From ada8d94da95fda33ac7bf0a523eda0bc51574cb7 Mon Sep 17 00:00:00 2001 From: Roger Labbe Date: Tue, 29 Apr 2014 16:59:40 -0500 Subject: [PATCH] Wrote all but the summary of the Gaussian chapter. --- Gaussians.ipynb | 131 ++++++++++++++++++++++++++++++++---------------- 1 file changed, 89 insertions(+), 42 deletions(-) diff --git a/Gaussians.ipynb b/Gaussians.ipynb index 72b8155..5beb06d 100644 --- a/Gaussians.ipynb +++ b/Gaussians.ipynb @@ -23,24 +23,16 @@ "\n", "Finally, the histogram does not represent what happens in the pysical world very well. For example, in the last chapter we had this as a probability distribution: [ 0.2245871 0.06288015 0.06109133 0.0581008 0.09334062 0.2245871\n", " 0.06288015 0.06109133 0.0581008 0.09334062]. The largest probabilities are in position 0 and position 5. This does not fit our physical intuition at all. A dog cannot be in two places at once.\n", - "\n", - "Consider using a laser rangefinder. It works by shooting a laser beam to a target, which bounces the laser beam back to a sensor in the rangefinder. The device times the round trip time of the beam, and from that calculates the distance. However, if the beam is not in a vacuum the light beam will be affected by the atmosphere. Recall how images waver over hot tarmac. They waver because the light is being bent by heat currents in the air. The same thing happens to a laser beam, though obviously in most cases the effect is much smaller. So suppose that the rangefinder is exactly 100m from an object. The beam might travel 100.01m due to atmospherics. Less often, it might travel 100.1m. It would rarely travel 101m, and probably never travel 200m. Without doing the math we can see that the laser will almost aways have some error, but most of the time the error will be very close to the actual value. Another way to say the same thing is that larger errors happen less frequently than smaller errors. This is not happenstance, but a consequence of how laser rangefinders work physically. \n", + " \n", + " \n", + "Consider how a bimetallic thermometer works. These thermometers use a strip of bimetallic material bent into a loose coil shape, with a pointer attached to the spring. The two metals expand at different rates, so the strip will either coil tighter or uncoil as the temperature changes, and the pointer indicates the current temperature. It is in some ways a crude system, yet it works well. What kinds of errors might we expect from this system? It will not respond to rapid temperature changes, so it will always lag the current temperature a small amount. There may be frictions in the system causing the pointer to not register the correct value. And so on. Finally, when you read the dial you will rarely be exactly perpindicular to the face of the dial. Viewing the pointer against the dial from an angle will result in a small reading error - 34 might look like 35 from the left of the dial, for example. However, in total all of these effects will generally be low, and we would expect the total errors to always be small. We would probably agree that an error of 2 degrees is reasonable, but an error of 100 degrees would occur extremely rarely, if ever. Furthermore, we would expect the errors to cluster around the correct value. So in most systems we would expect the errors to equally likely to be larger or smaller than the correct value. If the correct temperature was 35 degrees, and we were told the thermometer was accurate within 2 degrees, we wouldn't be suprised to read either 33 degrees or 37 degrees. \n", "\n", "So we desire a unimodal, continuous way to represent probabilities that models how the real world works, and that is very computationally efficient to calculate. As you might guess from the chapter name, gaussian distributions provide all of these features.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So let us explore how gaussians work. A gaussian is a probability distribution that is completely described with two parameters, the mean and the variance. It is defined as:\n", - "$$ \n", - "f(x, \\mu, \\sigma) = \\frac{1}{\\sigma\\sqrt{2\\pi}} e^{-0.5*{(x-\\mu)^2}/\\sigma^2 }\n", - "$$\n", "\n", - "where $\\mu$ is the mean and $\\sigma^2$ is the variance (we will define these in a moment).\n", - "Let us plot that with Python. First, we will define a function that computes the gaussian for any x. " + "\n", + "#### Probability Distributions\n", + "\n", + "Before we go into the math, lets look at a graph of the gaussian distribution. Don't bother reading the code yet; it is not important at this stage." ] }, { @@ -50,30 +42,75 @@ "import math\n", "\n", "def gaussian (x, mu, sigma):\n", - " ''' compute the gaussian with the specified mean and sigma'''\n", - " return math.exp (-0.5 * (x-mu)**2 / sigma) / math.sqrt(2.*math.pi*sigma)" + " ''' compute the gaussian with the specified mean(mu) and sigma'''\n", + " return math.exp (-0.5 * (x-mu)**2 / sigma) / math.sqrt(2.*math.pi*sigma)\n" ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 1 + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "xs = arange(0,10,0.1)\n", + "ys = [gaussian (x, 5, 3) for x in xs]\n", + "plot (xs, ys)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlWX+x/H3UWjKJVNDFNBQQIFUtFBSszBFR0tLs4my\ndBIdszGzsfmZNU3aYlKTbTiNY9poGVlZaaXUWFHmEpmWJZotUIhpTrnkksDh+f1xF2bqERDOfZbP\n67q8CjgPfDzgl++5n3txOY7jICIiAa2O7QAiIlL7VOxFRIKAir2ISBBQsRcRCQIq9iIiQUDFXkQk\nCJyw2Ofk5BAfH09cXByZmZlHfXzBggUkJSXRsWNHevTowYYNGyo+Fh0dTceOHencuTNdu3at2eQi\nIlJpLk/z7N1uN+3atWP58uVERkbSpUsXsrOzSUhIqHjM6tWrSUxMpFGjRuTk5DBlyhTWrFkDQOvW\nrfnwww9p0qRJ7f9NRETkuDx29nl5ecTGxhIdHU1oaCjp6eksXrz4iMd069aNRo0aAZCSksLWrVuP\n+LjWbImI2Oex2BcXF9OyZcuKt6OioiguLj7u4+fMmcOAAQMq3na5XPTp04fk5GRmz55dA3FFRKQ6\nQjx90OVyVfoTvf3228ydO5eVK1dWvG/lypW0aNGCnTt3kpaWRnx8PD179qx+WhERqRaPxT4yMpKi\noqKKt4uKioiKijrqcRs2bGD06NHk5OTQuHHjive3aNECgLCwMAYPHkxeXt5RxT42NpYvv/zypP4S\nIiLBJiYmhi+++KLyFzgelJaWOm3atHEKCgqcQ4cOOUlJSU5+fv4Rj/n666+dmJgYZ/Xq1Ue8f//+\n/c7evXsdx3Gcffv2Od27d3def/31o77GCSIElTvvvNN2BJ+h5+IwPReH6bk4rKq102NnHxISQlZW\nFv369cPtdpORkUFCQgKzZs0CYMyYMdx1113s2rWLsWPHAhAaGkpeXh7bt29nyJAhAJSVlTFs2DD6\n9u1brd9gIiJycjwWe4D+/fvTv3//I943ZsyYiv9/4okneOKJJ466rk2bNnz00Uc1EFFERE6WVtD6\nkNTUVNsRfIaei8P0XBym56L6PC6q8koAl0tz8UVEqqiqtVOdvYhIEFCxFxEJAir2IiJBQMVeRCQI\nqNiLiAQBFXsRkSCgYi8iEgRU7EVEgoCKvYhIEFCxFxEJAifcCE0kmPz0E3z7LWzbBt99B40bQ0SE\n+dOgge10ItWnYi9BzXHgk09gyRLz5+OPoXlziIyEsDDYvdsU/uJiiIqCQYPg0kuhWzcI0b8e8SPa\nCE2CUnk5vPQSTJ0K+/aZAj5oEJx/PoSGHv14x4H16w//UtixA269FUaPhlNP9X5+karWThV7CTqv\nvAJ33GE687vugv79oQrHLQOwbh1MmWJ+Adx2myn66vTFm1TsRY5j1y74859Ngb7/frjkkqoX+d/6\n4AOYNAkOHoSnn4aYmJrJKnIi2uJY5BjefhuSkuDMM01XPnDgyRd6gC5dYPlySE+H886DuXPNkI+I\nr1FnLwHNcSAzEx57DObMgd//vva+1qefwjXXQIcO5mudckrtfS0RDeOI/MzthvHj4b33YNkyM32y\nth08CFddZW76vvginH567X9NCU4axhHBFN0rroBNm+Ddd71T6AFOOw0WLYK2beGCC8y0TRFfoGIv\nAefgQbj4Yvjd70xH36iRd79+3bowcyb84Q9mKmdxsXe/vsixaLKYBJTSUrjySmjWzMyOqVvXTg6X\ny0zJrFsX0tLMq4szz7STRQQ0Zi8BpLwcrr3WrHp96SXfuUF6663w5pvmj8bwpaboBq0EJceBG2+E\nDRsgJwfq1bOd6DDHgbFjYfNmk00rbqUm6AatBKWsLDNU8sorvlXowQzpzJxphnGuv17z8MUOdfbi\n995+20x3XL0aWre2neb49u+H7t0hI8NMCRU5GRrGkaBSWGhWri5YAL17205zYgUFZsfM7Gzo1ct2\nGvFnGsaRoHHgAAwebPam8YdCD+aVx4IF5pVIYaHtNBJM1NmL3xo92sypf+qpmtnnxptmzICFC83q\n3mNtqSxyIursJSgsWmTG6h9/3P8KPcDNN0PTpmY/fRFvUGcvfmfrVjj3XHOISEqK7TTVt2MHdOoE\nzz4LF15oO434G3X2EtDcbrNwavx4/y70AOHhZnfMa681e+2L1CZ19uJXMjNh6VJ46y17WyHUtJtu\ngu3bzRi+SGVp6qUErM2bzcZiH34IZ51lO03N+ekn6NwZ7rkHLr/cdhrxFyr2EpDKy6FnT7j6anO0\nYKBZudLskvnpp9C4se004g9qfMw+JyeH+Ph44uLiyMzMPOrjCxYsICkpiY4dO9KjRw82bNhQ6WtF\nKuuf/4Q6dcweM4GoRw/T1U+caDuJBCzHg7KyMicmJsYpKChwSkpKnKSkJCc/P/+Ix6xatcrZvXu3\n4ziOs2zZMiclJaXS1/78qsJTBBGnoMBxzjzTcTZvtp2kdv34o+OcdZbjvP667STiD6paOz129nl5\necTGxhIdHU1oaCjp6eksXrz4iMd069aNRj+fDpGSksLWrVsrfa3IiTgOjBljOt527WynqV0NGsCs\nWebvu2+f7TQSaDwW++LiYlq2bFnxdlRUFMUejt2ZM2cOAwYMqNa1Isfy3HNmpkqwDG/062duQt99\nt+0kEmg8nlTlqsLSxLfffpu5c+eycuXKKl87ZcqUiv9PTU0lNTW10tdK4Nq3D265xWwaFkxbCjzw\nAHToANddB/HxttOIr8jNzSU3N7fa13ss9pGRkRQVFVW8XVRURFRU1FGP27BhA6NHjyYnJ4fGP08l\nqOy1cGSxF/nF3XebnSHPP992Eu9q3hxuv90cxvLGG/65HYTUvN82wlOruteGpwH90tJSp02bNk5B\nQYFz6NChY95k/frrr52YmBhn9erVVb62OjcZJDhs2mRuyn77re0kdpSWOk779o7z/PO2k4ivqmrt\n9NjZh4SEkJWVRb9+/XC73WRkZJCQkMCsWbMAGDNmDHfddRe7du1i7M9z4kJDQ8nLyzvutSIn8ssR\ng7ffbrrcYBQSYk63uuYa6N8f6te3nUj8nRZVic958UW4805Yv94UvWA2bBhER8O999pOIr5GK2jF\nrx06BImJZgpinz6209hXXAwdO5pffK1a2U4jvkS7XopfmzkTEhJU6H8RGWm2h7jtNttJxN+psxef\n8f33Zqrhu++agi/Gvn3Qti0sXgxduthOI75CwzjityZMgJISsw+OHGnOHJg3D955R1MxxVCxF7+0\nZQt07w75+dCsme00vsfthnPOMTeuhwyxnUZ8gYq9+KUhQ6BrV7j1VttJfNd//ws33GB+IQbTimI5\nNt2gFb/z/vvwwQfmxCY5vrQ0aN3aDOmIVJU6e7HKcaB3b3MoyahRttP4vrVr4dJL4fPPoV4922nE\nJnX24leWLzdzyf/4R9tJ/ENysrm38dhjtpOIv1FnL9Y4jplKOGkSXHGF7TT+47PPzOZwW7boCMNg\nps5e/MaiRabg65DtqmnXzgzlPPCA7STiT9TZixVlZdC+PTz6KPTtazuN/ykqgk6dzAHlLVrYTiM2\nqLMXv7BgAYSHmxkmUnUtW8KIETB9uu0k4i/U2YvXlZaabRHmzoULL7Sdxn/t2GG2ldiwAY5zLpAE\nMHX24vPmzzfzxVXoT054uJmuet99tpOIP1BnL15VUmI29VqwAHr0sJ3G/+3caV4laQvk4KPOXnza\nk0+a4qRCXzPCwmDMGB1uIiemzl685tAhiIuD55+HlBTbaQLH99+bV0sffmhOtZLgoM5efNacOWa6\npQp9zWra1GyQds89tpOIL1NnL15RUgKxsfDCC2Z3S6lZP/xgXjWpuw8e6uzFJ82bZ86WVaGvHU2a\nmLH7zEzbScRXqbOXWldaasaUn35aN2Zr086dZisFzbsPDursxecsWGDm1avQ166wMMjIgPvvt51E\nfJE6e6lVZWVmlefs2ZCaajtN4PtlVe3GjdozJ9Cpsxef8uyz0Ly5Vst6S3g4DB+uHTHlaOrspdaU\nl5uplg8/rJ0tvWnbNvO8f/aZGdqRwKTOXnzGSy9Bgwba2dLbIiLgyivNL1mRX6izl1rhOOYIvTvu\ngMsus50m+BQUmFPAvvwSGjWynUZqgzp78QlvvGG2Rxg0yHaS4NS6NQwYADNn2k4ivkKdvdSKCy4w\ni3yGDbOdJHjl50OvXqbLr1fPdhqpaersxboVK6C42Iwbiz2JiWZtw+zZtpOIL1BnLzVuwAAYPBhG\nj7adRNauNd+LL7+EU06xnUZqkjp7sWr9erNcf/hw20kEzE3yxERzOpgEN3X2UqOuvNJsYfyXv9hO\nIr/IzYU//Qk2bYK6dW2nkZqizl6s+fxzeOstDd/4mgsvNLtivvSS7SRi0wmLfU5ODvHx8cTFxZF5\njP1TN2/eTLdu3Tj11FN58MEHj/hYdHQ0HTt2pHPnznTV3rYB74EHzCEaDRvaTiK/5nLB5MnmYHK9\niA5eHodx3G437dq1Y/ny5URGRtKlSxeys7NJSEioeMzOnTv5+uuvefnll2ncuDETJ06s+Fjr1q35\n8MMPadKkyfEDaBgnIPyyRH/LFjjzTNtp5LfKy6FDB7OqViuaA0ONDuPk5eURGxtLdHQ0oaGhpKen\ns3jx4iMeExYWRnJyMqGhocf8HCrkweGhh8xNWRV631SnDkyaBNOn204itngs9sXFxbRs2bLi7aio\nKIqLiyv9yV0uF3369CE5OZnZmuwbsHbtgrlzdVPW1111FXzxBeTl2U4iNoR4+qDL5TqpT75y5Upa\ntGjBzp07SUtLIz4+np49e57U5xTfM3MmDBwIrVrZTiKehIbCLbeYsXvdrA0+Hot9ZGQkRUVFFW8X\nFRURVYXzzlr8fHpCWFgYgwcPJi8v75jFfsqUKRX/n5qaSqpOufAbBw7AY4+Z6X3i+0aOhLvvhs2b\nIT7edhqpitzcXHJP4h+axxu0ZWVltGvXjjfffJOIiAi6du161A3aX0yZMoWGDRtW3KA9cOAAbreb\nhg0bsn//fvr27cudd95J399sbK4btP5t5kyz6dlvbuWID5s6Fb75BubMsZ1ETkZVa+cJF1UtW7aM\nCRMm4Ha7ycjIYPLkycyaNQuAMWPGsH37drp06cLevXupU6cODRs2JD8/n++++44hQ4YA5pfGsGHD\nmDx58kkHFt9RVgZxcfDMM9Ctm+00Ulnff2++b598ApGRttNIddV4sa9tKvb+KzsbHn8c3n3XdhKp\nqgkTzBi+ji/0Xyr24hWOA507w7RpZuMz8S/ffAOdOpkN0ho3tp1GqkPbJYhXvP66WajTv7/tJFId\nrVqZGVSPP247iXiLOnupll69ICMDrrnGdhKpro0boXdvc7jJaafZTiNVpc5eat3775sCocNJ/NvZ\nZ5tzav/zH9tJxBvU2UuVDRkCqakwfrztJHKy3nsPRoyAzz6DEI+rbsTXqLOXWvXZZ6ZAZGTYTiI1\n4fzzoXlzWLTIdhKpbSr2UiW/bGNcv77tJFJTJk2CzExtfxzoNIwjlaZtjAOTtj/2TxrGkVrz8MNw\n7bUq9IGmTh34v/8z3b0ELnX2Uil79kCbNrBuHZx1lu00UtNKSiA2Fl580RxSLr5Pnb3UiscfNytl\nVegD0ymnwM03w/33204itUWdvZzQTz9B69Zmd8sOHWynkdqyb5/5Pq9aZTZKE9+mzl5q3Lx5cO65\nKvSBrkEDGDsW/vEP20mkNqizF4/cbmjXzqyyPP9822mktu3cab7fGzfCz2cPiY9SZy81atEiCA9X\noQ8WYWEwbBg88ojtJFLT1NnLcTmOGb6ZOtXskCjBobDQfN+/+goaNbKdRo5Hnb3UmP/+Fw4dgosv\ntp1EvCk62mxdre2PA4s6ezmuiy6CP/4Rhg+3nUS87ZNPoG9f091r+2PfpM5easT775t/6FddZTuJ\n2NChg1lcpe2PA4c6ezmmyy6DPn1g3DjbScSWVavM4TRbtmj7Y1+kzl5O2saNsGYNjBxpO4nY1L07\ntGwJCxfaTiI1QcVejpKZaQ4mqVfPdhKxbfJkmD7d7Iwp/k3FXo5QWAivvWb2rBfp1w9CQ83PhPg3\nFXs5wj/+AaNHwxln2E4ivsDlgltvhfvu0+Em/k43aKXCjh2QkAD5+eaoOhEwW2YkJMC//23OHhbf\noBu0Um0PPQRXX61CL0eqW9d099Om2U4iJ0OdvQCwa5c5vEKHk8ix/HK4yaJF0KWL7TQC6uylmh57\nDAYNUqGXYzvlFPjrX+Hee20nkepSZy/s22eOHFyxwmxvK3IsBw+anxMdYuMb1NlLlf3rX9Crlwq9\neHbaaTBhgpmZI/5HnX2Q++kn060tWwZJSbbTiK/buxdiYnR0oS9QZy9VMneu2btchV4q4/TTzYK7\n6dNtJ5GqUmcfxA4dMt3ZCy9A166204i/+OEH83Ozdq05oFzsUGcvlTZvHpx9tgq9VE2TJnD99eru\n/Y06+yBVWgpt28KCBWZ3Q5Gq+N//zM/Pxx+bnTHF+9TZS6U8/bS50aZCL9Vx5pkwapTZIVX8wwmL\nfU5ODvHx8cTFxZF5jO/s5s2b6datG6eeeioPPvhgla4VO8rKzOKYv//ddhLxZxMnwjPPwLZttpNI\nZXgs9m63m3HjxpGTk0N+fj7Z2dls2rTpiMc0bdqUxx57jFtuuaXK14od2dkQFQUXXGA7ifiz8HBz\nRvH999tOIpXhsdjn5eURGxtLdHQ0oaGhpKens3jx4iMeExYWRnJyMqGhoVW+VryvrAzuvltdvdSM\nv/4V5s+Hb7+1nUROxGOxLy4upuWv7r5ERUVRXFxcqU98MtdK7XnmGWjRwqyYFTlZLVrAiBGameMP\nPBZ7l8tV7U98MtdK7Sgrg7vuMn/07ZGaMmkSPPUUqJfzbR7PjI+MjKSoqKji7aKiIqKioir1iaty\n7ZQpUyr+PzU1lVSdkFArnnoKWrWCCy+0nUQCSfPm5nD66dPN7qlSO3Jzc8nNza329R7n2ZeVldGu\nXTvefPNNIiIi6Nq1K9nZ2SQkJBz12ClTptCwYUMmTpxYpWs1z947SkvNRmfz5kHPnrbTSKD57juI\nj9e8e2+qau302NmHhISQlZVFv379cLvdZGRkkJCQwKxZswAYM2YM27dvp0uXLuzdu5c6derwyCOP\nkJ+fT4MGDY55rdgxf77Z8EyFXmpDs2Zm3v1998E//2k7jRyLVtAGgZIS09U//TT06GE7jQSqnTtN\nd6/TzrxDK2jlKE88YQ6MVqGX2hQWBmPHmgkA4nvU2Qe4AwfM2aGvvgrnnGM7jQS63bvNjpjvvafD\ncGqbOns5QlaW6ehV6MUbzjgD/vIXuPNO20nkt9TZB7A9e0yX9c47ZhhHxBv27zevJpctg06dbKcJ\nXOrspcKMGTBggAq9eFf9+jB5Mtxxh+0k8mvq7APULzMjdJqQ2HDokNnvPjtb22jXlqrWThX7ADVh\ngtkeISvLdhIJVk8+af68846256gNKvbCV1+Zowbz881iFxEb3G5zkP1998HAgbbTBB6N2Qt/+xuM\nH69CL3bVrWv2y7n1VvMqU+xSsQ8w69ZBbq6Z/iZi28UXmyMM58+3nUQ0jBNg0tJgyBCzklHEF6xZ\nA1dcAZ99BvXq2U4TODSME8TeeAO++cZsSCXiK847D1JS4NFHbScJbursA4TbbVbJ/v3vcPnlttOI\nHGnLFjMFU5MGao46+yA1d65Zqj5kiO0kIkdr2xauuUbbKNikzj4A7N1rNp169VU491zbaUSO7Ycf\nzEK/t96C9u1tp/F/6uyD0PTp0K+fCr34tiZNzLTgiRNB/Z33qbP3c4WFpshv2ACRkbbTiHhWWmq6\n+oceMvs2SfWpsw8yt95qFlCp0Is/CA2Ff/zDdPelpbbTBBcVez/27ruwahXccovtJCKVd8kl5lDy\nmTNtJwkuGsbxU2VlZqrlHXeYBSsi/mTTJujZEz79FJo3t53GP2kYJ0g8/riZrzx0qO0kIlWXkAAj\nR5phSPEOdfZ+aMcOc5PrnXcgMdF2GpHq+fFHU/Sfe0573leHOvsgMHkyjBihQi/+rWFDuP9+GDfO\nrACX2qVi72dWr4bXXzfbIoj4u6uuggYNYNYs20kCn4Zx/EhpqZlTP3my+UciEgg+/RR69TJrRVq0\nsJ3Gf2gYJ4A99BBEREB6uu0kIjWnfXsYPdocpSm1R529nygogC5dIC8P2rSxnUakZh08aIr+Y49p\nZW1lqbMPQI5jDiP5619V6CUwnXaamU785z/D/v220wQmFXs/8NxzUFysowYlsPXta6ZgTpliO0lg\n0jCOj9u5Ezp2hBdfhG7dbKcRqV07dpif91dfNcOWcnwaxgkwN94Iw4ap0EtwCA83ExGuuw4OHbKd\nJrCo2PuwRYtg/Xq4+27bSUS856qrIDZWP/c1TcM4Pup//4MOHeCFF6BHD9tpRLzr22+hUydYulSH\n8hyPhnECxPjxpsNRoZdg1KIFzJgBf/yjhnNqioq9D1q4ENauhXvusZ1ExJ6rr4aYGG0NUlM0jONj\niorMy9alSyE52XYaEbt27oSkJHjmGUhNtZ3Gt9T4ME5OTg7x8fHExcWRmZl5zMeMHz+euLg4kpKS\nWL9+fcX7o6Oj6dixI507d6Zr166VDhWsysvNbpYTJqjQiwCEhcGcOTB8OOzaZTuNf/NY7N1uN+PG\njSMnJ4f8/Hyys7PZtGnTEY9ZunQpX3zxBZ9//jn//ve/GTt2bMXHXC4Xubm5rF+/nry8vNr5GwSQ\nGTPMZmeTJtlOIuI7+veHSy+FG24wq8mlejwW+7y8PGJjY4mOjiY0NJT09HQWL158xGOWLFnCiBEj\nAEhJSWH37t3s2LGj4uMaoqmc9evN3t5PPQV169pOI+Jb7r8fPv4Ynn7adhL/5bHYFxcX07Jly4q3\no6KiKC4urvRjXC4Xffr0ITk5mdmzZ9dk7oCydy/84Q/w6KMQHW07jYjvOe00yM42W4Zs3mw7jX8K\n8fRBl8tVqU9yvO79vffeIyIigp07d5KWlkZ8fDw9e/Y86nFTfrUZRmpqKqlBdCfGcWDUKOjTR1sX\ni3iSlATTpsEVV8D770O9erYTeVdubi65ubnVvt5jsY+MjKSoqKji7aKiIqKiojw+ZuvWrURGRgIQ\nEREBQFhYGIMHDyYvL++ExT7Y/POf8MUXMH++7SQivm/UKHP28rhxMHeu7TTe9dtGeOrUqVW63uMw\nTnJyMp9//jmFhYWUlJSwcOFCBg0adMRjBg0axPyfK9WaNWs444wzCA8P58CBA/z4448A7N+/nzfe\neIMOHTpUKVygW7vW7PD33HNw6qm204j4PpcL/vUvczznvHm20/gXj519SEgIWVlZ9OvXD7fbTUZG\nBgkJCcz6+cDIMWPGMGDAAJYuXUpsbCz169fnySefBGD79u0MGTIEgLKyMoYNG0bfvn1r+a/jP3bu\nhKFDzR7esbG204j4jwYN4PnnzVGGHTtC5862E/kHLaqyoLQU0tLM3t3TptlOI+Kfnn/eHOiTlwfN\nmtlO431VrZ0q9hbceCN89RUsWaJpliIn4/bb4b33YPlyCA21nca7VOx93Jw58MADZjZBo0a204j4\nt/Jys+CqVSuYOdN2Gu9Ssfdh77xjpo2tWAHt2tlOIxIY9uyB884zr5hvuMF2Gu+pau30eINWas6m\nTWbhVHa2Cr1ITWrUCF57Dc4/H1q2hIEDbSfyTdri2Au2b4cBA8zwTe/ettOIBJ42beDll2HkSPjg\nA9tpfJOKfS3btw8uucT8EA4fbjuNSODq2tXcE7v0UigosJ3G92gYpxb99BMMGWKOV/vb32ynEQl8\ngwaZMyH69oV33zUnXomhG7S1pLTU3IwNDTXj9CH6tSriNffcY058y82Fpk1tp6kdmo3jA8rLzZDN\n99/D4sVwyim2E4kEF8cx50Lk5po5+KefbjtRzVOxt6y8HMaONduwLlsWfDvzifgKxzFTMTduNMd8\nNmhgO1HNqvFjCaXy3G4YPdr8cL3yigq9iE0ul1loFRcHv/+9OTcimKnY15CyMnN+7FdfQU5OYL5s\nFPE3derA7NnQoYPZjyqYz7FVsa8BJSUwbBh8951Z3BFoLxdF/FmdOubciG7dzDqX//3PdiI7VOxP\n0t69cPHFZprlkiUauhHxRS4XPPSQGc7p0cO8Ag82KvYn4dtv4cILISYGFi3SASQivszlMluKjx8P\nPXvCunW2E3mXin01bdpk9qO/4gpzAInm0Yv4hz//GbKyTJefk2M7jfeo2FfDq6+ajn7qVLjtNtMx\niIj/GDwYXnoJrrsOZsww0zQDnebZV4HjwH33mZs9L7xgtlUVEf/1zTdw2WXQvj3MmgWnnWY7UeVp\nnn0t2bPHbFG8eLE5Bk2FXsT/tWplTroqLYULLgjsDdRU7Cvhgw/gnHMgLMwcQBIRYTuRiNSUevXg\nmWfM9OmUFPOqPRBpGMeD8nIzXSsz09yEvfxy24lEpDatXQtXXml2zZwxw7eHdTSMU0MKCswCjEWL\nzHmxKvQigS85GdavN8O2nTrBqlW2E9UcFfvfKC83+2l06WIWS61YAa1b204lIt5y+ulmWGfaNNPk\nTZwIBw/aTnXyVOx/5eOPzU2ap582N21uuQXq1rWdSkRsuPxy+OQT2LbN7K2zbJntRCdHxR7zku2m\nm8w43fDhptDHx9tOJSK2nXmmOXwoK8usvB08GAoLbaeqnqAu9iUl5pvYrp3Z2yY/H/70J3XzInKk\n3/8ePv3UjOknJ8PkybB7t+1UVROUxb68HJ59FhISzKEGr79uFlQE6vFlInLyfvc7uP12+Ogjs3Nm\n27bw4IP+M54fVFMvy8pMkZ82DRo2hOnToVcvr3xpEQkwmzaZ7VLefx/+8he4/nrvbm+uYwmPYd8+\nmD/f/BZu2dL8du7TR3vaiMjJ27DBNJBvvWWOQbz+emjevPa/rubZ/8pXX5lpU2edBW++CfPmmQOI\n09JU6EWkZnTsaEYMVqww254nJMC115ptVXxpvWjAFfsDB8zUyd69zdLnkBCzb/WiRXD++bbTiUig\natfO3PvJE3KcAAAHAElEQVT76iuzICs93fz3kUd843SsgBjGKSmB//4Xnn/enBZ13nlm69JBg8xN\nFRERbysvNyMJTz4Jr7xi1vD84Q+mLtXEGdVBM2a/Z4+ZRfPqq+ZPYqJ5IocO1UZlIuJb9uwxjehz\nz5nNFFNTYeBAs0q/uvUqYIt9aanZpOitt2D5cvjwQzMsc8kl5klr2dILYUVETtLu3aZBfe0107C2\nbm3uI150kTkft379yn2egCn2e/aYGxyrVpk/a9aYJ6V3b/OkpKZW/kkREfFFZWWwerWZQPLmm2YT\ntqQkc+Rp9+5mSLpFi2NfW+PFPicnhwkTJuB2uxk1ahSTJk066jHjx49n2bJl1KtXj//85z907ty5\n0te6XC4KCx02bjRTmNavN1379u1mD/lf/tLdu5ulyyIigWrfvqOb3FNPhXPPNfXwxhsP18EqD4E7\nHpSVlTkxMTFOQUGBU1JS4iQlJTn5+flHPOa1115z+vfv7ziO46xZs8ZJSUmp9LU//6JxIiIcp29f\nx7n5Zsd56inH2bjRccrKPCULTG+//bbtCD5Dz8Vhei4OC7bnorzccQoKHOeFFxznttsc5/vvD3/s\nBOX7KB6nXubl5REbG0t0dDShoaGkp6ezePHiIx6zZMkSRowYAUBKSgq7d+9m+/btlbr2F8XFZuxq\nxgy45hpzszUY96fJzc21HcFn6Lk4TM/FYcH2XLhcEB1tduC8915o0qT6n8tjsS8uLqblr+58RkVF\nUVxcXKnHbNu27YTXioiId3gs9q5KLjN1fGmZmIiIHCXE0wcjIyMpKiqqeLuoqIioqCiPj9m6dStR\nUVGUlpae8FqAmJiYSv9SCQZTp061HcFn6Lk4TM/FYXoujJiYmCo93mOxT05O5vPPP6ewsJCIiAgW\nLlxIdnb2EY8ZNGgQWVlZpKens2bNGs444wzCw8Np2rTpCa8F+OKLL6oUWEREqs5jsQ8JCSErK4t+\n/frhdrvJyMggISGBWbNmATBmzBgGDBjA0qVLiY2NpX79+jz55JMerxUREe+zvqhKRERqn9VdL3Ny\ncoiPjycuLo7MzEybUawqKiqiV69enH322bRv355HH33UdiSr3G43nTt3ZuDAgbajWLd7926GDh1K\nQkICiYmJrFmzxnYka+677z7OPvtsOnTowNVXX82hQ4dsR/KakSNHEh4eTocOHSre98MPP5CWlkbb\ntm3p27cvu09wTqK1Yu92uxk3bhw5OTnk5+eTnZ3Npk2bbMWxKjQ0lIceeoiNGzeyZs0aZs6cGbTP\nBcAjjzxCYmKibtwDN910EwMGDGDTpk1s2LAhaIdCCwsLmT17NuvWreOTTz7B7Xbz7LPP2o7lNddd\ndx05OTlHvG/69OmkpaWxZcsWevfuzfTp0z1+DmvFviqLrgJd8+bN6dSpEwANGjQgISGBbdu2WU5l\nx9atW1m6dCmjRo0K+im9e/bsYcWKFYwcORIw98EaNWpkOZUdp59+OqGhoRw4cICysjIOHDhAZGSk\n7Vhe07NnTxo3bnzE+369oHXEiBG8/PLLHj+HtWJfmQVbwaiwsJD169eTkpJiO4oVN998Mw888AB1\n6gTcuTpVVlBQQFhYGNdddx3nnHMOo0eP5sCBA7ZjWdGkSRMmTpxIq1atiIiI4IwzzqBPnz62Y1m1\nY8cOwsPDAQgPD2fHjh0eH2/tX5Reoh9t3759DB06lEceeYQG3jy52Ee8+uqrNGvWjM6dOwd9Vw9Q\nVlbGunXruOGGG1i3bh3169c/4Uv1QPXll1/y8MMPU1hYyLZt29i3bx8LFiywHctnuFyuE9ZUa8W+\nMgu2gklpaSmXX34511xzDZdddpntOFasWrWKJUuW0Lp1a6666ireeusthg8fbjuWNVFRUURFRdGl\nSxcAhg4dyrp16yynsmPt2rV0796dpk2bEhISwpAhQ1i1apXtWFaFh4ezfft2AL799luaNWvm8fHW\niv2vF2yVlJSwcOFCBg0aZCuOVY7jkJGRQWJiIhMmTLAdx5pp06ZRVFREQUEBzz77LBdddBHz58+3\nHcua5s2b07JlS7Zs2QLA8uXLOfvssy2nsiM+Pp41a9Zw8OBBHMdh+fLlJCYm2o5l1aBBg5g3bx4A\n8+bNO3GTWEM7cVbL0qVLnbZt2zoxMTHOtGnTbEaxasWKFY7L5XKSkpKcTp06OZ06dXKWLVtmO5ZV\nubm5zsCBA23HsO6jjz5ykpOTnY4dOzqDBw92du/ebTuSNZmZmU5iYqLTvn17Z/jw4U5JSYntSF6T\nnp7utGjRwgkNDXWioqKcuXPnOt9//73Tu3dvJy4uzklLS3N27drl8XNoUZWISBDQlAcRkSCgYi8i\nEgRU7EVEgoCKvYhIEFCxFxEJAir2IiJBQMVeRCQIqNiLiASB/wc9++82Ma60kQAAAABJRU5ErkJg\ngg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we will plot a gaussian centered around 5, with a variance of 1." + "Probably this is immediately recognizable to you as a 'bell curve'. This curve is ubiquitious because under real world conditions most observations are distributed in such a manner. We will not prove the math here, but the **central limit theorem** proves that under certain conditions the arithmetic mean of independent observations will be distributed in this manner, even if the observations themselves do not have this distribution. In nonmathematical terms, this means that if you take a bunch of measurements from a sensor and use them in a filter, they are very likely to create this distribution.\n", + "\n", + "Before we go further, a moment for terminology. This is variously called a normal distribution, a Gaussian distribution, or a bell curve. However, other distributions also have a bell shaped curve, so that name is somewhat ambiguous, and we will not use it again." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Gaussian Distributions\n", + "\n", + "So let us explore how gaussians work. A gaussian is a continuous probability distribution that is completely described with two parameters, the mean ($\\mu$) and the variance ($\\sigma^2$). It is defined as:\n", + "$$ \n", + "f(x, \\mu, \\sigma) = \\frac{1}{\\sigma\\sqrt{2\\pi}} e^{-0.5*{(x-\\mu)^2}/\\sigma^2 }\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will not need to understand how this equation comes about, or remember it for this book, but it is useful to look at it to see how it works. Specifically, notice the term for $e$. When $x==\\mu$, the term reduces to $e^0=1$. Any other value of x will result in a smaller value for the exponent term due to the negative sign, so the curve will always be highest at $x==\\mu$.\n", + "\n", + "Now we will plot a gaussian centered around 23 ($\\mu=23$), with a variance of 1 ($\\sigma^2=1$)." ] }, { "cell_type": "code", "collapsed": false, "input": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "xs = np.arange(0,10,0.1)\n", - "plt.plot (xs,[gaussian(x, 5, 1) for x in xs])\n", - "plt.axvline (5) \n", + "xs = arange(16,30,0.1)\n", + "ys = [gaussian (x,23,1) for x in xs]\n", + "plt.plot (xs,ys, 'r')\n", + "plt.axvline(23); plt.axvline(24) \n", "plt.show()" ], "language": "python", @@ -82,23 +119,23 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YlGW+B/DvKJMmlqbh2wweVFBGE8RAfIkaEySoSMiz\nh801MzK21tPLaV/O7tk9aXudNrZtS8Nzltz06JURu2uJpU5FMumixElwdUMvoYV1GEMt3wJbgfE+\nf9xCoDDMwMzcM/N8P9c1Fy/zPDNfcPh5z++5n/vRCSEEiIgoqA1QHYCIiLyPxZ6ISANY7ImINIDF\nnohIA1jsiYg0gMWeiEgDei32FosF0dHRiIqKQl5eXo/b/d///R9CQkKwdetWt/clIiLv0jmbZ+9w\nODBlyhSUlJTAYDAgISEBhYWFMJlM12yXkpKCIUOGYPny5bj//vtd3peIiLzP6ci+oqICkZGRiIiI\ngF6vR3Z2NoqLi6/Z7tVXX8XixYsRFhbm9r5EROR9Tou93W5HeHh4x9dGoxF2u/2abYqLi/HYY48B\nAHQ6ncv7EhGRbzgt9u2F25mnnnoKL7zwAnQ6HYQQaO8KubIvERH5RoizOw0GA2w2W8fXNpsNRqOx\nyzYHDhxAdnY2AODLL7/Erl27oNfrXdoXACIjI/H555/364cgItKaSZMmoba21vUdhBOtra1i4sSJ\noq6uTly6dEnExsaK6urqHrd/6KGHxNatW93at5cImvLss8+qjuA3fP27aG0VIjtbiLg4IdatE+KL\nL+T3ASHefFOItDQhbr1ViK++8mksIQRfF53xd/Etd2un05F9SEgI8vPzkZqaCofDgZycHJhMJhQU\nFAAAcnNz3d6XyN+0tgJLlgBffw2UlQHXX9/1/u9+F8jOBn74Q2DBAqCkBBg5Uk1Wor5yWuwBIC0t\nDWlpaV2+11OR37hxY6/7EvmTlhZZyFtagHfeAQYP7n47nQ74zW+Af/934M47ZcHvNPmMyO/1WuzJ\nd8xms+oIfsNXv4vHHwfa2oCtW4FBg5xvq9MBL7wAhIQA6enA/v3yc2/j6+Jb/F30ndOTqnwS4Mos\nHiJfs1qBBx8EqquBoUO730anA65+eQoBpKQAd98NPP2012MSdcvd2sliT5p06RIQGwvk5QH33dfz\ndt0VewA4dgyYOxeorATGj/deTqKeuFs7uRAaadKvfw1ERzsv9M5Mngw88YS8EQUCjuxJc2pqgDlz\ngKoqoNNJ3t3qaWQPuP7ugMgb2MYhckIIIDUVuOsu4N/+rfftnRV7ACgtBZYtA44cAUJDPZeTqDds\n4xA5UVYG/O1vnmu/zJ8PJCQAr7/umccj8haO7ElT7rtPjuwff9y17Xsb2QPAJ5/Iufo1Nb6ZikkE\ncGRP1KOjR+Xc+Ice8uzjJibK3v+f/uTZxyXyJBZ70oyXXpIj+iFDPP/YP/oR8OKLvb8LIFKFbRzS\nhMZGwGSS8+PdWebAlTYOAFy+DEybBqxbJ5dTIPI2tnGIuvHqq3JBM2+tZzNggFwo7cUXvfP4RP3F\nkT0FvaYmICICKC8HIiPd29fVkT0g591PmAC8/z4wfbrbMYncwpE90VXefBNISnK/0Ltr0CDgBz8A\n8vO9+zxEfcGRPQW9efPk0sT33uv+vu6M7AGgoUGeVWu397xcMpEncGRP1ElNDVBbK8+Y9QWjEZg5\nE9i+3TfPR+QqFnsKaps3Aw88AOj1vnvOZcuATZt893xErmAbh4LW5cvygGlxMTBjRt8ew902DgA0\nN8sR/pEjwJgxfXteot6wjUN0xccfA8OH973Q91VoKLBoEbBli2+fl8iZXou9xWJBdHQ0oqKikJeX\nd839xcXFiI2NRVxcHG699Vbs3r27476IiAjExMQgLi4Os2bN8mxyol5s3iyvRKXCsmXy+Yn8hdM2\njsPhwJQpU1BSUgKDwYCEhAQUFhbCZDJ1bNPc3IzQK2u7Hj58GJmZmaitrQUATJgwAQcOHMCIESN6\nDsA2DnmBp1opfWnjALKFNHEisG2b799ZkDZ4tI1TUVGByMhIREREQK/XIzs7G8XFxV22Ce20iHdT\nUxNuvvnmLvezkJMKb78tLxuoqmc+YACwdCkP1JL/cFrs7XY7wjtdysdoNMJut1+z3bZt22AymZCW\nloa1a9d2fF+n0yE5ORnx8fFYv369B2MTOffmm7LYqrR0KVBYCDgcanMQAb0Ue51O59KDLFq0CEeO\nHMG7776LpZ3+wsrKylBVVYVdu3Zh3bp12Lt3b//SErng/Hl5kZK771abY/JkYNQouUwDkWpOL7Vg\nMBhgs9k6vrbZbDAajT1un5SUhLa2Nnz11VcYOXIkxo4dCwAICwtDZmYmKioqkJSUdM1+q1at6vjc\nbDbDbDa7+WMQfWvHDuCOO4AbblCdBMjKki2lefNUJ6FAZ7VaYbVa+/4AwonW1lYxceJEUVdXJy5d\nuiRiY2NFdXV1l21qa2vF5cuXhRBCHDhwQEycOFEIIURzc7O4cOGCEEKIpqYmMXfuXPH+++9f8xy9\nRCBy2/33C7Fhg2ceq78vz4MHhZgwQYgrfyJEHuNu7XQ6sg8JCUF+fj5SU1PhcDiQk5MDk8mEgoIC\nAEBubi62bt2KzZs3Q6/XY+jQoXjrrbcAAI2NjcjKygIAtLW1YcmSJVi4cGHf/1cicsE33wAffgj8\n7neqk0gxMXJGz1/+wlk5pBbPoKWgUlwMrFkDdDrdo1/6OvWysx/+UJ5otXq1ZzIRATyDljTunXeA\nzEzVKbpq79sTqcSRPQWN1lY5r/7gQXkBcE/wxMj+8mXAYAD27AGiojyTi4gje9KsPXuASZM8V+g9\nZcAAuVbOO++oTkJaxmJPQePtt2XLxB+xlUOqsY1DQUEIuRbO7t3AlCmee1xPtHEA2WIaPRo4fFi2\ndIj6i20c0qSDB+WMF08Wek/S64HUVGDXLtVJSKtY7Cko7NwJpKerTuFcerrMSaQCiz0FhV27gLQ0\n1SmcS02VbaaWFtVJSItY7CngnT0LHDok18PxZ6NGyamX+/apTkJaxGJPAe/DD4HbbwcGD1adpHdp\naezbkxos9hTwdu70/xZOO/btSRVOvaSAdvkyMG6cbI1MnOj5x/fU1Mt2DoecgllV5X8nf1Fg4dRL\n0pSDB4Hhw71T6L1h4EBg4ULAYlGdhLSGxZ4CWiDMwrka+/akAos9BbRA6te3S00FPvqIUzDJt1js\nKWCdOSOXH7j9dtVJ3DNqlDzTt6xMdRLSEhZ7ClglJYEz5fJqaWns25NvsdhTwCopkQc7A1FKisxP\n5CucekkBSQg5A2fHDmDqVO89j6enXrZrbQVuvhn4/HP5kchdHp96abFYEB0djaioKOTl5V1zf3Fx\nMWJjYxEXF4dbb70Vuztd/LO3fYn66m9/Ay5dAkwm1Un6Rq8HkpKA0lLVSUgrnI7sHQ4HpkyZgpKS\nEhgMBiQkJKCwsBCmTn9hzc3NCA0NBQAcPnwYmZmZqK2tdWlfgCN76puCAnmAc/Nm7z6Pt0b2APDK\nK8CRI/JnIXKXR0f2FRUViIyMREREBPR6PbKzs1FcXNxlm/ZCDwBNTU24+cp7Ulf2JeqrkhIgOVl1\niv5JTmbfnnzHabG32+0I73ROt9FohN1uv2a7bdu2wWQyIS0tDWvXrnVrXyJ3ORxyqeAFC1Qn6Z9p\n04DmZtmSIvK2EGd36nQ6lx5k0aJFWLRoEfbu3YulS5fi6NGjboVYtWpVx+dmsxlms9mt/UlbDh6U\n68sE+uX9dDo5uv/oo8BZ7oHUsVqtsFqtfd7fabE3GAyw2WwdX9tsNhiNxh63T0pKQltbG86cOQOj\n0ejyvp2LPVFvgqGF0y45WZ4FvGKF6iTk764eCK9evdqt/Z22ceLj41FTU4P6+nq0tLSgqKgIGRkZ\nXbb5/PPPOw4SVFZWAgBGjhzp0r5EfRFsxX73brl6J5E3OR3Zh4SEID8/H6mpqXA4HMjJyYHJZELB\nlekDubm52Lp1KzZv3gy9Xo+hQ4firbfecrovUX988w1QXg5s3ao6iWcYjUBYmGxNzZypOg0FM55U\nRQGlpAR49lnfrSvjzamX7f71X+Xa9j/+sXefh4IL17OnoBZMLZx2nIJJvsBiTwHlo4+AO+9UncKz\n7rgD2L9fnhFM5C0s9hQwzp8Hjh4FZs9WncSzhg8HoqOBTz5RnYSCGYs9BYw9e4DERGDQINVJPG/+\nfK6TQ97FYk8Bo7RUFsVgxGJP3sZiTwEjmIv9bbcBn34qp5YSeQOLPQWEM2fk2u8JCaqTeMcNNwDT\np8sDtUTewGJPAeHjj4G5c+U68MGKrRzyJhZ7CgjB3MJpN3++XDqByBtY7CkgaKHYz5sH/OUvQFOT\n6iQUjFjsye+dPg3YbMG/dsyQIUBcnO+WgiBtYbEnv2e1ytkqIU6X7QsO7NuTt7DYk9/TQgunHYs9\neQuLPfm90tLgWw+nJ3PmAJ99Bly4oDoJBRsWe/JrjY3AyZNATIzqJL4xeDAwaxawd6/qJBRsWOzJ\nr338MXD77cDAgaqT+I7ZLH9uIk9isSe/ZrXKJYC15I475M9N5Eks9uTXrFY50tWSxESgupp9e/Is\nFnvyWydPaqtf327wYLkGEOfbkyf1WuwtFguio6MRFRWFvLy8a+7fsmULYmNjERMTg3nz5uHQoUMd\n90VERCAmJgZxcXGYNWuWZ5NT0Pv4Yzm/Xkv9+nZs5ZCnOT1NxeFwYOXKlSgpKYHBYEBCQgIyMjJg\nMpk6tpk4cSL27NmDYcOGwWKx4NFHH0V5eTkAeUFcq9WKESNGePenoKCkxRZOO7MZ+MlPVKegYOJ0\nZF9RUYHIyEhERERAr9cjOzsbxcXFXbaZM2cOhg0bBgBITExEQ0NDl/vdufo5UWcff6zdYj97tpxv\n//XXqpNQsHBa7O12O8LDwzu+NhqNsNvtPW7/+uuvIz09veNrnU6H5ORkxMfHY/369R6IS1px6hRw\n4gQQG6s6iRqDBwO33sq+PXmO0zaOTqdz+YFKS0uxYcMGlHV6dZaVlWHs2LE4ffo0UlJSEB0djaSk\npGv2XbVqVcfnZrMZZq0O56iDlvv17cxm2cq66y7VScgfWK1WWPtxIMdpsTcYDLDZbB1f22w2GI3G\na7Y7dOgQVqxYAYvFgptuuqnj+2PHjgUAhIWFITMzExUVFb0WeyJA2y2cdmYz8LOfqU5B/uLqgfDq\n1avd2t9pGyc+Ph41NTWor69HS0sLioqKkJGR0WWb48ePIysrC2+88QYiIyM7vn/x4kV8faXh2Nzc\njA8++ADTp093KxxplxZPprra7NnA4cNc3548w+nIPiQkBPn5+UhNTYXD4UBOTg5MJhMKCgoAALm5\nuXjuuedw9uxZPPbYYwAAvV6PiooKNDY2IisrCwDQ1taGJUuWYOHChV7+cSgYnD4NNDQAM2aoTqLW\n9dfLNfzLyoDUVNVpKNDphOLpMjqdjjN2qIutW4ENG4AdO1QnAXQ6QOXL8z//E2htBX71K3UZyD+5\nWzt5Bi35HS3Pr7/aHXdwUTTyDBZ78jss9t+aM4fXpSXPYLEnv/Lll8Dx4/JarCSvSztzJrBvn+ok\nFOhY7Mmv7NkDzJunjevNuoqtHPIEFnvyK2zhXKv95Cqi/mCxJ7/CYn+tOXOAgweB5mbVSSiQsdiT\n3/jyS+Dvf5c9avpWaKg8hrF/v+okFMhY7Mlv7N0LzJ3Lfn13uL499ReLPfkNtnB6xr499ReLPfkN\nFvuezZ0r+/YXL6pOQoGKxZ78wldfAXV17Nf3JDRUXouXfXvqKxZ78gt79sjRq16vOon/YiuH+oPF\nnvwC16/vndnMk6uo71jsyS+UlnL9+t7MnQtUVrJvT33DYk/Kffml7NfHx6tO4t+GDpV9e66TQ33B\nYk/Kta+Hw3597+bPl++CiNzFYk/KlZbKIka9Y7GnvmKxJ+VY7F03dy5w6BDXtyf3sdiTUqdOyevN\ncv1617Svb19WpjoJBZpei73FYkF0dDSioqKQl5d3zf1btmxBbGwsYmJiMG/ePBw6dMjlfYmsViAp\nievhuIOtHOoT4URbW5uYNGmSqKurEy0tLSI2NlZUV1d32Wbfvn3i3LlzQgghdu3aJRITE13e98rF\nzp1FoCD3/e8L8dJLqlP0zB9fnqWlQsyapToFqeZu7XQ6sq+oqEBkZCQiIiKg1+uRnZ2N4uLiLtvM\nmTMHw4YNAwAkJiaioaHB5X2JrFb26901ezbw2WfAhQuqk1AgcVrs7XY7wsPDO742Go2w2+09bv/6\n668jPT29T/uS9nzxhezZx8aqThJYBg8GZs2SS0ITucppp1Sn07n8QKWlpdiwYQPKrhw5cmffVatW\ndXxuNpth5nnzmmC1ArffDgzgNAG3tfft775bdRLyFavVCms/FkdyWuwNBgNsNlvH1zabDUaj8Zrt\nDh06hBUrVsBiseCmm25ya1+ga7En7eCUy76bPx948knVKciXrh4Ir1692q39nY6p4uPjUVNTg/r6\nerS0tKCoqAgZGRldtjl+/DiysrLwxhtvIDIy0q19SdtY7Ptu1izg2DHg7FnVSShQOB3Zh4SEID8/\nH6mpqXA4HMjJyYHJZEJBQQEAIDc3F8899xzOnj2Lxx57DACg1+tRUVHR475EgJxbf+4cMG2a6iSB\n6brr5IXI9+wB7rtPdRoKBLorU3jUBdDpoDgCKbBpE7BzJ1BUpDqJczod4K8vz7w8wG4H1q5VnYRU\ncLd28tAYKVFSAixYoDpFYFuwAPjoI9UpKFBwZE8+JwRgMMipg5MmqU7jnD+P7B0OICwM+OtfgXHj\nVKchX+PInvze0aPAoEHAxImqkwS2gQPlAe7du1UnoUDAYk8+197CceNUDOoBWznkKhZ78rmPPmK/\n3lMWLJD/efprq4n8B4s9+VRbm7xo9p13qk4SHCZPloW+pkZ1EvJ3LPbkUwcOAOHhwOjRqpMEB50O\nSE5mK4d6x2JPPsUWjuexb0+uYLEnn2Kx97wFC+TSEw6H6iTkz1jsyWe++Qb45BO50iV5zrhxwKhR\nwMGDqpOQP2OxJ58pK5Nr1994o+okwYd9e+oNiz35zIcfyqJEnpecLH+/RD1hsSefef99IDVVdYrg\nNH8+UF4OXLyoOgn5KxZ78onGRuD4cbkOO3nejTcCM2fKcxiIusNiTz7xwQfyRKoQp1dQoP5ITZXv\nnoi6w2JPPsEWjvex2JMzXOKYvO7yZWDMGODTT4Hx41WncY8/L3F8tUD+PZP7uMQx+Z2qKmDkSBYg\nbxswAEhJ4eieusdiT17HFo7vsJVDPem12FssFkRHRyMqKgp5eXnX3H/06FHMmTMHgwcPxksvvdTl\nvoiICMTExCAuLg6zOA1Ds1jsfWfhQnkxk7Y21UnI3zidG+FwOLBy5UqUlJTAYDAgISEBGRkZMJlM\nHduMHDkSr776KrZt23bN/jqdDlarFSNGjPB8cgoIFy4AlZXAHXeoTqINY8bIdllFBTB3ruo05E+c\njuwrKioQGRmJiIgI6PV6ZGdno7i4uMs2YWFhiI+Ph16v7/YxePBV20pLgdmzgSFDVCfRDrZyqDtO\ni73dbkd4eHjH10ajEXa73eUH1+l0SE5ORnx8PNavX9/3lBSw2MLxPRZ76o7TNo6unxcJLSsrw9ix\nY3H69GmkpKQgOjoaSUlJ12y3atWqjs/NZjPMZnO/npf8gxDArl3Au++qTqIt8+YBR44Ap08DYWGq\n05CnWK1WWK3WPu/vtNgbDAbYbLaOr202G4xGo8sPPnbsWACy1ZOZmYmKiopeiz0Fj+pqWfCnTVOd\nRFsGDZJr3FsswNKlqtOQp1w9EF69erVb+ztt48THx6Ompgb19fVoaWlBUVERMjIyut326t78xYsX\n8fXXXwMAmpub8cEHH2D69OluhaPA9t57wD33yBOTyLfuuUf+/onaOR3Zh4SEID8/H6mpqXA4HMjJ\nyYHJZEJBQQEAIDc3F42NjUhISMCFCxcwYMAArFmzBtXV1Th16hSysrIAAG1tbViyZAkWLlzo/Z+I\n/MZ77wH/8R+qU2hTejrwzDNAayvQw9wJ0hgul0Be8dVXwMSJwMmTwODBqtP0XSAtl3C1WbOAvDy5\n/DEFHy6XQH7BYgHM5sAu9IGOrRzqjMWevKK9X0/qsNhTZ2zjkMe1tgKjRwOHDwMGg+o0/RPIbRwh\nAKNRntg2ebLqNORpbOOQcvv2ARMmBH6hD3Q6HXD33cCOHaqTkD9gsSePYwvHf7CVQ+3YxiGPmzoV\n2LQJSEhQnaT/ArmNAwDNzcDYsUBDg7xOLQUPtnFIqdpa4MwZ4NZbVSchAAgNBW67Tc6OIm1jsSeP\nevttYNEiedUk8g+ZmfLfhbSNf5LkUVu3AvffrzoFdXbffXJk/49/qE5CKrHYk8fYbLKNw0VL/cuo\nUcCMGcCHH6pOQiqx2JPHvPMOcO+9XIvFH91/v3zXRdrFYk8e8/bbbOH4q8xMeV2B1lbVSUgVFnvy\niFOngIMHgZQU1UmoO0YjEBUF9OPaFxTgWOzJI7ZtA+66iwuf+TO2crSNxZ48gi0c/5eVJf9TdjhU\nJyEVWOyp386eBfbvB9LSVCchZyZNAsaMkWsXkfaw2FO/vfuuvEDG0KGqk1BvsrLYytEqFnvqt8JC\n4DvfUZ2CXPGd7wB/+ANbOVrEYk/9cuqUbOHcd5/qJOSK6Gi5MFppqeok5Gu9FnuLxYLo6GhERUUh\nLy/vmvuPHj2KOXPmYPDgwXjppZfc2pcCX1GRXEY3NFR1EnLVkiXAli2qU5CvOV3i2OFwYMqUKSgp\nKYHBYEBCQgIKCwthMpk6tjl9+jT+/ve/Y9u2bbjpppvwzDPPuLwvwCWOA93s2cCzzwbvwdlAX+K4\nOydOANOmyY/XX686DfWVR5c4rqioQGRkJCIiIqDX65GdnY3i4uIu24SFhSE+Ph76q86Rd2VfCmy1\ntUBdHU+kCjTjxsklqHlRE21xWuztdjvCw8M7vjYajbDb7S49cH/2pcDw5pvygF9IiOok5C62crTH\n6Z+pTqfr8wO7s++qVas6PjebzTBz2US/J4QsFps2qU5CfZGVBTz1lLzQzIgRqtOQK6xWK6z9WO/C\nabE3GAyw2WwdX9tsNhiNRpce2J19Oxd7CgwHDsjpe4mJqpNQXwwbBixcCPzpT8Cjj6pOQ664eiC8\nevVqt/Z32saJj49HTU0N6uvr0dLSgqKiImRkZHS77dUHCtzZlwLPli3AAw/IA5gUmNjK0ZZeLzi+\na9cuPPXUU3A4HMjJycFPf/pTFBQUAAByc3PR2NiIhIQEXLhwAQMGDMANN9yA6upqDB06tNt9rwnA\n2TgBp6UFGD8e2LMHmDxZdRrvCsbZOO0uXZKrYX7yCTBxouo05C53a2evxd7bWOwDz5/+BLz6KvDx\nx6qTeF8wF3sAePppOf3y+edVJyF3eXTqJVF31q9nnzdYrFgBbNzIi5poAYs9uaWuTh6c5XLGwWHq\nVCAyknPutYDFntzy+98DS5fyIiXB5NFHgddeU52CvI09e3JZayvwT/8ElJTIEaEWBHvPHgC++UYe\nqK2slP++FBjYsyev2bFDztrQSqHXiuuvl9MwX39ddRLyJhZ7ctlrr/HAbLBasQLYsAFoa1OdhLyF\nxZ5cUl8v52MvXqw6CXnD9OlAeLh890bBicWeXLJ2LfDww8CQIaqTkLc88QTw8suqU5C38AAt9er8\nedmrP3hQjv60RAsHaNu1tsqLkr/9NhAfrzoN9YYHaMnj1q8H7rpLe4Vea/R64MkngasuOEdBgiN7\ncqq1VY7qi4uBmTNVp/E9LY3sgW/fxVVVyfWPyH9xZE8e9Yc/AFFR2iz0WjRsGLB8ObBmjeok5Gkc\n2VOPhJCXr/vlL4G771adRg2tjewB4PhxYMYMuTTGsGGq01BPOLInj7Fa5dmVwXoxcere+PHyGM36\n9aqTkCdxZE89WrBAnln58MOqk6ijxZE9IHv2d98tLyrP6bb+iSN78ojdu+Xb+aVLVSchFeLigDlz\ngP/+b9VJyFM4sqdrCAHcdhvw+ONyZK9lWh3ZA8Bf/yrf3dXWAjfcoDoNXY0je+o3iwU4dw7Izlad\nhFS65RYgOZkzc4JFr8XeYrEgOjoaUVFRyMvL63abJ554AlFRUYiNjUVVVVXH9yMiIhATE4O4uDjM\nmjXLc6nJa4QAfv5z4LnngIEDVach1Z59FnjlFeDsWdVJqL+cFnuHw4GVK1fCYrGguroahYWFOHLk\nSJdtdu7cidraWtTU1OC1117DY4891nGfTqeD1WpFVVUVKioqvPMTkEe9844s+JmZqpOQP5g8Gbjv\nPp5VGwycFvuKigpERkYiIiICer0e2dnZKC4u7rLN9u3bsWzZMgBAYmIizp07h5MnT3bcz3584Ght\nBX7xCzmqH8AGH13xi18A//M/wBdfqE5C/eH0T9putyO804IoRqMRdrvd5W10Oh2Sk5MRHx+P9Zy0\n6/fy8wGDQbsnUFH3IiLkevc//rHqJNQfIc7u1Ol0Lj1IT6P3P//5zxg3bhxOnz6NlJQUREdHIykp\nyf2U5HVffAH8138BZWVyBgpRZz//OWAyAXv2ALffrjoN9YXTYm8wGGCz2Tq+ttlsMBqNTrdpaGiA\nwWAAAIwbNw4AEBYWhszMTFRUVHRb7FetWtXxudlshtlsdvsHof750Y/k6G3KFNVJyB8NHQr89rfA\nD34gr1Wr16tOpD1WqxVWq7XvDyCcaG1tFRMnThR1dXXi0qVLIjY2VlRXV3fZZseOHSItLU0IIcT+\n/ftFYmKiEEKI5uZmceHCBSGEEE1NTWLu3Lni/fffv+Y5eolAPmC1ChEeLkRTk+ok/ocvz29dvizE\nggVCvPyy6iQkhPu10+nIPiQkBPn5+UhNTYXD4UBOTg5MJhMKCgoAALm5uUhPT8fOnTsRGRmJ0NBQ\nbNy4EQDQ2NiIrKwsAEBbWxuWLFmChQsX9v1/JfKK1lZg5Uo5agsNVZ2G/JlOJ4/r3HYb8C//Aowd\nqzoRuYNn0Grc6tXA/v3Arl3s1XdHy2fQ9uRnPwM++wzYto2vGZXcrZ0s9hpWXi7nUFdVAVcOr9BV\nWOyvdekzZKTkAAAKG0lEQVQSMHu2XE5jxQrVabSLxZ5c8vXXcrGrX/8auNJto26w2HevulrOytm3\nT554Rb7HYk8ueeQR4PJlYMMG1Un8G4t9z/Lzgc2b5XRdzs7xPS6ERr3aulVemIQLXFF//OAHwM03\nA51mTpMfczobh4LPoUPA978P7NzJZWupf3Q6YONGICFBXsbwn/9ZdSJyhsVeQ06eBDIygFdflX+g\nRP01ejRQXAwsXAhMmADEx6tORD1hG0cj/vEPYNEiYNkyrlNPnhUXJ69Xu2gR0NCgOg31hAdoNeDy\nZXnFqcuXgcJCrmjpDh6gdV1eHlBUJI8H3Xij6jTBj7NxqAuHA8jJAerq5BWorr9edaLAwmLvOiHk\nQduDB+VJesOGqU4U3Dgbhzo4HMDy5fLC4Tt3stCTd+l0wLp1sq2TmgqcP686EXXGYh+k2tqABx+U\nSxe/9x7XvSHfaF8/Z9YsICWFlzP0Jyz2QejMGSA9XX7cvh0YMkR1ItISnU6ew3H77cCcOcCxY6oT\nEcBiH3Q++0yOqqZPB959l60bUkOnA37zG+CZZ+Qqmbt2qU5EPEAbRP74R7k41W9/CyxdqjpNcOAB\n2v4rK5MnXK1cCfzkJ8DAgaoTBQfOxtGgU6fkH9Jf/gK88QZPmPIkFnvPaGiQA5BvvpHrMU2dqjpR\n4ONsHA0RAtiyBYiJkWcvHjzIQk/+yWgEPvoIeOgh4I47gOefl0slk+9wZB+AhABKSuRFJNragIIC\n2acnz+PI3vOOH5fz8f/6V7mI2ve+x9ZOX7CNE8SEkKOj55+Xb4t/+UvZC+UZsd7DYu89e/cCP/2p\nnDX2858DixcD112nOlXgYLEPQufOyXXD160DBg0CnnxSzqHnGuLex2LvXULIM7tfekmO9B95BMjN\nBcLDVSfzfx7v2VssFkRHRyMqKgp5eXndbvPEE08gKioKsbGxqKqqcmtf6t6ZM8D//i9wzz3A+PHy\nikC//708CJuTw0JPwUGnA9LSZFuytFSedRsbC8ybB7z8smz5kIcIJ9ra2sSkSZNEXV2daGlpEbGx\nsaK6urrLNjt27BBpaWlCCCHKy8tFYmKiy/teeVfhLIJmnD0rRF5eqfjJT4SYNUuIoUOFyMwUYssW\nIc6fV53O90pLS1VHEEII4Q8vT3/5XfjKP/4hxI4dQjz8sBAjRghhMgnx+ONC/PGPQmzdWqo6nt9w\nt3Y6Xc++oqICkZGRiIiIAABkZ2ejuLgYJpOpY5vt27dj2bJlAIDExEScO3cOjY2NqKur63VfLfr6\na6C2Vp5VeOyYvJhIZaVca37kSCseesiMvDx5QefBg1WnVcdqtcJsNquO4Re09rsYNEieAZ6eDrz2\nGlBVJVfS3LgR2L3biuHDzZg5U14wZcoUICpKXgd3xAj5ToG657TY2+12hHdqnhmNRnzyySe9bmO3\n23HixIle9w1UQgAtLcDFi0Bzs7w1Ncm3oO23L78ETp+Wt8ZGeUC1oUGuKx8ZKV+cUVFAZqY80BoV\nJT/yEm9E3xo4UF4QJT4e+OEPgWeflW3MykrZ0nz/fbkWz7Fjcmaa0Sj7/WPHAmFh8nbzzcDw4XIV\nzmHD5BXaQkPlbcgQ+Z+LFiY5OC32Ohf/mxT9PIJ1zz2uPIfz73f+ePXnPd0uX/72o8PR9dbWJm+t\nrfLW0iJvly7Jm14vlyJof9GEhnZ9Qd18s7xFRcmr+YSHyxfiyJEcfRD1lU4nj2GNHy8vltLZhQty\nQGWzyQUA2wdcNTVyksP58/JjU9O3g7TmZvl3fd118p30ddfJm14vbyEh8jZwYNfbgAHf3nQ657f2\n3J0/7/yxu5+xJ7/7nawjfeG02BsMBthsto6vbTYbjFc909XbNDQ0wGg0orW1tdd9AWDSpEnYsSPw\nql978ff0Mq6rV6/27AMGMH/5XfjDf87+8rvwB974XbT/Pfu7zrOUJk2a5Na+Tot9fHw8ampqUF9f\nj3HjxqGoqAiFhYVdtsnIyEB+fj6ys7NRXl6O4cOHY/To0Rg5cmSv+wJAbW2tW4GJiMh9Tot9SEgI\n8vPzkZqaCofDgZycHJhMJhQUFAAAcnNzkZ6ejp07dyIyMhKhoaHYuHGj032JiMj3lJ9URURE3qf0\nGDRPupJsNhvmz5+PadOm4ZZbbsHatWtVR1LK4XAgLi4O9957r+ooyp07dw6LFy+GyWTC1KlTUV5e\nrjqSMr/61a8wbdo0TJ8+HQ888AAuaWgltYcffhijR4/G9OnTO7535swZpKSkYPLkyVi4cCHOnTvn\n9DGUFXuHw4GVK1fCYrGguroahYWFOHLkiKo4Sun1erz88sv47LPPUF5ejnXr1mn2dwEAa9aswdSp\nU12eDRbMnnzySaSnp+PIkSM4dOiQZluh9fX1WL9+PSorK3H48GE4HA689dZbqmP5zPLly2GxWLp8\n74UXXkBKSgqOHTuGBQsW4IUXXnD6GMqKfecTtvR6fcdJV1o0ZswYzJgxAwAwdOhQmEwmnDhxQnEq\nNRoaGrBz50488sgjml8z6fz589i7dy8efvhhAPI42LBhwxSnUuPGG2+EXq/HxYsX0dbWhosXL8Jg\nMKiO5TNJSUm46aabunyv8wmty5Ytw7Zt25w+hrJi39PJWFpXX1+PqqoqJCYmqo6ixNNPP40XX3wR\nA7Rwlksv6urqEBYWhuXLl2PmzJlYsWIFLl68qDqWEiNGjMAzzzyD8ePHY9y4cRg+fDiSk5NVx1Lq\n5MmTGD16NABg9OjROHnypNPtlf1F8S36tZqamrB48WKsWbMGQ4cOVR3H59577z2MGjUKcXFxmh/V\nA0BbWxsqKyvx+OOPo7KyEqGhob2+VQ9Wn3/+OV555RXU19fjxIkTaGpqwpYtW1TH8hs6na7Xmqqs\n2LtywpaWtLa24v7778f3vvc9LLr61ECN2LdvH7Zv344JEybgu9/9Lnbv3o0HH3xQdSxljEYjjEYj\nEq5cfmzx4sWorKxUnEqNTz/9FHPnzsXIkSMREhKCrKws7Nu3T3UspUaPHo3GxkYAwBdffIFRo0Y5\n3V5Zse98wlZLSwuKioqQkZGhKo5SQgjk5ORg6tSpeOqpp1THUeb555+HzWZDXV0d3nrrLdx5553Y\nvHmz6ljKjBkzBuHh4Th27BgAoKSkBNOmTVOcSo3o6GiUl5fjm2++gRACJSUlmKrxC9lmZGRg06ZN\nAIBNmzb1Pkj09LKb7ti5c6eYPHmymDRpknj++edVRlFq7969QqfTidjYWDFjxgwxY8YMsWvXLtWx\nlLJareLee+9VHUO5gwcPivj4eBETEyMyMzPFuXPnVEdSJi8vT0ydOlXccsst4sEHHxQtLS2qI/lM\ndna2GDt2rNDr9cJoNIoNGzaIr776SixYsEBERUWJlJQUcfbsWaePwZOqiIg0gFMeiIg0gMWeiEgD\nWOyJiDSAxZ6ISANY7ImINIDFnohIA1jsiYg0gMWeiEgD/h9vTJensdlmqAAAAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X10U2WeB/BvoFEE5NUqJamGNqUNtk0LfeFlqmFoqTBO\nhcqc6VnfZuxoh12GYZzxuLNnZwTXszPVcTloXa3MyOroVmbFobpARIZGWRSC0OHFwqFAKyEI8k4p\nL23TZ/+4ptK3NGmTPPcm3885HJvkPvf+WnO/ffrkPs/VCSEEiIgoog2SXQAREYUew56IKAow7ImI\nogDDnogoCjDsiYiiAMOeiCgK9Bn2drsdKSkpSEpKQnl5ea/b7dixAzExMVizZk3AbYmIKLR0vq6z\n93g8SE5OxqZNm2AwGJCdnY2