From 752bf9687ebe6d1818813dc8077f96213002ca08 Mon Sep 17 00:00:00 2001 From: Roger Labbe Date: Sun, 17 Jan 2016 08:16:36 -0800 Subject: [PATCH] Updated Table of Contents Removed the Appendixes that I deleted, and added all of the supporting notebook. --- .../Computing_and_plotting_PDFs.ipynb | 350 +++++++++-- ...tive-Least-Squares-for-Sensor-Fusion.ipynb | 17 +- .../Linearizing-with-Taylor-Series.ipynb | 92 --- Supporting_Notebooks/Taylor-Series.ipynb | 351 +++++++++++ table_of_contents.ipynb | 593 +++++++++++++----- 5 files changed, 1095 insertions(+), 308 deletions(-) delete mode 100644 Supporting_Notebooks/Linearizing-with-Taylor-Series.ipynb create mode 100644 Supporting_Notebooks/Taylor-Series.ipynb diff --git a/Supporting_Notebooks/Computing_and_plotting_PDFs.ipynb b/Supporting_Notebooks/Computing_and_plotting_PDFs.ipynb index 442b181..e366c0b 100644 --- a/Supporting_Notebooks/Computing_and_plotting_PDFs.ipynb +++ b/Supporting_Notebooks/Computing_and_plotting_PDFs.ipynb @@ -1,5 +1,266 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#format the book\n", + "%matplotlib inline\n", + "from __future__ import division, print_function\n", + "import sys;sys.path.insert(0,'..')\n", + "from book_format import load_style;load_style('..')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -19,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -29,8 +290,8 @@ "output_type": "stream", "text": [ "50000\n", - "3.00043200502\n", - "2.01072423406\n" + "2.99685400941\n", + "1.99912142836\n" ] } ], @@ -38,7 +299,6 @@ "import numpy as np\n", "import numpy.random as random\n", "\n", - "\n", "mean = 3\n", "std = 2\n", "\n", @@ -59,16 +319,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGQ1JREFUeJzt3XmQXXWZxvFvdzqdkIVAFraQhYgSAooEDFEWm7AkwTEs\nonEdXAYpHa2aGRwxs0hXSdVYWFM15Vgzo6Il1KjBkS2yBBKghQECBklAhgABAiQEEhL2GTVI5o/3\nNLnd6Zu7nXve857zfKpu9XLv6fvQ3H5z7nt+C4iIiIiIiIiIiIiIiIiIiIiIiIiISIoWAOuAx4GL\nhrj/U8Ba4EHgLuA9DRwrIiI5MAxYD0wHhgNrgMMHPeb9wLjk8wXAqgaOFRGRDHTWuH8OVrA3ADuA\npcCZgx5zD/BK8vm9wMENHCsiIhmoVewnA89WfL0x+V41XwBubPJYERFpk64a9+9s4GedDHweOL6J\nY0VEpI1qFftNwJSKr6dgZ+iDvQf4Idazf6nBY/WPgohIczrS+kFdwBPYRdZuhr7IOhXrzc9t4lhQ\nsU9br3eAJnwM2AL8IzCh4vsjgE8Dm4Fvk+ILuwG9Ds9ZVL3eAQom9dq5EHgUK+hLku9dkNwALgO2\nAQ8kt/tqHDuYin26er0DNOiz2Du+o/fwmAnYQIAfYKO8stSb8fMVWa93gIIJVzvDBc65Xu8ADTgH\na/fNrOOxY4E7gEvbmmh3vRk/X5H1egcomHC1M1zgnOvxDlCnQ4GtwDENHDMBG8p7bjsCVdGT4XMV\nXY93gIIJVzvDBZaWdQP3A19p4thjsH8kpqWaSCSecLUzXGBp2RLgBpq/4PoPwK9aOF6kCMLVznCB\npSXTsQv6h7TwM7qBh8m2nSOSN+FqZ7jA0pKrsSGWrToReBoYmcLPEokoXO0MF1iaNgdbQiOtAr0M\n+KuUfpZINOFqZ7jA0rSb2TU/Iw3vBl4A9k7xZ4pEEa52hgssTTkReBLrt6fpP4G/T/lnikQQrnaG\nCyxNuQlbFTVtRwLPo969lE+42hkusDTsCGx9mxFt+vnXA19s088WyatwtTNcYGnYZdjY+HY5CXiM\n7NfNEfEUrnaGCywN2Q/YzsDVLNPWAawGzmjjc4jkTbjaGS6wNOQb2Jl9u30Bm1UrUhbhame4wFK3\nTmxPg/dl8FyjsZm5WjNHyqKh2llrD1qRVpyKbUa/OoPnegMbhqkLtSI5pTP74rqKdCdR1TILeI7a\n222KFEG42hkusNRlIvAy2c9uvQ/bC1mk6NTGkVxYDNwIvJrx814OnJfxc4pIHXRmX0z34nOGPQG7\nTrCPw3OLZClc7QwXWGo6DJsx69U7/yVwvtNzi2RFbRxx92ng58CbTs//M+DjTs8tIlXozL5YOrCl\nC7IYW1/NXsBLwIGOGUTaTWf24uoorH2Txdj6av4PWxxN2xaKJFTsJW2LgV/g/45taZJFRHLCuyhI\nejqw5RFmewfBNknZBkzxDiLSJmrjiJujsRfgA95BgD8CNwCLvIOI5IGKvaTpLOAa8vNu7TrgTO8Q\nImLyUhikdWuAE7xDVBgDvIYmWEkxhaud4QLLkKYBW8nfblHXA5/wDiHSBurZi4tFWI/8T95BBlEr\nRyQndGZfDCuAs71DDOEAbIJVuzY7F/ESrnaGCyy7GYetbjnGO0gVdwPzvUOIpExtHMncQuBO4HXv\nIFWolSOSAzqzj+9n5Hs7wJnARmzSl0hRhKud4QLLAMOB7cBB3kFqWAcc6x1CJEVq40imTgLWY3u/\n5tl1aDatlJiKvbTqw8Ay7xB1uAntTSviSm2c2NYBx3iHqEM3tl3hRO8gIikJVzvDBZa3TQe2EOcd\n4rVoNq0Uh3r2kpn5wC3AW95B6nQzauWIuNGZfVxXA5/xDtGAGcDz6CRHiiFc7QwXWAAbcvkSsL93\nkAY9iq27LxKd2jiSieOAp4AXvIM0aDlaOkFKSMVemjUf64FHo769iBO1cWL6DdDjHaIJo7ENTfb2\nDiLSonC1M1xgYSI2Zr3bO0iTbsG2UBSJTD17abvTgD5sU++IlqNWjshuFmCzJB8HLhri/pnAPcDv\ngQsH3bcBeBB4ALivys/XmX08PwG+7B2iBUdgF5dFIku1dg7DFrmajg21WwMcPugxk7DVBC9h92L/\nFDC+xnOo2MfSgS169g7vIC3o/2+Y4R1EpAWptnHmYMV+A7ADWMrum0BsBVYn9w9Fa4gXy0zgD8AT\n3kFasBO4DTjFO4hIVmoV+8nAsxVfb0y+V6+dwErsH4PzG4smOdWD9eujuxU41TuESFa6atzfaovl\neGAz1upZgfX+7xzicb0Vn/dRjGJSVCcD13uHSMGtwKXYCU+UtX2k3Hpo43DnudjIhX5LGPoiLcDF\n7N6zr+d+9ezj6MBWuZzqHSQljwFHeYcQaVKqPfvVwDuxC7TdwGKqb1QxuDc/ChibfD4aOB14qJFw\nkjuzsAlJz3gHScmtqG8v8raF2OJR67Eze4ALkhvAAVhf/xVsYaxngDHYSIc1ye13FccOpjP7OL4C\nXOYdIkXnAjd4hxBpUrjaGS5wiV0FfMo7RIomYCcpw72DiDQhXO0MF7ikOoEXaWw0VgS/BU7wDiHS\nBC2XIG1xJLAd2OQdJGUrUd9eSkDFXup1MnC7d4g20EVakYyojRNDUTfrHg28nnwUiSRc7QwXuIQ6\nsRbOgd5B2uTXaBVMiUc9e0ndUdj2g5u9g7RJH/BB7xAi7aRiL/U4mWIvYdFHzF23REJRGyf/lgEf\n8w7RRnthffsx3kFEGhCudoYLXDLDsJnR+3kHabM+bBN1kSjUs5dUHY1t9LHFO0ib9aFWjhSYir3U\n0kMxx9cP1oddmxCRNlEbJ99uAD7iHSIDI7G+/dhaDxTJiXC1M1zgEunCFgqb6B0kI31ovL3EoZ69\npGY28DS2AFoZ9KG+vRSUir3sSVHXw6mmDxV7kbZRGye/lgNne4fIkPr2Ekm42hkucEkMB14FxnsH\nyVgf6ttLDOrZSyqOBZ7AFkArkz7UypECUrGXaoq+Hk41t6NiL9IWauPk0y3AIu8QDkYCr6G+veRf\nuNoZLnAJdGMFbx/vIE5uR317yT/17KVlc4DHgJe9gzjpQ60cKRgVexlKD+UaXz9YH1onRyR1auPk\nz63Ah7xDOOofb7+3dxCRPQhXO8MFLrgRWL9+nHcQZ7cDC71DiOyBevbSkuOAR7AF0MqsD/XtpUBU\n7GWwsq2HU00fKvYiqVIbJ1/6UPsC1LeX/AtXO8MFLrD+jbc1ocioby95pp69NG0u8BB2gVa0dIIU\niIq9VCrrejjV9KFiL5IatXHy407gdO8QOTIC9e0lv8LVznCBC2oUVthGewfJmdso9wQzyS/17KUp\nHwDWAm94B8kZ9e2lEFTspZ/G1w+tD62TI5IKtXHy4S7gFO8QOdS/fERZl3uW/ApXO8MFLqAxWL9+\nlHeQnFoBfNg7hMgg6tlLw44Hfgv8r3eQnOpDrRwJTsVeQOvX16KLtCIpUBvH3yp05ronw4FXgfHe\nQUQqhKud4QIXzFisXz/SO0jO3Qyc5R1CpIJ69tKQE4DfAL/3DpJzauVIaCr2ovVw6nM7anWJtERt\nHF+/AU7yDhHAcGz3roneQUQS4WpnuMAFMg6bMDTCO0gQNwLneIcQSahnL3U7EbgX+IN3kCD6UCtH\nglKxL7d5qF/fCPXtpdAWAOuAx4GLhrh/JnAPNprjwgaPBbVxPK0B3u8dIpAu4GVgP+8gIqRcO4cB\n64Hp2AWqNcDhgx4zCTgWuISBxb6eY1MPLHWbiF1w7PIOEsz1wEe9Q4iQcs9+DlawNwA7gKXAmYMe\nsxVYndzf6LHipwfbmepN5xzRqJUjIdUq9pOBZyu+3ph8rx6tHCvtdwq2C5M0RpOrJKRab+FbabE0\ncmxvxed96KJhFuYB3/cOEdBa4EDgAOB55yxSLj20cKJRq9hvAqZUfD0FO0OvRyPH9tb5MyUdBwMT\ngAe9gwT0J+AO7I9uqW8UKZk+Bp4IX9zIwbXaOKuBd2IXWbuBxcCyKo/taOFYydY8rB3xlneQoNTK\nkUJaCDyKXWxdknzvguQG9nb2WWxkx0vAM9jOR9WOHUyjcbL3E+BL3iECey/2uhbxFK52hgscXAf2\nD/Jh3kEC6wS2AQd5B5FS03IJskeHYv/fH/MOEthbwK9RK0cCUbEvn3nYkEu9o2pNHxpvL9IQFZ1s\nXQl81jtEARwBPOkdQkotXO0MFziwTmALMNU7SAF0AJuBGd5BpLTUs5eqjsRGTT3jHaQAdgIrgVO9\ng4jUQ8W+XPr79ZKOlcBp3iFEolAbJzvLsMltko7J2BDMYd5BpJTC1c5wgYPSWuzt8T/AMd4hpJTU\ns5chHYP16rd4BykY9e0lBBX78tCSxu2hYi9SJ7VxstEHnOEdooDGAa8Be3kHkdIJVzvDBQ5oLFaQ\nRnsHKai70Nm9ZE89e9lND3Af8IZzjqJSK0dyT8W+HOYDt3iHKDAVe5E6qI3Tfo8BR3uHKLBubGby\nRO8gUirhame4wMEcAryA3sW123XAJ7xDSKmoZy8DnA6sQFsQtttyYIF3CJE805l9e10FfMY7RAnM\nAJ5HJ1CSnXC1M1zgQLqwfYEP9A5SEo+iayOSHbVx5G1zsCUSNnsHKYmbUCtHckrFvtjmAzd7hyiR\n5cBC7xAieaU2TvusQuO/s7QXNlN5nHcQKYVwtTNc4CAmYWO/R3