diff --git a/README.md b/README.md index 64b5f47..8d1045b 100644 --- a/README.md +++ b/README.md @@ -50,16 +50,9 @@ This will open a browswer window showing the contents of the base directory. The This is admittedly a somewhat cumbersome interface to a book; I am following in the footsteps of several other projects that are somewhat repurposing IPython Notebook to generate entire books. I feel the slight annoyances have a huge payoff - instead of having to download a separate code base and run it in an IDE while you try to read a book, all of the code and text is in one place. If you want to alter the code, you may do so and immediately see the effects of your change. If you find a bug, you can make a fix, and push it back to my repository so that everyone in the world benefits. And, of course, you will never encounter a problem I face all the time with traditional books - the book and the code are out of sync with each other, and you are left scratching your head as to which source to trust. - - -### Version 0.0 - not ready for public consumption. In development. - -author's note: The chapter on g-h filters is fairly complete as far as planned content goes. The content for the discrete Bayesian chapter, chapter 2, is also fairly complete. After that I have questions in my mind as to the best way to present the statistics needed to understand the filters. I try to avoid the 'dump a sememster of math into 4 pages' approash of most textbooks, but then again perhaps I put things off a bit too long. In any case, the subsequent chapters are due a strong editting cycle where I decide how to best develop these concepts. Otherwise I am pretty happy with the content for the one dimensional and multidimensional Kalman filter chapters. I know the code works, I am using it in real world projects at work, but there are areas where the content about the covariance matrices is pretty bad. The implementation is fine, the description is poor. Sorry. It will be corrected. - -Beyond that the chapters are much more in a state of flux. Reader beware. My writing methodology is to just vomit out whatever is in my head, just to get material, and then go back and think through presentation, test code, refine, and so on. Whatever is checked in in these later chapters may be wrong and not ready for your use. - -Finally, nothing has been spell checked or proof read yet. I wish IPython Notebook had spell check, but it doesn't seem to. - +In Development +-------------- +This book is still very much in development. The earlier chapters have settled down a lot, but I am still adding examples to the UKF chapter, and the EKF chapter is largely unwritten. Early chapters are now pretty solid up to, say, the Kalman Filter Math chapter. Motivation ----- @@ -72,7 +65,7 @@ As I began to understand the math and theory more difficulties itself. A book or None of this necessary, from my point of view. Certainly if you are designing a Kalman filter for a aircraft or missile you must thoroughly master of all of the mathematics and topics in a typical Kalman filter textbook. I just want to track an image on a screen, or write some code for my Arduino project. I want to know how the plots in the book are made, and chose different parameters than the author chose. I want to run simulations. I want to inject more noise in the signal and see how a filter performs. There are thousands of opportunities for using Kalman filters in everyday code, and yet this fairly straightforward topic is the provence of rocket scientists and academics. -I wrote this book to address all of those needs. This is not the book for you if you program avionics for Boeing or design radars for Raytheon. Go get a degree at Georgia Tech, UW, or the like, because you'll need it. This book is for the hobbiest, the curious, and the working engineer that needs to filter or smooth data. +I wrote this book to address all of those needs. This is not the book for you if you program navigation computers for Boeing or design radars for Raytheon. Go get an advanced degree at Georgia Tech, UW, or the like, because you'll need it. This book is for the hobbiest, the curious, and the working engineer that needs to filter or smooth data. This book is interactive. While you can read it online as static content, I urge you to use it as intended. It is written using IPython Notebook, which allows me to combine text, Python, and Python output in one place. Every plot, every piece of data in this book is generated from Python that is available to you right inside the notebook. Want to double the value of a parameter? Click on the Python cell, change the parameter's value, and click 'Run'. A new plot or printed output will appear in the book. @@ -90,7 +83,7 @@ Finally, this book is free. The cost for the books required to learn Kalman filt Installation and Software Requirements ----- -** author's note**. *The book is still being written, and so I am not focusing on issues like supporting multipe versions of Python. I am staying more or less on the bleeding edge of Python 3 for the time being. If you follow my suggestion of installing Anaconda all off the versioning problems will be taken care of for you, and you will not alter or affect any existing installation of Python on your machine. I am aware that telling somebody to install a specific packaging system is not a long term solution, but I can either focus on endless regression testing for every minor code change, or work on delivering the book, and then doing one sweep through it to maximize compatibility. I opt for the latter. In the meantime I welcome bug reports if the book does not work on your platform.* +** author's note**. *The book is still being written, and so I am not focusing on issues like supporting multiple versions of Python. I am staying more or less on the bleeding edge of Python 3 for the time being. If you follow my suggestion of installing Anaconda all off the versioning problems will be taken care of for you, and you will not alter or affect any existing installation of Python on your machine. I am aware that telling somebody to install a specific packaging system is not a long term solution, but I can either focus on endless regression testing for every minor code change, or work on delivering the book, and then doing one sweep through it to maximize compatibility. I opt for the latter. In the meantime I welcome bug reports if the book does not work on your platform.* If you want to run the notebook on your computer, which is what I recommend, then you will have to have IPython installed. I do not cover how to do that in this book; requirements change based on what other Python installations you may have, whether you use a third party package like Anaconda Python, what operating system you are using, and so on.