Spelling fixes, IPython 4.0 description.
Updated instructions for IPython 4.0.
This commit is contained in:
parent
1c8792fd6c
commit
8a994c9e45
17
README.md
17
README.md
@ -72,21 +72,21 @@ This book is still very much in development.
|
||||
Motivation
|
||||
-----
|
||||
|
||||
This is a book for programmers that have a need or interest in Kalman filtering. The motivation for this book came out of my desire for a gentle introduction to Kalman filtering. I'm a software engineer that spent almost two decades in the avionics field, and so I have always been 'bumping elbows' with the Kalman filter, but never implemented one myself. As I moved into solving tracking problems with computer vision the need became urgent. There are classic textbooks in the field, such as Grewal and Andrew's excellent *Kalman Filtering*. But sitting down and trying to read many of these books is a dismal and trying experience if you do not have the background. Typcially the first few chapters fly through several years of undergraduate math, blithely referring you to textbooks on, for example, Itō calculus, and presenting an entire semester's worth of statistics in a few brief paragraphs. These books are good textbooks for an upper undergraduate course, and an invaluable reference to researchers and professionals, but the going is truly difficult for the more casual reader. Symbology is introduced without explanation, different texts use different words and variables names for the same concept, and the books are almost devoid of examples or worked problems. I often found myself able to parse the words and comprehend the mathematics of a defition, but had no idea as to what real world phenomena these words and math were attempting to describe. "But what does that *mean?*" was my repeated thought.
|
||||
This is a book for programmers that have a need or interest in Kalman filtering. The motivation for this book came out of my desire for a gentle introduction to Kalman filtering. I'm a software engineer that spent almost two decades in the avionics field, and so I have always been 'bumping elbows' with the Kalman filter, but never implemented one myself. As I moved into solving tracking problems with computer vision the need became urgent. There are classic textbooks in the field, such as Grewal and Andrew's excellent *Kalman Filtering*. But sitting down and trying to read many of these books is a dismal and trying experience if you do not have the background. Typically the first few chapters fly through several years of undergraduate math, blithely referring you to textbooks on, for example, Itō calculus, and presenting an entire semester's worth of statistics in a few brief paragraphs. These books are good textbooks for an upper undergraduate course, and an invaluable reference to researchers and professionals, but the going is truly difficult for the more casual reader. Symbology is introduced without explanation, different texts use different words and variables names for the same concept, and the books are almost devoid of examples or worked problems. I often found myself able to parse the words and comprehend the mathematics of a definition, but had no idea as to what real world phenomena these words and math were attempting to describe. "But what does that *mean?*" was my repeated thought.
|
||||
|
||||
However, as I began to finally understand the Kalman filter I realized the underlying concepts are quite straightforward. A few simple probability rules, some intuition about how we integrate disparate knowledge to explain events in our everyday life and the core concepts of the Kalman filter are accessible. Kalman filters have a reputation for difficulty, but shorn of much of the formal terminology the beauty of the subject and of their math became clear to me, and I fell in love with the topic.
|
||||
|
||||
As I began to understand the math and theory more difficulties itself. A book or paper's author makes some statement of fact and presents a graph as proof. Unfortunately, why the statement is true is not clear to me, nor is the method by which you might make that plot obvious. Or maybe I wonder "is this true if R=0?" Or the author provides pseudocode - at such a high level that the implementation is not obvious. Some books offer Matlab code, but I do not have a license to that expensive package. Finally, many books end each chapter with many useful exercises. Exercises which you need to understand if you want to implement Kalman filters for yourself, but excercises with no answers. If you are using the book in a classroom, perhaps this is okay, but it is terrible for the independent reader. I loathe that an author witholds information from me, presumably to avoid 'cheating' by the student in the classroom.
|
||||
As I began to understand the math and theory more difficulties itself. A book or paper's author makes some statement of fact and presents a graph as proof. Unfortunately, why the statement is true is not clear to me, nor is the method for making that plot obvious. Or maybe I wonder "is this true if R=0?" Or the author provides pseudocode - at such a high level that the implementation is not obvious. Some books offer Matlab code, but I do not have a license to that expensive package. Finally, many books end each chapter with many useful exercises. Exercises which you need to understand if you want to implement Kalman filters for yourself, but exercises with no answers. If you are using the book in a classroom, perhaps this is okay, but it is terrible for the independent reader. I loathe that an author withholds information from me, presumably to avoid 'cheating' by the student in the classroom.