gHKZnlwDneIaQU1LMXwHrHtwF/\n8A5SMhqCKVKFzuzbYynwF94hSmgmdlG8wzuIFF642hkucADDsSGXB3kHKaEO4ClglncQKTy1cYQP\nAE8Cz3kHKaGdWCtHewdIrqjYF9OHgBu8Q5TYr4APe4cQyRu1cdL3MDahSnyMxEZCTfAOIoUWrnaG\nC5xzWuUyH65BaxJJe6lnX3IfAm5Eq1x6W4ZaOSID6Mw+XTcB53qHEPYDXkaT2qR9wtXOcIFzbDTw\nKpqunxd3Y/sJiLSD2jgldjq2sfgr3kEEUCtHZACd2afnCuDL3iHkbbOAp9FsWmmPcLUzXOCc6ga2\nA5O9g8jbOoAngKO8g0ghqY1TUj3YTkmbnHPILjtRK0dyQsW+OM4GrvYOIbtZBpzlHUIkD9TGad0w\nbOvBQ72DyG66gC3YZDeRNKmNU0Jzga3Aeu8gsps3sdm0mvsgrlTsi+Ec1MLJs18CH/UOIeJNbZzW\ndGDLGWvER351Ye+8pnkHkUJRG6dkjsL+pz/oHUSqehO4FrVyxJGKfXwfwXrCeoeUb2rlSOmpSDWv\nA3gcONY7iNQ0HHgRmOodRApDbZwSORb7H36/dxCpaQdwHfZOTCRzKvaxfRL4GXp3FIVaOZJrC4B1\nWLvgoiqP+W5y/1rg6Irvb8AuHD6ArcY4FBWq5vRPpDrMO4jUrRvYhlo5ko5Ua+cwbKLOdKznuAY4\nfNBjzsB2RgI4DlhVcd9TwPgaz6Fi35xTgNXeIaRh3weWeIeQQki1Zz8HK/YbsJ7jUuDMQY9ZBFye\nfH4vsA+wf8X9Wt61PfpbOBLLFdjetPq7kEzVKvaTgWcrvt7I7kvo7ukxO4GV2Bno+c3HlEFGYguf\nXekdRBp2N7ZV4THeQaRcumrcX+/bhGpnKScAzwGTgBVY7//OIR7XW/F5X3KT6hZi10e0nHE8O7Gz\n+z9HbThpTE9ya4u5wPKKr5ew+0Xa/wA+XvH1Oga2cfpdDFw4xPfVs2/cf6F3SpHNwFbC7PYOIqGl\nWju7sJ12pmMvzFoXaOey6wLtKGBs8vlo4C6G3nxZxb4x44GXqX3hW/Ltv7HrXSLNSr12LsR2QFrP\nrlEEFyS3ft9L7l8LzE6+NwP7x2EN8Duqj0BQsW/MV9GF2SL4IjbuXqRZ4WpnuMCOOrB5C/O8g0jL\n9gVeST6KNCNc7QwX2FH/UFjNfC6GXwBf8g4hYYWrneECO/oBmpBTJPOx2eUacy/NCFc7wwV2MgbY\nDhzoHURS04m9U5vrHURC0qqXBbUYuANbD0eK4S1s6PKXvYOIZEFn9vW5B/gz7xCSugnYUNoJ3kEk\nnHC1M1xgB+/GlqGoNeNZYroc+Jp3CAknXO0MF9jBD4FveoeQtpmLRllJ48LVznCBMzYJeCn5KMXU\ngY3Kme8dREIJVzvDBc7YN7Ehl1Js52PbForUK1ztDBc4QyOB54FZ3kGk7UZji6O9yzuIhBGudoYL\nnKHPATd5h5DM9GLXZ0TqEa52hguckQ7gIeA07yCSmYnYxLmDvINICOFqZ7jAGTkNK/aaSl8u/wJc\n6h1CQghXO8MFzsgKrI0j5TIV2IZWw5TawtXOcIEzcBLwJDDcO4i4uBz4O+8Qknvhame4wBm4Hfis\ndwhxcwQ2Cmsv7yCSa+FqZ7jAbTYPeBwtjVB21zD0ns0i/cLVznCB26gD25v0095BxN0sbNz9Pt5B\nJLfC1c5wgdvodGAdMMw7iOTCZcA/eYeQ3ApXO8MFbpMOYBXwce8gkhsHYyNzJnsHkVwKVzvDBW6T\njwJr0Vm9DPRtNKtWhhaudoYL3AYjgaeAk72DSO7sC2wFDvcOIrkTrnaGC9wG3wCu9Q4huXUhcAOa\nTS0Dhaud4QKnbCrwInCodxDJrW7gEeBM7yCSK+FqZ7jAKbsGuNg7hOTePGADMMo5h+RHuNoZLnCK\nFgGPYT17kVp+CnzHO4TkRrjaGS5wSvbFNhHvcc4hcUzCllE4zjuI5EK42hkucEouB/7VO4SEsxh4\nGK2bIwFrZ7jAKTgXWI9tRSfSiA7gSuC73kHEXbjaGS5wi6Zha568zzuIhLUv8AxwhncQcRWudoYL\n3IJu4G