Made plots interactive

This commit is contained in:
Roger Labbe 2016-02-27 21:40:21 -08:00
parent ef67326af6
commit a647f96388
8 changed files with 72765 additions and 721 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -40,8 +40,9 @@ def plot_track_and_residuals(t, xs, z_xs, res):
plt.title('residuals')
plt.show()
def plot_markov_chain():
plt.figure(figsize=(4,4), facecolor='w')
fig = plt.figure(figsize=(4,4), facecolor='w')
ax = plt.axes((0, 0, 1, 1),
xticks=[], yticks=[], frameon=False)
#ax.set_xlim(0, 10)
@ -98,6 +99,7 @@ def plot_markov_chain():
plt.axis('equal')
plt.show()
bp.end_interactive(fig)
def turning_target(N=600, turn_start=400):

View File

@ -309,28 +309,31 @@ def test_pf2():
plt.show()
from book_plots import figsize, interactive_plot
def plot_cumsum(a):
N = len(a)
with figsize(y=2):
with interactive_plot():
N = len(a)
cmap = mpl.colors.ListedColormap([[0., .4, 1.],
[0., .8, 1.],
[1., .8, 0.],
[1., .4, 0.]]*(int(N/4) + 1))
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
cumsum = np.insert(cumsum, 0, 0)
cmap = mpl.colors.ListedColormap([[0., .4, 1.],
[0., .8, 1.],
[1., .8, 0.],
[1., .4, 0.]]*(int(N/4) + 1))
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
cumsum = np.insert(cumsum, 0, 0)
fig = plt.figure(figsize=(6,3))
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
if N > 10:
bar.set_ticks([])
plt.show()
#fig = plt.figure(figsize=(6,3))
fig=plt.gcf()
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
if N > 10:
bar.set_ticks([])
def plot_stratified_resample(a):
@ -343,23 +346,23 @@ def plot_stratified_resample(a):
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
cumsum = np.insert(cumsum, 0, 0)
fig = plt.figure(figsize=(6,3))
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
xs = np.linspace(0., 1.-1./N, N)
ax.vlines(xs, 0, 1, lw=2)
with figsize(y=2):
with interactive_plot():
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
xs = np.linspace(0., 1.-1./N, N)
ax.vlines(xs, 0, 1, lw=2)
# make N subdivisions, and chose a random position within each one
b = (random(N) + range(N)) / N
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('stratified resampling')
plt.show()
# make N subdivisions, and chose a random position within each one
b = (random(N) + range(N)) / N
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('stratified resampling')
def plot_systematic_resample(a):
@ -372,23 +375,23 @@ def plot_systematic_resample(a):
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
cumsum = np.insert(cumsum, 0, 0)
fig = plt.figure(figsize=(6,3))
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
xs = np.linspace(0., 1.-1./N, N)
ax.vlines(xs, 0, 1, lw=2)
with figsize(y=2):
with interactive_plot():
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
xs = np.linspace(0., 1.-1./N, N)
ax.vlines(xs, 0, 1, lw=2)
# make N subdivisions, and chose a random position within each one
b = (random() + np.array(range(N))) / N
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('systematic resampling')
plt.show()
# make N subdivisions, and chose a random position within each one
b = (random() + np.array(range(N))) / N
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('systematic resampling')
def plot_multinomial_resample(a):
@ -401,21 +404,21 @@ def plot_multinomial_resample(a):
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
cumsum = np.insert(cumsum, 0, 0)
fig = plt.figure(figsize=(6,3))
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
with figsize(y=2):
with interactive_plot():
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
# make N subdivisions, and chose a random position within each one
b = random(N)
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('multinomial resampling')
plt.show()
# make N subdivisions, and chose a random position within each one
b = random(N)
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('multinomial resampling')
def plot_residual_resample(a):
@ -430,25 +433,25 @@ def plot_residual_resample(a):
[1., .8, 0.],
[1., .4, 0.]]*(int(N/4) + 1))
fig = plt.figure(figsize=(6,3))
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
with figsize(y=2):
with interactive_plot():
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
drawedges=False,
spacing='proportional',
orientation='horizontal')
indexes = residual_resample(a_norm)
bins = np.bincount(indexes)
for i in range(1, N):
n = bins[i-1] # number particles in this sample
if n > 0:
b = np.linspace(cumsum[i-1], cumsum[i], n+2)[1:-1]
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('residual resampling')
plt.show()
indexes = residual_resample(a_norm)
bins = np.bincount(indexes)
for i in range(1, N):
n = bins[i-1] # number particles in this sample
if n > 0:
b = np.linspace(cumsum[i-1], cumsum[i], n+2)[1:-1]
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
bar.set_ticks([])
plt.title('residual resampling')
if __name__ == '__main__':

View File

@ -93,7 +93,7 @@ def show_four_gps():
def show_sigma_transform(with_text=False):
fig = plt.figure()
fig = plt.gcf()
ax=fig.gca()
x = np.array([0, 5])