|
||||
|
||||
None of this necessary, from my point of view. Certainly if you are designing a Kalman filter for a aircraft or missile you must thoroughly master of all of the mathematics and topics in a typical Kalman filter textbook. I just want to track an image on a screen, or write some code for my Arduino project. I want to know how the plots in the book are made, and chose different parameters than the author chose. I want to run simulations. I want to inject more noise in the signal and see how a filter performs. There are thousands of opportunities for using Kalman filters in everyday code, and yet this fairly straightforward topic is the provence of rocket scientists and academics.
|
||||
None of this necessary, from my point of view. Certainly if you are designing a Kalman filter for a aircraft or missile you must thoroughly master of all of the mathematics and topics in a typical Kalman filter textbook. I just want to track an image on a screen, or write some code for my Arduino project. I want to know how the plots in the book are made, and chose different parameters than the author chose. I want to run simulations. I want to inject more noise in the signal and see how a filter performs. There are thousands of opportunities for using Kalman filters in everyday code, and yet this fairly straightforward topic is the provenance of rocket scientists and academics.
|
||||
|
||||
I wrote this book to address all of those needs. This is not the book for you if you program navigation computers for Boeing or design radars for Raytheon. Go get an advanced degree at Georgia Tech, UW, or the like, because you'll need it. This book is for the hobbiest, the curious, and the working engineer that needs to filter or smooth data.
|
||||
|
||||
This book is interactive. While you can read it online as static content, I urge you to use it as intended. It is written using IPython Notebook, which allows me to combine text, Python, and Python output in one place. Every plot, every piece of data in this book is generated from Python that is available to you right inside the notebook. Want to double the value of a parameter? Click on the Python cell, change the parameter's value, and click 'Run'. A new plot or printed output will appear in the book.
|
||||
This book is interactive. While you can read it online as static content, I urge you to use it as intended. It is written using Jupyter Notebook, which allows me to combine text, Python, and Python output in one place. Every plot, every piece of data in this book is generated from Python that is available to you right inside the notebook. Want to double the value of a parameter? Click on the Python cell, change the parameter's value, and click 'Run'. A new plot or printed output will appear in the book.
|
||||
|
||||
This book has exercises, but it also has the answers. I trust you. If you just need an answer, go ahead and read the answer. If you want to internalize this knowledge, try to implement the exercise before you read the answer.
|
||||
|
||||
This book has supporting libraries for computing statistics, plotting various things related to filters, and for the various filters that we cover. This does require a strong caveat; most of the code is written for didactic purposes. It is rare that I chose the most efficient solution (which often obscures the intent of the code), and in the first parts of the book I did not concern myself with numerical stability. This is important to understand - Kalman filters in aircraft are carefully designed and implemented to be numerically stable; the naive implemention is not stable in many cases. If you are serious about Kalman filters this book will not be the last book you need. My intention is to introduce you to the concepts and mathematics, and to get you to the point where the textbooks are approachable.
|
||||
This book has supporting libraries for computing statistics, plotting various things related to filters, and for the various filters that we cover. This does require a strong caveat; most of the code is written for didactic purposes. It is rare that I chose the most efficient solution (which often obscures the intent of the code), and in the first parts of the book I did not concern myself with numerical stability. This is important to understand - Kalman filters in aircraft are carefully designed and implemented to be numerically stable; the naive implementation is not stable in many cases. If you are serious about Kalman filters this book will not be the last book you need. My intention is to introduce you to the concepts and mathematics, and to get you to the point where the textbooks are approachable.
|
||||
|
||||
Finally, this book is free. The cost for the books required to learn Kalman filtering is somewhat prohibitive even for a Silicon Valley engineer like myself; I cannot believe the are within the reach of someone in a depressed economy, or a financially struggling student. I have gained so much from free software like Python, and free books like those from Allen B. Downey [here](http://www.greenteapress.com/). It's time to repay that. So, the book is free, it is hosted on free servers, and it uses only free and open software such as IPython and mathjax to create the book.