7g695BJLyTsP79VO8g4iZc7QwXuAXfA64DOr2DSCF8HbgXGOEdRFyEq53hAjfp89gwy3He\nQaQwOoCrgJ+g2bVlFK52hgvchFOBF4CZ3kGkcEYD9wNLvINI5sLVznCBG/Re7ILsB72DSGEdBDyN\ntrIsm3C1M1zgBswENmNDLUXaqf+1do53EMlMuNoZLnCdZmEzZM/zDiKlMRsbofMp7yCSiXC1M1zg\nOszGzrK0l6xkbRbwLPAV7yDSduFqZ7jANZyBbTaht9PiZTrwOPBNNEqnyMLVznCBq+jERkRsBt7v\nnEXkAGA18Atgb+cs0h7hame4wEPYH7gZuBPbJFokD0YC/4bN7zjKOYukL1ztDBd4kAXAJuASoMs5\ni8hQPoG1Fv8avUaLJFztDBc4MQ24GngCmzQlkmfvBG4F1qA2Y1GEq53RAu+NXfjalnzULlMSRQfw\nSeA54MfAIb5xpEXRameYwBOBb2Gbg/8U/aFIXOOwtuM2bF2dd7mmkWZFqZ1vy3PgDuBE4EfAduD7\nwDtcE4mkZ1/s3elW4CZspne3ayJpROq1cwGwDhu3e1GVx3w3uX8tcHSDx+at2Hdie3x+C+vHPwx8\nDRvKJlJEo7AJgLdh6zj9OzZfRC3KfEu1dg7Dts+bDgzHLu4cPugxZwA3Jp8fB6xq4NjUAzehEzgS\n+CJwBfZifxi4FNtNKtqklB7vAAXT4x0gYzOAvwXuAF4BliVff4DW183vafF4Gaih2llrGNYcrGBv\nSL5eCpwJPFLxmEXY5tlgGynsg50FH1LHsVkajo2Bn4YtGnVkcnsv9jb2buAu7G3tBp+IqegB+pwz\nFEkP5fp9Pgl8J7lNwEaaHY9tvHMY9k79IeBB7G/56eT2Rh0/u4dy/S5zpVaxn4yts9FvI3b2Xusx\nk7FlV2sd24wubA3vMcnHys/HYxdSJyQfJ7KrwO+HzW59GngU+B1wDfai3ZpCLpGi2YZtbn5l8vUY\n7ATp3cltPva3NQ14Dfvb2oj9Pb2Y3LYCLwGvYzVhZvL5G8nHHdn8p0itYl/v24RWWx33Y2feXcnH\nPX3egb1Q+l8sb1TctrPrRfYI9mLdiG3OvAl4s8WcImX2OtamXTXo+53YydR07ERvIjAJ2x93NnYS\nNhob6/9Bdp2gjcH+nndU3P446Ov+25tYPRrq9tYe7qt2f6vy8jPqVqvYbwKmVHw9BSuee3rMwclj\nhtdxbL/ZNZMONDa5ydAu9g5QMPp9pufAIb43Au2j664LG5EyHRuSVesC7Vx2/atfz7EiIpITC7Ee\n93p27XN5QXLr973k/rUMPEsf6lgRERERESmqXqyf/0ByW+CaJqZ6JrBJ/TZgI7UeAO7zjRLSj4EX\nsGGa/cYDK7All2/BhmlLfYb6ffYSsG5eDPyNd4jA6p3AJvV7CitO0pwTsdn0lcXpUuDryecXAd/O\nOlRgQ/0+G6qbnWknakG0map5Ujn5bQe7JrBJa/SabN6d2Pj6SpUTMC8Hzso0UWxD/T6hgddonor9\nV7ELvD9Cb+8aVW1imzRvJ7AS29rvfOcsRbE/1oog+bi/Y5aiqLtuZlnsV2BvQQbfFmELLx2CLV2w\nGfjnDHMVgff6QkV0PPa2eSHwl9jbaElPWpObyqyhupnlFmWn1fm4y4BftTNIAdUz+U0aszn5uBVb\nVmMO9lZamvcCtm7W89jkqi2+ccKr/P3VrJt5aeNUzqo7m4EXIaS21dhU9OnYBLbF2GqF0pxR7Jqh\nPRo4Hb0m07AMOC/5/DzgWscsRRCybl6BDXNbi70A1MtrnCawpecQbETTGmzBPP0+G/dzbPvDP2LX\nkz6HjW5aiYZeNmPw7/PzqG6KiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFT3/9pdDcltiJd4AAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1WW+B/DPFxRlUXJfIDUNtVdjpuJ6tVQQkUWracxs\n0lLLqayu03XUsmZvsdvcvDo6OelkXU0TcyNlWMqLCirkVo1rqYlecUPcF+C5f4BP5yDIAc45z++c\n83m/Xr