E\n18udWS+H07qO1lEWEZG89/Q9dXjnyeaXtsZ+a04kdrvddCxxECrLYlzcxVQeemsRf2w9ThE/T+YM\n60CT4NKmY4mISAHyWNtgJvVrk71M6U/bGDJ1NZlZNtOxxAG4mQ4gBdvxMxfp9s6vHDp5gXLF/Zg1\nJJyqZYqYjiUiIgXQ/bdXxcfLnWc++oNZy/ZyMj6J/2vvzsOjqu89jr+zTVay7wnZSIKQhX0XAdkM\nGoQqXbBAtVeptVbbaq+2BTe0YlutV2sXW622rhQxIEtBUUB2iOyBJGQBspJ9m0CSmftHSi5LJupl\nOcaOVqsAABqASURBVJnk83qePHnmnJnJN/lmzvOZM7/z+/3p/sl4urkYXZoYSGeWxTCHCyuZ+XgG\neSW1DIjyJ+PxmQrKIiJiqGlDo3n3Fzfj5+XKxn0nuX3JR5TXNBldlhhIYVkM8dmBk9z21CrKa8yM\nHRjGB4vSCfXzNLosERERRiSGkPH4TKKD+3Agv4L0xzLIKao2uiwxiMKyXHN/XLmXec/9m3pzC+mj\n4vjnz9Pw9jAZXZaIiEiHfmG+rHz8Vob0C+JURQOznljFloMnjC5LDKCwLNdMa5uFB/+wnp+8sgGL\n1coDs4bwyo9uxNXFyejSRERELhHo486yX97C9GHR1DSeYcaj7/L6uv1GlyXXmMKyXBN1TWeZ/5t1\n/GlVJiYXJ/7n3on8fM5wHB0djC5NRETEJndXZ159cArfn55ES6uFe3+/lkVvbNNMGb2IwrJcdbnF\nNaQ/lsGmg0UE+Xiw7tnvaPlqERGxG06Ojjw5fyx/fDANF2dHXlt/mLlL11JV32x0aXINKCzLVbV2\ndz43L/qQ3OIa+kf6sfnF+YxNijS6LBERka/tzpsGsf65uQT5uLP1cDG3LP6QoyerjC5LrjKFZbkq\n2iwWfv3ebv7r9x/T0Nx+Id+qJ24lNlRTw4mIiP0aMzCS1U/NIjU2kMLyemY+vpKM7ceNLkuuIoVl\nueKq6puZ99w6Xl65DydHBxbNHcUf779Rk7qLiEiPEBHgxQeL05k9th+NzS388OWN/OL1rZxpaTO6\nNLkKFJblitqRVcLURz9g08EiArzdeOeRGfzg5lQcHHQhn4iI9BzuJmde+uEknl4wFpOzI298fIRZ\nT6yksLzO6NLkClNYliuizWLhhQ8ymfP0akqrGxmeEMLaJbMZlxRudGkiIiJXhYODA9+blsSHj80k\nKqh9AZObfrmCtbvzjS5NriCFZblsJVWNfOuZNfx2+V6sWLn/1sEsX3QLEQFeRpcmIiJy1Q2KC2Ld\n07O5aXg0dU1n+a/ff8yiN7ZhPttqdGlyBSgsy2VZn1nI1EeXsz2rhGBfd95+ZAaPfHMEzk761xIR\nkd7Dx9OVvz44lce/OxpnJwdeW3+YtF+u4GB+hdGlyWVSopH/l7qms/zsL5u483frqW44w8TUSDY8\ncxs3JEcYXZqIiIghHBwcuDsthY+emEVCuC85xTXc8tiHvJSxjzaLFjGxVwrL8rVtPlTE5Ef+xbub\nsnF1cWLxHaP4x8M3EejjbnRpIiIihkuJDWTt07O5a1oSrW1Wnn1/N7c99ZEu/rNTCsvylTU2t/Do\n65/znV+vobiykcFxQfz76dksnJGqZatFRETO425y5qkFY3nrv28ixNeD3dllTHlkOX9bd0hnme2M\nwrJ8JZsPnmLqo8t58+MsXJwc+e9vDifj8ZkkRPgZXZqIiEi3NTG1Lx8/exvpo+JoOtPK4n9sZ9YT\nqzh2Siv/2QuFZenS6domfvSHjXzn2bUUltczMMqf1U/N4se3DtFFfCIiIl+Bfx83/vTjybz2k6mE\n+nmQmVvO9F+s4HfL92ohEzvgbHQB0j1ZLFbe/uwoz7yzi9qms7i5OPHg7KEsvDkFk7OT0eWJiIjY\nnenDYxgzMJyn39nJPzce5fkPMlm1I49f33U9YwaEGV2e2KCwLJc4cqKSR1/byp6cMgAmpUby9J3j\niA72NrgyERER++btYWLp98cze2w8D/9tCznFNdy+5CNmjo5j0dxRhGuNgm5HYVk6VNSaee5fe3jn\n02NYrFaCfd15Yt4Y0kfFablqERGRK2j0gDA2PPMN/rj6AC+v3MfKHXls+OIEP751MAtnpOLqok9x\nuwuFZeFMSxuv/fsQL374BfXmFpydHLhzShI/u20YPp6uRpcnIiLSI7mZnPnJ7KHMuT6BJ9/eyepd\n+Sx9fw/vbcpm8dxRTBsWrZNV3YDCci9mtVpZu6eAJW/vpLC8HoDJg/uy+I7RxIf7GlydiIhI7xAZ\n1Ie/PDCFLYeKWPzmNrKLarjrhQ2MSAzhl98eyYj+oUaX2KspLPdCVquVzQeLWLpsN/vz2pfhTIzw\n5bHvjmZial+DqxMREemdxidHsP6Z2/jHJ0d4YcUX7M4uY9aTq5g+LJpHvjmCxEhN12oEheVeZvex\nUpYu28P2rBIAgn3deWDWUL5743WaCk5ERMRgLs6O3DU9mTnjE/nTmgP8ec1B/r23kA2ZJ/jmDQk8\nMGsIUbrg/ppSWO4l9uaU8fsPv2DjvpMA+Hq6cl/6IO6cloS7q/4NREREupM+HiYevn04C6YM5IUV\nmby18Sjvbspm2ZYcbh+fwP0zBxMb6mN0mb2CUlIPZrVa2XK4mJdX7mPr4WIAPN1cuCcthXtmpODt\nYTK4QhEREelKsK8Hv77zeu5OS+HFD79gxdZc3tuUzbLNOcwe148f3zpE1xldZQrLPZDFYmV9ZiEv\nZexjX95pAPq4u7BgahL3pCUT4O1ucIUiIiLydcSF+vDiDyby4KwhvLxyH//6PIfln+fywdZc0obH\ncM+MVEYkhhhdZo+ksNyDNJjPsmxLDq+tP0xeSS0AAd5u3H1TCgumDtSZZBERETsXG+rD7+6ZwAOz\nhvDyqv28vymbNbsLWLO7gKHxwSyckULaiBicHHUd0pWisNwDFJbX8fr6w7z72THqzS0AhAd4cu/N\nqXxn4nUakywiItLDRAV789z3x/PTbwzl9fVH+OcnWWTmlrPwfz4hKqgPd05PYs74BPy83Iwu1e4p\nRdmp1jYLG/ef5O1Pj/LxFyewWtu3j+wfwvenJ3PT8BjNbiEiItLDhfp58ui3RvDArYN5f3M2r647\nREFZHU/8cwdL39tN+ug45k0ewND4YC1w8v+ksGxn8ktr26+G3ZxNWU0TACZnR24d04/vT08mJTbQ\n4ApFRETkWvNwc+F705KYN2UAH2ee4M1PsvjswCmWbclh2ZYcBkb5893JA5g5Ok5nm78mhWU70Njc\nwro9Bby76RjbjpR0bI8L82HuxP7cPj6BIB8PAysUERGR7sDJ0ZHpw2OYPjyGgrI63tqYxbubsjly\noopfvL6Vx/+xnSlDorn9+ngmDe6LydnJ6JK7PYXlbqr5bCuf7j9JxvY8NnxRSPPZNgDcTE6kj4pj\n7qTrGJEYoo9UREREpFMxId788jujeOj24azZlc/7m7PZcriINbvzWbM7Hz8vV2aN7cc3xiUwpF+Q\nMoUNCsvdyNnWNrYdKSZjex7r9hRQ13S2Y9/I/iF8Y1wCt47pp1ktRERE5CtzdXFi9rh4Zo+Lp7iy\ngQ+3Hedfn+dw7FQ1r68/wuvrjxAR4MWMkTHcPCKWYQkhODoqOJ+jsGywuqazbNx3gn/vLeTT/Sc7\nZrMASI4JYNaYfswc3Y+IQC8DqxQREZGeIDzAix+mD+LeW1I5XFjJvz7PYdWOPIoqG3h17SFeXXuI\nEF8P0kbEkDYihlH9w3Bx7t0TBigsX2NWq5W80lo2HTjFhswTbMsqprXN2rF/QF9/0kbEcOuYflqR\nR0RERK4KBwcHkmMCSY4JZPHc0WQeL2f1zvbhGacqGvj7hiP8fcMR+ri7MD45ksmD+zJxUCShfp5G\nl37NKSxfA1X1zXx+uIgtB4vYdLCIosqGjn2ODg6MGRDGtGHRTB8WTXSwt4GVioiISG/j6OjA8IQQ\nhieEsPiOURzIr2D1rnzW7y0kp7imY4wztH/qPTG1L+OSwhmRENIr1nLo+b+hAaobmtmTXcauY6Vs\nPVLMgfyKjnmQAfy8XBmfHMGkQX2ZMiQK/z6awkVERESM5+DgwKC4IAbFBfGLb4/kRHkdG/efYuO+\nE2w9UsyhgkoOFVTy8sp9mJwdGRofzNiB4YwdGM7Q+GBcXXre7BoKy1dAUWUDu46Wsiu7lF1HSzl6\nqvqC/SZnR4YnhjAhJZIbUiJIjg7UwHkRERHp9qKCvfne1IF8b+pAzGdb2Xm0hE0HitiWVczhwkp2\nHC1lx9FSnv8gEzcXJ4bEBzMsPpih8cEMTQjuEVPbKix/TadrmziQX8GBvAr255/mQF5Fx+Ig55ic\nHRncL4iR/cMY1T+U0deF4uHmYlDFIiIiIpfP3eTMxNS+TEztC7R/kr7zaCnbjhSz7UgJWSer2J5V\nwvas/1sTIiqoD0PjgxmWEExKbBADo/zxtLNMpLBsQ5vFQkFZHdmnqjl6qprDBZXszz9NcWXjJff1\n8TAxLDGEUf1DGdk/lNTYQNxM+tOKiIhIz+Xn5cZNw2O4aXgMAJV1ZvbmlLM3t5zM3DL2HT/NidP1\nnDhdz4fbjwPg4ACxoT4kRQWQHBNAUnT7V7Bv9z0D3esTXZvFwqmKBnKLazh2spqjp6o4dqqa3KIa\nmlvaLrm/p5sLqbGBpMYGMiguiNTYQGJCvDWRt4iIiPRqAd7uTBsWzbRh0QC0tlk4dqqazNxyMnPL\nOVRQQXZRNXklteSV1LJqZ955j3UjIdyX+HBfEiL8iA/3ISHcj/AAT8MzVq8Iy61tFoorG8gvrSO/\ntJb8svbvBWV1nCivp6XN0unjwgM8uS7Sn/6RflzX15/B/YKIC/XReGMRERGRL+Hs5Nhx5nje5AEA\nnGlpI6eomsOF7RcKHi5s/6qsa6ayrn388/k8XJ2JD/clLtSHqOA+RAd70zeoD9HBfQgL8MTJ8erP\nAW33YdlqtVLTeIaiigaKKhsormiguKqx43ZRZQNl1U20Waw2nyPUz5O4MG8G9PWnf6Q/iZF+9I/0\n00p5IiIiIleQq4tTx/zO35rQvs1isVJS1UhOcTU5RTXkFrd/5RTXUFnX3H6tWH7FJc/l7ORAZGAf\n+gb1ISq4D+H+noT5exLq50movwcDXT3x8XS97Jq/NCyXlpby8MMPc/DgQeLi4li6dCkJCQlf+sRv\nvvkmf/7zn2lpaeHb3/42P/3pTzv27dy5k8WLF1NeXs7YsWNZunQpXl6dr1C3J6eMiloz5TVNVNSa\nOV1n5nSNmdO1ZiobzlBW1UjTmZZOH3u+UD8PYkN9iA3xJibUm9hQH2JCvIkJ9tbFdyIiIiIGcXR0\nICLQi4hAr46LB8+pqm/meHEN+f8ZDXDidPv3k6frKa1uoqCsjoKyOpvP7eHqQoifO6F+7UE62NeD\nIB93ArzdCPJxJ9DbnQBv9y7rczh27JjtU67A3XffTXR0ND//+c954403yMjI4KOPPurySffv3889\n99zD22+/jZeXF3PnzuWhhx4iLS0Ns9nMpEmTWLRoEZMnT+ahhx4iKCiIxx577JLnOXnyJFOWfN7l\nz4L2ccSRgV6E+3sSHuhFRIAX4QGeRAS0/+FD/Tx75Lx/9iggIICsrCyCg4ONLkW+AvXLvkREhANQ\nVFRscCXyVek1Zl/Ur+7FfLaVoooGCsvrOFleT0lVIyXVjZRWN1Fa1UhZjZkG89mv9Fwf/+p6+vbt\n2+m+Ls8sNzQ0sG3bNpYsWYLJZGLBggW88sorZGdnk5iYaPNx69atY9q0afTr1w+AOXPmsGbNGtLS\n0ti5cyfe3t7cfPPNANx1113ce++9nYZlgMFxQQT5uhPk7U7Qf94NBPq4E+zjTkJ0ODs//4Sbpkwy\nfPC3fHU60NgX9Uvk6tJrzL6oX92Hu6l9PHN8uG+n+wMCAvjnu8uIHziEkv8E6PKaJirqzFTWNXO6\n1kxFnZmKWnOXP6fLsFxYWIjJZMLDw4O5c+eyZMkSoqKiyMvL6zIsFxQUMGLECN544w1KS0sZNmxY\nx9no/Px84uLi2Lt3L6+88grPPfcctbW1VFdX4+fnd8lzrX5qls2fExDgz0GTk4KyiIiIiFzCw+RE\nQoQfCRGXZszzZWVl2dzXZVg2m814enrS2NjI8ePHqaurw9PTE7O56wRuNpvx8PAgNzeX4uJibrjh\nBpqa2hfuaGpqwsPDg4qKCo4fP47JZOrY3llYDggIsPlzXFxcuPHGG/H17fwdhXQ/6pl9Ub/sU1fH\nTele9BqzL+qXfblS/eoyLLu7u9PY2EhoaCg7d+4EoLGxEQ+PrieOdnd3p6mpiV/96lcAbNiwoeMx\nHh4eNDU1MX36dKZPn05tbW3H9s58/vmXj1kWERH4+OP27zpsiohcOV2G5ejoaM6cOUNZWRkhISGc\nPXuWEydOEBsb2+WTxsTEkJf3fxNN5+bmEhcX17HvnXfeuWCfj49Pp2eVbQ20FhERERG5FrqcydnL\ny4vrr7+ev/zlL5w5c4a///3vREREXDBeed68efz2t7+94HFpaWls2LCB3NxcysrKWL58OWlpaQCM\nHj2a+vp6PvroI5qamnjttdeYMWPGVfjVREREREQuz5cue/Lkk0+SnZ3NyJEjWbduHS+88MIF+4uK\niqisrLxgW2pqKvfddx/z588nPT2dGTNmdIRld3d3XnzxRV566SXGjh0LwM9+9rMr9fuIiIiIiFwx\nXzrPsoiIiIhIb3X1F9QWEREREbFTCssiIiIiIjZ0ORtGd5KVlcXmzZspKSkhJSWF2267rWPftm3b\n2Lp1K2azmcDAQO69914tVNIN2OqZ2WwmIyODvLw8nJycGDFiBDfeeKPB1UpbWxsrVqzg+PHjtLS0\nEBYWRnp6OsHBwbS1tZGRkcHhw4dxc3MjLS2N5ORko0vu1brq15YtW9izZw8NDQ34+voyZcoUBgwY\nYHTJvVpX/TrHbDbzwgsvkJCQwJw5cwysVuDLe6bs0b101a/LzR1O999//+NXr/Qrp6GhgfDwcNzc\n3Ghra2PgwIEAHDhwgE8//ZQ77riDW265haioKLy8vAyuVsB2z9avX09TUxMLFy4kNTWVlStXEhQU\nRGBgoMEV924Wi4XTp08zc+ZMpk6dSnNzM2vXrmXMmDFs3bqVgoIC7rvvPqKionjvvfcYPHgwbm5u\nRpfda3XVr1OnTjFhwgRmzJhBWFgY77zzDikpKbi7uxtddq/VVb/OWbt2La2trXh6enYcL8U4XfVM\n2aP76apfl5s77GYYRmxsLAMHDrzkYL9r1y4mTJhAeHg4ACEhIUaUJ52w1bOKigr69++Ps7Mzvr6+\nREVFcfr0aYOqlHOcnZ2ZNGkS3t7eAAwZMoSqqioaGxs5dOgQY8aMwc3NjdjYWPr27cuRI0cMrrh3\ns9WvpqYmxo0b13EsjIqKwt/fn5KSEiPL7fW66he0zyxVXV1NYmIiVquuu+8OujomKnt0P13163Jz\nh92E5XMuPoiUlZXR0NDA888/z29+8xs++eQTgyoTWy7uWUJCAkePHuXs2bNUVVVRVFREfHy8QdWJ\nLSdPnqRPnz4dy9MHBgaybNkyDh48SHBwMBUVFUaXKOc5v1/nM5vNVFRUXPBxvxjv/H5ZrVZWr15N\nWlqagnI3dn7PlD26v/P7dbm5w27GLJ9z8Xig5uZmsrOzWbhwIS0tLfz1r38lLCxMH2F1Ixf3bOTI\nkRw7dowlS5ZgtVqZPHkyoaGhBlUnnWlubmbNmjXMmDEDBwcHWlpaMJlMlJWVER4ejqura8dS9WK8\n8/t1sYyMDIYOHUpQUJABlUlnLu7X3r17CQ0NJTg4WGNeu6mLj4nKHt3bxf263Nxhd2H54nfdJpOJ\noUOH4unpCUBSUhL5+fn6h+1GLu7ZsmXLCA0NZf78+dTX1/Pmm28SGBioC8a6idbWVt566y1SUlI6\neuLi4kJLSws/+tGPAFi9ejWurq5Glin/0Vm/zlm/fj1ms1kXi3UjF/erubmZTZs28YMf/AC49Hgp\nxuvsNabs0X111q/LzR12Nwzj4nfd/v7+F9zWgab7ubhnOTk5DB06FCcnJ3x9fUlMTOT48eMGVSfn\ns1gsvP/++wQGBjJ58uSO7YGBgZSXl3fcLi8v1wWZ3YCtfgFs3bqV48ePc8cdd+Dk5GRQhXK+zvpV\nXV1NTU0Nzz77LIsWLeKzzz7jwIED/OEPfzC4WgHbrzFlj+7JVr8uN3fYTVi2WCy0tLRgsViwWq20\ntrbS1tbGgAED2Lt3L01NTdTV1ZGVlUVcXJzR5Qq2exYUFMQXX3xBW1sb9fX15ObmajxlN5GRkYGD\ngwPp6ekXbE9OTmbHjh00NzeTl5fHyZMndQalG7DVr8zMTHbv3s38+fMxmUwGVScX66xfYWFhPPXU\nUx1fkyZNYtCgQdx3330GVirn2HqNKXt0T7b6dbm5w26Wu87MzGTFihUXbJs0aRI33HADGRkZZGVl\n4eLiojl7uxFbPUtJSWHVqlUUFxfj7OxMSkoKaWlpODrazXu3Hqm6uprnn38eFxeXC7YvWLCAyMhI\nzbPczXTWLwcHB+bNm8fy5cupr6+/4DU1YcIEJkyYYESpQtevr+jo6I7bGzdupKqqittvv/1alygX\n6apnERERyh7dTFf98vDwuKzcYTdhWURERETkWtOpPBERERERGxSWRURERERsUFgWEREREbFBYVlE\nRERExAaFZRERERERGxSWRURERERsUFgWEREREbFBYVlERERExAZnowsQEZGvLjc3l4aGBkwmk5Yc\nFxG5BnRmWUTEThQWFuLl5cXgwYMJDw/n0KFDRpckItLj6cyyiIidsFqtWK1WABwdHXFwcLB5X4vF\nwuHDhykoKMDd3R1XV1esVitJSUls27aN9PT0a1W2iIhdU1gWEbETMTExZGdnU1paiouLC8nJyZ3e\nr6amhmXLlpGUlHRBKLZYLLz66qtERUVdq5JFROyewrKIiB1JTEzscn9DQwN/+9vfGD9+PCNHjrxg\nn6OjI/Hx8URHR1/NEkVEehSFZRGRHmTNmjX06dPnkqB8TmxsrM4si4h8DbrAT0Skh2hqauLQoUMM\nHz7c5n3i4uJwdtZ5EhGRr0phWUSkh6isrMRqtRIZGdnp/jNnzlBXV3eNqxIRsW8KyyIiPYSPjw8O\nDg60tbV1uv/AgQO4urpe46pEROybwrKISA/h7e3NsGHD2LFjxyX7Dh48SFhYmMKyiMjX5HDs2DGr\n0UWIiMiVYbFY2L59O2VlZfj7++Pq6oqjoyPXXXcdPj4+RpcnImJ3FJZFRERERGzQMAwRERERERsU\nlkVEREREbFBYFhERERGxQWFZRERERMQGhWURERERERsUlkVEREREbFBYFhERERGxQWFZRERERMQG\nhWURERERERv+F4T3EhcMY8LgAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So what does this curve *mean*? Assume for a moment that we have a thermometer, which reads 22$\\,^{\\circ}C$. No thermometer is perfectly accurate, and so we normally expect that thermometer will read $\\pm$ that temperature by some amount each time we read it. Furthermore, a theorem called **Central Limit Theorem** states that if we make many measurements that the measurements will be normally distributed. So, when we look at this chart we can *sort of* think of it as representing the probability of the thermometer reading a particular value given the actual temperature of 22$^{\\circ}C$. However, that is not quite accurate mathematically. \n", "\n", - "print('Probability of 22 is %.2f' % (gaussian(22,22,4)*100))\n", - "print('Probability of 24 is %.2f' % (gaussian(24,22,4)*100))" + "Recall that we said that the distribution is *continuous*. Think of an infinitly long straight line - what is the probability that a point you pick randomly is at, say, 2.0. Clearly 0%, as there is an infinite number of choices to choose from. The same is true for normal distributions; in the graph above the probability of being *exactly* 22$^{\\circ}C$ is 0% because there are an infinite number of values the reading can take.\n", + "\n", + "So what then is this curve? It is something we call the *probability density function.* Later we will delve into this in greater detail; for now just understand that the area under the curve at any region gives you the probability of those values. So, for example, if you compute the area under the curve between 20 and 22 the result will be the probability of the temperature reading being between those two temperatures." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So how do you compute the probability, or area under the curve? Well, you integrate the equation for the Gaussian \n", + "\n", + "$$ \\int^{x_1}_{x_0} \\frac{1}{\\sigma\\sqrt{2\\pi}} e^{-\\frac{1}{2}{(x-\\mu)^2}/\\sigma^2 } dx$$\n", + "\n", + "I wrote `stats.norm_cdf` which computes the integral for you. So, for example, we can compute" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print('Probability of value in range 21.5 to 22.5 is {:.2f}%'.format(\n", + " norm_cdf((21.5, 22.5), 22,4)*100))\n", + "print('Probability of value in range 23.5 to 24.5 is {:.2f}%'.format(\n", + " norm_cdf((23.5, 24.5), 22,4)*100))" ], "language": "python", "metadata": {}, @@ -397,27 +439,17 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Probability of 22 is 19.95\n", - "Probability of 24 is 12.10\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEUCAYAAAA1EnEjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1VX+x/HXveybooCCouIOiru5m4r7lml9s0WzZdSy\naarp1zZt09hU01jTtEzTMuWUZfVNzXJJxX2rFHdBRBRRBEEQFJX9/v64F8YM5LLdc5fP8/HgAffy\n5fI+Xryfe77nfM8BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFELdwGHAUSgUnXOa4lsA04BMQB\no2rxGEIIIRyMJ3AcCAFaAceuc2wzoJvl69bA6Vo8hhBCCAczFPjhqtsbgR5W/mwm4FHHxxBCCFFL\n7jb6Pc2BdGAukANkAGHA/mp+bizm00/FQGgtH0MIIUQd2KpQlPvA8nkaYKrm2FBgAXCT5Xb58TV5\nDCGEEHVkq0KRjvndf7ny3kFVvAEdeBw4UZPHWLdunclgMNQprBBCuJq8vLz9t9xyS8/KvmerQrEL\n6Ip5INobCAcOWL73KuaewZ8stw3Ap8CXwForH6OCwWAgKiqq4nZQUBBLly5l2LBh9dgc9aRd9uVM\ndj6vfr2LZTuOYbL0c7tFBDOkawuiI4J4SLsRgMU//sKJsxeISzrLpgOnyb5QAEBQI28evbkXs0Z3\nwc1oVNWMGnPU58saztq2qtqVkJBQ5ZivrQpFEfA0sN1y+9GrvhfKr08hDQZuASKBOZb7xmMek6jq\nMYRQwmQy8cXGI7z85c9cvFKMh5uR6cM68btx0XRs2aTiuIcsn2/sFs6N3WDWqC4Ul5QRu/ck/1px\ngD3HMnn+s50s3X6MN+bcSOfwpmoaJEQlbDlG8Y3l41r3XnN7G+apsDV5DCFs7lJBMY99sJmVv5jP\njo7t04a/zBxIeEiAVT/v4W5k/A1tGdc3gjVxJ3l24Q72Jmcx4bnveP13Q7llSMeGjC+E1Ww9mK3E\n1aeinIm0S53UzAvc88ZaEk+fJ8DHg7/dP5SbBrSjNuNjBoOBcX0jGNSlBS98tgN9axJ/eH8Th1Ky\nef7O/hiN9j3m5gjPV205a9tq2i7HORlaB/JkOxZ7b9fR0+eZ+pcfSDx9no4tAlnxl5uZMrB9rYrE\n1Rr5evKPucN49d7BeLgZ+XD1QR759yaKS8rqKXnDsPfnqy6ctW1SKIRoQIdPZjNt/g9knL/MgMhQ\nfnhpCh1aBNbb4xsMBu4e1YUvnhqPn7cHS7cf44F3Yu2+WAjnJoVCCCulnL3AXX9bzfn8QmJ6tmLR\nU+MJ8K1qOK1uBndtwVfPTCDQz4sfd5/ksQ82UVYmlw0JNaRQCGGFs+cvc8erq8jKu8KQri34+NHR\n+Hg27BBf7w7NKnoWy3Yk8/xnOzCZpFgI25NCIUQ1rhSVMGvBGlKzLtKjXTD/eWw0Xh5uNvndPduH\n8Okfx+Dl4cbCdfEsXBdvk98rxNWkUAhxHSaTiSc/3srBlHO0aRbA50+Mw9+nYU43VWVw1xa8Ocd8\nwd6Ln+9k66E0m/5+IaRQCHEdH/14iKXbj+Hr5c5/HhtDUCMfJTluHtSB30/uQWmZiQfeWU9q5gUl\nOYRrkkIhRBV2J53l5S9/BuAfc4cR1Vrt1dJP3taXUb1ak5tfyLx3N8pMKGEzUiiEqMTFy0U8/N5G\n8zv4id2Z1L+d6ki4GY3888HhtAjyY29yJn//drfqSMJFSKEQohJ/Wrid1KyLdIsI5qnb+qqOUyHQ\nz4v3HorBaDDw3g/72XLwdPU/JEQdSaEQ4hrLth9j6fZj+Hi58+5DI/B0t80MJ2v16xzKH2/pDcBj\nH2zhwuUixYmEs5NCIcRVsvIu89x/dwDw0oyB9XrVdX36w5Se9GrfjIzzlyrGUYRoKFIohLjKC5/t\nJPdSIcO7h3PniM6q41TJzWjkzTk34ulu5IuNR9giU2ZFA5JCIYTF2j0n+f6n4/h4ufPafUPqvMhf\nQ+sU3oTHpplPQT358RYuFRQrTiSclRQKITDPcvrTp+Y9sZ7S+tLKyj0lVHtwYg+iI4I4lZXPm0v3\nqI4jnJQUCiGAN5bGkZ5ziZ7tQrhvbFfVcazm4W7k778bisEAH/94kKOnz6uOJJyQFArh8pLSzvPp\n2sMYDPC3+4c41J7VAN3bhjAjJoqSUhPPycKBogE41v8IIeqZyWTiz4t+oqTUxJ0jIomOCFYdqVae\n1PoS6O/F9sNn+OHn46rjCCcjhUK4tHV7U9l04DSNfD15SrOfC+tqqmmAN89MvwGAlxb9zGUZ2Bb1\nSAqFcFmFxaW8tOgnAB6/pY+yBf/qyx3DO9O9bTAZ5y/x4eqDquMIJyKFQrisT9ceJuXsBTq2CGTW\nqC6q49SZm9HIc3f0B+BfKw5wLu+K4kTCWUihEC4p71Ih7yzfB8ALdw3Aw905/isM7tqCkT1bcamg\nWKbLinrjHP87hKih91ceIPdSIQOjwhjRI1x1nHr17B39MBoMLNqQwLEzuarjCCcghUK4nLPnL/Px\nj4cAeGb6DXZ/BXZNdQ5vyu3DOlFaZuK1r3epjiOcgBQK4XL++d1erhSWMK5vG/p0bK46ToP4v1v7\n4uPlzurdKew5lqk6jnBwUiiES0k5e4EvNiZgNBh40oGnw1aneRNf7h9jvsL8zSVxitMIRyeFQriU\nBd/upqTUxK1DO9I5XO3Wpg1t7sTu+Hl7sPHAaXYdPas6jnBgUiiEyzh2Jpfvdibj4Wbkccuqq86s\naYA3vxsXDcAb0qsQdSCFQriMt5fvxWSC6cM6Ee4gq8PW1ZwJ3Qjw8WDroTR+PpKuOo5wUFIohEs4\nkZHHsu3JuLsZ+P1NPVXHsZlAPy9mj+8GwALpVYhakkIhXMI73++jzGTi1iEdHWavifryu3HRNPb1\nZEd8OtsPn1EdRzggKRTC6aVmXmDJtiTcjAYentJLdRyba+znxewJ5l7FO9/vU5xGOCIpFMLpvfvD\nfkpKTUwd3IGI5o1Ux1Hi3jFd8fM2j1XsP56lOo5wMFIohFNLO5fPN5uPYjDAwy40NnGtQD8v7h4Z\nBcC70qsQNSSFQji1f688QHFpGVMGtKdDi0DVcZSaPb4bXh5urN6dImtAiRqRQiGcVs7FAhZvTgRw\nqZlOVWnexBdtaEdMJnjvh/2q4wgHIoVCOK3PYuO5UljCiO7hRLV27quwrfXgpB4YDQaWbk8i7Vy+\n6jjCQUihEE7pSlEJn6w9DMADk7orTmM/Ipo34qYB7SgpNfHBqgOq4wgHIYVCOKVvtyaRfaGA7m2D\nGdylheo4duWhm3oA8MXGI+RcLFCcRjgCKRTC6ZSWlVW8W35gYnen22+irrq0DiKmRysKikr5fH2C\n6jjCAUihEE5nbdxJTmRcoFWIPxP7tVUdxy7NsVyAt3DdYQqLSxWnEfZOCoVwKiaTiX+tMPcm5ozv\nhrub/IlXZkjXFkS1bkpm7hWW70xWHUfYOflfJJzKrqNn2XMsk0B/L24f1ll1HLtlMBiYY1ks8MPV\nBzGZTIoTCXsmhUI4lQ9XHQTgntFd8PX2UJzGvk0Z2J6Qxj4kpOawTRYLFNchhUI4jVNZF1kTdxIP\nNyOzRnVRHcfueXm4cc9o87/Th6sPKk4j7JkUCuE0Fq6Lp8xkYvKAdjQL9FUdxyHcPaoL3h5ubNh3\niqS086rjCDtly0JxG3AUSAQmVXPsAiADuPZtTimw1/LxVn0HFI7rckExizceAeD+sdGK0ziOpgHe\n3Dq0IwAf/XhIcRphr2xVKDyB14DBwCiqf5FfAkys5P7LQC/Lx6P1GVA4Nn1bEnmXi+jTsRk924eo\njuNQynfAW7I1SS7AE5WyVaHoDxwGsoBTlo8e1zl+J5Btg1zCCZSVmfhkjXm5DulN1FyHFoHmC/CK\nS1m86YjqOMIOudvo9zQH0oG5QA7m00phQE2XsPQG4oArwDPA1soOCgoKqvjaw8PjN/c5A2nX/6yL\nO8GxM7m0DA5g5rg+eLi7NVS8OrPX5+uRWwewYf8pPt+QyLMzR+Bm5fUnzvp3CM7bttq0y1aFotwH\nls/TgNpM3G4JZAJ9gWVAB6Dw2oPmz59f8XVMTAzDhw+vxa8SjuK973YDMGdSL7suEvZsdJ92tAsL\n5Hh6Lit/PsZNgzqpjiQa2ObNm9myZUvF7REjRlR5rK0KRTrmHkS5UMt9NZVp+bwbOANEYB4c/5V5\n8+ZVfB0UFERxcTHZ2c51Jqv83YCrtys5PZcfdyXj7eHGtAFt7Pjfw7wwof3mg5kjI3lp0U+8veQn\nBne27t2ms/4dgvO2rbxd0dHRREf/71RtQkLV637ZaoxiF9AVCAFaAeFA+RrHrwKvWPEYTQAfy9cR\nmHsXqfWaUjicTy1LiU8d3IGmAd6K0zi26Td2wsfLnW2Hz8hUWfErtioURcDTwHZgPb+esRRq+bja\ne8AOoDPmge9JQCTmabH7gaXA/ZjHKoSLunC5iG+2JAFw39iuitM4vsZ+XtwyuANgviZFiHK2vI7i\nG6CT5WPlVfffC9x3zbEPYe6re2LugazAPBMqEvNsqd7AmgbOK+zc0m1JXCooZmBUGF1aO9eAoyr3\njDYXXH1rEhcvFylOI+yFXJktHJLJZKrYS+HuUVGK0ziPqNZNGRgVxqWCYvStR1XHEXZCCoVwSLuP\nnuXI6fMEN/JhXN8I1XGcyr1jzL2KT9fFU1Ymq8oKKRTCQX1m6U3cPrwznjIltl6N7dOGsKZ+HE/P\nY9vhNNVxhB2QQiEcTs7FAlb+cgKDAe4aIXtO1Dd3NyMzR5pP531imVUmXJsUCuFwvtlylMLiUkZ0\nb0XrZo1Ux3FKd42IxNPdSOzeVE5lXVQdRygmhUI4lLIyE4s2mE87lb/rFfUvuLEPk/q3w2SCRRtk\n/SdXJ4VCOJTt8Wc4kXGBsKZ+xPRspTqOUysvxF9tSqSopFRxGqGSFArhUMqnxN41IhJ3KxeuE7Vz\nQ6fmRIY34dyFK/y4O0V1HKGQ/E8TDuPs+cusiUvBzWjg9uEyiN3QDAZDRa+ivEAL1ySFQjiMrzYn\nUlJqYkxv8/RN0fCmDemIj5c7O+LTOXYmV3UcoYgUCuEQSsvK+MIyqCqD2LbTyNeTqQPbA1RMIhCu\nRwqFcAgb958mLTufNs0CGBrdUnUclzLTskSKviWJK0UlitMIFaRQCIdQfo58RkwURqNBcRrX0r1t\nCD3aBZN7qZAVPx9XHUcoIIVC2L3TWRdZvy8VDzcj04fJzmsqyKC2a5NCIezel5sSMZlgYr+2BDXy\nqf4HRL2bMqA9AT4exCVlcvikc+34JqonhULYteKSMhZvkkFs1Xy9Pbh1aEdAehWuSAqFsGtr95wk\nM/cKHVsE0j/y2o0QhS2VF+ql24+Rf0U2NXIlUiiEXSt/9zpzZBQGgwxiq9Q5vCn9O4dyqaCYZTuS\nVccRNiSFQtit4xl5bD2UhrenG7dYTnsItcp7FZ/FxmMyyaZGrkIKhbBb5RfYTRnYnkA/L8VpBMCE\nfm1pGuBNfGoOe5OzVMcRNiKFQtilgqISvt6cCMggtj3x8nBj+o3mKcoyqO06pFAIu7RqVwrn8wuJ\njgiiZ7sQ1XHEVe6KiQTg+53J5Fy8ojiNsAUpFMIufb4+HpBBbHvUNrQxN0a3pKC4lC/XH1IdR9iA\nFAphdw6nZPFL4ln8vT242bIgnbAv5es/fbRynwxquwApFMLufLxqLwDThnTA38dTcRpRmdG92tA8\n0JfEU9lsPXhKdRzRwKRQCLtyqaCIL2IPA+YFAIV98nA3Vmwe9fGqfYrTiIYmhULYlW82JXDhciF9\nOjaja5sg1XHEddw1IhKj0cCybUc4lyeD2s5MCoWwKx+vNJ92kimx9q9lsD/jbmhHcUkZ32w5qjqO\naEBSKITd2H88i7ikDJr4ezOpfzvVcYQVZk/oBZh3vysrk0FtZ2VVodA07c0q7v9r/cYRrmxR+bpO\no7vh4+muOI2wxpi+7WjVrBEnMy+y9VCa6jiigVjbo5hdxf2z6iuIcG0XLhexbKd5obnfTeipOI2w\nlpubkfvG9QBkT21ndt23bZqmtQMMgMHy9dW6AdLXFPVi6bYkrhSWMKxHazq1CiI7WzbHcRT3jO3B\ny4u2sSbuJBnnLxHaxE91JFHPqutRHAOSAF/L18euuu9fwHMNmk64BJPJVLFu0OyJvRSnETUVFuTP\n2D4RlJaZWLwpUXUc0QCu26PQdd2oaZoBuKDreoCNMgkXs/voWY6cPk9wIx9uGih7YjuimaOiWLXr\nBF9sOMLDN/XE3U3myTiTap9NXddNwDYbZBEu6jNLb+L24Z3x9HBTnEbUxpAuLYho3oj0nEts2C9X\najsbq8q+ruvjGzqIcE05FwtY+csJDAa4a0Rn1XFELRmNBmZYVpVdJMuPOx2r5yBqmnYD0Ako30HG\nAJh0Xf+kIYIJ1/DNlqMUFpcS06MVrZs1Uh1H1MFtN3bidX03G/af4nTWRcJD5Gy1s7D2Oor/AOuB\necBMy8cMy2chaqWszFQxpVKuxHZ8QY18mNivLSYTfLHxiOo4oh5Z26PQgK66rsvJR1FvtsWf4UTG\nBcKa+hHTs5XqOKIezBwZxbIdySzelMgfp/XBw10GtZ2Btc/ifuSaCVHPPo819ybuiomUWTJOol/n\nUDq1DCQr7wpr4lJUxxH1xNoexVFgh6Zp3wPnr7rfpOv6C/UfSzi7jPOXWBOXgpvRwB3DZRDbWRgM\nBmbERPHC5ztZtOGIrNnlJKx9G+cGbAD8gXDLRyvLhxA1tnhjIqVlJsb2iZAreZ3MLUM74u3pxtZD\naRzPyFMdR9QDq3oUuq7f08A5hAspKS2rGOy8e5QMYjubQD8vpgxsz9ebj/LFhiM8f2d/1ZFEHVl9\nYljTtD6apr2sadqHltvdNU2T9RZEja3fm0p6ziXahjZicJcWquOIBlA+i+3rzYkUFJUoTiPqytrp\nsb8DlgMBwB2Wu/2Btxool3Bi5VdizxwZhdFoUJxGNISe7UKIjgjifH4hq3elqI4j6sjaHsWfgBt1\nXX8EKH97sAvo3iCphNM6mXmBTQdO4+3hxm03yrpOzqp8UBuoWPBROC5rC4UvcO2uJJ6AbJQraqR8\neYfJA9rRxN9bcRrRkKYOao+ftwc/J2aQeDpHdRxRB9YWiljgX5qmBQJYVpR9EVhbg991G+ZptonA\npGqOXQBkAAfr8BjCzhQWl/LVZvPeynIltvPz9/Fk2uAOACxaL1dqOzJrC8UfgFAgG2gE5APRwB+t\n/HlP4DVgMDCK6sc2lgAT6/gYws6s+uUEORcL6NomiN4dmqmOI2yg/A3Bt5aNqYRjsnZ6bA4wUdO0\nMMzXTpzSdT29Br+nP3AYyLLcPgX0wHzFd2V2AhF1fAxhZz5bHw+Yp8QaDDKI7QrK3xTsOZbJ9z8l\nM32YXFzpiGq0g72lONSkQJRrbvm5uUAO5tNKYdTsRd7qxwgKCqr42sPD4zf3OQNHa9ehE5n8kniW\nAF9P7p/UD38fz0qPc7R21ZSztcua5+vBKTcw+42VLN6cxLxpg2wVrc6c9W+xNu2yqlBomvZf4Edd\n1xdfdd90YIKu67NqkPEDy+dp1H7tqGofY/78+RVfx8TEMHz48Fr+KlFfPl61D4A7Y6KrLBLCOd16\nYyRPfBDLrsR09iZl0KtjqOpIAti8eTNbtmypuD1ixIgqj7W2RzEZ8zv5qy0H3rfy59Mxv/svF0rN\neyZWP8a8efMqvg4KCqK4uJjs7Owa/jr7Vv5uwBHadamgmEXrzPMSbhvS9rqZHaldNWO+sNDZ2mXt\n83XLkI7858dDvLvsJ16/f6gtotWZs/4tlrcrOjqa6OjoivsTEqqexmztYPYlzFNkr+YHXLby53cB\nXYEQzGMc4cABy/deBV6p42MIO7ZsxzHyC4rp17k5ka2aqo4jFJhp2f1u2fZjXLxcpDiNqClrexTL\ngM81TXsCSAHaAn+33G+NIuBpYLvl9qNXfS+U355Ceg+YCgRjHrR+EFhxnccQdspkMrFwnXkQe+bI\nLorTCFU6tmzCwKgwdiak8+22JO4d01V1JFED1vYongZOA3GYp8buxvwC/lQNftc3mLdS7QSsvOr+\ne4H7rjn2Icx9dU/MvYcV1TyGsFM/H8kgITWHYMvuZ8J1zRptfqPw6drDlJXJ9jaOxNrpsZeBuZqm\nPYj51E+WrutlDZpMOIVP1h4GYMbISLw83BSnESqNsywpn5yex9ZDaQzrHq46krCStbOehgGpuq6f\nAM42bCThLNKy8/lxdwrubga5Elvg4W7k7lFRvK7v5pO1h6VQOBBrTz0twfqBayEA87pOpWUmJtzQ\nVjYnEgDcNSIST3cj6/elcjLzguo4wko12aj4fPWHCGFWUFRSsTnRfTJwKSyCG/tw08D2mEywcG28\n6jjCStYWiveAZy2LAQpRrR9+Pk72hQKiI4Lo26m56jjCjpS/cfh6cyKXC4oVpxHWsHZ67EjMe0/M\n1TTtBP/bk8Kk6/qNDZJMOCyTycSnlkHse0d3lXWdxK/0aBdSsf7Tku3HZPzKAVhbKD6u4n6Z4yZ+\nY8+xTPYfP0cTfy+mDGqvOo6wQ/eN6cqeY5l8uvYwM2Ii5c2EnbN2euzCBs4hnEh5b+LOEZH4eNZo\n3UnhIib2b8tfvvyJxNPn2RGfzuCusne6PavJYLYQ1crMvcyKn09gNBi4W04piCp4urtVbJVa/sZC\n2C9rr6Nwx7x50TQgWNf1SE3TRgMhuq5/2ZABhWP5YsMRikvLGN83gvCQANVxhB2bERPFO8v3sSbu\nJKezLsrfix2ztkfxBjDe8rl8BdeTwDMNEUo4pqKSUj637Ikta/mI6jRv4suk/m0pM5n4bH3VK5cK\n9awtFNOBqbquLwPKl+5IAlo3SCrhkL7feZyzuZeJDG/CoC5h1f+AcHnlbyi+2HhEtkq1Y9YWiivA\ntf3CUOBc/cYRjspkMvHhavOeE3MmdJNZLMIqvTs0o1f7EHLzC/lm61HVcUQVrC0UC4EfNE27CTBq\nmtYf+K/lfiHYEZ/O4ZPZhDT24eZBHVTHEQ7CYDAwZ0I3AD5afVBWlbVT1haK+cDXmPeg8MBcJGKx\nbsMh4QI+WGXeQ2rW6C6ySqyokQk3tCU82J8TGReI3ZuqOo6oxHVnPWmaZgRmY95Zbi8Qqeu6lHzx\nK8fO5LJ+3ym8PdxkSqyoMXc3I/ePi+alRT/xwaoDjOnTRnUkcY3qehR/B/6MeTziNeClhg4kHM9H\nlrGJW4Z2JKiRj+I0whHdMawzAT4e/HQkg/3Hs1THEdeorlBMB4brun4bMAq4s+EjCUeSc7GAb7cm\nATBnfDfFaYSjCvD15M4R5n21P1x1UHEaca3qCkVjXdcTAXRdPwgENXwk4Uj+GxtPQXEpI3u2okOL\nQNVxhAO7f2w0bkYDP/x8nLTsfNVxxFWquzLbTdO0GMvXBsD9qtsA6Lq+oUGSCbtXUFRSsadA+cwV\nIWqrZbA/k/u347udyXyy5jDP39lfdSRhUV2hyAT+c9Xt7GtuA7St10TCYSzfmcy5C1fo0ropg7vI\nom6i7uZM6MZ3O5P5YkMCj97ciwBfT9WRBNUUCl3XI2yUQziYsjIT/15pnhI7e7xcYCfqR492IQyI\nDOWnIxks3pwo4152QlaPFbWybs9JjqblEtbUj5tlzwlRj+ZO6A6YB7WLSkoVpxEghULUgslk4p3v\n9wPwwMTueLrLBXai/ozq1ZpOLQNJz7nEsu3HVMcRSKEQtbAjPp29yZk08ffizuGdVccRTsZoNPDQ\n5J4AvPfDfkrLyqr5CdHQpFCIGnvvh32AeTqjr7eH4jTCGU0Z2J7wYH+S0/NYvStFdRyXJ4VC1MiB\nE1lsPpiGn7cH94zpojqOcFIe7kYenGgeq3j3+/2YTLJykEpSKESNvGsZm5gRE0kTf2/FaYQzmz68\nM8GNfDiYco4tB9NUx3FpUiiE1ZLTc1m16wSe7ka5wE40OB9Pd2aPjwbgne/3KU7j2qRQCKu9v+IA\nJhPcOqQjoU38VMcRLuDuUV0I8PFgZ0I6cUlnVcdxWVIohFXSzuXz7dYkjAYDD07uoTqOcBGNfD2Z\nNdq8XWr5aU9he1IohFXe+X4fxaVlTB7QjnahjVXHES5k9rhovD3cWLvnJIdSslXHcUlSKES10s7l\n89WmRAwGeGxqL9VxhIsJbuzDzFHmDbHeXBqnOI1rkkIhqlXem5gyoD0dWzZRHUe4oHmTeuDt6caa\nuJMcPHFOdRyXI4VCXNfVvYlHpTchFGkW6MvdI83X7by5dI/iNK5HCoW4LulNCHsxb3J3vD3NYxUH\nTsh2qbYkhUJUSXoTwp6ENPblHssMqDeWSK/ClqRQiCpJb0LYmwcndsfHy53YvansS5Zeha1IoRCV\nSs28IL0JYXeCG/tw72jzWMUbMgPKZqRQiEotWBJHcWkZUwd1kN6EsCsPTuqBr5c7G/ad4pfEDNVx\nXIIUCvEb8anZLN1+DA83I0/c2kd1HCF+pWmAd8UueK989YusLGsDUijEb/ztm92YTDBzZBStmzVS\nHUeI35g7oRtBjbzZdfQs6/akqo7j9KRQiF/5JTGD2L2p+Hq588jNMjYh7FOAryePWv4+X/36F9kF\nr4FJoRAVTCYTf138C2De4D64sY/iREJUbcbIKFqHBHA0LZdvtyapjuPUpFCICuv2prI76azlHLDs\nNyHsm6e7G09qfQH4+7dxXCkqUZzIeUmhEACUlJbxiqU38YcpPQnw9VScSIjqTRnYnq5tgkjPucTC\ntYdVx3FaUigEAIvWJ5B0Jpc2zQK4e5TshS0cg9Fo4E+33wDAO8v3kXOxQHEi52TLQnEbcBRIBCbV\n8thSYK/l460GyOiSci8V8vcl5ouXnr+zP14ebooTCWG9Yd3CGRrdkrzLRbyxRC7Cawi2KhSewGvA\nYGAU13+Rv96xl4Felo9HGySpC/rH0j3k5hcyMCqMcX0jVMcRokYMBgN/njEAN6OBz2ITSEjNUR3J\n6diqUPQHDgNZwCnLR1X7aVZ2bHcbZHRJx87ksnDdYQwG+POMgRgMBtWRhKixyFZNmTkyijKTiRcX\n7ZSL8OpFZahaAAATS0lEQVSZu41+T3MgHZgL5AAZQBhQ2Sa4VR17APAG4oArwDPA1sp+WVBQUMXX\nHh4ev7nPGdRXu+a8vZGSUhP3juvBsD6d6iNanTjr81XO2dplT8/XX2ePZvnO42w/fIYdR3O4aVDd\n/p7tqW31qTbtslWhKPeB5fM0oLqSf/Wx5VoCmUBfYBnQASi89gfnz59f8XVMTAzDhw+vXVonty7u\nBCt/PkaAryd/nnWj6jhC1ElQIx9euHsoj/1rHU99tIGxfdvh5WnrlzjHsXnzZrZs2VJxe8SIEVUe\na6t/xXTMvYJyoZb7anpspuXzbuAMEIF5wPtX5s2bV/F1UFAQxcXFZGc716bs5e8GatuugqIS/vDO\nagAevqkH7mUFZGernzFS13bZrxaA87XL3p6vaQNa8/7yQI6m5fLqos08PKVnrR/L3tpWX8rbFR0d\nTXR0dMX9CQkJVf6MrcYodgFdgRCgFRCO+VQSwKvAK1Yc2wQov1Q4AnPvQhZ5qaX3Vx7gRMYFOrYI\nZPZ4ubhOOAd3NyMvzRwIwFvf7eFU1kXFiZyDrQpFEfA0sB1Yz69nLIVaPqo7NgrztNj9wFLgfsxj\nFaKGUs5e4J3l+wB45d7BeLrLdFjhPG7sFs5NA9pRUFTKswu3y8B2PbDlCbxvLB/XutfKY3cAkfUd\nytWYTCaeW7idwuJSpg3uwKAuLVRHEqLe/XnGQDbuP8X6fadYtSuFif3aqo7k0OTKbBezalcKGw+c\nppGvJy/c1V91HCEaRPMmvjxzez8AXvhsBxcvFylO5NikULiQvEuFPP/fHQA8ddsNhDT2VZxIiIYz\nMyaKXu2bkXH+Mq/ru1XHcWhSKFzIX774ibO5l+nTsRkzR8pZPOHcjEYDf7t/CG5GA5+uO8ze5Mzq\nf0hUSgqFi9h84DRfbT6Kl4cbb84ZhptRnnrh/Lq2CWL2+G6YTPDHDzZTIEuR14q8WriA/CtFPPGx\n+SL2P07rTYcWgYoTCWE7/3drH9qFNeZoWi5vLt2jOo5DkkLhAl75ahdp2fl0bxvMAxNl2SzhWnw8\n3Xlr7jCMBgPvrzhAXNJZ1ZEcjhQKJ7fl4Gn+GxuPu5uBN+bciLubPOXC9fTp2JwHJnajzGTisQ82\ny254NSSvGk4s52IBj/57MwCPTe1Nl9bOtbiZEDXx+C196NgikOT0PP72zS7VcRyKFAonZTKZePLj\nrZzNvUy/zs3rtOaNEM7A29Odtx4YjpvRwEerD7HpwCnVkRyGFAontXhTIqt3pxDg48HbD46QWU5C\nAD3bh/B/t/YB4JH3N5OVd1lxIscgrx5OKDk9lxc+3wnAK/cOoVVIgOJEQtiPhyb3YFCXMM5duMKj\n/95MWZmsBVUdKRRO5kphCXPfXs+VwhJuHtieaYM7qI4khF1xMxp5+8ERNPH3YtOB03y4+qDqSHZP\nCoUTMZlM/GnhdhJSc2gb2ojX7huiOpIQdimsqR9vzh0GwKtf/8KuozJl9nqkUDiRxZsS+WbLUbw9\n3fjokdEE+HqqjiSE3RrTuw2zx0dTUmpi7j9jOXtexiuqIoXCSRw8cY7nLAv+vXbfEKJaN1WcSAj7\n9+zt/RkYFcbZ3MvMfTuWopJS1ZHskhQKJ3Au7wq/e2sdhcWl3BUTiTa0bpvKC+EqPNyNvP9wDKFN\n/Nh19Czzv/hZdSS7JIXCwRUUlXD/P9Zx+lw+vdqH8BfLNpBCCOuENPblo0dH4elu5JO1h/l6c6Lq\nSHZHCoUDM5lMPPHxVnYnnaVFkB+f/HEM3p623LRQCOfQu0MzXp41GIAn/7OVbYfTFCeyL1IoHNjr\nX+9k6fZj+Hq5s/DxsTQLlI2IhKitu2IimTuhGyWlJma/FcuR1HOqI9kNKRQO6sv1h3hx4RYMBnjv\noRi6tpF1nISoq+fu6M+EGyK4cLmIKc/rnD1/SXUkuyCFwgHF7k1lzpurAHjhrgGM6dNGcSIhnIPR\naODtB0fQq30IJ8/mMfUFXfbbRgqFw9mVmMHct2MpKS3j/24bwJzx3VRHEsKp+Hi58+njY2gbFsie\npAxmLVjDlULXXpZcCoUDOXwym1kL1lBQVMq943ow/95hqiMJ4ZRCGvuy+tXbaRkcwM+JGRXTz12V\nFAoHcSglm9teWUne5SLG943gnYfHYjAYVMcSwmlFhAay6tXbCWrkzaYDp/n9exsoLilTHUsJKRQO\n4OCJc0x/ZSW5+YWM7NmK934fIzvVCWEDnVsF8eVTE2jk68mqXSnMfTvWJXsW8mpj5/YfzzIXiUuF\njOndho8eHY2Xh5vqWEK4jOiIIBY/PYFAPy/WxJ3k3jdcb8xCCoUd23oojdv++r/TTR88MlKKhBAK\n9Gwfgv7cRIIaebP5YBozXl/tUrOhpFDYqaXbjzHz9R/JLyhmysD2vP/wSDzdpUgIoUqX1kEsfX4y\noU18+elIBtPm/8CZ7HzVsWxCCoWdMZlMvL9iPw//ayPFpWXMndCNd+eNwMNdniohVOvQIpClL0ym\nXVhj4lNzmPzicg6lZKuO1eDk1ceOFBSV8PhHW3h58S8AvHBXf164awBGo8xuEsJetGnWiOUv3kS/\nzs3JOH+ZafN/YP2+VNWxGpQUCjtxJjufW19ewdebzRsP/ev3Mcyd0F11LCFEJZoGeLP46QncPLA9\nlwqKmbVgDf9Yusdp99+WQmEHdiakM+H579ibnEV4sD/LX5zClIHtVccSQlyHt6c778wbwf/d2geA\nBUvimPXGGs7nFyhOVv+kUChUXFLG6/putL+uICvvCoO6hLH65alER8gCf0I4AqPRwGNTe7PoyXEE\n+nuxYd8pxj+3jF2JGaqj1SspFIqkZl5g2vwf+Od3ewF45OZeLH56Ak0DvBUnE0LU1PDurfjx5an0\naBfMqax8ps1fwWvf7HKarVWlUNhYaVkZH/94iJFPL2HPsUzCmvqhPzuJJ7W+crW1EA6sVUgA3714\nE7+/qScA7yzfx+QXlxOf6vizomQ7NBtKSM3hiY+3sDc5C4DJ/dvx6n2DaeIvvQghnIGnuxvPTL+B\nkT1b8cj7mziUks24Z5cxe3w3Hp/WG19vD9URa0XewtrA+fwCXvh8J+OeW8re5CxCm/jx6R/H8O8/\njJQiIYQT6tc5lHWvTuO+MV0pM5n498oDDH/yW1btOoHJ5Hgzo6RH0YCKS8pYtCGBBUviyM0vxGCA\nu0dF8cz0fjTy9VQdTwjRgPx9PJk/axC3Du3IU//ZxsGUc8x+K5a+HZvz3J39uaFTc9URrSaFogEU\nl5SxdHsS//xuLyczLwIwMCqMP88YKDOahHAxPdqFsOIvU1i0PoE3l+1hd9JZbn7peybcEMHjt/Qh\nslVT1RGrJYWiHhUWl7Js+zHeXv6/AtEurDHP3t6PsX3ayP4RQrgodzcj94zpyi1DOvL+ygN8sOoA\nq3alsGpXCmP7tOH3N/Wkd4dmqmNWSQpFPcjKu8znsQl8tj6BrLwrgLlAPHpzL6YMbC+zmYQQAAT4\nevKk1pe7R0XxzvJ9fLUpkTVxJ1kTd5JBXcK4d0xXxvRuY3evGVIoaqm0rIzt8enoW46y4ufjFFl2\nvopq1ZQHJnbn5kFSIIQQlQtt4sdf7xnMo1N78fHqQ/w3Np4d8ensiE8ntIkfM2IiuX14Z8Ka+qmO\nCkihqLGktPMs2X6Mb7cmkZ5zCQCDAcb2acP9Y6MZ1CVMTjEJIawS0tiXZ27vx7zJPdC3JvFZbDzJ\n6XksWBLHG0vjGBgVxtRBHZjQry2Bfl7KckqhqEZZmYm9yZmsiTvJj7tTSE7Pq/he65AAbh3aEW1o\nR1o3a6QwpRDCkTX28+J346K5f2xXtsef4bPYBGL3plb0Mp5duJ2h0S0Z3bsNI3u2okWQv03zSaGo\nxOmsi2w7fIbt8WfYdjiNzNwrFd8L9PdibJ82aEM70b9zqCwBLoSoNwaDgSFdWzKka0vyLhXy4+4U\nlu1IZvvhM6zfd4r1+04B0KV1U2J6tmZwlzD6dGyOXwNfyOfyhaKwuJT41Gz2JWex73gWuxIzKmYs\nlQsP9mds3wjG9WlDv86hMvYghGhwjf28mD6sM9OHdSYz9zLr96USuzeVLQfTiE/NIT41h3e/34e7\nm4FuESEMiAylb6fmdIsIpkWQX72eArdlobgNeBkwAY8DK2pxbE0e41dMJhPpOZc4mnaeo2m5JJ0+\nT3xqDodPZlNcWvarYxv5ejIwKowhXVswuGsLOrVsIuMOQghlmgX6csfwSO4YHklBUQk/HUln84E0\nfknM4GDKOfYmZ7I3ORNWmo9v4u9FdEQw3SKCiGodRPuwxrQPa4y/T+0u9LXVq58ncAToD3gDG4EO\nNTzWqseIjY01nSn041RWPqezLpJ5oYiElAxSsy6RX1D8m19mMECHsEB6tg+hZ/tm9GofQtc2QXbf\nawgKCiIhIYFmzex37nVtOGu7WrZsAUBa2hnFSeqXsz5f4Dhty79SRFxSJjuPpLM/OYuDKec4n19Y\n6bGhTXzp3DqYYF8jHVuFEB7sT3iwPy2D/cnLPMWoUaMqrQm26lH0Bw4DWZbbp4AewP4aHNvI2se4\n++9rKg3RxN+LzuFN6NiyCZ1aBtI5vCnd2gY77HIajvBHXBvO2i5n5czPlyO0zd/Hk2HdwxnWPRww\nnz05k32JQynnOJByjqOnczmensuJsxfIOH+ZjPOWbVt3pvzqcWKfG1Ll77BVoWgOpANzgRwgAwij\n8kJR1bH+1j7GjdEtaRUSQHiIP1Ftw0hJ2MfUccMIbuxT7w0TQgh7YjAYaGnpJYztG1Fxf2lZGWnn\n8sm6ZGLJqo14B4Zy+lw+aefyOX0u/7qPaevB7A8sn6dhHmew9tgaPcbaBTMrvvbw8CCrV0sCAwNr\nltTOeXh4EBMTI+1yMEFBzrXWlzM/X87YtmYhIXh4eNCvQ9PftGvbtm1V/pytCkU65nf/5UIt91l7\n7BkgwJrHyMvL279t27YedUorRD2LjTV/vs7/RSGUysvLq+wMj015AseBEKAVkHTV914FXrHi2Os9\nhhBCCCdwG3DU8jHxqvs/BT6x8tiq7hdCCCGEEEIIIYQQQgghhGNxunUpNE1bAMwAsnRd72a5rz/w\nEeZZXgd1XZ+uMGKtVNGuFzGP2wB8rev6X1Tlqy1N01oCXwOBQCHwlK7rsZqm/Wq5Fl3XrV6uxR5U\n1i4gHviGa9qqLGQtVPV8Wb4XACQCb+i6/oa6lDV3nb9DZ3jtqKptVr9+2Pc6FbWzhKsGujVNMwKf\nAQ/out4FmKcqWB1d2662wEygG9ATmKVpWhtF2eqiGHhQ1/VoYCqwUNM0D+A1YDAwCnhLYb7a+k27\nqrjP0VyvDc8Cu6n+Gil7VNnfoQH4HMd/7aisbRHU4PXD6XoUAJZ/hB90Xe+madoNwD90Xa/6+nQH\ncU27goBtQF/ADfgZGKjreq7CiHWmaVomcCvwhK7rky33bQQe1XVd+Tzv2rK0q6Wu68XXu8/RlLcB\naAc8CaQC+Y7Wo7iWpV2TgDed4bXjapa2RQObsfL1wxl7FNdqDeRpmrZa07Q9mqY9qDpQfdB1PRv4\nJ+Y1r1KBBU5QJMYCcUAzIF3TtLmapmn8b7kWh1TermuKxG/uczTXtOFV4M9qE9WPq/4Ow3Gy146r\nnrNMavD64QqFwhvzKYzZwDDgUctpG4dm6V08ALQB2gNPaJoWqjRUHViyL+Cq7r2u6x/ouq5bbjri\n6YxK21XZfY7m6jZomjYZOKrr+ikc/CzFNc+ND0702nHNcxZBDV4/XKFQZADxuq6f1nX9IuZ3CpGK\nM9WH/sAuXdcvWnoXe4FeijPViqZp3oCOedD6BDVb8sVuVdKuSu9zNJW0oR9wi6ZpCcBDwJOapt2h\nMmNtVNIup3ntqKRtNXr9cIUd7nYDrTVNawJcwjx4k6w2Ur04DtygaZon5nOMvXHArr9lwPBT4Etd\n19da7t4FdNU0LQRzjzBc1/UDqjLWRmXtqqKtDqWyNui6/jzwvOX7LwIXdV1frC5lzVXx3DjFa0cV\nbUsGnrH29cOhu4mV0TTtPcwj+8HAWcxdSC/MMzI8gC90XX9VXcLaqaJdvfnf9LZPdV1foCherWma\nNgTYgHmvETCfYpoIDMU8PRbgMV3XVyqIV2tVtOsRYP1V9wGM13U9w8bxaq2SdgFM0HU93fL98kLx\npop8tXWdv8PBOP5rR1Vtm4ODv34IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELUN6e74E4I\n1TRNm4T5ivK1uq5fUJ1HiLpyhSU8hLAZS5HYpOt6vqZpd2PeC6Wy4yZjXiPpDHDF8jEQeFrX9QJb\n5RXCGlIohKhfRv632OZvVry1bKT1IXDEskZS+f03A92kSAh75AqrxwphM7qufw+MsayeWtn2rS9a\njrt2XZ2dwJoGjidErUiPQoh6puv6t5Xdb9mV8AmgcyXfzgTebchcQggh7JymaTdrmnZEdQ4hakpO\nPQlhO6VATmXf0DTtLhtnEcJqUiiEsJ31QPDVW05qmmbUNG028KO6WEJcn1xHIYQNaZoWCTwGJALZ\nQBmwyrIdpRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRzS/wOqpJsLxqRs\nwgAAAABJRU5ErkJggg==\n", - "text": [ - "" + "Probability of value in range 21.5 to 22.5 is 19.74%\n", + "Probability of value in range 23.5 to 24.5 is 12.10%\n" ] } ], - "prompt_number": 14 + "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "So what does this curve *mean*? Assume for a moment that we have a thermometer, which reads 22$\\,^{\\circ}C$. No thermometer is perfectly accurate, and so we normally expect that thermometer will read $\\pm$ that temperature by some amount each time we read it. Furthermore, a theorem called **Central Limit Theorem** states that if we make many measurements that the measurements will be normally distributed. If that is true, then this chart can be interpreted as a continuous curve depicting our belief that the temperature is any given temperature. In this curve, we assign a probability of the temperature being exactly 22$^{\\circ}C$ is $19.95\\%$. Looking to the right, we assign the probability that the temperature is 24$^{\\circ}C$ is $12.10\\%$. Because of the curve's symmetry, the probability of 20$^{\\circ}$C is also $12.10\\%$.