qqipYLJZu2xUUFGDo0KH48Y9/jPvvv9/vtkREFHo+e/ZOpxNmsxkm\nkwl6vR4lJSWorq7utt1LL72EBQsWIDY2NuC2REQUej7D3u12Iz4+vuOx0WiE2+3utk11dTUWLlwI\nANDpdH63JSKi8PAZ9t7g9mXJkiX4/e9/D51OByEEvKNC/rQlIqLwiPH1osFggMvl6njscrlgNBo7\nbbNz506UlJQAAE6fPo0NGzZAr9f71RYAzGYzDh8+PKBvgogo2iQmJuLQoUP+NxA+tLa2ioSEBNHQ\n0CCuXbsmrFarqKur63X7H/3oR2LNmjUBte2jBNV7+umnZZcwIKy/i1/8QoipU4WoqRGivV0AQogF\nC4Sw2YRoawvusYQQwNNB32e48L0jV6DZ6XMYJyYmBhUVFSgsLMSkSZPwwx/+EBaLBZWVlaisrPT5\nS6S3tkSqtWED8O67wLp1gM0GeIci33kHEALg5cOkYT6HcQBgzpw5mDNnTqfnysrKetx21apVfbYl\nUqUTJ4BHHwVWrwbGjOn82uDBwFtvAVOmADNnAtOmyamRaAA4g3aAbDab7BIGhPV/Y9Ei4Cc/Ae66\nq+fXjUagshJ46CGgrS04xwQA2IK4r/Die0dbfE6qCksB31zFQyRNfT0wfTrw5ZfA0KGdXtLplBGc\nDt/5DrBkCbBgQVAO3W3/RH4KNDvZsydasQJ4/PFuQd+jX/wC+I//CH1NREHGnj1Ft7NngcRE4Isv\ngPHju73creft8QBJScB//zcwdeqAD8+ePfUXe/ZEgVi5Evj+93sM+h4NHgz8/OfA8uWhrYsoyNiz\np+jV2gpMmAB88AGQmdnjJj32vJuaAJMJ2LULuOOOAZXAnj31F3v2RP6qqVF69L0Efa9uvhn44Q+B\nqqrQ1EUUAgx7il5r1gA/+EH/2i5YoLQn0ggO41B08niAuDhg2zYgIaHXzXodZmlrU/4qcDqVIZ1+\n4jAO9ReHcYj8sWWLMlHKR9D7FBMD3Hcf8N57wa2LKEQY9hSd3n134BOjFixQ9kOkARzGoejT3q70\n6h0OYOJEn5v6HGZpbQXGjQN271b21w8cxqH+4jAOUV8++wwYO7bPoO+TXq9co//XvwanLqIQYthT\n9Hn/fWD+/ODsa/58gPdWJg1g2FP02bQJmD07OPuaORPYvh24ciU4+yMKEYY9RZfTp5VVLnNygrO/\nESOAtDTg00+Dsz+iEGHYU3SpqQHy8oAbbgjePvPzlb8WiFSMYU/R5W9/U8I5mGbNUvZLpGIMe4ou\nmzYFP+ynTgUOHADOnQvufomCqM+wt9vtSElJQVJSEsp7uOFydXU1rFYrMjMzMWXKFGzevLnjNZPJ\nhPT0dGRmZiInWGOkRP3V0KCsWJmaGtz93ngjMGOGMkREpFI+J1V5PB4kJydj06ZNMBgMyM7ORlVV\nFSwWS8c2zc3NGDZsGABg7969mD9/Pg4dOgQAmDBhAnbu3IkxXW/gfH0BnFRF4fLHPwKbNys3HvGT\n35Oe/vAH4MgR4D//M6CSOKmK+iuok6qcTifMZjNMJhP0ej1KSkpQ3eWaYm/QA8ClS5dwyy23dHqd\nQU6qEYrxeq/8fI7bk6r5DHu32434+PiOx0ajEW63u9t2a9euhcViwZw5c/Diiy92PK/T6ZCfn4+s\nrCysXLkyiGUTBUgIZZhl5szQ7D89HThzBujh/CBSA59hr9Pp/NrJvHnzsH//fnzwwQd46KGHOp7f\nunUramtrsWHDBrz88svYsmXLwKol6q8jR5RbCg5gOWKfBg0Cpk3j9fakWjG+XjQYDHC5XB2PXS4X\njD4WfMrLy0NbWxvOnDmDsWPHIi4uDgAQGxuL+fPnw+l0Ii8vr1u7pUuXdnxts9lgs9kC/DaI+vDp\np8qHqH52YPplxgzlOP29IQqRDw6HAw6Ho/87ED60traKhIQE0dDQIK5duyasVquoq6vrtM2hQ4dE\ne3u7EEKInTt3ioSEBCGEEM3NzeLixYtCCCEuXbokpk+fLj788MNux+ijBKLg+OlPhVi+POBmAb09\nP/5YiJyc0O2f6DqBZqfPnn1MTAwqKipQWFgIj8eD0tJSWCwWVFZWAgDKysqwZs0avPnmm9Dr9Rg+\nfDjeeecdAMCJEydQXFwMAGhra8MDDzyA2cFaj4QoUJ9+Cvz4x6E9RlYWsG+fsk7OTTeF9lhEAeJ6\n9hT5LlwADAZl0pNeH1DTgC+NzM0Fnn8euOuu0Oyf6Btcz56oq+3bgSlTAg76fpk+nR/Skiox7Cny\nffqpEsLhwLAnlWLYU+TzXokTDt4rcjg2QyrDsKfI5vEowzhTp4bneOPHA8OHAwcPhud4RH5i2FNk\n27cPiIsDuizjEVIcyiEVYthTZHM6lStkwik3VzkukYow7Cmyff45kJ0d3mNmZyvHJVIRhj1Fts8/\nVyY7hVNGBvDFF8C1a+E9LpEPDHuKXFevAvv3A1ZreI87dChgNgN794b3uEQ+MOwpcu3ZA0ycKGfp\ngqwsDuWQqjDsKXLJGK/34rg9qQzDniKXjPF6r6wsYMcOOccm6gHDniKXzLBPTwfq64HLl+Ucn6gL\nhj1FpuZm4PBhIC1NzvFvvBGwWIDdu+Ucn6gLhj1Fpr//HbjzTuCGG+TVkJ3NoRxSDYY9RSaZQzhe\nvCKHVIRhT5Hp88+VNexlYtiTijDsKTLV1gKTJ8utYdIkoKFBuU0hkWQMe4o8V64AR44oY/Yy3XAD\nkJysrLxJJFmfYW+325GSkoKkpCSUl5d3e726uhpWqxWZmZmYMmUKNm/e7HdbopDYu1eZOSvzw1mv\njAzlw2IiyXzecNzj8SA5ORmbNm2CwWBAdnY2qqqqYLFYOrZpbm7GsGHDAAB79+7F/PnzcejQIb/a\nArzhOIXAa68Bn30GrFo14F0N+Ibgy5crl4BWVIRm/xS1gnrDcafTCbPZDJPJBL1ej5KSElRXV3fa\nxhv0AHDp0iXc8s1NIvxpSxQStbVAZqbsKhTs2ZNK+Ax7t9uN+Pj4jsdGoxFut7vbdmvXroXFYsGc\nOXPw4osvBtSWKOj+/nclZNXAalUWZGtvl10JRbkYXy/qdDq/djJv3jzMmzcPW7ZswUMPPYQDBw4E\nVMTSpUs7vrbZbLDZbAG1J+rg8Shj9moJ+zFjgFGjlKtyEhNlV0Ma5nA44HA4+t3eZ9gbDAa4XK6O\nxy6XC0ajsdft8/Ly0NbWhrNnz8JoNPrd9vqwJxqQgweBceOAESNkV/Itq1VZNoFhTwPQtSO8bNmy\ngNr7HMbJyspCfX09Ghsb0dLSgtWrV6OoqKjTNocPH+74kGDXrl0AgLFjx/rVlijo1DSE48Vxe1IB\nnz37mJgYVFRUoLCwEB6PB6WlpbBYLKisrAQAlJWVYc2aNXjzzTeh1+sxfPhwvPPOOz7bEoWUmj6c\n9bJagT//WXYVFOV8XnoZlgJ46SUFU0EBsGQJ8L3vBWV3Qbk08tAhYNYs4MsvQ7N/ikpBvfSSSFOE\nUIZL1NazT0gAzp1T/hFJwrCnyHH8uPLfuDi5dXQ1aJCyrj7XtieJGPYUOfbuVcbH/bxkOKwyMhj2\nJBXDniLHnj3K7QDVyGrlFTkkFcOeIoeaw549e5KMYU+RQ81hn5oKHDgAtLbKroSiFMOeIkNLC1Bf\nr9zkW42GDgXuuEMJfCIJGPYUGQ4cAEwm4KabZFfSO47bk0QMe4oMe/eqdwjHi+P2JBHDniKDmsfr\nvbhGDknEsKfIoIWw965+yfURSAKGPUWGPXuUWapqNm6cMpvWO9OXKIwY9qR9p08Dly4pV7uomU73\nbe+eKMwY9qR9e/cqvXo1LpPQFcftSRKGPWmfFq7E8WLPniRh2JP2aeHDWa/0dKVeojBj2JP2aSns\nk5OVm5hcvSq7EooyDHvSNo8H+OILZe0ZLbjhBiApCairk10JRRmGPWnb4cPArbcCI0bIrsR/aWkc\nyqGw6zPs7XY7UlJSkJSUhPLy8m6vv/3227BarUhPT8eMGTOw57o3sclkQnp6OjIzM5GTkxPcyokA\nbQ3heHHcniSI8fWix+PBokWLsGnTJhgMBmRnZ6OoqAiW61YWTEhIwCeffIKRI0fCbrfj8ccfx7Zt\n2wAoN8R1OBwYM2ZMaL8Lil5auhLHKz0d+Ogj2VVQlPHZs3c6nTCbzTCZTNDr9SgpKUF1dXWnbaZN\nm4aRI0cCAHJzc3Hs2LFOrwdy93OigLFnT+QXn2HvdrsRHx/f8dhoNMLtdve6/Z/+9CfMnTu347FO\np0N+fj6ysrKwcuXKIJRL1IUWwz4uDmhrA06elF0JRRGfwzi6AGYk1tTU4PXXX8fWrVs7ntu6dSvi\n4uJw6tQpFBQUICUlBXl5ed3aLl26tONrm80Gm83m93EpijU1AV99BZjNsisJjE53Xe++QHY1pBEO\nhwMOh6Pf7X2GvcFggMvl6njscrlgNBq7bbdnzx489thjsNvtGD16dMfzcXFxAIDY2FjMnz8fTqez\nz7An8tu+fcCkScDgwbIrCRzDngLUtSO8bNmygNr7HMbJyspCfX09Ghsb0dLSgtWrV6OoqKjTNkeP\nHkVxcTHeeustmK/rYV2+fBlNTU0AgObmZmzcuBFpal+VkLRFix/OeqWnK/UThYnPnn1MTAwqKipQ\nWFgIj8eD0tJSWCwWVFZWAgDKysrwzDPP4Ny5c1i4cCEAQK/Xw+l04sSJEyguLgYAtLW14YEHHsDs\n2bND/O1QVNHieL1XWhrw8suyq6AoohOSL5fR6XS8Yof65667gKVLge9+N2SH0OlCdK+R5mYgNha6\nK5d5LxPql0CzkzNoSZuE0MYNS3ozbBjQw+dfRKHCsCdtcrmAm24CYmNlV9J/Wh2CIk1i2JM2aXm8\n3kurf5WQJjHsSZu0fCWOl9brJ01h2JM2RULPXuv1k6Yw7EmbIiHsJ0xQ/nv+vNw6KCow7El7rl4F\njhwBUlJkVzIwg745/fbtk1sHRQWGPWnP/v1AYiJw442yKwkOroBJYcCwJ+2JhCGc6zHsKQwY9qQ9\nkXAlzvUY9hQGDHvSnkjr2e/bB7S3y66CIhzDnrQn0sJ+5Ejgyy9lV0ERjmFP2nLyJHDtGmAwyK4k\neHibQgoDhj1pi7dXH8Bd1FSPYU9hwLAnbdm9G7BaZVcRXAx7CgOGPWnL7t1ARobsKoIrLY1hTyHH\nsCdticSefXIycPQocPmy7EoogjHsSTuuXQPq64E775RdSXDp9Urg19XJroQiGMOetGP/fiAhARgy\nRHYlwcdxewqxPsPebrcjJSUFSUlJKC8v7/b622+/DavVivT0dMyYMQN7rnvD9tWWKCB//3vkDeF4\ncdyeQsxn2Hs8HixatAh2ux11dXWoqqrC/v37O22TkJCATz75BHv27MFvfvMbPP744363JQpIJI7X\ne7FnTyHmM+ydTifMZjNMJhP0ej1KSkpQXV3daZtp06Zh5MiRAIDc3FwcO3bM77ZEAYnEK3G8vGEv\nhOxKKEL5DHu32434+PiOx0ajEW63u9ft//SnP2Hu3Ln9akvkkxCR3bMfN06ZKHbihOxKKELF+HpR\nF8AsxZqaGrz++uvYunVrwG2XLl3a8bXNZoPNZvO7LUUJtxuIiVFCMRLpdN+O28fFya6GVMjhcMDh\ncPS7vc+wNxgMcLlcHY9dLheMRmO37fbs2YPHHnsMdrsdo0ePDqgt0DnsiXoUyR/OenmHcgoLZVdC\nKtS1I7xs2bKA2vscxsnKykJ9fT0aGxvR0tKC1atXo6ioqNM2R48eRXFxMd566y2YzeaA2hL5LZKH\ncLzS05W1+olCwGfPPiYmBhUVFSgsLITH40FpaSksFgsqKysBAGVlZXjmmWdw7tw5LFy4EACg1+vh\ndDp7bUvUL7t3A/fdJ7uK0EpPB1askF0FRSidEHI//tfpdJBcAmlBcjKwZg2QmhrWw+p0ob1AptP+\nr1wBxo4Fzp2LnPvrUsgEmp2cQUvq19wMuFxK4Eeym25SZghz2QQKAYY9qd/evUBKirKGTKTLyFA+\njCYKMoY9qV80fDjrxbCnEGHYk/ox7IkGjGFP6hfJyyR0lZGhfL+8aIGCjGFP6tberozZR0vP/pZb\ngJtvBhobZVdCEYZhT+p25AgwahTwzczsqMChHAoBhj2pWzSN13sx7CkEGPakbgx7oqBg2JO6RdOH\ns14MewoBhj2pWzT27CdMAM6fB86ckV0JRRCGPanX2bPKv8RE2ZWE16BByi849u4piBj2pF67dilD\nGoOi8G06ZQqwc6fsKiiCROFZRJqxaxcwebLsKuSYPFn5/omChGFP6rVzp9LDjUbs2VOQMexJvaI5\n7JOTga++Ai5ckF0JRQiGPanT+fPAiRORv4Z9bwYPVj6k5VAOBQnDntSptlYJu8GDZVciz5QpDHsK\nGoY9qVM0D+F4TZ7McXsKmj7D3m63IyUlBUlJSSgvL+/2+oEDBzBt2jQMGTIEL7zwQqfXTCYT0tPT\nkZmZiZycnOBVTZGPYc8PaSmofN5w3OPxIDk5GZs2bYLBYEB2djaqqqpgsVg6tjl16hS+/PJLrF27\nFqNHj8Yvf/nLjtcmTJiAnTt3YsyYMb0XwBuOU0+Sk4F33wXS0qSWEdYbjnfV1gaMHKl8UDtiROiK\nIE0K6g3HnU4nzGYzTCYT9Ho9SkpKUF1d3Wmb2NhYZGVlQd/L/UEZ5BSwixeBY8eA6zoVUSkmRvll\nx5m0FAQ+w97tdiM+Pr7jsdFohNvt9nvnOp0O+fn5yMrKwsqVK/tfJUWX2logPV0Ju2jHoRwKEp9n\nk06nG9DOt27diri4OJw6dQoFBQVISUlBXl5et+2WLl3a8bXNZoPNZhvQcUnjOF7/rawsYNMm2VWQ\nCjgcDjgcjn639xn2BoMBLper47HL5YLRaPR753FxcQCUoZ758+fD6XT2GfZE2L4duPde2VWoQ04O\n8O//LrsKUoGuHeFly5YF1N7nME5WVhbq6+vR2NiIlpYWrF69GkVFRT1u23Vs/vLly2hqagIANDc3\nY+PGjUiT/GEbaYTTqYQcASkpwMmTyuqfRAPgs2cfExODiooKFBYWwuPxoLS0FBaLBZWVlQCAsrIy\nnDhxAtnZ2bh48SIGDRqEFStWoK6uDl9//TWKi4sBAG1tbXjggQcwe/bs0H9HpG1ff63Mnk1Kkl2J\nOgwerAxp7dgBFBbKroY0zOell2EpgJde0vXWrQNWrAA2bpRdCQDJl156/fM/A0OHAr/9begKIc0J\n6qWXRGG3fTuHcLrKyVGGtogGgGFP6sLx+u68Yc+/gGkAGPakHkIw7HtiNAJ6PdDYKLsS0jCGPanH\n4cPAzTcD48bJrkR9OJRDA8SwJ/Vgr753DHsaIIY9qcf27UBuruwq1Ck3V/n5EPUTw57Ug1fi9C4r\nS1kQrbVVdiWkUQx7UocrV4C9e5VQo+5GjAASEpRF4oj6gWFP6rBjB5Caqkweop7NmAF8+qnsKkij\nGPakDlu3KmFGvZsxQ/k5EfUDw57UgWHfN2/Yc3IV9QPDnuRrb1eGJxj2vplMyn85uYr6gWFP8h04\nAIwezclUfdHpOJRD/cawJ/m2bgWmT5ddhTZMn86wp35h2JN8HK/3H3v21E8Me5KPYe+/zEzgyBHl\nBi9EAWDYk1xffw2cOgXceafsSrRBr1cmnm3bJrsS0hiGPcn18cfAd74DDOJb0W933aX83IgCwDOM\n5KqpAWbOlF2FtsycqfzciALQZ9jb7XakpKQgKSkJ5eXl3V4/cOAApk2bhiFDhuCFF14IqC0Rw74f\npk0D9u0DLl6UXQlpiM+w93g8WLRoEex2O+rq6lBVVYX9+/d32mbs2LF46aWX8Ktf/SrgthTljh8H\nTp4ErFbZlWjLkCFAdjawZYvsSkhDfIa90+mE2WyGyWSCXq9HSUkJqqurO20TGxuLrKws6PX6gNtS\nlHM4lPHnwYNlV6I9HMqhAPkMe7fbjfj4+I7HRqMRbrfbrx0PpC1FCQ7h9B/DngIU4+tFnU7X7x0H\n0nbp0qUdX9tsNthstn4flzSkpgb42c9kV6FNOTnAwYPAuXPKUhMU8RwOBxwOR7/b+wx7g8EAl8vV\n8djlcsFoNPq140DaXh/2FCVcLmViUGqq7Eq06cYbgalTgU8+Ae67T3Y1FAZdO8LLli0LqL3PYZys\nrCzU19ejsbERLS0tWL16NYqKinrcVnRZdjWQthSFamoAm43X1w8Eh3IoAD579jExMaioqEBhYSE8\nHg9KS0thsVhQWVkJACgrK8OJEyeQnZ2NixcvYtCgQVixYgXq6uowfPjwHtsSAQD+9jfgu9+VXYW2\nzZoFlJbKroI0Qie6dsnDXYBO1+2vAopw7e1AXBzw2WfKfVVVTKcL7b1CBrR/jwe47TblvrTXXQxB\n0SHQ7OTf0BR+tbXAqFGqD3rVGzwYKCgA7HbZlZAGMOwp/Ox2YM4c2VVEhjlzGPbkF4Y9hd+GDQz7\nYCksVD7/aG2VXQmpHMOewuvcOWDPHuDuu2VXEhluuw0wm5XPP4h8YNhTeG3apCxpPGSI7Eoixz33\nKH8tEfnAsKfw4hBO8M2Zw7CnPvHSSwqf9nbAaFRmfZrNsqvxi6ovvfRqawNuvRXYuxcwGIJSF6kf\nL70k9dqxQ7nkUiNBrxkxMcDcuQBXlSUfGPYUPmvWAPffL7uKyHT//cB778muglSMwzgUHkIASUnA\n//wPkJkpuxq/aWIYBwAuX1ZmJR85AowdG4QdktpxGIfUae9eZXp/RobsSiLT0KFAfj7w/vuyKyGV\nYthTeLz3HlBcrHRlKTSKizmUQ73iMA6FR3o68OqrwPTpsisJiGaGcQDgwgVlQTS3G7j55iDtlNSK\nwzikPvX1wKlTys02KHRGjlQmrK1bJ7sSUiGGPYXeO+8oV4vwRiWht2CB8vMm6oLDOBRaQgATJwJv\nv63cN1VjNDWMAwAXLypDOYcPA7fcEsQdk9pwGIfUZds2ZdJPdrbsSqLDiBHAvfeyd0/dMOwptN54\nA3j4YV6FE04PP6z83Imu02fY2+12pKSkICkpCeXl5T1us3jxYiQlJcFqtaK2trbjeZPJhPT0dGRm\nZiJHg3/C0wBdvapMonrwQdmVRJf8fOWKnLo62ZWQivgMe4/Hg0WLFsFut6Ourg5VVVXYv39/p23W\nr1+PQ4cOob6+Hq+99hoWLlzY8ZpOp4PD4UBtbS2cTmdovgNSr//9X2W2LO+PGl6DByu/YP/8Z9mV\nkIr4DHun0wmz2QyTyQS9Xo+SkhJUd1ls6f3338cjjzwCAMjNzcX58+dx8uTJjtf54WsUW7VKGVKg\n8Hv4YSXs29pkV0Iq4TPs3W434q/rlRmNRrjdbr+30el0yM/PR1ZWFlauXBnMukntDh9WVrn8wQ9k\nVxKdUlOBCROAtWtlV0IqEePrRZ2fH6r11nv/v//7P4wfPx6nTp1CQUEBUlJSkJeXF3iVpD0vvww8\n+ihw002yK4leP/sZ8NJLyrX3FPV8hr3BYIDL5ep47HK5YDQafW5z7NgxGL65gcL48eMBALGxsZg/\nfz6cTmePYb906dKOr202G2w2W8DfCKnIpUvK1SDXfVhPEsyfDzzxBLB7N2C1yq6GBsjhcMDhcPR/\nB8KH1tZWkZCQIBoaGsS1a9eE1WoVdXV1nbZZt26dmDNnjhBCiM8++0zk5uYKIYRobm4WFy9eFEII\ncenSJTF9+nTx4YcfdjtGHyWQFr38shDFxbKrCIpQvz1D/vZ/9lkhSktDfBCSIdDs9Nmzj4mJQUVF\nBQoLC+HxeFBaWgqLxYLKykoAQFlZGebOnYv169fDbDZj2LBhWLVqFQDgxIkTKC4uBgC0tbXhgQce\nwOzZs/v/W4m0QQhl6ODVV2VXQgDw+OPKDObycq5zH+W4XAIF1/vvA08/DezaFRETqTS3XEJPSkuV\ny1+vGy4l7Qs0Oxn2FDxCAFOmAL/9LTBvnuxqgiIiwv7wYSA3V1l9dPToEB+MwoVr45A83jkY990n\ntw7qLDFR+X+yfLnsSkgi9uwpONrbgcmTgWeeAYqKZFcTNBHRsweAhgZlMbqDB4ExY8JwQAo19uxJ\njrVrldUtv/992ZVQTyZMUC7FfOEF2ZWQJOzZ08BdvQrceSfwyitAhF1xFTE9ewA4elT56+vzzwGT\nKUwHpVBhz57C77nngIyMiAv6iHP77cAvfgEsWSK7EpKAPXsaGO9Y8K5dSphEmIjq2QPAtWvKujkr\nVgBz54bxwBRs7NlT+AgB/PznypT8CAz6iHTjjcqkt8WLgStXZFdDYcSwp/57/XWgsRH45S9lV0KB\nuOce5X7A/P8WVTiMQ/1z4ACQlwd8/DEwaZLsakIm4oZxvC5cUD5nWb48YibARRvOoKXQu3YNmDoV\n+OlPgbIy2dWEVMSGPQB89pkS9Dt3Al1WsyX1Y9hTaAkBPPKIMt77l79ExPo3vkR02APA734HvPce\n4HAAw4ZJLIQCxbCn0PrXfwU2bQI2bwaGDpVdTchFfNgLodxk5tSpbyfGkSbwahwKnVdeAd55B/jg\ng6gI+qig0wGvvQa0tgL/+I/KshcUkRj25J8//EFZE91uB2JjZVdDwaTXA+++C3zxBfCjHynBTxGH\nwzjkW3s78C//oqxTv3Fj1H2QF/HDONe7fFm5X+3gwcDq1fzrTeU4jEPB8/XXwPe+B2zdCmzZEnVB\nH3WGDlWNuyHlAAAI60lEQVSWqb7lFmVW9L59siuiIGLYU8/Wr1cWzZo8Gaip4S3tooVer0yWe/JJ\nYOZM4OWXAY9HdlUUBBzGoc7q65XFsg4eVD6QnTVLdkVSRdUwTlf79yvzKJqagBdfVCbRkWoEfRjH\nbrcjJSUFSUlJKC8v73GbxYsXIykpCVarFbW1tQG1JZWorQX+4R+UyVJ33638CR/lQR/1LBZlhvRT\nTwEPPqi8H+x2Ff92Ip+ED21tbSIxMVE0NDSIlpYWYbVaRV1dXadt1q1bJ+bMmSOEEGLbtm0iNzfX\n77bf/FXhqwTVq6mpkV1C/x07Jmr+6Z+EyM4WwmAQ4vnnhbhwQXZVAQn1zz/Ub0+gJrQHCJaWFiHe\nfFOItDQhEhOF+M1vRM2qVUK0t8uurN80fe6KwLPTZ8/e6XTCbDbDZDJBr9ejpKQE1d77jH7j/fff\nxyOPPAIAyM3Nxfnz53HixAm/2kYCh8MhuwT/CAEcOaLMen3iCSAtDUhLg2PLFuDZZ5UFzX71K2DE\nCNmVBkQzP/9eOWQX4B+9HnjoIWD3bmWuRVMTHIsXKzdB+clPgFWrlL8G29pkV+o37b93AuNzupzb\n7UZ8fHzHY6PRiO3bt/e5jdvtxvHjx/tsS0Hg8ShLF5w9C5w58+1/T55Uwv3IEeDwYWXd+VGjlKss\ncnKAP/4RyMoC/u3feNMR8p9Op7xvsrKUjkFJCfDRR8qs6t/9Trkb1u23AwkJyr/ERCAuTvmAf+xY\n5f63Y8cqSzNwtm5Y+fxp6/xc90QMdAzv3ns7jwN6vx7Ic+Haz9GjwIcfhr5Gj0dZgOzq1W//Xbmi\nPD90KDB6dOeTKTZWOdny8pQTbsIEzfXaSeV0OmVc32L59rmrV5WOxfUdjR07undGLl9Wth8ypPs/\nvR4YNMj3v8GDv/26v+sz1dcDTufAvv+B6G/7//ov5fLYAPkMe4PBAJfL1fHY5XLB2OVa667bHDt2\nDEajEa2trX22BYDExETo1q0LuHA1WeZ2yy2guVn5d+xYv5ovW7YsyAWFV6jrD/Vabzqddn/+A/7Z\ne9+7kiw7fFjasfvtmxnsiYmJATXzGfZZWVmor69HY2Mjxo8fj9WrV6OqqqrTNkVFRaioqEBJSQm2\nbduGUaNG4bbbbsPYsWP7bAsAhw4dCqhgIiIKnM+wj4mJQUVFBQoLC+HxeFBaWgqLxYLKykoAQFlZ\nGebOnYv169