78PYff4Xw4Ih9+z28TpRSIiIisws90ACIiIlssJiIishQWExERWQqLiYiILIXFRERElsJi\nIiIiS3GomEQkVkT2ish+EZlawcdHi8iusj+bROQ+R59LRERkS6o6j0lE/ADsBxAF4DiAHACjlFJ7\nbdbpA2CPUqpQRGIB/E4p1ceR5xIREdlyZIupF4ADSqkjSqkbAJYCGGG7glJqi1KqsGy4BUCYo88l\nIiKy5UgxhQE4ajPOw0/FU5EJANbX8LlEROTj6jjzk4nIIABPA+hfnecVFhbyukhERF4sNDRUHF3X\nkWI6BqCNzTi87DE7ZQc8zAcQq5QqqM5ziYiIbnJkKi8HwN0i0lZEAgCMArDGdgURaQNgBYAnlVLf\nV+e5REREtqrcYlJKFYvIJACpKC2yBUqpPSIysfTDaj6A1wE0BjBXRATADaVUr8qee7vXCw0NreWX\nRI7Kzc0FAERGRhpOUjM3btzAE088geXLl+vH2rRpg/feew/Dhw9HQEAAAODSpUtYsGABfve736Gg\noECv+/rrr+MPf/iDWzN7+nvuqfi+m1FYWFj1ShWo8nBxd7Ddx8Rich9P/s+qlMKvfvUrzJ8/Xz82\natQofPjhhwgODq7wOSdOnMDw4cORk5OjH5s3bx5+9atfuTzvTZ78nnsyvu9m2BZTdfYx8coP5JFm\nz55tV0ovvvgiFi9eXGkpAUDLli2xYcMGDBs2TD/2wgsvYP369ZU+h4jcj8VEHic7OxuTJ0/W49Gj\nR2PWrFnw86v62zkoKAjLly/XvzmXlJRgzJgxOHHihMvyElH1sJjIo1y6dAljxoxBSUkJAKB3795Y\nsGABSndtOiY4OBjJyckICys9pe706dN4+umnYYVpbSJiMZGHmTZtGg4ePAgAaNiwIT777DPUr1+/\n2p+nRYsW+Pjjj3WhpaSk4IMPPnBqViKqGRYTeYytW7dizpw5ejxr1iy0adPmNs+4vcGDB+OVV17R\n4+nTp+PUqVO1ykhEtcdiIo9QUlKCl19+WY8TEhIwduzYWn/eP/7xj+jQoQMA4Ny5c3j11Vdr/TmJ\nqHZYTOQRFi9ejK1btwIAAgICMGvWrGrtV6pM/fr1MWvWLD1esGCB3eHkROR+LCayvCtXrmDatGl6\n/Morr6B9+/ZO+/zx8fFITEwEUHp+FLeaiMxiMZHlffDBBzh+/DiA0nORpk+f7vTX+M///E/4+/sD\nANLT07FhwwanvwYROYbFRJZ2+fJlvP3223r82muvoUGDBk5/nY4dO9rts5oxYwYPHycyhMVEljZv\n3jzk5+cDAMLDwzFhwgSXvdYbb7yBunXrAgA2b96M1NRUl70WEVWOxUSWdfXqVbz77rt6/Oqrr9bo\nnCVHtW3bFs8++6wez5w502WvRUSVYzGRZS1evFhvLYWFhWHcuHEuf80pU6bofU1ffvklvv76a5e/\nJhHZYzGRJZWUlOC9997T45dffhn16tVz+eu2bdsWjz32mB7bbrERkXuwmMiSUlJSsGdP6a27GjRo\nYDfF5mpTpkzRy8uXL8ehQ4fc9tpExGIii/rLX/6ilydMmODW+3Tdf//9iImJAVC65TZv3jy3vTYR\nsZjIgvbt24eMjAwAgJ+fn92liNzlpZde0ssLFizAlStX3J6ByFexmMhy/va3v+nlhIQEtG3b1u0Z\nYmNj0a5dOwDA2bNnsWzZMrdnIPJVLCaylMuXL+Ojjz7S4+eee85IDn9/f7vX/utf/2okB5EvYjGR\npSxbtgznzp0DALRv317v6zFh3Lhx+kjA3NxcHjpO5CYsJrKUv//973p54sSJDt0u3VWaNm2KkSNH\n6vHChQuNZSHyJSwmsoy9e/ciOzsbAFCnTh08/fTThhMB48eP18tLlizhQRBEbsBiIsuw3beUmJiI\nZs2amQtT5oEHHrC7keCqVasMJyLyfiwmsoTi4mJ88sknemyFrSUAEBG7LAsWLDCYhsg3sJjIElJT\nU/U9l5o3b47Y2FjDiX4yduxYva8rIyMDR48eNZyIyLuxmMgSFi1apJeffPJJffsJKwgPD0dUVJQe\n85wmItdiMZFxFy5cwJo1a/TY9oZ9VvH444/r5U8//