\n", - "\n", "So the mean ($\\mu$) is what it sounds like - the average of all possible probabilities. Because of the symmetric shape of the curve it is also the tallest part of the curve. The thermometer reads $22^{\\circ}C$, so that is what we used for the mean. \n", "\n", "> *Important*: I will repeat what I wrote at the top of this section: \"A Gaussian...is completely described with two parameters\"\n", @@ -426,13 +458,42 @@ "\n", "$$temp = \\mathcal{N}(22,4)$$\n", "\n", - "This is an **extremely important** result. Gaussians allow me to capture an infinite number of possible values with only two numbers! With the values $\\mu=22$ and $\\sigma^2=4$ I can compute the probability of the temperature being $22\\,^{\\circ}C$, $20\\,^{\\circ}C$, $87.34\\,^{\\circ}C$, or any other arbitrary value.\n", - "\n", + "This is an **extremely important** result. Gaussians allow me to capture an infinite number of possible values with only two numbers! With the values $\\mu=22$ and $\\sigma^2=4$ I can compute the distribution of measurements for over any range." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "###### The Variance\n", "\n", - "Since this is a probability distribution it is required that the area under the curve always equals one. This should be intuitively clear - the area under the curve represents all possible occurences, which must sum to one.\n", - "\n", - "This leads to an important insight. If the variance is small the curve will be narrow. To keep the area equal to 1, the curve must also be tall. On the other hand if the variance is large the curve will be wide, and thus it will also have to be short to make the area equal to 1.\n", + "Since this is a probability density distribution it is required that the area under the curve always equals one. This should be intuitively clear - the area under the curve represents all possible occurences, which must sum to one. We can prove this ourselves with a bit of code. (If you are mathematically inclined, integrate the Gaussian equation from $-\\infty$ to $\\infty$)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print(norm_cdf((-1e8, 1e8), mu=0, var=4))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.0\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This leads to an important insight. If the variance is small the curve will be narrow. this is because the variance is a measure of *how much* the samples vary from the mean. To keep the area equal to 1, the curve must also be tall. On the other hand if the variance is large the curve will be wide, and thus it will also have to be short to make the area equal to 1.\n", "\n", "Let's look at that graphically:" ] @@ -457,19 +518,19 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAECCAYAAAAFL5eMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XOWZ8P/vmaLeR725d7mCbbCNZAgdG0KRaWEDKQsx\n+e1LwpuFJWWLl7YpS/YHm5BKSIUhJqEbMG5yQ+7dcpWLJFsa9a6Zc94/zoyaJc2M5mg0ku/Pdc0l\nzTnPOefWSHPPo+c8BYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFGtRVACXAUWOal7LPAfmAncMcQ\nxyWEEGKQwoCTQAqQAxwfoOyVwOeACbABZ4CYoQ5QCCHEpUxe9i8EDgKVwFn3Y3Y/ZccDewAVcADn\ngfnGhCmEEMIf3pJ7GlAOPAoUAhVARj9lD6F/GEQCucA09/FCCCGCzOJjuVfdX+8CtH7KHABeA7ag\n19rXAW2BBCeEEGJwvCX3cnrW1NPd2/rz3+4HwFagtHeBjz/+WDOZvP3DIIQQoruqqqoT991330Rf\ny3tL7sXADPQbqhFANrDPve959Fr8M93K29Db2wuABGBX7xOaTCamTZvma3zDwmazsXr1agoKCoY7\nlAFJnMYxOsam1g5u/f7fOF5Wyzdvn8O/3GvM7aeR8FqCxGk0m81GUVHRBH+O8Zbc24Gngc3u5090\n25fOpU00vwEmuo97yJ9AhBhNXnijmONltQC8/M4ebpiXy5WT5BaUCB5f2tzfdD96e6SPbdK3XVz2\nNE3j/c9PAXBNXhabDpzno+LTktxFUEnjdz9CvenIQ+I0jlExniiv40JtM8lxkXzjtlkAbD5UZsi5\nYWS8liBxDjdJ7v0YKb9widM4RsVYdFBP5ItnZLJgSjpWs4n9p6uobTKm89hIeC1B4hxuvnaFFEL4\naIu7lr5oegaR4RbmTUxl+9EKth8u56Yrxw5vcIPQ3NxMY2MjiqL4fExNTQ0ATqdzqMIyRCjFqWka\nMTExREVFGXI+Se5CGOxgqQOgs439yslpbD9awYFSx4hL7rW1+k3hlJQUv5K78J+madTV1dHe3k5C\nQkLA55NmGSEM1Nru5MzFBkyKwrj0eAAmZupvVE/vmZGko6ODhIQESexBoCgKCQkJdHR0GHI+Se5C\nGOhURT2qpjEmLZZwqxmASVl6cj82ApO7GLkkuQthoOPlegL31NYBJmTo358qr8OlqsMSl7j8SHIX\nwkCeppeJGV3JPS4qjLSEKFo7XJyvahyu0MRlRpK7EAY6fl5P7p6mGI+J0jQzKpSVlXHPPfcwceJE\nbr75Zo4ePerTcWvXruXWW29l6tSpzJ8/n5/+9KdDHKkkdyEMdaK8DoDxGb2Se8bIvakqujz11FNM\nmzaNgwcPcvvtt/ONb3zDp+Oam5t55pln2L9/P++++y6rV69m9erVQxqrJHchDHSuqgGAMamxPbbn\nup+fdzQFPabRavv27SxevLjHtscff5yXX36ZdevWccMNNzBlyhTmzJnDiy++2KPcG2+8wRe/+EV+\n9KMfkZeXR15eHlu3bh3weg0NDWzcuJHHH3+c8PBwvva1r3Hu3DmOHDniNdbly5ezZMkSrFYr6enp\nLF26lJ07d/r/Q/tB+rkLYZDm1g5qGtsIs5hIjovssS/TFg1A2Shrc8968JeGnev8H7/uV/n58+fT\n2trKwYMHmTFjBm1tbXz22Wc89dRTHDt2jOeee4558+Zx/vx5li9fzty5c7nxxhs7jz98+DBLlixh\n165d1NXV0dLSwpe//GWKi4svudY3v/lNrrnmGsLDw4mKiuLOO+/khz/8IWPGjOH48eNMnTrVr9h3\n7tzJ/fff79cx/pLkLoRByqr1WnmmLQaTqWe/8CybvpzwecfoSu7DyWQyceutt/LBBx8wY8YMNm7c\nyNixY8nNzSU3N7ezXG5uLosWLeLgwYM9kntkZCRPPvkkiqKQkpICwO9+97t+r7d9+3aio6NpbGzk\n2LFj1NXVERMTQ3Nzs19xv/baa3R0dLBixQo/f2L/SHIXwiCenjCeWnp3WcmjM7n7W9s22rJly3j6\n6af5zne+wwcffMCyZcsA2L17N88++ywlJSU4nU5aWlqYMKHndOg5OTl+Dc6KioqiqamJzMxMDhw4\nAEBjYyPR0Zf+vvuzdu1afv7zn7N69WqsVqvPxw2GtLkLYRBP4vbU0rtLjY/CajbhqG+lpX345zEZ\nLebPn09dXR2HDx/mk08+6Uzujz/+OLfccgu7d+/m0KFDXH/99Whaz+UnLJZL67Zf+tKXmDx58iWP\nl19+mXHjxtHa2kp5ub4YXXt7O6WlpZd8aPSnuLiYp556itdff53MzMwAf3LvpOYuhEE6k3vypcnd\nZFLISIrmTGUDZY7GzoFNIjCeppnvf//7ZGdnM2bMGACamppITEzEZDKxZcsW1q9fz+TJk72e7w9/\n+MOA+wsKCnjllVf43ve+x69//Wuys7MvaW+/5557mDdvHs8807VI3aFDh3jsscd49dVXfYrDCL7U\n3FcAJcBRYJmXsv8KHHQ/fhBYaEKMLJ5mmb5q7tCV9Mukx4yhli1bxrZt2zpr7QDPPfccL774IlOn\nTuW1117jC1/4Qo9jFEUZ1Hw5L774IkeOHGHGjBm8++67/OxnP7ukzLlz56iqquqx7Ve/+hUOh4MH\nHnig87+Bhx4a2sXqvNXcw4AXgIXoa6iuA97rp+w49KX1JgNm4AjwO/pYJFuI0WigZhno1mNmlLW7\nD7errrqKc+fO9dh22223cdttt/V7zIoVKwZ1QzMzM5O33nprwDLbtm27ZNtPfvITfvKTn/h9vUB4\nq7kvRK+FVwJn3Y/Z/ZStBzqASPejHagzJkwhQp+nRt7XDVV9u/um6ijrDilCk7eaexpQDjwKVAMV\nQAawt4+yDuCn6B8AJuBJoM/heDabbZDhBofnLrbEaYyREGegMWqaxsXaFgCmTcgmPjrikjITsvTu\ndnWt6qCvE+zX0rOYhQgei8Vyye93MD1rfL2h+qr7612A1k+ZscBjwBj05pzNwPvoHwg9rFq1qvP7\n/Px8CgoKfAxDiNDU2NJOc1sHkeEW4qLC+yyTnqTX3C/USJu78G7Dhg1s3LgRALPZTH5+vl/He0vu\n5eg1dY9097a+LASKgQb3893AXODD3gVXrlzZ47nD4fAh1ODxfGqGWly9SZzGCTTGE+6pflPiIqmu\nru6zTITZBcC5i7WDvk6wX8tQWH7ucuN0OnE4HJ3TIoD+ey8qKvLrPN7a3IuBGUAKkANkA/vc+54H\nnutW9gQwH73WHgnMA076FY0QI1Slu0kmNaH/9S/TEvQpCTzNN0IMJW8193bgafQmFoAnuu1Lp2cT\nzQ7gbfQaO8Av0btPCjHqXajVh6CnJkT2WybFnfgr65rRNE2WrhNDypc29zfdj94e6WPbv7sfQlxW\nKuu819wjwyzERYVR39xOTWMbSbGX3nQVwigy/YAQBqh019xT4vuvuXffX1nn32RTQvhLkrsQBvA0\ny6Ql9l9zh66a/QVpdxdDTJK7EAbwNMukxPuW3D01fTGyrFmzhuXLlzN+/Hi+9a1vDXc4A5KJw4Qw\nQGfNfYA2d+i64XpRkvuIFBcXx8qVK9m0aRMtLaH935fU3IUwgKcrZMoAvWVAn/oXpDukEYK9zB7A\n1VdfzS233EJCQujP6ik1dyECpKoa1Q2tANhiB07utji9h0x1Y+uQxxUMbxw0bmbDe2f83q/ywV5m\nr/vgy95zw4ciSe5CBKi2qQ1V04iPCsNqGfifYU/3x+r60ZHch1Owl9nrbiSMUZDkLkSAHPV6E4vN\nSzdI6JbcG0ZHcve3tm20YC6z191IqLlLm7sQAXLUe5pkvA9KGm3JfbgFc5m97qTmLsRloMpTc4/z\nntxtcXrt3iHJ3RDBXmZPVVXa29txuVy4XC7a2tqwWCyYzWZDfh4jSc1diAA5fLyZChAbacViVmhq\n7aBVFso2RDCX2bPb7UycOJFXXnmF1atXM2HCBP7nf/4n4J9hKEjNXYgAeW6O+lJzVxSFpNgILta2\nUNPYRkaSvAUDFcxl9u69917uvfdev48bDlJzFyJAXc0y3mvu0FXDd0iPGTGEJLkLESB/bqgCJMbq\nKzWNlr7uIjRJchciQI4G32+oQlePmRq5qSqGkCR3IQLU1ebub7OMTEEgho4vyX0FUIK+qtKyAcrd\nhL4Kk+fRBswKNEAhQl2VHzdUoXtf97Yhi0kIb7fqw4AX0Be/jgDWAe/1U3aN+wH6Enwb6VpvVYhR\nSdM0atxt576urJTkaXOXZhkxhLzV3BcCB4FK4Kz7MduH894P2AMLTYjQ19DSgUvViI6wEmbxbSCL\n50PA01YvxFDwVnNPA8qBR4FqoALIAPZ6Oe4B4Cv97bTZbH6EGHxWqxWQOI0yEuIcbIz1HbUAJMVF\n+nzs2KwGABpaXX5fL9ivZU1NTVCuI7pYLJZLfr+e37tf5/Gx3Kvur3cB3mbMmQJEAfv7K7Bq1arO\n7/Pz8ykoKPAxDCFCS7Wnj7sPo1M9kt0TjDnqpOYu+rdhwwY2btwIgNlsJj8/36/jvSX3cvSauke6\ne9tAHgD+MlCB7vMiAzgcDi+nDC7Pp2aoxdWbxGmcwcZYev4iADERZp+PNbn0tvaLtY1+Xy/Yr6XT\nKVMkdHfPPfewe/fuzrlkbrnlFn76058aeg2n04nD4ehcRAT033tRUZFf5/GW3IuBGUAK+g3VbLpu\nkj6PXot/ptcx9wP9j/sVYhTx3ExNjPHtZir0nBlS07QRMcOg6PLss89y3333DXcYXnm7odoOPA1s\nBtYCT3Tbl+5+dLcQaACOGRWgEKGstlHvzpgQE+7zMRFhFqIjrDhdGg0tHUMV2qg3HMvswciYyx18\na3N/0/3o7ZE+tm0HrggoIiFGkJom/5M76N0hm1o7cNS3EBcVNhShBYXr67cbdi7zL9/xq/xwLbP3\n/PPP89xzz5GXl8eqVauYOHFiYD/4EJEp6YQIQI275p7oZ3K3xUZytrKR6oZWxqXHD0Voo95wLLP3\ngx/8gClTpqCqKi+99BIPP/ww69ev73Phj+EWehEJMYLUutvcE6J9b3OH0bMik7+1baMFe5m9WbO6\nBt0//fTTvPbaaxw/fpypU6cG/sMYTOaWESIAnTX3WP9q7okyStUQw7XMnoeiKCHbBi81dyEC4Lmh\nmhjtf7MMSHIPVDCX2auvr2fHjh2dN3FffvllkpOTfTrvcJCauxABqB30DdXR0SwTCoK1zJ7T6eTF\nF19k5syZzJs3j127dvHaa6+F5PqpIDV3IQLimZPdn37u0H1+GUnugQrWMntJSUmsWbPGe8EQITV3\nIQZJVTXqmtoBiPezWcbT5l4j0/6KISLJXYhBamhpR9U0YiOtWC3+vZU8Nf0aWWpPDBFJ7kIMUs0g\nRqd6ePrFe27ICmE0Se5CDFLn1AN+9nGH7jV3Se5iaEhyF2KQuiYN87/m7qnt1za1hmw/aTGySXIX\nYpAGM2mYR7jVTFS4BadLozGEJw+zWq3U1tbKB1AQaJpGbW3toBbm6It0hRRikDx93P3tBumRGBNB\nc1sjNY2txIbo5GEJCQk0NzdTWVnpV79wz+jPUJ8PPpTi1DSNmJgYoqKiDDmfJHchBsnTx30wNXfP\ncecdjdQ0tpGbamRkxoqKivI74YyEBVpg5MQ5GNIsI8QgDXZ0qof0mBFDSZK7EIM02Ol+PaSvuxhK\nviT3FUAJcBRY5qXsQvRl+A4BbwQWmhChrasr5OCbZUC6Q4qh4a3NPQx4AT1pRwDrgPf6KWsCXkdf\noWkLYDMoRiFCUtd0v4O9oeqZgkBq7sJ43mruC4GDQCVw1v2Y3U/ZK9zltrifj747FEJ0U9O5UMcg\nm2XcHwqetnshjOSt5p4GlAOPAtVABZAB7O2jbC5QB3zoPu6XwM/6OqnnDnWo8vQzlTiNMRLiHEyM\n9c36pGHjczKwJfjffS0nXb9WU7vv1x0JryVInEYbTN93X7tCvur+ehfQ32iGCGAxkIee5HcAHwGn\nehdctWpV5/f5+fkUFBT4GIYQocHlUrtGqA6yWSapc8GOFsPiEqPHhg0b2LhxIwBms5n8/Hy/jveW\n3MvRa+oe6e5tfalAv5HqmVh5JzCVPpK7ZxVxj1DrYzpS+r5KnMbxN8aaxlY0DeKiwqirrRnUNc2a\nXvOvrGnw+boj4bUEidMIeXl55OXlAXqcRUVFfh3vLbkXAzOAFPSaeTZ6bxiA59Fr8c+4n+9Ab5pJ\nBJqAmcAJv6IRYoSoDbAbZPdjpbeMGArekns78DSw2f38iW770unZRFPn3v8ZYAX+iN6FUohRJ5Dp\nfj06+7lLbxkxBHxpc3/T/ejtkT62veV+CDGqddXcB9feDhAfHYaiQF1zOy5VxWySMYXCOPLXJMQg\ndE49MMhukABmk4n4KP14z3J9QhhFkrsQgxDopGEenuOrpWlGGEySuxCDEOh0vx6dk4fJQCZhMEnu\nQgxC5+jUAGvuclNVDBVJ7kIMghFdIUEmDxNDR5K7EIMQyBJ73XX1dZeauzCWJHchBqEmwOl+PTzN\nMrJghzCaJHchBqHzhuog55XxkFGqYqhIchdiEDq7QgZYc0+QZhkxRCS5C+Enl6pS19yOouijTAMh\nzTJiqEhyF8JPntGk8VHhAU8ZkBgrzTJiaEhyF8JPRvVxh65mHWmWEUaT5C6En4zq466fQ5plxNCQ\n5C6En4yYNMwjJtKKxazQ3OakrcMV8PmE8JDkLoSfahqM6QYJoCgKCdHuKQikaUYYyJfkvgJ90Y2j\nwDIvZV3AbvfjpcBCEyI0GVlzh26Th0nTjDCQt8U6woAXgIXoy+ytA94boHwzMNeY0IQITUbeUAXp\nMSOGhrea+0LgIFAJnHU/Zg91UEKEMiNvqOrnkWYZYTxvyT0NKAceBQqBCiBjgPIRwE6gCLjGiACF\nCDVdk4YF3uaun0eaZYTxfFlDFeBV99e76Lkodm9ZwEXgSuBtYCJwyV+szWbzI8Tgs1qtgMRplJEQ\npz8xNrapAIzJTDHkZ8pMTgCgTTV7Pd9IeC1B4jSaJ05/eEvu5fSsqae7t/XnovvrDqAMGIt+I7aH\nVatWdX6fn59PQUGBD6EKERpqGloAY3rLACTFRQJQXd9iyPnE6LBhwwY2btwIgNlsJj8/36/jvSX3\nYmAGkILe5JIN7HPvex69Fv+M+3ki0Aq0oCf1LOBMXydduXJlj+cOh8OvoIea51M81OLqTeI0jj8x\nVtY2AaA4Ww35mcJMev/2ssoar+cbCa8lSJxGyMvLIy8vD9DjLCoq8ut4b8m9HXga2Ox+/kS3fen0\nbKKZCvwWvRnGBXwVPdELMaoYNd2vR+coVVlHVRjIlzb3N92P3h7p9XwreoIXYtRyulTqm9sxKQpx\nkYHNCOnROad7gyR3YRwZoSqEH+rctev46DBMJsWQc8qc7mIoSHIXwg81Bq2d2p00y4ihIMldCD/U\ndA5gMqa9XT9XV7OMpg3U01gI30lyF8IPRk89ABARZiEy3EKHS6WptcOw84rLmyR3IfzQOSOkgckd\nuiYhk1GqwiiS3IXwg6fmbmSzjH4+mTxMGEuSuxB+qDF40jAPT5956TEjjCLJXQg/1Hpq7gYNYPLo\nWktVau7CGJLchfBDZ1dIgxbq8JBmGWE0Se5C+KFmiGru0iwjjCbJXQg/eGrWSUPUW0Zq7sIoktyF\n8ENXV0ije8u4R6lKzV0YRJK7EH7ovKFqeG8ZqbkLY0lyF8JHLe1OWjtchFlMRIb7uoiZbzrXUZWZ\nIYVBJLkL4aOahq4BTIpizIyQHp7/BGqbpFlGGEOSuxA+GqoBTN3PKc0ywii+JPcVQAn6WqjLfCgf\ni75+6pMBxCVEyBmqbpAA8e7eMnVNbbhU1fDzi8uPt+QeBrwALAauB17y4ZzfRV8gW+YuFaPKUNbc\nLWYTcVFhaBrUN7cbfn5x+fGW3BcCB4FK4Kz7MXuA8lPQF9PeCRjbKCnEMPO0uRs9OtVDmmaEkbwl\n9zSgHHgUKAQqgIwByj8P/JshkQkRYvxdGLvD1UJzRzWq5vSpfFePGbmpKgLna3+uV91f76L/5pbl\n6G3zZ/FSa7fZbD5ednhYrVZA4jTKSIjTlxhbnfqfdVZqUr/lNE3l6IW17Ct7h6rGEwCYFStjbAu4\nMvd+kmPG93v+lMQYoBLVFN7v+UfCawkSp9E8cfrDW3Ivp2dNPd29rS8LgLuBO4BkQEW/sfrn3gVX\nrVrV+X1+fj4FBQW+RyzEMHHUtwCQFNd3zb2lvY6PDz/P+bp9gJ7Uw60xNLfXcrJqM6eqtrJg7EPM\ny1nRZ1fKpLjIHtcRl7cNGzawceNGAMxmM/n5+X4d7y25FwMz0NvRI4BsYJ973/Potfhn3M+/734A\n/CvQQB+JHWDlypU9njscDr+CHmqeT/FQi6s3idM4vsRY4agHwIrzknItHbWsO/0sDe0VRFjimZV2\nL7lxCzGbwmjuqOZI1fscq/6E7ad/h6PuHPMyvnxJgo+26s/PVlT1G8dIeC1B4jRCXl4eeXl5gB5n\nUVGRX8d7S+7twNPAZvfzJ7rtS0d6xIjLSE0/Uw90uFrZUPpfNLRXkBCRS37u/yXSmti5P8qaxLyM\nh0iLnsGWcy9zvGYt4ZZY8lLv7nGehM6BTHJDVQTOlzb3N92P3h4Z4Jh/H1w4QoSurq6QXc0ymqZR\nXPYr6trOEhuWztIxTxNuie3z+Ky4eSzO+SeKzvyEg5V/IzFiHFlx8zr3d/aWkSkIhAFkhKoQPvIs\nXu2Z5AvgXP3nnK3fjsUUwZLcb/Wb2D0yY+cwK+1eAIrLfkWrs65zX2dvGZkZUhhAkrsQPlBVrTO5\nJ0TrSbjN2cjO8tcBmJ12L3HhmT6da4rtFtKiZ9DmamBX+e87t8vMkMJIktyF8EF9SzuqphETYcVq\n0d82ey/8mTZXPSlRU5iQeJ3P51IUE/Mzv4ZZCeNs/XYqm44CXR8atZLchQEkuQvhg84ZId216+qW\nU5yq3YhJsXJl5ldRFP/eStFhyUxNvhWA3RV/QNPUbjV3aZYRgZPkLoQPet9M3X/xLQAmJd1AXPhA\ng7b7NzX5NiItidS0nuZU7aZube5ScxeBk+QuhA+q3TX3pNgIKpuOUtG4D4spgmnJvkyU2jeLKaLz\n5urByreJilAwmxSaWjtod7oMiVtcviS5C+EDz6hRW1w4+y7qPYOn2G7x2jvGmzHxVxMXnklzh4Mz\ndVu7+rpL7V0ESJK7ED5w1Os19+yMGqqaSwgzxzDZdnPA51UUE9OSlwNwuOpdkqTdXRhEkrsQPqhy\n19zTM/XZNyYlXU+YOcqQc+fGX020NYXG9gpmTq4EpOYuAifJXQgfOBpaSUlqJjz6JCbFysSk6w07\nt0kxM9Xddj9rxlFAk5uqImCS3IXwgaOuhfwF5wEYG7+YCEu8oecfl7CEcHMscXE1jM2ul2YZETBJ\n7kL4oLGtjvkzLwAwJTnwtvbezKYwxideC8CSK8qkWUYETJK7ED7IyDhBmFUlwTqduPCsIbnGxKTr\n0DSF2VOrqG+tHpJriMuHJHchvFBVlelTzgAw0eb7NAP+irLa0NomYzZrhMXsGbLriMuDJHchvDhf\nd5hUWzP1jWGMTZzn/YAARGlXA2BLPYyqyUAmMXiS3IXwosSxDoDDx3Iwm/xfy9IfSZFTuOCIJDy8\nhYrGfd4PEKIfviT3FegLXx8FBhprbUNflm8PsNd9nBAjWrurCUfbLgDOn58w5NdLiomkeG86AKdq\nNg759cTo5S25hwEvAIuB64GXBihbBxQAc4DrgJd9OL8QIa20dgsaHZScSiBMSRny6yXGhLPjQCqq\nCmWNu2lzNgz5NcXo5C35LgQOApXAWfdjdj9lnUCz+/tEQPpyiRFN0zRO1q4HYNuedJLiIgY+wABJ\nsRHUN4Zz9FQSquaitG7LkF9TjE7e1lBNA8qBR4FqoALIQG926UsMsBWYADwAqH0V8qw4HqqsVr1d\nVeI0xkiIs68YLzSUUNt6Bk2NZH9JMtdOTwzKz5AQE872PWlMm1DNmYbNXDXpfhRF6TfOUCRxGssT\npz98WSAb4FX317sAbYByjcBMYCrwHvAJ0NS70KpVqzq/z8/Pp6CgwMcwhAiekgtrAWionY7LZSI5\nwZi5ZLxJTYjm4DEbFlMMjqZTVDWeICV2YlCuLULHhg0b2LhRv+9iNpvJz8/363hvyb0cvabuke7e\n5s0RoBSYBuzovXPlypU9njscDh9OGTyeT/FQi6s3idM4vWNUNSclF9YDcPJUNlBDpFkLys9giw2n\nRDURrs7CyRZ2l77LFRn/0GecoUriDFxeXh55eXmAHmdRUZFfx3trcy8GZgApQA6QDXj6Zz0PPNet\nbCZ6jxnQPwSmAKf8ikaIEFHReIA2VwNx4VmcKddr7LYgtLkDpMRHAtDWMBOAM3VbcKkdQbm2GD28\n1dzbgaeBze7nT3Tbl07PJppc4Bfu7xXgSSD0Pg6F8IHnRuaY+EU46vW+AclxkUG5tie5V1XHMTYl\nl9rWM5Q37iU77sqgXF+MDr60ub/pfvT2SK/n24BZAUckxDDrcLVwvn4noK+UVFX/CRDMmrv+n0JV\nXQsF8YuobT3DmbqtktyFX6QfuhC9nGvYiUtrJyVqClHW5M71U22xwW2WuVjXQm78VQCUNeymw9US\nlOuL0UGSuxC9lNbqrZC58YtobOmgrcNFZLiFqIihnXrAIyVBT+6Vtc1EWW2kRE3BpXVwruGSvglC\n9EuSuxDdtHTUcrHpICbFTE7cAhzuWntykJpkoKvmXlmn19THxC8C4Ezt1qDFIEY+Se5CdHOmbisa\nGhkxcwi3xHSunWqLDc7NVOhqc/ck9+y4+ZgUMxeaDtDcXhO0OMTIJsldiG6695IBqK7Xa+7BmHrA\nw9Mrx1HfiktVCbfEkh4zCw2N45UymZjwjSR3Idyqm85Q03oaqymSzNg5AFys06dLSo0PXs3dajGR\nGBOOqmmdN3M9HzbHLq4PWhxiZJPkLoTbsYv6vO3ZcQswm8IAuFjjTu5BmnrAw3O9i7V600xm7Fws\npnAuNBzKDKBuAAAgAElEQVSlrsWXQeLicifJXQj0GSCPVW4A9L7tHhdq9eSeFuTknuwZyORud7eY\nwsmK1fu5S+1d+EKSuxDAhYYj1LdWEGlJJCV6Wud2T805NTHINffOvu7Nnds8TTMlF9ejaQPN3yeE\nJHchgK7acE78VZiUrrfFxdrhaZbpPkrVIy1mOpHWeGpbzlLbWhrUeMTII8ldXPZUzdXZC6V7kwwM\nX7NM5yjV2q7kblIsTEi5BoDSOunzLgYmyV1c9i40HaSlo46EyGwSI8Z2bldVjUp3s0hKEHvLQLdR\nqt2aZQAmp14L6P3xVa3PtXCEACS5C9E58nNS6tLOFY8Aahpbcbo0EqLDiQjzdV0bY/QepeqRFjuV\n2PA0Wpw1VDYfCWpMYmSR5C4ua061vXPOlkmpPVcE8zTJBLvWrl+z5yhVD0VRmJS6FNAX7xaiP5Lc\nxWWtrGE3TrWV1NjJJERm9djXeTM1yD1loP+aO3Q1zZyrL8altgc1LjFySHIXl7Uz7ukGJqUsvWTf\nhRo9sQb7Ziroc8ebFIXqhlbana4e+5Kic0mIGEOH2kx5Y39r1YvLnS/JfQVQAhwFlg1QLgsoAg4A\nO4HrA45OiCHU7mqivHEvCgoTUy5dfLiiRl/bPSMpOtihYTaZSHXfVPWMku1ubPxiAE5L04zoh7fk\nHga8ACxGT9YvDVC2A/gGkAfcCbxmQHxCDJmz9cWomovU6OlEhyddsr+8eviSu37dmB5xdKcv4qFQ\n3riHdtel+4XwltwXAgeBSuCs+zG7n7IXgf3u78+gfzAEZ3UDIQbB0yST6x752dvwJ3f9umV9JPdI\nayJp0dNRNSdn6z4PdmhiBPDWvysNKAceBaqBCiAD8NbQdxN600yfS7bbbDb/ogwyq1X/TJI4jRGK\ncTa2VXGx6QhmxcqssTf2GWOle7rfqeMyhyX28Vk2KD5FfZvWef3ucc7ouJELJQcpay5mwaR7gh7f\nQELxd96XkRanP3ztvPuq++tdgLdJLdKBHwG391dg1apVnd/n5+dTUFDQX1EhhoQ+IlVjjG0B4Za+\na+bnqxoAyEqODWJkXTzX9cTR2/jkxWw4/gpldftpaL1IbERqMMMTQ2zDhg1s3KiPnDabzeTnX3pf\naCDekns5ek3dI929rT8RgB14EjjVX6GVK1f2eO5wOLyEEVyeT/FQi6s3iXPwDpV9AkB65BU4HI5L\nYmxtd1JV14LFrGB2teJwtAU9xvgIfUDVyfOOzrh6x5kZM5ez9dvZe/pDpqUM1N8huELxd96XUI4z\nLy+PvLw8QI+zqKjIr+O9tbkXAzOAFCAHyAb2ufc9DzzXrawC/Bb4E/CxX1EIEUQ1raXUtpYSZo4m\nM6bvW0gV7h4q6YnRmExKn2WGmqfNva8bqh6emSI9K0gJ4eGt5t4OPA1sdj9/otu+dHo20SwG7gam\nAv/o3nYLeju9ECHjdK1eA8qNu6pzUY7ehvtmavdrD5Tc02NmEWaOoa7tLLWtZ0iIyA1WeCLE+dLm\n/qb70dsjvZ4XofeQESJkqZqzc9j+2MT+2zD9Se6aqkJjHTiqoKEWrbUFWpuhvR0UE5hMYDajRMdA\ndCzExIEtFSVy4MFRaYme1ZiacbpULOZL/9E2myzkxC3gRM1nnK4tYk76A17jFZeH4M6GJMQwK2/c\nR5urnrjwLJIixvVb7nxVIwCZtpge27WmBjhxBO3MSThfinbuNFRVgNPp9dqX9ESIiYOUdJTssZA7\nHiV3AuSMQ7HqdaQwi5m0hCgu1DZzoaaZrOSY3mcAYFzCNZ3JfVbaCkyKvK2FJHdxmTldswmAsQlL\neswA2dvZSr2HytjEcLS9xWgHdqCVHISyM30fEBMLickQn4gSEQWRUWANA00FVQWnE625EZoaoL4O\nHBehsR4a69FOlQDu5G8NgwlTUabMRJkxl5zkaC7UNnOuqqHf5J4UOYG48Czq285T1rCH7LgrB/36\niNFDkru4bLQ5Gyhr3I2C0jl8vy9aQz0TT2znN+FHufadj1Cd3YZrWKwwbhLKuMmQNQYlayykZ6GE\nR/gVi6aqUF8DF8rRzp6EMyfQTh+H8rNwZB/akX1of/8jv7HG8HdrMq37MtEm3tTnuRRFYXxCAXsu\n/IlTNRskuQtAkru4jJTWbUXVXGTEzCLSmthjn9bRTvvOrbg+fgf27+CrLieYAScwZiLKrPko0+fo\n3w9iQElviskECTZIsKFMyeuKo6EOSg7oyX1vMQk1VXzZ2gifvIq69U80FNxM5BeWQWzP+MckLGbv\nhTcob9xLS0fNJT+fuPxIcheXjVO1+oCQsQldN1K1i2Vo6z6gatt6tMZ6faNiYoOayvsd6az64T8R\nlRa8wUFKbDxcsRjlisVoDzzGh299wrH3P6Iwtpq0xmpa3rfT8r5d/5BZfD3K1UtRIqKIsMSRFTuX\ncw07OF1bxLSU5UGLWYQmSe7isuBoOenu2x5DVvRstAM7UT97Hw7sBE2/1WkZOxHX/HwqJ1/JQ9/9\nEFtcBD8OYmLvTVEUoqdM57/+VkpRWjpvPjSN8B1FtG76BK30uP54+/co19yAcu1tjEss4FzDDk7W\nbmRq8rIB7ymI0U+Su7gsnKhei6JqzD2bA396ErX8rL7DYkVZkE/CnQ9gnTAVh8PBmaP60IycYZp2\noLvsFP0m6rmqJpQxE4mdt5CYL3+TqrXvo234EI4dQvv4b2ifvEPa3IWkT4uiIqWCquYSUqKnDHP0\nYjhJchejXntrLaZN67hpRzMxddv0jQk2lGtvRbnmRpTYeKzdJo466+4G6UmswynL3RWzrLoRp0tf\nEFsJD8e0sAAWFui190/fQSveBLu2smQXlI+1UHHdalKu/pfhDF0MM0nuYtTSnB1oG9agffBH5ta7\nR3mmZqLccjfKVUtRLH3fGC29qLe9h0LNPSLMQnpiFBU1zZRXN5GWmtJjvzJmIspXv41295fRPn0H\ndd0HZJxuI+M3W+nY8i9Yln8JZfKMYYpeDCdJ7mLU0TQNdm1F/etrUFmBBahNNqHd/EVs1zyEYjIP\nePypijoAxqXHD32wPhibFkdFTTOnKuqYM7XvMkqCDeWeR1Buupszf/0uacWlWI8cRD3yLzBtNqa7\n/gFl7KSgxi2GlyR3MapoJ4+i2n8Dxw8D4ExN4fMFTdRMSWHZlIdQlIETO8CpCr3mPj4jNJL7+PR4\nth2p4KQ7roEosXGE3/MoH8x8nml7TUze0wGH96I++yTK/GtQvvggSmpmEKIWw02SuxgVtKoLaKtf\n19ueAWLjUW6/nx3jSihr3MmMpGsx+ZDYAU521tzjhipcv3j+g/DE5U1a9Awi47PZt7CMmFseI2vz\nKbS176EVb0LbtQXlmptQlt2LEi994UczSe5iRNOaG9E+sKOtfVef38ViRbnhDpRb7qHF0sr5kjdR\nMDE+calP56tuaKW2sY2ocAtpCQNP7BUsnv8gTvmY3BVFYWLSDewq/x0lrZvIuef7aNctQ3vnT2hb\n1qGt/wBt62coN3wR5aY7USIihzJ8MUwkuYsRSXM60TZ8hPben6FRnwdGuWopyhcfQrHpNx2PVfwd\nDRc5cQuJsl66AHZfure3h0o/cc9/ECfLfUvuAGPjl7D/wptUNZdQ01JKYtIYlIf/D9oNd6K+/Trs\n/Rztvb+gFX2McudDKFddq4+aFaOGJHcxomiaBnu3o771O7hwXt84eQamwq/Q/YZhh6uFEzXrAJia\nfKvP5+9sbw+Rm6kAY1LjUBR9MrMOpwurxXvzktUcwdiEfI5Vr+FY9ccsyPo6AEpWLuZvfg/t2CHU\nN38Np4+h/fanaJ+9j+ner6FMmj7UP44IEvmoFiOGdvoY6o++i/rKc3piT83EtPIZTP/3OXr3BDlR\ns44OtYWUqKkkRY73+RonymuB0GlvB707ZHZyDC5V45Q7Pl9MSroBBYXSus00d1T32KdMmo7pX36I\n8pVvQUISlB5H/a+nUX/+IlqlrK8zGviS3FcAJcBRwNsijT9CX3lpf4BxCdFJq65E/fVPUJ99EkoO\nQEwsyn3/iOnfX0aZe9UlzSeq5qTEsQbwr9YOcPRcDQBTskPrZuOkLD2eg6WVPh8TG55GdtwCVM3F\n0aoPLtmvmEyYrr4W03/+HGX5fRAWhrZzM+oPHkdd/Tu0lmbD4hfB5y25hwEvoC+hdz3wkpfyfwVu\nMyAuIdBamlFXv476vW+gbVsPFgvKTXdievZVTF9YhmLpu1XxdO1mWpzVxIZlktHPGqn98ST3qTm+\ntdEHyzR3PAdPV/l3XLI+gdiJmnW0ORv6LKOER2C6/QFMq36OctVScHagffhX1O89hrrpYzTVFVDs\nYnh4a3NfCBwEPNWFs8BsYG8/5bcCYw2JTFy2NJcLbdMatHf+DA36TURl/jX6jb+U9AGPVTUnhyr/\nDsD0lNtRFN9bHpta2ym9WI/FrIRMH3cPz38SB0/7XnMHSIwcQ0bMbMob91LiWMPMtHv6LaskJeuj\nXa9bhvrGr/QVp15/WW+PX/EVlGn+fVCK4eUtuacB5cCjQDV6k0sG/Sd3n9i6zeMRiqzu+bolTmP4\nGqemabTv3Erj66+gnjutHztlJjEPfxNrtznPB3K44mOaOipJiMxi7vjbfO7bbrVaOXaiEk2Dydk2\nMoZxNsi+LMxzAus5VFqF1Wr163d+leVLvL13L8drPuGqSfcTYfVyP8F2NdoVV9G2eS2Nr/8v6rlT\nqD/5PmFXLibmHx7Hkj3G6zVH29/mcLMOYg0BX3vLvOr+ehd9LAXpr1WrVnV+n5+fT0FBQaCnFCNc\nx6kSGl97mY79OwEwpWUS89BKwq9e6nOXRJfqZOeZvwBwZe4DPid2jwOnLwIwY2yKl5LBNyXHhtmk\ncOx8NS1tHVj86AqRET+D7IS5nKvdza6zdhaN/6rXYxRFIWLJ9YTPv4bmd/9C8+rf075jM9W7thF5\n0x1Er/gKJhkENaQ2bNjAxo36GgRms5n8/P4XdO+Lt+Rejl5T90h3bwvIypUrezx3OByBntJQnk/x\nUIurt9EQp1Zdifb3P6Ft/UyfVz0qBmXZvbD0VpqsVpqqqy85pj/Hqz+lvrWC2LB0Es15fr0uNpuN\nvcf1P+1xqdEh+ZqOS4/neFkt+05UMCbJv5rctKQvcq52N/vPv0NOVL7P/f4BuHYZyhWL4e9/Qtv0\nCS0frqZl/UcotxaifGF554Le3Y2Gv83hlpeXR16e/h+rzWajqKjIr+O9ff4XAzOAFCAHyAb2ufc9\nDzzn19WEcNOaGlHf+i3qdx9D27IWTGaU6+/A9NyrmG64w++l7NpdzRy4uBqAWWkrMPnR1u6xs0Tv\nAjhrXLLfxwaDJ66dJf7Xr5Iix5MdNx+X1tF5T8IfSlwipocex/SvP4W8edDSjPbX36F+fyVq8SZ9\n/IEIKd7eAe3A08BmYC3wRLd96e5Hd68AW4Ap6DdfvXWdFJcZraMddc3bqM/8I9qat8HZgXLlEkz/\n8TKme7+KEj24aXYPV71Lm6uBlKgpZMX6v0C006Wy+7ie3GePD71mGeiKa8fRwf3zPDP1HhQUTtas\no7b1zKDOoWSNwfx//g3TE/8OWWPAcRHtFz9EfeGf0dyTtYnQ4Eub+5vuR2+P9LHtcfdDiB40lwt1\ny1q0v/8Rqt3d+abMxHT3wyjjApuKtqm9srNf++z0BwY1bcDh0ipa2pyMSY0lKTYioHiGypwJenIf\nTM0dIC48kwlJ13O8+hN2lb/OtWO/O+gpFpQZczFNewmt6FP9d3ryKOqLT8HMKzF98UsQ4jcoLwcy\n/YAYUpqm0fb5Jpr+/Cu00uP6xqwxmO5+GPLmBTx/i6Zp7Cx/DVXrIDf+amx+jEbtrthdGw7VWjvA\njDE2LGYTh85U0dzaQVSE/z0oZqbezdm6bVQ2H+VM/TbGxF896HgUkxkl/ya0BdegrXkb7ZO/w/4d\nqPt3ULfoOqLv/xpEDP9qVpcrSe5iSHTOAfPuX6g7c1LfmJSMcseD+gRfXhbM8NXZ+u2UN+7Daopi\nTtoDgz5P8dEyILSTe2SYhbyxKew5cYE9JytZNN3/ednDzNHMSltBcdmv2VPxJzJiZhFmjg4oLiUi\nCuWOB9GuvQ3tw7+irf+Ati2f0bZtPcrV16Isvx/FFlpdSy8HktyFofSk/jnqu38Gd1I3JdiIuutL\nNF+xBCUs3LBrtbua2F3xBwBmp91HpDVh0OfasLcUgIVTBx4kNdwWzchmz4kLbD1cPqjkDjAuIZ+T\nNRtwtBxnd/kfWJj9qCGxKXEJKPd+Fe2GOwj79O+0rn0PbfNatG0bUBZdh3Lz3SipGd5PJAwhE4cJ\nQ2iqC23XVtT//DbqK8/qiT0+EeXer2H7mZ2oZSsMTeyaprGj7Le0OutIiZrC+MTBj5U472jkZHkt\ncVHhzBwbmj1lPJbO0QcQbTlUNuhzKIqJBVn/iFmxcrquiPP1u4wKTz9/UjJx3/hnkv7/P6EsLABV\nRdv0Mer3voH6qx+jnR/czVzhH6m5i4Bo7W1oW9ehffw3uOhOOPGJei0t/yaUsHCUcOOSusep2k2c\nrd+OxRTO/Myv+TXNQG+eRLlkZjYWc2jXd66ZmYuiwK7jF2lpdxIZNri3cFx4BjPTVrCn4o/sKP8N\nSZHjA/rPpy+WjGxMX3sSbdl9aB+9hbZtPdr2DWjbN8DcqzDddBeMnxIy8+aPNpLcxaBojfX6ij6f\nvd85/wu2VH0VpGtuNLSW3lt9Wxm7yn8HwLyMh4kND6wpZdMBfV74glneh9UPt8TYCGaPT2PPiQsU\nH60gf2b2oM81OelGyup3cbH5MFvPvczSsU9jUoxPCUp6lr5QyPL70T5ajVb0Cezehrp7G4ybrA+E\numJxvxPBicGRV1P4TNM0OHkUbcOHaMVF4OzQd4yZqC/XNm8RitmYG6X9aXM2UnTmv3Fp7eTGX83Y\n+MUBnc/pUlm75ywAN80fXE+bYLtx/nj2nLjAmp2lASV3RTFxVfZKPj75fSqbj7L3wpvMTR/8TWmv\n17Olojz4GNptK9A+ew9t4xo4VYL2qx+jvfUaynW3oSy5ESU2dObSH8lC+39QERK0tlbUjWtQ//Nb\n+mCVrevA5dT7ND/5n5i++2NM868Z8sSuak62nPsfGtoriA/P4cqMRwL+l377kQpqG9uYnJ3E1NzQ\nbm/3uGPRZAA+2lGKqgY2MjTSmsCinP8PBTMljg85Ub3OiBAHpCQkYbrrHzC9+BuUh1ZCRg7UOtBW\nv476zw+j/uKHaIf2oKnqkMcymknNXfRJU1UoOYC2bR3azi3Q2qLviIlFWXwDSsHNXqffNZKqqXx+\n/pdcbDpMhCWe/DFPYjUHvrDzhztOAXC7O2GOBPMmpZNpi6bM0cSek5XMmxhYN8OUqMlckfEP7Cj/\nLTvLf0u4JZbsOP9H+fpLCQ9Hyb8ZbcmNcGgP6mfvwYFdaMWb0Io3QUo6yuLrURZ9ASVRBkX5S5K7\n6EErP6cn9G3robrb3OETpqIsvUVvG+1joqihpCf2X1BatwWLKZwlOd8iyhr4m7213cnftpwA4K5r\npgZ8vmBRFIXbFozjlx8e4M2NJQEnd4AJSdfR6qzjQOVqtp77Xxbn/BOZsXMMiNY7xWSCvHmY8+bp\nE8ltXqu3y1dWoP3tD/oI2Ekz9Dn9r1gszTY+kuR+mdM0Dc6eRNu1FW33Nijr1k3NloqycCnK1UtR\n0gffthsIl9rO5+d/yZn6bVhM4eTnfgdb1ARDzv3RjtPUNLaRN9bG3IlphpwzWO5fOoVffniAtzcf\n5wcPLBzUaNXepqd8kTZXA8eqP6HozEssyPo6YxMCu6fhLyUpBWX5fWi3Feq1+U2fwL5i/b/IkgNo\nf/kFTJuDcuUSlFlXosSG1qIqoUSS+2VI62iHY4fQ9u9E270VHBe7dkZGo1yxCOWqa2HSdL1WNUxa\nnfUUnXkJR8sxLKYIrsn9NinRUww5t6Zp/ObjgwA8eO3UEdcdb0p2EvMnp1FccoE3Nx3j4RumB3xO\nRVGYm/4QZlM4R6reY/v5n9PUfpHpKXcE1NV0ULGYzJB3Bea8K9Cam9D2bEcr3giH9sCBnWgHdqIp\nit6VcvYClFkLIDNnxP0eh5Ik98uApmlQdgbt4G60Q7uh5CB0tHcViE9EmbMQZe7VMCUPxRJ4LTBQ\nFY0H+Pz8L2hx1hBltXFN7rdJiMg17Pwb9p9j57GLJMaEc9fiiYadN5i+dnMexSUXePmdPdxXMJmI\nQfZ5705RFGan3Uu4OYa9F97gQOVqHC3HWZD1KBGW4WkOUaKiURZdB4uuQ2uoQ9u5GW33dijZry8F\neOII2urX9f80p82GKTNRps5ESbi82+kluY9CWkcHlB5HO3FYn4b1xJGuvuge2eNQZsxBmXOVXvsZ\nxhp6d+2uJvZffIvj1Z8CYIucxOKcfzJ0gE2HU+W5vxQDsHLZbGIig3sPwSi3zh/HtNwkDp+p5tdr\nDvD4cuPayKcm30Z8RA7bzv2M8sZ9fHj8KeakP8jY+MXDWjtWYuNRlt4KS29Fa22GQ3vQ9haj7d+h\nTz9c9AkUfaIvF5eehTJlJkyYhjJuMqRlXlY1e0nuI5zW1op2qgTt7Ek4ewrtzEl96L+nD7pHfBLK\n9NkwfS7K9NkocaG1RJpTbedkzXoOVr5Nu6sRBTN5qXcyNXmZ38vlefO/7+3lYKmD7OQYQ5ozhovJ\npPD9+xfywIsf8uO/7uKmK8YyMdO4D8GMmFncOH4VxWW/4kLTQT4//yonqtcyM62QtOjhf92UiCiY\ntwhl3iI01QVnTqId3Y92ZD8cOwgV59EqzsOGj/RkHxUD4yahjJ+CkjsBssagJSaGTMXGaL4k9xXA\nf6Kvnfok8J5BZYUftOYmuFiGdqEMLpRBxTkcFWdxnT8DffUHzsxFmThNr7VMnKZ3KwvBWktTexWn\najdyvPpT2lwNAKRGTWNOxoMkRhg/YvTjXaX86C19ndYffj3fkBuRw6lgVjYr8ifz5sYSHv7xGt75\ntzsMnY8+OiyZgjFPcbquiL0Vf8bRcpz1p5/HFjmRiUnXkxO3ALNp+F9DxWSGsZNQxk6Cm+5Cczr1\n/16P7kc7VQKnSqCuBg7u1psn3cdVRURizhmHmpoJ2WNQ0nMgNR2SUkf8iFlv7/Yw4AiwEIgA1gH9\nNVD6VPbTTz/Vpk2bNth4g8Jms3H48GFSU4MzTammqtBYDzVVUFOFVuPQv6+uQnNU6nO21Nf2fazJ\nhJKRg5IzDnLGoeSMh9wJKNGhM49299dT0zTq2s5R0biP8oa9XGw+gmfN9cSIcUxPuZ2s2CsM/yDS\nNI03N5bw1K+L6HCpPHnXPL599xV9xhjK+oqzqbWDO//jXQ6WOpiQEc9vvn2joTV4jw5XK8eq13Ck\n6gM61GYArKZIMmPnkRU7l5ToqURY4vuNczhpmqYvEnPqKNqpY2jnTsP5UqjrZ41ekwmSUvRKUUo6\nJKdDYhJKfBIkJEF8EkRGBa3C5FlD9frrr/f5gt4+mhYCBwFPh+ezwGxgb4BlQ95g/jA1pxPaWvQB\nPy3N+tfWFmhtRmts0BN4Yz001KN5vm+sh/oacDoHPrk1DFIzIC0LJS0T0jJJmD6L93ft45ovXB/A\nTzp0OlytNHVUUld1lM9L3ye+FapbTtLq7Gr/NylWsmLnMSHxWlKjpxv+ZnGpKlsPl/PKO3vZ6J5D\n5uu35PGtu+ZdUjaUktFAescZHWHl99+5mQf/60MOn6nmxmdW88iNM7h/6RQmZMQb9ppazRFMT7mD\nybabKK3dyomaz6hpPU1p3WZK6zYD+mpPtshJZLZM5tDxsyxOuIlIa8KQzFnjD0VRwJYCthSUK5d0\nbk8Ms/DZH15jdkoinCtFu3AeKiv0ylXVBai6gHa4K4X1GA8cFu5O9IkQE6cvERkdA+6vSnSs3hQU\nHQOR0RAeoT/CwoPyoeDtFU8DyoFHgWqgAsig74TtT1lDtDU3cWLz+yiqBmgoqqo3UWj694qmf4+q\nomgaaCqKqunbVc9zzz69nMnlosKkkFReTtm+tSguFyanU//a/XunE8XlxOR0Ym5vx9LehsnlGvTP\n0hERQVtMLG2xMbTFxNEeG+N+HktzQgJtMTHQ6w8isvY0R5pLaT/YNWRc49Lh6PraxVq3Mj32di/U\n67je21yoSgcaHUAHGk40OtyPdlSa9IfSjEoDmtLcdWgUNOmtLihaDGHaJMLUyVjUSTS3RbK/CvT6\nwKXX7XOAfR8bVU2jrqkNR30rlXUtHDlbzb5TVdQ2tQEQFxXGv33pKu4tMKY7ZShJS4zi7e8v5we/\n38qbG0v4+fv7+Pn7+xiTGsucCamMS48jJT6KuKgwYiOthIdZMCsKJpOCSQGToqCYFMwmBQWl959a\nH/JIU/JIDK+kwbWPJvUYLeop6tvKqG8r41TtBoiH9459BCiYicGixGNR4jArEZiIwNT5NRwTFsCM\nghlFcX91P3rOkqK4mxsUejY8KF17lZ7bLi3bJSYmhn1RJtpyMiCna655xekkvK6W8NoawmurCa+r\nxdrYgLWxgTD3V3N7G1ws1x9c+ic50MQQLqsV1RrW+VUN07/XzBZUiwXNbEY1W9AsFlSzGUfueBjn\n3w1zb7/Ce4AbgX90P/8z8BqwZrBlP/30U23JkiUY4fzpo1i//RVDzmUETYGOMHCGKXRYFZxh+qMj\nDNojFNojTbRFKrRFKLRHKvr3kSbaohRc1tBrDw9Uh1Ohui6C6poIyiujOXchhvMVMVRWR+L9T884\n4zISeOC6GXzj9itIjo/qs4zVaqWyspKEBOObM4zkS5w7jpbzv+/sYE3xSRz1LUGLzWxSyclsIDut\nkbSUZjJSmrAltBIb3c5ovGdpadeIaFSJbNIIa+3+ULG29dxmbdOwOMHcoX/1V1laJI0P/puhzTLl\n6LVvj3T3tkGXraqqOlFUVGTMEEOAb79o2KmGmgmIdD8uC2FAivsRAlO3HNlv7KIUoewrVyfylauv\n8EMzd04AAAR9SURBVF5QDF6E+9HHfHNO96P50l2DVlVVdcLA0xEGnER/e+YAx7rtex54zseyQggh\ngshbzb0deBrY7H7+RLd96fRsVhqorBBCCCGEEEIIIYQQQggx2g1pf7TCwsIfAV8CKu12+8xu22OB\no8CP7Xb7j4cyBl/0FWdhYeFC4Jfo9yX22+32e4cxRKDfOP8VfdoHgDfsdvt/DFd87niygDeABKAN\neMput39aWFjYY2oKu90+rFNT9BUncAh4k16xD1uQ9P96uveFzPtogN97SL2PBogzZN5HhYWFNuAj\nwIqeo5+12+1v+vseGurep38Fbutj+3eBHQzczz+YesRZWFhoAl4HHrPb7dOBlcMVWC+94xwHPATM\nBOYAXy4sLDR+Qhb/dADfsNvtecCdwGuFhYVW4AVgMXA98NIwxudxSZz9bBtuA8UUSu+jvn7vCvB7\nQut91FecYwmt91EdUGC32+cA1wEvD+Y9NOQjSdwv3LvdappTgH8GzgCNw13j8OgeZ2Fh4Xzgv+12\nuzGjrQzUK04bUARcCZiB7cDVdru974lohkFhYeFF9AFu37Hb7cvd29YBT9jt9pCZmsIdZ5bdbu8Y\naNtw88QEjCcE30ce7jiXAT8JxfeRhzvOPGADIfg+KiwsnACsB+5H/y/D5/fQcEz48Dzwf4DQGVp6\nqVygrrCw8EP0aRV+abfbfzbMMV3Cbrc7CgsLf4o+bt+E/q/asP9BehQWFt4E7ARSgfLCwsKgTU3h\nD0+cvRL7JduGW/eYCgsLQ/Z91O33nk0Iv4+6vZ4XQ+19VFhYGANsBSYAD+IeFOrPeyiog4ILCwuX\nAyV2u/0swRx/7r8I9H9/vg4UAE+4m0BCirsW/xgwBv2P4DuFhYXpwxqUmzuOH9HtX3G73f6q3W63\nu5+GQlNCn3H2tW24dY8plN9HvV67SEL0fdTr9RxLiL2P7HZ7o7u1Yx7wQ/Sc5Nd7KNgzPiwA7i4s\nLDwMPA78c2Fh4f1BjsEXFcAhu91+zm63N6DXQqYOc0x9WQgU2+32Brvd7gB2A3OHOSYKCwsjADt6\nDegU/k1jETR9xNnntuHWR0wh+T7qI86QfB/1EWdIvo8A7Hb7kf/Xzh2qRBBFcRj/kl1QEJGtCjbB\n5BOoUc4rGCwGk2HBl7BYTGo4wWAz+AKabAoKYrGLwWa4g2HdAVd29w74/WDKlPkzwxnuPfdygZfm\nGqmGptqWycw+0IfvXR7vmXkxzQy/dAf0ImIW+KAstIz1XIcxeQbWI2KG0itcA45qBmoW0U6B88y8\nbm7fAqsRMU8ZgSxl5n2tjDA8Z0v2qoZl6mIdtby7ztVRS84n4LArdRQRi8Bn03ZdAJYpu6JGqqGJ\n/twj4piyIj0XEa/AXmZeTfKZfzEsJ+X4hBvKdqSzzHysGBFozXlJGWlA6Wk+1MrX2AB2gJWI2KVM\nHbfp3tEUw3LuD9wD2MzMt0oZ4WdOgK3MrD7zGdD23btWR205u1RHPeAkIqC03Q6adYGu1ZAkSZIk\nSZIkSZIkSZIkSZIkSZKk/+wLra20dS/nJe8AAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAF2CAYAAAB3dr7TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt41OWd9/H3ZJJJMpPzGXIygAE0Vg4Wq8aAilpQtFIP\nW93IrlvUZUtbtuKu+yxYwX2sLfugtnavhXZXF61tt7VdPNGiICxQwQO2tQqJiSQhIefzMJkcZp4/\nJjMhJZmcJnNIPq/ryiXM/Oaeb24ifHLn+7tvw8mTJ52IiIiIiMggYYEuQEREREQkGCkoi4iIiIgM\nQUFZRERERGQICsoiIiIiIkNQUBYRERERGYKCsoiIiIjIEBSURURERESGMGJQrq2tpbi4mAULFrB6\n9WpKS0tHHLS7u5vHHnuMq666issvv5zvfe97PilWRERERMRfRgzKmzZtYu7cuRw7dowVK1awYcOG\nEQd96aWX+MMf/sCePXv49a9/zRtvvMHu3bt9UrCIiIiIiD94DcqdnZ0cOXKEtWvXYjKZWLNmDdXV\n1ZSUlHgd9L333mPVqlXExsYyY8YMbrrpJvbu3evTwkVEREREJpPXoFxRUYHJZMJsNnP33Xdz+vRp\ncnJyKC8v9zqo0+k87/cVFRUTr1ZERERExE+8BmWbzYbFYsFqtVJWVkZ7ezsWiwWbzeZ10CVLlvDK\nK6/Q2trK6dOn2bNnD3a73aeFi4iIiIhMpnBvT0ZHR2O1WsnIyODo0aMAWK1WzGaz10G/8pWvUFFR\nwapVq4iPj+f666/3vP7PVVVVjbN0EREREZHRy87OHtP1XoNybm4udruduro60tPT6e7uprKykry8\nPK+DRkREsGnTJjZt2gTAk08+ybx584a9fv78+WMqWs6XnJzMyy+/zNKlSwNdypSg+fQtzafvhNJc\nOhxOwsIMgS7Dq1Caz1Cg+fQdzaVvJScnc+jQoTG/zmvrRUxMDIWFhezYsQO73c5zzz1HZmYm+fn5\nnmuKi4vZtm3boNfZbDYqKipwOBwcPnyYX/ziF9x1111jLk5EREJPp62bv3zyDT7/9Zf4w2cNgS5H\nRGTcvK4oA2zZsoWNGzeyZMkSZs+ezfbt2wc9X11dTVZW1qDHbDYbDzzwALW1taSnp/Ptb3+bSy+9\n1LeVi4hI0Ok4203x9/bwbkkdAHf939d56R9XsmB2aoArExEZuxGDckZGBrt27Rr2+X379p33WFJS\nEnv27JlYZTJmamHxLc2nb2k+fSeY5/KBZ97k3ZI6ZiZbmJ+dxFsfVvGV77zOm9/5MpnJMYEub0jB\nPJ+hSPPpO5rLwNMR1lOI/ofyLc2nb2k+fSdY5/LTmlYO/LGa2OgIfvHPN/PjDTdwdUEm7We7+eWh\nkU91DZRgnc9Qpfn0Hc1l4Ckoi4iIT+z+XRkAKz6fR25aHBHhYdx348Wu597xvv++iEgwGrH1QkRE\nZCROp5P/6Q/Dt3xhlufxpZdkEW828UllM6XVLVyYmRioEkXGrLW1lZ6enoC8d0tLCwC9vb0Bef9Q\n43Q6SUxMJCIiwqfjKiiLiMiEfVLVzKc1rSTGRFJ4cabn8cgII1/8/AX87EAJu98p51tfXhzAKkVG\n7+zZswCkpupG1FDgcDior68nOTnZp2FZrRciIjJh7taKlUvyiAgf/E/LrV+Y7bnG6XT6vTaR8ejs\n7CQ+Pj7QZcgohYWFkZaW5lmJ99m4Ph1NRESmHafTySv9Qdkdis911cUzSYqN4tOaVj6ubPZ3eSLj\nYjAYMBiC+8AcGSwsLMznf2YKyiIiMiHVjZ2cqmsnwRLJF+ZnnPd8uDGMGxblAHD44xp/lyciMm4K\nyiIiMiEflrtO31s4OxVj2ND/rCy+MN11bZlO6hOR0KGgLCIiE+IOvwtmpw17jftkvt+XKyiLSOhQ\nUBYRkQlxryh7O6Y6PzOR6MhwTtW109zR5a/SREQmREFZRETGrc/h8KwSL5g1fFAON4ZxyQXJgFaV\nRaaLsrIy7rjjDmbPns1ll13GD3/4wzG9vq+vj61bt3LNNdcwZ84cFi1axPr166mp8d+9DgrKIiIy\nbqXVrZy195KdGkNKfLTXaxfMcrVmqE9ZZOrr7u6muLiYqKgoXnvtNf7pn/6J733ve/z85z8f9Rh2\nu52PP/6Yhx56iL1797Jz505OnjzJX/7lX9LX1zeJ1Q9QUBYRkXEbWE0evj/Zzd2acbysflJrEpnO\nqqqqyMrK4vjx44Mef/TRR7nlllsAeOyxx1i6dCmzZ8/mc5/7HA899BDt7e2Drj9y5AhZWVkcOXKE\nO++8kzlz5rBgwQL2798/qjr2799PZWUl27ZtY968eaxevZrVq1fzn//5n6P+XMxmMy+99BI33XQT\neXl5LF68mL//+7+npKSE0tLSUY8zETqZT0RExu142cj9yW4L+6/5sLwBp9OpPWol5GXes3NSxq1+\nce24X5udnc3ixYt55ZVXWLhwIeDa6/zVV19l/fr1AHR1dbF161by8vKora1l48aNPPLIIzz77LPn\njbd582YefPBBtm3bRnl5OWazmWeeeYYf/OAHw77/W2+9xYcffkhubi7p6eme577whS/wi1/8gt7e\nXsLDxxdB29raAIiLixvX68dKQVlERMbNs+OFl/5kt+zUWBJjImlq7+J0YyfZqbGTXZ7ItHTbbbfx\n7LPPsnnzZgCOHTtGY2Mjq1atAuCJJ57wXJudnc29997Ld7/73SHHuueee7j99tsByMlx7Yeen5/P\nrbfeOuT17gDc1NREUlISNpuNa665hlWrVnHllVfS19dHS0vLuI4G7+jo4JlnnuHLX/4yM2fOHPPr\nx0NBWURExqWru5dPqpoIMxi4JC9lxOsNBgMLZ6ex7/dVHC+rV1CWkDeRld/JdPPNN/Poo4/y3nvv\ncdlll7F7924KCwtJTnbdUPvGG2+wc+dOTp06RWdnJ319ffT09Aw51pIlS857LCEhgYSEhFHVYjQa\nyczMJCUlZUJH2Nvtdh544AESExP5zne+M+5xxko9yiIiMi6f1rTR2+dk9ox4LFERo3pNQf/OFyeq\nWiazNJFpLSUlhcLCQnbv3o3D4eC1117zrAB/8MEHrFu3jhtuuIEXXniBvXv3sn79ehwOx5BjDRWI\nn3nmGfLz84f8uO666wBITk6mubkZk8nEL3/5Sx544AGampowGo0kJiaO6fPp7u7m/vvvp7W1lZ/8\n5CdER3u/cdiXtKIsIiLjUnamFYALM0e3suS61vUP5Kc1rZNSk4i43HrrrTz55JMsX76cjo4OVq5c\nCbjaMObNm8eDDz7oubampmZM9wzce++9I7ZeLFy4kO9///vU1taSkeE62v53v/sdF1988Xn9ye3t\n7bS1tZGWlkZkZOSg53p6enjwwQdpbGzkpz/9qd96k920oiwiIuPiDruzZ44+KM+ZGQ9AmYKyyKRa\nuXIlra2tbNmyhWuvvZaYmBgA5syZQ2lpKXv37qWiooLnnnuO119/fUxtEQkJCeTm5g75kZmZCcA1\n11xDbm4uGzdu5MSJE7z88sv86le/4q//+q/PG2/nzp1cccUV5+3U0dfXx/33309ZWRlPP/00XV1d\n1NfXU19fP2yriK8pKIuIyLi4g/KcGaMPyrP7ry2vbaNvmB/1isjExcTEcO2113Ly5Eluu+02z+PL\nly/ngQce4OGHH2b58uUcPnyYb37zm0OuKE9kZ5qIiAj+67/+i66uLm666Sb+5V/+hY0bN3LHHXcM\n+T5DvVdNTQ179+6lvLycZcuWsWjRIhYtWsTixYt5//33x13bWBhOnjw5/s5qH6iqqmL+/PmBLGFK\ncDfoNzU1BbiSqUHz6VuaT98Jprm8/pFf8nFlM69t+dKotodzu2z9TzjTbOXw/7uLC9L9+2PUPxdM\n8zkVTKX5bGhoGNfODBJYw/25JScnc+jQIbKzs8c0nlaURURkzBwOJ+VnXPuZzp4RP6bXuq9Xn7KI\nBDsFZRERGbPqpk66evpITzATazaN6bVz+nuaFZRFJNgpKIuIyJgN3Mg3ttVkGAjKuqFPRIKdgrKI\niIyZ50a+Mex44ebeJePTMwrKIhLcFJRFRGTMxrPjhduc/h7lsv4eZxGRYKWgLCIiY+YOueNZUZ6R\nZMEcGU5TexfNHV2+Lk1ExGdGDMq1tbUUFxezYMECVq9eTWlp6agGfuqppygsLOTyyy/nW9/6Fp2d\nnRMuVkREgsNEWi8MBsNAn7JWlUUkiI0YlDdt2sTcuXM5duwYK1asYMOGDSMO+uabb/I///M/vPzy\ny7z99tu0trbywx/+0CcFi4hIYLVa7TS02YiODGdGkmVcY+iGPhEJBV6DcmdnJ0eOHGHt2rWYTCbW\nrFlDdXU1JSUlXgctLy9n4cKFpKWlER0dzbJlyygrK/Np4SIiEhju/ZNnZcQTFja+k7tmefqUFZRF\nJHh5DcoVFRWYTCbMZjN33303p0+fJicnh/Lycq+DXnHFFfzxj3+ktrYWq9XK22+/zbJly3xZt4iI\nBEhVQwcAuWmx4x4jN811Il9l/1giIsEo3NuTNpsNi8WC1WqlrKyM9vZ2LBYLNpvN66CXXHIJN910\nE8uWLSMsLIyrr76aO++8c9jr3UdeyvhFREQAmktf0Xz6lubTd4JhLhs7XT9VzM9JG3cdBXNc/46c\nabYF9HMJhvmcSqbSfLa0tAS6hJD3/e9/n7feeouPPvqIrq4uTp8+PenvGR4ePuTXn/trc8zjeXsy\nOjoaq9VKRkYGR48eBcBqtWI2m70O+uKLL/L+++/zzjvvYDKZ+Od//mcef/xxHn300SGv37p1q+fX\nRUVFLF26dKyfh4iI+ElFnav1Ijd97IeNuLlfW1Gvm/lEpiqbzcbKlStZtGgRO3fu9Pv7HzhwgIMH\nDwJgNBopKioa8xheg3Jubi52u526ujrS09Pp7u6msrKSvLw8r4MePHiQG2+8kYQE180at9xyC9/5\nzneGvX7dunWDft/U1DTa+qWf+7snzZ1vaD59S/PpO8Ewl6VVDQAkmcPGXUeEw0lkhJHGNhuV1bVY\nosa32jNRwTCfU8lUms/e3t5AlzAuVVVVXHHFFbzyyissXLjQ8/ijjz7K8ePH2b17N4899hj79u3j\n9OnTWCwWbrjhBjZv3kxcXJzn+iNHjnDnnXfy85//nKeeeooPPviAmJgYtm/fzjXXXDOqWh5++GEA\nfvazn+F0On37iQ6jt7fX8/VXUFBAQUEB4PraPHTo0JjH8xqUY2JiKCwsZMeOHTz88MM8//zzZGZm\nkp+f77mmuLiYSy+9lIceesjz2KxZs/jtb3/LLbfcQmRkJG+88QYXXnjhmIsTEZHgU9Xo6ivOSR1/\nj3JYmIGslBjKzrRR1dDBvOwkX5Un4jc/+1PxpIx718W7xv3a7OxsFi9ePCgoO51OXn31VdavXw9A\nV1cXW7duJS8vj9raWjZu3MgjjzzCs88+e954mzdv5sEHH2Tbtm2Ul5djNpt55pln+MEPfjDs+7/1\n1lvjrj/YeA3KAFu2bGHjxo0sWbKE2bNns3379kHPV1dXk5WVNeixr33ta2zZsoUbb7wRh8PBokWL\n+Pa3v+3TwkVExP8cDifVja598bNSYiY0VnZqLGVn2qhUUBbxqdtuu41nn32WzZs3A3Ds2DEaGxtZ\ntWoVAE888YTn2uzsbO69916++93vDjnWPffcw+233w5ATk4OAPn5+dx6661DXh8ePmK0DCkjfjYZ\nGRns2jX8dzb79u077zGLxcKTTz45scpERCTo1LZY6e51kBIXjXmC7RLZ/SvSVfXa+UJC00RWfifT\nzTffzKOPPsp7773HZZddxu7duyksLPS0xrzxxhvs3LmTU6dO0dnZSV9fHz09PUOOtWTJkvMeS0hI\n8LTXTnU6wlpEREbtdP9qcvYE2i7c3K0b7lYOEfGNlJQUCgsL2b17Nw6Hg9dee82zAvzBBx+wbt06\nbrjhBl544QX27t3L+vXrcTgcQ441VCB+5plnyM/PH/Ljuuuum9TPzd+m1vq4iIhMqsr+1d/s1Im1\nXQBk9Y9Rpb2URXzu1ltv5cknn2T58uV0dHSwcuVKwNWGMW/ePB588EHPtTU1NRgMoz886N5771Xr\nhYiIyJ/zxY18bjmprjvsqxo6JzyWiAy2cuVKHnnkEbZs2cK1115LTIzrG9M5c+ZQWlrK3r17yc/P\nZ//+/bz++utj2pVitK0X1dXVtLS0UFNTA8Cf/vQnnE4nc+fOHfe+xv6m1gsRERk19+pvlg+CcrZW\nlEUmTUxMDNdeey0nT57ktttu8zy+fPlyHnjgAR5++GGWL1/O4cOH+eY3vznkivJYVpmH8r3vfY8v\nfvGL/Ou//isGg4Ebb7yRFStWUF9fP6Fx/UkryiIiMmruUOuLFeWk2CjMkeG0n+2mzWon3hI54TFF\nZMBwh3xs3LiRjRs3Dnrsq1/96qDfX3nllVRVVU3o/Z966imeeuqpCY0RaFpRFhGRUXMH5ey0iQdl\ng8EwcEOfVpVFJAgpKIuIyKj09jmoabJiMEBm8sRv5oOBFo5KBWURCUIKyiIiMipnmq30OZykJ1iI\njDD6ZEytKItIMFNQFhGRUfHl1nBu2iJORIKZgrKIiIxKdZNvjq4+V1aKa0W5utHqszFFRHxFQVlE\nREblTLMrzM70UX+yayzLoLFFRIKJgrKIiIyKO8zOSLL4bEz3WArKIhKMFJRFRGRUavpbL2b6MCin\nxkcTbjTQ2G7D3tPns3FFRHxBQVlEREbFs6Kc7LugbAwLIz3BNV5ti1aVRSS4KCiLiMio1ExC68W5\n49U0KSiLSHDREdYiIjIim72X1k47pvAwkmOjfTr2zGQLlKpPWWSqycrKOu+xF198kaVLlwagmvFR\nUBYRkRGd6W+LyEi0EBZm8OnYAzf0dfp0XBEJvB/96Edcdtllnt/Hx8cHsJqxU+uFiIiMyH0jn6/b\nLs4dU60XIhNXVVVFVlYWx48fH/T4o48+yi233ALAY489xtKlS5k9ezaf+9zneOihh2hvbx90/ZEj\nR8jKyuLIkSPceeedzJkzhwULFrB///4x1RMfH09KSornIyIiYmKfoJ9pRVlEREY0sIey74Oye19m\ntV5IqOlbe8ukjGvcuXvcr83Ozmbx4sW88sorLFy4EACn08mrr77K+vXrAejq6mLr1q3k5eVRW1vL\nxo0beeSRR3j22WfPG2/z5s08+OCDbNu2jfLycsxmM8888ww/+MEPhnz/rKws9u3b5/n9N77xDWw2\nG7m5ufzN3/wNt91227g/t0BQUBYRkRG5V3u1oiwS/G677TaeffZZNm/eDMCxY8dobGxk1apVADzx\nxBOea7Ozs7n33nv57ne/O+RY99xzD7fffjsAOTk5AOTn53PrrbcOeX14+EC0/Md//EeuvPJKTCYT\nv/3tb/nGN75Bd3c3d91118Q/ST9RUBYRkRFNxql8bjqdT0LVRFZ+J9PNN9/Mo48+ynvvvcdll13G\n7t27KSwsJDk5GYA33niDnTt3curUKTo7O+nr66Onp2fIsZYsWXLeYwkJCSQkJIxYx9e+9jXPrwsK\nCqipqWHHjh0hFZTVoywiIiOajFP53FLjozGG6dAREV9JSUmhsLCQ3bt343A4eO211zwrwB988AHr\n1q3jhhtu4IUXXmDv3r2sX78eh8Mx5FhDBeJnnnmG/Pz8IT+uu+66YesqKCigsrLSN5+kn2hFWURE\nRjSZN/MZw8JITzRT02SltsVKblqcz99DZLq59dZbefLJJ1m+fDkdHR2sXLkScLVhzJs3jwcffNBz\nbU1NDQbD6Hezuffee0fVevHnSktLyc3NHfX7BAMFZRERGdFk3swHMDMphpomK2eaFJRFfGHlypU8\n8sgjbNmyhWuvvZaYGFfb1Jw5cygtLWXv3r3k5+ezf/9+Xn/9dZxO56jHHk3rxW9+8xvOnDnDkiVL\niI6O5u233+all14a1B8dCtR6ISIiXtnsvbR02okw+v6wETfPDX3qUxbxiZiYGK699lpOnjw5aKeJ\n5cuX88ADD/Dwww+zfPlyDh8+zDe/+c0hV5THssr85yIjI9m1axdf+tKXuOGGG/jpT3/Kk08+GVL9\nyaAVZRERGYH7sJEZSb4/bMRt4IY+HToi4is7d+4c8vGNGzeycePGQY999atfHfT7K6+8kqqqqnG/\n97Jly1i2bNm4Xx8stKIsIiJenZnEreHcBk7n04qyiAQPBWUREfGqpnnybuRz017KIhKMRgzKtbW1\nFBcXs2DBAlavXk1paemIg27evJmFCxd6Pi655BLPJtciIhJa6lrOApAxiUHZPbb7vUREgsGIQXnT\npk3MnTuXY8eOsWLFCjZs2DDioFu2bOH48eOejxtvvJEbb7zRJwWLiIh/ucNreqJ50t4jI8E1dq2C\nsogEEa9BubOzkyNHjrB27VpMJhNr1qyhurqakpKSUb9BR0cHb775Jl/60pcmXKyIiPifO7ymJ0xe\nUE7tH7uh7Sx9wxx8ICLib153vaioqMBkMmE2m7n77rt5/PHHycnJoby8nPz8/FG9wWuvvcbFF19M\nVlbWsNe4j1SU8YuIiAA0l76i+fQtzafvBGIumzu7Aci/YMakvm9KfDSNbTYcxmjSknx/VPZQ9LXp\nW1NpPltaWnA6nRPaIk38y+FwEBERMeTXn/trc6y8BmWbzYbFYsFqtVJWVkZ7ezsWiwWbzTbqN3j5\n5Ze54447vF6zdetWz6+LiopYunTpqMcXEZHJVdPUAcCMSQ6vM5JiaGyzcaapkww/BWWR4aSmptLU\n1ER8fHygS5FRcDgcNDU1ccEFF3geO3DgAAcPHgTAaDRSVFQ05nG9BuXo6GisVisZGRkcPXoUAKvV\nitk8uh+/lZWVcfLkSVasWOH1unXr1g36fVNT06jGlwHu7540d76h+fQtzafv+HsunU4ntf27XkTS\nPanvmxIbCcDJUzXkJI1v9Wes9LXpW1NtPp1OJw0NDQF5b/dR0L29vQF5/1DjdDpJTEzEarVitbp2\nzykoKKCgoABwfW0eOnRozON6Dcq5ubnY7Xbq6upIT0+nu7ubyspK8vLyRjX4L3/5y0HHJoqISGhp\n6bTT3esg3mwiOnJyz6hy3yxY3zr6n1qKTKaRjmmeTFPtm45Q5fVmvpiYGAoLC9mxYwd2u53nnnuO\nzMzMQf3JxcXFbNu27bzX9vX1sXv3bt3EJyISwvyx44VbeqJ7izjtpSwiwWHE7eG2bNlCSUkJS5Ys\nYc+ePWzfvn3Q89XV1UN+t3Pw4EGcTidXX32176oVERG/qmt1hda0Sdzxws0dxmtbtUWciASHEX+O\nlpGRwa5du4Z9ft++fUM+fs0113D48OHxVyYiIgHnzxVl917KOnRERIKFjrAWEZFhufdQzkicvFP5\n3AZaLxSURSQ4KCiLiMiw6vxw2Iibe9Xa3e4hIhJoCsoiIjIsd2j1R+tFanw0BgM0tNno7dPpfCIS\neArKIiIyrIEe5clvvQg3hpEaH43T6QrLIiKBpqAsIiLDGuhRnvwVZYD0BPUpi0jwUFAWEZEhORxO\n6vu3avPH9nCu94kGtJeyiAQHBWURERlSU4eNPoeTxJhIIiOMfnlP9+4a2ktZRIKBgrKIiAzJnzte\nuHl2vlDrhYgEAQVlEREZUl2r/w4bcXO/V71WlEUkCCgoi4jIkPy544Vbuk7nE5EgoqAsIiJDcodV\nf93IBwM9ymd0M5+IBAEFZRERGVJ9m7tHOdpv7+kO5Q2t2kdZRAJPQVlERIbkDqupflxRTo6LwmBw\n7bih0/lEJNAUlEVEZEgDK8r+C8rhxjBS4lyn8zW2a1VZRAJLQVlERIbkWVGO91/rxbnvp/YLEQk0\nBWURETmP0+n/U/nc3O9Xpy3iRCTAFJRFROQ8HbYeunr6MEeGY4mK8Ot7e27oa1NQFpHAUlAWEZHz\nBGo1GSCtv/VCeymLSKApKIuIyHka2gLTnwznriirR1lEAktBWUREzuNeUU6N9/+Kcmr/vs06xlpE\nAk1BWUREzuNezU3z42Ejbu7t6Oq164WIBJiCsoiInKfBs6Ls/6Cc6gnKWlEWkcBSUBYRkfPUe1aU\n/d964VlRbjuL0+n0+/uLiLgpKIuIyHkaArjrhSUqAnNkOF3dfXTYevz+/iIibgrKIiJynvoA9ii7\n3lftFyISeArKIiJynkDuegEDAV1BWUQCSUFZREQG6XM4aGrvAiAlLrArytpLWUQCacSgXFtbS3Fx\nMQsWLGD16tWUlpaOauAjR45wyy23sHDhQq6//npOnDgx4WJFRGTyNbV34XA6SYqNIiI8MOspaf0r\n2XVaURaRABrxb8BNmzYxd+5cjh07xooVK9iwYcOIg54+fZr169fzt3/7t7z//vu89NJLpKWl+aRg\nERGZXO79i9MCsDWcm2dFWUFZRALIa1Du7OzkyJEjrF27FpPJxJo1a6iurqakpMTroL/61a8oKipi\nxYoVhIWFkZKSQlJSkk8LFxGRydHQ1t+fHIAdL9w8PcpqvRCRAPIalCsqKjCZTJjNZu6++25Onz5N\nTk4O5eXlXgc9efIkcXFx3HnnnVx11VV861vforOz06eFi4jI5HCvKAfisBE3z64XLVpRFpHACff2\npM1mw2KxYLVaKSsro729HYvFgs3m/Tv8jo4O3n33XZ5//nlyc3PZsGEDTz/9NP/n//yfIa9PTk4e\n/2cgAERERACaS1/RfPqW5tN3/DGX1v6ti3MzkgL2Z3Zhbi8AzZ3dk1qDvjZ9S/PpO5pL33LP51h5\nDcrR0dFYrVYyMjI4evQoAFarFbPZ+4/joqOjueqqq5g3bx4Ad955J08//fSw12/dutXz66KiIpYu\nXTrqT0BERHyrrsUKQHqSJWA1ZCTFAFDbop9Gisj4HDhwgIMHDwJgNBopKioa8xheg3Jubi52u526\nujrS09Pp7u6msrKSvLw8r4Pm5OTQ2Njo+b3T6fR6DOm6desG/b6pqWk0tcs53N9xau58Q/PpW5pP\n3/HHXFbWNgMQExG4PzODw0GYwUBjm43auoZJ231DX5u+pfn0Hc3lxBUUFFBQUAC45vPQoUNjHsPr\n3zwxMTEZlsC1AAAgAElEQVQUFhayY8cO7HY7zz33HJmZmeTn53uuKS4uZtu2bYNed/3113PgwAFK\nSkqw2+384he/4Atf+MKYixMREf9z712cGqBT+QCMYWGeHmn3zYUiIv424rfoW7ZsoaSkhCVLlrBn\nzx62b98+6Pnq6urzvtv5/Oc/z9/93d9x3333UVRUhNls5utf/7pvKxcRkUnh3rs4LUCn8rm5g7oO\nHRGRQPHaegGQkZHBrl27hn1+3759Qz5+3333cd99942/MhERCQj33sWBXFEG984XTTp0REQCRkdY\ni4iIh83eS4ethwhjGAmWyIDW4j7wpKFVK8oiEhgKyiIi4jFw2Eg0BoMhoLV49lLWirKIBIiCsoiI\neLhPwgt0fzKcE5R1M5+IBIiCsoiIeARLfzIMnAyoFWURCRQFZRER8QimFeV0T+uFepRFJDAUlEVE\nxMN941xQrCirR1lEAkxBWUREPNz9wO7+4EDy7HrRZvN6uquIyGRRUBYREQ/3irI7pAaSOSqCmKgI\n7D19tJ3tDnQ5IjINKSiLiIhHvedmvsCvKAOkJbrqaFD7hYgEgIKyiIh4eFovgmBFGQbq0Ol8IhII\nCsoiIgKA0+kcuJkvCHa9gIFeaZ3OJyKBoKAsIiIAtFrt9PQ5iI2OIDoyPNDlAAMtIFpRFpFAUFAW\nERHg3K3hgmM1GSA9YWDnCxERf1NQFhERIPj6k2GgBUR7KYtIICgoi4gIQND1J8O5p/MpKIuI/yko\ni4gIcO5hI0G0otxfi4KyiASCgrKIiADnHDYSVD3K/SvK6lEWkQBQUBYREWBgRTmYWi8SY6IINxpo\n7bRj7+kLdDkiMs0oKIuICAD1nhXl4Gm9CAszkBLnCu6NWlUWET9TUBYREWDgmOhgWlGGgeDuXvEW\nEfEXBWUREQEG+oCDaUUZBnqm61sUlEXEvxSURUSEnl4HzR1dhBkMJMdFBbqcQdz7OuuGPhHxNwVl\nERGhsd0VQpPjojCGBdc/DWmJ2ktZRAIjuP42FBGRgGjw7HgRXG0XoNP5RCRwFJRFROScHS+C60Y+\ngHTPoSNqvRAR/1JQFhGR4F5R7g/vDdr1QkT8TEFZREQ8q7XpQbmi7KqpTq0XIuJnIwbl2tpaiouL\nWbBgAatXr6a0tHTEQY8ePcq8efNYuHCh56O8vNwnBYuIiO95VpSDMCi7V7kbWm04nc4AVyMi08mI\nQXnTpk3MnTuXY8eOsWLFCjZs2DCqgdPT0zl+/LjnY9asWRMuVkREJkddi2tFORhbL6JM4cSbTfT0\nOWjptAe6HBGZRrwG5c7OTo4cOcLatWsxmUysWbOG6upqSkpK/FWfiIj4gXtFORhv5gP1KYtIYHgN\nyhUVFZhMJsxmM3fffTenT58mJydnVG0UTU1NXHXVVVx//fX8+7//u88KFhER32toC94VZRioq047\nX4iIH4V7e9Jms2GxWLBarZSVldHe3o7FYsFm8/4X1Zw5c3j99dfJycnhxIkTrFu3jtTUVFavXj3k\n9cnJyeP/DASAiIgIQHPpK5pP39J8+s5kzaU7KM+blUm8JbhO5gPITk/kd5+cwdYb5tPPXV+bvqX5\n9B3NpW+553OsvAbl6OhorFYrGRkZHD16FACr1YrZ7P1Hc8nJyZ4/2Hnz5nHPPfewf//+YYPy1q1b\nPb8uKipi6dKlY/okRERk/Dpt3Vi7eogyhRNnjgx0OUPKSLQAUNtsDXAlIhIqDhw4wMGDBwEwGo0U\nFRWNeQyvQTk3Nxe73U5dXR3p6el0d3dTWVlJXl7e+Coexrp16wb9vqmpyafjTwfub0w0d76h+fQt\nzafvTMZcflbbBkBqfBTNzc0+G9eX4qIMAJyqafTp566vTd/SfPqO5nLiCgoKKCgoAFzzeejQoTGP\n4bVHOSYmhsLCQnbs2IHdbue5554jMzOT/Px8zzXFxcVs27Zt0OveeecdampqACgrK+Oll17immuu\nGXNxIiIy+Qb6k4PzRj7QMdYiEhheV5QBtmzZwsaNG1myZAmzZ89m+/btg56vrq4mKytr0GMff/wx\n3/rWt7BarSQnJ/MXf/EXw7ZdiIhIYLnDZzAeNuKWltgflLXrhYj40YhBOSMjg127dg37/L59+857\n7L777uO+++6bWGUiIuIXnhXlhODc8QIgrX/Xi3rteiEifqQjrEVEpjn3inJaELdeuPd3blDrhYj4\nkYKyiMg05w7KwbyinBgTSYQxjLaz3di6ewNdjohMEwrKIiLTXH1/60UwrygbDAZPkG9sU/uFiPiH\ngrKIyDQXCivKMBDk69R+ISJ+oqAsIjLNeXqUg3jXC1Cfsoj4n4KyiMg01udw0NjWBUBqfHCvKLtX\nvOu084WI+ImCsojINNbY1oXD6SQpNgpTuDHQ5Xjl3ue5QXspi4ifKCiLiExjoXDYiJt7xbu+RUFZ\nRPxDQVlEZBqr8/QnB3fbBQyE+XrteiEifqKgLCIyjYXKjXwAqe6grJv5RMRPFJRFRKYx94pyeqIl\nwJWMzLOirJv5RMRPFJRFRKaxgR7l4G+9SOnvUW5sP4vD4QxwNSIyHSgoi4hMY6HUehEZYSQhJpLe\nPictnV2BLkdEpgEFZRGRaayuxdXGEAq7XgCkuXe+UPuFiPiBgrKIyDTmWVFODJGgrBv6RMSPFJRF\nRKYpp9MZUq0XcE5Q1qEjIuIHCsoiItNUS6ednj4HcWYT0abwQJczKlpRFhF/UlAWEZmm6lpCazUZ\nzjmdTz3KIuIHCsoiItNUfQidyueWrhVlEfEjBWURkWnKc9hIKK0o94f6Bh1jLSJ+oKAsIjJNhdqN\nfABp8a5a67SiLCJ+oKAsIjJNeU7lC5Gt4WBgG7sGBWUR8QMFZRGRaSoUWy/izSYiI4x02Hqw2XsD\nXY6ITHEKyiIi01Qotl4YDIaBnS+0l7KITDIFZRGRacq9xVooBWWA1P4+5foWBWURmVwKyiIi05DT\n6QzJ1guA9ET3irJ2vhCRyaWgLCIyDXX29/hGR4YTEx0R6HLGxLOirBv6RGSSjRiUa2trKS4uZsGC\nBaxevZrS0tIxvcFf/dVfsXTp0nEXKCIivnfuarLBYAhwNWOjQ0dExF9GDMqbNm1i7ty5HDt2jBUr\nVrBhw4ZRD/76669jtVpD7i9hEZGpbuD46tA5lc/NfeiIgrKITDavQbmzs5MjR46wdu1aTCYTa9as\nobq6mpKSkhEHtlqt7Ny5kwcffBCn0+mzgkVEZOJCcccLN3fN6lEWkcnmNShXVFRgMpkwm83cfffd\nnD59mpycHMrLy0cc+Nlnn+Wuu+4iJibGZ8WKiIhvhOqNfDBwOp9WlEVksoV7e9Jms2GxWLBarZSV\nldHe3o7FYsFm8/5dfFlZGe+88w4bN27k2LFjIxaRnJw8tqrlPBERrptxNJe+ofn0Lc2n7/hqLjvs\nrp/05WWm+uzPxd5rpabtj7ScrcLW3UKfs5foiHhiI9OYmfA54qLSffI+cx2uOWhqt0+4dn1t+pbm\n03c0l77lns+x8hqUo6OjsVqtZGRkcPToUcDVUmE2e1+BePzxx9mwYcOoe5O3bt3q+XVRUZFu/hMR\nmWRnmjsByEiyTGgch7OPU01H+WPNK9S0/hEnjmGvjY+eyUUZK7hoxo1Eho//p41pCa6a61qt9PU5\nMBq1gZOInO/AgQMcPHgQAKPRSFFR0ZjH8BqUc3Nzsdvt1NXVkZ6eTnd3N5WVleTl5Xkd9KOPPmLt\n2rWDHps/fz7vvvvukK0Y69atG/T7pqam0dYv/dzfcWrufEPz6VuaT9/x1VxW1bUAYAl3jHusM51/\n4PiZXXR01wJgwEiKOZ+k6NlEh8cTZgjH3ttOm72GeuvHtNlq+N1nP+bdiheYn3ILc5NXYgzz+s/Q\nsJJio2ju6KK0otqzXdx46GvTtzSfvqO5nLiCggIKCgoA13weOnRozGN4/RsqJiaGwsJCduzYwcMP\nP8zzzz9PZmYm+fn5nmuKi4u59NJLeeihhzyPvfvuu55fHzt2jI0bN3LgwIExFyciIpNjIqfydfdZ\nea/mP6lqd/2k0RKRSn7yjVyQcDUm49DjOZwOajt/T0nTb6iz/ok/1v83p1oPc3nm/SSbZ4+5hrT4\naJo7uqhrsU0oKIuIeDPit/Jbtmxh48aNLFmyhNmzZ7N9+/ZBz1dXV5OVlTXs651Op7aHExEJMuPd\n9aLFdorDVc9g7WnAaDBRkLaa/OQbCTN4/+ckzBDGzNiFzIxdSG3nR3xw5nk6umvYd+pxFmb8JbMT\nrx3TvxVpCWZOnG6hoe0soB5OEZkcIwbljIwMdu3aNezz+/bt8/r6yy+/nLfffnvMhYmIyOSwdffS\nfrYbU3gYiTGRo35ddfv7/O70s/Q5e0iMyuPK7K8RY0ob8/tnxBRw4+z/y4d1L/Fp817eP/McrV1V\nLJ5xLwbD6PqNtZeyiPjD+JrDREQkZLnDZWr86E/lO9V6iGPVO3HiIC+hiMUz1mAMM427BmNYBItn\n3Ety9GzerfkxZS1v0eM4y+WZ94+4Og3nns6nvZRFZPIoKIuITDP1LWNru/is9RDHqv8dgItSbqEg\n7XaftdRdkHAV5ogk/rfy/1HZ9jsczl6uyPoaYSOsLKf21+5qvRARmRzaU0dEZJqpdR82kjjy8dU1\nHcd5t3onAJ9Lu4tL0u/w+X0naZb5LLvgESLCzJxuf5f3z/zniCe6uleU69R6ISKTSEFZRGSaGe2K\ncuPZUo5UfR8nDuan3ML81Jsnrabk6FlcnfP3GA0RlLe8zUcNL3u9PjXeFfIb1HohIpNIQVlEZJqp\nH8Xx1Wd7mjlc9TR9zh5mJSzjkrTbJ72uVMtcrsj+GgbC+Ljh11S2HR322jStKIuIHygoi4hMM3We\n1ouhg3Kfo5vDVU/T1dtGmmU+i2eu8ds2n5mxi7g04ysAHKveQWtX5ZDXpXl6lLWiLCKTR0FZRGSa\nGWkP5eO1L9JsK8cSkcKVWetHtQuFL+Un3cgFCYX0Obs5VPk0PX3nh+HY6AiiTEasXT1Yu3r8Wp+I\nTB8KyiIi04x7S7WhWi+q2t+lrGUfYYYIrsr+JpHhsf4uD4PBwGUz/pqEqFysPfW8N8TNfQaDgbR4\n9xZxar8QkcmhoCwiMs3UDbOibO1u5N3qHwGwIP0rJEbn+r02N2OYiSuz/o7wsEgq237HqbbD512j\nQ0dEZLIpKIuITCP2nj6aO7owhhlIjovyPO50OjhWvYMex1lmxi5kTtLyAFbpEhs5g4UZ9wLwwZnn\nsXY3DHo+PcECQG2LgrKITA4FZRGRaaSuxQq4buQzhg38E/Bp81vUn/2ESGMcn5/5Vb/dvDeSvISr\nyYr7PL2OLt6t+fGgFowZya6gfKbZGqjyRGSKU1AWEZlG3KEyI9Hieayzu54/1P8MgMtm/hVR4XEB\nqW0oBoOBxTPWEGmMpc76J8pa9nuem9G/a0dti4KyiEwOBWURkWnE3aYwI8kVlJ1OJ+/V/Ae9DjvZ\ncZeTFff5QJY3pKjweBbNWAPA7+te4mxPMzDwOWhFWUQmi4KyiMg04llR7g+ZlW2/o876J0zGGBbN\nuDeQpXmVHbeEzNjL6HV0cbz2BWBgVby2WT3KIjI5FJRFRKYRd1CemWShu8/K8doXAbg0/S+CquXi\nzxkMBhbNKCY8LIrT7e9S0/GhepRFZNIpKIuITCPuft6MRDN/qPtv7H3tpJjzyUu4OsCVjcwckURB\n6mrAtQtGcpwRgLpWKw6H09tLRUTGRUFZRGQaca++JiW2UdayDwNhLJ7xVxgMofHPwYXJN5AQlYO1\np5HKjjdJio2it89JY7uOshYR3wuNvxlFRMQnXP28TjqNrwFO5iRdT0JUdqDLGrUwg5EFGfcA8Enj\nK+TNcP0zpp0vRGQyKCiLiEwTDoeTulYrn5vXSEdPKSZjDAVptwW6rDFLt1xEZuwieh12rr68FIAz\nTQrKIuJ7CsoiItOEqz2hjy8t/wyAS9LuwGS0eH9RkLo0/S8wYCQ7q4yZaZ2c0el8IjIJFJRFRKaJ\nM81WrlxUQ0JcF/GRWcxKXBboksYtNnIGc5KWYzDALcvLOdPcGeiSRGQKUlAWEZkmzjQ3sfyqSgA+\nl34nYSFyA99wLk79Ek5HFPkXtGI3nAh0OSIyBYX235IiIjJqjT37iTH30tGewYyYBYEuZ8Iiw2OI\n4zoAsnLeweHsDXBFIjLVKCiLiEwDtp5WjDHHAOhqXYrBYAhwRb6Rl3At9U3RxMZ2UN7ydqDLEZEp\nRkFZRGQa+FPDrwkL6+WPJ5NJib4w0OX4zMykeF4/cAEAHzfsptfRHdB6RGRqUVAWEZniOux1lLe8\njdNp4PUDFzAjKTR3uhhKnNlE2WcZnK61YOttoaz5rUCXJCJTiIKyiMgU98f6/8ZJH5+UZlHXaCEj\nyRzoknzGYDCQnhTDnoMXAK5DSHr6ugJblIhMGSMG5draWoqLi1mwYAGrV6+mtLR0xEHfeecdVq1a\nxeLFi7niiiv4h3/4B6xWbQYvIuJvLbYKqtqPYjRE8NrbrhP4ZiTFBLgq35qRZOHjT5OIcGZj7+ug\ntPm3gS5JRKaIEYPypk2bmDt3LseOHWPFihVs2LBhxEFnz57Nj370I95//33efPNNGhsb2bFjh08K\nFhGR0ftTw68ByIpdxpnGcMyR4cRGRwS4Kt/KSDQDBuxtVwNwsul1uvt0AImITJzXoNzZ2cmRI0dY\nu3YtJpOJNWvWUF1dTUlJiddBU1NTSU9PB6C3txen04nFMnV64kREQkFLVwXVHe9hNEQQ3ecKkZnJ\nMVNmxwu3zGTXCnlNbSqp5nl091kpadoT4KpEZCrwGpQrKiowmUyYzWbuvvtuTp8+TU5ODuXl5SMO\nXFNTw+LFi7n88suJi4tj7dq1PitaRERG9nG9azV5duK11De7/rrPTJlabRcw8DlVN1m5JO12AE42\nvYG9tyOQZYnIFBDu7UmbzYbFYsFqtVJWVkZ7ezsWiwWbzTbiwDNnzuT999+nqqqK9evX89Of/pSv\nfOUrQ16bnJw8vurFIyLC9aNUzaVvaD59S/PpO6Ody8bOck53vIcxzMQVFxbzwmenAJiVmTzl/hzm\n580EoL7NzrycKyltW0xVy/tUnN3PFXl/7fW1+tr0Lc2n72gufcs9n2PlNShHR0djtVrJyMjg6NGj\nAFitVszm0d8xnZ2dzf3338+Pf/zjYYPy1q1bPb8uKipi6dKlox5fRETO917lTwC4eMZKLJFJVDX8\nAYDs1LhAljUp3J/T6QbXCvKS3Huoanmfj2peZWHW7URFxAayPBEJkAMHDnDw4EEAjEYjRUVFYx7D\na1DOzc3FbrdTV1dHeno63d3dVFZWkpeXN6Y3cTgcOJ3OYZ9ft27doN83NTWNaXwZ+I5Tc+cbmk/f\n0nz6zmjmsrWrkvLGIxgNEVxguY6mpibKTjcAkGgOm3J/DmZjDwBV9W00NjYSbkgl3VJAnfUjjn76\nUwrSVg/7Wn1t+pbm03c0lxNXUFBAQUEB4JrPQ4cOjXkMrz3KMTExFBYWsmPHDux2O8899xyZmZnk\n5+d7rikuLmbbtm2DXvfaa69x8uRJHA4HNTU1/Md//Me4UryIiIyde6eLWYnXEh2RAEB1UycwcOPb\nVBITbSLBEklXTx/NHa49lC9KvRWAkqbf0NM3crugiMhQRtwebsuWLZSUlLBkyRL27NnD9u3bBz1f\nXV193nc7ra2tfP3rX2fx4sXcddddXHbZZeetGouIiO+1dlVxuv1djIYI5qfc7Hm8utG1l/3MKRiU\nAWYku3ZWcn9DkGaZR6p5Lj2Os3za/GYgSxOREOa19QIgIyODXbt2Dfv8vn37znvsnnvu4Z577plY\nZSIiMmafNL4CwKzEZZ7V5N4+B7UtrqA8lY6vPldmcgyfVDZT3djJ5/JSAdeq8oGK73Ky6Q0uTL6e\n8LCoAFcpIqFGR1iLiEwRnd31VLW9gwEjc5NXeh6vaz1Ln8NJWkI0kRHGAFY4edwtJdVNA6fAplsK\nSIqehb2vg7Lm/YEqTURCmIKyiMgUcaLxdZw4yU24AospxfN4TePU7U92y0zpb73o/1wBDAYDF6d+\nCYATTa/T5+gOSG0iEroUlEVEpoCu3jY+a3VtgzQv+eZBz7n7dqdqfzKcu6LcOejxGTELSIjKoau3\nlfL++RERGS0FZRGRKaCkaQ8OZw+ZsYuJj8oc9FxNfzvClF5Rdh9jfU7rBbhWlS9Kce2AcaLxVRzO\nXr/XJiKhS0FZRCTEdfed5dPmtwCYl3Lzec97toabgsdXu81McQflzvOey4q7jFjTDM72NFHR9o6/\nSxOREKagLCIS4sqa99HjsJFmnk+Kec55zw/soTw1d7wASE8wYwwzUNd6FntP36DnDIYwz1Z5Jxpf\nwel0BKJEEQlBCsoiIiGs19FNSfMeAOanrhryGvcNblN5RTncGEZGousbAfdWeOfKTbgSc0Qy7fYa\nqjs+8Hd5IhKiFJRFRELYqdb/pau3jYSoXNItBUNe4+7bnZk0dYMywMzk83e+cAszhHu2zPu4YTdO\np9OvtYlIaFJQFhEJUQ5nHycaXwNgfsoqDAbDedd02rpptdqJjDCSHDe1D9wYbucLt1mJS4k0xtLS\n9Rl11o/8WZqIhCgFZRGREFXVfgxrTwMxpnSy4j4/5DUDW8NZhgzSU4m7teT0ECvKAOFhkeQnfxEY\nOMFQRMQbBWURkRDkdDr5pMEV9uYl30SYYei/zivrOwDISY31W22Bkt3/OVY1dAx7zZyk64gIi6be\n+gmNZz/1V2kiEqIUlEVEQtCZzt/TZq8iKjyBCxIKh73OHRqzp0FQdn8z4P7mYCgmo4U5SdcBWlUW\nkZEpKIuIhKATja8CMDf5ixjDIoa9rrI/KOekTf2gnJ028ooyQH7yFzEaIqjp+IAm6yk/VCYioUpB\nWUQkxJxp+xMNZ08SEWZmduK1Xq/1tF6kxfmjtIDKSonBYHDt8tHTO/xeyVHh8eQlLgPgg6r/9lN1\nIhKKFJRFREKMO9xdmLScCGO012s9K8rToPXCFG5kRpIFh9M57M4XbvOSV2LAyKf1B2iznfFThSIS\nahSURURCSJP1Myqaj2E0mLgw+Uav1zqdTqrqp0+PMpzTpzxC+4XFlEJuwhU4cXD89C/8UZqIhCAF\nZRGREHK8yhXq8hKXEhXuvZ2ipdNOZ1cPMVERJMZE+qO8gPPsfOHlhj4317HWBk7U7sXW0zrJlYlI\nKFJQFhEJEZ3d9ZTWH8BAGPP6T5nzxrPjRVrslN9D2W20K8oAcZGZzEq5Aoezl5NNb0x2aSISghSU\nRURCxMmmN3Di4MK0ZVhMKSNeP536k91Gu/OF26LsOwEoa9mHvdd7X7OITD8KyiIiIaCrt43PWg4A\nsCj7jlG9Zrr1J8Po9lI+V1psPlkJC+l1dPFp897JLE1EQpCCsohICChp+i19zh4uSP4CSZbcUb2m\nor4dgNxpsIeym3sbvMqG9lG/ZnHOXQCUNP+Wnr6uSalLREKTgrKISJDr6bPxafObACzMun3Ur5tO\np/K5pSeYiYww0tTehbWrZ1SvmRl/CcnRc+ju66S8Zf8kVygioURBWUQkyH3a/BY9jrOkmucxI/6i\nUb9uOp3K5xYWZiAzJQYYfZ+ywWBgfuoqwNUH3ucYXcAWkalPQVlEJIj1Oropad4D4Alzo+FwOKlu\ndN2clp0yfYIyjG3nC7eZMQuIj8zC1tvCqbbDk1WaiIQYBWURkSB2qvUgXb1tJETlkmG5ZNSvq22x\n0t3rICUuGnNUxCRWGHzGspeym8EQxvwU1zciJxpfxeEc/ghsEZk+FJRFRIKUw9nHicbXAbgoZdWY\n9kKunIY7Xri5b16sGMOKMkB2/OVYItLo7K7jdPuxyShNREKMgrKISJCqbHsHa08DsaYMMuM+P6bX\nflbXBkBehvfT+6aiC9Jdn/NntW1jel2Ywci8lJsA+KTxFZxOp89rE5HQoqAsIhKEnE4HJxpfBWBe\nyk2EGcb213X5GVdInDUj3ue1BTv35+yeg7HISygkKjyB1q5KznT+3teliUiIGdXfvLW1tRQXF7Ng\nwQJWr15NaWnpiK85cOAAX/7yl1m8eDHLli3j3/7t3yZcrIjIdFHT+SFt9tNEhyeSG1845td/Vuva\nR3hWxvQLyrlpcRgMrl0venrH1mtsDDMxN/mLAHzcsFuryiLT3KiC8qZNm5g7dy7Hjh1jxYoVbNiw\nYcTXnD17loceeoh33nmHn/3sZ+zevZvdu3dPuGARkanO6XTyScMrAMxNXoExLHzMY7jbDqZj60WU\nKZzM5Bj6HE6qGsfWpwwwO/FaTEYLTbZSGs6enIQKRSRUjBiUOzs7OXLkCGvXrsVkMrFmzRqqq6sp\nKSnx+roVK1ZwxRVXEBERQXp6OldffTUffvihzwoXEZmqGs6eoMn2KSZjDLMSrxnz6x0OJ6fqXCvK\neenTb0UZIC9j/O0XEcZoLky6HnD1KovI9DXiMkVFRQUmkwmz2czdd9/N448/Tk5ODuXl5eTn54/6\njT788ENuv33oE6WSk5NHX7EMKSLCtf2T5tI3NJ++pfkcmyM1vwHg0qxbyUjLHPTcaOaysr6Nrp4+\n0hMtXJA9Y/IKDWIXXZDO/35UTX1Hr9e5Gm4+L4/7C0427aG28w84TC2kxs6Z1HqnCv2/7juaS99y\nz+dYjRiUbTYbFosFq9VKWVkZ7e3tWCwWbDbbqN/kxRdfpKenh9tuu23I57du3er5dVFREUuXLh31\n2CIiU0lDx6dUtbxPeFgUl8y8ZVxjlJ5uAWBOZqIvSwsp7s+9tLp5XK+Piojj4hlf5PfVv+aDqp9z\n40X/5MvyRMQPDhw4wMGDBwEwGo0UFRWNeYwRg3J0dDRWq5WMjAyOHj0KgNVqxWw2j7rIH//4x/zk\nJz8ZNs2vW7du0O+bmppGNbYMcH/HqbnzDc2nb2k+R++dqhcAmJV4Ddb2bqwMnrPRzOXvS6sAyE42\nT4QD7BIAACAASURBVNs5T4t1/fP2yal6r3PgbT5zLNfwR8MrlDUe5rOaj4iLnJ6r82Oh/9d9R3M5\ncQUFBRQUFACu+Tx06NCYxxixRzk3Nxe73U5dXR0A3d3dVFZWkpeXN+LgH3zwAZs3b2bHjh1kZGSM\nuTgRkemk3X6GqvZ3CTMYPTsvjMfAjXzTsz8ZBraIG+teyucyRyRxQcLVgNOzVZ+ITC8jBuWYmBgK\nCwvZsWMHdrud5557jszMzEH9ycXFxWzbtm3Q606cOME3vvENnnrqKebMUW+XiMhIPm74H8BJXsJS\nzBFJ4x5nOu+h7JadEosxzEB1Uydd3b3jHmde8s0YMHCq9TBne7SyJzLdjGp7uC1btlBSUsKSJUvY\ns2cP27dvH/R8dXX1eT8aeP7552lpaeG+++5j4cKFLFy4kPvvv993lYuITCEd9loq245gwMj8lJsn\nNNZn03zHC4CI8DBy0mJxOqGivn3c48RGppMddzlO+jjR+IYPKxSRUDCqzTkzMjLYtWvXsM/v27fv\nvMeeeOIJnnjiifFXJiIyjXzcuBsnTvISCrGYUsc9Tm+fg8r+YOg+ynm6ysuI57PadsrPtDE3a/wr\n9PNSb6ay/R3KW/ZzUeotRIVP73kVmU50hLWISIB1dtdT0XoYA2FclDq+nS7cqho66O1zMjPZQnTk\n2A8qmUrcpxK6Tykcr8SoXGbELKDP2U1p0298UZqIhIjp/beoiEgQ+LhhN04cXJBwNTGmtAmNVT6J\nN/I57V3Q1gxnrWA7C7azOLvOgs0GXWehpxucTnA6wOEc+LXBAKbI8z4MkZEQEw9x8RCbAFHRGAwG\nn9XrOXRkAjf0uc1PXcWZzg8pbX6TeSk3E2GMnvCYIhL8FJRFRALI2t3AqdZDGDBwUcrEVpMBSqtb\nAZgzI2FMr3M6ndDWAnU1OOuqobEWWppxtjVDa/+HzTrh+ga9558/EGGC2HjXR1IKhtQMSMnAkJoO\nKRmQnIZhDIcGzJnpCsol1S0TrjXVnE+qeS4NZ0/yafNbzE+dWB+5iIQGBWURkQD6pPFVnPSRG38V\nsZET30bzZP9hI/lZQx824nQ6oaUJqspxVpVDTZUrGNedAfsIB0mFR0B8IsTEQVQ0RJsxRJkhOhqi\nzK7nw8JcK8ju/xrCXKvK3d3QbYfurv7/duPsskFnO7S3Qker65rmBtdHxaeeIO0J1AYDJKVCZi6G\nzFzXf7MugPRMDOHn/3M2t38OSk634HQ6J7xaPT/1FhoqvkdJ8x4uTL6B8DDThMYTkeCnoCwiEiDW\n7kY+az0AGLgo9VafjFnSH5TdIdHZ3Iiz7BNX8Kwsh6rPXOF0KDGxkDYTQ/pMSJsBiSkYEpIhIcn1\nYY7xaWvEn3P+//buPK6t6074/+dIQhJC7PtusAEvgPfdMV7jOGnSNInTNG2SZjKZtE07v+mStrP0\n13laT/dppp1nOtM0nTZtk2Zpmjirl8SO12AwtvECGLPvO2YVQst5/rgYGxswYECAz/v10kvSvVdX\nRwdx71fnfs859h4taG6/hGxphKZ6aKxD9t3T0gjNDdDcgDyTrb0GQG+AyFhEQhIkpiASUiAyhhA/\nbwKtJlo77dS2dBEVbL2p8kX4pBFgjudSTzmlrQdJCt568x9aUZQpTQXKiqIoHpLXuAu3dBHnv3pc\nZn1zu5yI6jIeMTSy6MAfcP2+UAsur2WxQlwiIi5Ra5UNj4bwKITVs6M5CJMZQiMgNAIxe+5166XT\nqQXOVWVQXYasLofqci2IripFVpXC4b1a8OxtgVlJ/P9WHX/tNlFc1nDTgbIQ2g+aY5W/JL/pbRIC\nM1SrsqLMcCpQVhRF8YAOex2llw4h0JEaet+Y9iGlhPpqZN5pZN5p3AVn2aW3gR441beRtw/MTkEk\nJGuBcWwiBIVOaMvwRBEGA0TGICJjYPm6/uWyx6YFyiWFUHIBWXoBWpogP5f7gfvN4Pp1Nq6kuYiU\ndMTcdEhMRhhGnu98WYzv0v5W5aKWD5gbcuc4fkJFUaYaFSgriqJ4wLnGvyJxkxCQMarcZHdHO725\nWbiPH0bmn9YCwj46oMLtTblvNOvv3YKYMx+i4hC6mT0SqDB7w5z52uftI1ubofQCZz88iiv/DKn6\nNig8jyw8j3z7z2A0QnIq3asyMC1dAwbTyN5L6EgLe4DDFf9OQdM7zA7cqEbAUJQZTAXKiqIok+xS\nTyUVbZnohIEFoffecHtZX4PMPY7MzaapKB/crisrrX6IeQth3kL+VGviH3cV8vj6+WzYsHYCP8HU\nJwKDIXANHaZZPHg6gNsS/fnzfXHIC2eRBWe0lI1zJ+k8d5LO55+FiBhE+jJE2jIt6B6kc+BlkdaF\nBHsn0Wy7SGHzHhaE3fhvqCjK9KQCZUVRlEl2ruF1QDI7cCM+xpDr1ku3G0oLkacykblZUFd1ZaVe\nj1faUpzJqYj5iyAmob/F+OT/fARAcvTgI17cii53ajxd2w2LVqJbvAoA2d6KPHcK44Uz9J7OQtZV\nabe9b4K3D2LhcsSSNbBgMcI4sLVZCEF6+A4OlP2AC83vMSdoCybDzeU/K4oyNalAWVEUZRI1dxdT\n3ZGDXhiZd9W4yVJKKLuIzD6MzDk6IKUCiw8idRksWkHwbVvQ+Vhpbm6+bt+XxwtOGWJouFtRiL83\nQb5mWjp6qGnpIrqvQ5/wC0Ss2YT/3TuQTifNWUeRZ7ORZ05AbSUy8yNk5kdgMiNSl8LSNYi0ZVqa\nBxDmM49wnwXUd53nQvO7pId/2oOfUlGUiaICZUVRlEl0tuEvACQF347Z4I+sKEZmH0GeOKINh3ZZ\nYAhi6RrEopUwe15/KoDOZ/CWS7dbUtg32chQYyjfqlJiAvk4v5bCqtb+QPlqwmBApKQiUlLhgce1\nVJeTx5A5x7Rh9XKOQs5RpJcR0pehW7UBUpeSFraD+tLzFDbvJSloG95eo5vkRVGUqU8FyoqiKJOk\noSuf+q5zBLR5Mf9CF+6cL0JDzZUN/IMQy9Yilq3TxgMeRSe8qqYObHYnYQHeBFrNE1D66Ss5WguU\nL1S1snFh7A23F+FRiO0PwPYHkM0NyJMfI08eg+ICyDmGO+cYWKwELltLSkIiFwKKyW96iyWRj07C\np1EUZTKpQFlRFGUSuDvbadz9n2zM7SS4zgW8qa3w9UcsXYtYvk7rRDbGESr6Z+RT+cnXudzCPpap\nrEVwGGLrJ2HrJ7XJW7IPITMPasPRHdpD2iFI9BVUzX2Hzq2pWBOWjHfxFUXxIBUoK4qiTBDpckHe\naeSxD3Gf/pi5Tm20Cmkyo1u2FrFyAySnIvT6m36vgkqVnzyUuX11kl/RclP7EUEhiG33wbb7kNXl\nyOMfIY8fwqelkZTsHsj+V1xxiYi1WxArNyCGSJNRFGX6UIGyoijKOJO1lcgjHyCPfwRtV1ox62P1\n6NduI2zd57VZ6MbR2TKt81/qrOtH0bjVzY8PBqCgsgWH042X4ebHlRbR8Yj7HkPe+wg9Bcep/uBZ\nogvtGCtKkBXPIV/7HWLJasS6rZCSNuPHslaUmUoFyoqiKONAOnqROceQh3bDxbwrK8KiaFoUzfGY\nAoyh8dw+++8QYvyDpnN9gXKaCpSv42cxMivcj7L6dgqrW1nQFziPB6HT4T1/NT0hNbxT+wbJlUGk\nFgZAQS4y6xAy6xCEhCPWbkas2YwICh2391YUZeKpQFlRFOUmyNoq5KE9yI/3Q1eHttBkRqxYj1i7\nBXtcJEeLnsHh1rEi4jPoJiBIvtRlp7yhA7OXnqRoNfLCYNJmhVBW3865sqZxDZQvSwm+i+LWAxQk\ntBJ422eIdTyNPPYh8uiH0FSP3PUS8q0/w4LF6DLugLTl45JyoyjKxFKBsqIoyihJR682EsKh3VB4\n/sqKuETE+jsQK9cjzBYAzte+gMNtI9KaToQ1bULKc75MG1N5XlwQBr26xD+YtIRg3j5ewtmyJj6d\nkTLu+/fSm0kLe4Dsmt+SW/8q0XN+jP6eh5Gf+DTkn0Ee2Yc8nQnnTuI+dxKCQhC3bUPcdjvCX+WV\nK8pUpQJlRVGUEZJ1V7Ued17Terx+G2JW0oDt2+01FLfsRyBYGP6ZCSuXyk++scspKWdLr5+oZbzM\nClhPYfNe2uyVXGzZx9yQuxA6vTa734LFyI525McfIg/uhoZa5K4Xke+8jFi0CrFhu5bLLMSElU9R\nlNFTgbKiKMowpNsFZ3Nw738H8k5fWRGb0Nd6nIHwtlz/Oik5XfciEjeJgRvxN8dMWBlVfvKNXf4R\ncb6iGZfbjX4COtfphI5FEZ/hYPlPyGvcRbz/2gGTkAhfP8Ttn0Ju+SQU5OL+6H3IzULmHNUmNYmI\nQWTcgVizCWFRI2YoylSgAmVFUZRByK5O5NF9yAPvXZkxz2hErMhArL8DZs0ZtvWvuiOH2s4zeOks\npIXdP6FlPduXepGWMP65tzNFkK+Z6GAr1c2dlNS2kTRB401HWNOIsi6ipvM0ufUvsyrmC9dtI3Q6\nmL8Y/fzFyNZm5OE9yMN7oa4K+crzyDf+gFi+HrHxLkT87Akpp6IoI6MCZUVRlKvIqjLk/ne0od16\ne7WFIeGIjXdq4+P6+N5wH053D6fq/gRAWtgDmA3+E1berh4HxbWXMOgFKTFBE/Y+M0FaQjDVzZ2c\nLWuesEAZYHHkI9QXnae87SiJgRmE+cwbclsRGIy452HknQ/CmSytlTk/F3n0A+TRD2DOPMSmTyAW\nr+6fxlxRlMmj/usURbnlSZcLTh/X0isKz11ZMX8Ruk2fgLSlWq7pCOU17qLb0UyAOZ7ZQZsnoMRX\nvVd5M1JCSkwQJi81isJwUmeFsPtEOWdLm7hv7ZwJex+rMYx5IXdzrvGv5NS+wLbZO9GJ4U+3wmCA\nJWvQL1mDrKtGHtytBcpF+ciifGRAECJju5YL76dGNlGUyaICZUVRblmyo03rnHdwN7Rqeb6YvLUc\n0Y13ISJHn1fcbq/hQvP7ACyN/PyEDAd3tbP9+ckq7eJG+jv09dXZRJobchdlbUdot1dT2LyHuSF3\njfi1IiIa8eknkJ98GJl5ALn/Xait1Dr/vfsKYvltWivzNZ1HFUUZfypQVhTlliPLi5AfvoPMPgxO\nh7YwPFoLjtdsGrRz3oj2KyU5tS/gli4SAzYQYpm4VsvLci42AJCeqCayuJGFiVqgnFvSiNPlntCh\n9PQ6I0siHuNQxU853/gGcf6rsXiNLjVGmL0RG+5EZmyH/FztiseZbOTHB5AfH4DZc7Xv7NI1CIPX\nBH0SRbm1qUBZUZRbgnQ6tJnzDrwLxQXaQiEgbZmWXjF/0U1PM1zZfpyGrjyMeivp4Q+OQ6lvLLtQ\n62i4IjliUt5vOgv1t/TP0JdX0Ux6wsT+uIj0TSfGdxlVHSc4Xfcia2K/Mqb9CCFg/iL08xchG+uQ\nH72HPLIPiguQxQXadNkZdyAytiH81JjMijKebhgo19XV8cwzz3D27FkSExP58Y9/TFLS8Jd7pJR8\n9atf5dSpU9TX17N//36ioqLGrdCKoigjJS+1IA/tRh7aA22t2kJvH61j3sY7EWGR4/I+dmdHfwe+\n9LAHMRlu3OnvZlU3d1Ld3ImfxUhKjAqQRmJ5cjhl9e1kXaif8EAZYFHEZ6ntPENlexbVHSeJ9l1y\nU/sToRGIHX+DvOdhZOZHyP3vQE0F8q2XkO+9ili2DrHpbkSCSstQlPFww+aT73znO6SkpJCVlcX2\n7dv56le/OqIdL126lF/+8pc3XUBFUZTRklIiiwtw/+ZnuL/9BPLtl7UgOSoO8bkvofvp79B9+olx\nC5IBTtb9kR5nG6GWFBIDM8Ztv8M50deavHROGDqdmqhiJJb3tbxnF9ZNyvv5GENIC3sAgBM1v6PX\n1TUu+xUmM7qMO9D963+i+9r3YdEqcLmRmR/h/sHXcf3gG7gzP0JeTi1SFGVMhm1R7uzs5NixY+zc\nuROj0chjjz3Gr371KwoLC0lOTh7ydUIIHnnkEZxO57gXWFEUZSjS0YvMOqy1slUUawuFDhav0tIr\nJmjms6r2E1S0fYxeGFke9SRigjvwXXY52FuWHD4p7zcTLO+rqxOF9UgpJ+U9k4K3UdVxgqbuQk7W\n/nHQsZXHSggB8xain7cQ2VSvpWUc3gulhcjf/hz5l99pI2WsvwMRoIYPVJTRGjZQLi8vx2g0YrFY\nePjhh9m5cydxcXGUlJQMGygriqJMJtnciDz4vhYgdLZrC318EbfdjtiwHREcNmHvbXd2kFP7ewDS\nwx/E1zR5QWt/fnKKyk8eqTlRAQRYTdS1dlPZ2EFIyMTPZqgTOlZE/S17iv+Z8rajxPqvuOkUjMGI\nkHDEA48j7/4M8vhH2mgZ1eXIt19GvvcaYskaxKZPaJ0A1VTZijIiwwbKNpsNHx8furq6KC4upr29\nHR8fH2w227gWIjhYDWt0s7y8tB7Pqi7Hh6rP8TUR9SmlxHH+FLb3/oI96zC43QAYEpLxvvMBzOu2\nIEymcXu/oezL/y09zjYi/RawKumhCW9NvlyXRm8reRUtGPQ6Ni+fi8WsRj0YqTULYnjveDH5NV2s\nSJ+c//Vgglnl/jxHS37DyboXSI5ehdlrAvPYP/VZ5L0Pa/8j776GPfsIMvswMvtw3//I/ZjXbR33\n/xF17Bw/qi7H1+X6HK1hA2Vvb2+6urqIiIjg+PHjAHR1dWGxjG3opKF8//vf73+8fv16MjImJ79P\nUZTpR/bY6Dm4h+73X8dVUaIt1OsxrduC5c4HMKSkTlprWUnTMS42foRBZ2JTylcnLeUCIKugFrdb\nsiQ5QgXJo7R6vhYof5xXzWN3LJ60902LvofipqPUtedxpPjXbJn7jQl9PyEExtQlGFOX4Gqsw7Z3\nF7Z9b+EsLaTjv35I5wv/hfeWT+C97VPow1WHe2XmOXjwIIcOHQJAr9ezfv36Ue9j2EA5Pj4eu91O\nfX094eHh9Pb2UlFRQUJCwthKPIQvfelLA543NzeP6/5vBZd/caq6Gx+qPsfXeNSnbKjV8i+PfgDd\nfR2i/AK0YbHWb8MZEEw7QEvLzRd4BGyOSxwo1josp4XtwNltorl74r8vl+vywxOFACxKDFbf01Fa\nEKO15B7OLcPh0Dq7TVYdLgn7PHs6/pnChv2EmFKJ9Vs+Ke+LzgvueACx+R7IPqJN015eRPebL9G9\n68+Qvhzdprtg7sKbGiZRHTvHj6rLm5eamkpqaiqg1eeRI0dGvY9hA2Wr1cq6det47rnn+OY3v8kL\nL7xAdHT0gPzkRx55hIULF/KNbwz8Zdzb29t/ALLb7djtdkyTcBlUUZSZQ7rdkHdam2jhXA5c7nyV\nmKLNTOahiRbc0k1m9X9jd7UT5jOPpKCtk16GI+erAVg1V+Unj9bCxFDMXnoKqlqpb+0iPNBn0t7b\n1xRJevhDnKr7I9nVzxNojsdqnLgc+msJLyNizSZYswlZWojc/y7yxGHIzcKdmwUR0YgNNzfxjqLM\nJDccR/l73/sezzzzDCtWrGD27Nk8++yzA9ZXV1cTE3P9NK933HEHNTU1CCHYvn07Qgjy8/PHr+SK\nosxYsrMdeexD5ME90FCjLTQYEMvXIzbdhaen7s1v3EVDVx4mvR+ror80qSkXAG1dPeRcbECvE6xd\nED2p7z0TmI0GVs+L5MCZKj7IKeWzW1In9f2TgrbS0JVHdUcOH1f9F5tmfQe9bvLn/xIJyYgnkpE7\nHkce3qtN5V5XjXz5OeQbf0Ss3qiNNR4VN+llU5Sp4ob/mREREfzxj38ccv3+/ftHtVxRFGUwUkoo\nzkce3I08cfTK1NKBIf3pFcLX37OFBBq68jnf+AYgWBXzBby9Aia9DAdOleNyS1amROBnMU76+88E\nGekxHDhTxd6ckkkPlIUQrIh+kj3F5bTYSjjT8AqLIz47qWUYUB6/AMRdDyLvuB9yj+Pe/y5cOKul\nOn30HiTNR2Rs10bNGGOHKEWZrtQU1oqieJS0dWszjB18H6rLtYVCQOpSdBl3QNoyhF7v2UL26XG2\n8XHVr5BI5oXcQ4Q1zSPl2JdTCmjBnjI2G/rq7sOTpbjdkzOe8tWMeh9WxzzN/tKdFDbvJswyj2i/\n8R8ybjSEXg9L1qBfsgZZXY488C4y8yBczENezENan0Os2Yy4bRsiQl3JUG4NKlBWFMUjZEUx8qP3\nkVmHwN6jLfT1R6zbqo1/HDq1cm/d0s3x6l/T47xEqCWF1LD7PFIOKSV7c7TRPjaoQHnM5kQFEB1s\npbq5k9PF9cQHTX5LaYhlDunhO8itf5msmue43bwTH+PEj+s8EiI6HvG5LyEf+Dzy+CHkod1QUYLc\n+yZy75va5D0Z2xGLV3qkn4CiTBYVKCuKMmlkdxfyxGHk4X1QdvHKipQ0Lb1i8aope9I9W/8KdZ1n\nMeqtrIr5EjrhmVbuwqoWKhvaCfI1kzZragRV05EQgg3pMbx4oIB9OSX87dYUj5QjJXg7DV0F1Hae\n5nDFz9mc8B289N4eKctghNmCyLgDuX4blF3UUqOyD2upGRfOIn39EWu3aKlRU+zHraKMBxUoK4oy\noaSU9J4/Rc8H7+D+eD/09morLD7aZdz1dyAip3bLaEnrRxQ0v4dAz5qYL2Px8txUwPv6WpMz0qLR\n6dTsajcjoz9QLvVYoCyEjpXRT/FB6f+hzV5JZvV/szb2H9BNcgfRGxFCQEIyIiEZ+eAT2sx/B3dr\nM//tfh25+3WYm07PtnsxrVJzISgzhwqUFUWZELK1WRu54ugHXGqsu7IiJQ2xbgti8ZpJmTnvZjV0\n5XOi5vcALI18jHDrAo+W573jxYDKTx4P6xZEodcJMvOqae3sIdBq9kg5TAYr6+O+xgel/4eajlOc\nqX+ZRREPe6QsIyEsPoiNdyE33AnFBchDfR1wC87QXnAG8RsfWLoWsXaLNpSjmi5bmcZUoKwoyriR\nToc2HuuRD+D8KZDatNK64DDMG7fTs3gNIizSw6UcuQ57HUcrf4nERXLwdmYHbfRoeZrbbRzMLceg\n17FlsRqy62b5+5jYsCieD0+WsftEGZ/ZMNdjZfE1RbIm9u85WPYTLjS/j68pitmBGzxWnpEQQsCc\neYg585APPYnMOow+6yDOi3lweC/y8F6IiNGuHK3egAhQUzEr048KlBVFuSlSSi13MfMjrWNeZ7u2\nQm9ALFqNWLeF4HWbEXo99mk0w5Td2cnhin+n19VJlHURC8Mf8nSReDerFJdbsm15gsdaP2eaB9bP\n48OTZbz1cYlHA2WAcJ/5LI36PCdqfktOze+xeoV6/ArGSAmLFbFhO0H3fw5nZSmt776OzDwAdVXI\nv76AfOOPkLoE3drNkL5CDTOnTBsqUFYUZUxkQw0y8yDy+EfQUHtlRXS8NnLFyg0IXz+AKTO820j1\nuro5WP4TOnrr8DfF9nXe83zO6FuZWn7yA+vnebgkM8cn1ybzlf/cw9G8GprbbQT7ebYj3ezADXTY\na7nQ/B5HKp8lI/6bhFiSb/zCKcQQm4Bux+PITz0C50/hPvYB5GbD2RO4z54Ai1WbVXPlBm2M5puY\nMltRJpoKlBVFGTHZ0YbMPow8fhBKLlxZ4R+ozZq3KgPiZk/rnESHy8ah8p/S2lOKj1cY6+O/MSVG\nIahv7SazoBajl5571iTh7OnydJFmhCBfb7YsSWB3djHvZpXy6Jb5ni4S6eGfpsfZRnnbUQ6V/4wN\ns75NkHeip4s1asJggIXL0S9crh07jh9EHv0Qqkq1mQAP74WAYMSK9YiV6yE2cVofO5SZSQXKiqIM\nS3Z1Ik8fR+YchfMnwa3lHWMyI5as1lqF5qZPu1bjwTjddg5X/DvNtiIsXsFsnPWPHh3h4mrvZpUg\nJdy+NAF/HzPNKlAeN/evn8vu7GLeyiyZEoGyTuhYEf0kbumgsj2Lg+U/YcOsfyTQHO/poo2Z8PVH\nbLkHttyjTWZy/KCWqtXcgNz7BnLvG1o+88oMLXCeRn0ZlJlNBcqKolynPzg+cQTyc8Hl1FbodNpM\neSszEItWIkwzJ0/W5e7lSMWzNHZfwNsQyMZZ/zhlJn8A+OtRbbSLBzJU2sV4u2dNEk//QkdmQS3V\nzZ1EB1s9XSR0Qs+qmC/iqnRS03GSg2U/ZuOsf8bfPP1nxBPR8Yj7HtVSM4oLkFkHkdlHtHzmXS8i\nd72oXZlashqxdK2aBVDxKBUoK4oCXA6OM7Vhnq4OjoUO5i3UTliLVyH8Ajxb0AnQ6+riaMUvaOjO\nx6T3Y8Osb2M1hnu6WP3OlDZyqrgBP4uRu1cnebo4M46/j5k7ls3ircwS/vRhPt96cLmniwSAThhY\nE/NljlT+B3WdZzhQ9m/cFvd1gi2zPV20cTFg1IwH/xYKcrWW5lPHoaJYm73zzT9p/R76gmai4lR6\nhjKpVKCsKLcw2VSPzM1C5mZB4TlwubQVl4PjZWsRi1cjfP09W9AJ1O1o4VD5T2mzV2E2+JMR/y38\nTFGeLtYAv9+XB8CnM5LxMRs9XJqZ6fHbF/BWZgkvHijgHz61BJPX1Egl0uu8WBv7/3G08hd9wfIP\nWBP7FaJ8F3m6aONKGAyQuhSRuhTp6IXzp5AnjyFPZ2mTmlSXI99+GcKjtaB58WqIn606AioTTgXK\ninILkW43lBcjc48jTx+H6vIrK3W3TnB8WVtPFQfLf4rN2YKvMYqM+G/gYwz1dLEGaOno4c1jWtrF\nY1Mgf3amWp4czvy4IPIqWnjneAn3r5s6LfcGnZHb4r5Kds3/UnbpMEcqnmVp1ONTfpzlsRJeRli0\nErFopTY2e8EZZM4x5OlMqK9Gvv8X5Pt/0ToRpy1DLFwO8xbNqFQwZepQgbKizHCypxsKziLPnkDm\nZkNby5WVZm9E6lJYuAKRthTh4+u5gk6y+q48jlb8Aoe7mxBLMutiv4rJ4Pnc1Gu9/NEF7A4XmxbG\nkhAx83+8eIoQgsdvX8Azzx/md3vzplSgDFoaxoqoJ7F4BZPX+CYnan5Lt6OZ1NBPIabA0IUTVub+\n9wAAGq1JREFURRi8rrQ0f+5LUHhOa2k+kw0tTcgj+5BH9oHBS+tUnL5cuwVPrR+8yvSlAmVFmWGk\n2w2VpcjzJ5HnT0Fx/pWUCoCgEMTCFYiFKyElVTsR3UKkdJPf9A7nGv6CRBLtu4xVMV/EoJt6KQ09\nvU5+t+88AI9tVa3JE+1Ta+aw86XjnCpuIOtCHStSIjxdpAGEEKSF3Y+3IZCTtb8nr/FNWmwlrIr+\nAibDzP+RK/R67arXvIXIh78AVWXIM9la6ljZRTiXgzyXg3zpf7S85gWLEfMWQdIChMnk6eIr05QK\nlBVlBpBtrci803D+pHbf0XZlpdDB7LmI+YsRi1bc0mOV2p0dZFb/D3WdZwCYF3I3qWEPTInJRAbz\nxw/zqWnuYl5sEJsWxnq6ODOet8nA49sW8B9vnOKHr2Tx1+/cPSX/V+YEbcLHK4TM6v+mrvMMe4r/\nhTWxT0+7iUluhhACYhMQsQlw14PI9lbk2RwtaM47fSWvee+bYDDAnPmI+YsQ8xdpx0CV26yMkAqU\nFWUakm2tyMJzcOEs8sI5qKsauEFQCGLBEsSCxTB3IcJn6qUUTLbG7kI+rvwvbM4WjHorq6K/QKTv\nQk8Xa0idtl5+ues0AN96cBk63dQL2Gaip+5M54V9eWRdqGd/biWbF8V5ukiDivRNZ9vsnRyr/L80\n24rYX/oD0sN3kBK8fUanYgxF+AUi1m6BtVuQDgcU5SHzTyPzcqGiWMtzLjiD/OsfwOqLmLsQUtIQ\nyQsgMnZK/iBSpgYVKCvKNCAvtfQFxue0+2sDY6MJkhdolxoXLNEG7lcHfkCbae9Mw2sUtXwASIK9\n57Am9stYvII9XbRhPffeWVo6eliWFM6WxVMzWJuJ/CxGvnzPIr7/0nF+9Eo2G9Njp+yPFItXMJsS\n/pkz9a9yofl9cutfpqr9BMujnsDfHOPp4nmM8PLqT9HgPpAd7ciCXMg7rV1xa2nUxog/cQQJYPXT\nptJOTtUC55hZCN3UGPVE8TwVKCvKFCOdTm2K1+ILUHIBWVIATfUDNzKZYfY8REoqIiVNGybpFss1\nHonqjpPk1LyAzdmCQMfckE+QGnYfOjG1D33lDe3897taesg/PbRc/eiZZI9tnc/zu8+RV9HCn/bn\nT4nZ+oaiEwYWRTxMqGUuJ2r/l2ZbEXtL/oW5IXczP+Qe9Dp1XBC+fojlt8Hy25BSQn2NFjgXnkcW\nntc6OJ/KRJ7K1AJnb4uWqjF7LiIxBWYlIbwtnv4YiodM7bOFosxwUkq41AKlhciSAi04Li8CR+/A\nDU3eMGcuIiUNkZwK8XO0cUeVQXXY6zjT8CpV7dkABHknsizqb6bFFMBut+Rrvz5It93JPasSWTlX\nTeU72byNBr77uVV84Zcf8v2XjpORHkN8mJ+nizWsaL8lhPqkcKb+VYpb95PX+CaVbcdZFPEZIq2L\n1I+tPkIIiIjWZvvbcKd2DG6sQ148r12xu3hea5g4e0IbKUh7kXaVLjEZElIQCUkQPUvrXKjMeOpM\nqyiTREqpHYAripHl2qxTVJQM7Hh3WXi01pJxuUUjOk5dChyBbkcL5xvfoLT1EBI3Bp2JtLAdzAna\nOmU77F3rt3vOkVlQR6i/N//2+bWeLs4t6+6Viby7spS3j5fw9ecO8eo/3TVlUzAuM+p9WBb1OPH+\na8iu+V86ems4XPFzgr2TSA/fQZiPmv78WkIICItEhEXC2i0AyJYmLWAuuYAsLdSO07WVyNpKOPqh\nFjwbjRA3BxGX2NepMFGbNdBLteDPNCpQVpQJIHts2oG1pkLrfV1RApUl0N11/cYWq5Y6kZiCmD0X\nEpIR1qndejXVdDuaudC8h6KWD3BLBwIdiQEbWBB275TPRb7aiYv1/OgVrRX8J0/cRpCvmkDBk37w\n+Fo+zq/l4/xafvZ6Dt/csczTRRqRUJ8Uts3eSVHrh+Q3vkWz7SIHyn5AhDWN+SGfJMSSrFqYhyGC\nQhArM2BlBoDWObCyRAuaSwqRpRegsU7rMFikzZopAfR6rWNgbII2skZcIkTFI3zV8Xw6U4GyotwE\nae/RZoqqqYDqiv7AmOaGwV/g66+lTcTNRsQnQtxsCA5TJ60xkFLSZLvIxeY9VLWfQOIGINZvJalh\n9+Nnml4pCyV1bXz+Z3vocbh4ZPM8bl869dNEZrogXzP/8YUMHv3pHn7x5iliQ618ZsNcTxdrRPQ6\nL1KC7yAxIIPC5t0UNL9HXedZ6jrPEmieRVLw7cT5rVI5zCMgvLwgMUW7urdZWyY72qG8CFlZqgXR\nlaVQX62N7VxVBh8f0IJn0I77kbGIqFjtPjIWouLAL0Ad+6cBFSgryg1IhwOa6rQOIPU10NB3X18D\nl5oHf5HeoOXBRcVpl+NiEyE+EfyD1IHxJvU426hsy6L00mFae0oBEOiJ81tFSshdBHnP8mwBx6Cy\nsYNHfrKb1k47mxbFsvOxNZ4uktJn48JYfvD4Wr79v0f41m+P4GcxcdeKBE8Xa8S89N4sCPsUc4K2\nUNi8m+LWA7T2lJFV/Ry5dS+TEHAbcQGrCTDFqWPTKAhfP0hdgkhd0r9M2nu0QLmyVJv0qbIEaiq1\n9LqONm3EIrgSQFt8tNznsCgIi7ySAhIWeUvNkjrVqUBZueVJhwNaG6G5EdncAM0NtHe24Wqow1Vf\nAy1NIN2Dv1hvgNAILRiOjtMC4+h4CI1Une3Gkd3ZSU3naSrajlHfeb6/9diotzI7cBNzgjZj8Qry\ncCnHJrekkcd+tofGNhtps0L4n69sxqCfHvnUt4pHNs+jqqmT//vWaZ765Qd897OreHJ7mqeLNSom\ngy9p4TuYH/pJytsyudiyh0s9FRQ0v0tB87v4maKJ919NrN8KrMYIFTSPgTCZtX4ls69cdZBSQmsT\n1FYhayugpi/XuaZCS8UruYAsuXBl+8sPLFZaomLRR0TjtvpDcCgiKBT6bsLiM7kf7hamzuTKjCZ7\nurVRJdpakZdatGGA2lrhUkt/UExbK0g54HU9Vz8ROi0YDotEhEdDWBQiPArCo7QDlur5PO7c0k2r\nrZS6zjPUdp6hxVaM7DuFCPREWhcR57+KGL/lU3Lq6ZFwuyW/23ueH7ySRU+vi3ULovjNP2zFx6wu\nhU9F335wGVazFz96NZt//VMmuSWNfO/RNdMuj1yvM5IYuJ6EgNtosl2k/NIxKtuP026v5mzDXzjb\n8Bd8vMKItKYR4ZtOmGU+Xvrp9RmnEiHEleB2weL+5VJK7dxTX4NsqIHGWmRDLTTUQkMddHfiLMrH\nWZR/5TVX79jbcmW/wX0BdEAwwj8A/IPALxB8rGoGwnFww0C5rq6OZ555hrNnz5KYmMiPf/xjkpKS\nbrjjP/zhD/z617/G4XDw0EMP8bWvfW1cCqzc2qTLBV3t0NEBne3Q2ablinX23dovIdta4FKrFhTb\ne268U6GDoBDtF3twOASHYo1LQB8WSbuXWTsQqZ7ME8ru7KDZVkxzdxHNtiKabcU43Vf+djqhJ9SS\nTKzfKmL9lmMyTO/LklkX6vi3P2dx4qI2PvZDGcn88G/WYTSoH11TlRCCr3xyEbGhVr7+m0O8cayY\nQ+eq+daO5exYnzTt/nZCCEItyYRaklkS+TnqOs9R0fYxtZ1n6HI0UNT6IUWtHyLQ4W+OJcR7DsGW\nJIK952A1ht6Ss/+NJyEEBARBQBAiJXXAOikldFzCr6cbV101nRWl2iQpzY3Q0nezdWv9YarLBwTQ\nA4JpvQH8ArSbfyDCPxD8A7XnVj8tvcPqB1Zf8PFDmEyT8dGnHXHhwgU53AZPPvkk8fHxfPOb3+SF\nF15g165dvPPOO8PuNDc3l7/7u7/jpZdewmq18vDDD/ONb3yD7du3X7dtZWUl8+apIWtuVnBwMPn5\n+YSFhXm6KMOSUkKvXbvkZOvqv5eXn9u6B6yTtm7o7oTOvsC4u3N0b2g0ar+u/YO0g0RAUN/zQERw\nGAT3/Qq/Jk1iutTndBEcHExe3nmsgQa6HI109tbTZq+mraeSNnsVPc7rh8jz8QolwppOpDWdMJ95\neOm9PVDy8dPV42BPTjkvHSjg4/xaAMIDLPzw8bVsWzZrxPtR383xNZb6LK1r45nnD/f/HaOCfXhs\ny3zuXT2bmNDp/SNOu5pTQm3f1ZxWW2l/qtNlBp0JP1M0/qZY/M0xWI1h+HiFav+zYdHq+zlOhvpu\nSimhq6M/aJbNTdDSAJdatYai9ktaa/VYzpc+fuDjC759gbTFR2u99u67N1sQlquee/uA2QLelimf\nbhgcHMyRI0eIjY0d1euG/VSdnZ0cO3aMnTt3YjQaeeyxx/jVr35FYWEhycnJQ75u9+7d3H777cye\nPRuAHTt28N577w0aKCvjZ6wHJ+l2gcMJzl5wOMDZd3Ncfd/bt40D6XRoE2LY7WC3afe9PVrrrd2O\n7H/cd+u196+jt+e6NIdREUL7J7b6ga+f9qvY6tf33F/75/YPuhIQe1vGnGunDvY3JqUbh9tGr6sL\nh6sbu6uTHuclbM5L9Dgu0eNsw+a8RG9JO23dddA0eK63QWcmwBxHsPccQixzCPZOwtsrYJI/zfhq\n6eghv6KF3JJGjuXVkHmhDpvdCWjTJD+xLZUnt6fi7zP6Vhz13Rxfo63PhAh/Xv2nu3grs5hf7jrN\nhapWfvhKNj98JZv0hBDWzI9iWVIY8+ODiQ3xnfLjL19NJ3QEW+YQbJlDath9ON09tNhKae4uoslW\nRIuthB7nJVpsJbTYSq57vbnID6fNSIQ9AW9DIGaDHya9LyaDX99jP4x6K15685SfIXMqGOy7KYTo\nawn2g7jZDPXtko7eK0FzWyuyrRXaW6HtErKrXWuA6rp8dbYDenuht0nLqeaa1umr9ztUYY1GLWg2\nmcFounIzmRFGE5guLzP3L7+8TJjMYDCClwEMXlduXl7XPO9brzdMWh79sN/S8vJyjEYjFouFhx9+\nmJ07dxIXF0dJScmwgXJZWRnLly/nhRdeoK6ujqVLl96wFXqqKss5SE99FUJKLcCTUnuMHLAM9+Xn\nbm0bLm/LwNdJ93WvFQP2yzX7kwjpRrjdCJfryuO+G333l4Qg8dIlWg6+NmD9kDeXC53Lic7pvPK+\nk8RlMOA0mXCZTDhNZlxGE06zCafRqD03mXCaTDhNxv7tHN7e2s1ohiFzri7X3yVk6yVovf4gft0r\nhuikZ7FYuNhehPP8wPVy6EPEwDLc8H1vtK0cxd64wY8PicQFuJG4+lqH3P3LtMdu6F/nQuJE0qvd\ni14kjv4bOHBjR9KDxI72JR8BATrpi04GoicIvQzDIMMxyHB0BCDsOprbJNo4Iu19tzF83AHbjfDv\nMbLdgQS700V3jxOb3UG33dl3c9DaaaeupYu61i5qW7rosDmue/ny5HDuXT2b+9Yl4WeZnrnVikan\nE9y7Zg73rJrN/txK/nq0iD05ZZwpbeJMaVP/dkaDjohAHyKCLEQGWQnx98ZiMvTdvPofexsN6PU6\ndEKg04FOCIQQ6HWib5n2XCeY0MBbDBp2hQAh+LIKXwO49F3YZS12dy29sh6HbOm/9TjbwQuq2psG\n2c+172VAhwmdMKHD3HdvQifMCAwI9FfuxWDPDX0TCen6Si4AAeiueiwQl9eLodZf+5lvVL/DrRfD\nPBvda611vpR1VGMuOjmyYg3Hzwh+4UD44OulROdwYLB1991s6G3dGOw96O129P33Vz8euEz09mrB\n9mC7v0HxxhKFuPV6pF6PW29AGvru9XqkTofU6ZF63ZXHOh0BP3x+DO9yg0DZZrPh4+NDV1cXxcXF\ntLe34+Pjg81mG3anNpsNi8VCUVERNTU1rF+/nu7u7iG3Dw6euhMC5O/+HcllLZ4uxoiM9YKfBNx6\ncBnArRe49OA29N3rhbau7/HV27i8BE4vgcsLnF4Cp+HKMqfXII8N2mP6D/IuoKvvNsoCT7Ru8E2E\nJj6amP2P93nOgw1Wth49NrsBW492a+800t5ppKPvvr1Lu29tM9PruDqPswco77vNPD5mLxbMCiU9\nMYx1abFkpMcTGWy96f16eXmxadMmAgKmd4v7VDEe9fnpLSF8estiunscHMur4mBuBacu1nGutIG6\n1i4qGjuoaOwA6sev4FOGAQgDwhBIrD69BAf0EORvx9fai9XiwGrpxerj6HvswOLtwGR0odM5ceHE\nJfvOAZPbZjP12cGcAGX29yfvPU19t1H9OxhBeqF3glevRO+QGBxo907tXu/sW+aUGBxXHusdYHDK\nvm1A75LoXPTdtMdXL+t/7AadywUuF3oGD86vJfVjO1EOGyh7e3vT1dVFREQEx48fB6CrqwuLxTLs\nTr29venu7uZf/uVfANi3b9+wrzly5Mhoyz157vsWhZ4uwxR2+be86up2C7P03ZRhtFKc30qxp4uh\nTDgzsC1Jz7akaCDa08VRlMmjRwuyR8HVd5sUmVljetmwgXJ8fDx2u536+nrCw8Pp7e2loqKChITh\nB1ufNWsWJSVXLnsXFRWRmJg46LajTapWFEVRFEVRlMkw7PguVquVdevW8dxzz2G32/n9739PdHT0\ngPzkRx55hJ/97GcDXrd9+3b27dtHUVER9fX1vP7666ojn6IoiqIoijKt3LDL6fe+9z2eeeYZVqxY\nwezZs3n22WcHrK+uriYmJmbAsvT0dJ5++mkeffRRnE4nDz30kAqUFUVRFEVRlGnlhuMoK4qiKIqi\nKMqtSE2toyiKoiiKoiiDUIGyoiiKoiiKogxiUqbFyc/P59ChQ9TW1pKWlsb9998/YL3NZuPZZ58l\nKSmJHTt2TEaRprXh6vPYsWMcPXoUm81GSEgIX/ziFydt9prpaqj6tNls7Nq1i5KSEvR6PcuXL2fT\npk0eLu3U5nK5eOONNyguLsbhcBAZGcndd99NWFgYLpeLXbt2cf78ecxmM9u3byc1NdXTRZ7ShqvP\nw4cPc+LECTo7OwkICGDLli3MmzfP00We0oarz8vU+WhkblSX6lw0OsPVpzoXjc1rr73WX5+BgYFs\n3ryZefPmjfpcpP/KV77yrxNd2M7OTqKiojCbzbhcLubPnz9g/fvvv4/T6cTHx+e6dcr1hqrPM2fO\ncODAAT772c/yiU98gri4OKzWm5/gYKYbqj737t1Ld3c3Tz31FOnp6bz11luEhoYSEhLi4RJPXW63\nm8bGRu655x62bt1KT08P77//PqtXr+bo0aOUlZXx9NNPExcXxyuvvMKiRYswm82eLvaUNVx9VlVV\nkZGRwZ133klkZCR//vOfSUtLw9vb29PFnrKGq8/L1PloZIarS3UuGr3h6lOdi8YmODiYLVu2sHHj\nRoKCgnjppZdYu3YtmZmZozoXTUrqRUJCAvPnzx/0AF5dXU1rayvJyckjnm72VjdUfWZlZZGRkUFU\nVBQA4eFDTFWpDDBUfTY1NZGSkoLBYCAgIIC4uDgaGxs9VMrpwWAwsHHjRvz8/ABYvHgxLS0tdHV1\nce7cOVavXo3ZbCYhIYHY2Fjy8vI8XOKpbaj67O7uZu3atf3/43FxcQQFBVFbW+vJ4k55w9UnqPPR\naAz3v67ORaM3XH2qc9HYREREYDAYkFLicrkwGo0Aoz4XTUrqxWXXHniklLz77rvce++9nD17djKL\nMiNcW5/19fV0dnby85//HJfLxZIlS9i8ebOHSjf9XFufSUlJFBQUsHDhQjo7O6murmbjxo0eKt30\nVFlZia+vLxaLhaamJkJCQnjttdeYO3cuYWFhNDU1ebqI08rV9Xk1m81GU1PTgBQC5caurk91Pro5\nV9elOhfdvKvrU52Lxu6tt97i5MmTGAwGHn30UYxG46jPRZMaKF+bn5STk0NERARhYWEqd2kMrq2z\nnp4eCgsLeeqpp3A4HDz//PNERkaqy4cjdG19rlixggsXLrBz506klGzevJmIiAgPlW766enp4b33\n3uPOO+9ECIHD4cBoNFJfX09UVBQmk4m2tjZPF3PauLo+r7Vr1y6WLFlCaGioB0o2PV1bn+p8NHbX\n/q+rc9HNubY+1blo7O655x7uuususrOzee211/j7v//7UZ+LJnXUi6tb7Hp6ejh48GD/r0x1mWv0\nrq0zo9HIkiVL8PHxISAggAULFlBaWuqh0k0/19bna6+9RkREBN/97nf5+te/zpkzZzh37pyHSje9\nOJ1OXnzxRdLS0vo7SXh5eeFwOPjyl7/M2rVrsdvtmEwmD5d0ehisPi/bu3cvNptt0ABaGdy19anO\nR2M32HdTnYvGbrD6VOeim6PX61m1ahUGg4GSkpJRn4s81qLc2trKpUuX+NGPfjRgm4aGBp5++unJ\nLNa0dW2rR1BQ0IDn6mA/OtfW58WLF3nqqafQ6/UEBASQnJxMcXGxGqnhBtxuN6+++iohISEDLreG\nhITQ0NDQn7fY0NCgRmkYgaHqE+Do0aMUFxfzxBNPoNfrPVTC6WWw+lTno7EZ6rupzkVjM1R9qnPR\n+JBSIqUc9bloUgJlt9uNy+XC7XYjpcTpdBIeHs73v//9/m32799PS0sLDzzwwGQUaVobrD6FEMyb\nN4+cnBxSU1NxOp3k5+erVqYRGKo+Q0NDOXXqFFu3bqW7u5uioiKWLl3q6eJOebt27UIIwd133z1g\neWpqKpmZmcydO5eamhoqKyuvGypSud5Q9Xny5Emys7N58skn+zupKDc2WH1GRkaq89EYDPXdVOei\nsRmqPtW5aPQ6OzspKCggNTUVLy8vcnJy6OrqIi4ubtTnokmZwvrkyZO88cYbA5Zt3LhxwDiA6sA0\nckPV5/r169m1axf5+fl4eXmpsRZHaKj6TEtL4+2336ampgaDwUBaWhrbt29Hp1Pz9AyltbWVn//8\n53h5eQ1Y/thjjxETE6PGUR6lwepTCMEjjzzC66+/TkdHx4DvY0ZGBhkZGZ4o6rQw3PczPj6+/7k6\nH93YcHUZHR2tzkWjNFx9WiwWdS4apa6uLl555RXq6upwuVyEhYWxbds2Zs2aNepxlCclUFYURVEU\nRVGU6Ub9HFEURVEURVGUQahAWVEURVEURVEGoQJlRVEURVEURRmECpQVRVEURVEUZRAqUFYURVEU\nRVGUQahAWVEURVEURVEGoQJlRVEURVEURRmECpQVRVEURVEUZRAqUFYURVEURVGUQfw/hThqmqI/\nXgYAAAAASUVORK5CYII=\n", "text": [ - "" + "" ] } ], - "prompt_number": 15 + "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "So what is this telling us? The blue gaussian is very narrow. It is saying that we believe $x=23$, and that we are very sure about that $(90%)$. In contrast, the red gaussian also believes that $x=23$, but we are much less sure about that $(18%)$. Our believe that $x=23$ is lower, and so our belief about the likely possible values for $x$ is spread out - we think it is quite likely that $x=20$ or $x=26$, for example. The blue gaussian has almost completely eliminated $22$ or $24$ as possible value - their probability is almost $0\\%$, whereas the red curve considers them nearly as likely as $23$.\n", + "So what is this telling us? The blue gaussian is very narrow. It is saying that we believe $x=23$, and that we are very sure about that. In contrast, the red gaussian also believes that $x=23$, but we are much less sure about that. Our believe that $x=23$ is lower, and so our belief about the likely possible values for $x$ is spread out - we think it is quite likely that $x=20$ or $x=26$, for example. The blue gaussian has almost completely eliminated $22$ or $24$ as possible value - their probability is almost $0\\%$, whereas the red curve considers them nearly as likely as $23$.\n", "\n", "If we think back to the thermometer, we can consider these three curves as representing the readings from three different thermometers. The blue curve represents a very accurate thermometer, and the red one represents a fairly inaccurate one. Green of course represents one in between the two others. Note the very powerful property the Gaussian distribution affords us - we can entirely represent both the reading and the error of a thermometer with only two numbers - the mean and the variance.\n", "\n", @@ -499,13 +560,13 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAFuCAYAAABECkoSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xdc1XXj/vHXYYOgyHCAoiZu3Lh3brI0R1laebf3trRS\nW2ZlZXuYDbUcmbNu9yy3OFERFRe4EBWRPc75/YG33+7f3XAA7zOu5z/6cORLAs7l4XM+bxARERER\nERERERERERERERERERERERERERERERERERERERERERG5bpa/+8l169bZsrOzS6tFRERERFzXmm7d\nunX+s5/w+LvflZ2dTb169UqkSERKTnBwMHPmzKFTp06mU1yO3vbm6G0v4tji4+P/8oPXrTRDRERE\nRESulgariIiIiNg1DVYRJ6XLeczR294cve1FnJMGq4iT0gO3OXrbm6O3vYhz0mAVEREREbumwSoi\nIiIidk2DVURERETsmgariIiIiNg1DVYRERERsWsarCIiIiJi1zRYRURERMSuabCKiIiIiF3TYBUR\nERERu6bBKiIiIiJ2TYNVREREROyaBquIiIiI2DUNVhERERGxaxqsIiIiImLXNFhFRERExK5psIqI\niIiIXdNgFRERERG7psEqIiIiInZNg1VERERE7JoGq4iIiIjYNQ1WEREREbFrGqwiIiIiYtc0WEVE\nRETErmmwioiIiIhd02AVEREREbumwSoiIiIidk2DVURERETsmgariIiIiNg1DVYRERERsWsarCIi\nIiJi1zRYRURERMSuabCKiIiIiF3zMB0gIuLICgqtJKdmkJaRy8XsPCweqQDYCnIJ8PUi0N+bKiH+\neLjr+QERkWulwSoicoVsNhuJJy/wW1wysQdS2H/8PIkn0sgrsP7fL1o9pujbzq9d/iFvT3duqFyO\n2uHlia5VgU6NqnBDpXJYLJZS/huIiDgmDVYRkb9hs9nYdTiVn37bz/Ltx0hOzfifX1M5qAyh5Xzx\n9/Vk/eqiH2tbvzIZ2fmcuZDNyXOZxB87R/yxc8zfkAhAlRB/ujWN4LaOtWlUI0TjVUTkb2iwioj8\niYzsPKavTmDmmv3EJ527/OPl/b3p2LAK7eqHUb9aEJGVAwnw87r88+GfF3076+U+l3/sYlYeB0+m\nsffoOdbtPcFvcckkp2bw/bK9fL9sL/WqBnF7p9rc0bkO/r7/998SEZEiGqwiIn9wITOXb5fuYdKi\n3aRl5gIQFOBD/3aR3No2kkY1QnBzu7pnQwP8vGhaswJNa1ZgyI11sVqLnrWdu/4gs9ceID7pHK/+\nsJEP523n/l5R3NujAeXKeJfEX09ExCFpsIqIALn5hXy1cBef/7KTi9n5ALSqU4n7ekXRvVkEXh7u\nxfZnublZaFIzlCY1Q3n5jpYs23aMSYvj2Jxwmvd+3srEhXE80qcRD8U0wtuz+P5cERFHpcEqIi5v\nxY5jjJ6ygSOn0wFo1yCMZ25tRpt6lUv8z/bycOemljWIaVGdDfEn+XDedtbtOcE7P8Uyc81+Xr+7\nDV2bRJR4h4iIPdNgFRGXlZKWxYhv17Jk61EAaocH8sY9bWnfILzUWywWC23rh9G2fhhr9xxn1OT1\n7D+ext3jl9CzeTXevrc9FQL9Sr1LRMQeaLCKiEtatOUwwyf9zvmMXPx9PHluYHP+1b0Bnh7m75fa\nvkE4S98awHfL9vD+z1tZsvUoW/afZvz9HegVXd10nohIqTP/mVlEpBRl5uTz7MQ13P/hcs5n5NIx\nKpzV4wfxYO+GdjFW/8PTw40Hezdk1bsD6RAVzrmLOdw3YRnPTlxDZk6+6TwRkVJlP5+dRURK2KFT\nF7h5zHxmrtmPj6c7r9/Vhh9f7E3loDKm0/5SWLA/017szet3tcHb052Za/Zz85j5HD51wXSaiEip\n0WAVEZewckcSN42aR0LyeSLDAln4Zj/u6xV11beoMsHNzcJ9vaJY9GY/IsMCSUg+z02j5rFyR5Lp\nNBGRUqHBKiJOzWaz8fkvO7n7vcWkZ+XRK7oav77WlzpVgkynXbU6VYL49bW+9GxejQtZedz93mI+\n/2UnNpvNdJqISInSYBURp1VotfLK5PWMnbEZgOcHNufrp7r/18lUjibAz4tJT3fn+YHNARg7YzOj\npqyn0Go1XCYiUnJ0lwARcUo5eQU88flqFm45jJeHG5882oU+rW4wnVUs3NwsPHNrMyLDAnny81V8\nt3QvKWnZfPxIZ3y89GldRJyPPrOJiNO5mJXHsPeXsHHfKcr6efHtsz1K5RCA0nZzqxsIDvDhvgnL\n+Pfmw5xNz+b753o69DPIIiJ/RpcEiIhTSc/K4853FrFx3ykqlS/DnFE3O+VY/Y+29cOYM+pmKpX3\nY+O+Uwx5dxHpWXmms0REipUGq4g4jQuZudz59kK2HUyhSog/c0f3oV6E47246mrViwhizuibCQ/2\nZ+uBFO58W6NVRJyLBquIOIW0zFzueHsh2xPPUDXUn59f6UNEhbKms0pNtQplmT2qD1VD/dmemMId\n4xZyITPXdJaISLHQYBURh5eVk8/d4xez81Aq1SoEMPuVm6kaGmA6q9RVDQ3g55f7EBEawI5DZ7h7\n/BKydCqWiDgBDVYRcWh5BYU88NFyth5IISy4DLNe7kN4iL/pLGOqhAbw8yt9CAsuQ+yB0zz40XLy\nCgpNZ4mIXBcNVhFxWIVWK099sZrVu5IJLuvD9BExLj1W/yM8xJ/pI2IICvBh1a5knv5yje7TKiIO\nTYNVRBySzWZj9JQNLNh4CH8fT358oTeRYYGms+xGZFggP77YC38fT+ZvSGT0lA06EUtEHJYGq4g4\npImL4vh+2V68Pd357rkeNKwRYjrJ7jSqEcp3z/XA29Od75ft5evFu00niYhcEw1WEXE4i2OP8Ma0\nTQBMeKgTbeuHGS6yX23rhzHhoU4AvP7jRpbEHjEbJCJyDTRYRcSh7Dx0hsc+W4nNBi/eFk3fNjVN\nJ9m9vm1q8sKgaGw2eOzzVew6fMZ0kojIVdFgFRGHcfJcJsPeX0JOXiG3dazNE7c0MZ3kMJ7s24RB\nHWqRnVvAPe8t4eS5TNNJIiJXTINVRBxCTl4BD3y4jJS0bNrUq8w797XHYrGYznIYFouFd+/vQJt6\nlUlJy+aBD5eTm6/bXYmIY9BgFRG7Z7PZePn7dWxPPEOVEH8mPtUNLw9301kOx8vDna+e7Ep4cNFp\nWC9/v053DhARh6DBKiJ2b/LyeGas2Y+PlzvfPNOdoAAf00kOK7isL9880x0fT3emr05gyop400ki\nIv9Ig1VE7NqWhFOMmboegPfu70hUdd2+6no1rBHC+Ac6AjB6ynq2JJwyXCQi8vc0WEXEbp1Nz+bh\nT1ZQUGjjwd4NubVdpOkkp9G/XSQP9I6ioNDGw5+s5Gx6tukkEZG/pMEqInbJarXx5BerOXU+ixa1\nK/LS4Jamk5zOy4NbEV2rIqfOZ/LkF6uxWnU9q4jYJw1WEbFLnyzYwepdyQQF+PD54zfi6aFPV8XN\n08ONL564kfL+3qzelcynv+wwnSQi8qf0CCAidmf93hO89/NWAD5+pDNhwf6Gi5xXWLA/Hz/SBYDx\ns7ayIf6k4SIRkf+lwSoiduXcxRwe/2wVVpuNJ/o2oUvjqqaTnN6NTary+C1NsNpsPPbpSs5dzDGd\nJCLyXzRYRcRu2Gw2nv/6N06nFV23+vyA5qaTXMbwgc1pUbsip9OyeGHS77o/q4jYFQ1WEbEbP67a\nx5KtRwnw9eSTR7vg4a5PUaXFw92NTx7tQoCvJ4tijzBtVYLpJBGRy/RoICJ24eCJNMZM3QDA2/e2\np2pogOEi11M1NIBx/2oPwJgfNnDwRJrhIhGRIhqsImJcXkEhj322kpy8Qga0j6RfW91v1ZRb20XS\nv10k2bkFPP7ZKvIKCk0niYhosIqIeRPmbGP3kbNEhAYw9p52pnNc3thh7aga6k/ckVQ+nLvddI6I\niAariJi17WAKny7YicUCHz7ciQA/L9NJLq+snxcfPdwZiwU+XbCD7YkpppNExMVpsIqIMdl5BTz9\n5WqsNhsPxTSiVd3KppPkklZ1K/Ng74YUWm08/eUasvMKTCeJiAvTYBURY975aQuJJy9QKyyQ4QN1\nCyt788KgaGqFBXLwRBrv/hRrOkdEXJgGq4gYsSH+JJMW78bdzcJHj3TGx8vDdJL8f3y8PPjokc64\nu1n4enEcG3UKlogYosEqIqUuO7eA57/+DZsNnujbhMY3hJpOkr/Q+IZQnuzbFJsNnp/0my4NEBEj\nNFhFpNS9OyuWI6fTqVc1iKf6NTWdI//gyX5NqFOlPIdPpeuuASJihAariJSqbQdTmLR4N24WC+89\n0BEvD3fTSfIPvDzceff+Dlgs8MWvO9lz9KzpJBFxMRqsIlJqcvMLeW7imkt3BWhIk5q6FMBRRNeq\nyL+6N6DQamP4pN8otFpNJ4mIC9FgFZFS8/H87ew/nkaNSmV5TncFcDgv3hZNWHAZdh5K5Zsle0zn\niIgL0WAVkVKxP/k8ny3YCcB793fEV3cFcDj+vl6M+1d7oOg65GMp6YaLRMRVaLCKSImz2WyM/G4t\n+YVWhnSpS+t6OiDAUXVrGkHfNjXJzi1gxLdrsdlsppNExAVosIpIiZv1+wE27jtFcFkfRg5uYTpH\nrtPrd7Uh0N+bNXHHmb32oOkcEXEBGqwiUqLOXczhjWmbABh9Z2vK+/sYLpLrFVLOlzFDWgPw6g8b\nOJuebbhIRJydBquIlKhxMzZz7mIObepVZkD7SNM5UkwGdahFh6hwzmfk8uoPG03niIiT02AVkRKz\nOeEU01Yn4Onuxtv3tsdisZhOkmJisVh4+972+Hi5M2fdQdbsSjadJCJOTINVREpEfoGVEd+uBeDR\nmxsTGRZouEiKW/WKZXm2fzMAXpmyntz8QsNFIuKsNFhFpER8vSiOhOTzVK9Ylif6NjGdIyXkgd4N\nqVm5HIdOXuDrRXGmc0TESWmwikixSzpzkffnbAVg7LC2uueqE/PycOfNYe0A+HDedo6nZhguEhFn\npMEqIsXKZrPxyuT15OQVckvrG+jcqKrpJClhHaPCuallDbJzC3jtR70AS0SKnwariBSrJVuPsnz7\nMQJ8PRkztLXpHCklY4a2xtfbg39vPsxvcXoBlogULw1WESk22XkFjJm6AYAXBkVTqXwZw0VSWsKD\n/Xm6X1MAXpm8nrwCvQBLRIqPBquIFJsv/72L5NQM6kUEcU/3+qZzpJQ9GNOQGyqXI1EvwBKRYqbB\nKiLF4vjZDD5dsAOAN+5ui7ubPr24Gi8Pd968uy0AH87dzvGzegGWiBQPPaKISLEYO30zOXmF9GlV\ngzb1KpvOEUM6NapCTIsaZOUW8LpegCUixUSDVUSu28b4k8zfkIiPpzuj7mhlOkcMe/XSC7B+3XSY\n33YfN50jIk5Ag1VErkuh1cqoKeuBohOtqoQGGC4S08JD/Hmqb9ELsEZNXk9+gdVwkYg4Og1WEbku\n01YlsPfYOcKD/Xm0T2PTOWInHoxpSPWKZTl4Io2pK/aazhERB6fBKiLXLC0zl3d+2gLAqCGt8PXW\niVZSxNvTnTFDiu7D+/7sbZzPyDFcJCKOTINVRK7Z+z9v5XxGLm3qVaZPyxqmc8TOdG8WQfsGYaRl\n5jJhzjbTOSLiwDRYReSa7Es6x+Tle3GzWHj97jZYLBbTSWJnLBYLY4a2xs1i4ftlezl4Is10kog4\nKA1WEblqNpuNMVM3UGi1MbRrXepHBJtOEjtVPyKYO7rUodBq022uROSaabCKyFVbsvUoa/ecILCM\nN8MHRpvOETv3wsBo/H08WbEjidW7kkzniIgD0mAVkauSV1DIm9M3AfDcgGYEBfgYLhJ7F1LOl6dv\nLbrN1Ws/bKSgULe5EpGro8EqIldl6vJ4Dp9K54bK5bira33TOeIg7u0ZRbUKAew/nsYPK/eZzhER\nB6PBKiJXLC0zlw/mFr3a+5XBLfH00KcQuTLenu6MurPoFLT3fo4lLTPXcJGIOBI92ojIFft43nbS\nLt3GqkfzaqZzxMH0iq5Om3qVOZ+Ry0dzt5vOEREHosEqIlfkaEo63y3dA8DoIa10Gyu5ahaLhVeH\ntsZigW+X7ibxpG5zJSJXRoNVRK7IWzM2k1dgZUD7SBrVCDWdIw4qqnoIgzvVoaDQxtjpm03niIiD\n0GAVkX+0Zf9pft10GB9Pd168rYXpHHFwLwyKxs/bgyVbj7Jp30nTOSLiADRYReRv2Wz/d8P3B2Ma\nEh7sb7hIHF2FQD8euakRAG9M24zNZjNcJCL2ToNVRP7Wgo2H2HYwhdByvjx2c2PTOeIkHrqpERUC\nfdmemMKvmw+bzhERO6fBKiJ/KSevgHEzi64zfH5gc/x9vQwXibMo4+PJcwOaA/D2zC3kFRQaLhIR\ne6bBKiJ/6bule0g6k0GdKuUZ3KmO6RxxMoM71aFWWCBHTqczZXm86RwRsWMarCLyp85n5PDx/B0A\njLqzFR7u+nQhxcvD3Y2X7mgJwIdzt3FBhwmIyF/QI5CI/KlPF+wkPSuPDlHhdGlc1XSOOKnuTSMu\nHybw2S87TeeIiJ3SYBWR/3H8bMblQwJeGqzbWEnJsVgsvHJH0ZGtkxbv5nhqhuEiEbFHGqwi8j8m\nzNlGbn4hN7e6QYcESIlrUjOUvm1qkptfyLs/x5rOERE7pMEqIv/lwPHzzFyzH3c3C8MHNTedIy5i\nxG3ReLq7MXvtAXYfOWs6R0TsjAariPyXd36KxWqzcUfnOtSsHGg6R1xERIWyDOtRH5sN3py+SYcJ\niMh/0WAVkcu2HUxhUewRfLzceaZ/M9M54mKe6teUcn5e/L77OGvikk3niIgd0WAVEaDoCNa3ZhQd\nEnB/zygqlS9juEhcTXl/H57o2wSAt2ZswWrVs6wiUkSDVUQAWL0rmQ3xJwks482jOoJVDBnWowGV\ng8qw5+hZFmxMNJ0jInZCg1VEsFptjJu5BYDHb2lMuTLehovEVfl6efDcgKLLUd6dFasjW0UE0GAV\nEWDBxkT2HD1LpfJlGNajgekccXGDOtQmMiyQoykXmbZyn+kcEbEDGqwiLi6voJB3ZxXd+/K5Ac3w\n9fIwXCSuzsPdjRG3RQMwYe52MnPyDReJiGkarCIubtqqBI6mXKRm5XLc1rG26RwRAHpFV6dpzQqk\npmczcVGc6RwRMUyDVcSFZebk8+HcbQC8eFsLPNz1KUHsg8ViuXws8Je/7uJserbhIhExSY9OIi5s\n0uLdnLmQTdOaocS0qG46R+S/tK0fRpdGVcjIyefj+TtM54iIQRqsIi7q3MUcvvh1JwAjb2+JxWIx\nXCTyv0bc3hKAKcv3knzmouEaETFFg1XERX0yfwcXs/Pp1DCcdg3CTOeI/Kmo6sHc2rYmeQVW3pu9\n1XSOiBiiwSrigo6nZjB5+V4AXhrc0nCNyN8bPigaT3c3fl57gH1J50zniIgBGqwiLuj9OVvJzS+k\nb5uaRFUPMZ0j8reqVSjL0K51sdng7Z+2mM4REQM0WEVczP7k88z67QAe7haGD2xuOkfkijzVryl+\n3h4s23aMzQmnTOeISCnTYBVxMe/M2oLVZuPOLnWpUamc6RyRKxJazo+HYhoB8NaMzdhsNsNFIlKa\nNFhFXEjsgdMsjj2Kr7cHT/drZjpH5Ko8FNOQoAAftuw/zbLtx0zniEgp0mAVcRE2m41xMzYDcH+v\nKCqW9zNcJHJ1Avy8eKpfUwDenrmFQqvVcJGIlBYNVhEXsWpnMhv3nSLQ35tH+zQ2nSNyTe7qWo+q\nof4kJJ9n9tqDpnNEpJRosIq4AKvVxriZRc+uPnFLE8r6eRkuErk23p7uPD8gGoD3ft5KTl6B4SIR\nKQ0arCIuYN6GRPYeO0floDIM617fdI7Idbm1XU3qVQ3i+NkMpqyIN50jIqVAg1XEyeUVFDJ+ViwA\nzw9ojo+Xh+Eikevj7ubGiNtbAJdObMvKM1wkIiVNg1XEyf24ch/HzlwkMiyQgR1qmc4RKRZdm1Sl\nZZ2KnLuYw1cL40zniEgJ02AVcWKZOfl8OHc7ACNui8bDXR/y4hwsFgsv3V50rPBXC3eReiHbcJGI\nlCQ9eok4sYmL4khNz6ZpzQr0iq5uOkekWLWoU4nuzSLIyi3go3nbTeeISAnSYBVxUmfSsvjy110A\nvDS4BRaLxXCRSPF7cVALLBaYuiKew