|
||||
|
||||
@ -94,21 +94,20 @@ Finally, this book is free. The cost for the books required to learn Kalman filt
|
||||
Installation and Software Requirements
|
||||
-----
|
||||
|
||||
**author's note**. *The book is still being written, and so I am not focusing on issues like supporting multiple versions of Python. I am staying more or less on the bleeding edge of Python 3 for the time being. If you follow my suggestion of installing Anaconda all off the versioning problems will be taken care of for you, and you will not alter or affect any existing installation of Python on your machine. I am aware that telling somebody to install a specific packaging system is not a long term solution, but I can either focus on endless regression testing for every minor code change, or work on delivering the book, and then doing one sweep through it to maximize compatibility. I opt for the latter. In the meantime I welcome bug reports if the book does not work on your platform.*
|
||||
**author's note**. *The book is still being written, and so I am not focusing on issues like supporting multiple versions of Python. I am staying more or less on the bleeding edge of Python 3 for the time being. If you follow my suggestion of installing Anaconda the versioning problems will be taken care of for you, and you will not alter or affect any existing installation of Python on your machine. I am aware that telling somebody to install a specific packaging system is not a long term solution, but I can either focus on endless regression testing for every minor code change, or work on delivering the book, and then doing one sweep through it to maximize compatibility. I opt for the latter. In the meantime I welcome bug reports if the book does not work on your platform.*
|
||||
|
||||
If you want to run the notebook on your computer, which is what I recommend, then you will have to have IPython installed. I do not cover how to do that in this book; requirements change based on what other Python installations you may have, whether you use a third party package like Anaconda Python, what operating system you are using, and so on.
|
||||
|
||||
To use all features you will have to have IPython 3.0 or later installed, which is released and stable as of April 2014. Most of the book does not require that recent of a version, but I do make use of the interactive plotting widgets introduced in this release. A few cells will not run if you have an older version installed. This is merely a minor annoyance.
|
||||
To use all features you will have to have IPython 3.0 or later installed, which is released and stable as of April 2014. Most of the book does not require that recent of a version, but I do make use of the interactive plotting widgets introduced in this release. A few cells will not run if you have an older version installed. This is merely a minor annoyance. If you have IPython 4.0 or later installed then you will need to install the notebook separately. As of version 4.0 the notebook was split into a standalone project called Jupyter. If your distribution does not include Jupyter issuing *pip install jupyter* from the command line should install it. As of August 2015 the instructions and documentation for Jupyter is sparse; if you have customized your IPython environment you may have some searching to do to set up your environment for 4.0. I am not prepared to support your 4.0 install as I am focusing on writing the book, though of course if you encounter a bug either I or the Jupyter team would love to hear about it (depending on whose code has the bug, of course!)
|
||||
|
||||
You will need Python 2.7 or later installed. Almost all of my work is done in Python 3.4, but I periodically test on 2.7. I do not promise any specific check in will work in 2.7 however. I do use Python's "from \_\_future\_\_ import ..." statement to help with compatibility. For example, all prints need to use parenthesis. If you try to add, say, "print 3.14" into the book your script will fail; you must write "print (3.4)" as in Python 3.X.
|
||||
|
||||
You will need a recent version of NumPy, SciPy, SymPy, and Matplotlib installed. I don't really know what the minimal version might be. I have numpy 1.71, SciPy 0.13.0, and Matplotlib 1.4.0 installed on my machines.
|
||||
|
||||
Personally, I use the Anaconda Python distribution in all of my work, [available here](https://store.continuum.io/cshop/anaconda/). I am not selecting them out of favoritism, I am merely documenting my environment. Should you have trouble running any of the code, perhaps knowing this will help you.
|
||||
Personally, I use the Anaconda Python distribution in all of my work, [available here](https://store.continuum.io/cshop/anaconda/). I am not selecting them out of favoritism, I am merely documenting my environment. Should you have trouble running any of the code, perhaps knowing this will help you. Especially if you are in Windows, installing the entire stack above can be difficult if you do not use a distribution like Anaconda.
|
||||
|
||||
Finally, you will need to install FilterPy, described in the next section.
|
||||
|
||||
|
||||
Installation of all of these packages is described in the Installation appendix, which you can read online [here](http://nbviewer.ipython.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/Appendix_A_Installation.ipynb).
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user