dRgEiLvx2Ii41atWqWPduvSpQu6dOliONGt\nHn74YQQEBAAAtm/fjv379xtOROS9WExk3OLFi/Xy6NGjDSap3B133IG4uDg95lYTkeuwmMio/Px8\npKen67HtlJnVlJ/OU0oZTEPkvVhMZNTy5ctRXFwMABgwYICRC7Y6KiEhASEhIQBKr4C+c+dOw4mI\nvBOLiYxKSkrSy1beWgKAoKAgjBgxQo85nUfkGiwmMiY/Px+ZmZkASk9kfeSRRwwnqppteS5duhQl\nJSUG0xB5JxYTGbNq1Sq9n2bAgAFo0aKF4URVGzJkCBo3bgwAOHr0KLKysgwnIvI+LCYyxnYa79FH\nHzWYxHEBAQF2WTmdR+R8LCYy4syZM/jqq6/02BOm8W6ync5bsWIFp/OInIzFREasXr1aH43Xt29f\nhIWFGU7kuAEDBugrn+fn52PLli2GExF5FxYTGbFixQq9/POf/9xgkurz9/e3OzqPt8Igci4WE7nd\nuXPnkJaWpseeVkwA8NBDD+nllStX8mRbIidiMZHbJScn48aNGwCAHj16oF27dmYD1UBUVJQ+2fbg\nwYP47rvvDCci8h4sJnI7Tzwar7z69evbXTuP03lEzsNiIre6cOECUlJS9NgTp/FuKj+dR0TOwWIi\nt0pJScG1a9cAlN7iIiIiwnCimouLi9M3NNy+fTt+/PFHw4mIvAOLidxq7dq1evnhhx82mKT2QkND\nMXjwYD3mdB6Rc7CYyG2Ki4uxbt06PU5MTDSYxjlsy5XTeUTOwWIit8nOzsaZM2cAAK1atUL37t0N\nJ6q9ESNGQEQAAJmZmfrrI6KaYzGR29hO4yUkJMDPz/O//Vq2bIk+ffoAAEpKSuy+RiKqGYd+MohI\nrIjsFZH9IjK1go93EpEsEbkqIr8u97HDIrJLRHaIyDZnBSfPY/tD2xum8W6ync5bvXq1wSRE3qHK\nYhIRPwBzAAwFcC+Ax0Wkc7nVzgB4EcC7FXyKEgADlVLdlFK9apmXPNTBgwexZ88eAEBgYCCioqIM\nJ3Ie25JNS0vTRx0SUc04ssXUC8ABpdQRpdQNAEsBjLBdQSl1Win1NYCiCp4vDr4OeTHbraXo6GgE\nBQUZTONcnTp1QocOHQAAly5d0jc/JKKaqePAOmEAjtqM81BaVo5SANJEpBjAfKXU32+3cm5ubjU+\nNTmDO97zJUuW6OUuXbp43b9zZGQkvv/+ewDAggUL0KhRo9uu721fv6fg++5eNT1P0R1bMv+mlOoO\nIA7ACyLS3w2vSRZy4cIF7NixQ48HDBhgMI1r9O//07f15s2beVFXolpwZIvpGIA2NuPwssccopT6\nv7K/T4nISpRubW2qbP3IyEhHPzXV0s3fHl39ni9dulTfeykyMhKxsbEufT0TunTpgmnTpuHSpUvI\ny8tDw4YN0alTp1vWc9d7Tvb4vptRWFhYo+c5ssWUA+BuEWkrIgEARgFYc5v1RS+IBIlISNlyMIAY\nAN/WKCl5LNv9S8OHDzeYxHXq1auHIUOG6HFycrLBNESercpiUkoVA5gEIBXAdwCWKqX2iMhEEXkW\nAESkhYgcBTAZwGsi8mNZIbUAsElEdgDYAmCtUirVVV8MWU9RUZHXXe2hMgkJCXr5iy++MJiEyLM5\nMpUHpVQKgE7lHvvAZjkfwJ0VPPUigPtrE5A829atW3Hu3DkAQHh4OLp27Wo4kevY3gZj48aNKCws\nRGhoqMFERJ6Jh3GTS9ne4mLYsGH68j3eyPYyS0VFRUhN5eQAUU2wmMilbIvJGw96KM92Oo/7mYhq\nhsVELnPy5El9NJS/v79XXe2hMvHx8Xp5/fr1+mhEInIci4lcxnYqq1+/fj6xvyUyMhLNmzcHAJw6\ndQo5OTmGExF5HhYTuYyvTeMBgJ+fn91BEOvXrzeYhsgzsZjIJUpKSvDPf/5Tj32lmIDSgzxusi1n\nInIMi4lcYvv27Th9+jQAoHnz5rj/ft85ayA6OlrfayonJ0e/D0TkGBYTuUT5aTxvuCmgoxo3boze\nvXsDAJRSSEtLM5yIyLP4zk8LcivbfSu+NI13k+3XbDulSURVYzGR0xUUFGDLli0AABGxu4acr7At