6fSTOeISAnRYBVxUuNnbiAjJ58ujarQtn6Y6RyRElEvIogB\n7WuRX2jl9Sm/m84RkRKiwSrihI6evsCXv24DYMSl6/xEnNXzA5rj5eHGjFV7iDuUYjpHREqABquI\nE6rzXUXy2o2iX5uaRFUPNp0jUqKqhgZwV7f62Dq9SoufIkzniEgJ0GAVcTL7ks5d/v7wQdEGS0RK\nz5O3NLn8/c0JpwyWiEhJ0GAVcTLv/BR7+fvVK5Y1WCJSekLK+V7+/lszNmOz2QzWiEhx02AVcSJb\nEk6xdNtR0xkiRm3Zf5pl24+ZzhCRYqTBKuIkbDYbb83cbDpDxC68M3MLhVar6QwRKSYarCJOYsWO\nJDYnnKa8v7fpFBGjqoT4sy/5PHPXJZpOEZFiosEq4gQKrVbenrkFgCf6NvmHXy3i3J4f2ByA8T/H\nkptfaLhGRIqDBquIE5i3PpH4pHOEBZfhnm71TeeIGNW/XSR1q5QnOTWDH1bEm84RkWKgwSri4HLz\nCxn/c9GdAZ4fEI2Pl4fhIhGz3N3cePH2FgB8NH87Gdl5hotE5HppsIo4uB9WxJN0JoPa4YEM7BBp\nOkfELnRvGkGL2hU5m57DxIVxpnNE5DppsIo4sIzsPD6avx2AEbe1wN1NH9IiABaLhZcGFx1L/OXC\nOM6mZxsuEpHroUc3EQc2cWEcZ9NzaF6rAj2aVzOdI2JXWtapRNcmVcnMyeej+TtM54jIddBgFXFQ\nqRey+fLSlzpfur0lFovFcJGI/RlxewssFpi6fC9JZy6azhGRa6TBKuKgPl6wg8ycfG5sUpXW9Sqb\nzhGxS/Ujgrm1bSR5BVbem73VdI6IXCMNVhEHlHTmIlOX78ViKbp2VUT+2vCBzfF0d2P22gPsSzpn\nOkdEroEGq4gDem/2VvIKrNzaNpIG1YJN54jYtYgKZbmraz1sNnjnp1jTOSJyDTRYRRxM/LFzzF57\nAE93t8sn+ojI33uyXxP8vD1Yuu0oWxJOmc4RkaukwSriYN7+aQs2GwztWpdqFcqazhFxCKHl/Hgw\npiEAb83cjM1mM1wkIldDg1XEgWyMP8ny7cfw8/bgqX5NTeeIOJSHYxpR3t+bzQmnWbEjyXSOiFwF\nDVYRB2Gz2Rg7YzMAj9zUiNByfoaLRBxLgJ8XT176h97bM7dgtepZVhFHocEq4iAWxR5h28EUQsr6\nXv7Spohcnbu71iMsuAzxSeeYtyHRdI6IXCENVhEHUFBoZdzMLQA8078Z/r5ehotEHJOPlwfPD4gG\nYPysWPIKCg0XiciV0GAVcQDTVydw6OQFqlcsy5AudU3niDi0gR0iqR0eyLEzF/lx5T7TOSJyBTRY\nRexcVk4+H8wpOqFnxO0t8PTQh63I9XB3c7t84MaHc7eTmZNvuEhE/oke+UTs3MRFcaSkZdPkhlD6\ntKxhOkfEKfRoXo1mkRVITc9m4qI40zki8g80WEXs2Nn0bL74dRcAL9/REovFYrhIxDlYLBZeGtwS\ngC9/3cW5izmGi0Tk72iwitixj+ZtJyMnnxsbV6Vt/TDTOSJOpU29ytzYuCoZOfl8PH+76RwR+Rsa\nrCJ26mhKOlOWx2OxwMjBLUzniDilFy9dyzp52V6Op2YYrhGRv6LBKmKnxs+KJb/QyoD2tagfEWw6\nR8QpRVUP5ta2NckrsPL+pRc3ioj90WAVsUNxh1OZuz4RLw83hg9objpHxKk9PzAaD3cLs347QELy\nOdM5IvInNFhF7NBbl45g/VePBlQJDTBcI+Lciu5vXA+rzXb5gA4RsS8arCJ25re4ZH7bfZyyfl48\nfksT0zkiLuGZ/k0p4+PJsm3H2BB/0nSOiPx/NFhF7IjVamPspWdXH7+lMUEBPoaLRFxDaDk/HunT\nCIA3pm3EarUZLhKRP9JgFbEjCzYmsvvIWSqVL8O9PaNM54i4lId6N6RioB87D6WyYGOi6RwR+QMN\nVhE7kZtfyDs/xQIwfGBzfL08DBeJuBY/H0+GDyp6kePbP20hN7/QcJGI/IcGq4id+GFFPMfOXKR2\neCADO9QynSPikm7rWJs6VcqTdCaD75ftMZ0jIpdosIrYgQuZuUyYuw2Akbe3xMNdH5oiJri7ufHy\nHUVHtn48bwdpmbmGi0QENFhF7MIn83dwPiOX1nUr0b1ZhOkcEZd2Y+OqtGsQRlpmLh/P05GtIvZA\ng1XEsGMp6XyzZDcAo4e0xmKxGC4ScW0Wi4VRd7QC4LuleziWkm64SEQ0WEUMe/unWPIKrPRvF0nj\nG0JN54gI0LBGCP3bRZJXYL38YkgRMUeDVcSgbQdTmL8hER9Pd0bc3sJ0joj8wYuDovH2dGfehkR2\nHjpjOkfEpWmwihhis9l47YeNADwQ05DwYH/DRSLyR1VCA7i3RwMA3pi2CZtNhwmImKLBKmLIvzcf\nJvbAaULK+vJYn8amc0TkTzzRtwmB/t5siD/Jsm3HTOeIuCwNVhEDcvMLeevSEazPDWhGgJ+X4SIR\n+TPlynjz7K3NAHh92kbyCnSYgIgJGqwiBkxevpejKUWHBNzZpa7pHBH5G3d3q0/NyuU4fCqdycv2\nms4RcUkarCKl7HxGDh/NLbq34yt3ttIhASJ2ztPDjVF3Ft3masKcbZy7mGO4SMT16JFSpJR9OHc7\naZm5dIgK58bGVU3niMgV6NY0gg5R4VzIymPCnG2mc0RcjgarSCk6fOoCk5ftxWKBUXe20iEBIg7C\nYrEwZkhr3CwWJi/fy8ETaaaTRFyKBqtIKXpz+ibyC63c1rE2DaoFm84RkatQLyKIO7rUodBq4/Uf\nN5rOEXEpGqwipeT33cdZHHuUMj6evDhIhwSIOKLhA5vj7+PJih1JrNmVbDpHxGVosIqUgoJCK69O\n3QDAk32aajqHAAAgAElEQVSbULG8n+EiEbkWoeX8eLJfEwBe+3EjBYVWw0UirkGDVaQU/LByH/uS\nzxMRGsD9vaJM54jIdbivZxQRoQEkJJ9n2qp9pnNEXIIGq0gJO5+Rw/ifYwEYPaQVPl4ehotE5Hr4\neHnw8h0tAXhv9lbSs/IMF4k4Pw1WkRL2wextpGXk0q5BGL2iq5vOEZFicFPLGrSqU4mz6Tl8PG+7\n6RwRp6fBKlKC9iefZ/LyvbhZLLw2tI1uYyXiJCwWC6/e1RqASYt3k3hSt7kSKUkarCIlxGazMWbq\nBgqtNoZ2rUu9iCDTSSJSjBrVCGVwp9rkF1p59Qfd5kqkJGmwipSQZduP8dvu45Tz82L4wGjTOSJS\nAkbc3oIAX09W7khi2bajpnNEnJYGq0gJyM0v5LVLz7g8O6A5QQE+hotEpCSElvPjuQHNAXj1h43k\n5BUYLhJxThqsIiXgu6V7OHI6nciwQO7pVt90joiUoGHdG1A7PJAjp9OZuCjOdI6IU9JgFSlmKWlZ\nTJizDYDX7mqNp4c+zEScmaeHG6/f3RaAj+fv4PjZDMNFIs5Hj6QixezN6ZvIyMmnW9MIOjeqajpH\nREpBh6hwYlrUIDu3gLHTN5vOEXE6GqwixWhj/Elmrz2It6c7r93VxnSOiJSiMUNa4ePlzvwNiWyI\nP2k6R8SpaLCKFJP8Aisvf78OgMdubkz1imUNF4lIaaoSGsDjNzcBYNTk9RQUWg0XiTgPDVaRYvL9\nsj3sSz5PRGgAj97c2HSOiBjwcJ9GVA31Jz7pHFNXxJvOEXEaGqwixeD0+Sze+3krAG/c0xZfLw/D\nRSJigq+XB2OGFJ2ANX5WLGfTsw0XiTgHDVaRYvCfF1r1aFaNbk0jTOeIiEG9oqvTMSqcC1l5jJu5\nxXSOiFPQYBW5ThviTzJn3UF8PN157dLZ4iLiuiwWC2/c0xZPdzemr05gS8Ip00kiDk+DVeQ6/PGF\nVo/3bUJEBb3QSkQgMizw8rXsI75dS36BXoAlcj00WEWuwzdLdpOQfJ7qFcvyyE2NTOeIiB15om8T\nqlUIYF/yeSYt1glYItdDg1XkGp08l8kHl060evOetvjohVYi8ge+Xh6MHdYOgPfnbCP5zEXDRSKO\nS4NV5Bq9MW0TmTn59I6uTpfGOtFKRP5Xl8ZV6dOq6ASsUVM2mM4RcVgarCLXYNXOJOZvSMTHy51X\nh+qFViLy114d2gZ/H0+WbjvKktgjpnNEHJIGq8hVysrJZ+R3awEYPjCaKqEBhotExJ5VDirDC4Oi\nAXhlynoyc/INF4k4Hg1Wkav03uytJJ3JoEG1YO7vFWU6R0QcwD3d69OweggnzmYy4dK17yJy5TRY\nRa5C3OFUvl60GzeLhfH3d8DDXR9CIvLPPNzdePve9lgsMHFRHPHHzplOEnEoerQVuUIFhVaGT/od\nq83Gfb0a0PiGUNNJIuJAmtQM5Z5u9Sm02hjx7VqsVpvpJBGHocEqcoW+WbKbuCOphAf7M3xgtOkc\nEXFAL97WggqBvsQeOM3UlfGmc0QchgaryBVIOnOR8T9vBWDcve0o4+NpuEhEHFFZPy9ev7stAG9N\n38zxsxmGi0QcgwaryD+w2WyM/HYt2bkF3NL6Bro2iTCdJE5k27ZtdOvWjc6dO/PII48A8MEHH9Cl\nSxe6dOnChAkTAFi/fj0xMTG88cYbJnOlGPRpWYPe0dXJyMlnxDdrsdl0aYDIP9FgFfkHCzYeYtWu\nZMr5efHaXW1M54gTsVqtPPXUU4wbN47Vq1czduxYjh07xuzZs1mxYgVLly5l1qxZJCUlMXXqVObN\nm4ebmxuJiYmm0+U6WCwWxg5rRzk/L1buTGLOuoOmk0TsngaryN84n5HD6Eun07xyZysqBPoZLhJn\nsmvXLoKDg2nRogUAQUFB+Pv74+HhQU5ODjk5OXh5eREQUHSvX6vVis1mu/yMXHZ2trF2uT4Vy/sx\n5tKhI6OnbuDMhSzDRSL2TYNV5G+8/uMmUtOzaV23EoM71TGdI07m+PHjBAQEMHToUHr27MnkyZMJ\nCgrivvvuo0WLFrRs2ZKHHnqIwMBAhg4dSv/+/bFarWRlZfH444+zevVq038FuQ63daxNx6hw0jJy\nGTVZx7aK/B0NVpG/sHz7MX76bT/enu68c18H3NwsppPEyeTm5hIbG8u7777L7NmzmTRpEseOHWPq\n1Kls2rSJdevW8cUXX5CSkkK7du348MMPSUtLY9myZYwbN47evXub/ivIdbBYLLx7fwf8vD34ZdMh\nFuvYVpG/pMEq8ifSMnN5YdLvALwwKJrIsEDDReKMQkNDqVWrFmFhYfj7+9OoUSM2bdpEkyZN8Pf3\nJygoiKioKHbv3s3MmTOZPXs2I0eOJDExkYEDB7Jhg56Vc3RVQwMYeXvRJSEjv1tLWmau4SIR+6TB\nKvInRk9Zz+m0LKJrVeSB3jp+VUpG48aNOX78OGlpaeTl5bFv3z6qVavGjh07yMvLIzs7m7i4OCIi\nIrj99tsZOXIkJ0+epFatWsydO5dp06aZ/itIMRjWvQHRtSqSkpbNGz9uNJ0jYpc0WEX+P0u3HmX2\n2oP4eLrzwUMdcXfTh4mUjLJly/Laa69x22230atXL/r160fLli3p3bs3PXv2JCYmhiFDhhAZGXn5\n99SpU4eNGzcSExNDTEyMwXopLm5uFt5/sCNeHm7MWLOf33YfN50kYnf+9qK85cuX2+rVq1daLSLG\nnbuYQ9cRP5OSls2rQ1vzQO+GppOuSfjX4QAcf0APfKUtPDwMgOPHTxgucT2O/n7/8fztvPNTLFVC\n/Fk+bgABfl6mk0RKVXx8PN26dfvTbaqnjkT+YPSU9aSkZdOyTkXu66lLAUSk9DxyU2MaVg8hOTWD\nV3/Q9ckif6TBKnLJoi2Hmbs+ER8vdz54sJPuCiAipcrTw42PH+mMt6c7M9bsZ4nuGiBymQarCEWX\nAoz4dh0ALw9uSY1K5QwXiYgrql2l/OW7Bgz/5ndSL+hwCBHQYBUB4JXJ60lNz6ZNvcoM697AdI6I\nuLD7ekbRrkEYZ9NzGD7p98snm4m4Mg1WcXnzNyQyf0Mift4evP9gR10KICJGublZmPBgJwJ8PVm6\n7Sgz1+w3nSRinAaruLTkMxcZ8e1aAF65sxXVKpQ1XCQiAuEh/rx5TzsARk/dwLGUdMNFImZpsIrL\nKrRaefKL1aRn5dGjWTXu7uoat3CzZGeDvsQojspmK3ofdgED2kcS06IGmTn5PP3lGgqtVtNJIsZo\nsIrL+mT+DjYlnKJCoC/vPdABi8W5LwWwXLiA/2ef4f/556AHPnFUViv+n3+O/6efYrlwwXRNibJY\nLLxzX3sqBPqyKeEUExfGmU4SMcbDdICICVsPnOaDOdsA+OjhzgSX9TVcVHIsKSn4f/kllrw8sm++\nGWtICO5HjpjOclq1yADAPfG04RLnldWvH26pqQS8+y42Ly8yHnsMW0iI6awSERTgw/sPdOKu8Yt5\nd1YsnRpVoX5EsOkskVKnwSou52JWHk98vopCq40HezekY8MqppNKlEdyMp779lFYrRoeSUlwQicw\nlaRoygPgteu84RInV1iIxWrFY/9+3JOSKHDSwQpwY5OqDL2xLj+s3Mfjn63i36/3w9dbD9/iWvQe\nLy7nlSnrOZpykQbVghlx6X6Hziy/WTPOTZuG586d+M6bR35UFNn9+4OTXwJhyvTHi45mfe9W/cOg\nRNhs+M6ejefevWTdcQf5jRqZLioVY4a0ZuO+UyQkn2f0lPWMf6Cj6SSRUqVrWMWlzN+QyM+/H8DH\ny53PHuuCt6e76aRSk9+4MeljxpBfv76uYRXHVVhIfoMGpI8e7TJjFcDPx5MvnrgRb093pq1OYN76\ng6aTREqVBqu4jD/ewmrMkNbUCi9vuMiMgnr1wN11hro4GQ+PovdhF1Q/IpjX7moDwAvfrOXQKed+\n0ZnIH2mwiksoKLTyxBerSM/Ko2fzatzlIrewEhHnMvTGuvRpVXSrq0c/WUlufqHpJJFSocEqLuHt\nmVvYnHCaioF+vPdAR6e/hZWIOCeLxcL4+zsSERpA3JFUxk7fZDpJpFRosIrTWxx7hC/+vQt3Nwtf\nPHEjQQE+ppNERK5ZWT8vvniiK57ubnyzZA+LY4+YThIpcRqs4tSOnE7nma/WAPDS4Ja0qlvZcJGI\nyPVrUjOUl+5oCcCzX60h+cxFw0UiJUuDVZxWdl4BD360nPSsPHpHV+ehmIamk0REis0DvaLo1jSC\nC1l5PPrZSvILdPcPcV4arOK0Rk1ez56jZ6lesSwfPNRJ162KiFOxWCxMeKgTlYPKsPVACm/qelZx\nYhqs4pRmrklg+uoEfDzdmfhUN8r6eZlOEhEpdkEBPpevZ520eDez1x4wnSRSIjRYxensOXqWl75b\nB8Bb/2pHg2o6d1tEnFeL2hV5/e5L92ed9Du7j6QaLhIpfhqs4lTSs/J48KPl5OQXckfnOtzeqY7p\nJBGREndX13rc0bkOOfmF3DdhGecu5phOEilWGqziNKxWG099sZojp9NpUC2YN+5pazpJRKRUWCwW\nxg5rR9OaFUhOzeDhT1ZQUKgXYYnz0GAVp/HOT1tYuu0ogWW8mfhUN3y9PEwniYiUGm9Pd75+uhuh\n5XxZt+cEb83YbDpJpNhosIpTmL32AJ/+shN3NwtfPtmV6hXLmk4SESl1lYPK8NWTXfFwt/DVwjjm\nrT9oOkmkWGiwisPbeuA0wyf9DsDrd7elQ1S44SIREXNa1a3Ma0OLXoT13Ne/sefoWcNFItdPg1Uc\n2vHUDO6bsIzc/ELu6VafYd3rm04SETHunu71ub1TbXLyCrlvwlJSL2SbThK5Lhqs4rCycvL51wdL\nOXMhm/YNwnjtrjamk0RE7ILFYuGtYe1oWjOUpDMZDHt/Kdm5BaazRK6ZBqs4JKvVxlNfrr58ktWX\nT3bF00PvziIi/+Hj5cF3z/WgSog/2xNTeOLzVRRadecAcUx6hBeH9N7srSzccoSyfl5Mfr4n5f19\nTCeJiNid0HJ+TB3ei7J+XiyKPcKb03TnAHFMGqzicH7+/QAfzduOm8XCl090JTIs0HSSiIjdql2l\nPF8/3Q1PdzcmLorj+6V7TCeJXDUNVnEoK3ck8dzXawB47a7WdGpUxXCRiIj9a98gnPEPdABg1JQN\nLNt21HCRyNXRYBWHse1gCg9+vJyCQhuP3dyYe3tGmU4SEXEYgzrU5tn+zbDabDzy6UriDqeaThK5\nYhqs4hAOnkjj7vGLyc4tYFCHWoy8vYXpJBERh/Ns/2YMaB9Jdm4B97y3hOOpGaaTRK6IBqvYvVPn\nMxnyziLOZ+RyY5OqjL+/IxaLxXSWiIjDsVgsvPdAR9rWr8zptCzufGcRZ9N1j1axfxqsYtcuZOYy\n9J3FJKdm0CyyAl89odtXiYhcDy8Pd75+ujv1qgZx8EQad76ziPSsPNNZIn9Lj/xit7LzCvjX+0uJ\nTzpHZFggk5/viZ+Pp+ksERGHF1jGm2kjelO9Yll2HznL3eMXk5WTbzpL5C9psIpdKii08sRnq9iU\ncIpK5csw7cXeBAXoXqsiIsWlQqAfM0fGEBZchi37T3PfhGXk5Ok0LLFPGqxidwqtVp75ag2LYo9Q\nzs+LH1/sRXiIv+ksERGnUyU0gBkjYwgp68tvu4/z6KcryS/QaVhifzRYxa5YrTZe/GYtc9YdxM/b\ngykv9KJu1SDTWSIiTqtm5UCmj+xNOT8vlmw9yrMT12C12kxnifwXDVaxGzabjVcmr2f66gR8vNyZ\nMrwX0bUqms4SEXF69SOC+eHF3vh5ezBn3UFe+n4dNptGq9gPDVaxCzabjTFTNzB5+V68Pd357rme\ntKlX2XSWiIjLaBZZge+f64m3pztTV8Qz5oeNGq1iNzRYxbj/PLP6zZI9eHm4MfGpbnSMCjedJSLi\ncto1CGPiU93w8nDjm8W7GTVlvUar2AUNVjHKarUx8rt1fL+s6JnVSc90p1vTCNNZIiIuq1vTCCY9\n073oq11L9/LS9+t0TasYp8EqxhRarbzwze9MXRGPj6c73z7bna5NNFZFREzr2iSCb58tGq1Tlsfz\nwje/U2jV3QPEHA1WMSKvoJBHP115+QVW3z3fk86NqprOEhGRSzo3qsr3z/fEx8ud6asTeOzTVeQV\nFJrOEhelwSqlLju3gHvfX8qvmw4T4OvJ9BExumZVRMQOdYwKZ9qLvQnw9eSXTYe474NlZOfqcAEp\nfRqsUqrSMnO5852FrNqVTFCAD7Ne7kPLOpVMZ4mIyF9oVbcys17uQ1CADyt3JjHknUVcyMw1nSUu\nRoNVSs3xsxn0f/0XNiecplL5MswdfTMNa4SYzhIRkX/QsEYIc0ffTKXyZdiUcIpbX/+FE2czTGeJ\nC9FglVKxL+kct4xZQELyeWqHB7Lg1VuIDAs0nSUiIlcoMqzoc3etsEASks9zy6sL2Jd0znSWuAgN\nVilx6/ac4NbXf+HU+Uxa1qnInNE3Ex7ibzpLRESuUniIP3PH3EyL2hU5eS6T/q//wvq9J0xniQvQ\nYJUSNX31Pu58ZyHpWXnEtKjO9BExlPf3MZ0lIiLXqLy/D9NHxhDTojoXsvK44+2FzFidYDpLnJwG\nq5QIq9XGm9M28fzXv1NQaOPhmxrx5ZNd8fHyMJ0mIiLXydfLgy+f7MpDMQ0pKLTx3Ne/MXb6Jh0w\nICVG60GK3cWsPJ76cjVLth7Fw93CuH+1584udU1niYhIMXJ3c2P0kNbUrBzIS9+v5fNfd5F48gIf\nPdyZAD8v03niZPQMqxSrxJNp9BkznyVbj1LOz4sfXuitsSoi4sSG3FiXH17oTTk/L5ZsPcrNY+aT\neDLNdJY4GQ1WKTbLtx/jplHzOHgijTpVyvPvN/rRQQcCiIg4vQ5R4fz7jX7UqVKeAyfS6DN6Psu3\nHzOdJU5Eg1WuW6HVyruzYhn2/hIuZucT06IGC169hRqVyplOExGRUlKjUjkWvHoLMS2qk56Vx7D3\nl/DurFgKrVbTaeIENFjluqSkZTF43EI+mrcdCxZevC2aiU91xd9X1y+JiLgaf18vJj7VjRdvi8aC\nhY/mbWfwuIWkpGWZThMHp8Eq12ztnuP0fHkO6/eeJLScLzNGxvBk36ZYLBbTaSIiYojFYuHJvk2Z\nPrI3oeV8Wb/3JD1fnsPvu4+bThMHpsEqVy2voJC3Zmy+9K/mbNrUq8ySsf1p1yDMdJqIiNiJ9g3C\nWTK2P23qVSYlLZvB4xYyZuoGsvMKTKeJA9Jglaty6NQF+r22gM9+2YkFC8/1b8aMkTFULO9nOk1E\nROxMxfJ+zBgZw/CBzfFwtzBp8W5iXpnL7iOpptPEwWiwyhUptFqZuCiO7iNns/NQKlVC/Jkzqg/P\nDmiOh7vejURE5M95uLvx9K3NWPBqX2pWLsf+40V3Efh0wQ69IEuumJaG/KMDx8/T77VfeO2HjeTk\nFdK/XSTLxg2gRZ1KptNERMRBNL4hlCVj+zOse33yC62Mm7mFgW/+yrGUdNNp4gA0WOUvFRRa+WT+\nDnq8NIdtB1OoVN6P75/rwSePdqGsTjEREZGr5Ovtwdhh7fjhhV5UDPRjc8Jpuo2cw6TFuyko1LOt\n8tc0WOVP7T12lj6j5/P2T1vIK7ByZ+c6rHxnIN2bVTOdJiIiDq5L46osf3sAN7WsQWZOPmOmbqDP\n6PnsSDxjOk3slIfpALEvGdl5fDx/B18t3EVBoY0qIf6Mv78DHRtWMZ0mIiJOJCjAh4lPdWPp1qO8\nMnk9cUdS6TNmHvd0q8+Lt7XQV/Lkv2iwCgBWq43Z6w4wbsYWTl+6wfOw7vV5aXBLyvh4Gq4TERFn\n1aN5Ndo3COODOduYuCiO75ftZeGWw7w6tA23tL5B9/YWQINVgO2JKYyavIHtiSkANK1ZgTfuaUPT\nmhUMl4mIiCvw8/HklTtbMaB9LV789ne2Hkjh0U9XMm3VPkbd2Yqo6iGmE8UwDVYXdvp8FuNmbmbW\n7wcAqBDoy0uDWzKgXS3c3PQvWhERKV31IoKYN/oWpq9O4K0Zm1m75wS9XpnLrW0jeXFQNFVCA0wn\niiEarC4oLTOXr/69i2+W7CEzJx8vDzce7N2QJ/o2wd9X1wyJiIg5bm4WhtxYl94tqvPJ/B18v2wP\nc9Yd5NdNh/hXjwY80bcJ5f19TGdKKdNgdSEXs/KYtHg3ExfFkZ6VB0CPZtUYPaQVNSqVM1wnIiLy\nf4ICfBgztDX39mzAu7NimbPuIF8tjGPG6gSe6NuEYT0a4OulGeMq9H/aBWTm5PPd0j188e9dpGXk\nAtC+QRjPD4ymRe2KhutERET+WtXQAD55tAsP9I5i7PSiywTenL6ZrxbG8WDvhtzdrZ6+OugCNFid\n2IXMXH5cuY8vF+7ibHoOAK3qVGL4oGja1KtsuE5EROTKNaoRyoyRMayJS+btmbHEHUll7IzNfLpg\nB/f2jOLeng0ICtClAs5Kg9UJHUtJZ9KSPcxYnUBmTj4AzSIrMHxQNB0ahOkWISIi4pAsFgudG1Wl\nU8MqrN6VzCfzd7Ap4RQT5m7jq4W7uKtrPR6MaUil8mVMp0ox02B1IrEHTjNxYRyLthzBarMB0K5B\nGA/HNKJL4yoaqiIi4hQsFgtdGlelS+OqbNp3kk/m72DVrmS+WhjHd0v30KfVDdzTvT7NIyvosc9J\naLA6uOy8AhZtOcJ3S/ew7WDRfVQ93d3o3zaSB3o1JKp6sOFCERGRktOqbmVa1a3MrsNn+GT+DhbF\nHmHOuoPMWXeQqOrB3NOtPre2jcTXW5PHken/noPafSSV6asTmLvuIBcuveI/sIw3Q7vWY1j3+lQO\n0pdDRETEdTSqEcrXT3cn6cxFpq6IZ9qqfew+cpbhk37nzWmbuK1TbYbeWI/IsEDTqXINNFgdyIXM\nXOauT2TG6gTijqRe/vHGN4QwuFMdBravhZ+OURURERdWNTSAlwa35Nn+zfh102G+X7aX7YkpfL1o\nN18v2k3TmqEMaF+LW1rfQHBZX9O5coU0WO1cZk4+y7cf45eNh1i5M4nc/EKg6NnU/u0iGdy5Dg2q\n6cv+IiIif+Tj5cHADrUY2KEWuw6fYcryeBZsPMT2xDNsTzzDmKkb6NyoCgPa16JHs2q6ZMDO6f+O\nHfrPSP110yFW7kgi59JIhaL7p97RuQ69oqvjoxsmi4iI/KNGNUJ574FQ3ri7LUu3HWX22gOs3pXM\nih1JrNiRhL+PJ92bRdAzujpdGlXRfV3tkBaPnTh1PpNVO5NYsT2JVbuSyMn7v5HaonZF+rS6gZta\n1tC1qSIiItfI19uDvm1q0rdNTVIvZLNgYyKz1x5kx6EzzF2fyNz1iXh5uNG+QTg9o6vRo1k1KgT6\nmc4WNFiNKSi0su1gCit2JLFyxzH2Hjv3Xz/fvFYFbr40UsOC/Q1VioiIOKeQcr6XDhyI4vCpCyzZ\nepTFsUeIPXCalTuTWLkziRHfrqVpzQp0aliFjg3DaVqzAp4ebqbTXZIGaykptFqJP3aejftOsjH+\nJOv3nrj86n4o+ldf+wZh3Ni4Kl2bRhCukSoiIlIqalQqx8M3NeLhmxpx5kIWy7cfY3HsUX7ffZxt\nB1PYdjCFCXO3UcbHk9Z1K9EhKpwOUeHUqVJe93ktJRqsJSSvoJC9R8+xcd9JNsSfZEvCqf8aqAA3\nVC7HjY2rcmPjqrSqW0nXpIqIiBgWWs6POzrX5Y7OdcnMyWfdnhOs3XOc3+KOc+BE2uXrXgFCyvoS\nXbsC0bUqEl2rIg1rhOixvITorVoMrFYbh05dYEfiGXYcSmFHYip7j529/Ir+/6gS4k/repVpU7cy\nbepXplqFsoaKRURE5J+U8fGkR/Nq9GheDYCT5zJZu+c4v+8+ztrdJzidlsXi2KMsjj0KFB3c07BG\nCNG1KtKkZihR1YOpUbEcbm56FvZ6abBepcycfBKSz7Mv6Rz7ks4Rn3SOuMOpXMzO/59fW6NSWVrV\nqXR5pFYJDTBQLCIiIsWhclAZBnWozaAOtbHZbBw5nU7sgdPE7j/N1gMp7Es+d/kSgv8o4+NJ/Ygg\noqoHE1UthKjqwdQMC8RXz8ReFb21/oTNZuN8Ri6JJy9w6OQFDp26wMET54k/do6jKRf/9PdUKl+G\nJjVDaHJDBRrXDKVxjRDKlfEu5XIREREpDRaLhRqVylGjUjkGdagNQHpWHtsPphB74DS7Dqey+8hZ\nTp3PZMv+02zZf/oPvxciQgOIDAukdnh5aoUHUiu8PJFhgZT10y21/ozLDtbs3AKOn83geGpG0bdn\nMziWcpHDp9L5f+3dy24bVRzH8Z8vM2PPOHZtp7RNU4q4ZkMXSIAQEq1E2UBZHgkWsAUhXoAHYMmi\nbNggkFgy4g26AJ4AiSIkKrVJpbS5OfEl4/GMxzaLcd2UlobSi1vn+5GOzsXy+G/5SP77HNvnylpL\nzSC64/2sXFbPLxzS0omqlk7UtHQi/dR0tMrfTQEAcJCVXVunTy3q9KnFyVijHerickMXV9IE9o+V\nhpbX21rZ6GhlozP5PuwN1ZKjk0+VdfJIWU8/Nadnxu3F+ZKOVF3Z+dyjflqPhZlLWAfDoXY6kTZb\noTbboRqtUOvNrq5tB1rd6mh1K9BqY1fbnd5dr1MqWHr2WEXPjj89PXesoqUTNT23UDmwkwUAANyb\nerl4WxIbJwMtr7X11+qOLl1r6tJqU5dWd3R5raWd3Ug7u5v67fLmHa83Xy7qWM3T0Zqb1lVv3Pe0\nUPN0uFJU2bVn7t8LHuuEtZ8M1QoiNYNIrSBSK4jTupvWzd1IW+1Qm61QW6203u70NByN9r22nc9q\noV7S8fmSjtfHZd6bJKiHK8WZe7EBAMD02fmcXlys6sXF6i3jo9FIG81QKxttLa+3dXWjM2lfawTa\naHa11Q611Q71+/K/X9/KZVWbK6SlXFB9rqB6uaBaqaBauah6uaBDnqOya0/KnGs/1gty95WwDoZD\nxW3E4/8AAAM1SURBVP2homSgKB4oTgaK+nvq/kBhnCjoJepG/bTu9RVEfQW9vrq9RMGefhil/U7Y\nVyuI1I2S/xXXoZKjw+Wi5itFHR6Xvcnp4nxJ8+Uiv9oDAACPjUwmoyNVV0eqrl576ehttyeDoTZb\noa5vB1rbCXS9Ma63A63tdHV9O9BmK1TQ62u92dV6s3tPj1+wcip7tuaK4yS2aKtUtFV0cnIdS66T\nl+tYt/QLdn7P+I12XraVk53PybHSks/d34EL+yas73zxk+JkqLifJqFRkiaicTJQMth/JfN+ZDMZ\nVTxbFc9Ja9eZtA95aXtvUjpfKao+V+QUCgAAMHPyuayO1bx9j2nvxYm2O71JabR7akza6W50M4jU\n6fbV7kZqd2O1u7F6/YF6zVAbzfCBx57NZGRbWTn5nBw7TWZtK6fPzp3Sh2eW9r3/vgnrP48M3SuT\nUfrAVu5mJm3n5ORzsq2s7HxuknW7hby8giXPseQVbvZdx5Ln5OUW0nGvkJfnWKp4jkpFi215AACA\ne1Cw81qol+7paPfRaKQwStQOY7WDeFLv9mKF0UBh1Fc3ShTGibpRunMeRmk7nIynu+dhnChOBrfs\nwg9HI/XigXrxQNqz8Nv+x6FK/+au2eCFCxd+lnT6Pz9bAAAA4P/55ezZs2emHQQAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAALg7Y8y7xpiPxu0vjTFPTzsmAJgF+550BeDJZow5J+kTSa9K+lPS\nj77vfzPdqGbW25K+H7df8X3/6jSDOUiY58Bsy047AAAPz3iF733f99+X9Kmkr3kTf6he9n3/ojHG\nkfTfzhvEfWOeA7OPFVbgCWeMcSV9oNuPWt6V9IKk8+N+XdKVRxjagTJ+Hdxx93VJvxlj3vJ9/9cp\nhnVQfCzmOTDTSFiBJ5zv+11J393pNmPMV5JubEu/IemHRxXXAfS6pIox5j1JNUmOpP50QzowqmKe\nAzONhBWYbd9K+sAYk5F03vd9EqiH501Jn/u+/8u0AzmAmOcAAAD7McZ8Z4yxpx0HAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxQfwMrlwvmcF5j7AAAAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAFwCAYAAAB91in5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdY1vXi//Hnhw2C4kAFBPcAt+Leuc2yHGXb9jjH6lSm\nDbVlWbZ3ZkMtR7nruGduxYmKqLjAhQuRPe779wcev53faTiA9z1ej+s6V15ixyck3C9vPvfnbSUk\nJNgREREREXFQHqYDRERERET+igariIiIiDg0DVYRERERcWgarCIiIiLi0DRYRURERMShabCKiIiI\niEPz+qs3JiUllVSHiIiIiLi5iIiIP/z5vxysAFFRUUUeIyLFq3z58syaNYtOnTqZTnE7+tibo4+9\niHOLj4//07fpkgARERERcWgarCIiIiLi0DRYRVyULucxRx97c/SxF3FNGqwiLkoP3OboY2+OPvYi\nrkmDVUREREQcmgariIiIiDg0DVYRERERcWgarCIiIiLi0DRYRURERMShabCKiIiIiEPTYBURERER\nh6bBKiIiIiIOTYNVRERERByaBquIiIiIODQNVhERERFxaBqsIiIiIuLQNFhFRERExKFpsIqIiIiI\nQ9NgFRERERGHpsEqIiIiIg5Ng1VEREREHJoGq4iIiIg4NA1WEREREXFoGqwiIiIi4tA0WEVERETE\noWmwioiIiIhD02AVEREREYemwSoiIiIiDk2DVUREREQcmgariIiIiDg0DVYRERERcWgarCIiIiLi\n0DRYRURERMShabCKiIiIiEPTYBURERERh6bBKiIiIiIOzct0gIiIM8svsJF8Jp3U9BwuZuVieZ0B\nwJ6fQ5C/D8GBvlSpEIiXp54fEBG5VhqsIiJXyG63k3jiAr/FJRO7P4V9x86TeDyV3Hzb//2ilaML\n/9n51cs/5evtSY3QMtQJL0tM7Yp0alSFGpXLYFlWCb8HIiLOSYNVROQv2O12dh46w0+/7WPptqMk\nn0n/n18TWq4UIWX8CfT3Zt3Kwp9rGx1KelYepy9kceJcBvFHzxF/9Bxz1ycCUKVCIN2aRnJbxzo0\nql5B41VE5C9osIqI/IH0rFymrkxg+qp9xCedu/zzZQN96diwCu2iw4iuWo5aocEEBfhcfnv454X/\n/Pmlvpd/7mJmLgdOpLLnyDnW7jnOb3HJJJ9J5/sle/h+yR6iIspxe6c63NG5LoH+//f/JSIihayE\nhAT7n70xKSmJqKiokuwRkSJQvnx5AM6ePWu4xPlcyMjh28W7mbBgF6kZOQCUC/Kjf7ta3Nq2Fo2q\nV8DD48+fDQ0PDwPg2LHjf/prbLbCZ21nrzvAzDX7OZ9e+PsEB/ryUK8GPNCjPmVK+Rbhe+Ue9Ode\nxLnFx8cTERHxh2/TM6wiIkBOXgFfzd/J57/s4GJWHgCt6lbmwV4N6N4sEh8vzyL7vTw8LJrUDKFJ\nzRBeuqMlS7YeZcLCODYlnOLdGVsYPz+Ox/s24tE+jfD1LrrfV0TEWWmwiojbW7b9KKMmrefwqTQA\n2tUP41+3NqNNVGix/94+Xp7c2LI6fVpUY338CT6cs421u4/z9k+xTF+1j9fubUPXJpHF3iEi4sg0\nWEXEbaWkZjLi2zUs2nIEgDrhwbx+X1va1w8v8RbLsmgbHUbb6DDW7D7GyInr2HcslXvHLaJn86qM\nfaA9FYMDSrxLRMQRaLCKiFtasPkQwyas5nx6DoF+3jw7sDn3d6+Pt5f5+6W2rx/O4jcH8N2S3bw3\nYwuLthxh875TjHuoA71iqpnOExEpcea/MouIlKCM7DyeGb+Khz5cyvn0HDo2CGfluEE80ruhQ4zV\n//D28uCR3g1Z8c5AOjQI59zFbB78YAnPjF9FRnae6TwRkRLlOF+dRUSK2cGTF7hp9Fymr9qHn7cn\nr93Thh+H9ya0XCnTaX8qrHwgU4b35rV72uDr7cn0Vfu4afRcDp28YDpNRKTEaLCKiFtYvj2JG0fO\nISH5PLXCgpn/xi082KvBX96iylF4eFg82KsBC964hVphwSQkn+fGkXNYvj3JdJqISInQYBURl2a3\n2/n8lx3c++5C0jJz6RVTlV9f7UfdKuVMp121ulXK8eur/ejZvCoXMnO5992FfP7LDuz2P72dtoiI\nS9BgFRGXVWCz8fLEdYyZtgmA5wY25+unuv/XyVTOJijAhwlPd+e5gc0BGDNtEyMnraPAZjNcJiJS\nfHSXABFxSdm5+Qz9fCXzNx/Cx8uDT57oQt9WNUxnFQkPD4t/3dqMWmHBPPn5Cr5bvIeU1Cw+frwz\nfj76si4irkdf2UTE5VzMzGXIe4vYsPckpQN8+PaZHiVyCEBJu6lVDcoH+fHgB0v496ZDnE3L4vtn\nezr1M8giIn9ElwSIiEtJy8zlzrcXsGHvSSqXLcWskTe55Fj9j7bRYcwaeROVywawYe9J7npnAWmZ\nuaazRESKlAariLiMCxk53Dl2PlsPpFClQiCzR/UlKtL5Xlx1taIiyzFr1E2Elw9ky/4U7hyr0Soi\nrkWDVURcQmpGDneMnc+2xNNEhAQy4+W+RFYsbTqrxFStWJqZI/sSERLItsQU7nhrPhcyckxniYgU\nCQ1WEXF6mdl53DtuITsOnqFqxSBmvnwTESFBprNKXERIEDNe6ktkSBDbD57m3nGLyNSpWCLiAjRY\nRcSp5eYX8PBHS9myP4Ww8qX4+aW+hFcINJ1lTJWQIGa83Jew8qWI3X+KRz5aSm5+geksEZHrosEq\nIk6rwGbjqS9WsnJnMuVL+zF1RB+3Hqv/EV4hkKkj+lAuyI8VO5N5+stVuk+riDg1DVYRcUp2u51R\nk9Yzb8NBAv28+fH53tQKCzad5TBqhQXz4/BeBPp5M3d9IqMmrdeJWCLitDRYRcQpjV8Qx/dL9uDr\n7cl3z/agYfUKppMcTqPqIXz3bA98vT35fskevl64y3SSiMg10WAVEaezMPYwr0/ZCMAHj3aibXSY\n4SLH1TY6jA8e7QTAaz9uYFHsYbNBIiLXQINVRJzKjoOn+cdny7HbYfhtMfRrU9N0ksPr16Ymzw+K\nwW6Hf3y+gp2HTptOEhG5KhqsIuI0TpzLYMh7i8jOLeC2jnUYenMT00lO48l+TRjUoTZZOfnc9+4i\nTpzLMJ0kInLFNFhFxClk5+bz8IdLSEnNok1UKG8/2B7LskxnOQ3LsnjnoQ60iQolJTWLhz9cSk6e\nbnclIs5Bg1VEHJ7dbuel79eyLfE0VSoEMv6pbvh4eZrOcjo+Xp589WRXwssXnob10vdrdecAEXEK\nGqwi4vAmLo1n2qp9+Pl48s2/ulMuyM90ktMqX9qfb/7VHT9vT6auTGDSsnjTSSIif0uDVUQc2uaE\nk4yevA6Adx/qSINqun3V9WpYvQLjHu4IwKhJ69iccNJwkYjIX9NgFRGHdTYti8c+WUZ+gZ1Hejfk\n1na1TCe5jP7tavFw7wbkF9h57JPlnE3LMp0kIvKnNFhFxCHZbHae/GIlJ89n0qJOJV4c3NJ0kst5\naXArYmpX4uT5DJ78YiU2m65nFRHHpMEqIg7pk3nbWbkzmXJBfnz+zxvw9tKXq6Lm7eXBF0NvoGyg\nLyt3JvPpL9tNJ4mI/CE9AoiIw1m35zjvztgCwMePdyasfKDhItcVVj6Qjx/vAsC4n7ewPv6E4SIR\nkf+lwSoiDuXcxWz++dkKbHY7Q/s1oUvjCNNJLu+GJhH88+Ym2Ox2/vHpcs5dzDadJCLyXzRYRcRh\n2O12nvv6N06lFl63+tyA5qaT3Mawgc1pUacSp1IzeX7Cat2fVUQcigariDiMH1fsZdGWIwT5e/PJ\nE13w8tSXqJLi5enBJ090IcjfmwWxh5myIsF0kojIZXo0EBGHcOB4KqMnrwdg7APtiQgJMlzkfiJC\ngnjr/vYAjP5hPQeOpxouEhEppMEqIsbl5hfwj8+Wk51bwID2tbilre63asqt7WrRv10tsnLy+edn\nK8jNLzCdJCKiwSoi5n0wayu7Dp8lMiSIMfe1M53j9sYMaUdESCBxh8/w4extpnNERDRYRcSsrQdS\n+HTeDiwLPnysE0EBPqaT3F7pAB8+eqwzlgWfztvOtsQU00ki4uY0WEXEmKzcfJ7+ciU2u51H+zSi\nVb1Q00lySat6oTzSuyEFNjtPf7mKrNx800ki4sY0WEXEmLd/2kziiQvUDgtm2EDdwsrRPD8ohtph\nwRw4nso7P8WazhERN6bBKiJGrI8/wYSFu/D0sPjo8c74+XiZTpL/j5+PFx893hlPD4uvF8axQadg\niYghGqwiUuKycvJ57uvfsNthaL8mNK4RYjpJ/kTjGiE82a8pdjs8N+E3XRogIkZosIpIiXvn51gO\nn0ojKqIcT93S1HSO/I0nb2lC3SplOXQyTXcNEBEjNFhFpERtPZDChIW78LAs3n24Iz5enqaT5G/4\neHnyzkMdsCz44tcd7D5y1nSSiLgZDVYRKTE5eQU8O37VpbsCNKRJTV0K4Cxialfi/u71KbDZGTbh\nNwpsNtNJIuJGNFhFpMR8PHcb+46lUr1yaZ7VXQGczvDbYggrX4odB8/wzaLdpnNExI1osIpIidiX\nfJ7P5u0A4N2HOuKvuwI4nUB/H966vz1QeB3y0ZQ0w0Ui4i40WEWk2Nntdl74bg15BTbu6lKP1lE6\nIMBZdWsaSb82NcnKyWfEt2uw2+2mk0TEDWiwikix+3n1fjbsPUn50n68MLiF6Ry5Tq/d04bgQF9W\nxR1j5poDpnNExA1osIpIsTp3MZvXp2wEYNSdrSkb6Ge4SK5XhTL+jL6rNQCv/LCes2lZhotExNVp\nsIpIsXpr2ibOXcymTVQoA9rXMp0jRWRQh9p0aBDO+fQcXvlhg+kcEXFxGqwiUmw2JZxkysoEvD09\nGPtAeyzLMp0kRcSyLMY+0B4/H09mrT3Aqp3JppNExIVpsIpIscjLtzHi2zUAPHFTY2qFBRsukqJW\nrVJpnunfDICXJ60jJ6/AcJGIuCoNVhEpFl8viCMh+TzVKpVmaL8mpnOkmDzcuyE1Q8tw8MQFvl4Q\nZzpHRFyUBquIFLmk0xd5b9YWAMYMaat7rrowHy9P3hjSDoAP52zj2Jl0w0Ui4oo0WEWkSNntdl6e\nuI7s3AJubl2Dzo0iTCdJMevYIJwbW1YnKyefV3/UC7BEpOhpsIpIkVq05QhLtx0lyN+b0Xe3Np0j\nJWT03a3x9/Xi35sO8VucXoAlIkVLg1VEikxWbj6jJ68H4PlBMVQuW8pwkZSU8PKBPH1LUwBenriO\n3Hy9AEtEio4Gq4gUmS//vZPkM+lERZbjvu7RpnOkhD3SpyE1QsuQqBdgiUgR02AVkSJx7Gw6n87b\nDsDr97bF00NfXtyNj5cnb9zbFoAPZ2/j2Fm9AEtEioYeUUSkSIyZuons3AL6tqpOm6hQ0zliSKdG\nVejTojqZOfm8phdgiUgR0WAVkeu2If4Ec9cn4uftycg7WpnOEcNeufQCrF83HuK3XcdM54iIC9Bg\nFZHrUmCzMXLSOqDwRKsqIUGGi8S08AqBPNWv8AVYIyeuIy/fZrhIRJydBquIXJcpKxLYc/Qc4eUD\neaJvY9M54iAe6dOQapVKc+B4KpOX7TGdIyJOToNVRK5ZakYOb/+0GYCRd7XC31cnWkkhX29PRt9V\neB/e92Zu5Xx6tuEiEXFmGqwics3em7GF8+k5tIkKpW/L6qZzxMF0bxZJ+/phpGbk8MGsraZzRMSJ\nabCKyDXZm3SOiUv34GFZvHZvGyzLMp0kDsayLEbf3RoPy+L7JXs4cDzVdJKIOCkNVhG5ana7ndGT\n11Ngs3N313pER5Y3nSQOKjqyPHd0qUuBza7bXInINdNgFZGrtmjLEdbsPk5wKV+GDYwxnSMO7vmB\nMQT6ebNsexIrdyaZzhERJ6TBKiJXJTe/gDembgTg2QHNKBfkZ7hIHF2FMv48fWvhba5e/WED+QW6\nzZWIXB0NVhG5KpOXxnPoZBo1QstwT9do0zniJB7o2YCqFYPYdyyVH5bvNZ0jIk5Gg1VErlhqRg7v\nzy58tffLg1vi7aUvIXJlfL09GXln4Slo786IJTUjx3CRiDgTPdqIyBX7eM42Ui/dxqpH86qmc8TJ\n9IqpRpuoUM6n5/DR7G2mc0TEiWiwisgVOZKSxneLdwMw6q5Wuo2VXDXLsnjl7tZYFny7eBeJJ3Sb\nKxG5MhqsInJF3py2idx8GwPa16JR9RDTOeKkGlSrwOBOdckvsDNm6ibTOSLiJDRYReRvbd53il83\nHsLP25Pht7UwnSNO7vlBMQT4erFoyxE27j1hOkdEnIAGq4j8Jbv9/274/kifhoSXDzRcJM6uYnAA\nj9/YCIDXp2zCbrcbLhIRR6fBKiJ/ad6Gg2w9kEJIGX/+cVNj0zniIh69sREVg/3ZlpjCr5sOmc4R\nEQenwSoifyo7N5+3phdeZ/jcwOYE+vsYLhJXUcrPm2cHNAdg7PTN5OYXGC4SEUemwSoif+q7xbtJ\nOp1O3SplGdyprukccTGDO9Wldlgwh0+lMWlpvOkcEXFgGqwi8ofOp2fz8dztAIy8sxVenvpyIUXL\ny9ODF+9oCcCHs7dyQYcJiMif0COQiPyhT+ftIC0zlw4NwunSOMJ0jrio7k0jLx8m8NkvO0zniIiD\n0mAVkf9x7Gz65UMCXhys21hJ8bEsi5fvKDyydcLCXRw7k264SEQckQariPyPD2ZtJSevgJta1dAh\nAVLsmtQMoV+bmuTkFfDOjFjTOSLigDRYReS/7D92numr9uHpYTFsUHPTOeImRtwWg7enBzPX7GfX\n4bOmc0TEwWiwish/efunWGx2O3d0rkvN0GDTOeImIiuWZkiPaOx2eGPqRh0mICL/RYNVRC7beiCF\nBbGH8fPx5F/9m5nOETfz1C1NKRPgw+pdx1gVl2w6R0QciAariACFR7C+Oa3wkICHejagctlShovE\n3ZQN9GNovyYAvDltMzabnmUVkUIarCICwMqdyayPP0FwKV+e0BGsYsiQHvUJLVeK3UfOMm9Doukc\nEXEQGqwigs1m563pmwH4582NKVPK13CRuCt/Hy+eHVB4Oco7P8fqyFYRATRYRQSYtyGR3UfOUrls\nKYb0qG86R9zcoA51qBUWzJGUi0xZvtd0jog4AA1WETeXm1/AOz8X3vvy2QHN8PfxMlwk7s7L04MR\nt8UA8MHsbWRk5xkuEhHTNFhF3NyUFQkcSblIzdAy3NaxjukcEQB6xVSjac2KnEnLYvyCONM5ImKY\nBquIG8vIzuPD2VsBGH5bC7w89SVBHINlWZePBf7y152cTcsyXCQiJunRScSNTVi4i9MXsmhaM4Q+\nLaqZzhH5L22jw+jSqArp2Xl8PHe76RwRMUiDVcRNnbuYzRe/7gDghdtbYlmW4SKR/zXi9pYATFq6\nh+TTFw3XiIgpGqwibuqTudu5mJVHp4bhtKsfZjpH5A81qFaeW9vWJDffxrszt5jOERFDNFhF3NCx\nM+lMXLoHgBcHtzRcI/LXhg2KwdvTgxlr9rM36ZzpHBExQINVxA29N2sLOXkF9GtTkwbVKpjOEflL\nVSuW5u6u9bDbYexPm03niIgBGqwibmZf8nl+/m0/Xp4WwwY2N50jckWeuqUpAb5eLNl6lE0JJ03n\niEgJ02AVcTNv/7wZm93OnV3qUb1yGdM5IlckpEwAj/ZpBMCb0zZht9sNF4lISdJgFXEjsftPsTD2\nCP6+Xjx9SzPTOSJX5dE+DSkX5MfmfadYsu2o6RwRKUEarCJuwm6389a0TQA81KsBlcoGGC4SuTpB\nAT48dUtTAMZO30yBzWa4SERKigariJtYsSOZDXtPEhzoyxN9G5vOEbkm93SNIiIkkITk88xcc8B0\njoiUEA1WETdgs9l5a3rhs6tDb25C6QAfw0Ui18bX25PnBsQA8O6MLWTn5hsuEpGSoMEq4gbmrE9k\nz9FzhJYrxZDu0aZzRK7Lre1qEhVRjmNn05m0LN50joiUAA1WEReXm1/AuJ9jAXhuQHP8fLwMF4lc\nH08PD0bc3gK4dGJbZq7hIhEpbhqsIi7ux+V7OXr6IrXCghnYobbpHJEi0bVJBC3rVuLcxWy+mh9n\nOkdEipkGq4gLy8jO48PZ2wAYcVsMXp76lBfXYFkWL95eeKzwV/N3cuZCluEiESlOevQScWHjF8Rx\nJi2LpjUr0iummukckSLVom5lujeLJDMnn4/mbDOdIyLFSINVxEWdTs3ky193AvDi4BZYlmW4SKTo\nDR/UAsuCycviOXQy1XSOiBQTDVYRFzVu+nrSs/Po0qgKbaPDTOeIFIuoyHIMaF+bvAIbr01abTpH\nRIqJBquICzpy6gJf/roVgBGXrvMTcVXPDWiOj5cH01bsJu5giukcESkGGqwiLqjud5XIbTeSW9rU\npEG18qZzRIpVREgQ93SLxt7pFVr8FGk6R0SKgQariIvZm3Tu8o+HDYoxWCJScp68ucnlH29KOGmw\nRESKgwariIt5+6fYyz+uVqm0wRKRklOhjP/lH785bRN2u91gjYgUNQ1WEReyOeEki7ceMZ0hYtTm\nfadYsu2o6QwRKUIarCIuwm638+b0TaYzRBzC29M3U2Czmc4QkSKiwSriIpZtT2JTwinKBvqaThEx\nqkqFQPYmn2f22kTTKSJSRDRYRVxAgc3G2OmbARjar8nf/GoR1/bcwOYAjJsRS05egeEaESkKGqwi\nLmDOukTik84RVr4U93WLNp0jYlT/drWoV6UsyWfS+WFZvOkcESkCGqwiTi4nr4BxMwrvDPDcgBj8\nfLwMF4mY5enhwfDbWwDw0dxtpGflGi4SkeulwSri5H5YFk/S6XTqhAczsEMt0zkiDqF700ha1KnE\n2bRsxs+PM50jItdJg1XEiaVn5fLR3G0AjLitBZ4e+pQWAbAsixcHFx5L/OX8OM6mZRkuEpHroUc3\nESc2fn4cZ9OyaV67Ij2aVzWdI+JQWtatTNcmEWRk5/HR3O2mc0TkOmiwijipMxey+PLStzpfvL0l\nlmUZLhJxPCNub4FlweSle0g6fdF0johcIw1WESf18bztZGTncUOTCFpHhZrOEXFI0ZHlubVtLXLz\nbbw7c4vpHBG5RhqsIk4o6fRFJi/dg2UVXrsqIn9u2MDmeHt6MHPNfvYmnTOdIyLXQINVxAm9O3ML\nufk2bm1bi/pVy5vOEXFokRVLc0/XKOx2ePunWNM5InINNFhFnEz80XPMXLMfb0+Pyyf6iMhfe/KW\nJgT4erF46xE2J5w0nSMiV0mDVcTJjP1pM3Y73N21HlUrljadI+IUQsoE8EifhgC8OX0TdrvdcJGI\nXA0NVhEnsiH+BEu3HSXA14unbmlqOkfEqTzWpxFlA33ZlHCKZduTTOeIyFXQYBVxEna7nTHTNgHw\n+I2NCCkTYLhIxLkEBfjw5KW/6I2dvhmbTc+yijgLDVYRJ7Eg9jBbD6RQobT/5W9tisjVubdrFGHl\nSxGfdI456xNN54jIFdJgFXEC+QU23pq+GYB/9W9GoL+P4SIR5+Tn48VzA2IAGPdzLLn5BYaLRORK\naLCKOIGpKxM4eOIC1SqV5q4u9UzniDi1gR1qUSc8mKOnL/Lj8r2mc0TkCmiwiji4zOw83p9VeELP\niNtb4O2lT1uR6+Hp4XH5wI0PZ28jIzvPcJGI/B098ok4uPEL4khJzaJJjRD6tqxuOkfEJfRoXpVm\ntSpyJi2L8QviTOeIyN/QYBVxYGfTsvji150AvHRHSyzLMlwk4hosy+LFwS0B+PLXnZy7mG24SET+\nigariAP7aM420rPzuKFxBG2jw0zniLiUNlGh3NA4gvTsPD6eu810joj8BQ1WEQd1JCWNSUvjsSx4\nYXAL0zkiLmn4pWtZJy7Zw7Ez6YZrROTPaLCKOKhxP8eSV2BjQPvaREeWN50j4pIaVCvPrW1rkptv\n471LL24UEcejwSrigOIOnWH2ukR8vDwYNqC56RwRl/bcwBi8PC1+/m0/CcnnTOeIyB/QYBVxQG9e\nOoL1/h71qRISZLhGxLUV3t84CpvdfvmADhFxLBqsIg7mt7hkftt1jNIBPvzz5iamc0Tcwr/6N6WU\nnzdLth5lffwJ0zki8v/RYBVxIDabnTGXnl39582NKRfkZ7hIxD2ElAng8b6NAHh9ygZsNrvhIhH5\nPQ1WEQcyb0Miuw6fpXLZUjzQs4HpHBG38mjvhlQKDmDHwTPM25BoOkdEfkeDVcRB5OQV8PZPsQAM\nG9gcfx8vw0Ui7iXAz5thgwpf5Dj2p83k5BUYLhKR/9BgFXEQPyyL5+jpi9QJD2Zgh9qmc0Tc0m0d\n61C3SlmSTqfz/ZLdpnNE5BINVhEHcCEjhw9mbwXghdtb4uWpT00REzw9PHjpjsIjWz+es53UjBzD\nRSICGqwiDuGTuds5n55D63qV6d4s0nSOiFu7oXEE7eqHkZqRw8dzdGSriCPQYBUx7GhKGt8s2gXA\nqLtaY1mW4SIR92ZZFiPvaAXAd4t3czQlzXCRiGiwihg29qdYcvNt9G9Xi8Y1QkzniAjQsHoF+rer\nRW6+7fKLIUXEHA1WEYO2Hkhh7vpE/Lw9GXF7C9M5IvI7wwfF4OvtyZz1iew4eNp0johb02AVMcRu\nt/PqDxsAeLhPQ8LLBxouEpHfqxISxAM96gPw+pSN2O06TEDEFA1WEUP+vekQsftPUaG0P//o29h0\njoj8gaH9mhAc6Mv6+BMs2XrUdI6I29JgFTEgJ6+ANy8dwfrsgGYEBfgYLhKRP1KmlC/P3NoMgNem\nbCA3X4cJiJigwSpiwMSleziSUnhIwJ1d6pnOEZG/cG+3aGqGluHQyTQmLtljOkfELWmwipSw8+nZ\nfDS78N6OL9/ZSocEiDg4by8PRt5ZeJurD2Zt5dzFbMNFIu5Hj5QiJezD2dtIzcihQ4NwbmgcYTpH\nRK5At6aRdGgQzoXMXD6YtdV0jojb0WAVKUGHTl5g4pI9WBaMvLOVDgkQcRKWZTH6rtZ4WBYTl+7h\nwPFU00kibkWDVaQEvTF1I3kFNm7rWIf6VcubzhGRqxAVWY47utSlwGbntR83mM4RcSsarCIlZPWu\nYyyMPUJQUrdrAAAgAElEQVQpP2+GD9IhASLOaNjA5gT6ebNsexKrdiabzhFxGxqsIiUgv8DGK5PX\nA/BkvyZUKhtguEhErkVImQCevKUJAK/+uIH8ApvhIhH3oMEqUgJ+WL6XvcnniQwJ4qFeDUzniMh1\neLBnAyJDgkhIPs+UFXtN54i4BQ1WkWJ2Pj2bcTNiARh1Vyv8fLwMF4nI9fDz8eKlO1oC8O7MLaRl\n5houEnF9Gqwixez9mVtJTc+hXf0wesVUM50jIkXgxpbVaVW3MmfTsvl4zjbTOSIuT4NVpBjtSz7P\nxKV78LAsXr27jW5jJeIiLMvilXtaAzBh4S4ST+g2VyLFSYNVpJjY7XZGT15Pgc3O3V3rERVZznSS\niBShRtVDGNypDnkFNl75Qbe5EilOGqwixWTJtqP8tusYZQJ8GDYwxnSOiBSDEbe3IMjfm+Xbk1iy\n9YjpHBGXpcEqUgxy8gp49dIzLs8MaE65ID/DRSJSHELKBPDsgOYAvPLDBrJz8w0XibgmDVaRYvDd\n4t0cPpVGrbBg7usWbTpHRIrRkO71qRMezOFTaYxfEGc6R8QlabCKFLGU1Ew+mLUVgFfvaY23lz7N\nRFyZt5cHr93bFoCP527n2Nl0w0UirkePpCJF7I2pG0nPzqNb00g6N4ownSMiJaBDg3D6tKhOVk4+\nY6ZuMp0j4nI0WEWK0Ib4E8xccwBfb09evaeN6RwRKUGj72qFn48nc9cnsj7+hOkcEZeiwSpSRPLy\nbbz0/VoA/nFTY6pVKm24SERKUpWQIP55UxMARk5cR36BzXCRiOvQYBUpIt8v2c3e5PNEhgTxxE2N\nTeeIiAGP9W1EREgg8UnnmLws3nSOiMvQYBUpAqfOZ/LujC0AvH5fW/x9vAwXiYgJ/j5ejL6r8ASs\ncT/HcjYty3CRiGvQYBUpAv95oVWPZlXp1jTSdI6IGNQrphodG4RzITOXt6ZvNp0j4hI0WEWu0/r4\nE8xaewA/b09evXS2uIi4L8uyeP2+tnh7ejB1ZQKbE06aThJxehqsItfh9y+0+me/JkRW1AutRARq\nhQVfvpZ9xLdryMvXC7BErocGq8h1+GbRLhKSz1OtUmkev7GR6RwRcSBD+zWhasUg9iafZ8JCnYAl\ncj00WEWu0YlzGbx/6USrN+5ri59eaCUiv+Pv48WYIe0AeG/WVpJPXzRcJOK8NFhFrtHrUzaSkZ1H\n75hqdGmsE61E5H91aRxB31aFJ2CNnLTedI6I09JgFbkGK3YkMXd9In4+nrxyt15oJSJ/7pW72xDo\n583irUdYFHvYdI6IU9JgFblKmdl5vPDdGgCGDYyhSkiQ4SIRcWSh5Urx/KAYAF6etI6M7DzDRSLO\nR4NV5Cq9O3MLSafTqV+1PA/1amA6R0ScwH3do2lYrQLHz2bwwaVr30XkymmwilyFuENn+HrBLjws\ni3EPdcDLU59CIvL3vDw9GPtAeywLxi+II/7oOdNJIk5Fj7YiVyi/wMawCaux2e082Ks+jWuEmE4S\nESfSpGYI93WLpsBmZ8S3a7DZ7KaTRJyGBqvIFfpm0S7iDp8hvHwgwwbGmM4RESc0/LYWVAz2J3b/\nKSYvjzedI+I0NFhFrkDS6YuMm7EFgLceaEcpP2/DReIqsrKyeP7556lfvz7R0dG8+OKLAFy4cIHH\nHnuMBg0a0Lx5c95///3L/864ceNo2rQpDz74IDk5OabS5RqUDvDhtXvbAvDm1E0cO5tuuEjEOWiw\nivwNu93OC9+uISsnn5tb16Brk0jTSeJCXnnlFY4ePcrKlSvZvXs3Q4YMAeC9994jOzubLVu2MG/e\nPH788UeWLVtGYmIicXFxbNq0iSZNmjBr1iyz74Bctb4tq9M7phrp2XmM+GYNdrsuDRD5OxqsIn9j\n3oaDrNiZTJkAH169p43pHHEhWVlZzJgxgzfeeIOQkBAsy6JOnToAJCYm0q1bN3x9fQkPD6dZs2bs\n378fAA8PD+x2++X/AWRmZpKdnW3sfZErZ1kWY4a0o0yAD8t3JDFr7QHTSSIOT4NV5C+cT89m1KXT\naV6+sxUVgwMMF4krOXjwIJZlsWDBApo0aUKXLl1YuHAhAJ07d2bJkiVkZWVx9OhR4uLi6NixIzVr\n1iQqKoqWLVuyY8cOOnXqxLhx43j88cdJSUkx/B7JlapUNoDRlw4dGTV5PacvZBouEnFsGqwif+G1\nHzdyJi2L1vUqM7hTXdM54mLS09PJy8sjKSmJTZs2MWbMGJ588klOnz7NvffeS05ODvXq1aNt27bc\neeedREdHAzB8+HDmzp1LaGgoY8aMoXPnzkycOJHISF2u4kxu61iHjg3CSU3PYeREHdsq8lc0WEX+\nxNJtR/npt334envy9oMd8PCwTCeJi/H396egoIBHHnkEHx8f2rZtS40aNdiyZQtDhw4lOjqaAwcO\nsHHjRmbPns0vv/wCwIgRI/jiiy+4//77admyJY8++igPP/wweXk6QcmZWJbFOw91IMDXi182HmSh\njm0V+VMarCJ/IDUjh+cnrAbg+UEx1AoLNlwkrigyMhLL+t+/CNntdlasWMFtt92Gt7c34eHhdO3a\nlTVrCo8EHj16NGPHjiU0NJSZM2eydu1aGjVqpBdgOaGIkCBeuL0FAC98t4bUDN31QeSPaLCK/IFR\nk9ZxKjWTmNqVeLi3jl+V4hEcHEzr1q0ZP348+fn5bNiwgUOHDtGsWTNq167NjBkzyM/PJyUlhZUr\nV1K3buFlKf7+/kDhsLUsC8uy8PLyIj8/3+S7I9doSPf6xNSuREpqFq//uMF0johD0mAV+f8s3nKE\nmWsO4OftyfuPdsTTQ58mUnzef/99Dh48SFRUFM8//zwff/wxlSpV4uOPP2bnzp00atSInj170rZt\nW+67777/+ndLlSpFnz59aN68OatXr6Z///6G3gu5Hh4eFu890hEfLw+mrdrHb7uOmU4ScThWQkLC\nn94ALikpiaioqJLsETHq3MVsuo6YQUpqFq/c3ZqHezc0nXRNwr8OB+DYw3rgK2nh4WEAHDt23HCJ\n+3H2P/cfz93G2z/FUqVCIEvfGkBQgI/pJJESFR8fT0RExB++TU8difzOqEnrSEnNomXdSjzYU5cC\niEjJefzGxjSsVoHkM+m88oPuGiDyexqsIpcs2HyI2esS8fPx5P1HOumuACJSory9PPj48c74ensy\nbdU+FumuASKXabCKUHgpwIhv1wLw0uCWVK9cxnCRiLijOlXKXr5rwLBvVnPmQpbhIhHHoMEqArw8\ncR1n0rJoExXKkO71TeeIiBt7sGcD2tUP42xaNsMmrL58/K6IO9NgFbc3d30ic9cnEuDrxXuPdNSl\nACJilIeHxQePdCLI35vFW48wfdU+00kixmmwiltLPn2REd8W3oz95TtbUbViacNFIiIQXiGQN+5r\nB8Coyes5mpJmuEjELA1WcVsFNhtPfrGStMxcejSryr1d3eMWbtaFC/jNnWs6Q+Sa+M2di3XhgumM\nEjGgfS36tKhORnYeT3+5igKbzXSSiDEarOK2Ppm7nY0JJ6kY7M+7D3f4wyMyXYl14QKBn31GqW++\nIbd1a9M5Itckt3VrAidMIPDzz11+uFqWxdsPtqdisD8bE04yfn6c6SQRY7xMB4iYsGX/Kd6ftRWA\njx7rTPnS/oaLio+VkkLgl19i5eaSddNN2CpUwEpPxzM93XSaS6pN4cfVM/GU4RLXlXnLLXicOUPQ\nO+9g9/Eh/R//wF6hgumsYlEuyI/3Hu7EPeMW8s7PsXRqVIXoyPKms0RKnAaruJ2LmbkM/XwFBTY7\nj/RuSMeGVUwnFSuv5GS89+6loGpVvJKS4LhOYCpOMZQFwGfnecMlLq6gAMtmw2vfPjyTksh30cEK\ncEOTCO6+oR4/LN/LPz9bwb9fuwV/Xz18i3vRn3hxOy9PWseRlIvUr1qeEZfud+jK8po149yUKXjv\n2IH/3Lnk1a9PVr9+4KVP/+Iw9Z+FR7O+e6v+YlAs8vPxnzMH7z17yLzjDvIaNTJdVCJG39WaDXtP\nkpB8nlGT1jHu4Y6mk0RKlK5hFbcyd30iM1bvx8/Hk8/+0QVfb0/TSSUmr3Fj0kaNIr9WLQImTzad\nI3JNAiZPJr9OHdJGjXKbsQoQ4OfNF0NvwNfbkykrE5iz7oDpJJESpcEqbuP3t7AafVdraoeXNVxk\nRl7jxmTef7/pDJFrknn//W41VH8vOrI8r97TBoDnv1nDwZOu/aIzkd/TYBW3kF9gY+gXK0jLzKVn\n86rc4ya3sBIR13L3DfXo26rwVldPfLKcnLwC00kiJUKDVdzC2Omb2ZRwikrBAbz7cEeXv4WViLgm\ny7IY91BHIkOCiDt8hjFTN5pOEikRGqzi8hbGHuaLf+/E08Pii6E3UC7Iz3SSiMg1Kx3gwxdDu+Lt\n6cE3i3azMPaw6SSRYqfBKi7t8Kk0/vXVKgBeHNySVvVCDReJiFy/JjVDePGOlgA889Uqkk9fNFwk\nUrw0WMVlZeXm88hHS0nLzKV3TDUe7dPQdJKISJF5uFcDujWN5EJmLk98tpy8fB3dKq5Lg1Vc1siJ\n69h95CzVKpXm/Uc76bpVEXEplmXxwaOdCC1Xii37U3hD17OKC9NgFZc0fVUCU1cm4OftyfinulE6\nwMd0kohIkSsX5Hf5etYJC3cxc81+00kixUKDVVzO7iNnefG7tQC8eX876lfVudsi4rpa1KnEa/de\nuj/rhNXsOnzGcJFI0dNgFZeSlpnLIx8tJTuvgDs61+X2TnVNJ4mIFLt7ukZxR+e6ZOcV8OAHSzh3\nMdt0kkiR0mAVl2Gz2Xnqi5UcPpVG/arlef2+tqaTRERKhGVZjBnSjqY1K5J8Jp3HPllGfoFehCWu\nQ4NVXMbbP21m8dYjBJfyZfxT3fD38TKdJCJSYny9Pfn66W6ElPFn7e7jvDltk+kkkSKjwSouYeaa\n/Xz6yw48PSy+fLIr1SqVNp0kIlLiQsuV4qsnu+LlafHV/DjmrDtgOkmkSGiwitPbsv8UwyasBuC1\ne9vSoUG44SIREXNa1Qvl1bsLX4T17Ne/sfvIWcNFItdPg1Wc2rEz6Tz4wRJy8gq4r1s0Q7pHm04S\nETHuvu7R3N6pDtm5BTz4wWLOXMgynSRyXTRYxWllZudx//uLOX0hi/b1w3j1njamk0REHIJlWbw5\npB1Na4aQdDqdIe8tJisn33SWyDXTYBWnZLPZeerLlZdPsvryya54e+mPs4jIf/j5ePHdsz2oUiGQ\nbYkpDP18BQU23TlAnJMe4cUpvTtzC/M3H6Z0gA8Tn+tJ2UA/00kiIg4npEwAk4f1onSADwtiD/PG\nFN05QJyTBqs4nRmr9/PRnG14WBZfDu1KrbBg00kiIg6rTpWyfP10N7w9PRi/II7vF+82nSRy1TRY\nxaks357Es1+vAuDVe1rTqVEVw0UiIo6vff1wxj3cAYCRk9azZOsRw0UiV0eDVZzG1gMpPPLxUvIL\n7PzjpsY80LOB6SQREacxqEMdnunfDJvdzuOfLifu0BnTSSJXTINVnMKB46ncO24hWTn5DOpQmxdu\nb2E6SUTE6TzTvxkD2tciKyef+95dxLEz6aaTRK6IBqs4vJPnM7jr7QWcT8/hhiYRjHuoI5Zlmc4S\nEXE6lmXx7sMdaRsdyqnUTO58ewFn03SPVnF8Gqzi0C5k5HD32wtJPpNOs1oV+Wqobl8lInI9fLw8\n+frp7kRFlOPA8VTufHsBaZm5prNE/pIe+cVhZeXmc/97i4lPOketsGAmPteTAD9v01kiIk4vuJQv\nU0b0plql0uw6fJZ7xy0kMzvPdJbIn9JgFYeUX2Bj6Gcr2JhwksplSzFleG/KBeleqyIiRaVicADT\nX+hDWPlSbN53igc/WEJ2rk7DEsekwSoOp8Bm419frWJB7GHKBPjw4/BehFcINJ0lIuJyqoQEMe2F\nPlQo7c9vu47xxKfLycvXaVjieDRYxaHYbHaGf7OGWWsPEODrxaTne1EvopzpLBERl1UzNJipL/Sm\nTIAPi7Yc4Znxq7DZ7KazRP6LBqs4DLvdzssT1zF1ZQJ+Pp5MGtaLmNqVTGeJiLi86Mjy/DC8NwG+\nXsxae4AXv1+L3a7RKo5Dg1Ucgt1uZ/Tk9Uxcugdfb0++e7YnbaJCTWeJiLiNZrUq8v2zPfH19mTy\nsnhG/7BBo1UchgarGPefZ1a/WbQbHy8Pxj/VjY4Nwk1niYi4nXb1wxj/VDd8vDz4ZuEuRk5ap9Eq\nDkGDVYyy2ey88N1avl9S+MzqhH91p1vTSNNZIiJuq1vTSCb8q3vhd7sW7+HF79fqmlYxToNVjCmw\n2Xj+m9VMXhaPn7cn3z7Tna5NNFZFREzr2iSSb58pHK2Tlsbz/DerKbDp7gFijgarGJGbX8ATny6/\n/AKr757rSedGEaazRETkks6NIvj+uZ74+XgydWUC//h0Bbn5BaazxE1psEqJy8rJ54H3FvPrxkME\n+XszdUQfXbMqIuKAOjYIZ8rw3gT5e/PLxoM8+P4SsnJ0uICUPA1WKVGpGTnc+fZ8VuxMplyQHz+/\n1JeWdSubzhIRkT/Rql4oP7/Ul3JBfizfkcRdby/gQkaO6SxxMxqsUmKOnU2n/2u/sCnhFJXLlmL2\nqJtoWL2C6SwREfkbDatXYPaom6hcthQbE05y62u/cPxsuukscSMarFIi9iad4+bR80hIPk+d8GDm\nvXIztcKCTWeJiMgVqhVW+LW7dlgwCcnnufmVeexNOmc6S9yEBqsUu7W7j3Pra79w8nwGLetWYtao\nmwivEGg6S0RErlJ4hUBmj76JFnUqceJcBv1f+4V1e46bzhI3oMEqxWrqyr3c+fZ80jJz6dOiGlNH\n9KFsoJ/pLBERuUZlA/2Y+kIf+rSoxoXMXO4YO59pKxNMZ4mL02CVYmGz2Xljykae+3o1+QV2Hrux\nEV8+2RU/Hy/TaSIicp38fbz48smuPNqnIfkFdp79+jfGTN2oAwak2Gg9SJG7mJnLU1+uZNGWI3h5\nWrx1f3vu7FLPdJaIiBQhTw8PRt3Vmpqhwbz4/Ro+/3UniScu8NFjnQkK8DGdJy5Gz7BKkUo8kUrf\n0XNZtOUIZQJ8+OH53hqrIiIu7K4b6vHD870pE+DDoi1HuGn0XBJPpJrOEhejwSpFZum2o9w4cg4H\njqdSt0pZ/v36LXTQgQAiIi6vQ4Nw/v36LdStUpb9x1PpO2ouS7cdNZ0lLkSDVa5bgc3GOz/HMuS9\nRVzMyqNPi+rMe+VmqlcuYzpNRERKSPXKZZj3ys30aVGNtMxchry3iHd+jqXAZjOdJi5Ag1WuS0pq\nJoPfms9Hc7ZhYTH8thjGP9WVQH9dvyQi4m4C/X0Y/1Q3ht8Wg4XFR3O2Mfit+aSkZppOEyenwSrX\nbM3uY/R8aRbr9pwgpIw/017ow5P9mmJZluk0ERExxLIsnuzXlKkv9CakjD/r9pyg50uzWL3rmOk0\ncWIarHLVcvMLeHPapkt/a86iTVQoi8b0p139MNNpIiLiINrXD2fRmP60iQolJTWLwW/NZ/Tk9WTl\n5ptOEyekwSpX5eDJC9zy6jw++2UHFhbP9m/GtBf6UKlsgOk0ERFxMJXKBjDthT4MG9gcL0+LCQt3\n0efl2ew6fMZ0mjgZDVa5IgU2G+MXxNH9hZnsOHiGKhUCmTWyL88MaI6Xp/4YiYjIH/Py9ODpW5sx\n75V+1Awtw75jhXcR+HTedr0gS66Ylob8rf3HznPLq7/w6g8byM4toH+7Wix5awAt6lY2nSYiIk6i\ncY0QFo3pz5Du0eQV2Hhr+mYGvvErR1PSTKeJE9BglT+VX2Djk7nb6fHiLLYeSKFy2QC+f7YHnzzR\nhdI6xURERK6Sv68XY4a044fne1EpOIBNCafo9sIsJizcRX6Bnm2VP6fBKn9oz9Gz9B01l7E/bSY3\n38adneuy/O2BdG9W1XSaiIg4uS6NI1g6dgA3tqxORnYeoyevp++ouWxPPG06TRyUl+kAcSzpWbl8\nPHc7X83fSX6BnSoVAhn3UAc6NqxiOk1ERFxIuSA/xj/VjcVbjvDyxHXEHT5D39FzuK9bNMNva6Hv\n5Ml/0WAVAGw2OzPX7uetaZs5dekGz0O6R/Pi4JaU8vM2XCciIq6qR/OqtK8fxvuztjJ+QRzfL9nD\n/M2HeOXuNtzcuobu7S2ABqsA2xJTGDlxPdsSUwBoWrMir9/XhqY1KxouExERdxDg583Ld7ZiQPva\nDP92NVv2p/DEp8uZsmIvI+9sRYNqFUwnimEarG7s1PlM3pq+iZ9X7wegYrA/Lw5uyYB2tfHw0N9o\nRUSkZEVFlmPOqJuZujKBN6dtYs3u4/R6eTa3tq3F8EExVAkJMp0ohmiwuqHUjBy++vdOvlm0m4zs\nPHy8PHikd0OG9mtCoL+uGRIREXM8PCzuuqEevVtU45O52/l+yW5mrT3ArxsPcn+P+gzt14SygX6m\nM6WEabC6kYuZuUxYuIvxC+JIy8wFoEezqoy6qxXVK5cxXCciIvJ/ygX5Mfru1jzQsz7v/BzLrLUH\n+Gp+HNNWJjC0XxOG9KiPv49mjLvQf2k3kJGdx3eLd/PFv3eSmp4DQPv6YTw3MIYWdSoZrhMREflz\nESFBfPJEFx7u3YAxUwsvE3hj6ia+mh/HI70bcm+3KH130A1osLqwCxk5/Lh8L1/O38nZtGwAWtWt\nzLBBMbSJCjVcJyIicuUaVQ9h2gt9WBWXzNjpscQdPsOYaZv4dN52HujZgAd61qdckC4VcFUarC7o\naEoaExbtZtrKBDKy8wBoVqsiwwbF0KF+mG4RIiIiTsmyLDo3iqBTwyqs3JnMJ3O3szHhJB/M3spX\n83dyT9coHunTkMplS5lOlSKmwepCYvefYvz8OBZsPozNbgegXf0wHuvTiC6Nq2ioioiIS7Asiy6N\nI+jSOIKNe0/wydztrNiZzFfz4/hu8W76tqrBfd2jaV6roh77XIQGq5PLys1nwebDfLd4N1sPFN5H\n1dvTg/5ta/Fwr4Y0qFbecKGIiEjxaVUvlFb1Qtl56DSfzN3OgtjDzFp7gFlrD9CgWnnu6xbNrW1r\n4e+ryePM9F/PSe06fIapKxOYvfYAFy694j+4lC93d41iSPdoQsvp2yEiIuI+GlUP4eunu5N0+iKT\nl8UzZcVedh0+y7AJq3ljykZu61SHu2+IolZYsOlUuQYarE7kQkYOs9clMm1lAnGHz1z++cY1KjC4\nU10Gtq9NgI5RFRERNxYREsSLg1vyTP9m/LrxEN8v2cO2xBS+XrCLrxfsomnNEAa0r83NrWtQvrS/\n6Vy5QhqsDi4jO4+l247yy4aDLN+RRE5eAVD4bGr/drUY3Lku9avq2/4iIiK/5+fjxcAOtRnYoTY7\nD51m0tJ45m04yLbE02xLPM3oyevp3KgKA9rXpkezqrpkwMHpv44D+s9I/XXjQZZvTyL70kiFwvun\n3tG5Lr1iquGnGyaLiIj8rUbVQ3j34RBev7cti7ceYeaa/azcmcyy7Uks255EoJ833ZtF0jOmGl0a\nVdF9XR2QFo+DOHk+gxU7kli2LYkVO5PIzv2/kdqiTiX6tqrBjS2r69pUERGRa+Tv60W/NjXp16Ym\nZy5kMW9DIjPXHGD7wdPMXpfI7HWJ+Hh50L5+OD1jqtKjWVUqBgeYzhY0WI3JL7Cx9UAKy7YnsXz7\nUfYcPfdfb29euyI3XRqpYeUDDVWKiIi4pgpl/C8dONCAQycvsGjLERbGHiZ2/ymW70hi+Y4kRny7\nhqY1K9KpYRU6Ngynac2KeHt5mE53SxqsJaTAZiP+6Hk27D3BhvgTrNtz/PKr+6Hwb33t64dxQ+MI\nujaNJFwjVUREpERUr1yGx25sxGM3NuL0hUyWbjvKwtgjrN51jK0HUth6IIUPZm+llJ83retVpkOD\ncDo0CKdulbK6z2sJ0WAtJrn5Bew5co4Ne0+wPv4EmxNO/tdABagRWoYbGkdwQ+MIWtWrrGtSRURE\nDAspE8AdnetxR+d6ZGTnsXb3cdbsPsZvccfYfzz18nWvABVK+xNTpyIxtSsRU7sSDatX0GN5MdFH\ntQjYbHYOnrzA9sTTbD+YwvbEM+w5evbyK/r/o0qFQFpHhdKmXihtokOpWrG0oWIRERH5O6X8vOnR\nvCo9mlcF4MS5DNbsPsbqXcdYs+s4p1IzWRh7hIWxR4DCg3saVq9ATO1KNKkZQoNq5aleqQweHnoW\n9nppsF6ljOw8EpLPszfpHHuTzhGfdI64Q2e4mJX3P7+2euXStKpb+fJIrRISZKBYREREikJouVIM\n6lCHQR3qYLfbOXwqjdj9p4jdd4ot+1PYm3zu8iUE/1HKz5voyHL8v/bupbdpdA8D+JM6viROc09b\nehkopVAk1JlugA2as2E3OzSL2fAB5hvMV2HPcpCQWCKxYIVmpIPOMCqhPdCLQpu77cR2fEkyC3cy\nhWmpOnQakzw/yXpf27Lzb2spT16nfm9cyuHGxTxuXMphaTaNGEdiT4W/rSP0+3002w7+v6fj7Z6O\nt/s6Nt83sb7TwHaldeQxMxkV3yzl8c3lKXy9VMDXi3mkVPmcKyciIqLzEIlEsDiTwuJMCt/fuQoA\nMCwX/92s4NeNMv73roZXW3XsN0388qaMX96UDx0LfFWYxJXZNK7OZbA8l8byXAZXZtNIxvlIraOM\nbWC1HR+lehulWjto623sVFp4t2/g3b4OzXSOPE4UJnBlNo2VhQxWFrJYWQg+Nc1k+LgpIiKicZaM\nS/h2dR7frs4PttUNG6+26ni1HQTY37fr2Cob2K60sF1pDb4P+6dMQsbFqSQuTifx1dQkLh305/MJ\nTGfikKLCef9YoTBygbXb66HZclDVbVQNG3XdRlmz8L5holRroVQzUaq30Wh1PnmehCLi8oUULh98\nelq6kMLKQhZLs6mxvViIiIjodHLJ2N9CrOt3sbVv4E2piY33GjZKGjZKTbzd19FsO2i2q3j5tnrk\n+TpQIKQAAASISURBVPLJGC5kVcxk40GbUQ/WVcxmVRRSMSTj0sg9vSDUgdXze9BNB5rpQDcd6KYb\ntFbQam0HNcNGVbdR04O20eqg1++feG4pOoHZXAJz+QTmcgdLXh0E1EIqNnJ/bCIiIho+KSrg6nwG\nV+czH2zv9/uoaDa2Kwa2ygZ2Kq1B/33dREWzUDNs1Awbv20df35RmEB2UgmWpILcpIJcUkE2oSCb\njCGXVJBWZSTj0mCZjEuhHpD7rMDa7fXgej04fheO24Xrd+F4h1qvC9v1YXZ8WI4XtB0PpuPB7Hiw\nOj7MQ+u2E6y3bA+66cBy/H9UVzoho5CMIZ+KoXCwHA6n8/kE8skY/2uPiIiIQiMSiWA6E8d0Jo6b\n12b+tt/v9lDVbew1TOw3TezVD9qGif2mhb2Giapuw+x4KGsWypp1qtdXRAFJVcJk7CDExiQkYhJi\nsoC4LCIuRxGXxQ/WFSl6aPuf/SgkUYAUFSCLwRIVPm/ChRMD692ffobr9+B6QQh1/CCIun4Xfvfk\nkczPMRGJIKVKSKly0MblQT+tBv3DoTSfiiE3GeMsFERERDRyosIELmTVE6dp77g+Gq3OYKkbHdQH\n/eButGY6aFkeDMuBYbkwLBcdr4uOZqOi2Wde+0QkAkmcgBwVIEtBmJVEAT9+t4of/rNy4vEnBtaP\npww9LBJB8MKi8FeSlgTIUQGSOAEpKgxSd1yJQlVEqLIIVflrPS6LUOUo4kqwXVWiUGURKVVGIiby\ntjwRERHRKShSFLO5xKmmdu/3+7AdH4btwjDdQdvuuLCdLmzHg+X4sF0flhPcObedoG8Ptgd3z23X\nh+t3P7gL3+v30XG76Lhd4NDAr/HRpErHiRSLxWOHSXd3d4/bRURERER0phYWFo7c/skR1uMOIiIi\nIiI6L/yyJxERERGFGgMrEREREYUaAysRERERhRoDKxERERGFGgMrEREREYUaAysRERERhRoDKxER\nERGFGgMrEREREYUaAysR0Rnp9Xp48ODBYP3Ro0eo1+tDrIiIaDR8cqYrIvry1Wo1PH36FKZpolQq\nYXFxEdeuXcPNmzeHXdrI2dnZQTqdBhDMy727u4tcLjfkqkYfr3Gi0cfASvQFe/78OTzPO3Lf2toa\nZFnG48ePcf/+fYiiiIcPH+LevXtQFOWcKx0PGxsbWF5eBgDs7e1henp6yBWNPsuyeI0TjQEGVqIv\n2J07dz65/9mzZ7h9+zZEUQQA+L4/6NPZ29zcxOrqKgCgWCxiaWkJ6+vruH79+pArG10vXrzgNU40\nBhhYiUaY4zgoFAoAgHK5jKmpKQiCMOSqRpNpmtA0Devr69A0DaIowjRNZDKZYZc20niNE42HSLFY\n7A+7CCL6dzQaDbx+/RqpVAq6ruPWrVt8M/+XvHz5EtVqFXfv3h12KWOF1zjReGBgJSI6A0+ePMHa\n2hrm5uaGXQoR0chhYCUiIiKiUONzWImIiIgo1BhYiYiIiCjUGFiJiIiIKNQYWImIiIgo1BhYiYiI\niCjUGFiJiIiIKNQYWImIiIgo1BhYiYiIiCjU/gAsTJpVzil5+gAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 16 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -554,21 +615,30 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAFyCAYAAAAQ8tcPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOXBhvF7trNLX3oTWKoCgqiIBSwUO7axJcaW2BN7\nbDFG0WgSxWjUxN6iUcdgAUUBRRCxUVRAOtJBYKkLLNvm+2MWAn7gLrBwdnbu33Wda9rZ3YfrZXee\nOfPOe0CSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSEsKDwDJgcjn2PRuYCcwATt6boSRJkqR9\noSfQnbLLcBowF6gPNAdm7+VckiRJ0h5JKsc+nwO55divBzAVWAEsLN0O3P1okiRJ0t6VUoHfqyGw\nFLgcWEVsakVj4NsK/BmSJElShanIMrzFk6WXZwDRvfD9JUmSpApRkWV4KbEjwVs0Kr1vO8OHD48m\nJZVndoYkSZK0+1auXDnn3HPPbfNz++xJGb6f2JHf20tvfw0cQOwDdBlAM+C7n35RUlISHTt23IMf\nq6BkZ2czePBgevfuHXQU7SLHLr45fvHLsYtvjl98y87OZuzYsTll7VeeQ7SPA+OA9sQ+FLdlybRG\npdsWBcCtwGfAR8B1uxJYkiRJ2tfKc2T46tLtpy7ewX1vlG6SJElSpefkXe0Sp7jEL8cuvjl+8cux\ni2+OX9VnGdYu8Y9C/HLs4pvjF78cu/jm+FV9lmFJkiQlLMuwJEmSEpZlWJIkSQnLMixJkqSEZRmW\nJElSwrIMS5IkKWFZhiVJkpSwLMOSJElKWJZhSZIkJSzLsCRJkhKWZViSJEkJyzIsSZKkhGUZliRJ\nUsKyDEuSJClhWYYlSZKUsCzDkiRJSliWYUmSJCUsy7AkSZISlmVYkiRJCcsyLEmSpIRlGZYkSVLC\nsgxLkiQpYVmGJUmSlLAsw5IkSUpYlmFJkiQlLMuwJEmSEpZlWJIkSQnLMixJkqSEZRmWJElSwrIM\nS5IkKWFZhiVJkpSwLMOSJElKWJZhSZIkJSzLsCRJkhKWZViSJEkJyzIsSZKkhGUZliRJUsKyDEuS\nJClhWYYlSZKUsCzDkiRJSliWYUmSJCUsy7AkSZISlmVYkiRJCcsyLEmSpIRlGZYkSVLCsgxLkiQp\nYVmGJUmSlLAsw5IkSUpYlmFJkiQlLMuwJEmSEpZlWJIkSQnLMixJkqSEZRmWJElSwrIMS5IkKWFZ\nhiVJkpSwLMOSJElKWOUpw2cDM4EZwMll7HsXMLV0++OeRZMkSZL2rpQyHk8DHgB6ABnAKGDoTvZt\nBVwAtAOSgenAi8D8CkkqSZIkVbCyjgz3IHaUdwWwsHQ7cCf7rgMKgWqlWwGwtmJiSpIkSRWvrCPD\nDYGlwOXAKmAZ0Bj4dgf75gKPECvMScCNwJoKSypJkiRVsLLK8BZPll6eAUR3sk9L4ApgP2LTKz4D\n3iNWoLeTnZ29SyFVOaSmpgKOXzxy7OKb4xe/HLv45vjFty3jV5ayyvBSYkeCt2hUet+O9AC+BtaX\n3p4EdAOG/XTHgQMHbr3eq1cvevfuXa6wkiRJ0s6MHj2aMWPGAJCcnEyvXr3K/JpQGY+nEfsg3JYP\n0H0MtC197H5iR4lvL719MPAMcCixD9B9A5xKbBWKrUaOHBnt2LFj2f8aVTpbXhnn5uYGnES7yrGL\nb45f/HLs4pvjF9+ys7MZO3Ysffr0+dm+W9aR4QLgVmJTHgCu2+axRmw/ZWI88BaxI8IAT/OTIixJ\nkiRVJuWZM/xG6fZTF+/gvrtLN0mSJKnS8wx0kiRJSliWYUmSJCUsy7AkSZISlmVYkiRJCcsyLEmS\npIRlGZYkSVLCsgxLkiQpYVmGJUmSlLAsw5IkSUpYlmFJkiQlLMuwJEmSEpZlWJIkSQnLMixJkqSE\nZRmWJElSwrIMS5IkKWFZhiVJkpSwLMOSJElKWJZhSZIkJSzLsCRJkhKWZViSJEkJyzIsSZKkhGUZ\nliRJUsKyDEuSJClhWYYlSZKUsCzDkiRJSliWYUmSJCUsy7AkSZISlmVYkiRJCcsyLEmSpIRlGZYk\nSVLCsgxLkiQpYVmGJUmSlLAsw5IkSUpYlmFJkiQlLMuwJEmSEpZlWJIkSQnLMixJkqSEZRmWJElS\nwrIMS5IkKWFZhiVJkpSwLMOSJElKWJZhSZIkJSzLsCRJkhKWZViSJEkJyzIsSZKkhGUZliRJUsKy\nDEuSJClhWYYlSZKUsCzDkiRJSliWYUmSJCUsy7AkSZISlmVYkiRJCcsyLEmSpIRlGZYkSVLCsgxL\nkiQpYVmGJUmSlLAsw5IkSUpYlmFJkiQlrPKU4bOBmcAM4OQy9u0BfAd8D7y+Z9EkSZKkvSuljMfT\ngAeIldwMYBQwdCf7JgEvARcD44DsCsooSZIk7RVlHRnuAUwFVgALS7cDd7Jv99L9xpXezq2IgJIk\nSdLeUlYZbggsBS4HwsAyoPFO9m0BrAWGAROBKysooyRJkrRXlDVNYosnSy/PAKI72ScDOALoRKwU\njwc+AH746Y7Z2c6giEepqamA4xePHLv45vjFL8cuvjl+8W3L+JWlrDK8lO2PBDcqvW9HlhH74Nyi\n0tsTgA7soAwPHDhw6/VevXrRu3fvcoWVJEmSdmb06NGMGTMGgOTkZHr16lXm15RVhr8GDgDqEzvy\n24zYahEA9xM7Snx76e3xxKZK1AE2AJ2BOTv6plddddV2t3NznV4cD7a8Mna84o9jF98cv/jl2MU3\nxy/+dOrUiU6dOgGx8Rs7dmyZX1NWGS4AbgU+K7193TaPNWL7KRNrSx//GEgFXiG2JJskSZJUKZVn\nzvAbpdtPXbyD+94s3SRJkqRKzzPQSZIkKWFZhiVJkpSwLMOSJElKWJZhSZIkJSzLsCRJkhKWZViS\nJEkJyzIsSZKkhGUZliRJUsKyDEuSJClhWYYlSZKUsCzDkiRJSliWYUmSJCUsy7AkSZISlmVYkiRJ\nCcsyLEmSpIRlGZYkSVLCsgxLkiQpYVmGJUmSlLAsw5IkSUpYlmFJkiQlLMuwJEmSEpZlWJIkSQnL\nMixJkqSElRJ0AEnS/0SjUVas3cSCFetZuHw9C1asJzeviKyMVOrXSKF5/Ro0r1+DFvVrkJmRGnRc\nSYp7lmFJ2sei0SjTF65m7rK1LFyxngXL18cuV6xn0Yr15BcWl+v7ZNfMoEVpOd62JHdqmU12zWp7\n+V8hSVWDZViS9pFlqzfw5qezeGPMTOYsXbvT/WpXT99aclvUr0H7/RqSl1/I9HnLWLhiPQtX5rFo\nxXpy1+WTuy6fSXNWbPf1Kckhjj2wBef0bsdxXVuQmuKMOEnaGcuwJO1FmwuLGT5xPm+Mnskn3y2i\nJBoFoH6tanTNqb9d6W3eoAbN69WgRmbadt8jOzsbgNzc3K33lZRE+XHNxlg5Lj2qvHDFeuYtW8f4\nWT8yfOJ8hk+cT3bNDM44og3n9GpPxxZ1990/XJLihGVYkipYNBplyrxcXh8zg7fGzWFN3mYAUpOT\nOP6glpzTux1Hd2lGSvLuH7FNSgrRuG4WjetmcWj7Rts9tmLtRv47djZvjJnJjEWreXrYFJ4eNoUu\nrepxdq92nHZ4DnWqZ+zRv1GSqgrLsCRVkNx1m/jvZ7N5Y/RMpi1ctfX+A/bL5pxe7Tj9iDbUrbH3\nS2j9WplccVIXLj+xM9/OXcnrY2bwzrg5fPfDSr77YSX3vPIF/brvxzm92tO7S1OSk5xGISlxWYYl\naQ+t31jAQ4Mn8MLw7yksLgGgTvV0zjiiDWf3ak+nltmB5AqFQnTNqU/XnPrc9YvD+HDCfN4YM5PR\nkxcx9MsfGPrlDzSvX527f9mT/ge3DCSjJAXNMixJuykajTLky7nc/e8vWLZ6I0mhEMd1bc45vdvT\n96AWpKUkBx1xq4y0FAb0zGFAzxyW5Obx5thZvD56JvN+XMclD4+g70EtuOeCnrRoUDPoqJK0T1mG\nJWk3zFm6hj+8MI4xUxYD0C2nAQ9ccgSdWtYLOFnZmmRX53cDunHVyQfy0sjv+WtkPCMmLuDTKYu5\n9rRuXH5iF9JTK0+Rl6S9yTIsSbtgU0ERj737DU8M+ZaCohJqZ6Vz+7mHct7R7UlKCgUdb5ekJCdx\nSf9OnHRoawa++gVvjZvDX94Yz5ufzuK+i47gqE5Ng44oSXudZViSyumjbxbwhxfGsWDFegDO7d2O\n2889NO5PcNGwTiaPXX0s5x7dntuf/4w5S9dy7v3vc1rPHP74i8NoWCcz6IiStNdYhiWpDItX5nHX\ny58zbPw8ADo2r8v9Fx/BIT9Z0izeHXlAU0Y+cCZPvjeZv789kbc/n8NH3yzg5rMO5sK+++/RUnCS\nVFlZhiVpJwqLSnjmg8k8NHgimzYXkZWRyo1nHsQl/TpV2bO6paUk89sBXTnt8BzufGkcIyYu4I8v\nf87rY2Zy/8VH0L1tw6AjSlKFsgxL0g78uHojv3lkBBNmLQfg5B6tuOsXh9Eku3rAyfaN5vVr8MKN\n/Rk+YT53vjSOqfNzGXD3u9x69iFcfcqBhELxNT9aknbGMixJPzFpznJ+/fAIlq3eSJPsLP7266M4\nukvzoGMFol/3/TjygCY8/NZEnhj6Hfe//jVT5+cy6LLeVEv3KURS/Kua7/NJ0m6KfDqTMwcOZdnq\njfRo34hhA09P2CK8RWZGKnec14Pnb+hH9YxU3v1iLqfd8y6LV+YFHU2S9phlWJKAouIS/vTvz7nu\nX6PZXFjMr/p05LXbT6RerfheKaIi9eu+H0PuHkDLhjWZMi+XE+58iy+mLQ06liTtEcuwpIS3Oi+f\nX/71A54eNoWU5BAPXHIk9198ZKU6g1xl0a5ZHd4beBq9Ozcld10+59z/Hi+O/D7oWJK02yzDkhLa\njEWrOOnOt/l0ymKya2bwxu0nccFxHYOOVanVzkrnpZuP54qTulBUHOX25z/jlmc/paCoOOhokrTL\nLMOSEtYH4+dxyl3vMn/5ejq3rMewgafTo0PjoGPFhZTkJO48vwePXnk06anJ/Pvj6Zzz5/dYsXZj\n0NEkaZdYhiUlnJKSKA8PnsilD49gQ34hp/XM4a0/nkLTeomxbFpFOvPItgy+8xQa1cniqxk/csIf\n3ua7H1YEHUuSys0yLCmhbMgv5PJHR/LgfycQCsEd5x7KY1cf4zJhe6BrTn2G3Xsa3ds2YOmqDZx+\n9xDe+mx20LEkqVwsw5ISxqr1+Zw5cCjvfz2PmplpvHhTf67yBBIVokHtTCJ3nMx5R7cnv7CYa54Y\nxWPvfhN0LEkqk2VYUkJYuXYTZ9/3HpPnraRlw5oMuXsAx3VtEXSsKiU9NZm//foo7rmgJ6EQ3P/6\n1zw8eGLQsSTpZ1mGJVV5y9dsJHzfUKYtXEVO41r8986TadOkdtCxqqRQKMSlx3fi75cfTVIoxIP/\nncBfI+OJRqNBR5OkHbIMS6rSlq7awJn3DmXm4jW0b1aH/955Mo3qZAUdq8o766i2/OOqo0lOCvHI\n25P482tfWYglVUqWYUlV1uKVeZx171DmLl1LxxZ1idxxEvVrZQYdK2GcdngbnrjmWFKSQzwx9Dv+\n9O8vLMSSKh3LsKQqaeGK9Zx57xDm/biOzi3r8cbtJ5Fd01Mr72sn92jNU7/rQ2pyEs98MIU7XhhH\nSYmFWFLlYRmWVOXM+3EdZwwcwsIVeXTLqc/rt59I3RoZQcdKWP0PbsmzN/QlPTWZF0d+z63PjbUQ\nS6o0LMOSqpTZS9Zw5sAhLMndwMFtG/LqrSdSKys96FgJ77iuLXj+hn5kpCbzyqjp3Pj0GIpLSoKO\nJUmWYUlVx8xFqwnfN5RlqzdyWIdGvHLL8dTMTAs6lkr17tKMF2/uT7X0FN4YM5Nr//kJRcUWYknB\nsgxLqhKmLVjFWfcNZfmaTRxxQBNevvl4qlezCFc2Rx7QlFd+fzxZGam8NW4O1zw+isIiC7Gk4FiG\nJcW9KfNWEr5vKLnr8unduSkv3tSfzIzUoGNpJ3p0aMwrt5xAjWqpDPlyLlf+4yMKioqDjiUpQVmG\nJcW1mYtWc87977M6bzPHdW3Oczf0o1paStCxVIZD2jXktdtOolZmGsPGz+Pqx0Y5h1hSICzDkuLW\n4tw8zv/LMNbkbaZPtxY8c31fMizCcaNrTn1ev/0kamam8f7XP3DHC+Nch1jSPleeMnw2MBOYAZxc\njv1rAEuAG/cglyT9rFXr8zn/gWEsXbWBQ9s35F+/O460lOSgY2kXdW5Vj+dv6Ed6ajIvfzSNQYMn\nBh1JUoIpqwynAQ8ARwB9gL+X43veAYwHfHkvaa/YmF/Ir/72IbOXrKFDszo8f2N/p0bEscM6Nuaf\n1xxLUijEoMETeXHk90FHkpRAyirDPYCpwApgYel24M/s3x6oD0wAQhURUJK2VVhUwuWPfsSkOctp\nVq86r9x6ArVdRzju9T+4JX+59EgA7njhM4Z8OTfgRJISRVlluCGwFLgcCAPLgMY/s//9wJ8qJJkk\n/URJSZQbnhrNx98upG6NDF699QQa1ckKOpYqyPnHdOCWsw8mGoXfPTGKsVMXBx1JUgIo7/uKT5Ze\nnsHOpz+cQmxu8ULKOCqcnZ1dzh+ryiQ1NbZUleMXf6rC2EWjUW59+mMGfzabrIxU3r33HA5u/3Ov\nzauOqjB+5fWni48jb3OUx9+ZwKUPj2TEX8+nW9tGQcfabYk0dlWR4xfftoxfWcoqw0vZ/khwo9L7\nduRQ4ExgAFAPKCH2Qbr//HTHgQMHbr3eq1cvevfuXa6wkhLXoDe/5JHBX5OaksTrfzwjYYpwogmF\nQvzt8j6sWLuJNz75ngF3vsGoQReQ06RO0NEkxYHRo0czZswYAJKTk+nVq1eZX1PWvN40YDqxucMZ\nwMdA29LH7id2lPj2HXzdXcB6YNBPHxg5cmS0Y8eOZQZT5bPllXFubm7ASbSr4n3sXh89kxueGk0o\nBI9ffSwDeuYEHWmfivfx2x0FRcVc9OCHjJ68mBb1a/D2XafSsE5m0LF2WSKOXVXi+MW37Oxsxo4d\nS58+fX6275Y1Z7gAuBX4DPgIuG6bxxqVbpK01wyfOJ+bn4m9yr/ngp4JV4QTVVpKMk9f15eureuz\nYMV6fvnXYazbWBB0LElVUHnWGX4DaFe6vbfN/RcDl+zka+5mB0eFJWlXfD1jGVc++hHFJVF+N6Ar\nl/TvFHQk7UNZGam8dHN/WjeuxfcLVnHJoOHkFxQFHUtSFeMZ6CRVStMXruLCBz8kv7CYXxzTgd+H\nDw46kgKQXbMa/7nlBBrVyeTzaUu55nFP2yypYlmGJVU6S3Lz+MVfPmDtxgKOP3g//nzxEYRCLl2e\nqJrVr8Ert5xArcw0ho2f52mbJVUoy7CkSmVDfiEXPTScZas30KN9Ix6/+lhSkv1Tleg6NK/Lizf1\nJ6P0tM1PDZscdCRJVYTPMJIqjeKSEq5+/GOmzs+lVaOaPHtDXzI8zbJKHdK+EQ9fEVuKc+CrXzJ8\nwvyAE0mqCizDkiqNga9+yYiJC6hdPZ2Xbj6eOtUzgo6kSubUw3L4fTh2lrqrHv+YyT+sDDqSpDhn\nGZZUKbw48nueHjaF1OQknrmuL60b1Qo6kiqp3w3oyllHtWXT5iIueuhDlq7aEHQkSXHMMiwpcJ98\nt5A7XxwHwF9/fRQ9O3p2Oe1cKBTir5cexWEdGrFs9UYueuhDNuQXBh1LUpyyDEsK1PSFq7him7WE\nz+7VLuhIigPpqbGTcrRsWJMp83Jdck3SbrMMSwrMirUbufDBD1m/qZBTerTm5rNcS1jlV7dGBi/d\n3J/aWekMnzife1/9KuhIkuKQZVhSIDYVFHHxQyNYtDKPbjkNePiK3iQluZawdk1O49o8c31fUpOT\neGrYZF7+aFrQkSTFGcuwpH2upCTKDU+OZtKc5TSrV53nb+xLNZdQ027q2bExf7n0KADueOEzxkxe\nFHAiSfHEMixpn3vwvxN494u5VM9I5cWb+lO/VmbQkRTnzundjmtO7UpxSZTLHhnJzEWrg44kKU5Y\nhiXtU5FPZ/LI25NITgrx5LXH0aF53aAjqYq4JXwwJx3aivWbCvnVgx+wcu2moCNJigOWYUn7zBfT\nlnLz058CMPDCwzm6S/OAE6kqSUoK8ciVR9Mtpz4LV+Rx8aDhbCooCjqWpErOMixpn/hh2Vou/fsI\nCotL+PXxnbiwz/5BR1IVVC0thedu6EfT7OpMnL2cG58aQzQaDTqWpErMMixpr1u3sYCLHhrOmrzN\n9OnWgj/+okfQkVSFNaidyYs39ad6RirvfD6HR96eFHQkSZWYZVjSXlVcUsJV//iI2UvW0KFZHR6/\n+hiSk/zTo72rY4u6PHb1MYRC8Lc3J/D+1z8EHUlSJeUzkqS96t5Xv2LUd4uoWyOD52/sR/VqaUFH\nUoLoe9B+/OG82LsQv/vnJ0yZlxtwIkmVkWVY0l7z2iczeGrYZFKTk3j62j60aFAz6EhKMJef2Jnw\nUW3ZtLmIiwd9yIq1G4OOJKmSsQxL2iu+mrGMW58bC8D9lxzBYR0bB5xIiSgUCvGXS4+ie9sGLMnd\nwKUPj2BzYXHQsSRVIpZhSRVu4Yr1/HqblSPOO7pD0JGUwNJTk3n2+r40yc5iwqzl/P7ZT11hQtJW\nlmFJFWpDfiEXPzSc3HX5HN2lGXee78oRCl79Wpk8f0N/qqWn8Oans3jy/clBR5JUSViGJVWYkpIo\nv31iFNMWriKncS2euOZYUpL9M6PKoVPLbB698mgA7v3Pl4yctCDYQJIqBZ+lJFWYv745ng8nzKd2\nVjov3NSfWlnpQUeStnPiIa24+azuRKNw9WMfM2PRqqAjSQqYZVhShXjrs9n8451vSE4K8c/fHUfr\nRrWCjiTt0LWndWNAzxzySqf0rFqfH3QkSQGyDEvaYxNnL+fGp8cAcM8FPenVqWnAiaSdC4VCPHRZ\nLw5sXY/5y9dz2SMjKShyhQkpUVmGJe2RJbl5XPrwcDYXFvOrPh25qN8BQUeSylQtLYXnbuhHozqZ\nfD5tKX94YZwrTEgJyjIsabdt2lzEJYNGsHzNJg7fvzH3XHB40JGkcmtUJ4tnr+9HRmoyr4yazvPD\npwYdSVIALMOSdktJSZTrnvyEyfNW0rJhTZ78XR9SU/yTovjSNac+gy7vDcBdL3/BJ98tDDiRpH3N\nZy5Ju2XQ4IkM/fIHalRL5fkb+lG3RkbQkaTdMqBnDtee1o2SaJQr//Exs5esCTqSpH3IMixpl73z\n+RwefmsiSaEQ//ztcbRrVifoSNIeuenM7px4SCvWbSzgwgc/dIUJKYFYhiXtkklzlnPDk6MB+NMv\nD+OYA5sHnEjac0lJIR65ojedW9Zj3o/rXGFCSiCWYUnltiQ3j0sGDSe/sJhfHtuBS/q7coSqjsyM\nVJ67oS8Na7vChJRILMOSymVjfiEXDxq+deWIey88glAoFHQsqUI1ya7Oczf8b4WJZz90hQmpqrMM\nSypTSUmUa//1CVPm5bpyhKq8bVeYuPvfX/DxN64wIVVlPptJKtPf3hzP+1/Po2ZmGi/e1N+VI1Tl\nDeiZww1nHFS6wsRHzFi0KuhIkvYSy7CknzX4s9k8+s43JCeFePJ3x9GmSe2gI0n7xPWnH8QpPVqT\nl1/IRQ8Od4UJqYqyDEvaqfGzfuSmp8cAcM8FPenVuVnAiaR9JykpxMOX9+bA1vVYsGI9v354hCtM\nSFWQZVjSDi1asZ5LB41gc2ExF/bZn4v6uXKEEk+19BSeu6Efjepk8uWMZdz63FhXmJCqGMuwpP9n\nQ34hFw0azsp1mzjygCbcfUHPoCNJgWlUJ4vnb+xHRloyr4+eyZPvTw46kqQKZBmWtJ2Skii/fWIU\n0xasonXjWjx5rStHSF1a1efvVxwNwL3/+ZIRE+cHG0hShfEZTtJ27n/9Kz6cMJ9amWm8cGM/amel\nBx1JqhRO6dGam87qTjQKVz8+iqnzc4OOJKkCWIYlbfXSyO95Yuh3pCSHePLaPuQ0duUIaVvXndaN\n03rmsCG/kF/97UOWrtoQdCRJe8gyLAmAj75ZwB0vjAPgL5ccxVGdmgacSKp8QqEQD13Wi0PbN2TZ\n6g386m8fkLepIOhYkvaAZVgSU+at5IpHP6IkGuXa07px7tHtg44kVVoZaSk8e30/WjWqyfcLVnHF\nox9RVFwSdCxJu8kyLCW4xbl5XPjgh2zcXMTph+dw81ndg44kVXp1a2Tw8s3HU7dGBqO+W8TtL3zm\nkmtSnLIMSwls3cYCLvzbhyxbvZGeHRvz0GW9CYVCQceS4kKrRrViS66lJvPKx9N5Yui3QUeStBss\nw1KCKiwq4fJHRjJt4SraNKnNM9f3JT01OehYUlw5uG1DHr3qGEIh+PNrX/PO53OCjiRpF1mGpQQU\njUa57fmxjJmymHo1q/Hyzf1dQk3aTScd2oo/nNcDgOufHM1XM5YFnEjSrrAMSwnoH+9+w38+mUFG\nWjIv3NSPFg1qBh1JimuXn9iZC/vsz+bCYi4eNJy5y9YGHUlSOVmGpQTz1mez+csb4wmF4LGrjqFb\nToOgI0lxLxQKcc+venJc1+asydvMBX/9gNx1m4KOJakcLMNSAvli2lJueGo0AHf94jBOOKRVwImk\nqiMlOYl//vY4Oresx7wf13HxoOFs2lwYdCxJZbAMSwlixsJcLn14BAVFJVza/wB+c0LnoCNJVU5W\nRiov3tSfJtlZTJi1nEv/NpSSEpdckyozy7CUAJav2cCAO99gzYbN9DtoP+765WFBR5KqrIZ1Mnn5\n5uOpUS2VwWNn8IfnPgk6kqSfYRmWqri8TQWc8cc3mbdsLQe2rsfjVx9DcpK/+tLe1KF5XZ66ri8p\nyUkMevNLnv1gStCRJO2Ez4hSFZZfUMQlD49g/MyltGxUixdu7E9mRmrQsaSE0KtTU/553QkA/PHl\nz/nv2FkBJ5K0I5ZhqYoqKi7hmsdH8dnUJTSqk8V7fz6XBrUzg44lJZQL+nbmgd8cA8TWIB4+cX7A\niST9lGVYqoKi0Si/f/ZTho2fR63MNIbcdw45TeoEHUtKSNed2YPfDuhKcUmUKx/9iM+nLQ06kqRt\nlKcMnw1KJY2rAAAb4klEQVTMBGYAJ//Mfk2BscAUYALQZ4/TSdpl0WiUga9+yeujZ5KRlsyLNx9P\n59auJSwF6Zbwwfzy2A7kFxZz0YMfMvmHlUFHklSqrDKcBjwAHEGs3P79Z/YtBK4EOgGnAy9UQD5J\nu+ixd7/lyfcnk5qcxDPX9eWQdg2DjiQlvFAoxJ8vPoJTD2tNXn4hv/jrMGYvWRN0LEmUXYZ7AFOB\nFcDC0u3Aney7HJhcen0BsSLtJ3Wkfeilkd/zwBtfEwrBI1cezTEHNg86kqRSyUlJsd/LLs3IXZfP\neQ+8z+LcvKBjSQmvrDLcEFgKXA6EgWVA43J83/7Epkp46h1pH3nn8znc/sJnANx/8ZEM6JkTcCJJ\nP5WWksxT1/bh4LYNWZK7gfMfGMaq9flBx5ISWko593uy9PIMoKxT6TQCHgRO3dkO2dnZ5fyxqkxS\nU2MH+h2/ymf4+Llc+69PiEbhnot6c93ZPbd73LGLb45f/NrR2GUDQ/58Hn1vfoUp81Zw0UMjGPbA\nedTMSg8opXbG3734tmX8ylJWGV7K9keCG5XetzMZQAS4EfhhZzsNHDhw6/VevXrRu3fvMoNK2rHP\nv1/EOQMHU1hUwnVnHsrN53h2Oamyq1MjgyH3ncOxN/2bCbOWEb7nv7wz8Gwy0sp7jErSjowePZox\nY8YAkJycTK9evcr8mlAZj6cB04nNHc4APgbalj52P7GjxLdv871eBcYA/9zZNxw5cmS0Y8eOZQZT\n5bPllXFubm7ASbTF9wtyOWvgUNZuLODc3u148De9CIX+/6+1YxffHL/4VdbYzV++jtPvHsKPazbS\nv/t+PHVtH1KSXfW0svB3L75lZ2czduxY+vTp87N9t6zfuALgVuAz4CPgum0ea1S6bXEEcCZwGTCp\ndNv2cUkVaN6P6zj/gWGs3VjACQe35C+XHrXDIiyp8tqvQU1evfUEamel8+GE+dz09BhKSsqajSip\nIpXn/Zg3Srefuvgnt8cSO5IsaS9buGI9597/HivWbuKIA5rw2NXHeDRJilMdmtflxZv7c+797xP5\ndBaZ6ance+HhJCX54lbaF3z2lOLMvB/XcebAoSxckUe3nAY8d31f5xlKce7gtg157vq+pKcm8+LI\n77n1+bEeIZb2EcuwFEfmLlvLWfcOZXFuHt3bNuDVW0+gejXfkJGqgl6dm/H8Df3ISE3mlY+nc/Mz\nTpmQ9gXLsBQnZi9Zw1kDh7J01QYObd+QV285gZqZFmGpKundpRkv3NSfjLRkXhs9k+ufGk1xSUnQ\nsaQqzTIsxYGZi1Zz1r1D+XHNRnp2bMy/f+8RYamqOqpTU16++Xiqpafw5qezuPafn1BUbCGW9hbL\nsFTJTV+4irPuG7r1w3Iv3dSfrAzPdC5VZYfv34RXfn88WRmpvDVuDr99YhSFRRZiaW+wDEuV2NT5\nuYTve4/cdfn07tyUF2/qT6ZFWEoIPTo05pVbTqB6RirvfjGXqx772EIs7QWWYamSmjJvJWf/+T1W\nrc/nmC7NeO6GflRz1QgpoRzSriH/ue1EalRL5f2vf+CKf4ykoKg46FhSlWIZliqhb+eu4Oz73mNN\n3mb6dGvBszf0c/k0KUEd1KYBr99+ErUy0/hg/Hwue2QkmwstxFJFsQxLlczE2cs59/73WbuxgP7d\n9+Pp6/qQnpocdCxJATqwdX1ev/0kaldPZ8TEBfz64RHkFxQFHUuqEizDUiXy9cwfOe/+91m3sYAT\nD2nFk7/rQ1qKRVgSdG5VjzduP4m6NTL4+NuFXDJoOJssxNIeswxLlcTH3yzk/AfeJy+/kFMPa80T\n1xxLaoq/opL+54D9sonccRLZNTMYPXkxv3hgGKvz8oOOJcU1n2mlSuCVj6dz0UMfsnFzEWcc0YZ/\nXHWMRVjSDnVoXpc37ziZRnUy+XLGMk67ewgLlq8LOpYUt3y2lQIUjUb5yxtf8/tnP6W4JMpvB3Tl\nkSuOJiXZX01JO9euWR3evXsAHZrVYfaSNZz6p3f5du6KoGNJcclnXCkgBUXF/O6fn/DoO9+QnBTi\nL5ceya1nH0JSUijoaJLiQNPs6rx116kceUATVqzdxJn3DmXExPlBx5LijmVYCsDaDZv5xV+GMfiz\n2WSmp/D8jf345bEdg44lKc7UzEzj5d8fz1lHtWXT5iIuGTSCl0Z+H3QsKa5YhqV9bPHKPE6/Zwjj\nvl9Kg9rVGHznKRzXtUXQsSTFqbSUZP5+eW+uP/0gSqJRbnv+M/782leUlESDjibFBcuwtA9NmbeS\nU+56hxmLVtO2SW2G/GkAnVvVCzqWpDgXCoW46azuPPSbXiQnhXh8yLdc88QoT84hlYNlWNpHPv5m\nIWcMHMqPazbSs2Nj3v7TqTSrXyPoWJKqkHOPbs9LN/cnKyOVdz6fw/kPvO/Sa1IZLMPSPvDqqNjS\naRvyCzn98BxeueUEamelBx1LUhV0dJfmDL7zFBrVyeSL6bGl1xauWB90LKnSsgxLe1FJSZS/RsZz\n8zOxpdOuObUrj155jKdXlrRXdWqZvd3Sa6fc9Y5Lr0k7YRmW9pLVeflcPGg4j7w9iaRQiAcuOZLb\nznHpNEn7RtPs6gz+4ykcUbr02un3DOGVj6cTjfrBOmlblmFpL5g0ZznH3/EWIyctoHZWOi/e1J8L\njnPpNEn7Vq2sdP79++P5xTEd2FxYzO+f/ZRr//UJG/MLg44mVRqWYakCRaNRnh8+ldPvHsKilXl0\nbV2fD+47nWO7Ng86mqQElZaSzF9/fRR/v6I31dJT+O/Y2Zx81zvMWrw66GhSpWAZlipI3qYCrvzH\nx/zhxXEUFpdwcb/9GfzHU2juihGSKoHwUe14754BtGlSmxmLVnPinW/z9rjZQceSAmcZlirAtAWr\nOOHOtxny5VyyMlJ54ppjuffCI/ygnKRKpX2zurw/8DRO65nDxs1FXP34KG57fqzrESuhWYalPfT6\n6JmcfNfbzF26lo7NY080A3rmBB1LknYoKyOVx64+hj9ffARpKUm8NHIap939LguWrws6mhQIy7C0\nmzZtLuLGp0Zzw1OjyS8o5pze7Rhyd+wtSEmqzEKhEBf22Z93/nQqLerX4LsfVnL8HW8xfML8oKNJ\n+5xlWNoNc5bG1u18bfRMMlKTeeg3vRh0WezDKZIUL7q0qs+w+06n30H7sXZjARcPGs7AV7+ksKgk\n6GjSPmMZlnZBNBrltU9mcOIf3mbawlW0alSTIfcM4Nyj2wcdTZJ2S+2sdJ67oS93nt+D5KQQ/3rv\nO868dwizl6wJOpq0T1iGpXKav3wd597/Pjc+PYa8/EJO7tGKYQNPZ/8W2UFHk6Q9EgqFuOKkLrz5\nh5NpVCeTCbOW0+/2wTz27jceJVaVZxmWylBcUsJTwyZz3K3/ZezUJdSpns5jVx3Dv357HDUy04KO\nJ0kV5tD2jRj5wJmc07sdmwuLuf/1rznpj28zZd7KoKNJe40THKWfMX3hKm56+lMmzVkOwGk9c7jn\nVz3Jrlkt4GSStHfUqZ7BoMt6M+CwHG557lOmzs/lxDvf5sqTunDdGQdRLc3qoKrFI8PSDhQUFTPo\nvxM4/o63mDRnOY3qZPH8jf14/JpjLcKSEkLvLs346IGzuPT4TpREozw25Fv63T6YL6cvDTqaVKF8\neSf9xKQ5y7npqTFMXxQ7VekFx3Xk9nMPpaZTIiQlmKyMVO65oCenHtaam58ew8zFazhj4FAu7LM/\nt51ziFPFVCV4ZFgqtTG/kLv//QWn3vUu0xetpmXDmrz5h5N54JIjLcKSEtrBbRvywX1ncP3pB5GS\nHOLFkd9z7K1v8tE3C4KOJu0xjwwr4UWjUUZOWsBdL3/O/OXrSQqFuOrkLtxwZnfnxklSqfTUZG46\nqzsnHtqSm54ew7dzV/Krv33I6YfncNu5h9I0u3rQEaXd4jO9Etr4WT/y5/98xZczlgHQsUVdHvpN\nLw5sXT/gZJJUOe3fIpt3/zSAZz6Ywt/eHM9b4+bw/tfzuKTfAVwzoCu1s9KDjijtEsuwEtLsJWt4\n4PWvGTZ+HgB1qqdz7WnduKjvAaSmOHtIkn5OSnISV5zUhRMOackDr3/Nu1/M5Z/vfcero6bz2wFd\nuajfAb6zprjh/1QllKWrNvDw4In855MZlESjZKQlc9kJnbny5AOdFyxJu2i/BjX552+P44qTunDf\na1/x2dQl3Pufr3j2w6ncdGZ3wr3akpzkAQZVbpZhJYS1GzbzxNDveOaDyeQXFJOcFOKXx3TghjO6\n07BOZtDxJCmuHdi6Pq/fdiJjJi/mvte+Yur8XG58egxPvv8dt51zKH0PakEoFAo6prRDlmFVafkF\nRbw48nsefecb1uRtBuDEQ1pxy9kH06ZJ7YDTSVLVEQqF6N2lGUd1asrbn8/hr5Gvmbl4DRcPGs6h\n7Rty+7k9OKRdw6BjSv+PZVhV0qaCIv47dhaPvv0Ni3PzADisQyNuP/dQurf1j7Ek7S1JSSHOOKIN\nJx3aipc/msbf35rIVzN+5LS736V/9/24+pQD/TusSsUyrCpl2eoNvDjie17+aBqrS48Ed2hWh9vP\nO5RjD2zu23SStI+kpybz6+M7cXavdvzrve94athkPpwwnw8nzOegNg34zQmdOPGQVqQkO6dYwbIM\nq0qY/MNKnho2mSFfzKWwuASALq3qcdkJnTm1Z2s/wCFJAamZmcbvwwdzYZ/9eeaDybzy8XQmzl7O\nlf/4mCbZWVzS7wDOP6YDtVySTQGxDCtuFZeUMHzCfJ75YApfTI+tE5wUCnHiIa34zQmdOKRdQ48E\nS1Il0bBOJnec14PrTz+INz6dxbMfTmHu0rXc+5+vGDR4Iuf0bscl/TvRulGtoKMqwViGFXfWbyzg\ntdEzeO7DqSxYsR6AGtVSOe/oDlzcb39aNKgZcEJJ0s5kZqRyUd/9+dVxHfn424U8PWwyY6cu4fnh\n3/PCiO/p060Fvzm+M4fv39gDGtonLMOKC9FolAmzl/PWZ7N589NZ5OUXAtCifg0uPb4T5/RqRw3X\nCZakuJGUFKJPtxb06daCaQtW8cwHk3lr3BxGTFzAiIkL2L9FXc7t3Z5TDmtNg9ougam9xzKsSm3m\notUMHjebd8bN2XoUGGIrQ/zmhM70PaiF84ElKc51bFGXhy7rzW3nHMrLH03jhRHf8/2CVfzx5c/5\n07+/4MgDmnDa4W044ZCWniBJFc4yrEpn8co83vl8Dm+Nm833C1Ztvb9RnUxOPSyHM49sS6eW2QEm\nlCTtDfVqVeP6Mw7iqlMO5IPx83h73BxGfbuQMVMWM2bKYm57fix9urXg9MNzOObA5mR4ymdVAP8X\nqVJYtT6foV/O5e1xc/hyxrKt99fKTOOkQ1tx2uFtOKxjI48CS1ICSE9NZkDPHAb0zGF1Xj7vfzWP\nt8bN5ovpS3nvqx9476sfqJmZxomHtOS0w9tw+P6NfX7QbrMMKxDRaJRZi9cwevIiPvluEWOnLqao\nOApARmoyfQ/aj9MPz+HoA5uTnpoccFpJUlDqVM/gF8d24BfHdmBxbh5DvpjLW+NmM2VeLq+Nnslr\no2fSoHY1+nbbj95dmnHEAU2o7TJt2gWWYe0zq9bnM3bqYkZ/t4jRkxezdNWGrY8lJ4U4pkszTju8\nDccfvB/VqzknTJK0vabZ1bnipC5ccVIXZi1ezdufz+HtcXOY9+M6Xhk1nVdGTScpFKJbm/r07tyM\n3l2a0bV1fU/soZ9lGdZeU1hUwqQ5y/nku0WMmbyIb+auIBr93+P1alajV+em9O7cjKO7NKNerWrB\nhZUkxZW2Tetw81kHc9OZ3ZkyL5dR3y1kzOTFfD1zGRNmLWfCrOUMGjyRmplpHHlAE3p3aUbvzs1o\nXr9G0NFVyViGVWHWbSzg27kr+GbOCibOXs7n05awflPh1sfTUpI4pH0jenduSu/Ozdm/RV2SklxD\nUpK0+0KhEJ1b1aNzq3r8bkA38jYVMG7a0tJ3IRfxw7J1vP/1PN7/eh4ArRvXomeHxnRrU5+urRvQ\nrllt5xsnOMuwdktBUTHTFqxi0pwVTJqznG/mrGD2kjX/b782TWrHym+XZvTs0JjMjNQA0kqSEkX1\namn0O2g/+h20HwALlq9j9OTYFL2xUxczd+la5i5dyyujpgOQmZ5Cl1b16JbTgK459emW04Am2Vme\n8COBWIZVpo35hcxZupbFk5YyYeZSPp+6kKnzV1JQVLLdfmkpSRywXzZdc2Kvtg/r0Ihmvh0lSQpQ\niwY1ueC4mlxwXEeKikuYNGcFE2f/yKTZK/hm7nIWrsjji+nL+GL6/1Yyql+rGl1z6nNE55Z0zWlI\nwxpJNKtXw3czqyjLsLZatT6fWYtXM3vJWmYtWc3sxWuYtWQNi1bm7XD/nMa16JpTn4NyGtA1pwEd\nW9R15QdJUqWVkpzEIe0acki7hlvvW7l2E9/M/d+7nN/MWcGKtZu2nglvi4y0ZHIa16Ztk9q0aVqb\nNk1i11s1quVzX5yzDCeQouISfly9kcW5eSxemcfi3DwWrFi/tfSuWp+/w69LSQ7RqmEtDmjVgK5t\nGtG+SXUObFWPWi5dI0mKc/VqVdt6WmiILf0578d1fDNnBdMWr2PKvBVMm7+C5Ws2MXV+LlPn5273\n9clJIVo0qEHbJnVo3bgWzepVp2l2dZpkV6dZ/erUykxzykUlV54yfDZwLxAFbgSGVtC+qkCbC4vJ\nXbeJ3HX5/LgmVniXlBbeWPndwLLVGyguie70e2RlpNKmSa3SV7t1aFv6yne/BjVJTUkiOzt21rfc\n3Nydfg9JkuJZKBSiVaNatGpUi19v87y3dsNmZi9Zw+wla5hVehBp9pI1LFi+nh+WreOHZet2+P2y\nMlJpmp0VK8ilRblZveo0rptF/VrVyK5ZjdpZ6U7BCFBZZTgNeADoAWQAo9h5wd2VffUzCoqKWb+x\ngLUbC1i3oYB1mwpYvT6fVevzWbluEyvXxkrvynWbWFlagNdtLCjX925YOzP2arVedZrWq07T7Cza\nNImV3sZ1y/7AwLRp02jQoEFF/DO1jzl28c3xi1+OXXzbMn61stLp3rYh3ds23O7x/IIifli2jllL\nVjPvx3UsXpnHktwNLM7NY9HKPDbkFzJz8RpmLv7/HzLfIjkpRHbNDLJrVqNezWrU2+Z6ds0Msmtk\nUCsrnZpZadSslkbNrHSqZ6RaoCtIWWW4BzAVWFF6eyFwIPDtHu4b96LRKIXFJRQUFrN5m21TQREb\nN8e2TfmF293euLlwu8fy8gtZt7Fg6xYrwJvJLyje5Tzb/iLVr1ktVnRLX4E2zY5db1w3a4/nNflH\nPX45dvHN8Ytfjl18K2v8MtJS6NiiLh1b1P1/j0WjUdZuLNg6NXHJylhBXpybx9JVG7Y7oLV8zSaW\nr9lU7lyhENSolkbNzG23dGpkppKVkUpmeiqZ6SlUS0uJXaankpkRu77tYxlpyaSnppCWmkRG6WWi\nLTVXVhluCCwFLgdWAcuAxuy44JZ73w/HzyMKlESjRKOx/yxbrgOUlESJ8r/7S0q2XMa+piQaJVoS\npXjL/aX7FG/Ziksojm5zvSRKUUmUkpISiopj+xYWl1BUXEJhUell8TaXRdvf3lJ4C4qK2VxQWnyL\nirc7gURFSk4Kbfcfu2ZWGrUy06lXK6P0VWLsVWO9mtWoVyv2qrFWpm+xSJJUmYRCIWpnpVM7K50D\n9sve6X6bC4tZtT6f3NJ3fFeuzS8typtYuS52//8OmsUOoG3Y5oBaRUtJDsUKckoS6akppKcmkZ6a\nTGpKMqnJSaQkJ5GaUnpZevt/94VITU4iOTmJlKQkkpNCJCeHSN5yPan0enLsekpSEklJodgWCpEU\nIna53X0hQqEQSUmxxw5sXZ82TWpX3L+3nPs9WXp5BrH5wHu07yUPjyjnj63cUpJj/zky0lJIT00m\nLTWZzPTSV2QZscusjLQd3JdKtfRUamSmUTsrg1rV06mdlUHNrHRqV08nMz21Uk62T01N5dhjj6V2\n7Yr7D6h9w7GLb45f/HLs4tu+HL8mjXZt/6LiEtZt3MzaDZtZm5cfuyzdNmwqYMPmQjbkF7IxP3a5\nIb+ATZuLtl7fcn9+QVHpu9tF5BfELouKoxQVF7IBgM174V+7Z/52+XH06JxT5n6pqeU7t0FZZXgp\nsaO7WzQqvW+39125cuWckX84sux/QZUVBQpKtw1QAMWrIHcV+LE0SZK0O5KBukDdakC1LfeGiH2k\nKw3ICibYXrGZsWPHlmvPlStXztnTn5YGzAXqA82BWds8dj/w53LuK0mSJFU6ZR0ZLgBuBT4rvX3d\nNo81YvtpED+3ryRJkiRJkiRJkiRJkiRJkqRg7LP1u8LhcFPgdaA2sXU6bolEIiP31c/X7guHw9nA\nB0Aqsf8z90UikTeCTaVdFQ6HawAzgIcikchDQedR+YXD4WLgu9KboyORiJ/JiBPhcLgH8DSxz+hM\njkQi5wQcSeUUDof7Ezuz7hb7A4dEIpHvdvIlqkTC4fBdwNmlN1+PRCL37GzffXmKkULgykgk0gk4\nHXhhH/5s7Zm1QO9IJNIVOBZ4LBwOJ9bpaaqGO4DxlL1WuCqfjZFIpFvpZhGOE6V/J18CrohEIvsD\nVwUcSbsgEol8uOX3DjgBmG8Rjg/hcLgVcAHQGegKXBgOh/fb2f7lPenGHotEIsuB5aXXF4TD4bRw\nOJwaiUQK91UG7Z5IJFIEFJXerENlXIFbPyscDrcntuzhBPbhO0JSgusOrIhEIuMAIpGIy8nHr/OA\nSNAhVG7riB2ErUZsCeYCYgf2dmifleFtlb71MMEiHD/C4XB14HMgBzg/EomUBBxJu+Z+4FrgkqCD\naLdkhMPhCcAm4LZIJPJp0IFULi2AteFweBjQEHg6Eon8M+BM2j3n49/PuBGJRHLD4fAjwEJisyBu\njEQia3a2/z5/qzscDjcCHsS3i+JKJBLJi0QinYGDgAfD4XBVOpVNlRYOh08BZkYikYV4VDheNY1E\nIt2Jrd/+ajgcTg86kMolAzgC+A3QG7iu9O1bxZHSd9YyI5HI5KCzqHzC4XBL4ApgP2IH8W4u7Z87\ntE/LcDgcziD2NsONkUjkh335s1UxIpHIdGA+0DHoLCq3Q4Ezw+HwNOBq4PfhcPi8gDNpF5ROMyMS\niYwHlgAtAw2k8loGfB+JRBZFIpH1xKYpdQg4k3bd+cBrQYfQLukBfB2JRNaXTk+aBHTb2c77bJpE\nOBwOAc8Dr0YikeH76udqz4XD4SbA5tK3HRoB7QFfzMSJSCRyJ3AnbP107fpIJPKfYFOpvMLhcB0g\nPxKJbCo92tEUWBBsKpXTeKBF6RhuIPZhnjnBRtJuOA84KegQ2iVzgNvC4XAasTnDBwF/2tnO+/LI\n8BHAmcBl4XB4Uum200PWqlRaAKPC4fB3wAhiR/b9IIi0b3QAJoXD4W+BwcClkUhkU8CZVA6RSGQt\nsaktHwMTiR0MmhlsKu2K0qXx1kcikVlBZ1H5lb6L9haxI8Ljic3XnxFsKkmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKkC/R93eiZjx0oXTwAAAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAF2CAYAAACCiDVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlOXixvF7ZmCAYRFFBcUd10TTTM0Nl9wos7LU0lyy\n7LSXWdYprU5mZZna+R1bNEuz7FimZqa4ZKJm7nsuICgqigsuyLAz8/uDkZOVQIq+DHw/18XFMPPO\n601PzNzzzjPPa9q/f79TAAAAAGQ2OgAAAABQUlCOAQAAABfKMQAAAOBCOQYAAABcKMcAAACAC+UY\nAAAAcKEcAwAAAC6FluMVK1aof//+atKkif75z38WecdffPGF2rVrp1atWmnixIlXFRIAAAC4HjwK\n2yAgIEAPP/yw1q1bp4yMjCLtdMeOHZoyZYpmz54tPz8/DRgwQI0aNVJkZORVBwYAAACulUKPHLdq\n1UrdunVTuXLlirzTqKgode/eXWFhYQoODlbfvn21ePHiqwoKAAAAXGuFHjm+yOks+lmmDx06pJYt\nW2rmzJlKSkpSixYttGjRoisKCAAAAFwvRf5AnslkKvJO09PTZbPZdOTIESUkJMjX11dpaWlXFBAA\nAAC4Xq7JkWMfHx+lpaVp9OjRkqTly5fLZrP95bZHjhwp8n4BAACAK1W9evVCtylyOf47R45r1aql\n+Pj4/J8PHDigOnXqXHb7Ro0aFXnfKBmCgoI0b948dezY0egouAKMn/ti7Nwb4+feGD/3FRQUpLVr\n1xZp20KnVTgcDmVmZio3N1e5ubnKyspSbm5u/u2DBg3ShAkTLrlPZGSkli9frgMHDujEiRP67rvv\nWKkCAAAAJV6hR44XLFigl19+Of/nhQsX6sknn9STTz4pSUpMTFS1atUuuU/Tpk31xBNPaPDgwcrJ\nydF9991HOQYAAECJV2g57tOnj/r06XPZ21euXPmX1w8ePFiDBw++8mQo8ZgO494YP/fF2Lk3xs+9\nMX6lH6ePxhXjAcK9MX7ui7Fzb4yfe2P8Sj/KMQAAAOBCOQYAAABcKMcAAACAC+UYAAAAcKEcAwAA\nAC6UYwAAAMCFcgwAAAC4UI4BAAAAF8oxAAAA4EI5BgAAAFwoxwAAAIAL5RgAAABwoRwDAAAALpRj\nAAAAwIVyDAAAALhQjgEAAAAXyjEAAADgQjkGAAAAXCjHAAAAgAvlGAAAAHChHAMAAAAulGMAAADA\nhXIMAAAAuFCOAQAAABfKMQAAAOBCOQYAAABcKMcAAACAC+UYAAAAcKEcAwAAAC6UYwAAAMCFcgwA\nAAC4UI4BAAAAF8oxAAAA4EI5BgAAAFwoxwAAAIAL5RgAAABwoRwDAAAALpRjAAAAwIVyDAAAALhQ\njgEAAAAXyjEAAADgQjkGAAAAXCjHAAAAgAvlGAAAAHChHAMAAAAulGMAAADAhXIMAAAAuFCOAQAA\nABfKMQAAAOBCOQYAAABcKMcAAACAC+UYAAAAcKEcAwAAAC6UYwAAAMCFcgwAAAC4UI4BAAAAl0LL\ncVJSkgYNGqRmzZqpT58+io2NLdKOJ0+erPbt26t169YaOXKkUlNTrzosAAAAcC0VWo7HjBmjBg0a\naOPGjYqMjNSIESMK3emKFSv0/fffa968eVq1apXOnTunDz/8sFgCAwAAANdKgeU4NTVV69at0/Dh\nw2W1WjVkyBAlJiYqJiamwJ3Gx8erefPmqly5snx8fNSpUyfFxcUVa3AAAACguBVYjhMSEmS1WmWz\n2TRgwAAdPXpUNWrUUHx8fIE7bdOmjXbt2qWkpCTZ7XatWrVKnTp1Ks7cAAAAQLHzKOjG9PR0+fr6\nym63Ky4uTikpKfL19VV6enqBO23SpIluv/12derUSWazWR06dFC/fv0uu31QUNCVpYdhPD09JTF2\n7orxc1+MnXtj/Nwb4+e+Lo5dURRYjn18fGS32xUSEqINGzZIkux2u2w2W4E7/eqrr7RlyxatX79e\nVqtVo0eP1ptvvqnXXnvtL7cfO3Zs/uWIiAh17NixyL8AAAAA8EfR0dFavXq1JMlisSgiIqJI9yuw\nHNesWVOZmZk6ceKEgoODlZWVpcOHD6t27doF7nT16tXq0aOHAgMDJUm9e/fWO++8c9ntH3/88Ut+\nTk5OLlJ4GOfiq2bGyj0xfu6LsXNvjJ97Y/zcS3h4uMLDwyXljd3atWuLdL8C5xz7+fmpffv2mjp1\nqjIzMzVjxgyFhoaqfv36+dsMGjRIEyZMuOR+derU0bJly5SSkqLMzEwtWbJE9erV+7u/EwAAAHBd\nFbqU2xtvvKGYmBi1atVKUVFRmjRp0iW3JyYm/ukV1JNPPqkqVaqoR48eioiIUEpKikaPHl28yQEA\nAIBiVuC0CkkKCQnRrFmzLnv7ypUr/3Sdr6+vxo8ff3XJAAAAgOuM00cDAAAALpRjAAAAwIVyDAAA\nALhQjgEAAAAXyjEAAADgQjkGAAAAXCjHAAAAgAvlGAAAAHChHAMAAAAulGMAAADAhXIMAAAAuFCO\nAQAAABfKMQAAAOBCOQYAAABcKMcAAACAC+UYAAAAcKEcAwAAAC6UYwAAAMCFcgwAAAC4UI4BAAAA\nF8oxAAAA4EI5BgAAAFwoxwAAAIAL5RgAAABwoRwDAAAALpRjAAAAwIVyDAAAALhQjgEAAAAXyjEA\nAADgQjkGAAAAXCjHAAAAgAvlGAAAAHChHAMAAAAulGMAAADAhXIMAAAAuFCOAQAAABfKMQAAAOBC\nOQYAAABcKMcAAACAC+UYAAAAcKEcAwAAAC6UYwAAAMCFcgwAAAC4UI4BAAAAF8oxAAAA4EI5BgAA\nAFwoxwAAAIAL5RgAAABwoRwDAAAALpRjAAAAwIVyDAAAALhQjgEAAAAXyjEAAADgQjkGAAAAXCjH\nAAAAgAvlGAAAAHChHAMAAAAuhZbjpKQkDRo0SM2aNVOfPn0UGxtbpB2vW7dOvXv3VvPmzdWtWzft\n27fvqsMCAAAA11Kh5XjMmDFq0KCBNm7cqMjISI0YMaLQnR49elRPPfWUHnvsMW3ZskVff/21Kleu\nXCyBAQAAgGulwHKcmpqqdevWafjw4bJarRoyZIgSExMVExNT4E7nz5+viIgIRUZGymw2q2LFiqpQ\noUKxBgcAAACKW4HlOCEhQVarVTabTQMGDNDRo0dVo0YNxcfHF7jT/fv3KyAgQP369VO7du00cuRI\npaamFmtwAAAAoLh5FHRjenq6fH19ZbfbFRcXp5SUFPn6+io9Pb3AnV64cEGbNm3SzJkzVbNmTY0Y\nMUIffPCBXnnllb/cPigo6Mp/AxjC09NTEmPnrhg/98XYuTfGz70xfu7r4tgVRYHl2MfHR3a7XSEh\nIdqwYYMkyW63y2azFbhTHx8ftWvXTg0bNpQk9evXTx988MFltx87dmz+5YiICHXs2LHIvwAAAADw\nR9HR0Vq9erUkyWKxKCIiokj3K7Ac16xZU5mZmTpx4oSCg4OVlZWlw4cPq3bt2gXutEaNGjp9+nT+\nz06nU06n87LbP/7445f8nJycXJTsMNDFV82MlXti/NwXY+feGD/3xvi5l/DwcIWHh0vKG7u1a9cW\n6X4Fzjn28/NT+/btNXXqVGVmZmrGjBkKDQ1V/fr187cZNGiQJkyYcMn9unXrpujoaMXExCgzM1Nz\n587VLbfc8nd/JwAAAOC6KnQptzfeeEMxMTFq1aqVoqKiNGnSpEtuT0xM/NMrqJYtW+qJJ57QsGHD\nFBERIZvNpqeffrp4kwMAAADFrMBpFZIUEhKiWbNmXfb2lStX/uX1w4YN07Bhw648GQAAAHCdcfpo\nAAAAwIVyDAAAALhQjgEAAAAXyjEAAADgQjkGAAAAXCjHAAAAgAvlGAAAAHChHAMAAAAulGMAAADA\nhXIMAAAAuFCOAQAAABfKMQAAAOBCOQYAAABcKMcAAACAC+UYAAAAcKEcAwAAAC6UYwAAAMCFcgwA\nAAC4UI4BAAAAF8oxAAAA4EI5BgAAAFwoxwAAAICLh9EBAACXl5GVo6OnU3X45AUdPnVByak5Opua\noSBfD1Wv5K/qlfxUvZK/Qsr7ymw2GR0XANwe5RgADJaSlqUd8ad09PQFHT55QUdO5RXhI6cu6OS5\n9CLtw+phVmhFP9Wo5K9qlfxVo5K/qlfyV+2QAIXXrEhxBoAiohwDgAFyHQ6t3X1Mc1bHKGrzIWVm\n5/7ldh4Wk0KD8o4O16jkr/o1g1Xez1uxh0+4CnSqjpy6oNMp6TqYlKKDSSl/2kdokJ/6RtRTv4j6\nqlk54Fr/agDg1ijHAHAdHUw6r29Wx+jbNbE6fsYuSTKZpOZhlVWnSoBqVArIK8KV88pwcHmbPCz/\n+3hIUFCQJCk5OfmS/aZlZOuI68jzxWkYR05d0M6Dp5WYnKrJ87dp8vxtatOoivpF1FevVrVl8/a8\nfr84ALgJyjEAXGOp6Vn6ceNBzYmO0Yb9SfnX16zsr74R9dW3fT1Vq+R/Vf+GzdtTDapVUINqFS65\n3uFw6te9xzVn9X79uPGgft17XL/uPa7RM9fpjta11S+ivlo1CJHJxLQLAJAoxwBwTTidTq3fl6Q5\n0XmlNC0zR5Lk4+WhXq1qq3/HBmrdIOSazwU2m01q17iq2jWuqnFD2umHDfGaEx2jzbEn9N/oGP03\nOka1ggPUL6K+7u1QT6FBftc0DwCUdJRjAChmv+49rtEzftG+o2fzr2vVIFj9IxqoV+va8vOxGpLL\n32bVgM4NNaBzQ8UdP6dvVsdq7poYHTqRone/3az35m5W3w71Nfr+VgoK8DEkIwAYjXIMAMXk1Pk0\njZ29Qd+tPSBJCinvm/9BuDoh5QxOd6mwKoH6Z/+WGtW3hVbvStSc6LwPBn6zOkbLtiTopf4tNbBz\nQ1a5AFDmUI4B4CrlOhya9dM+jf9mk1LSsuTladFTdzbTY7c3lbe1ZD/MWsxmdb6xujrfWF3xSec1\nesYvit6VqJc+W6s50fv19oPt1aR2RaNjAsB1U7IftQGghNsRf0ovfbZWOw+eliR1ubG6xg5pq1rB\n7rdkWp2QcvrqxUj9uPGgXpu1XtviTum2MQs0pFsjjerbUgE2Y6aDAMD1RDkGgCtwzp6pd7/ZrC9+\n2iOnU6pSwVdjB7dRz5trufXKDyaTSb1a11GnptU0cd5WfRq1W58v26NFGw7qtYG36K62YW79+wFA\nYcyFbwIAuMjpdGrumlh1fP5bzVyxRxazSY/d3lTR7/VVZMvapaY4+vlY9erAWxQ17m7dXC9Yp86n\n68kPf1a/t35UbOLZwncAAG6KI8cAUET7j57Ry5//ovX78tYqbt0gRG892E4Nq1co5J7u64YaQZr/\n6h36dk2Mxs7eoHV7jqvbP+fpH7c31bN3NZePF08jAEoXHtUAoAj+u2q//vn5WmXlOBQU4K0xA1rr\n3vb1Ss2R4oKYzSb179hA3W6qqXe+2aSvVu7TfxZu19LNh/TZyO4lbiUOALgaTKsAgAJk5zg0ZuY6\njZy2Wlk5Dt3fqYFWT+invh3ql4li/HsV/L317kMdtPD13qpXNVCxx86p15gFWrXziNHRAKDYUI4B\n4DLOXMjQgPGL9dmy32T1MOv94RGaMDxCgb5eRkczVIt6wVr0xp3qeXNNnU/L0qB3l+rjH3fK6XQa\nHQ0ArhrlGAD+wp7DybptzHyt23NclQN99O3oXrqvUwOjY5UYfj5WTXumm57rc5McTqfGzt6gpz9a\npfSsHKOjAcBVoRwDwB8s2hCv3q8v1JFTqWpWp5IWj81bsQGXMptNGnlPC017tqtsXh6a98sB9Xnj\nBx1LTjU6GgBcMcoxALg4HE69++1m/ePfPyk9M0f3tK+r78b0UpUKvkZHK9Fua1lbC1+/UzUq+Wvn\nwdO6bcwCbdqfZHQsALgilGMAkHQhLUsPTVquDxZsk9lk0msP3KIPHu1U4k//XFI0qlFBP469S+0a\nV9Wp8+nqO+5Hzf55n9GxAOBvoxwDKPPik87rjte+17KtCQr09dJXL/bUI5FNytxqFFergr+3Zr8Y\nqYd6his716EXPl2jV2b8ouwch9HRAKDIKMcAyrRVO4+o15gFij12TvVDA7XojTsV0aSa0bHclofF\nrDcGtdHERyJk9TBrxvI9uv+dxUpOSTc6GgAUCeUYQJn1zeoYDXp3qc6nZalHi5r64V93qjYntCgW\n/Ts20NzRvVQ50Ee/7j2uO177XkdPXTA6FgAUinIMoEz6auU+PTc1Wg6nU0/d2UyfPttNfj5Wo2OV\nKi3qBWvx2LvVpFZFJZy8oHveXKSEkylGxwKAAlGOAZQ5M5bv0ajpa+R0Sq/c10ov9Wsps5n5xddC\nlQq++uaV23VT3co6ejpV94xdpPik80bHAoDLohwDKFOmLdmlV2b8Ikl6/YFb9PgdNxqcqPQLsFk1\n+8VItWoQrONn7Lp37CIdOHbO6FgA8JcoxwDKjI8W7dDrX66XJI0b0lbDI5sYnKjs8LdZ9eWoSLVp\nVEUnzqXpnrGLtO/IGaNjAcCfUI4BlAkfLNimN7/eKJNJevehDhravbHRkcocX29PzXqhpzqEh+p0\nSt5ayL8lJBsdCwAuQTkGUKo5nU5NmLtF7367WSaT9P7wjhrYpaHRscosHy8PzRjZXV1urK4zFzLU\nb9yP2nnwlNGxACAf5RhAqeV0OvXON5s1af5WmU0m/fuxzurfsb7Rsco8b6uHPh3RTd1uqqFz9kz1\nf2uxth44aXQsAJBEOQZQSjmdTo2dvUH/WbhdFrNJU57srD7t6hodCy5enhZNfaarbmtZSylpWbr/\n7cXatD/J6FgAQDkGUPo4nU69+sWv+mTxLnlazPrk6VvV+5Ywo2PhD6weFn345K3qfUsdpWZka8D4\nJVq/97jRsQCUcZRjAKWKw+HUPz//RZ8t+01WD7OmPttVkS1rGx0Ll+HpYdb/PZ53VD8tM0cD312i\nNbsTjY4FoAyjHAMoNZxOp16dtU6zftorb0+LPnuuu7rfVNPoWCiEh8WsyY92VP+O9ZWRlauhE5Zq\nI1MsABiEcgyg1PhgwTZ9vmyPrB5mff58D3W+sbrRkVBEFrNZEx6O0P2dGigjO68g7z3MOsgArr9C\ny3FSUpIGDRqkZs2aqU+fPoqNjf1b/8DQoUPVsWPHKw4IAEXx5cq9em/uFplM0n+e6KKI8FCjI+Fv\nMptNGv9Qe0XeXEvn07L0wLtLdPTUBaNjAShjCi3HY8aMUYMGDbRx40ZFRkZqxIgRRd754sWLZbfb\nZTKZriokABRk8aaD+udneaeEfvvB9rq9FXOM3ZXFbNZ/nuisNo2qKOlsmu4fv0TJKelGxwJQhhRY\njlNTU7Vu3ToNHz5cVqtVQ4YMUWJiomJiYgrdsd1u17Rp0/Too4/K6XQWW2AA+L1f9x7Xk1N+lsPp\n1PP3tNCgWxsZHQlXydvqoc+e664balRQ/PHzGvzeUtkzso2OBaCMKLAcJyQkyGq1ymazacCAATp6\n9Khq1Kih+Pj4Qnc8ZcoU9e/fX35+fsUWFgB+b/ehZD34/lJlZudqaLcb9OzdzY2OhGISYLPqy1GR\nqlHJX9vjT+nhScuVlZNrdCwAZYBHQTemp6fL19dXdrtdcXFxSklJka+vr9LTC36LKy4uTuvXr9cL\nL7ygjRs3FhoiKCjo76WG4Tw9PSUxdu6qNIxf/PFzGjxhqS6kZ+ueDg015dleslhK/2eMS8PYFVVQ\nUJCWjB+gzs/N0urdiXrx8/WaMeoOmc3uO1WvLI1facT4ua+LY1cUBZZjHx8f2e12hYSEaMOGDZLy\npkvYbLYCd/rmm29qxIgRRZ5rPHbs2PzLERERfIAPQIFOnLWr18v/1YmzdnVuVlOfvVA2inFZFFa1\nvL4f20/dX5ytb1btUaVyPprwaFc+ywKgUNHR0Vq9erUkyWKxKCIiokj3M+3fv/+yE4JTU1PVqlUr\n/fzzzwoODlZWVpZat26tOXPmqH79+pfdacuWLXXhwqWfMDaZTNq0adOfplkcOXJEjRoxR9DdXHzV\nnJycbHASXAl3Hr8LaVm6d9wi7T6UrCa1Kmru6Nvl52M1OtZ1485jdzXW/paoQe9GKSvHoRf73ayn\n73TPKTRldfxKC8bPfQUFBWnt2rWqXr3wJT4LPNTi5+en9u3ba+rUqcrMzNSMGTMUGhp6STEeNGiQ\nJkyYcMn9Nm3apH379mnfvn364osvFBwcrL179zL/GMBVyczO1UOTl2v3oWTVCg7Ql6N6lqliXJa1\nbxyq/3u8s0wmafw3mzX7531GRwJQShX6PuQbb7yhmJgYtWrVSlFRUZo0adIltycmJhb4CsrpdPL2\nF4Crlutw6KkPf9Yvvx1T5UAfff1SpCqW8zE6Fq6jXq3raNzQdpKkF6evVdTmQ8YGAlAqFTjnWJJC\nQkI0a9asy96+cuXKAu/funVrrVq16m8HA4CLnE6nRs9cpx83HpS/j2feKgaVA4yOBQMM6XqDTp9P\n18R5W/X4f1Zq9ouRuqVRFaNjAShF+AQLgBLvgwXb9MWKvfLytGjGyB5qXJNPipdlz/W5SYNubaTM\n7Fw9OHGZ9h3hNNMAig/lGECJ9v2vcfmnhZ7yRGeOEkImk0njhrbVbS1rKyUtS0MmLNWp82lGxwJQ\nSlCOAZRYm2NPaMQn0ZKk1x9oo8iWnBYaeSxms/79eCc1D6uso6dTNWzicqVn5RgdC0ApQDkGUCId\nPpmiYROXKTM7V4O7NtJDPRobHQkljI/VQ5+P7KZqFf209cBJPfdJtByOy65OCgBFQjkGUOKct2dq\n8HtLlZySoY5NQjV2cFtWvcFfqlTOppnP95Cft6cWro/XhO+2GB0JgJujHAMoUbJzHHr03z8p9tg5\nNahWXh8/3VUenP0OBWhYvYI+eeZWWcwmfbBgm75dE2N0JABujGccACVG3pJtv2j17kRVDPDRzOd7\nKMDGST5QuE5Nq2vskLaSpBemrdH6vccNTgTAXVGOAZQYU5fs0pcr98nb06LPnuum6pX8jY4ENzKk\n6w16uGe4snMdemjycsUnnTc6EgA3RDkGUCIs3XxIY2dvkCRNerSjWtQLNjgR3NGrA1ura/MaOpea\nqcHvRelsaobRkQC4GcoxAMPtOnhaT3z4s5xOaVTfm9X7ljCjI8FNWcxmffhkF91Qo4IOJqVo+OQV\nysrJNToWADdCOQZgqONn7Br6/lKlZ+bo3g719PSdzYyOBDfn6+2pGc/3UHCgTb/uPa6XPlsrp5Ml\n3gAUDeUYgGHsGdka+v5SJZ1N0y0NQ/TuQx1Ysg3FIjTITzOe7y4fLw/NiY7RlB92GB0JgJugHAMw\nRK7DoSen/Kzdh5JVKzhA057tJi9Pi9GxUIo0rV1J/3m8s0wm6e05m7RoQ7zRkQC4AcoxAEOM+3qj\nlm1NUKCvl754oYcq+HsbHQmlUM+ba2n0/a0lSc98tErb4k4anAhASUc5BnDd/XfVfn2yeJc8LCZN\ne7arwqoEGh0Jpdg/bmuigZ0bKiM7Vw9NXK7jZ+xGRwJQglGOAVxXG/cn6aXP1kqS3n6wvdreUNXg\nRCjtTCaT3hzaVm0aVdGJc2l6aNIypWfmGB0LQAlFOQZw3Rw5dUEPT16u7FyHHu4ZrgGdGxodCWWE\n1cOiqc90Vc3K/toRf1rPTY1mBQsAf4lyDOC6sGdk68H3lyk5JUOdmlbTmAGtjY6EMqaCv7c+H9ld\nft6eWrg+Xh8s2GZ0JAAlEOUYwDXncDj11Ic/a++RMwqrUk4fPtlFHhYefnD9NahWQVOe7CKTSXpv\n7hYt3nTQ6EgAShienQBcc+/O3aylW/JWppjxfA+V8/UyOhLKsK7Na+SvYPH0R6u0+1CywYkAlCSU\nYwDX1PxfDuj/vt8ui9mkj56+VXVCyhkdCdA/bmuivh3qKT0zRw9OXKpT59OMjgSghKAcA7hmtsWd\n1MhpqyVJbwxqo4jwUIMTAXlMJpPGP9RBLepV1rFkux6atFyZ2blGxwJQAlCOAVwTx5JTNWziMmVm\n52rQrY00pNsNRkcCLuHladH0Ed1UNchXW2JPatT0NaxgAYByDKD4pWfm6KFJy3XyXLraNKqisYPb\nymQyGR0L+JNK5Wz6/Lke8vHy0Nw1sfpk8S6jIwEwGOUYQLFyOp0a8Um0dh48rVrBAZr6TFd5evBQ\ng5IrvFaQ/v1YJ0nSm19v0PKtCcYGAmAonrEAFKvJ87fphw3x8vfx1IyR3VXB39voSEChbmtZW6P6\n3iynU3piys/ad+SM0ZEAGIRyDKDYLNoQrwnfbZHZZNKHT96qeqHljY4EFNnTdzbTnW3C8k9Yc+ZC\nhtGRABiAcgygWOw6eFrPfhItSRo9oJW6NKtucCLg7zGZTHr/kQjdWKeiDp+6oOGTlysrhxUsgLKG\ncgzgqp04m6ah7y9TemaO+nesr0cimxgdCbgiPlYPffZcd4WUt2n9viS9/PkvrGABlDGUYwBXJT0r\nR8MmLlPSWbtaNwjR2w+2Z2UKuLWQ8r767Lnu8rZa9PWq/ZoWtdvoSACuI8oxgCvmdDr13CfR2h5/\nSjUq+Wvas13l5WkxOhZw1W6sU0mTH+0kSRr71Qat2HbY2EAArhvKMYArNnn+Ni1cHy8/b0/NeL67\nggJ8jI4EFJs7WtfR8/e2kMPp1BP/WckKFkAZQTkGcEUWro/738oUT3VRg2oVjI4EFLtn72quO9uE\nKTUjW0PfX6rklHSjIwG4xijHAP627XGnNOLjvJUpxgxsrVub1TA4EXBtXFzBolmdSjpyKlUPT16u\nzGxWsABKM8oxgL/l+Bm7hk1cpozsXA3o1EDDe4YbHQm4pv63goWvNu4/oZc+W8sKFkApRjkGUGTp\nmTl68P1lOnEuTW0aVdG4B9uxMgXKhODyNs18vrt8vDz0zeoYffzjTqMjAbhGKMcAisThcOqZj1dp\n16HTqhUcoKnPdJXVg5UpUHaE16qofz/WSZI07r8btWxLgrGBAFwTlGMARfL+vC36ceNB+ft4asbI\n7qrg7210JOC6u61lbb3Y72Y5ndITU1Zqz+FkoyMBKGaUYwCFmv/LAU2ev01mk0kfPXWr6oWWNzoS\nYJinejdMyKJHAAAgAElEQVRTn3Z1lZaZo6ETlunU+TSjIwEoRpRjAAXaeuCkRk5bLUl6/YFb1PnG\n6gYnAoxlMpn03sMd1DysshKTU/XQpOXKyMoxOhaAYkI5BnBZR09d0EOTlikzO1cPdGmoYT0aGx0J\nKBG8rR767Lluqhrkqy2xJ/XCp2tYwQIoJSjHAP7SeXumBk9YqpPn0tX2hip6cwgrUwC/VznQphkj\ne8jm5aF5vxzQhO+2GB0JQDGgHAP4k6ycXA3/YIX2Hz2r+qGB+vTZbvL04OEC+KPGNYP08dO3ymwy\nafL8bZoTvd/oSACuEs92AC7hdDr14vS1+uW3Y6pUzkdfvNBT5Xy9jI4FlFi3NquhcUPbSpJGTV+j\n1bsTDU4E4GpQjgFcYvKCbfpmdYx8vDw08/keql7J3+hIQIk3uOsNeuz2psrJdeqRycu178gZoyMB\nuEKUYwD55q6J1YS5W2Q2mfThE110Y51KRkcC3MbL97VSr9a1dSE9W4Pei1LSWbvRkQBcAcoxAEnS\nL78d0/OuJdveGNxG3VvUNDgR4F7MZpMmP9pJN9cL1rFku4ZMWCp7RrbRsQD8TZRjAIo5elYPT16u\n7FyHhkeG68HuLNkGXAkfq4c+H9ldtYIDtPtQsh77v5+Uk+swOhaAv4FyDJRxJ8+ladB7UUpJy1Lk\nzbU0ZkBroyMBbq2Cv7dmjeqp8n5e+mn7EY35Yh1rIANuhHIMlGFpGdka+v5SHT2dquZhlfR/j3eW\nxczDAnC16oSU0+fPdZeXp0VfrNirTxbvMjoSgCLiWRAoo3JzHXpiys/aEX9aNSr5a8bIHvLx8jA6\nFlBqtGwQokn/6ChJGjt7gxZtiDc4EYCioBwDZdSoqT9p2dYEBfp6adaonqpYzsfoSECpc2ebML1y\nXytJ0tMfrdKve44anAhAYSjHQBn0nwWbNOX7LbJ6mDV9RDfVrRpodCSg1HqsV1M90KWhMrNz1fdf\n3ynu2FmjIwEoAOUYKGN+2BCvFz75SZI08ZGOuqVRFYMTAaWbyWTSuKHt1LlpNZ0+n67eo7/RqfNp\nRscCcBmUY6AMid55VE9N+VlOp/SvoRG6u11doyMBZYKHxayPn75VzcKCFXfsrAaOj9J5e6bRsQD8\nBcoxUEZsjj2hh1xrGT99d0uN6t/G6EhAmeLnY9XCcf1UL7SCfktI1tD3lyo9M8foWAD+gHIMlAF7\nD5/RkPfynoj7RdTXO8O7yGQyGR0LKHMqB/pq0Vv9VaWCrzbuP6FH/r1C2TmcJAQoSYpUjpOSkjRo\n0CA1a9ZMffr0UWxsbKH3iY6O1j333KMWLVqoU6dO+uijj646LIC/L+FkigaMX6xz9kz1vLmm3nu4\ng8xmijFglJrB5fT1S5Eq7+ellduPaMQnq+RwcJIQoKQoUjkeM2aMGjRooI0bNyoyMlIjRowo9D5p\naWl6/vnntX79es2ZM0cLFy7UwoULrzowgKI7cTZN97+9WCfPpavtDVU05Yku8rDwhhFgtHqh5fXV\ni5Hy9fbU/HVxnEUPKEEKfZZMTU3VunXrNHz4cFmtVg0ZMkSJiYmKiYkp8H6RkZFq06aNPD09FRwc\nrA4dOmj79u3FFhxAwc7ZMzXgncVKOHlBN9apqM+f6y5vKyf5AEqKG+tUyj+L3ozlezThuy1GRwKg\nIpTjhIQEWa1W2Ww2DRgwQEePHlWNGjUUH//3zvSzfft2NWzY8IqDAii6tIxsDX4vSvuOnlXdqoH6\nclSk/HysRscC8AftGlfVh092kdlk0uT52/Rp1G6jIwFlXqGHkdLT0+Xr6yu73a64uDilpKTI19dX\n6enpRf5HvvrqK2VnZ+vuu+/+y9uDgoKKnhglgqenpyTGriTKys7V0IlztSX2pKpXDtCS8QNUvVLA\nJdswfu6LsXNvfzV+A3sEKdfkqUcmLtZrs35VaHAFPdC1iVERUQD+/tzXxbErikLLsY+Pj+x2u0JC\nQrRhwwZJkt1ul81mK9I/EB0drenTp2v27NmXDTZ27Nj8yxEREerYsWOR9g3gUrm5Dg177wct33JQ\nlcrZtPit+/5UjAGUPIO7N9W51AyNmrpS/5i4WIG+3urVpp7RsQC3Fh0drdWrV0uSLBaLIiIiinS/\nQstxzZo1lZmZqRMnTig4OFhZWVk6fPiwateuXejOt27dqldffVXTp09XSEjIZbd7/PHHL/k5OTm5\nCNFhpIuvmhmrksPpdOqlz9Zq7up98vfx1KwXeqiCj/Mvx4jxc1+MnXsraPwGdgxT4smz+mDBNg18\na4G+HNVTbW+oer0jogD8/bmX8PBwhYeHS8obu7Vr1xbpfoXOOfbz81P79u01depUZWZmasaMGQoN\nDVX9+vXztxk0aJAmTJhwyf327dunZ555RpMnT1bdupyFC7jW3vlms75cuU/enhbNGNlDTWpXNDoS\ngL/phXtbaEjXG5SZnasH31+mnQdPGR0JKHOKtKbTG2+8oZiYGLVq1UpRUVGaNGnSJbcnJib+6VXU\nzJkzdfbsWQ0bNkzNmzdX8+bN9cgjjxRfcgD5PliwTf9ZuF0Ws0kfPX2rbmlUxehIAK6AyWTSm0Pa\n6s42YUrNyNaAd5botwSOUgLXk2n//v2GLqx45MgRNWrUyMgIuAK8tVQyOJ1OTZq3Ve/P2yqTSfrg\n0U66p33h8xQZP/fF2Lm3oo5fVk6uHp60XD9tP6JAPy/996XbeDeoBODvz31dnFZRvXr1QrflbACA\nm3I6nXpv7ha9P2+rzCaT/v1Y5yIVYwAln9XDomnPdlO3m2roXGqm+r/1o3bEM8UCuB4ox4Abcjqd\nenvOJn2wYJssZpP+80Rn9WnH3H6gNPHytGjqM13V8+aaOp+WpfveXqytB04aHQso9SjHgJtxOp0a\nO3uDpvywQx4Wkz58sovubBNmdCwA14DVw6KPn+qq21rWVkpalu5/e7E2xZwwOhZQqlGOATfidDr1\n2pfr9cniXfK0mPXxU7eqV+s6RscCcA15epj14ZNd1PuWOkrNyNbA8Uu0Yd9xo2MBpRblGHATDodT\nr8xYp+lRu2X1MGvqs10V2bLw9cYBuD9PD7P+7/G86VP2jGwNfDdK6/YcMzoWUCpRjgE34HA49c/P\n12rmij3y8rTo0xHd1P2mmkbHAnAdeVjMmvxoR93boZ7SM3M06L0ordmdaHQsoNShHAMlnMPh1Kjp\na/JP8PHZc910a7MaRscCYACL2ayJj0Tovo71lZGVq6ETlmrVziNGxwJKFcoxUILlOhx6bmq0vl61\nX95Wiz5/voc6NS18jUYApZfFbNZ7D0doYJeGysjO1bCJy/XT9sNGxwJKDcoxUELl5Dr07MfR+nZN\nrHy8PDTrhZ6KCA81OhaAEsBsNumdB9vnn2r64UnLtWxrgtGxgFKBcgyUQOmZOXr03z9p3i8HZPPy\n0FejeqrtDVWNjgWgBDGbTRo3tK0e6hmurByHhk9errlrYo2OBbg9yjFQwiSnpKvvuB+1ZPMhBdis\nmv1ipFo3rGJ0LAAlkMlk0r8euEWP3d5UOblOPfPxKk2ev1VOp9PoaIDbohwDJUh80nn1fn2htsWd\nVGiQnxa8dodaNggxOhaAEsxkMmn0gNZ6Y1AbmUzSe3O3aNSna5Sd4zA6GuCWKMdACbEp5oR6v/a9\nDp1IUXitIP3wrzvVoFoFo2MBcBMP9QzXtGe6ytvTotmr9mvo+0uVmp5ldCzA7VCOgRLgx40Hdd9b\nP+psaqa63Fhd88bcoeDyNqNjAXAzkS1r65tXblcFf2+t2nlUfcYuUtJZu9GxALdCOQYMNm3JLv3j\n3yuUkZ2rgZ0b6vOR3eXr7Wl0LABuqkW9YC18vbdqBQfot4Rk3fHa99p35IzRsQC3QTkGDJLrcOjV\nWb/q9S/Xy+mUXurXUuMfai8PC3+WAK5O7ZBy+uFfd6pFvco6lmzX3W/8oLW/cTY9oCh4FgYMkJ6Z\no3988JOmR+2Wp8Ws/3u8s566s5lMJpPR0QCUEhX8vTXn5dt1W8taSknL0gPjo/TdWpZ6AwpDOQau\ns+SUdPV7639LtX31YqT6tKtrdCwApZCP1UMfP32rhkeGKzvXoac/WqUPFmxjqTegAJRj4Dq6uFTb\n1gP/W6qtXWNO7gHg2rGYzXr9gTb6l2upt3e/3cxSb0ABKMfAdbJk00HdPmYBS7UBMMTDf1jqre+4\nRTqWnGp0LKDEoRwD11h2jkP/+nK9Hp68QilpWep5c019N7oXS7UBuO4uLvUWUt5Xm2JOqMcr8xW9\n86jRsYAShXIMXEOJyam6580fNHXJLnlYTHp1YGt9+mw3+flYjY4GoIxqUS9Yy966WxHhoTpzIUMD\n312iCXO3KNfBNAtAohwD18yqnUfU4+V52hJ7UiHlfTV39B36x21NWZECgOGCAnz05Ys99fw9LSRJ\nk+Zv1cDxUTp9Pt3gZIDxKMdAMct1OPTe3M164N0onU3NVMcmoVr21t1qWT/Y6GgAkM9iNmtEn5s0\n+8VIBQV4a83uRPV4ZZ427k8yOhpgKMoxUIxOn0/XgHeWaPL8bZKk5+9toVmjeioowMfgZADw1yKa\nVNPScX3UqkGwks6m6d43F+mjRTtY7g1lFuUYKCYb9h1X95fnae1vx1QxwEdfv3SbRtx9kyxm/swA\nlGxVKvjqm5d76bHbmyrX4dSbX2/UsInLdc6eaXQ04LrjWRu4Sg6HUx/+sEN9x/2oE+fS1LpBiJa+\ndbc6hIcaHQ0AiszTw6zRA1rr8+e6q5zNqmVbE9TzlXnaefCU0dGA64pyDFyFY8mpGvL+Uo3770bl\nOpx64o4b85dJAgB31L1FTUWNu1tNa1fUkVOpuvP1hfr4x53KyWU1C5QNlGPgCjgcTs36aa86j5qr\nlduPqJzNqs9HdtfL97WSh4U/KwDurUblAC14rbeGdL1BWTkOjZ29Qb1f/157DicbHQ245ngWB/6m\n+KTz6vfWj3rps7VKzchW95tq6qfx96r7TTWNjgYAxcbL06K3HmynL17ooapBvtoRf1qRo+frvbmb\nlZmda3Q84JqhHANFlJPr0EeLdqjbS9/p173HFRTgrY+e6qLPnuumKhWYRgGgdLq1WQ2tfOdeDel6\ng3JynZo8f5t6vDxPm2NPGB0NuCY8jA4AuIPfEpL1/LTV2nnwtCTp3g719NrAW1TB39vgZABw7fnb\nrHrrwXa6s00dPf/pGsUeO6e7/rVQw3qE68W+N8vX29PoiECx4cgxUIDM7Fy9++1m3TZmvnYePK3Q\nID99OaqnPni0E8UYQJnTumEVLX+rj57s3Uxmk0nTo3ary4tzFb3zqNHRgGLDkWPgMjbFnNDz01br\nwLFzMpmkB7vfoJf6tZSfj9XoaABgGG+rh/7Zv6XuaF1bI6et1u5DyRowfon6RdTXqwNbq7wfBw7g\n3ijHwB+cuZCh97/bopkr9sjplMKqlNP7wyPUskGI0dEAoMQIr1VRi/51l6Yu2an3v9uqb1bH6Ocd\nRzRmQGvd3bauzGaT0RGBK0I5BlzSMrI1LWq3Pvxhh1IzsmUxm/RE7xv1zF3N5W3lTwUA/sjTw6wn\n7mimHi1qadSna7Rhf5Ke/miVPv5xp165v5U6Nqkmk4mSDPfCMz7KvOwch/4bvV8T523RyXPpkqTO\nTavp5ftb6YYaQQanA4CSr27VQM0d3UvfronRe3O3aM/hMxo4PkrtGlfVK/e10o11KhkdESgyyjHK\nLKfTqcWbDumdbzYp/vh5SdKNdSrq5ftaqX1jTv0MAH+H2WxS/44N1LtNmGYs+03/9/12/fLbMd02\nZoHuaF1HL/a7WbVDyhkdEygU5Rhl0q97j2vc1xu0Le6UJKlWcIBe6t9SvVrV5i1AALgKPlYPPdbr\nRt3fuaGmLNyu6Ut/0w8b4rVk80EN7NxII/o0V6VyNqNjApdFOUaZsudwst6es0krtx+RJFUq56MR\nfW7SgE4N5enByoYAUFwCfb30yv2tNbR7Y038bou+WR2rmSv26Ns1MfrHbU316O1NWP0HJRLlGGXC\nviNn9OGiHZr3ywE5nZKvt6ce69VUj0Q2YfF6ALiGQoP89P4jHTU8sone+WaTlm89rEnzt+qLn/bo\n8V43akDnhgqwUZJRclCOUWo5HE79vPOIpi3ZrTW7EyVJnhazBt3aSM/c1VwVy/kYnBAAyo6G1Sto\nxsge2rDvuMb9d6O2xJ7U2NkbNGneVvXv1EDDujdWreAAo2MClGOUPmkZ2fp2baymR+1WnOuDdj5e\nHurXob7+cXsT1azMgy8AGKV1wyr6/rXeWrHtsD5ZvEu/7j2u6VG79dnS3erRoqaG92yi1g1D+PwH\nDEM5RqlxLDlVM5fv0Zcr9+mcPVOSVKWCr4Z1b6wBXRoq0NfL4IQAAEkymUzqdlNNdbuppnYfOq1P\no3Zrwbo4RW1OUNTmBDWpVVEP9wxX7zZ1ZPWwGB0XZQzlGG5vW9xJfbpktxZtjFdOrlOS1DyssoZH\nhuu2lrX5oB0AlGDhtSpq8qOd9PJ9rTRzxR59sWKvdh06rWc+XqVx/92gIV1v0OCuN6iCP6elxvVB\nOYZbOmfP1OKNBzUnOkabY09Ikixmk+5oXUfDI8PVol6wwQkBAH9H5UCbXrj3Zj3Vu5nmrzugaUt2\na//Rs3pv7hb93/fbdWfbMPVpV1dtGlWRxcxBD1w7lGO4jfTMHC3flqAF6+K0cvsRZec6JEkBNqsG\ndm6oB7s3VmhFP4NTAgCuhrfVQ/d3aqj7OjbQmt+OadqSXVq5/YjmRMdoTnSMggNt6t2mju5uW1dN\na1dkbjKKHeUYJVpOrkNrdidq/roDitqcIHtGtiTJbDKpQ3io7moTpjtuqcNybABQyphMJkWEhyoi\nPFRxx8/pu7UHtGDdASWcvKBpS3Zr2pLdqh0SoLvb1tVdbcMUViXQ6MgoJSjHKHGcTqc2x57UgnUH\n9MOGeCWnZOTf1jysku5qW1d3tK6j4PKcYQkAyoKwKoEa1fdmvXBvC22LO6UF6w7o+1/jdTApRRPn\nbdXEeVvVtHZF3dU2TL1vCVOVCr5GR4YboxyjRLBnZGvdnmNavStRy7cl6Mip1PzbwqqU093t6uqu\nNmGqHVLOwJQAACOZTCbdVLeybqpbWa8OvEXr9hzT/HVxWrzxoHYePK2dB09r7OwNat0gRJ1vrK5O\nTavphhpBMpuZeoGioxzDEA6HU78lJCt611Gt2nlUm2NO5M8hlqSQ8r66q22Y7m4bpsY1g5hTBgC4\nhIfFrIgm1RTRpJreerCdVm4/ogXrDmjFtsNavy9J6/cl6e05m1QxwEcRTUIV0SRUHZtUU+VA3nVE\nwSjHuG5OnE1T9K6jWr3rqFbvTrxkuoTZZFLzsMrq1LSaOjYJVYt6wbzSBwAUiY/VQ7e3qq3bW9XW\neXumVu9OVPTOvIMvx8/YNe+XA5r3ywFJUqMaFdSpSTVFNK2mVvWD5W2lCuFS/B+Ba8LhcCo+6by2\nx53StriT2rAvSXuPnLlkm6pBvvkPUO0bV1V5P9awBABcnXK+XrqjdR3d0bqOnE6nDhw7p+hdeWV5\n3d5j2nv4jPYePqOPftwpb6tFtzSsohZ1K6tZWGU1C6vEesqgHKN4nDyXpm0HTmpb/CltjzulHfGn\nlJKWdck2Pl4eatOoijo2qaZOTasprEo5pksAAK4Zk8mkeqHlVS+0vB7uGa6MrBxtijmh1a4pfXsO\nn9Eq1xHmi2pW9ldzV1FuFlZZ4bWC5MPR5TKF0cbf4nQ6deyMXdsSUrQj7oR+2Zmg7fEndSzZ/qdt\nQ8rb8h9gmodV1s31g+XlyWlAAQDG8LZ6qEN4qDqEh+qV+1vr5Lk0/br3uLbHndL2+JPaefC0Ek5e\nUMLJC1rwa5wkycNiUsPqFdQ8rLLaNa2lxrUqqZLNJH+b1eDfBtcK5Rh/KTvHoYSTKTpw7JxiE88p\n9thZHTh2TgeOnc9fa/j3/Lw91bRORd30u1fbLKUDACjJKgfadGebMN3ZJkxS3tr6+4+e1ba4k3mF\nOe6U9h89q92HkrX7ULJm/bQ3/74h5X1VLzRQdauWU92q5VWvaqDqhQaqUjkf3hV1c5TjMuxCWpYS\nk1N19HSqEpNTdex0quKTzis28ZwOnUi5ZPWI36vg761GNSvqhpqV1Cg0QM3DKimsajlO5wkAcGse\nFrMa1wxS45pBeqBLI0l5S43uPHha2+NOal9iivYdTlZs4hklnbUr6axda3YnXrKPcjar6oYGqm7V\nQNWo5K9qFf0VWtFPoUG+CqngK6sH76CWdIWW46SkJL3wwgvatWuX6tSpo/Hjx6tevXqF7viLL77Q\nJ598ouzsbN1333167rnniiUwCud0OnU+LUvJKek6fT5dx8/YlZicqsTTdh09fUHHkvN+/uOc4D+q\nVtFP9aoGqm5ooOpVLa+6VcupXmh5VfD3VlBQkCQpOTn5evxKAAAYwtfbU20aVVGbRlXyn/tOnjql\nI6dSFZuY965q7LFzee+uJp7T+bQsbYk9qS2xJ/+0L5NJCg60ucqy68t1Obi8TRUDfFQhwJs5zgYr\n9L/+mDFj1KBBA02fPl0zZ87UiBEjtGjRogLvs2PHDk2ZMkWzZ8+Wn5+fBgwYoEaNGikyMrLYgpcV\nTqdT9oxsnU/LUoo9SxfSs3TenqkzFzJ0OiVdp8/nfU9OSdfplAwlp6QrOSXjskd9f8/basl7RRvk\nm/8HWrNygOqFBqpOSDnZCjkl8969e1W5cuXi+lVxnTF+7ouxc2+Mn3u7OH61ggNUKzhA3W6qmX+b\n0+nUqfPpik08pwPHzynxdGrel+td2hNn05Tk+vqr8nyRn7enKpbzUQV/b1UM8FHFAG8FlfPJv1ze\nz1sBvlb5+1hVzteqAJsXn+kpRgWW49TUVK1bt05vvvmmrFarhgwZog8//FAxMTGqX7/+Ze8XFRWl\n7t27Kywsbw5P3759tXjx4lJdjh0OpzJzcpWZnaus7Lzvmdm5SsvMVlpGjtIyc/IuZ+YoPStH6Zk5\nSsvIdl2fI3tmti6kZSnF9fX7yw6n82/n+f0fVpUK/yu/1Sr+75VqeT+vq5oXxQO8e2P83Bdj594Y\nP/dW0PiZTCZVDrSpcqBN7RpX/dPt2TkOnThrz5/OmPeubt7XKdcBr+SUdKVmZCs1I1uHTqQUOZeX\np0UBNqv8bVaVs1nzL/v7WGXz8pCPl6dsXh6uL0/55F/+320+Xh7y8rTIy8OS991qkafFXObmUBdY\njhMSEmS1WmWz2TRgwAC9+eabqlGjhuLj4wssx4cOHVLLli01c+ZMJSUlqUWLFgUebV66+ZCckhxO\np5zOi9/zLjsvuU7KdeTd5rj45XDK4dou1/G76xxO5Tgcedc5nMrJdbiucyrX4bqcm3c5J9eh7FyH\ncnKdys7J+/l/1znyr8vOdSg7J1dZOQ5lZOUq63dluChHaq+UzctDAb/7H72czUsVAn73ajLAR0H5\nP/OWDAAAJZGnh1nVKvmrWiX/y27jdDqVkpblelf44rvEv7uckq5zqZmud5Lz3lFOsWcpMztXp86n\n69T59GLP7e1pkdUzrzBbPfJKs5eHRR4WszwsZnl6mPK+5/9svvRni1kWi1keFpPMZrMsJlP+ZQ+L\nSRaTSWZz3j4s5rzLZpPry2ySyWTKu95kktmcd+Iwk+t2Tw9z/gcqi0uBDSo9PV2+vr6y2+2Ki4tT\nSkqKfH19lZ5e8H/49PR02Ww2HThwQMeOHVNERITS0tIuu/2wScuvLH0J4+VpkbfV9arL6iFvTw/5\nenvK5u0pm5dn/mVf799ftuZfLmfzUjk/LwX6eivA10uBft4KsFnlWQIn73t6eqpLly4KDAw0Ogqu\nAOPnvhg798b4ubfrNX4VJdX5G9s7nU6lZ+bovD1T5+0Zru95XylpmUrLyJbd9ZWWkfW7y9myZ+Z9\nv3g5793vHGVk5SojK0c5uQ5lZOcqIzv3Wv26V8XX21PDerUqdDtPz4Kniv5egeXYx8dHdrtdISEh\n2rBhgyTJbrfLZiv4vOQ+Pj5KS0vT6NGjJUnLly8v8D4rRrcvcuDSJ8f15XrBkSrZUyW7pOMGpgL+\nv727C2mqj+MA/l07W+hecKVNUZlpUo2ZSRFhb4Qlaq7ojd71LgLBEPIqCoq6C4IuuogkIXfjC5GQ\nxAZR0BuE06IXhWPYltFsNiEj13a256Ix8KHWlHj+np7vB7w4x53DFw7bfvuf8///iIhIvTIBZGqB\nPBOA5EC1FkBG4u/v8fDhwz96vpTFsc1mQzgcRiAQgNVqxffv3+Hz+bB06dKUJy0qKsLbt2+T27Is\no7j457+BCgsL5xCbiIiIiOjPS7kwrdFoxMaNG3Ht2jWEw2G0t7cjPz9/xvPGx44dw6VLl2YcV1tb\nC4/HA1mWEQgE0NPT81dPxiMiIiKiv8NvZ22dP38era2tWLduHUpKSnD58uUZ/x8bG0NBQcGMfatW\nrUJTUxMaGhoQjUZx8OBBFsdERERENO9phoeHZ79OGBERERHRX4j9fomIiIiIElgcExERERElCOkU\noSgKbt26hZGREUQiEeTl5cHpdLJjkEp0dXUlr53FYkFVVRVWrlwpOhbN0ujoKNra2rBr1y6sXbtW\ndBxK0/Xr1/H+/XssWPBjbMNut2Pfvn2CU1E6IpEI7ty5g1evXiEej6O8vBxOp1N0LErD5OQkrly5\nMmNfJBLBoUOHYLfbBaWidH38+BG9vb0IBAIwmUyorq5Oed2EFMfxeByLFy9GdXU1zGYzHj9+DJfL\nhZaWFhFxaJY2bdqE3bt3Q5IkyLKMmzdv4vTp09Dr9aKjUZoURYHb7UZOTs7/ri2o2mk0GjidTqxZ\ns0Z0FJqlvr4+hEIhnDx5EgaDAePj46IjUZqysrJw9uzZ5PbExASuXr2K0tJSgakoXd3d3XA4HDh+\n/DhkWYbL5UJra+sve3AIeaxCkiRs3boVZrMZAFBRUYHPnz+n7KJH80dubi4kSfrRsltRoNfrWWCp\nzPUkcpAAAAOgSURBVNOnT7F8+XIYDAbRUWgO4nHOo1abSCSCwcFB1NfXw2g0QqPRwGq1io5Fc9Tf\n3w+73T6rrmskTjAYhMPhAAAsW7YMOp0OoVDol68XMnL8b36/HyaT6bed92j+6O3thdfrhSRJaGho\n4AeEinz58gUDAwM4ceIEZFkWHYfmwOPxwO12Iy8vD/X19cjJyREdiX4jGAwCAF6/fo0nT54gMzMT\n27Zt4y15FYrFYhgcHMTevXtFR6E0lZaW4uXLl9i8eTNGRkawcOHClD9OhRfH09PT6OvrQ11dnego\nNAs7d+7Ejh078OzZM3R1daG5uZkFskrcvXsXW7ZsgSQJf/vTHNTU1MBqtSIWi+H+/fvo6OhAc3Mz\ntFqt6GiUQjgchqIoCIVCOHXqFHw+Hzo6OtDS0gKTyfT7E9C8IcsyNBoNSkpKREehNNXU1KC9vR33\n7t2DJEk4fPhwyu9AoatVRKNRuFwulJWVJYe7ST20Wi3Wr18PSZJmtAun+evdu3cIhUIoKytL7uMt\nenXJz8+HJEnQ6/XYvn07pqamkqOSNH/pdDrE43Fs2LABkiShuLgY2dnZ8Pv9oqPRLHm9XpSXl4uO\nQWmKRCK4ceMGamtrce7cOTQ2NqKzsxOTk5O/PEbY0FEsFkNnZyeys7NRVVUlKgb9ASyu1GNsbAx+\nvx9nzpxJ7hsdHcX4+Djv3qgY34Pz36JFi0RHoD/g27dvGBoaQlNTk+golKZAIIBwOJx8hMlms8Fi\nscDv9yMrK+unxwgrjm/fvp2cdU3qMTU1haGhITgcDuh0OvT39+Pr168oLCwUHY3SUFlZicrKyuR2\nW1sbVq9ezZUPVGJ6eho+nw/FxcUAgAcPHsBoNHIZTBXIyMhAUVERHj16BKfTCb/fj2AwyM9OlXn+\n/DmsViuf81cRi8WCaDSKN2/eYMWKFfjw4QM+ffqU8hoKKY5DoRC8Xi90Oh0uXLiQ3N/Y2AibzSYi\nEqVJo9HgxYsXcLvdUBQFS5YswZEjRziZkug/oCgKPB4PJiYmoNVqUVBQgKNHjybXPKb5bc+ePejp\n6cHFixdhNpuxf/9+Pm+sMgMDA6ioqBAdg2bBYDDgwIED8Hg86O7uhsFgQF1dHXJzc395jGZ4eJj3\n44iIiIiIwPbRRERERERJLI6JiIiIiBJYHBMRERERJbA4JiIiIiJKYHFMRERERJTA4piIiIiIKIHF\nMRERERFRAotjIiIiIqIEFsdERERERAn/AGpJo/JbaqQwAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] }, { "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 10, "text": [ "" ] } ], - "prompt_number": 17 + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, if you are reading this in an IPython Notebook, here is an animation of a Gaussian. First, the mean is being shifted to the right. Then the mean is centered at $\\mu=5$ and the variance is modified.