Made plots interactive
This commit is contained in:
parent
ef67326af6
commit
a647f96388
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -40,8 +40,9 @@ def plot_track_and_residuals(t, xs, z_xs, res):
|
||||
plt.title('residuals')
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_markov_chain():
|
||||
plt.figure(figsize=(4,4), facecolor='w')
|
||||
fig = plt.figure(figsize=(4,4), facecolor='w')
|
||||
ax = plt.axes((0, 0, 1, 1),
|
||||
xticks=[], yticks=[], frameon=False)
|
||||
#ax.set_xlim(0, 10)
|
||||
@ -98,6 +99,7 @@ def plot_markov_chain():
|
||||
|
||||
plt.axis('equal')
|
||||
plt.show()
|
||||
bp.end_interactive(fig)
|
||||
|
||||
|
||||
def turning_target(N=600, turn_start=400):
|
||||
|
@ -309,28 +309,31 @@ def test_pf2():
|
||||
plt.show()
|
||||
|
||||
|
||||
from book_plots import figsize, interactive_plot
|
||||
def plot_cumsum(a):
|
||||
|
||||
N = len(a)
|
||||
with figsize(y=2):
|
||||
with interactive_plot():
|
||||
N = len(a)
|
||||
|
||||
cmap = mpl.colors.ListedColormap([[0., .4, 1.],
|
||||
[0., .8, 1.],
|
||||
[1., .8, 0.],
|
||||
[1., .4, 0.]]*(int(N/4) + 1))
|
||||
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
|
||||
cumsum = np.insert(cumsum, 0, 0)
|
||||
cmap = mpl.colors.ListedColormap([[0., .4, 1.],
|
||||
[0., .8, 1.],
|
||||
[1., .8, 0.],
|
||||
[1., .4, 0.]]*(int(N/4) + 1))
|
||||
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
|
||||
cumsum = np.insert(cumsum, 0, 0)
|
||||
|
||||
fig = plt.figure(figsize=(6,3))
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
if N > 10:
|
||||
bar.set_ticks([])
|
||||
plt.show()
|
||||
#fig = plt.figure(figsize=(6,3))
|
||||
fig=plt.gcf()
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
if N > 10:
|
||||
bar.set_ticks([])
|
||||
|
||||
|
||||
def plot_stratified_resample(a):
|
||||
@ -343,23 +346,23 @@ def plot_stratified_resample(a):
|
||||
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
|
||||
cumsum = np.insert(cumsum, 0, 0)
|
||||
|
||||
fig = plt.figure(figsize=(6,3))
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
xs = np.linspace(0., 1.-1./N, N)
|
||||
ax.vlines(xs, 0, 1, lw=2)
|
||||
with figsize(y=2):
|
||||
with interactive_plot():
|
||||
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
xs = np.linspace(0., 1.-1./N, N)
|
||||
ax.vlines(xs, 0, 1, lw=2)
|
||||
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = (random(N) + range(N)) / N
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('stratified resampling')
|
||||
plt.show()
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = (random(N) + range(N)) / N
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('stratified resampling')
|
||||
|
||||
|
||||
def plot_systematic_resample(a):
|
||||
@ -372,23 +375,23 @@ def plot_systematic_resample(a):
|
||||
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
|
||||
cumsum = np.insert(cumsum, 0, 0)
|
||||
|
||||
fig = plt.figure(figsize=(6,3))
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
xs = np.linspace(0., 1.-1./N, N)
|
||||
ax.vlines(xs, 0, 1, lw=2)
|
||||
with figsize(y=2):
|
||||
with interactive_plot():
|
||||
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
xs = np.linspace(0., 1.-1./N, N)
|
||||
ax.vlines(xs, 0, 1, lw=2)
|
||||
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = (random() + np.array(range(N))) / N
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('systematic resampling')
|
||||
plt.show()
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = (random() + np.array(range(N))) / N
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('systematic resampling')
|
||||
|
||||
|
||||
def plot_multinomial_resample(a):
|
||||
@ -401,21 +404,21 @@ def plot_multinomial_resample(a):
|
||||
cumsum = np.cumsum(np.asarray(a) / np.sum(a))
|
||||
cumsum = np.insert(cumsum, 0, 0)
|
||||
|
||||
fig = plt.figure(figsize=(6,3))
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
with figsize(y=2):
|
||||
with interactive_plot():
|
||||
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = random(N)
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('multinomial resampling')
|
||||
plt.show()
|
||||
# make N subdivisions, and chose a random position within each one
|
||||
b = random(N)
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('multinomial resampling')
|
||||
|
||||
|
||||
def plot_residual_resample(a):
|
||||
@ -430,25 +433,25 @@ def plot_residual_resample(a):
|
||||
[1., .8, 0.],
|
||||
[1., .4, 0.]]*(int(N/4) + 1))
|
||||
|
||||
fig = plt.figure(figsize=(6,3))
|
||||
ax = fig.add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
with figsize(y=2):
|
||||
with interactive_plot():
|
||||
ax = plt.gcf().add_axes([0.05, 0.475, 0.9, 0.15])
|
||||
norm = mpl.colors.BoundaryNorm(cumsum, cmap.N)
|
||||
bar = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
|
||||
norm=norm,
|
||||
drawedges=False,
|
||||
spacing='proportional',
|
||||
orientation='horizontal')
|
||||
|
||||
indexes = residual_resample(a_norm)
|
||||
bins = np.bincount(indexes)
|
||||
for i in range(1, N):
|
||||
n = bins[i-1] # number particles in this sample
|
||||
if n > 0:
|
||||
b = np.linspace(cumsum[i-1], cumsum[i], n+2)[1:-1]
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('residual resampling')
|
||||
plt.show()
|
||||
indexes = residual_resample(a_norm)
|
||||
bins = np.bincount(indexes)
|
||||
for i in range(1, N):
|
||||
n = bins[i-1] # number particles in this sample
|
||||
if n > 0:
|
||||
b = np.linspace(cumsum[i-1], cumsum[i], n+2)[1:-1]
|
||||
plt.scatter(b, [.5]*len(b), s=60, facecolor='k', edgecolor='k')
|
||||
bar.set_ticks([])
|
||||
plt.title('residual resampling')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -93,7 +93,7 @@ def show_four_gps():
|
||||
|
||||
|
||||
def show_sigma_transform(with_text=False):
|
||||
fig = plt.figure()
|
||||
fig = plt.gcf()
|
||||
ax=fig.gca()
|
||||
|
||||
x = np.array([0, 5])
|
||||
|
Loading…
Reference in New Issue
Block a user