fDbDZj2LBhWLVqlc+2REQUftInVRERUeiFdbmERx99FLfddhvS0tI6Pf/SSy/BYrEg\nNTUVTz31VDhLCkhP9TudTuTk5CAzMxPZ2dnYsWOHxAp753K5MHPmTNx5551ITU3Fiy++CAA4e/Ys\nCgoKMHHiRMyePRvnz5+XXGnPeqv/ySefhMVigdVqRXFxMS5cuCC50p71Vr/XCy+8gEGDBuHs2bOS\nKvTNV/1aOH97q18L5+/Vq1eRm5uLjIwMTJo0Cb/+9a8B9OPcDcXF/r355JNPxK5du0RqamrHc5s3\nbxb5+fmipaVFCCHE119/Hc6SAtJT/Xfffbew2+1CCCHWr18vbDabrPJ8+uqrr0Rtba0QQoimpiYx\nceJEUVdXJ5588klRXl4uhBDi97//vXjqqadkltmr3urfuHGj8Hg8QgghnnrqKc3VL4QQR48eFYWF\nhcJkMokzZ87ILLNXvdWvlfO3t/q1cv42NzcLIYRobW0Vubm5YsuWLQGfu2Ht2efl5WH06NGdnnvl\nlVfw61//Gnq9HgAQq+K10nuqPy4urqM3ef78eRgMBhml9WncuHHIyMgAAAwfPhwWiwVut7vTpLhH\nHnkEa9eulVlmr3qq//jx4ygoKMCgQcrbODc3F8f6eUVSqPVWPwA88cQTeO6552SW16fe3j+vvvqq\nJs7f3urXyvk79JvlpltaWuDxeDB69OjAz92Q/0rqoqGhoVPPOCMjQzz99NMiNzdX3H333WLHjh3h\nLikgXetvbGwURqNRxMfHC4PBII4ePSqxOv80NDSI22+/XVy8eFGMGjWq4/n29vZOj9XKW39TU1On\n5++9917x9ttvS6rKf9fXv3btWrFkyRIhhFB1z/56179/tHb+CtH556+V89fj8Qir1SqGDx8unnzy\nSSGECPjclR72qampYvHixUIIIZxOp5gwYUK4SwpI1/pnzZol3nvvPSGEEH/5y19Efn6+rNL80tTU\nJCZPniz++te/CiFEtzfI6NGjZZTlt6amJjFlypSO+r2effZZUVxcLKkq/11ff3Nzs8jJyREXvlmP\nyGQyidOnT0uu0LeuP3+tnb9d69fa+Xv+/HmRm5srNm/eHPC5Kz3s77nnHuFwODoeJyYmqvoN37X+\nm2++uePr9vZ2MWLECBll+aWlpUXMnj1bLF++vOO55ORk8dVXXwkhhDh+/LhITk6WVV6feqpfCCFW\nrVolpk+fLq5cuSKpMv90rX/Pnj3i1ltvFSaTSZhMJhETEyPuuOMOcfLkScmV9qynn7+Wzt+e6tfS\n+ev1zDPPiOeffz7gc1f6zUvmzZuHzZs3AwAOHjyIlpYWjNXQjTLMZjM+/vhjAMDmzZsxceJEyRX1\nTAiB0tJSTJo0CUuWLOl4vqioCG+88QYA4I033sC8efNklehTb/Xb7XY8//zzqK6uxpAhQyRW6FtP\n9aelpeHkyZNoaGhAQ0MDjEYjdu3ahVtvvVVytd319vPXyvnbW/1aOH9Pnz7dcaXNlStX8NFHHyEz\nMzPwczfEv4Q6KSkpEXFxceKGG24QRqNRvP7666KlpUU8+OCDIjU1VUyePFnVy45669fr9R3179ix\nQ+Tk5Air1SqmTp0qdu3aJbvMHm3ZskXodDphtVpFRkaGyMjIEBs2bBBnzpwRs2bNEklJSaKgoECc\nO3dOdqk96qn+9evXC7PZLG6//faO5xYuXCi71B71Vv/1JkyYoNox+97eP1o5f3v7+Wvh/N2zZ4/I\nzMwUVqtVpKWlieeee04IIQI+dzmpiogoCkgfxiEiotBj2BMRRQGGPRFRFGDYExFFAYY9EVEUYNgT\nEUUBhj0RURRg2BMRRYH/B9IztzcPXIvMAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 2 + "prompt_number": 34 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "As we expected the curve is centered around 5. We can see why this is by looking at the equation for the gaussian. When x=5, x-\\mu is 0, and thus e^0 is 1. any other value for x will result in a smaller value for exp function.\n", + "As we expected the curve is centered around 23. The width of the curve is defined by the variance. If the variance is large than the curve will be wide, and if the variance is small the curve will be narrow.\n", "\n", - "The width of the curve is defined by the variance. If the variance is large than the curve will be wide, and if the variance is small the curve will be narrow.\n", + "So what does this curve *mean*? Assume for a moment that we have a themometer that reads 23$\\,^{\\circ}$. We have asserted (without proof) that the distribution will be *normal*. If that is true, then this chart can be interpreted as a continuous curve depicting our belief that the temperature is any given temperature. In this curve, we assign a probability of the temperature being exactly 23$\\,^{\\circ}$ is 40%. Looking to the right, we assign the probability that the temperature is 24$\\,^{\\circ}$ is about 25%. We find 20$\\,^{\\circ}$ and 26$\\,^{\\circ}$ quite unlikely, and temperatures beyond that range extremely rare. \n", "\n", - "Also, since this is a probability distribution it is required that the area under the curve always equals one. This should be intuitively clear - the area under the curve represents all possible occurances, which must sum to one.\n", + "Since this is a probability distribution it is required that the area under the curve always equals one. This should be intuitively clear - the area under the curve represents all possible occurances, which must sum to one.\n", "\n", "This leads to an important insight. If the variance is small the curve will be narrow. To keep the area == 1, the curve must also be tall. On the other hand if the variance is large the curve will be wide, and thus it will also have to be short to make the area == 1.\n", "\n", @@ -109,9 +146,9 @@ "cell_type": "code", "collapsed": false, "input": [ - "plt.plot (xs,[gaussian(x, 5, .2) for x in xs],'b')\n", - "plt.plot (xs,[gaussian(x, 5, 1) for x in xs],'g')\n", - "plt.plot (xs,[gaussian(x, 5, 5) for x in xs],'r')\n", + "plt.plot (xs,[gaussian(x, 23, .2) for x in xs],'b')\n", + "plt.plot (xs,[gaussian(x, 23, 1) for x in xs],'g')\n", + "plt.plot (xs,[gaussian(x, 23, 5) for x in xs],'r')\n", "plt.show()" ], "language": "python", @@ -120,28 +157,38 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xdck9f+B/BPgGgdKOCWoKwAwQEoitSqceLEWcVeq1Zq\n7fD+amu3vRXbW5XWDi29lturrQukrQMntaipW2zdgoIoEKLgAFQECSTn98cRFIEQMMmThO/79Xpe\nQvLkOUfET07Oc4aIMcZACCHEKtgIXQFCCCGGQ6FOCCFWhEKdEEKsCIU6IYRYEQp1QgixIhTqhBBi\nRWoN9YSEBPj4+EAqlSIyMrLK8/n5+Rg/fjz8/PwQFBSECxcuGKWihBBCaqcz1DUaDebOnYuEhAQk\nJycjNjYWKSkplc5ZvHgxevTogTNnzmDt2rV48803jVphQgghNdMZ6klJSfD09ISrqyvEYjHCwsIQ\nHx9f6ZyUlBQMHDgQAODt7Y2MjAzcvHnTeDUmhBBSI52hrlKp4OLiUvG9RCKBSqWqdI6fnx82b94M\ngL8JZGZmIjs72whVJYQQUhudoS4SiWq9wAcffICCggIEBAQgKioKAQEBsLW1NVgFCSGE6M9O15PO\nzs5QKpUV3yuVSkgkkkrn2NvbY/Xq1RXfu7m5wd3dvcq1PD09kZ6e/rT1JYSQBsXDwwOXL1/W/wVM\nh9LSUubu7s6uXr3KSkpKmJ+fH0tOTq50TkFBASspKWGMMfbf//6XzZgxo9pr1VJUg7Jw4UKhq2A2\nhP5ZnDjBWP/+jBUVCVoNxpjwPwtzQj+LR+qanTq7X+zs7BAVFYWQkBD4+vpiypQpkMlkiI6ORnR0\nNAAgOTkZ3bp1g4+PD37//XcsX778Kd6TCDEdjQaYMwfIzgaWLBG6NoQYhs7uFwAYMWIERowYUemx\nOXPmVHwdHByMS5cuGb5mhBjZf/4D2NsD8fGAvz8wbRrg5SV0rQh5OjSjVAByuVzoKpgNoX4W168D\nn37Kg10iARYsAF5/HRBydwH6vXiEfhb1J3rYZ2P8gkQimKgoQmo1dSrg6vqo26WsDOjZE/jgA/4c\nIeairtlJoU4anH37gFmzgORkoGnTR48fOQJMmgRcvAi0aCFc/Qh5XF2zk7pfSIOzfj3wzjuVAx0A\nnn0W6NqVhz4hlopCnTQ4x48DwcHVPxcczJ8nxFJRqJMG5e5dICMD6N69+ueDgoCkJJNWiRCDolAn\nDcpff/Hhi2Jx9c/37s3P0WhMWy9CDIVCnTQox4/z1nhNWrcG2rThN0sJsUQU6qRBqS3UAf489asT\nS0WhThoMxijUifWjUCcNhlIJaLVA5866z6NQJ5aMQp00GOWt9Nq2CfD3B9LSgPv3TVMvQgyJQp00\nGPp0vQBA48Z8EtLffxu/ToQYGoU6aTD0DXWAumCI5aJQJw1CaSlw6hTQq5d+51OoE0tFoU4ahPPn\ngU6dgJYt9TufQp1YqlpDPSEhAT4+PpBKpYiMjKzy/K1btzB8+HD4+/uja9eu+Pnnn41RT0KeSl26\nXgDAwwMoLgauXTNenQgxBp2hrtFoMHfuXCQkJCA5ORmxsbFISUmpdE5UVBQCAgJw+vRpKBQKzJ8/\nH2VlZUatNCF1VddQF4n4kgHUWieWRmeoJyUlwdPTE66urhCLxQgLC0N8fHylczp06IC7d+8CAO7e\nvYtWrVrBzq7WXfIIMakTJ/TvTy8XFMRfR4gl0RnqKpUKLi4uFd9LJBKoVKpK58yePRsXLlxAx44d\n4efnRxtPE7Oj0QDp6YBMVrfXyWQAbb9LLI3OJrWotlkaABYvXgx/f38oFAqkp6dj6NChOHPmDOzt\n7aucGxERUfG1XC6nfQiJSWRnA61aVd0UozaensDly8apEyE1USgUUCgU9X69zlB3dnaGUqms+F6p\nVEIikVQ658iRI1iwYAEAwMPDA25ubrh06RICAwOrXO/xUCfEVNLSeEDXVXmoM1b7LFRCDOXJBu+i\nRYvq9Hqd3S+BgYFIS0tDRkYG1Go14uLiEBoaWukcHx8fJCYmAgByc3Nx6dIluLu716kShBjT5cv1\nC/UWLYDmzYHr1w1fJ0KMRWdL3c7ODlFRUQgJCYFGo0F4eDhkMhmio6MBAHPmzMFHH32El156CX5+\nftBqtfjiiy/g5ORkksoToo+0NEAqrd9rpVL++o4dDVsnQoxFxOqyTfXTFFTHHbEJMZSxY4Hp04GJ\nE+v+2pkzgX79gPBwg1eLEL3UNTtpRimxeoZoqRNiKSjUiVXTaICrV/kM0fqgETDE0lCoE6umUgFO\nTkCzZvV7PYU6sTQU6sSq1Xc4Y7nHhzUSYgko1IlVu3y5/v3pAF/VsWlTICfHcHUixJgo1IlVe9qW\nOkA3S4lloVAnVu1pW+oA9asTy0KhTqwatdRJQ0OhTqyWVgtcufL0oU4tdWJJKNSJ1crOBhwd6z+c\nsRy11IkloVAnVssQ/ekAn7hEwxqJpaBQJ1arvqszPsnBAWjSBMjNffprEWJsFOrEaj3Nmi9Poi4Y\nYiko1InVMlRLHaCbpcRyUKgTq0UtddIQUagTq1Q+nLG+qzM+iVrqxFLUGuoJCQnw8fGBVCpFZGRk\nleeXLVuGgIAABAQEoFu3brCzs0NBQYFRKkuIvlQqvm5L8+aGuR611Iml0LnzkUajgbe3NxITE+Hs\n7IxevXohNjYWMpms2vN37NiBb7/9tmLP0koF0c5HxIQOHAA+/BA4fNgw18vLA9zcgDt3DHM9QvRl\n0J2PkpKS4OnpCVdXV4jFYoSFhSE+Pr7G82NiYjB16lT9a0uIkWRmAp07G+56jo58ww0KdWLudIa6\nSqWCi4tLxfcSiQQqlarac4uKivD7779jYn02giTEwLKyDBvqIhG/XlaW4a5JiDHY6XpSJBLpfaHt\n27fjueeeg4ODQ43nREREVHwtl8shl8v1vj4hdZGVBfj7G/aanTrx63brZtjrEvI4hUIBhUJR79fr\nDHVnZ2colcqK75VKJSQSSbXnbty4sdaul8dDnRBjysoCQkMNe83yUCfEmJ5s8C5atKhOr9fZ/RIY\nGIi0tDRkZGRArVYjLi4OodX8T7lz5w4OHDiAsWPH1qlwQowlK4uHsCFRqBNLoDPU7ezsEBUVhZCQ\nEPj6+mLKlCmQyWSIjo5GdHR0xXlbt25FSEgImjRpYvQKE1Ibxgx/oxTg18vMNOw1CTE0nUMaDVoQ\nDWkkJpKXB7i7A4aeLnHgAPDRR8ChQ4a9LiG6GHRIIyGWyBhdLwB1vxDLQKFOrI6xQt3ZGcjJAcrK\nDH9tQgyFQp1YHWOFulgMtG0LXLtm+GsTYigU6sTqGOMmaTm6WUrMHYU6sTrGaqkD1K9OzB+FOrE6\nFOqkIaNQJ1aHQp00ZBTqxKqo1cCtW0DHjsa5PvWpE3NHoU6sSnY20KEDYGtrnOtTS52YOwp1YlWM\n2fUC8GtnZvKlCAgxRxTqxKoYO9RbtuRrq9NmGcRcUagTq2LsUBeJqAuGmDcKdWJVjDnxqBzdLCXm\njEKdWBVjt9QBaqkT80ahTqwKhTpp6CjUidVgjEKdkFpDPSEhAT4+PpBKpYiMjKz2HIVCgYCAAHTt\n2pU2kyaCycsDGjcG7O2NW07nzhTqxHzp3Hhao9Fg7ty5SExMhLOzM3r16oXQ0FDIZLKKcwoKCvDG\nG2/g999/h0Qiwa1bt4xeaUKqk5lp/FY68GisOiHmSGdLPSkpCZ6ennB1dYVYLEZYWBji4+MrnRMT\nE4OJEydCIpEAAFq3bm282hKigym6XgC+BMGNG0BpqfHLIqSudIa6SqWCi4tLxfcSiQQqlarSOWlp\nacjLy8PAgQMRGBiIdevWGaemhNTCVKFuZwe0bw888V+BELOgs/tFJBLVeoHS0lKcPHkSe/fuRVFR\nEYKDg9GnTx9IpdIq50ZERFR8LZfLqf+dGJSpQh141AXj6mqa8kjDoVAooFAo6v16naHu7OwMpVJZ\n8b1SqazoZinn4uKC1q1bo0mTJmjSpAn69++PM2fO1BrqhBiaUgn07Gmaslxc+OJhhBjakw3eRYsW\n1en1OrtfAgMDkZaWhoyMDKjVasTFxSE0NLTSOWPHjsWhQ4eg0WhQVFSE48ePw9fXt06VIMQQlEoe\ntqbg4sLLI8Tc6Gyp29nZISoqCiEhIdBoNAgPD4dMJkN0dDQAYM6cOfDx8cHw4cPRvXt32NjYYPbs\n2RTqRBDZ2cATHySNRiIBUlNNUxYhdSFizDSLiIpEIpioKNIAaTRAkybA/fuAWGz88rZsAX7+GXhi\nMBghBlfX7KQZpcQqXL8OtG5tmkAHqPuFmC8KdWIVTNn1AvCy6EYpMUcU6sQqmPImKQC0bQvcvQs8\neGC6MgnRB4U6sQqmDnUbGz6zlFrrxNxQqBOrYOpQB6hfnZgnCnViFUzdpw5QvzoxTxTqxCpQS50Q\njkKdWAUKdUI4CnVi8UpLgZs3gQ4dTFsudb8Qc0ShTize9et8iKGdzkUvDI9a6sQcUagTiydE1wtA\noU7ME4U6sXhCjHwB+LIE9+8DRUWmL5uQmlCoE4snVEtdJKJ+dWJ+KNSJxRMq1AHqgiHmh0KdWDyh\nul8AaqkT81NrqCckJMDHxwdSqRSRkZFVnlcoFGjZsiUCAgIQEBCAf//730apKCE1oZY6IY/oHASm\n0Wgwd+5cJCYmwtnZGb169UJoaChkMlml8wYMGIBt27YZtaKE1EToUD99WpiyCamOzpZ6UlISPD09\n4erqCrFYjLCwMMRXs9UL7WhEhKJWA7dvA+3bC1M+db8Qc6Mz1FUqFVweawJJJBKoVKpK54hEIhw5\ncgR+fn4YOXIkkpOTjVNTQqpx7RoPdFtbYcqn7hdibnR2v4hEolov0KNHDyiVSjRt2hS7d+/GuHHj\nkEo78hITEbLrBaBQJ+ZHZ6g7OztD+dhvrFKphOSJYQb29vYVX48YMQKvv/468vLy4OTkVOV6ERER\nFV/L5XLI5fJ6VpsQTsiRLwDg5ASUlACFhUDz5sLVg1gPhUIBhUJR79eLmI4O8bKyMnh7e2Pv3r3o\n2LEjevfujdjY2Eo3SnNzc9G2bVuIRCIkJSVh8uTJyMjIqFpQHXfEJkQfX3wB3LgBLFsmXB28vIBt\n2wAfH+HqQKxXXbNTZ0vdzs4OUVFRCAkJgUajQXh4OGQyGaKjowEAc+bMwW+//YaVK1fCzs4OTZs2\nxcaNG5/ub0BIHSiVgKensHUo74KhUCfmQGdL3aAFUUudGMH48cC0acDEicLVYcYMQC4HXnpJuDoQ\n61XX7KQZpcSiCX2jFKCbpcS8UKgTi2YuoZ6VJWwdCClHoU4sVnExUFAAtGsnbD06daKWOjEfFOrE\nYpUPZ7QR+Le4UydqqRPzQaFOLFZWFtC5s9C1eBTqNA6AmAMKdWKxsrJ4oArN3h5o3BjIyxO6JoRQ\nqBMLZi6hDlAXDDEfFOrEYlGoE1IVhTqxWBTqhFRFoU4sVmameYV6ZqbQtSCEQp1YKMbMY+JROWqp\nE3NBoU4s0s2bQLNm/DAHFOrEXFCoE4tkTv3pAIU6MR8U6sQimVuod+gA3LrFN8wgREgU6sQimVuo\n29oCHTsCT2zhS4jJUagTi2QuSwQ8rnNn6oIhwqs11BMSEuDj4wOpVIrIyMgazztx4gTs7OywefNm\ng1aQkOqYW0sdoH51Yh50hrpGo8HcuXORkJCA5ORkxMbGIiUlpdrz3n//fQwfPpx2NyImQaFOSPV0\nhnpSUhI8PT3h6uoKsViMsLAwxMfHVznvu+++w6RJk9CmTRujVZSQx5nTxKNyNAGJmAOdoa5SqeDy\n2OwOiUQC1RN3glQqFeLj4/Haa68B4PvpEWJM5rI5xpOopU7MgZ2uJ/UJ6Hnz5mHp0qUVm6NS9wsx\ntqfdHKOotAinc04j9XYq0m6n4cb9G3BzdINXKy94t/JG17Zd69U4oVAn5kBnqDs7O0P52D5dSqUS\nEomk0jl///03wsLCAAC3bt3C7t27IRaLERoaWuV6ERERFV/L5XLI5fKnqDppqOrbn551JwvfJ32P\nVadWwd3RHd6tvSF1kqJHhx7IKMjAhnMbcC73HBrZNsKbQW/iRb8X0VTcVO/rl+9VyhhAH1hJfSkU\nCigUivpfgOlQWlrK3N3d2dWrV1lJSQnz8/NjycnJNZ4/c+ZMtmnTpmqfq6UoQvS2ejVj06frf/7N\n+zfZtM3TmFOkE3sr4S2Wnpde47larZbtv7qfjY0dy1p/0Zp9cegLVqYp07ssBwfGbt3Sv26E1Kau\n2amzpW5nZ4eoqCiEhIRAo9EgPDwcMpkM0dHRAIA5c+bU/92EkHqqS0s98UoiZm6dibCuYbj65lW0\naNxC5/kikQhyVznkrnKk3U7Dy9tfxq7Lu7Bu/DpIWkh0vhZ41AXTqpV+9SPE0EQP3wmMX9DDPndC\nnlZ4ONCnDzB7ds3nlGpK8dHejxBzPgY/j/0ZQz2G1qssjVaDyMORWH58OVaOWokJsgk6zx8zBnj5\nZWDs2HoVR0gVdc1OnS11QsxRVhYweXLNz5eUlWDKb1NQXFaMM6+eQeumretdlq2NLT7q9xGGuA/B\npF8mIacwB6/3er3G8+lmKREahTqxOLqWCHhQ9gATf5mIxraNsX3qdjSybWSQMns794ZipgKD1w6G\nWqPGvD7zqj2PlgogQqO1X4hFYYyHZnWbYxSVFmFM7BjYN7JH3KQ4gwV6OXdHd/w5809EJUUh8lD1\nS2bQBCQiNAp1YlFq2hxDo9Xg+V+fR4fmHbBhwgaIbcVGKb9Ty074c+afWH16Nb5P+r7q89T9QgRG\noU4sSk2t9Hf/eBdqjRqrQlfB1sbWqHVwbuGM3f/YjX8f/Df+SP+j0nPUUidCo1AnFuXqVcDNrfJj\nq06uws60nfhl0i9Ga6E/yd3RHXGT4jBtyzSk3k6teLxDByA/ny9lQIgQKNSJRblyBfDwePT9gcwD\n+GjfR9g+dTscmziatC79O/fH4kGLMSZ2DPKL8wHwzTI6dwYyMkxaFUIqUKgTi5KeDri786+v37uO\nKb9NwYYJG+DVykuQ+oT3CMco6ShM2zKtYiyxuzuvJyFCoFAnFuXKFR6aWqbFjK0z8GrPVzHEfYig\ndYocEolbRbcQlRQFgNfvyhVBq0QaMBqnTixKeffLN0e/QVFpERb0XyB0lSC2FSNmQgz6rOqDAa4D\n4OHRnUKdCIZa6sRilJbyjZ1vNzqJpYeXYv2E9bCzMY92iYeTB5YNXYapm6bC2bWYul+IYCjUicXI\nygLaudzHjG0vYMXwFXB1cBW6SpVM95uO7u26Y8v9d6mlTgRDoU4sxpUrAAb+Cz079sTUblOFrk4V\nIpEIK0etxOGb23BZsx+0fh0RAoU6sRh7LybhVocYLB++XOiq1MjhGQesHP0faEbOxhVlkdDVIQ0Q\nhTqxCGqNGqtuhWNMo6+fatVFUxjtNRoORYH4194IoatCGiAKdWIRIg9FwrawEyZIza/bpTry4hXY\nmb0Gf1/7W+iqkAam1lBPSEiAj48PpFIpIiOrrkwXHx8