\n", + "\n", + "" + ] }, { "cell_type": "heading", @@ -582,11 +652,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Recall how our discrete Bayesian filter worked. We had a vector implemented as a numpy array representing our belief at a certain moment in time. When we performed another measurement using the `sense()` function we had to multiply probabilities together, and when we performed the motion step using the `update()` function we had to shift and add probabilities. I've promised you that the Kalman filter uses essentially the same process, and that it uses Gaussians instead of histograms, so you might reasonable expect that we will be multiplying, adding, and shifting Gaussians in the Kalman filter.\n", + "Recall how our discrete Bayesian filter worked. We had a vector implemented as a numpy array representing our belief at a certain moment in time. When we performed another measurement using the `update()` function we had to multiply probabilities together, and when we performed the motion step using the `predict()` function we had to shift and add probabilities. I've promised you that the Kalman filter uses essentially the same process, and that it uses Gaussians instead of histograms, so you might reasonable expect that we will be multiplying, adding, and shifting Gaussians in the Kalman filter.\n", "\n", "A typical textbook would directly launch into a multipage proof of the behavior of Gaussians under these operations, but I don't see the value in that right now. I think the math will be much more intuitive and clear if we just start developing a Kalman filter using Gaussians. I will provide the equations for multiplying and shifting Gaussians at the appropriate time. You will then be able to develop a physical intuition for what these operations do, rather than be forced to digest a lot of fairly abstract math.\n", "\n", - "The key point, which I will only assert for now, is that all the operations are very simple, and that they preserve the properties of the Gaussian. This is somewhat remarkable, in that the Gaussian is a nonlinear function, and typically if you multiply a nonlinear equation with itself you end up with a different equation. For example, the shape of `sin(x)sin(x)` is very different from `sin(x)`. But the result of multiplying two Gaussians is yet another Gaussian. This is a fundamental property, and the key reason why Kalman filters are possible." + "The key point, which I will only assert for now, is that all the operations are very simple, and that they preserve the properties of the Gaussian. This is somewhat remarkable, in that the Gaussian is a nonlinear function, and typically if you multiply a nonlinear equation with itself you end up with a different equation. For example, the shape of `sin(x)sin(x)` is very different from `sin(x)`. But the result of multiplying two Gaussians is yet another Gaussian. This is a fundamental property, and a key reason why Kalman filters are possible." ] }, { @@ -626,13 +696,13 @@ ] } ], - "prompt_number": 18 + "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The call `norm(2,3)` creates what scipy calls a 'frozen' distribution - it creates and returns an object with a mean of 2 and a standard deviation of 3. You can then use this object multiple times to get the probability of various values, like so:" + "The call `norm(2,3)` creates what scipy calls a 'frozen' distribution - it creates and returns an object with a mean of 2 and a standard deviation of 3. You can then use this object multiple times to get the probability density of various values, like so:" ] }, { @@ -640,9 +710,9 @@ "collapsed": false, "input": [ "n23 = norm(2,3)\n", - "print ('probability of 1.5 is %.4f' % n23.pdf(1.5))\n", - "print ('probability of 2.5 is also %.4f' % n23.pdf(2.5))\n", - "print ('whereas probability of 2 is %.4f' % n23.pdf(2))" + "print ('probability density of 1.5 is %.4f' % n23.pdf(1.5))\n", + "print ('probability density of 2.5 is also %.4f' % n23.pdf(2.5))\n", + "print ('whereas probability density of 2 is %.4f' % n23.pdf(2))" ], "language": "python", "metadata": {}, @@ -651,13 +721,13 @@ "output_type": "stream", "stream": "stdout", "text": [ - "probability of 1.5 is 0.1311\n", - "probability of 2.5 is also 0.1311\n", - "whereas probability of 2 is 0.1330\n" + "probability density of 1.5 is 0.1311\n", + "probability density of 2.5 is also 0.1311\n", + "whereas probability density of 2 is 0.1330\n" ] } ], - "prompt_number": 19 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -676,18 +746,7 @@ ], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[ 0.38741053 -4.91803911 -2.00879426 -1.15175952 2.63354369 -0.96097707\n", - " 2.45698146 4.22587531 3.69924957 -0.27811435 -0.94132557 4.96510082\n", - " 3.43324112 4.09462176 0.6446632 ]\n" - ] - } - ], - "prompt_number": 20 + "outputs": [] }, { "cell_type": "markdown", @@ -705,16 +764,7 @@ ], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0.5\n" - ] - } - ], - "prompt_number": 21 + "outputs": [] }, { "cell_type": "markdown", @@ -733,18 +783,7 @@ ], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "variance is 9.0\n", - "standard deviation is 3.0\n", - "mean is 2.0\n" - ] - } - ], - "prompt_number": 23 + "outputs": [] }, { "cell_type": "markdown", @@ -771,7 +810,8 @@ "* They express a continuous probability distribution\n", "* They are completely described by two parameters: the mean ($\\mu$) and variance ($\\sigma^2$)\n", "* $\\mu$ is the average of all possible values\n", - "* $\\sigma^2$ represents how much our measurements vary from the mean" + "* The variance $\\sigma^2$ represents how much our measurements vary from the mean\n", + "* The standard deviation ($\\sigma$) is the square root of the variance ($\\sigma^2$)" ] }, { diff --git a/Chapter04_Gaussians/Gaussians_Animations.ipynb b/Chapter04_Gaussians/Gaussians_Animations.ipynb new file mode 100644 index 0000000..79d5a7a --- /dev/null +++ b/Chapter04_Gaussians/Gaussians_Animations.ipynb @@ -0,0 +1,322 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c37d0ec0133c79aa5807b6f8cb1fc339f0365aa42cb11bfe3a91cba980759b23" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division, print_function\n", + "%matplotlib inline\n", + "import sys\n", + "sys.path.insert(0,'../code') # allow us to format the book\n", + "\n", + "# use same formatting as rest of book so that the plots are\n", + "# consistant with that look and feel.\n", + "import book_format\n", + "book_format.load_style()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "\n", + "\n" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 1, + "text": [ + "" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from gif_animate import animate\n", + "from stats import gaussian\n", + "\n", + "def plt_g (mu, variance):\n", + " xs = np.arange(2,8,0.05)\n", + " ys = [gaussian (x, mu, variance) for x in xs]\n", + " plt.plot (xs, ys)\n", + " plt.ylim((0,1))\n", + "\n", + " \n", + "mu = 2\n", + "sigma = 0.6\n", + "def ganimate(frame):\n", + " global mu, sigma\n", + " if frame < 25:\n", + " mu += .2\n", + " elif frame == 25:\n", + " mu = 5\n", + " elif frame < 37:\n", + " sigma -= 0.05\n", + " else:\n", + " sigma += 0.05\n", + " \n", + " plt.cla()\n", + " plt_g(mu,sigma)\n", + "\n", + "animate('gaussian_animate.gif', ganimate, frames=80, interval=50)\n", + "animate??" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGSCAYAAADEnDe9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX+x/HXZVMWF0QFwxUUXFDBBRcUt1xwTVyz0Gqy\nqWyzst0WralmLGuaakZzcsnK3NJSSUzFBRXDfQEEBAEDlyBkERTu7w+L3ziTQHbkAvf9fDzm8RDu\nvYfPdzRe95x77rmmuLg4MyIiIn+QjaUHEBGRmkFBERERQygoIiJiCAVFREQMoaCIiIghFBQRETGE\ngiIiIoYoNyhbtmxh0qRJdOzYkeeff77CG166dClBQUEEBgby7rvv/qEhRUSk6rMr7w5169bl/vvv\nJyoqisuXL1doo4cPH+bDDz/k888/x8XFhSlTptCuXTtCQkL+8MAiIlI1lbuHEhgYyODBg6lXr16F\nNxoeHs6QIUPw9vbG3d2dCRMmsHHjxj80qIiIVG3l7qH8ymyu+BVakpOT6d69O0uWLCEjI4OuXbvy\n7bff3tSAIiJSPVT4RXmTyVThjRYUFODk5ERqaiopKSk4OzuTn59/UwOKiEj1cEv2UBwdHcnPz+el\nl14CICIiAicnp9+8b2pqaoW3KyIiltGsWbNy71PhoPyePZSWLVuSlJRU+nVCQgJeXl43vH+7du0q\nvO3qzM3NjTVr1tCvXz9Lj1IprG29YH1rtrb1gvWt2c3NjV27dlXovuUe8iopKaGwsJDi4mKKi4sp\nKiqiuLi49PawsDDmzZt33WNCQkKIiIggISGBzMxMVq9erTO8RERquHL3UL7++mteeOGF0q/Xr1/P\nI488wiOPPAJAeno6TZs2ve4xnTp1YsaMGUydOpWrV68yefJkBUVEpIYrNyihoaGEhobe8PatW7f+\n5venTp3K1KlTb36yGspaDu/9ytrWC9a3ZmtbL1jnmitCl16pZNb2D9Ha1gvWt2ZrWy9Y55orQkER\nERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVE\nRAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBER\nMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETE\nEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFD\nKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyh\noIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSC\nIiIihig3KBkZGYSFheHv709oaCinTp2q0Ibfe+89+vTpQ48ePXjqqafIzc39w8OKiEjVVW5QZs+e\nja+vL9HR0YSEhDBz5sxyN7plyxbWrVvHmjVr2L59O9nZ2Xz00UeGDCwiIlVTmUHJzc0lKiqK6dOn\n4+DgwLRp00hPTyc+Pr7MjSYlJREQEEDjxo1xdHSkf//+JCYmGjq4iIhULWUGJSUlBQcHB5ycnJgy\nZQppaWk0b96cpKSkMjfaq1cvjh49SkZGBnl5eWzfvp3+/fsbObeIiFQxdmXdWFBQgLOzM3l5eSQm\nJpKTk4OzszMFBQVlbrRjx46MGDGC/v37Y2NjQ9++fZk4ceIN7+/m5nZz01cz9vb2gNZbk1nbmq1t\nvWB9a/51vRVRZlAcHR3Jy8vDw8ODffv2AZCXl4eTk1OZG12+fDkxMTHs3bsXBwcHXnrpJV5//XVe\neeWV37z/3LlzS/8cHBxMv379KrwAERExVmRkJDt27ADA1taW4ODgCj2uzKC0aNGCwsJCMjMzcXd3\np6ioiDNnztCqVasyN7pjxw6GDh1K/fr1ARg9ejRvvfXWDe//8MMPX/f1xYsXKzR8dfPrM5qaur7/\nZm3rBetbs7WtF6xjzX5+fvj5+QHX1rtr164KPa7M11BcXFzo06cPCxYsoLCwkMWLF+Pp6YmPj0/p\nfcLCwpg3b951j/Py8mLz5s3k5ORQWFjIpk2baNOmze9dk4iIVCPlnjY8Z84c4uPjCQwMJDw8nPnz\n5193e3p6+v+U+pFHHqFJkyYMHTqU4OBgcnJyeOmll4ydXEREqpQyD3kBeHh4sGzZshvevnXr1v/5\nnrOzM2+//fYfm0xERKoVXXpFREQMoaCIiIghFBQRETGEgiIiIoZQUERExBAKioiIGEJBERERQygo\nIiJiCAVFREQMoaCIiIghFBQRETGEgiIiIoZQUERExBAKioiIGEJBERERQygoIiJiCAVFREQMoaCI\niIghFBQRETGEgiIiIoZQUERExBAKioiIGEJBERERQygoIiJiCAVFREQMoaCIiIghFBQRETGEgiIi\nIoZQUERExBAKioiIGEJBERERQygoIiJiCAVFREQMoaCIiIghFBQRETGEgiIiIoZQUERExBAKioiI\nGEJBERERQygoIiJiCAVFREQMoaCIiIghFBQRETGEgiIiIoZQUERExBAKioiIGEJBERERQygoIiJi\nCAVFREQMoaCIiIghFBQRETGEgiIiIoZQUERExBAKioiIGEJBERERQygoIiJiCAVFREQMoaCIiIgh\nFBQRETGEgiIiIoZQUERExBAKioiIGKLcoGRkZBAWFoa/vz+hoaGcOnWqQhuOiopi9OjRBAQEMHjw\nYGJjY//wsCIiUnWVG5TZs2fj6+tLdHQ0ISEhzJw5s9yNpqWl8eijj/LQQw8RExPDF198QePGjQ0Z\nWEREqqYyg5Kbm0tUVBTTp0/HwcGBadOmkZ6eTnx8fJkbXbt2LcHBwYSEhGBjY0PDhg1p0KCBoYOL\niEjVUmZQUlJScHBwwMnJiSlTppCWlkbz5s1JSkoqc6NxcXHUrVuXiRMnEhQUxFNPPUVubq6hg4uI\nSNViV9aNBQUFODs7k5eXR2JiIjk5OTg7O1NQUFDmRi9dusT+/ftZsmQJLVq0YObMmbz//vu8+OKL\nv3l/Nze3m19BNWJvbw9ovTWZta3Z2tYL1rfmX9dbEWUGxdHRkby8PDw8PNi3bx8AeXl5ODk5lblR\nR0dHgoKCaNu2LQATJ07k/fffv+H9586dW/rn4OBg+vXrV+EFiIiIsSIjI9mxYwcAtra2BAcHV+hx\nZQalRYsWFBYWkpmZibu7O0VFRZw5c4ZWrVqVudHmzZtz4cKF0q/NZjNms/mG93/44Yev+/rixYsV\nmb3a+fUZTU1d33+ztvWC9a3Z2tYL1rFmPz8//Pz8gGvr3bVrV4UeV+ZrKC4uLvTp04cFCxZQWFjI\n4sWL8fT0xMfHp/Q+YWFhzJs377rHDR48mMjISOLj4yksLGTVqlX07Nnz965JRESqkXJPG54zZw7x\n8fEEBgYSHh7O/Pnzr7s9PT39f0rdvXt3ZsyYwX333UdwcDBOTk489thjxk4uIiJVSpmHvAA8PDxY\ntmzZDW/funXrb37/vvvu47777rv5yUREpFrRpVdERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGg\niIiIIRQUERExhIIiIiKGUFBERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExhIIi\nIiKGUFBERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExhIIiIiKGUFBERMQQCoqI\niBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExhIIiIiKGUFBERMQQCoqIiBhCQREREUMoKCIi\nYggFRUREDKGgiIiIIRQUERExhIIiIiKGUFBERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiI\nIRQUERExhIIiIiKGUFBERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExhIIiIiKG\nUFBERMQQCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExRLlBycjIICwsDH9/f0JDQzl1\n6tTv+gH33HMP/fr1u+kBRUSkeig3KLNnz8bX15fo6GhCQkKYOXNmhTe+ceNG8vLyMJlMf2hIERGp\n+soMSm5uLlFRUUyfPh0HBwemTZtGeno68fHx5W44Ly+PhQsX8uCDD2I2mw0bWEREqqYyg5KSkoKD\ngwNOTk5MmTKFtLQ0mjdvTlJSUrkb/vDDD5k0aRIuLi6GDSsiIlWXXVk3FhQU4OzsTF5eHomJieTk\n5ODs7ExBQUGZG01MTGTv3r3MmjWL6Ojocodwc3P7fVNXU/b29oDWW5NZ25qtbb1gfWv+db0VUWZQ\nHB0dycvLw8PDg3379gHXDmU5OTmVudHXX3+dmTNnVvi1k7lz55b+OTg4WC/ii4hYUGRkJDt27ADA\n1taW4ODgCj3OFBcXd8MXOHJzcwkMDGTbtm24u7tTVFREjx49WLFiBT4+PjfcaPfu3bl06dL1P8hk\nYv/+/f9zCCw1NZV27dpVaNjq7tdnNBcvXrTwJJXD2tYL1rdma1svWN+a3dzc2LVrF82aNSv3vmW+\nhuLi4kKfPn1YsGABhYWFLF68GE9Pz+tiEhYWxrx586573P79+4mNjSU2NpalS5fi7u7OyZMn9XqK\niEgNVu5pw3PmzCE+Pp7AwEDCw8OZP3/+dbenp6eXWWqz2azThkVErECZr6EAeHh4sGzZshvevnXr\n1jIf36NHD7Zv3/67BxMRkepFl14RERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETE\nEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFD\nKCgiImIIBUVERAyhoIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyh\noIiIiCEUFBERMYSCIiIihlBQRETEEAqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCEUFBERMYSC\nIiIihlBQRETEEAqKiIgYQkERERFD2Fl6AJGqrqTEzLmf80k9n0tmVh4Xfi7g3M8F5OQXcqngCrkF\nRRQWFXOluASTjS0mkwlKirGztcGxlh11HO1xcXTA1aUWjeo50ai+I01cnWnWuA71nWtZenkihlFQ\nRH5RUmImKeNnjiVfIC4ti1Pp2Zw6m03q+UsUXim+JT+zrpMDLd3r0sazPm1uc6VtM1c6tWqEu6vT\nLfl5IreSgiJWKzuvkJhTmUTHZfJDfAZHky+Sd/nKb97XrW5tmjWsg0cDp2t7GfUcqe9cCxdHB1wc\n7antYIu9rQ2urvUxm838lJXNlaslFBRdJbfgCjn5RWTlFnL+53zOZxdw9mIuZ85fIie/iCOnL3Dk\n9IXrfl7j+o74ezWmu4873X096NSqIbXsbSvj/xaRm6agiNUoulpMdFwGO4+ms/N4OkdOX8Bsvv4+\nHq7OdGrVkHbNG+DjWZ/Wt7nSyqMuzrXtK/Qz3NzcALh48WK59zWbzWTlFpJ49tqeUFxaFsdTLnIs\n+QLnsgvYfCCFzQdSAKjtYEvPtk3o6+dJcEdP2jVrcO3QmkgVoqBIjfZzXiERB84QcTCFyCNpXCr4\n/z0Qe1sb/L0bEejrQTcfdwK8G9GoXuUdajKZTDSoU5sGvh509/Uo/X5JiZnkczkcOHWO6PgM9sdl\nEJ+ezfYjaWw/kgaAp5sLtwc0Z0jX5gS198TeTufXiOUpKFLj5OQXsWn/ab7dd5qdx9K5UlxSeptv\nU1cGdG5GX7/bCPTxwKmCex6VycbGhJdHPbw86jG+bxsAzmXns/v4WXYcS2fb4VTSL+ayZMsJlmw5\nQX3nWgzt1oJRPbzo6+eJna3iIpahoEiNcLW4hG2HU1m9K4GIAylc/uVFdBuTiaAOtzGsawtuD2hO\n88Z1LTzpzWlc34mxQa0ZG9SakhIzR05fIOJgCpv2JxOXlsWKyHhWRMbTqJ4jY3p5M6FvG/xaNrT0\n2GJlFBSp1pIzc/gyMo6vIuPJzM4v/X6vdk0Y08ubkG4taVjP0YITGs/GxoS/dyP8vRsxa3w3TqVn\n8e2+06yJSiDpx5/5JPwYn4Qfo2PLhtw5wJc7enlTT6cnSyVQUKTaKS4p4ftDqSyJOFH6mgKAV5N6\nTOzrQ2hQazwbulhwwsrVxtOVmaGuPDE2gMNJF1i1K561UYkcTb7A0U8vMGf5XsYFtWHa4PZ0aOFm\n6XGlBlNQpNrIyS/ii+2xfLr5OKnncwGobW/LqJ5eTBnQlu4+7lZ95pPJ9P97Li/d2YPvYlJYvi2W\n3cfPsnxbLMu3xRLo6870kI4M7doCWxu91iLGUlCkyku/mMsnm47x+bZYcn95n0iLxnWYent7JvXz\nwdWltoUnrHpqO9gxppc3Y3p5k3A2m6VbTvDVjnii466976ZF4zrcP8yPO/u3xbGWfg2IMfQvSaqs\nhLPZfPTtYdbsSig9U6tXuyY8ENKR2wOaY2NjvXsjv0fr2+ozZ2pvnp3Yna92xLNw01FSzl1i9tI9\nzF97kPuGduDeIR10GRj5wxQUqXJiU3/ivbUH+TY6CbP52plaY3p589CITnRspTOXbpZzbXvuHdKB\nqbe347uYFD765ggHE88xb1UMH397hHuHdODPwzvSoI72+OTmKChSZcSm/sS7aw6wIfo0AA52NkwI\n9uGhEZ1o5VHPwtPVHLY2Ngzv3oqQbi2JOvEj/1h/iB3H0vnH+kP8+7tj3DukAw+O6KSwyO+moIjF\nnc74mXdWx/D1nkTMZqhlb8uUAb48PLIzt7lZz9lalc30y3t0gjrcRsypTOavOcC2I2l8+M1hlm45\nwQMhHZke0pE6Tg6WHlWqCQVFLCYzK59318TwxfY4ikvM2NvacNfAtjwy2p8mDZwtPZ5V6drGnc+e\nDeFAwjnmrfqByKPpvLPmAIs2H+exMf7cM7iDLk4p5VJQpNJdyi/i4w1HWLDpKAWFV7ExmZjUz4eZ\nY7vQrFEdS49n1bq0bsznzw1n78kf+evKH9gXl8Gc5fv493fHmTW+G6FBrXUyhNyQgiKV5mpxCZ9v\ni+Wd1Qe4kFMAQEi3ljw7sRttPF0tPJ38p57tmrB69ki2Hk7lL19EE5uWxeP/3M4n4cd4+a4e9G5/\nm6VHlCpIQZFKse1wKnOW7yU+PRuAbm3cmX1XD7q1cbfwZHIjJpOJQf7N6d+pKat3JfDXlT9wNPkC\nE97YwOAuzZk9pUfp5fpFQEGRWyw+9SJPfBjO1kOpwLU3JL4wOZARga2s+l3t1YmtjQ0Tg30Y1cOL\nBZuO8o/1h4g4cIbth9OYcUc3np/S29IjShWhoMgtcSm/iL+t2co/vv6Bq8Ul1HG054mxXbh3iF7c\nra4ca9nx+B0B3Nnfl7+u/IEvI+N4b3U0y7cc47mJ3ZgY7KPXV6xchS7mk5GRQVhYGP7+/oSGhnLq\n1KlyHxMZGcm4cePo2rUr/fv35+OPP/7Dw0rVZzabWbXzFMGzvuK91dEUl5Qwpb8vO9+ZyIMjOikm\nNUDj+k7Mmx7Mxrl30LtDU87/nM9TC3cw+tV1HE46b+nxxIIqFJTZs2fj6+tLdHQ0ISEhzJw5s9zH\n5Ofn8/TTT7N3715WrFjB+vXrWb9+/R8eWKquk2d+InTuNzz+z+2cyy6gR9vb2P33e/jb9OBK/SRE\nqRydWjXi+3l3sfjZUXi4OnEw8TwjXv6aZxbtJCv3sqXHEwsoNyi5ublERUUxffp0HBwcmDZtGunp\n6cTHx5f5uJCQEHr16oW9vT3u7u707duXQ4cOGTa4VB25BUW8+tkehr64hui4TBrWdWT+n/ux7d0w\nurTxKH8DUm2ZTCYmD+hA5N8m8NCITtjamFi+NZa+T33FF9tjKSkxW3pEqUTlBiUlJQUHBwecnJyY\nMmUKaWlpNG/enKSkpN/1gw4dOkTbtm1velCpesxmMxuiT9Nv1ioWbjqG2Qz3DmnPjnkTdDzdyrg4\nOvDSlB5E/GUcvdo1ISu3kKcX7iR07jfEpv5k6fGkkpT7onxBQQHOzs7k5eWRmJhITk4Ozs7OFBQU\nVPiHLF++nCtXrjB27NjfvN1aTj20t7/2+eU1Yb3JGdk88WEE4fsTAejm04QPHh1KwH/skdSk9VaU\nta35v9fby82Nre96s2L7CZ5dsJX98ZkMfXEtT4wL5IUpQTjVtrfkuIaw1r/jiig3KI6OjuTl5eHh\n4cG+ffsAyMvLw8mpYsfEIyMjWbRoEZ9//vkNB5s7d27pn4ODg+nXr1+Fti2V72pxCR+s3c/cZbvI\nL7xCPedazL23H38K8cfWVh/YJP9/GGxYd29eWbyDBRsOMO+rvazacZIPHhnK4G5elh5RyhEZGcmO\nHTsAsLW1JTg4uEKPM8XFxZV5kDM3N5fAwEC2bduGu7s7RUVF9OjRgxUrVuDj41Pmxg8cOMDMmTNZ\ntGgRrVu3/s37pKam0q5duwoNW939+ozm4sWLFp7k5hxOOs+sT3ZyPOXa/GN6efPq3T1pXP+3n1xU\n9/XeDGtbc0XWezDxHM98spMTZ64d+rqjlzevhfWiYT3HSpnRaNb4d7xr1y6aNWtW7n3LfUrp4uJC\nnz59WLBgAYWFhSxevBhPT8/rYhIWFsa8efOue1xsbCyPP/4477333g1jItVD/uUrvPrZHka+vI7j\nKRdp2tCFZbOG8dEjA28YE5FfBXg3ZuPcsbx0ZyC1HWz5ek8i/Z5ZyYrIeMxmvWhfk1ToGMWcOXOI\nj48nMDCQ8PBw5s+ff93t6enp/1PrJUuWkJWVxX333UdAQAABAQE88MADxk0ulWL7kVQGPnftRXeA\nB0I6su3t8Qz0L//Zisiv7O1seGhkZ7a+PZ5+HT3Jzi3kyQWRTH5zI8mZOZYeTwxS7iGvW02HvKqm\nny5d5rXle1m189qbWDu0cONv9/els1ejCm+jOq3XKNa25ptZr9lsZvWuBF79bA9ZuYXUdrBl1vhu\nTA/xw9am6r8OZ41/x4Yd8hLrYjab+WZfEgOeWcWqnaeobW/LC5O7s2HOHb8rJiI3YjKZGN+3DZF/\nm8DY3t5cLipm7uf7GP3Kek6e0SnG1ZmCIqUys/KZ/t4WHvz791zIKaBnWw82vxnKjFH+2Nvpn4oY\ny62uI/+YMZAlTw+lSQNnDiWdJ+SltbyzOoaiq8WWHk9ugn5LCGazmRWR8Qx4ZiWbfkjGpbY9b94b\nxMoXR+LdpL6lx5Ma7vaA5mx7ezxhg9pxpbiEd9ccIOTFtRxK1HXBqhtdbdjKpV/I5ZlFO9l+JA2A\ngZ2b8daf+uCpz3KXSlTHyYG37uvD6J5ezPpkJ7FpWYx6ZR0PjujIk+O64uigX1XVgfZQrFRJiZml\nW04w4NlVbD+SRn3nWrz3YD+WzhqqmIjF9G5/G1veHMefh3cE4KNvjzDkhTVEx2VYeDKpCGXfCqWc\ny+HphTuIOvEjAMO7t+SNe4L0nhKpEhxr2fHyXT0ZEdiKpxbs4NTZbELnfsN9Qzrw3MTuNeLyLTWV\n9lCsSEmJmUXhxxj03GqiTvyIW93afPzoQBY+MVgxkSqnaxt3vvtLKI+N8cfGZGLRd8e5/fnVRJ04\na+nR5Aa0h2IlkjJ+5qkFkUTHZQLXLpsyd2ov3OpWz8tfiHWoZW/LsxO7M7x7K2YuiOTkmZ+Y8MYG\npt7ejhcnB+Li6GDpEeU/aA+lhisuKeGfG44w+LnVRMdl0qieI4tmDuajRwYqJlJtdGzVkI1z7+Dp\ncV2xszWxdMtJBj67mh1H0yw9mvwH7aHUYPFpWTy5YAcHE88BML5vG169uyeuLrUtPJnI7+dgZ8vM\n0C4M7daCpxbs4MjpC9z51iam9Pdl9l09qeukvRVL0x5KDXS1uIQP1h1i6ItrOJh4Dg9XZ5Y8PZT3\nH+yvmEi11765G9+8NobnJ3XHwc6Gz7fHMeCZVXx/6IylR7N62kOpYY6nXOSpBTs4mnwBgDv7+/Ky\nnr1JDWNna8Mjo/0Z0qVF6V741L99p71wC9MeSg1RdLWYd1bHMHz2Wo4mX8DTzYXPnw1h3vRgxURq\nLJ+mrqx7dRSzp/Sgtr0tq3aeYsAzq9i0/7SlR7NK2kOpAQ4lnuepBZHEpmUBMO329rwwubvOgBGr\nYGtjw4MjOjGkawueXrCDfXEZ3P/eFkb2aMXr03rTqJ5Oia8sCko1VlB0lXdWxfCvjUcpMZtp6V6X\nedOD6dWuiaVHE6l0Xh71WPXSSJZsOcFfvozm232n2XX8LHPCehEa1BqTyWTpEWs8HfKqpvac/JHb\nn1vNxxuOAPDn4R3Z8uY4xUSsmo2NiXuHdGDr2+MJ9rv2QV6PfbydqfO+I/1irqXHq/EUlGomJ7+I\n5/69i/Gvf0tyZg6+TV1Z9+poXr6rJ461tMMpAtCsUR0+fy6Ed6YHU8/Jga2HUhn4zCqWbDlBSYk+\ndvhWUVCqkc0xKQx4ZhXLvj+Jva0NT4Z2IfyNsXRp3djSo4lUOSaTicn9fdn21wmEdGtJ7uUrvPDp\nbsa9/g0JZ7MtPV6NpKe01cC57HxeXrqHb/YlARDg3Zh50/vStlkDC08mUvW5uzqx8Inb2bg/mRcX\n7yY6LpPBz6/m8TsCeHhUZxzsbC09Yo2hoFRhZrOZLyPjmLt8Hz/nF+FUy47nJnbnniHtq8Vnb4tU\nFSaTiRGBrQjqcBtzl+/ly8h4/rYqhm/2JvHX+/vStY27pUesERSUKirhbDbP/XsXe05eu8T8wM7N\nePPeIJo2qmPhyUSqr/rOtXjngX6MDWrNs4t2EZuWxZjX1jPt9vY8N7E7dfSerT9ET3OrmMIrxby7\nOobBz69mz8lrl5j/cMYAls4aqpiIGKRPB0+2vDWOR0b7Y2tjYnHECfo/s5KN+09jNutF+5ulPZQq\nJOrEWZ7/dHfpC4Z39vflxTsDdRkJkVvA0cGO5yd1Z0wvL575ZBcHE88x/b0tDO7SnNen9tYTuJug\noFQBF37vnpEaAAARFElEQVQuYO4X+1i18xQA3k3q8dc/9aWn3lMicsu1b+7GuldHsez7WN5aEU3E\ngTPsOn6WJ8d2YXpIR+ztdCCnohQUCyouKeHzbXG8tWI/2XmF1LK35bEx/jw0sjO17HXmiUhlsbWx\n4Z7B7RnWrQWvfbaX9XuTeOPLaFbtOsWb9wbRo62e3FWEgmIhR06f54VPd3Mw8TwAwX6e/OXeIFp5\n1LPwZCLWy8PVmY8fHcTEYB9eXLybuLQsQud+y/i+bZh9Zw8a1tOH0pVF+3KV7KdLBTz3710Mn/01\nBxPP4+HqzD8fG8Tnz4UoJiJVxIDOzfj+7fE8GdqFWr9cxbjv01/x7++OcbW4xNLjVVkKSiUpLilh\n0aZDdPzTApZ9fxJbGxN/Ht6RyL+NZ1QPL124TqSKcXSw46lxXfn+rXEM6NSUnPwiZi/dQ+9HF7P7\nWKqlx6uSdMirEuyPy+ClpVEcS74IQO/2TXhjWhA+TV0tPJmIlKeVRz2WPTOMzTEpvPLZHo4knWPQ\n08u5o5c3L94ZyG1uLpYescpQUG6h9Iu5vPllNGujEgFo2qgub94/gAEdGmmPRKQaMZlMDO3WkuBO\nTfl0SzzvrNzH13sS+e5ACo+O9ueB4R1xdNCvUx3yugUKCq/y7uoYgp/+irVRidSyt+WJsQEcXng/\nE/q1U0xEqilHBztmh/Xl8MLpjAhsRUHhVf668gf6z1rJ+r2JVv+mSCXVQCUlZlbvPsXbX/3Ajz/l\nATCyRytenBxI88Z1ca6tyzqI1AQt3Oux4PHb2X38LK98toeTZ37ioQ+2sij8OK/c3dNqrwCuoBgk\n6sRZ5izfx9HkCwD4tXTjtbt76c2JIjVYUIfb+O6NsXy5PZ63V+7nh1OZjHplHWN6efP8pO40s7J3\n2ysof1Bs6k/85ctovj907awPD1dnnp3YjfF92mBjo0NbIjWdrY0Ndw1sy+ieXvxj/SEWhh9j3Z5E\nNu0/zT2DO/DYHf5Wc/kkBeUmpV/M5d3VMXy14xQlZjPOte15aGQnHhzeSZ+cKGKF6jg58PzkQMIG\ntePtlT+wZncCCzYd5cvIOB4Z3Zn7hvjV+N8NNXt1t8BPly7zwbpDLNlygsIrxdjZmpg6sD0zx3bR\nu2hFhKaN6vDBwwN4IKQjb3wZzc5j6fzly/0sCj/OzNAuTO7nW2OvD6agVFBOfhELNh5l4aaj5F6+\nAsCYXt48Pb4rXnqHu4j8l46tGvLl88OJPJLGmyv2czT5As/9exf/3HCEJ0O7cEdv7xr3QXkKSjly\nC4r49+bj/GvDUbLzCgEY0Kkpz03qjl/LhhaeTkSqun6dmtLXz5MN+0/z15U/kPTjzzz28XY+WHeI\nJ8d1YWSgV415vVVBuYFL+UV8GnGcf208SnbutZD0ateEZyZ0I9DXw8LTiUh1YmNjYlQPL0K6tWT1\nrgTmr43h1NlsHvpgK+81PcgTYwNqRFgUlP+SnVfIp98d55PwY6V7JN193HlqXFf6dLhNb0oUkZtm\nZ2vDpH4+jA3yZkVkPH9fd5C4tCwe+mAr7952gMfuCGB0Ty/sbKvnoTAF5Rfnf87nk/DjLN58vPQ1\nEoVERG4FBztbwga1Y1I/H77aEc/fvz7EqbPZPPrRNt5ZHcOMUZ0Z16dNtftcJKsPSsq5HP654Qgr\nIuMpvFIMQF8/Tx6/I4CebT0UEhG5ZRzsbLl7YDsmBvuwZlcCH6w/RHJmDrM+2cm8VTFMD/Hj7oHt\nqONUPa6yYbVBOZBwjn9tPMLG6GRKfrn+ztCuLZgxqjNd27hbeDoRsSYOdrZM7u/L+L5t+HZfEv/4\n5jAnz/zE619E8/7XB7l7YDvuG9qhyl/Z2KqCcrW4hO9iUli46Sj74zMBsLM1Ma53Gx4e2VmXkxcR\ni7KzteGO3q0Z08ubbYfT+PCbQ+yNzeDjDUdYGH6U0T29uX+YH529Gll61N9kFUHJyr3Ml9vj+HTz\nCdIv5gJQ18mBsEHtuHdIB5o0cLbwhCIi/89kMjHQvxkD/ZtxKPE8/9p4hG/3nWbN7gTW7E6gWxt3\n/jSsAyHdWlWpN0nW6KAcPX2BxRHH+Toqkcu/vD7S0r0u9w/zY0LfNrg4Vo/jkiJivfy9G/Hxo4N4\nYfIlFkec4PNtsfxwKpMfTmXiXt+Juwa25a6BbfFwtfwT4xoXlLzLV1i3J5HPtp7kcNKF0u/379SU\newa3Z5B/82p/rreIWJ9mjeowe0oPngztwsqdp1i8+Tinzmbz7poDvP/1QYZ0acHdg9oS7NfUYr/j\nakRQzGYzBxPP82VkHOuiEktP+63n5MDEfj5Mvb29Lo8iIjWCc2177hncnmm3tyPqxI8sjjjBdzHJ\nbPrh2v+aNXJhUrAvE/v54FnJL+JX66BkZuWzNiqBlTviiU3LKv1+tzbu3D2oLSN7eOljOUWkRjKZ\nTAR1uI2gDreRmZXPl5FxfL4tltTzucxbHcM7a2II9vNkQl8fhnVrWSlXOq52v23zLl8h/Idk1u5O\nIPJoeukpv251azO+Txsm9/PV2VoiYlXcXZ14/I4AHhndmd3Hz/LF9jjCf0gm8mg6kUfTcaltz4ge\nrRjbuzW92ze5ZRelrBZBuVx0lcgjaazfm8R3B1IoKLwKgL2tDUMCmjOhrw8D/ZvhYFe93lUqImIk\nWxsbgjs2JbhjU366dJn1e5NYtTOeg4nnWREZz4rIeDxcnRjV04vRPb0J8G5k6Ju3q2xQCoqusuNI\nGhv2n2ZzTAqXCq6U3tbdx507erdmdE8vGtSxjk9CExH5PRrUqc09g9tzz+D2JJzNZs3uBL6OSiDl\n3CUWbjrGwk3HaNrQhZE9vBjevSUB3o3/8Iv5VSoo2XmFbDuUSnhMMlsPpZL/y54IXPuM9lE9vBjd\n04vmjetacEoRkeql9W31eWZCN2aN78qBhHOs35vEt/tOk3Yhl39uOMI/NxzBw9WZYd1aMLRrC3q2\na3JTR3yqRFAWbDrKloNn2Bf7I1eLzaXf79SqISHdWzKyh5fO0hIR+YNMJhNd27jTtY07r9zVk/3x\nGWzYn8ym/ac5ezGPxREnWBxxgrpODgzo3IzH7/Cnt5tbhbdfJYLy2md7AbC1MdG7fROGdGnBsG4t\nadaojoUnExGpmWxsTPRo24QebZvw2t09OZR0nvAfUog4kEJcWhbr9iTy2Bj/37XNKhGUsb29GeTf\nnAH+zajvXMvS44iIWBWTyUSAd2MCvBvz/KTuJGfmsONoGr6/84zZKhGUf8wYaOkRRETkFy3d69LS\nvf3vflzVuaqYiIhUawqKiIgYQkERERFDKCgiImIIBUVERAyhoIiIiCHKDUpGRgZhYWH4+/sTGhrK\nqVOnKrThpUuXEhQURGBgIO++++4fHlRERKq2coMye/ZsfH19iY6OJiQkhJkzZ5a70cOHD/Phhx+y\ndOlSvvnmGzZs2MCmTZsMGbi6O3nypKVHqFTWtl6wvjVb23rBOtdcEWUGJTc3l6ioKKZPn46DgwPT\npk0jPT2d+Pj4MjcaHh7OkCFD8Pb2xt3dnQkTJrBx40ZDB6+urO0forWtF6xvzda2XrDONVdEmUFJ\nSUnBwcEBJycnpkyZQlpaGs2bNycpKanMjSYnJ9OqVSuWLFnC22+/TevWrTl9+rShg4uISNVS5qVX\nCgoKcHZ2Ji8vj8TERHJycnB2dqagoKDMjRYUFODk5ERCQgJnz54lODiY/Pz8G97f7XdczbI6s7e3\nZ+DAgdSvX9/So1QKa1svWN+arW29YH1rtre3r/B9ywyKo6MjeXl5eHh4sG/fPgDy8vJwcnIqc6OO\njo7k5+fz0ksvARAREVHmY3bt2lXhgUVEpGoqMygtWrSgsLCQzMxM3N3dKSoq4syZM7Rq1arMjbZs\n2fK6w2IJCQl4eXn95n2bNWt2E2OLiEhVU+ZrKC4uLvTp04cFCxZQWFjI4sWL8fT0xMfHp/Q+YWFh\nzJs377rHhYSEEBERQUJCApmZmaxevZqQkJBbswIREakSyr18/Zw5c5g1axaBgYF4e3szf/78625P\nT0+nadOm132vU6dOzJgxg6lTp3L16lUmT56soIiI1HCmuLg4c/l3ExERKZsuvSIiIoZQUERExBAW\n+Qjg4uJi1q5dS2JiIleuXKFJkyaMGjWKxo0bW2KcSrFy5crS9bq6ujJo0CDatWtn6bFuueTkZBYt\nWsSYMWPo1q2bpce5pT755BPS0tKwsbn2PK19+/aMHz/ewlPdOleuXGHDhg0cP34cs9lM586dGTVq\nlKXHumWys7P5+9//ft33rly5wp133kn79r//43Krg4yMDNavX09mZiZ16tRhyJAhZa7VIkExm824\nubkxZMgQ6tatS1RUFMuXL6/QdcKqq759+zJ27Fjs7OxISEhg2bJlvPjiizg4OFh6tFumuLiYzZs3\n06hRI0wmk6XHueVMJhOjRo2ia9eulh6lUmzcuJGsrCwef/xxnJ2dOXfunKVHuqXq16/Pyy+/XPr1\nxYsX+eijj2jTpo0Fp7q1Vq1ahZ+fHw888AAJCQksX76cWbNm3fB9hRY55GVnZ8eAAQOoW7cuAAEB\nAfz0009lvpu+uvPw8MDOzg6z2UxxcTEODg41/pfs3r178fX1xdnZ2dKjVBqz2TrOcbly5QqHDh1i\n5MiRuLi4YDKZcHd3t/RYlSomJob27dv/rneSVzcXLlzAz88PgNatW2Nvb09WVtYN72+RPZT/lpqa\nSp06dcp9B351t379eg4cOICdnR1Tp06t0f8QL126xMGDB3nwwQdJSEiw9DiVJiIigs2bN9OkSRNG\njhxJo0aNLD3SLXHhwgUATpw4wZ49e3BycuL222+vsYd+/ltJSQmHDh1i3Lhxlh7llmrTpg3Hjh0j\nODiYxMREatWqVeYTB4sH5fLly2zcuJHhw4dbepRbbvTo0YwYMYL9+/ezcuVKHnvssRoblfDwcPr1\n64edncX/iVWaYcOG4e7uTklJCdu3b+ezzz7jsccew9bW1tKjGa6wsJDi4mKysrJ4+umnOXPmDJ99\n9hkzZ86kTp06lh7vlktISMBkMuHt7W3pUW6pYcOGsXjxYrZu3YqdnR1Tpkwp879pi57ldfXqVZYv\nX07Hjh1Ld6tqOltbW3r27ImdnV25V22urlJSUsjKyqJjx46l37OGQ0Genp7Y2dnh4ODA4MGDyc3N\nLX0mX9PY29tjNpsJCgrCzs4OLy8vGjZsSGpqqqVHqxQHDhygc+fOlh7jlrpy5QqffvopISEhvPba\na0ybNo2vvvqK7OzsGz7GYk8fS0pK+Oqrr2jYsCGDBg2y1BgWU5N/waanp5Oamsrs2bNLv5ecnMy5\nc+esYk/0P9XUv+cGDRpYegSLKSgoIDY2lhkzZlh6lFsqMzOTwsLC0sOYLVq0wNXVldTU1Bteadli\nQVm3bl3pWTE1XW5uLrGxsfj5+WFvb09MTAx5eXk19sKYvXv3pnfv3qVfL1q0CH9//xp99tPly5c5\nc+ZM6UVQIyMjcXFxqbGnwjs6OtKyZUt2797NqFGjSE1N5cKFCzX23/R/Onz4MO7u7jX29bFfubq6\ncvXqVU6ePEnbtm05e/Ys58+fL3PdFglKVlYWBw4cwN7entdff730+9OmTaNFixaWGOmWMplMHDly\nhM2bN1NcXEzjxo256667avxJCNakuLiYiIgILl68iK2tLU2bNuXuu+8ufU9KTRQaGsrq1at54403\nqFu3LhMmTLCK108OHjxIQECApce45ZydnZk0aRIRERGsWrUKZ2dnhg8fjoeHxw0fo2t5iYiIIWru\n0ycREalUCoqIiBhCQREREUMoKCIiYggFRUREDKGgiIiIIRQUERExhIIiIiKGUFBERMQQ/wcbA+9A\natFqvQAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Chapter04_Gaussians/gaussian_animate.gif b/Chapter04_Gaussians/gaussian_animate.gif new file mode 100644 index 0000000..30ac117 Binary files /dev/null and b/Chapter04_Gaussians/gaussian_animate.gif differ diff --git a/code/stats.py b/code/stats.py index d0e8be9..7565ca6 100644 --- a/code/stats.py +++ b/code/stats.py @@ -22,6 +22,7 @@ import matplotlib.pyplot as plt import scipy.sparse as sp import scipy.sparse.linalg as spln import scipy.stats +from scipy.stats import norm from matplotlib.patches import Ellipse _two_pi = 2*math.pi @@ -325,9 +326,72 @@ def do_plot_test(): +def norm_cdf (x_range, mu, var=1, std=None): + """ computes the probability that a Gaussian distribution lies + within a range of values. + + Paramateters + ------------ + + x_range : (float, float) + tuple of range to compute probability for + + mu : float + mean of the Gaussian + + var : float, optional + variance of the Gaussian. Ignored if std is provided + + std : float, optional + standard deviation of the Gaussian. This overrides the var parameter + + + Returns + ------- + probability : float + probability that Gaussian is within x_range. E.g. .1 means 10%. + + """ + + if std is None: + std = math.sqrt(var) + return abs(norm.cdf(x_range[0], loc=mu, scale=std) - + norm.cdf(x_range[1], loc=mu, scale=std)) + + + +def test_norm_cdf(): + + # test using the 68-95-99.7 rule + + mu = 5 + std = 3 + var = std*std + + std_1 = (norm_cdf((mu-std, mu+std), mu, var)) + assert abs(std_1 - .6827) < .0001 + + std_1 = (norm_cdf((mu+std, mu-std), mu, std=std)) + assert abs(std_1 - .6827) < .0001 + + std_1half = (norm_cdf((mu+std, mu), mu, var)) + assert abs(std_1half - .6827/2) < .0001 + + std_2 = (norm_cdf((mu-2*std, mu+2*std), mu, var)) + assert abs(std_2 - .9545) < .0001 + + std_3 = (norm_cdf((mu-3*std, mu+3*std), mu, var)) + assert abs(std_3 - .9973) < .0001 + + + +test_norm_cdf() + if __name__ == '__main__': - from scipy.stats import norm + + + test_norm_cdf () do_plot_test()