PPz8/BAQEoGfPnti3b59RKkoarpSbKVh+\nfDlaHV0JDw/L2PzTt3NbDCz7Ei9vfxmlmlKhq0MaEJ07H2k0Gnh7eyMxMRHOzs7o1asXYmNjIZPJ\nKs65f/8+mj1cMu/cuXMYP348Ll++XLUg2vmI1ANjDPI1ckySPY+Ph83F1auAk5PQtardmjXAH4kM\nN4aFYJjHMLzz7DtCV4lYqLpmp86WelJSEjw9PeHq6gqxWIywsDDEx8dXOqfZY2ugFhYWonVr8+7v\nJJYl5lwM7pXcw2S312BjYxmBDjycVZouQtTIKCw9tBTX7l0TukqkgdAZ6iqVCi6PrXMqkUigUqmq\nnLd161bIZDKMGDECK1asMHwtSYN0t+Qu3kt8D9+P/B6ZGbYVa75YgvKlArxaeeGVnq/gnT3UUiem\noXM6nkikX//luHHjMG7cOBw8eBAvvvgiLl26VO15ERERFV/L5XLI5XK9K0oankWKRQjxCEGwSzA2\nHoZFhXqHDsCdO8D9+8CCfgvg+x9fKDIUkLvKha4aMXMKhQIKhaLer9cZ6s7OzlAqlRXfK5VKSCSS\nGs/v168fysrKcPv2bbRq1arK84+HOiG6nL9xHmvPrsWF1y8AqLw6oyWwseHrvl+5AnTr1gxfD/sa\nb+x6A6fnnDbZmu/EMj3Z4F20aFGdXq+z+yUwMBBpaWnIyMiAWq1GXFwcQkNDK52Tnp5e0Yl/8uRJ\nAKg20AnRF2MM/9z9TywcsBBtm7UFUHUddUvw+GqNE2QT4GzvjO+SvhO2UsTq6Wyp29nZISoqCiEh\nIdBoNAgPD4dMJkN0dDQAYM6cOdi0aRPWrl0LsViM5s2bY+PGjSapOLFem1M243bRbbwa+GrFY1eu\nAFMtY4h6BQ+PR6EuEomwYsQK9PupH17s/iLaNGsjbOWI1dI5pNGgBdGQRqKHB2UP4Pu9L/4X+j8M\nchtU8XinToBCYVldMMuXA2lpQFTUo8fmJczDg7IH+GH0D8JVjFgUgw5pJMTUvj32Lbq3614p0EtK\ngNxcHuyW5PGWerlPBnyCLRe34GzuWWEqRawehToxGzmFOVh2ZBmWDVtW6fHMTEAiAezMY+l0vVW3\nA5JTEyd80v8TvP372/TJlRgFhToxGwv2LsBL/i/B08mz0uOWNvKlnJsb34Bao6n8+JzAObheeB3b\nLm0TpF7EulGoE7Nw6vop7EzbiY/7f1zlOUsc+QIATZoArVoB156YTGpnY4dvQr7B/D3zodaohakc\nsVoU6kRwjDG8vedtRMgj0PKZllWeT0/nrV5L5O6Oare2G+YxDF6tvPB90vemrxSxahTqRHDbU7fj\nxv0beLnHy9U+f/Ei4ONj4koZiLc3r391lg1bhiWHliCvOM+0lSJWjUKdCKpUU4p3/3gXy4Yuq3ET\n6eRkwNfXxBUzEF9fXv9qn2vji4myifjsz89MWyli1SjUiaB++OsHuDq4Yrjn8GqfLywEbtywzBul\nANClS82hDgCLBi7CurPrkHY7zXSVIlaNQp0IpuBBAf598N9YNnRZjYvHXbwIeHkBtrYmrpyB6Gqp\nA0DbZm3xzrPv4P3E901XKWLVKNSJYD4/8DlCvULRrV23Gs+x5K4XgI+vLywE8vNrPmden3k4ef0k\nDmQeMF3FiNWiUCeCuJJ/BT+d/gmfDdLdn3zhgmWHukgEyGS6W+vP2D2DJYOXYP6e+dAyrekqR6wS\nhToRxAeJH2Ben3lo37y9zvMsvaUO1N4FAwBhXcNgI7JBzLkY01SKWC0KdWJyR5RHcDT7KN4OfrvW\nc5OT+c1GS1bbzVKAL9r09bCv8dHej1BcWmyaihGrRKFOTIoxhrd/fxufD/ocTcVNdZ5bVMRnY1ri\nbNLH6dNSB4C+nfqit3NvfHPsG+NXilgtCnViUnEX4lCqLcW07tNqPffSJcDT0/IW8nqSvqEOAJFD\nIvHV0a+QU5hj3EoRq0WhTkzmQdkDfLj3Q3w17CvYiGr/1bOG/nSALxmcnw/cvVv7uR5OHpjpNxOf\n7P/E+BUjVkmvUE9ISICPjw+kUikiIyOrPL9hwwb4+fmhe/fu6Nu3L86epbWiSVXfHP0G/u399d58\n2dJHvpSzseHLHOjbWv+4/8eIvxRPa66Teqk11DUaDebOnYuEhAQkJycjNjYWKSkplc5xd3fHgQMH\ncPbsWfzrX//CK6+8YrQKE8uUU5iDr45+hWVDl9V+8kPW0lIH6tYF49jEEQsHLKQ110m91BrqSUlJ\n8PT0hKurK8RiMcLCwhAfH1/pnODgYLRsyVfXCwoKQnZ2tnFqSyzWx/s+xqyAWfBw0v+upzWMfCmn\nzwiYx73S8xVcL7yO7anbjVcpYpVqDXWVSgUXF5eK7yUSCVQqVY3nr1q1CiNHjjRM7YhVKF8rfUG/\nBXq/5sEDICuL3yi1BnVpqQO05jqpv1rHFdS0Jkd19u/fj9WrV+Pw4cPVPh8REVHxtVwuh1wu1/va\nxDIxxvDW729hkXxRtWul1yQ1lS/i1aiREStnQnUNdYCvue7dyhtRSVF6jekn1kGhUEChUNT79bWG\nurOzM5RKZcX3SqUSEomkynlnz57F7NmzkZCQAEdHx2qv9Xiok4ZhU8om5BXnITwgvE6vs6b+dABw\ndeWrTRYWAs2b6/+6ZcOWod9P/TCt+zS0bdbWaPUj5uPJBu+iRYvq9Ppau18CAwORlpaGjIwMqNVq\nxMXFITQ0tNI5WVlZmDBhAtavXw9Pa/m8TJ5aUWkR5u+ZjxUjVsDWpm7LLFrLyJdytrZ8w4wnxhjU\nyqe1D6Z3n44PEz80TsWI1ak11O3s7BAVFYWQkBD4+vpiypQpkMlkiI6ORnR0NADg008/RX5+Pl57\n7TUEBASgd+/eRq84MX9LDy1FsCRY7yGMj7Omm6Tl6nqztNxC+ULsvrwbSaokw1eKWB0RM9GYKZFI\nRMOzGpAr+VfQ+8feOP3qaUhaVO2uq41MBvzyC9Ct5lV5Lc7ixcCdO0A1Uz1qtfbMWkQlReHYy8f0\nmrhFrEdds5NCnRjF2I1j0ce5Dz7sV/dug/v3gbZtgbw8oHFjPV7AGHDrFh8uc+0akJvLj5s3+UXy\n84GCAn7hoiL+Z0kJoNHwQ6vl/SO2tnxNgmeeAZo1A5o25R3gjo78cHIC2rXjR/v2gLMzny6qZyf5\njh3AihXAnj11/pFAy7R4bvVzCA8IR3iPut2fIJatrtlp4atqEHO0K20Xkm8m45dJv9Tr9X/9xVvo\nlQKdMeD6dd5/cfEicPkykJYGpKfzMG/SBHBxATp25IHbrh3QuTMQEAA4OPDD3p4HddOmfFiNnR0P\nchubRwFfVsbHUxYV8ePuXf6mkJ/P3yCuXQNOnQJycoDsbECp5G8Crq58/KVUyg+ZjB8tWlT8FXr3\nBk6c4O8hNnVsbNuIbBA1MgojN4zEBNkEODapfjACIdRSJwZVXFqMbiu74bsR32GEdES9rrFssRo4\nexbvDDkNnH54nD/Pg9jXl8+59/LiIerhwcO7LkNKDIkx4PZt4MoV/gZz+TIfj5mSwg8nJ6B7d8Df\nH/Dzw8CnMvIBAAAatElEQVT5PbByjwd8ZPoPFX7cazteAwCsHL3SkH8LYsao+4UI6uN9HyP1dip+\neV7PVjpjQGYmcPgwcPQocOIESv4+h+KOHnAY2IOHob8/0LUr0KaNcStvaFot/7udPctb96dP4/ae\nv9Hc5j4a9+3Fm+7PPgv06cO7d/SQX5yPLv/pgk2TNyHYJdjIfwFiDijUiWCSbyZjwM8DcObVM+ho\n37H6kxjjLViFAvjzT+DgQf5Y375AcDDQuzekkwPw++HmcHc3afVNYvly4NrJHEROOgEcPw4cOcL7\nZDp3Bvr3B+RyYMAA3n1Ug9hzsVhyaAn+fuVviG3Fpqs8EQSFOhGElmkx4OcBCOsShjd6v1H5ycxM\nIDGRH/v28ZuQ5eHVrx/g5sY38wTvpu7Rg9/nrMNkZotx7Bjw+uvAyZOPPVhaCpw5Axw4wN/sDh4E\nOnQAhgzhx4ABQMtHs3EZYxi+YTiGuA3Bu33fNfnfgZgWhToRxKqTq/Dfk//FkVlHYFui5q3whAR+\n5OXxcBo8mB+urjVe57ffgDVrgO1Wuo5VSQnvZr95k9+vrZZGw7tr9u7lb4THjvEuqBEjgOHDAX9/\npBdcRdD/gvDXK3/B1cHVlH8FYmIU6sTkcgpzMGxpF+xs+TpcDp7hrU0/v0ohpO9wj3ff5Y3Sjz82\nbp2FFBQELFvGP6Topbj40Zvk7t3AvXvAqFH4ze0B1rfLwZZZe+q0RhOxLBTqxDQYAy5cANuyBZd/\n/hrONx+g6ZgJwOjRQEgIb47WQ79+wMKFvGFvrf7v//joy3fr23OSlgbs3Ant9u0oOqJAXq9u6DR9\nLjBmjM6+eGKZKNSJ8Wi1/Kbe5s38KC3Fpb4+WNrmEn5Ycg6NmzzdsMLSUj4IRKWq1IVsdWJi+I/v\nt9+e/lrnLh3Ed4tG4dsHA9B030E+wH/iRGD8eH7zlVi8umYnzTcmumm1fITGW2/xkJgxg0/aiYtD\nzrmj6B9wCm+89+tTBzrAh6J37mzdgQ7w7pfjxw1zrW7e/SCZ8w4mTiwDu34d+OADPoSyZ0+gVy/g\niy+Aq1cNUxixCNRSJ1UxxlMnLg749Veess8/z4+Hq2wxxjA+bjy6tOmCzwd/bpBiV67kHwRWrzbI\n5cwWY3wZhNOn+UoDT6tUU4qg/wVhbu+5mBUw6+GDpfzexq+/Alu28JvTU6YAkyfzpQ2IxaCWOqkf\nxnjKfPAB351ixgw+xf333/k6uBERlZZNXH92PdLz0/HJAMPten/8OJ+HY+1EIsO21sW2Yvw87me8\nn/g+MgoyHj4oBoYOBf77X768wuLFfHmFgAA+4WnFCr7UAbE61FJv6C5fBmJj+VFUBISF8cPPr8aB\n4pfzLiN4VTASX0yEX3s/g1XFx4d/OPAz3CXN1mef8UEsX3xhuGsuO7IMWy5uwZ8z/4SdTQ3LOqnV\nwB9/ABs38nGjgYHACy8AEybw9XGI2aEbpaR2OTk8PWNigIwM3q3ywgt8RmctQ+PUGjX6ru6LGX4z\nMLf3XINVKT+f9wrk5/Mue2u3Zw/w+ed8pKKhaJkWIzaMQJBzED4d+GntLygqAnbu5G/oe/fyIUcv\nvACMGsUXKSNmgUKdVK+wkPetbtjAJ7OMGQP84x/8P3IdUvS9P97DxVsXER8Wb9Cx0bt383XGn2Jr\nRotSUMCHNd66pefywnrKKcxBQHQAYifG1m1zkoICPiRn/XreDTd+PDBtGp/NWtclJYlBGaVPPSEh\nAT4+PpBKpYisZoX/ixcvIjg4GM888wy++uor/WtLjKu0lLfEXngBkEh463zmTL587Lp1fGJQHQJ9\nT/oexJyLweqxqw0+2WXnTj5XqaFwcOCLNxqypQ4A7Zu3x+rQ1Xhxy4u4XXS7bhWaNYsv43D2LF82\n+O23+cend9/lyxhQo8wi1NpS12g08Pb2RmJiIpydndGrVy/ExsZCJpNVnHPz5k1kZmZi69atcHR0\nxPz586sWRC110ygfubJ+Pd86SCrlLfLJk4HWret92aw7WQj6XxBiJsRgoNtAA1aYV7lzZz5h0pr2\nJa3N0qV8rZuoKMNf+5097+D8jfPY+cLOOu8PW8mFC/zTXUwMX9542jTeSKARNCZj8JZ6UlISPD09\n4erqCrFYjLCwMMTHx1c6p02bNggMDIRYTCvGCSY1lU/FlEr5yJV27fhStocP8xWkniLQi0uLMT5u\nPOYHzzd4oAO8EdioEW8cNiShocC2bcZpAC8dshQlmhJ8vO8p11vo0oWPnLlyhY85zcjgI2gGDAB+\n/JHfBCFmpdZQV6lUcHFxqfheIpFApVIZtVJET7m5fGhaUBBftvXOHX7T6+JF4F//4htIPCXGGF7d\n+Sq8WnlhfnDVT2CGsH07D7iGtnyJTMbfzM6cMfy17Wzs8MukXxB7Pha/Xvj16S9oY8PXcPjhB959\n99Zb/G6vqysfObNpE98xigiu1g5VQ/adRkREVHwtl8shl8sNdu0G4949YOvWRzc8Q0OBTz/lqx8a\nYdjId0nf4XTOaRyZdcRoi0Zt22bYoX2WQiTi96u3b+drnhlam2ZtsHnKZoSsD4GsjQxd23Y1zIUb\nNwbGjeNHQQEP9O+/B2bP5jdY//EP3pK3fYpunwZMoVBA8TQjBlgtjh49ykJCQiq+X7x4MVu6dGm1\n50ZERLBly5ZV+5weRZGaPHjA2NatjE2ezFiLFoyNGsVYTAxjhYVGLXZX6i7W7st27EreFaOVoVIx\n5ujImFpttCLM2r59jAUGGreMdWfWMbdv3dj1e9eNW5BSydiXXzIWEMBYhw6MvfUWYydOMKbVGrdc\nK1fX7Ky1+yUwMBBpaWnIyMiAWq1GXFwcQkNDa3qDqP+7C6lMo+FraYeH8w0Tvv4aGDSI923u2AFM\nnco3mzCSE6oTmL51OjZP2Qw3RzejlbNjBx/10lBvxzz3HN/a9No145Uxrfs0zPCbgZEbRuJeyT3j\nFSSRAO+8w3cA2buX31gNC+P7yX7yCd/xihifPsm/a9cu5uXlxTw8PNjixYsZY4z98MMP7IcffmCM\nMXb9+nUmkUhYixYtmIODA3NxcWH37t17qnebBkmjYezAAcbeeIOxdu0Y69mTsWXLeAvIhNJup7EO\nyzqwrSlbjV7WqFGMxcYavRizNnUqY9HRxi1Dq9Wy2dtms6Frh7KSshLjFla5YMaSknirvWNHxrp3\nZ+zzzxm7fNl0dbBwdc1OmnwkNK2Wj1L59Ve+FquTE194acoUwNPT5NXJLcxF39V98e6z72JO4Byj\nlnX/Pv8QkpXVsGeob9zIR6Du2GHccsq0ZZj4y0S0aNwCa8atgY3IxJOKtFrg0CE+X+K33/jsq8mT\n+YxmN+N9GrR0NKPUEmg0fDnbTZv40bLlo19uAcf15RbmYvDawZjkOwkR8gijlxcfD3z3He9lasgK\nCviw7+vXjdqjBgAoKi1CyPoQ+LTyQfSYaNMHe7myMr4n6y+/8JmsnTsDkybxteAFaMyYMwp1c1W+\nFOqWLfxo2/bRL7EZzLjJKczBoDWDMLnLZCwcsNAk26NNn86X/X7zTaMXZfaGDAHmzOHv68Z2r+Qe\nRsaMhJeTF34M/VG4YC9XVsan1m7axAO+fXs+THLCBD5OvqGNdX0Chbo5KSzkS9fGx/N58FIpH/I1\nYQL/2kxcv3cdg9YOwtSuUw26lK7OMq/z/69paUCrViYp0qz9+iuwfDnvnTCFQnUhRseMhquDK1aF\nrnq6WaeGpNHwCXNbtvCAb9SI/58ZO5avy9wAh0lSqAstO5sH+LZtwMGD/Bdx7Fg+ptcQOyIYWNrt\nNIyMGYmX/F/CR/0+Mlm5CxbwuVLGmCJvicrK+Pt8bKzp1pS/r76P0I2hcGrihLXj1qKJuIlpCtYX\nY8CpU3xextatfLLd6NF8cP+QIXx0TQNAoW5qGg3frmfXLn6nKzOTj9EbPZr/acZ7sx3MPIjnf30e\nnw38DLN7zjZZuffv84mIx44ZZNKr1VixgrcDfjXABFB9PSh7gFnxs5BRkIH4sHi0adbGdIXX1dWr\nvLG0Ywdf36hvX75M8MiRfGMXK0Whbgo5OXyjgYQEPlW6Qwf+izVyJN9VxgIWBI85F4N5CfOwYcIG\nDPUYatKyo6KA/ft5Fyp5pLCQv9klJZk2o7RMi0/2f4LY87HY+cJO+LT2MV3h9XX3Lu/a3L2bN6gc\nHHgjKiSEz2ZtYmafOp4ChboxFBXxzs7ERB7imZl8IlBICP9FemxtHHOn1qjxQeIH2JyyGTte2GG4\nqeN60mj4XJT16/meHKSyDz/kn2RWrDB92T+d+gnvJ76P70d+j+e7mOCOraFotXwN+N27edCfOsV/\nuYYO5d00fn4WvSY8hbohqNX8451CwZuUJ07wxTmGDOFHUJBFtMaflJ6XjrBNYeho3xE/jf0JTk2c\nTF6HTZv45NjDh01etEW4dg3o2pXvMuhk+n8e/HXtL4T9Foah7kPxdcjX5tfPro+7d/m68Hv38obY\nrVuAXA4MHMgPHx+LGlFDoV4fRUX8M++BA3xoVVISb04OGsR/Cfr1A+ztha5lvTHGsP7seszfMx8f\n9/8Y/+z9T5MMWaxaD96Aeu89PgCIVG/mTH7TdMECYcq/8+AOXtnxCi7euog149bAv70RVhszpexs\nHvL79/M/S0r4qqb9+/Oumi5dzLolT6Guj2vX+F26w4f5ce4c0K0b/wfu35/fgLGSKY7peel4bedr\nuFl0E6tCV6FHhx6C1WXlSuB//+PvmQ1wZJreUlP5r+ChQ4C3tzB1YIxhzZk1eO+P9zDTfyYWDliI\nZo2MPDPKFBjja8IfPPioEXfrFh9y9Nxz/J5Yr15mNbKGQv1J9+7xBYZOnOBpcuwYb5kHBfH/OX37\n8n/Epk1NXzcjKiotwrfHvsXXR7/GB899gHl95tW8w7wJpKTw90shg8qS/Oc/wOrVfOJxo0bC1ePG\n/Rt46/e3cFR5FN+EfINQ71BBPuUZVW4u/0EfOsTz4fRpPqu1Tx+eDb168da8QF2uDTvU8/P5jgMn\nTz46MjP5ZpDl/zjBwXwcnbX9Yj5UqinFqlOr8NmBzxAsCcaXQ7806iqL+igp4e+hb7zBl9wmtWOM\nL5XfpQvf9k5oe9L3YP6e+bBvZI8lg5dggOsAoatkPGo1z5Fjx3hj8MQJQKnkn+Z79OBHQACfCf7M\nM0avTsMIdbUauHQJOH+eH2fP8n+E/Hwe4AEBfP55jx78B98A1nUtKi3CujPr8OWRL+Hu6I7Fgxcj\nsGOg0NUCwFdjvXKF3yS10vdSo7hxg9+f37CB39oRmkarQez5WHyy/xNIW0nxTvA7GOI+xPpa7tW5\ne5e34P/+mx+nT/M1kz08+Oiabt34He6uXflCPgbso7euUM/P5+FdfqSk8CMjgw/offwH6e/PV3oz\n4xsexpB1Jws//PUDfjz5I551eRZv93nbrFpRsbGPNqOn5QDqLiGBf7rZu5ffuzcHao0a686sw7fH\nvwVjDPP6zENY1zA0b2Q+/dAm8eABkJzMG5Xnz/N7c+fO8TcAHx/eoPTx4f2N3t68S6ceLXvLCnWt\nli8CcuUKny125Qp/90tL42O61Gr+m1z+Q5HJ+CGV8i21GqiCBwXYlLwJ686uw7kb5/CPbv/AP3v/\nE9JW5rOeDGN8l73Vq/l2bd27C10jy7VqFfDRR/wNctAgoWvzCGMMe6/uxYrjK3Ag8wBGe43Gi91f\nxGD3wYLevxFcQQHfJzg5mf956RK/+331Kt8Q3tOTHx4efJaZuztvpDo6VvtR1uChnpCQgHnz5kGj\n0eDll1/G+++/X+Wc//u//8Pu3bvRtGlT/PzzzwgICKi+YgsW8L4ppZL3dWdn88G4bm78L+bmxv+i\nUin/S7dtS5/Xwf/zpOWlYWfqTuxM24njquMY5jEM07pNw0jpSDS2M683uOJiYNYs/ju8dStfdI88\nHYWCbyK0aBFfzdHc3Lh/A3Hn47Du7Dqk56cjxCMEo6SjMNxzOFo1pY9oAPgCP1lZvMGalvaoMZue\nznsftNpHPRAxMRUvq3Mvh64dNMrKypiHhwe7evUqU6vVzM/PjyUnJ1c6Z+fOnWzEiBGMMcaOHTvG\ngoKCqr0WAMYiIhhbtYqxPXsYS01lrLhYV/FWa//+/Tqfv6++z45nH2crjq1gk3+dzDp+1ZE5f+XM\nZm+bzbambGX3Su7pfL1Q1GrG1q5lzMeHsbAwxoqKan9NbT+LhqS2n0VqKmPe3oyNHs3Y0aOmqVN9\nKO8oWfRf0Wxs7Fhmv9iedf1PV/bq9lfZujPrWMrNFFamKav1Gg3y9yI/n7HTp/nGtY+pJaar0PkZ\nKSkpCZ6ennB1dQUAhIWFIT4+HrLHNnLYtm0bZsyYAQAICgpCQUEBcnNz0a5du6oXXLhQ/3cbK6ZQ\nKNB/QH/kFuYi804m0m6nIfV2KlLzUnE29ywyCjLg09oHgR0CMUo6CksGL4Gbg5vZ3pDKyuKrC3/1\nFf+wtWIFn3irT3UVCgXkcrnR62gJavtZSKV8BvxPP/FWu5sbX4t+0CCgRQvT1bM2khYSvNLzFbzS\n8xWUakpxJvcMDmUdwtaLW7FQsRC5hbno0rYLurbpCmkrKbxaecHTyROdWnZCy8YtIRKJGubvhYOD\nQebH6Ax1lUoFl8fWNZFIJDh+/Hit52RnZ1cf6lZGy7QoLi1GcVkxikqLcF99H/fU91CoLsTdkrvI\nL85H/oN85Bfn42bRTdy4fwO593Nx4dgFLPl8CVo2bonODp0hdZJC6iTFGK8xWNBvAXxa+6CRrYCD\nk6vBGL//k53NPzFmZPABAPv386kAgwfzPl9az8W4mjQBXn+d3zzduJHvHPXii/xWk1zObz25ufGj\nfXt+X07ItoDYVozAjoEI7BiIeX3mAQDultzF2dyzuHDjAtLy0nA0+ygu512G8o4SDAySFhI8OP0A\nF3+7iLbN2qJN0zZweMYBjk0c4fiMI+wb26N5o+awb2SPpuKmaCJugqbipmhs29hsGz6mpDPU9f0B\nsSf6e2p6Xbu3xlT3ar3KePI8JmI1PMcq/cnAABF7+BV7+DgDE2kfPqYFRAwMmoePacFEmoffl1Uc\nWpEaWlEpmKgUWlEJtCI1mEgDG+0zsNU2hS1rAjtNc9hqm8NOYw87jT3EGkd+lDmgUZkfGpe2RaOy\nNnDM+g3PJn0BW8bvhN8DcPLhEafnT6PGn5KOHydjj54v/5ox3pWn1fLFtjQavklTSQk/iov5uud3\n7/JAcXZ+FBr+/sC8ebQ5jRDEYh7mL77IB2EcP84nSR48CKxdy994b9zg/74ODrwl37jxo8POjs/q\ntbXlA8ZEoqoHoPvftf7/5i0APPfw4NwfHqW2d1AsViI9/Qukbh+Bc3Y3oLa7iVK7Syi1zUeZbQHK\nbO+hzKYQZbb3oLEpgtamCBqbYmhtSmCjbQQRawQbbWPYMDFETMz/hB1ErPywhQg2EDFbADYPv7YB\nYANABBETAeCH6OGfYOVfo+K5J34aj75iNT+nGz+vua0j0pet1fM11dDVN3P06FEWEhJS8f3ixYvZ\n0qVLK50zZ84cFvvYdvDe3t4sJyenyrU8PDweJSoddNBBBx16HR4eHobrUw8MDERaWhoyMjLQsWNH\nxMXFITY2ttI5oaGhiIqKQlhYGI4dOwYHB4dqu14uX76sqyhCCCEGoDPU7ezsEBUVhZCQEGg0GoSH\nh0MmkyE6OhoAMGfOHIwcORK7du2Cp6cnmjVrhp9++skkFSeEEFKVySYfEUIIMT6jz6lPSEiAj48P\npFIpIiMjjV2cWVMqlRg4cCC6dOmCrl27YoUQ29uYEY1Gg4CAAIwZU90N9IajoKAAkyZNgkwmg6+v\nL44dOyZ0lQSzZMkSdOnSBd26dcMLL7yAkpISoatkMrNmzUK7du3QrVu3isfy8vIwdOhQeHl5Ydiw\nYSgoKKj1OkYNdY1Gg7lz5yIhIQHJycmIjY1FSkqKMYs0a2KxGN988w0uXLiAY8eO4fvvv2/QP4/l\ny5fD19e3wQ9De/PNNzFy5EikpKTg7NmzleaBNCQZGRn48ccfcfLkSZw7dw4ajQYbN24Uulom89JL\nLyEhIaHSY0uXLsXQoUORmpqKwYMHY6keS3YaNdQfn7wkFosrJi81VO3bt4e/P99Fpnnz5pDJZLh2\n7ZrAtRJGdnY2du3ahZdfftl8Nk8RwJ07d3Dw4EHMmjULAL+P1bJlS4FrJYwWLVpALBajqKgIZWVl\nKCoqgrOzs9DVMpl+/frB0dGx0mOPT+6cMWMGtm7dWut1jBrq1U1MUqlUxizSYmRkZODUqVMICgoS\nuiqCeOutt/Dll1/CpoGtqvmkq1evok2bNnjppZfQo0cPzJ49G0VFRUJXSxBOTk6YP38+OnXqhI4d\nO8LBwQFDhgwRulqCenx2frt27ZCbm1vra4z6P6qhf6yuSWFhISZNmoTly5ejuRltm2UqO3bsQNu2\nbREQENCgW+kAUFZWhpMnT+L111/HyZMn0axZM70+Yluj9PR0fPvtt8jIyMC1a9dQWFiIDRs2CF0t\nsyESifTKVKOGurOzM5RKZcX3SqUSEonEmEWavdLSUkycOBHTpk3DuHHjhK6OII4cOYJt27bBzc0N\nU6dOxb59+zB9+nShqyUIiUQCiUSCXr16AQAmTZqEkydPClwrYfz111949tln0apVK9jZ2WHChAk4\ncuSI0NUSVLt27ZCTkwMAuH79Otq2bVvra4wa6o9PXlKr1YiLi0NoaKgxizRrjDGEh4fD19cX8+bN\nE7o6glm8eDGUSiWuXr2KjRs3YtCgQVi79immRVuw9u3bw8XFBampqQCAxMREdOnSReBaCcPHxwfH\njh1DcXExGGNITEyEr6+v0NUSVGhoKNasWQMAWLNmjX4NwTrNP62HXbt2MS8vL+bh4cEWL15s7OLM\n2sGDB5lIJGJ+fn7M39+f+fv7s927dwtdLUEpFAo2ZswYoashqNOnT7PAwEDWvXt3Nn78eFZQUCB0\nlQQTGRnJfH19WdeuXdn06dOZWq0WukomExYWxjp06MDEYjGTSCRs9erV7Pbt22zw4MFMKpWyoUOH\nsvz8/FqvQ5OPCCHEijTsoQeEEGJlKNQJIcSKUKgTQogVoVAnhBArQqFOCCFWhEKdEEKsCIU6IYRY\nEQp1QgixIv8P2EKbdYjj/hwAAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclNX+B/DPwIwiLqDgOoOiDJuhgIKoaU65oF5D2wxb\nXEIjzcy6P7PtFmZ5pfK2SCndq6ZliKWJFmJuo6blaJqUuOCCDiMqi4iCMDBzfn8cQdaBgWf27/v1\nmpezPHOeb8R85nCe5zlHxBhjIIQQYhecLF0AIYQQ4VCoE0KIHaFQJ4QQO0KhTgghdoRCnRBC7AiF\nOiGE2JFGQz0tLQ0BAQHw9fVFfHx8nddv3LiBRx55BMHBwYiIiMDJkydNUighhJDGGQx1nU6HuXPn\nIi0tDRkZGUhKSsKpU6dqbLNkyRIMGDAAJ06cwLp16/Dyyy+btGBCCCENMxjqKpUKcrkc3t7ekEgk\niI6ORkpKSo1tTp06hQcffBAA4O/vj6ysLOTm5pquYkIIIQ0yGOoajQZeXl5Vj2UyGTQaTY1tgoOD\nsXnzZgD8S+DSpUvIzs42QamEEEIaYzDURSJRow28/vrrKCwsRGhoKBISEhAaGgpnZ2fBCiSEENJ0\nYkMvSqVSqNXqqsdqtRoymazGNu3bt8fq1aurHvfu3Rt9+vSp05ZcLsf58+dbWi8hhDgUHx8fnDt3\nrulvYAaUl5ezPn36sIsXL7KysjIWHBzMMjIyamxTWFjIysrKGGOMffXVV2zatGn1ttXIrqzeu+++\na+kSWsSW6zdl7SdPMjZ6NGMVFSbbhU3/7Bmj+i3N2Ow02FMXi8VISEhAZGQkdDodYmJiEBgYiMTE\nRABAbGwsMjIyMH36dIhEIgQFBWHVqlUt+E4ixLw++QTYvRtITQUeftjS1RDScgZDHQDGjRuHcePG\n1XguNja26v6QIUNw5swZ4SsjxMRyc4EffgCWLQM+/ZRCndgHuqK0iRQKhaVLaBFbrt9UtX/1FfDo\no8CcOcDp00B6ukl2Y9M/e4DqtzWiu2M2pt+RSAQz7YqQRmm1QO/eQFoa0K8fsGQJcP48QKOHxNoY\nm53UUycO6fvvgcBAHugA8PzzwObNwPXrlq2LkJaiUCcOadcu4Mkn7z329ASGDQMOHrRcTYQIgUKd\nOKTTp4GAgJrPBQTw5wmxZRTqxOEwBpw5U3+o04lcxNZRqBOHk5fH//X0rPm8vz+FOrF9FOrE4Zw5\nwwO89tRGlaFOJ2kRW0ahThzO6dM8wGur7LnTzNHEllGoE4dT33g6wHvuNK5ObB2FOnE4lcMv9aFx\ndWLrKNSJw2lo+AXgz9NpjcSWUagTh6LVApcvAz4+9b9OPXVi6yjUiUO5cAHw8gJat67/dRpTJ7aO\nQp04FEPj6QDvwV++zHv0hNgiCnXiUAyNpwNAq1a8J08rLxJb1Wiop6WlISAgAL6+voiPj6/zel5e\nHsaOHYuQkBAEBQXh66+/NkWdhAiisZ46QOPqxLYZDHWdToe5c+ciLS0NGRkZSEpKwqlTp2psk5CQ\ngNDQUPz5559QKpX45z//iYqKCpMWTUhzNXSOenU0rk5smcFQV6lUkMvl8Pb2hkQiQXR0NFJSUmps\n0717dxQVFQEAioqK4OHhAbG40VXyCLGIs2cBPz/D21BPndgyg6Gu0Wjg5eVV9Vgmk0Gj0dTYZtas\nWTh58iR69OiB4OBgfPbZZ6aplJAWKi0FioqArl0Nb+flBdT6NSfEZhjsUotqz3hUjyVLliAkJARK\npRLnz5/H6NGjceLECbRv377OtnFxcVX3FQqFw60dSCwrJwfo3r3uRF619egBXLlinpoIqU2pVEKp\nVDb7/QZDXSqVQq1WVz1Wq9WQyWQ1tjl06BDeeustAICPjw969+6NM2fOICwsrE571UOdEHO7coUH\ndmMo1Ikl1e7wLlq0yKj3Gxx+CQsLQ2ZmJrKysqDVapGcnIyoqKga2wQEBGDXrl0AgGvXruHMmTPo\n06ePUUUQYg5NDXUPD+D2bT5cQ4itMdhTF4vFSEhIQGRkJHQ6HWJiYhAYGIjExEQAQGxsLN58803M\nmDEDwcHB0Ov1+PDDD9GpUyezFE+IMZoa6iIRH6bJyQF69zZ9XYQIScSYeZYEEIlEMNOuCKnXwoVA\nx47A6683vu3QocBHHwH332/6uggxxNjspCtKicNoak8doHF1Yrso1InDoFAnjoBCnTgMCnXiCCjU\nicOgUCeOgEKdOITbt4HycsDNrWnbU6gTW0WhThxCTg4P6iZcJA2AQp3YLgp14hCMGXoB+LY0/wux\nRRTqxCEYG+pubkBFBXDrlulqIsQUKNSJQzA21EUivn1OjulqIsQUKNSJQzA21AEaVye2iUKdOAQK\ndeIoKNSJQ6BQJ46CQp04BAp14igo1IndY4xCnTgOCnVi94qKALEYaNfOuPdJpRTqxPZQqBO715xe\nOkA9dWKbGg31tLQ0BAQEwNfXF/Hx8XVe//jjjxEaGorQ0FD069cPYrEYhYWFJimWkOZobqh3787f\nS2u7EFticOUjnU4Hf39/7Nq1C1KpFOHh4UhKSkJgYGC92//000/49NNPq9YsrbEjWvmIWMj69cDP\nPwPffWf8e9u3B7Kzmz4RGCFCE3TlI5VKBblcDm9vb0gkEkRHRyMlJaXB7b/77jtMmTKl6dUSYgbX\nrwNduzbvvV26ALm5wtZDiCkZDHWNRgMvL6+qxzKZDJoGZjkqKSnBjh078NhjjwlbISEtdP060Llz\n897buTN/PyG2QmzoRVFT5ykFsG3bNgwbNgzu7u4NbhMXF1d1X6FQQKFQNLl9QporNxfw8Wnee6mn\nTsxNqVRCqVQ2+/0GQ10qlUKtVlc9VqvVkMlk9W67YcOGRodeqoc6IeZCPXViS2p3eBctWmTU+w0O\nv4SFhSEzMxNZWVnQarVITk5GVFRUne1u3ryJ/fv3Y+LEiUbtnBBzyM3lPe7moJ46sTUGe+pisRgJ\nCQmIjIyETqdDTEwMAgMDkZiYCACIjY0FAGzZsgWRkZFo06aN6SsmxEjXr7cs1C9dErYeQkzJ4CmN\ngu6ITmkkFtK+PV/FqEMH49/77bfA9u38tEhCLEHQUxoJsXV37vAFp9u3b977u3ShMXViWyjUiV3L\nzeUHO404kasGOlBKbA2FOrFrLTlICtCBUmJ7KNSJXWvJ6YwA4OnJQ50OBxFbQaFO7FpLznwBgNat\ngbZtAZqjjtgKCnVi11o6/ALQwVJiWyjUiV1r6fALwN9P4+rEVlCoE7vW0uEXgHrqxLZQqBO7VnlK\nY0vQaY3EllCoE7smVE+dhl+IraBQJ3aNeurE0VCoE7vFGPXUieOhUCd2q7iYTw/Qtm3L2qEDpcSW\nUKgTuyXE0AtApzQS20KhTuyWEEMvAPXUiW2hUCd2S6ieuocHkJ8P6PUtb4sQU2s01NPS0hAQEABf\nX1/Ex8fXu41SqURoaCiCgoJoMWliNYTqqUskgJsbUFDQ8rYIMTWDy9npdDrMnTsXu3btglQqRXh4\nOKKiohAYGFi1TWFhIV588UXs2LEDMpkMeXl5Ji+akKYQKtSBe0Mwnp7CtEeIqRjsqatUKsjlcnh7\ne0MikSA6OhopKSk1tvnuu+/w2GOPQSaTAQA86beeWAmhhl8AOlhKbIfBUNdoNPDy8qp6LJPJoNFo\namyTmZmJgoICPPjggwgLC8M333xjmkoJMZIpeuqEWDuDwy+iJqwBVl5ejmPHjmH37t0oKSnBkCFD\nMHjwYPj6+tbZNi4uruq+QqGg8XdiUkL31CnUiTkolUoolcpmv99gqEulUqjV6qrHarW6apilkpeX\nFzw9PdGmTRu0adMGDzzwAE6cONFoqBNiakKHOh0uIuZQu8O7aNEio95vcPglLCwMmZmZyMrKglar\nRXJyMqKiompsM3HiRPz666/Q6XQoKSnB4cOH0bdvX6OKIMQU8vKEO7Dp6UmhTmyDwZ66WCxGQkIC\nIiMjodPpEBMTg8DAQCQmJgIAYmNjERAQgLFjx6J///5wcnLCrFmzKNSJVRC6p37okDBtEWJKIsbM\ns6SuSCSCmXZFCEpK+EVDJSV8/peW2rkTiI8Hdu1qeVuEGMPY7KQrSoldquylCxHoAJ3SSGwHhTqx\nS0KOpwM0pk5sB4U6sUtCjqcD90KdRhCJtaNQJ3ZJ6J66iwvQqhVw65ZwbRJiChTqxC4J3VMHaFyd\n2AYKdWKXhO6pAzSuTmwDhTqxS9RTJ46KQp3YJeqpE0dFoU7sEvXUiaOiUCd2iXrqxFFRqBO7RD11\n4qgo1Ind0emAwkKgUydh26WeOrEFFOrE7hQUAO7ugLOzsO1ST53YAgp1YndMMZ4OUE+d2AYKdWJ3\ncnNNF+rUUyfWrtFQT0tLQ0BAAHx9fREfH1/ndaVSCTc3N4SGhiI0NBTvv/++SQolpKny8oQ/SArw\nIZ3iYqC8XPi2CRGKwZWPdDod5s6di127dkEqlSI8PBxRUVEIDAyssd2IESOwdetWkxZKSFOZqqfu\n5MQPvublAd27C98+IUIw2FNXqVSQy+Xw9vaGRCJBdHQ0UlJS6mxHKxoRa2KqnjpAC1AT62cw1DUa\nDby8vKoey2QyaDSaGtuIRCIcOnQIwcHBGD9+PDIyMkxTKSFNZKqeOkDj6sT6GRx+ETVhLbABAwZA\nrVbD1dUV27dvx6RJk3D27FnBCiTEWHl5wMCBpmmbeurE2hkMdalUCrVaXfVYrVZDJpPV2KZ9+/ZV\n98eNG4c5c+agoKAAneq58iMuLq7qvkKhgEKhaGbZhDSMeurElimVSiiVyma/X8QMDIhXVFTA398f\nu3fvRo8ePTBo0CAkJSXVOFB67do1dOnSBSKRCCqVCpMnT0ZWVlbdHRm5IjYhzTVwIJCYCISFCd/2\nO+/wi5refVf4tgmpj7HZabCnLhaLkZCQgMjISOh0OsTExCAwMBCJiYkAgNjYWPzwww9YsWIFxGIx\nXF1dsWHDhpb9FxDSQqa6+Ajg7WZmmqZtQoRgsKcu6I6op07MxNWVD5G0bSt820lJQEoKQH0XYi7G\nZiddUUrsSkkJwBgPdlOgqQKItaNQJ3alcsrdJpy41SydOwPXr5umbUKEQKFO7Mr166a78AigmRqJ\n9aNQJ3YlNxfo0sV07Veep67Xm24fhLQEhTqxK6buqbdqxQ/AFhaabh+EtASFOrErpu6pA7x9GoIh\n1opCndgVU/fUATpYSqwbhTqxK9RTJ46OQp3YFeqpE0dHoU7sCvXUiaOjUCd2hXrqxNFRqBO7wRj1\n1AmhUCd2o7iY/2uKibyqo546sWYU6sRumKOXDlBPnVg3CnViN8wxng5QT51YNwp1YjfM1VP39AQK\nCmj+F2KdGg31tLQ0BAQEwNfXF/Hx8Q1ud+TIEYjFYmzevFnQAglpKnP11CUSoH17HuyEWBuDoa7T\n6TB37lykpaUhIyMDSUlJOHXqVL3bLVy4EGPHjqXVjYjFmKunDtC4OrFeBkNdpVJBLpfD29sbEokE\n0dHRSElJqbPd8uXL8fjjj6OzObpJhDTAXD11gMbVifUyGOoajQZeXl5Vj2UyGTQaTZ1tUlJSMHv2\nbAB8PT1CLIF66oQAYkMvNiWg58+fj6VLl1YtjkrDL8RSjOmpF2uLcUh9CEeuHMHlm5fRv2t/DJIO\nwoDuA+Akavz8AeqpE2tlMNSlUinUanXVY7VaDZlMVmObP/74A9HR0QCAvLw8bN++HRKJBFFRUXXa\ni4uLq7qvUCigUChaUDohNTWlp84Yw8aTG/HqL6/Cp6MPBkkHoW/nvjiWcwyf/v4purTtghX/WIF+\nXfsZbId66sRUlEollEpl8xtgBpSXl7M+ffqwixcvsrKyMhYcHMwyMjIa3H769Ols06ZN9b7WyK4I\naTGZjLGsrIZfLyotYuO+Hcf6fdmP/Xrp1zqvV+gq2IojK1jnDzuzxfsWM71e32Bbn3/O2Jw5QlRN\niGHGZqfBnrpYLEZCQgIiIyOh0+kQExODwMBAJCYmAgBiY2Ob/21CiIAq531paPjlVtktjF0/Fv26\n9MPWKVshdqr7q+/s5IwXwl7ApIBJGPPNGJRWlGLxg4vrHYbs0gU4cEDo/wpCWk5095vA9Du6O+ZO\niCkUFQE9egC3b9d9rTLQ+3fpjy/+8UWTxsxzi3Mxct1IRPlH4f2H3q/z+p49wHvvAS35K5mQpjA2\nO+mKUmIXGhpPZ4xh5raZ8PPwa3KgA0Dntp2xe+pufJ/xPdanr6/zOo2pE2tlcPiFEFvR0Jkvq46v\nwqncUzg883CTA71S57adkfx4MkZ/MxqDpIPg6+F77zU6+4VYKeqpE7tQX0/95PWTeGP3G0h+PBlt\nJG2a1W5ItxDEjYhD9KZolFWUVT3v4QEUFgI6XUuqJkR4FOrELtTuqev0Ojz747P498h/I7BzYIva\nnhM+B14dvPD+/ntj62Ix4OYG5Oe3qGlCBEehTuxC7TNfEv9IRIfWHRATGtPitkUiEb4Y/wVWHF2B\ncwXnqp7v0oWGYIj1oVAnduHqVaBbN34/tzgXcco4LB+3XLBpK6QdpFh4/0LMT5tf9VzXrsC1a4I0\nT4hgKNSJXbh6Fejend9/c/ebeKrfU41eFWqslwe/jHMF57DtzDYAfH9Xrwq6C0JajEKd2IWcHN5T\nP3H1BLad3YY4RZzg+2jl3Aqfj/scr+x4BeW6cnTrxvdLiDWhUCd2obKn/o7yHbw+7HW4u7ibZD9j\nfMagl3svrDuxjnrqxCpRqBO7kJMDXMER/HHlD7wQ9oJJ97X4wcVYvH8xPLtqqadOrA6FOrF5t2/z\n88U/PPIO3hz+JlzELibd31CvoQjsHIg/Rauop06sDoU6sXlXrwLu/Q4hIy9DkFMYm+I9xXvYkPMB\nNNdKzbI/QpqKQp3YvKtXgTvhH+DNYW+itbi1WfYZLg1HSNdQqDutNcv+CGkqCnVi8w5f/At33I9h\nWsg0s+73rRGvoST0YxSX0FwBxHpQqBObtzH7Y4RoXzL5WHptw3sNQ6sKT3xzZItZ90uIIRTqxKZl\nF2UjvWwbRnWYbfZ9i0Qi9FS/huXHP6S1AojVaDTU09LSEBAQAF9fX8THx9d5PSUlBcHBwQgNDcXA\ngQOxZ88ekxRKSH0+/f1T9Cmajt7dO1pk/4GiKNy4cwMHLtMySMQ6GFz5SKfTwd/fH7t27YJUKkV4\neDiSkpIQGHhv1rvi4mK0bdsWAPDXX3/hkUcewblz5+q0RSsfEaHdKrsF78+80e/gcbwW2xPjx5u/\nhhdeAIr8ElHSYzu2RNMwDBGeoCsfqVQqyOVyeHt7QyKRIDo6GikpKTW2qQx0ALh9+zY8PT2NLJmQ\n5ll7Yi1G9h6Jwks9qybzMrdu3YCehc/gwOUDuHzzsmWKIKQag6Gu0Wjg5eVV9Vgmk0Gj0dTZbsuW\nLQgMDMS4cePw+eefC18lIbXomR7LVcvx0qCXakzmZW7duwMFV9vi2f7PYuXRlZYpgpBqDC5n19Rp\nSydNmoRJkybhwIEDePbZZ3HmzJl6t4uLi6u6r1AooFAomlwoIdXtPL8TbcRtMLjHMOTn17+UnTlU\nTuq1LHwOhq8ZjndHvGu2c+WJfVIqlVC2YEVzg6EulUqhVqurHqvVashksga3Hz58OCoqKpCfnw8P\nD486r1cPdUJaYrlqOeZFzENenggeHnwlIkuonNTLz8MPwV2D8X3G93im/zOWKYbYhdod3kWLFhn1\nfoPDL2FhYcjMzERWVha0Wi2Sk5MRFRVVY5vz589XDeIfO3YMAOoNdEKEcq7gHFQaFaYETamactdS\nqk+/+2L4i/jiyBeWK4YQNNJTF4vFSEhIQGRkJHQ6HWJiYhAYGIjExEQAQGxsLDZt2oR169ZBIpGg\nXbt22LBhg1kKJ44r8WgipodMRxtJG4uOpwM81K9fB/R6YILfBMxLm4djOccwoPsAyxVFHJrBUxoF\n3RGd0kgEUFZRBq9PvHAo5hDkneRYtQo4eBBYvdpyNXl6AqdO8XH9fx/4N84VnMOqiassVxCxK4Ke\n0kiItdl8ajP6d+0PeSc5gJprk1pKt273FsuYOWAmNp/ejII7BZYtijgsCnViUxL/SETswNiqxzk5\nlh1+Afj+K8fVO7ftjAl+E7Dm+BrLFkUcFoU6sRmn807jTP4ZTAyYWPWctfXUAX7AdMXRFdAzveWK\nIg6LQp3YjK/++AozQmaglXOrquesracOABHSCLi5uGHHuR2WK4o4LAp1YhNKK0rxTfo3mDVgVo3n\nLX1KI1DztEaAH9iaHTYbiX8kWq4o4rAo1IlN+CHjBwzsPhC9O/auek6vB65cAaRSCxYGwMsLyM6u\n+Vx0UDT2X9oPTVHdaTUIMSUKdWITVh5dWeMAKcDPD3dzA9q0sVBRd/XsCVyuNZdXu1btEB0UjVXH\n6dRGYl4U6sTqnbx+EhduXMAEvwk1nr98mQeqpdUX6gAQOzAW/zv2P+j0tNwdMR8KdWL1Ev9IRExo\nDCTOkhrPW0uod+0KFBYCpaU1nw/uFowe7Xtg+7ntlimMOCQKdWLVSspLsP6v9Zg5YGad16wl1J2c\n+Lh+7XF1gPfW6YApMScKdWLVNp7ciMGywejl3qvOa5cuWUeoA7yOS5fqPv9k0JM4pD4E9U113RcJ\nMQEKdWLVal9BWp219NSBhsfVXSWueCroKfzv2P/MXxRxSBTqxGqlX0tHdlE2xvvWv/ioLYQ6AMSG\nxWLV8VWo0FeYtyjikCjUidVKPMoPkIqd6p8h2lZCPahLEHq598LPZ382b1HEIVGoE6tUrC1G0t9J\n9R4gBYCSEuD2bcstY1eboVAH6IApMR8KdWKVNvy9AcN6DoOsQ/3LJ6rV/EpOJyv5De7Vy3CoP9H3\nCag0KmQVZpmtJuKYmvSRSEtLQ0BAAHx9fREfH1/n9fXr1yM4OBj9+/fH/fffj/T0dMELJY6DMYYv\njnyBOeFzGtzGmoZeAP4Fc/ky0NBaBm0kbfBM/2fogCkxuUZDXafTYe7cuUhLS0NGRgaSkpJw6tSp\nGtv06dMH+/fvR3p6Ov71r3/h+eefN1nBxP6pNCrcLLuJMT5jGtzGmk5nBIC2bfktN7fhbWIHxmL1\n8dUo15WbrzDicBoNdZVKBblcDm9vb0gkEkRHRyMlJaXGNkOGDIGbmxsAICIiAtn1XYVBSBN9ceQL\nzA6bDSdRw7+e1tZTBxofVw/sHAh5Jzm2nd1mvqKIw2k01DUaDby8vKoey2QyaDQNzzy3atUqjB9f\n/ylohDQmryQPW89sxYyQGQa3s8VQB+iAKTG9+s8Vq0YkEjW5sb1792L16tU4ePBgva/HxcVV3Vco\nFFAoFE1umziG1cdXY1LAJHi4ehjczlZD/bG+j2H+jvm4cOMC+nTsY57CiE1RKpVQKpXNfn+joS6V\nSqFW37vEWa1WQyare0ZCeno6Zs2ahbS0NHTs2LHetqqHOiG16fQ6rDy6Ehse39DotrYa6i5iF0zt\nPxVf/fEVlo5aap7CiE2p3eFdtGiRUe9vdPglLCwMmZmZyMrKglarRXJyMqKiompsc/nyZTz66KP4\n9ttvIZfLjSqAkEpp59Lg4eqBQdJBBrfT6/nkWdVGBa1CU0IdAGaHz8bq46tRWlHa+MaEGKnRUBeL\nxUhISEBkZCT69u2LJ598EoGBgUhMTERiIh8bfO+993Djxg3Mnj0boaGhGDTI8IeSkPp8efRLzAlr\n+DTGStevAx06WH5xjNqaGuryTnKE9QhD8t/Jpi+KOBwRYw2dWSvwjkQimGlXxAZduHEBg/47CJdf\nuQxXiavBbVUqYM4c4OhRMxXXRFeuAAMGAFevNr5tamYq3tn7Do7MOmLUcSvieIzNzkbH1Akxh8Sj\niZgWPK3RQAeA8+eB3r0b2ejOHSAjA7h4kY/VZGfzy1CvXOHzC9y5w+cauHMHKC8HXFx419/Vlf/r\n7g7IZPduXl6Ary/g4wM4O9e7y27dgKIi3ny7dobLGysfi5e2v4TDmsMYLBvc6H8zIU1FoU4srrSi\nFKv/XI1Dzx1q0vZnzgABAdWeuH0bOHiQd93T04ETJ/jVSX5+gFx+L5gHDgS6d783dlMZ4BIJX7ao\netAXFAAaDf8yOHYMSEnhO752DbjvPqB/f34bOhQICQHEYjg58dw/e5b32A1xEjnhxfAXkaBKoFAn\ngqJQJxaX9FcSBnYfCF8P3yZtf/HvYkzz3gcs3Afs2wf8/TdP0cGDgago4O23eepLJI03ZqyiIuCv\nv/iXx59/AomJPPzvvx8YMQLjOytwOiMMAwY0PgPHjJAZWLx/Ma7cuoIe7XsIXytxSDSmTiyKMYb+\nK/tj2ZhlBqcFQE4O8NNPQEoKbm/fD33oQHR4WAGMGAFERFj2qGluLrB/P7BvH65t2APXkjy0j54A\nTJwIjBzJ/yJowNzUuXBr7YYPRn5gxoKJLTE2OynUiUXtPL8Tr+x4BX/N/qvuAcNr14ANG4CkJD70\nMXYs9A9PhGzmWJy+6o4OHSxTsyHffQf8tv4Clo/eyods/vgDGDUKePpp4B//4GP31WTmZ2Lo6qHI\nejkLbVu1tVDVxJoZm51WMnEpcVT/+f0/eHXIq/cCvbgYWL8eGDcO8Pfn49mLFvGAT0qC+v5oiDpa\nZ6ADvOT92X2A+fOBvXuBrCxgwgTgyy+BHj2AWbP4kJFeDwDw9fDF/V73Y92JdZYtnNgN6qkTizl5\n/SRGrhuJrPlZcDl5ho9Pb9jAx8afeYYPX7St2Xv95RcgPh7YvdtCRTfi9m2gSxf+b5253rOzeVf+\nm2/4l1dsLDBjBvbfOY2ZW2fi9NzTBicxI46JeurEZixXfogV+UPg8sBDvDfbrRs/CJmaCjz1VJ1A\nB4DTp3lv2Fq1awd4eDRwEZJMBrz2Gj/IumEDH1Ly88Pw11dAcUmEbae3mr1eYn8o1In55eTg5oJ5\nWPzcN/jHH7eA11/n55O/8w4glRp8a53TGa2Qvz+vs0EiETBoELB6NXDxIkRDhuDjzcXoO+YpsK+/\nBrRac5VK7BCFOjGfP/8Epk0D+vZF+ul9WPX5dLT6ZRc/DVHctLNrrb2nDvAvndOnm7hxx47AvHlo\nm5mF+If27px4AAAYWklEQVQ9cON/y/mVVUuXAjdumLROYp8o1Inp/forMGYMH2Lp2xd56YcxcZga\nU5943+imTp+2/p66UaF+l7OzGMOeX4zJz3cEfv6ZXw3r4wO8/DL/K4aQJqJQJ6bBGKBUAg89BEyd\nCkyeDFy4ACxciE8z12HyfZONvuDm1i3eebW22Rlra3T4pQFP93samQWZOOxZBqxbx48vtGkDhIcD\n0dH8IitCGkGhToTFGLBzJ/DAA8Dzz/PhljNngJkzgVatUFhaiJVHV+K1+18zuum7xxXrnlViZZrT\nUwcAibMEC4YuwAcH7l6IJJXyYZiLF/kUB6NGAY8+Chw/LmzBxK5Y+ceD2AzGgO3b+Vwo8+YBL7zA\nhxCmTatxuf6yQ8sQ5R/VrFV/bOEgKcCzuKiI34w1c8BMHL96HCqN6t6T7dsDCxbwv3QeeIAPY02Y\nABw+LFzRxG5QqJOWYQzYupWfzfHaa8Arr/BhgqefrnPwM7c4F18e/RLvjHinWbuyhYOkAP9Lws+v\neUMwLmIXvD38bby95+26L7q68ouazp8Hxo/nQ1pjxgAHDrS8aGI3KNRJ8+j1wKZNQGgo8O67wBtv\n8NkRJ09ucGrapb8uxZSgKfB2927WLk+dso2eOsDrzMho3nufC30O52+cx76sffVv4OLCJ5TPzOQ/\n7+nTAYWCX5FFF/g5vCaFelpaGgICAuDr64v4+Pg6r58+fRpDhgyBi4sLli1bJniRxIrodEByMp92\ndulSYPFifin/o48aHOzWFGmw5s81eHP4m83etUoFhIU1++1mFRYGHDnSvPdKnCV4d8S7eGvPW4av\nJGzVih+rOHMGeO45HvTDh/PLbincHRdrREVFBfPx8WEXL15kWq2WBQcHs4yMjBrbXL9+nR05coS9\n9dZb7OOPP663nSbsiliz8nLGvvmGsYAAxgYPZiw1lTG9vslvj0mJYQt+WdDs3Ws0jHXqZNQuLerg\nQcbCwpr//gpdBev7RV+25dQWI95Uwdj69fz/UUSE0f+PiHUyNjsb7amrVCrI5XJ4e3tDIpEgOjoa\nKSkpNbbp3LkzwsLCIDHF/NXEssrLga+/BgID+dwsy5cDhw7xCbeauAzb8Zzj+OnsT3hr+FvNLuPw\nYT7Drq2s/BYayodf7txp3vudnZzxnzH/wf/t/D+UVZQ18U3OfHqFv/8GXn2VH1yNiOBTFlPP3WE0\nGuoajQZe1U4Mlslk0Gg0Ji2KWAGtFvjvf/mRyXXr+P39+/lpdUYkK2MMr+x4BYsUi+Dm4tbscipD\n3Va0acO/B1ty9mGkPBL+Hv5IUCUY90ZnZz7Wnp4OLFwIvPUWHw9KSaFwdwCNXpst5KK4cXFxVfcV\nCgUUCoVgbROBlJXxOUmWLuVH+9atA4YNa3Zzm09txo3SG5g5YGaLyvr9d34s1pYMHszrHjq0+W0s\nG7MMw9YMw9TgqejctrNxb3ZyAh57DHjkEX6G0qJF/KD2v/7Fn7P2E/4dlFKphFKpbH4DjY3P/Pbb\nbywyMrLq8ZIlS9jSpUvr3TYuLo7G1G1VSQljn3/OmFTK2PjxjP32W4ubvF12m3l/6s12X9jdonYq\nKhhr146xgoIWl2RW69YxNnlyy9t5Je0V9tyW51rekF7P2NatfLA/KIix5GTGdLqWt0tMytjsbPSr\nOiwsDJmZmcjKyoJWq0VycjKioqIa+oJo/rcLsYyiIj5BeZ8+wK5dwJYtfO6RwS1fDPmdve9geM/h\neKj3Qy1q5+RJfkFPx44tLsmsBg8W5vqgRYpF2HlhJ/Zc3NOyhkQi4OGH+WlE8fHAsmVAv358ZSmd\nruWFEuvQlORPTU1lfn5+zMfHhy1ZsoQxxtjKlSvZypUrGWOM5eTkMJlMxjp06MDc3d2Zl5cXu3Xr\nVou+bYiJ5eYy9vbbjHl4MPbUU4ylpwvavCpbxbp+1JXlFue2uK3ERMamThWgKDPT6/kZOzk5LW9r\n25ltTP65nJVoS1reWCW9nrG0NMaGDGHM35+f3VReLlz7RBDGZietfORosrN5D23tWuCJJ/hVoD4+\ngu6iXFeOsP+G4bWhr+Hp/k+3uL2YGH6cb/ZsAYozs/Hj+QJHEye2vK0nf3gSvd17Y+mopS1vrDrG\ngD17+Jj7lSvAP//JL2iy5GLepAqtfETq9/ffPB379+d/hv/1Fz9FUeBAB4A4ZRxkHWR4qt9TgrT3\n+++2deZLdRERvH4hfDb2M3z959c4ePmgMA1WEomAkSP52qlr1gBpaYC3Nw/5vDxh90VMjkLdnjEG\n7NgBREYCo0fzxRfOngX+859GVxhqrr0X92LNn2uwOmq1IGdOFRTwpeH69ROgOAsYPBg4KFAGd2vX\nDf99+L94evPTKCwtFKbR6kQifkVqSgoP+OxsPonNiy/y+WaITaBQt0elpcCqVTwJX3sNmDKFr2r/\n9tuAp6fJdptfko+pW6ZizcQ16NquqyBt/vQT/z6y1evaHniAny6emytMew/7P4wJfhMQ+1OsaYcz\nAwL4tQkZGYC7O/92evxxfq0CDaNaNQp1e6JW8/OQvb2BzZuBzz7jS8hNnw60bm3SXev0Ojz747OY\n3HcyIuWRgrW7aROfVsZWtWnDJ1LcKuCa0h+N/ginck/hyyNfCtdoQ7p1Az74gM/prlDwAwT9+wMr\nVgC3b5t+/8RoFOq2TqfjpyBGRQEhIUB+PrB3L39u5EizXVe/cNdCaHVaQQ/i3b7NF0+aMEGwJi3i\nscf4l5NQ2kja4Mcnf8Ti/Yux+8Ju4Ro2pF07YO5c3nP/7DO+EErPnsBLLzVvRRBiMhTqturKFeD9\n9/n55e+9B0yaxAefExL49elmtOb4GqScScHGJzZC4izcOElqKr8a091dsCYtYvx4vkzrzZvCtenT\nyQcbHt+ApzY/hcz8TOEaboxIxJco3LyZT7Xs5sZ78KNG8fPdmzvZDREMhbotKS3lH6ZHHgGCgviB\nrC1b+BUuzz0HtG1r9pJSM1Px+u7XsW3KNnRq00nQtjdv5r1cW9e+Pc+9n34Stl2FtwLvP/g+xq0f\nhyu3rgjbeFN4efGOxaVLfArgtWv5AfhZs/jRYRp7twg6T93a6fX8TIT163nKhYTwVYUmT+ZpYUG7\nL+zGlE1TsHXKVgyWtfwK1OpKS/lwbmYm0NnIKU+s0ddf83H1zZuFb3vpr0ux9sRa7Ju+D13adhF+\nB8bQaIBvv+UBX17OFx2fOhXo1cuyddkwY7OTQt0aMcb/tF2/nv9J6+kJPPMMX1FeJrN0dQD4qYtP\n/vAkfpj8Ax7o9YDg7W/dCnzyCT88YA8KCvjx6ytX+PC00N7Z+w5SzqTgl2d+EezMoxZhDDh6lH+b\nJSfzIcEnnuB/epnodFp7RaFuq3Q64Lff+HDKjz/yHvqUKbxXft99lq6uhqS/kvBy2stIfjwZD/Z+\n0CT7eOgh3sGbPt0kzVvEY4/xCS9feUX4thljeG/fe1iXvg7bn94OPw8/4XfSXGVlfF6h77/n39Z9\n+/KAj4ri104QgyjUbUlREf9l374d2LYN6NKFj5dPmsSHWaxsRQg90yP+13isOLoCPz/1M/p1Nc0V\nQXv3As8/z9ckFTc6ObTtSE/n14GdO2e6wx+rjq3CW3vewsYnNprkL6gW02r57/wPP/CDDF268EnG\nJkzg58I3sL6tI6NQt2YVFXxY5Zdf+KXYx47x0zvGjuW/2HK5pStsUF5JHqZvmY68kjz8MPkHyDqY\nZhiIMX7BTmwsH3GyN5MnA+HhfFEiU/nl/C+Y+uNUvDToJbw+7HU4O1lpUOr1fCHXbdt4wGdn8yPK\nI0fyP9X8/KyuY2MJFOrWRKvl44r79vEr8Q4d4mPiDz3El4NTKABXV0tX2aifzv6EOT/PQXRQND54\n6ANBT1usbedOYN48PlWNPXbaTp7k//vPnTPtcW5NkQZPbX4KziJnfPXwV5B3st4OQxWNhv+Ztns3\nv+l0/If10EPAgw/yg60OGPIU6pbCGP+l/OMPfvv1V94L8fPjXc8HHuADqjZ0Kselwkt4Zccr+Ov6\nX1jxjxUY1WeUSfdXVsb/cFmwgB8TtldPP83zackS0+5Hp9fhk98/wdJfl+KlQS/htftfQxuJjcy8\nyBhw4QKfPXLPHh72Tk7AoEH8FhHBp+50a/4SibaCQt0cGOMX+hw7di/Ejx3jzw8cyG9DhwL332+T\nv3TZRdlYcmAJNvy9AS9HvIyFwxbCRexi0n0yBjz7LA/25GT7Xmnt6lWeSfHx5vnyunzzMl7d8SoO\nqQ9h4f0L8fzA520n3Csxxs+HV6n4dRkqFV8AtmdPHvLBwfzajaAgfi6sHfXoBQ/1tLQ0zJ8/Hzqd\nDjNnzsTChQvrbDNv3jxs374drq6u+PrrrxEaGtriwqyCVstPlD59mh+1q/z3zBmgQwe+ZHxliA8c\nyE/VstFfJsYY9l/ajxVHV2DH+R2YNWAWFgxdYPy6mM303nt8ZgOl0jGm8U5P5xdhpqQAQ4aYZ5/H\nc44jbl8cflP/hhkhMxAbFos+HfuYZ+emUF7Ox7NUKv4D/ftvftPr7wV8UBBfPL1PH36xlA0eeRc0\n1HU6Hfz9/bFr1y5IpVKEh4cjKSkJgdUuQ09NTUVCQgJSU1Nx+PBhvPzyy/i9ngmkrTLU79zhQyaX\nLvFZDGv/e+0aP7k4IABKV1coIiP57HUBATbXA1cqlXUW+i7XleP37N+x5fQWbDq1Ca4SV7wQ9gKm\nBk+Fu4t5rs0vLeVzkCUn83nHu3VrWu22pKH6U1OBGTP4zA5PPGG+es7mn0Xi0USsPbEWvh6+eDzw\ncUzwmwA/D796p0u2qZ8/Y8D16/cC/u+/oTxyBIr8fP68lxdfQ6BPH/5vr168M9ajB7+1amXp/4I6\njM1Og19bKpUKcrkc3t7eAIDo6GikpKTUCPWtW7di2rRpAICIiAgUFhbi2rVr6NrVzBdAMAYUFwM3\nbvBbQcG9+7m5/G/eq1eBnJx79+/c4f8je/Xi4e3tzQ/KVD6WyarmfFXGxUFx97/TFu3Zuwfdg7oj\n/Vo60q+l42jOURy8fBDyTnI87Pcwtk3ZhqAuQYLMgd4Uej0/FjZvHj8NX6XiZ7fVx6ZCpR4N1T9+\nPO+pz5gBbNzIx9h9fU1fj5+HH5ZFLsO/R/0bey/uxaZTm/DZN59Bz/R4oNcDCOkWguCuwejftT+6\ntetmWz9/kQjo2pXfRo4EcPezGxfHexCXLvG54S9c4LdDh/gVYVeu8Exwd+eZIJUC3bsDHh51b56e\n/N9Onayy52+wIo1GAy8vr6rHMpkMh2utpFvfNtnZ2fWHen4+HzStvGm1NR9Xf66khId0cTGfrq+h\n+5XBfeMGD+COHfkPu2PHezdPT/4NHR7Ou4LduvH/Ye7uNjtcAvAhk9KKUhSWFuJm2U3cLL2JwtJC\nXCu+huyibGiKNNDc0kBdpEb6r+lY77Ee/bv2R/8u/RE7MBbfPvItPFw9zFKrVstnb01P5z3yjRv5\n52LRIn6an6MaPJgPDX/wAV+fomdPPtVwaCifDr9bN9MdX2jl3AqR8khEyiPBGMP5G+fx6+VfceLq\nCew4vwMnrp6Ak8gJLsddcPqH05C2l0LWQQZpByk8XT3h1toN7i7ucHNxg1trN5OeFSUIFxc+FOPv\nX//rej3vAGo0PORzcnhm5ebyYdf8/Jq3Gzf45cFubvxUpnbtav5b/X7btnxcsXVrXkflrfrj6vfb\ntOE51gwGQ72pvbbafxo09L4b0u7QOjuhzNkJWrETtE4iaJ2d7j1XdRPhjtgZJRJnFN+9lUicUdyq\n2nMdnFDcyRk3/Tqh0KUzbraWQCt2AkP1Wor4TXcJLJsB2VUV1/oXtd5X7b6I379z6DI+vbWz/m2a\n2E7Vj0nU2Htrvs6cyqEXlUHvdO/G7j520reGc4UbxDo3iCvc4FzhhlbarmhdJkPrsgC0KhuJVqUy\ndLvwI2Sb/o0CAMq7t09geM6l5r4G8LPRKr+X8/P5vzIZn4o7NJSfpm9lF8pajIsLsHgxH4bavZtf\ni/bhh3z0oKCAf/l16HDvc195q37KZ/WPXOX9+p5reFsRAPndG+AKYDAYyiRXcfr8Gzi7bQzSJRrc\naZWFUslBlIvzUe58ExXON1EuLkSFM5+C0knfGk6sdbV/XeDEWkPEnCGCEwAniJiI/wsngImqPe8E\ngD+uvH/v1nzFv2XiyyJVjed4DUZwv3vzqboDEWPoUFaBDmXlaFuuRzttBVzLi9CuvADtrunQNrsC\n7bT81rZch1Y6PVpX6OGiq/9+a50eLhX8cV779uiX08yVVQytSv3bb7+xyMjIqsdLlixhS5curbFN\nbGwsS0pKqnrs7+/Prl69WqctHx8fBp5WdKMb3ehGtybefHx8DMV0HQZ76mFhYcjMzERWVhZ69OiB\n5ORkJCUl1dgmKioKCQkJiI6Oxu+//w53d/d6h17OnTtnaFeEEEIEYDDUxWIxEhISEBkZCZ1Oh5iY\nGAQGBiIxMREAEBsbi/HjxyM1NRVyuRxt27bFmjVrzFI4IYSQusx28REhhBDTE/y4+nPPPYeuXbui\nX7+aM/gtX74cgYGBCAoKqvcCJmtRX/0qlQqDBg1CaGgowsPDceTIEQtWaJharcaDDz6I++67D0FB\nQfj8888BAAUFBRg9ejT8/PwwZswYFBYWWrjS+jVU/4IFCxAYGIjg4GA8+uijuCnk2nACaqj+SsuW\nLYOTkxMKCgosVGHDDNVuC5/fhuq3lc9vaWkpIiIiEBISgr59++KNN94A0IzPrlEj8E2wf/9+duzY\nMRYUFFT13J49e9ioUaOYVqtljDF2/fp1oXcrmPrqHzFiBEtLS2OMMZaamsoUCoWlymtUTk4OO378\nOGOMsVu3bjE/Pz+WkZHBFixYwOLj4xljjC1dupQtXLjQkmU2qKH6f/nlF6bT6RhjjC1cuNDm6meM\nscuXL7PIyEjm7e3N8vPzLVlmvRqq3VY+vw3Vb0uf3+LiYsYYY+Xl5SwiIoIdOHDA6M+u4D314cOH\no2PHjjWeW7FiBd544w1I7l7I09mKJ7Wqr/7u3btX9QwLCwshteKVW7p164aQkBAAQLt27RAYGAiN\nRlPjIrFp06Zhy5YtliyzQfXVf+XKFYwePRpOd0/YjoiIQHZ2tqFmLKah+gHg1VdfxYcffmjJ8gxq\n6Hdn5cqVNvH5bah+W/r8ut6dtVWr1UKn06Fjx47Gf3ZN8W1z8eLFGj3dkJAQ9u6777KIiAg2YsQI\nduTIEVPsVjC168/KymIymYx5eXkxqVTKLl++bMHqmu7ixYusZ8+erKioiLm7u1c9r9frazy2VpX1\n37p1q8bzEyZMYOvXr7dQVU1Xvf4tW7aw+fPnM8aY1fbUq6v+u2Nrn1/Gav7sbenzq9PpWHBwMGvX\nrh1bsGABY4wZ/dk1S6gHBQWxefPmMcYYU6lUrHfv3qbYrWBq1z9y5Ei2efNmxhhjGzduZKNGjbJU\naU1269YtNmDAAPbjjz8yxlidX4SOHTtaoqwmu3XrFhs4cGBV/ZXef/999uijj1qoqqarXn9xcTEb\nNGgQu3nzJmOMh3peXp6FK2xY7Z+9rX1+a9dvi5/fwsJCFhERwfbs2WP0Z9csoT527FimVCqrHvv4\n+Fj1L3Xt+tu3b191X6/Xsw4dOliirCbTarVszJgx7JNPPql6zt/fn+Xk5DDGGLty5Qrz9/e3VHmN\nqq9+xhhbs2YNGzp0KLtz546FKmua2vWnp6ezLl26MG9vb+bt7c3EYjHr1asXu3btmoUrrau+n70t\nfX7rq9/WPr+V3nvvPfbRRx8Z/dk1y6zVkyZNwp49ewAAZ8+ehVarhYeHeeYcEYJcLse+ffsAAHv2\n7IGfnxUt6lsLYwwxMTHo27cv5s+fX/V8VFQU1q5dCwBYu3YtJk2aZKkSDWqo/rS0NHz00UdISUmB\ni4tp53Zvifrq79evH65du4aLFy/i4sWLkMlkOHbsGLo0NIOZhTT0s7eVz29D9dvK5zcvL6/qzJY7\nd+5g586dCA0NNf6zK/S3S3R0NOvevTtr1aoVk8lkbPXq1Uyr1bJnnnmGBQUFsQEDBrC9e/cKvVvB\nVNYvkUiq6j9y5AgbNGgQCw4OZoMHD2bHjh2zdJkNOnDgABOJRCw4OJiFhISwkJAQtn37dpafn89G\njhzJfH192ejRo9mNGzcsXWq96qs/NTWVyeVy1rNnz6rnZs+ebelS69VQ/dX17t3bKsfUG/rdsZXP\nb0M/e1v5/Kanp7PQ0FAWHBzM+vXrxz788EPGGDP6s0sXHxFCiB2x40XDCCHE8VCoE0KIHaFQJ4QQ\nO0KhTgghdoRCnRBC7AiFOiGE2BEKdUIIsSMU6oQQYkf+H/o7pBSt8CRVAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 5 + "prompt_number": 35 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "So what is this telling us? The blue gaussian is very narrow. It is saying that we believe x=5, and that we are very sure about that. In contrast, the red gaussian also believes that x=5, but we are much less sure about that. Our believe that x=5 is lower, and our belief about the likely possible values for x is spread out - we think it is quite likely that x=2 or x=8, for example. The blue gaussian has almost completely eliminated 2 or 8 as possible value - their probably is almost 0.0.\n" + "So what is this telling us? The blue gaussian is very narrow. It is saying that we believe x=23, and that we are very sure about that. In contrast, the red gaussian also believes that x=23, but we are much less sure about that. Our believe that x=23 is lower, and so our belief about the likely possible values for x is spread out - we think it is quite likely that x=2 or x=8, for example. The blue gaussian has almost completely eliminated 22 or 24 as possible value - their probably is almost 0.0, whereas the red curve considers them nearly as likely as 23.\n", + "\n", + "If we think back to the thermometer, we can consider these three curves as representing 3 thermometers. The blue curve represents a very accurate thermometer, and the red one represents a fairly inaccurate one. Green of course represents one in between the two others. Note the very powerful property the Gaussian distribution affords us - we can entirely represent both the reading and the error of a thermometer with only two numbers - the mean and the variance.\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", + "cell_type": "markdown", "metadata": {}, - "outputs": [] + "source": [ + "#### Computational Properties of the Gaussian\n", + "\n", + "Recall how our histogram filter worked. We had a vector (Python array) representing our belief at a certain moment in time. When we performed another measurement using the *sense()* function we had to multiply probabilities together, and when we performed the motion step using the *update()* function we had to shift and add probabilities. I've promised you that the Kalman filter uses essentially the same process, and that it uses Gaussians instead of histograms, so you might reasonable expect that we will be multipling, adding, and shifting Gaussians in the Kalman filter.\n", + "\n", + "A typical math book would directly launch into a multipage proof of the behavior of Gaussians under these operations, but I don't see the value in that unless you plan to do statistics. I think the math will be much more intuitive and clear if we just start developing a Kalman filter using Gaussians, and I will provide the equations for multiplying and shifting Gaussians at the appropriate time. You will then be able to develop a physical intuition for what these operations do, rather than be forced to digest a lot of fairly abstract math.\n", + "\n", + "The key point, which I will only assert for now, is that all the operations are very simple, and that they preserve the properties of the Gaussian. This is somewhat remarkable, in that the Gaussian is a nonlinear function, and typically if you multiply a nonlinear equation with itself you end up with a different equation. For example, the shape of $sin(x)sin(x)$ is very different from $sin(x)$. But the result of multiplying two Gaussians is yet another Gaussian. This is a fundamental discovery, and the key reason why Kalman filters are possible\n", + "\n", + "\n", + "#### Summary and Key Points" + ] } ], "metadata": {}