\nppSUFJSUlBhMQ+RZWEzkdOnp6foHcc+ePdG0aVPDidyvR48eaNKkCQAgPz8fu3fvNpyIyHOwmMjp\nfPEw8fL8/f0RExOjxzw6j8hxLCZyKqUUi6lM+ek8InIMi4mc6ttvv8Xx48cBAI0aNUKvXr0MJzLH\ndotp8+bNOH/+vME0RJ6DxUROZXs0XkxMDPz9/Q2mMatly5b6/K2ioiJ8+eWXhhMReQYWEzkVp/Hs\ncTqPqPpYTOQ0Fy5cwKZNm/R46NChBtNYQ/liUkoZTEPkGVhM5DRfffUVbty4AQDo2rUrWrVqZTiR\neX379kWDBg0AAEeOHMGRI0cMJyKyPhYTOQ2n8W4VEBBgdx+qrKwsg2mIPAOLiZxCKeXzlyGqjO17\ncfOKGERUORYTOcWBAwdw+PBhAECDBg3Qr18/s4EsxHZf2/bt23H16lWDaYisj8VETmG7tRQVFYWA\ngACDaaylXbt26Ny5MwDg2rVr2LFjh+FERNbGYiKn4P6l27N9T7Kzsw0mIbI+FhPV2pUrV7BhwwY9\n5mHit2IxETmOxUS1lpmZqfebdO7cGe3atTMbyIIeeOAB1K9fHwBw+PBhvT+OiG7FYqJa4zRe1QID\nAzFw4EA95s0DiSrHYqJaYzE5hpcnInIMi4lq5fDhw9i7dy+A0q2CBx980HAi67ItpoyMDFy/ft1g\nGiLrYjFRrdj+5j9w4EC9H4Vu1bFjR7Ru3RpA6XUFeRAEUcVYTFQrnMZznIigb9++eszpPKKKsZio\nxq5fv46MjAw9ZjFVjcVEVDUWE9VYVlYWLl68CAC46667EBERYTiR9UVGRuqbJ+7cuRMnTpwwnIjI\nelhMVGPlp/FExGAazxAcHKzvagvwsHGiirCYqMa4f6lmOJ1HdHssJqqR48ePY9euXQCAunXrYvDg\nwYYTeQ7bYkpNTUVxcbHBNETWw2KiGrGdghowYABCQkIMpvEsERERaNmyJQDg7NmzyM3NNZyIyFpY\nTFQjnMarORHhVSCIboPFRNVWVFSEtLQ0PWYxVR+LiahyLCaqtpycHBQUFAAAWrdujZ/97GeGE3me\nIUOGwM+v9L/ftm3bcObMGcOJiKyDxUTVZnu3Wh4mXjONGzdG7969AQAlJSVIT083nIjIOlhMVG22\nxTRs2DCDSTwbp/OIKsZiomrJz8/XR5H5+/sjOjracCLPVb6YlFIG0xBZB4uJqsX2MPF+/frhjjvu\nMJjGs/Xo0QNNmjQBAJw4cQK7d+82nIjIGlhMVC2cxnMef39/xMTE6LHte0vky1hM5LDi4mKkpqbq\nMYup9rifiehWLCZy2LZt23D27FkAQKtWrdC1a1fDiTyf7RbT5s2bcf78eYNpiKyBxUQOKz+Nx8PE\na69ly5bo1q0bgNITl7/88kvDiYjMc6iYRCRWRPaKyH4RmVrBxzuJSJaIXBWRX1fnueQ5uH/JNTid\nR2SvymISET8AcwAMBXAvgMdFpHO51c4AeBHAuzV4LnkAHibuOjxsnMieI1tMvQAcUEodUUrdALAU\nwAjbFZRSp5VSXwMoqu5zyTPwMHHX6du3Lxo0aAAAOHLkCPbt22c4EZFZdRxYJwzAUZtxHkoLxxHV\nfi5vAeB+jrznixcv1stdunThv1MtlX//evTogQ0bNgAA5s+fj9GjRxtI5f34feteERERNXoeD36g\nKhUXF2Pr1q163K9fP4NpvJPte5qVlWUwCZF5jmwxHQPQxmYcXvaYI6r93MjISAc/NdXWzd8eq3rP\ns7OzUVhYCKD0MPHRo0fziLwaquw9b9GiBd58800AwI4dO9C5c2fefNGJHP1eJ+e6+XOjuhzZYsoB\ncLeItBWRAACjAKy5zfq2P7Gq+1yyIF5N3PXuvPNO3HfffQCA69ev82rj5NOqLCalVDGASQBSAXwH\nYKlSao+ITBSRZwFARFqIyFEAkwG8JiI/ikhIZc911RdDrmFbTHFxcQaTeLf4+Hi9/MUXXxhMQmSW\nI1N5UEqlAOhU7rEPbJbzAdzp6HPJc5w8eZKHibtJfHw83nrrLQDAunXroJTi1in5JB78QLfFw8Td\np0+fPmjcuDEA4Pjx49i1a5fhRERmsJjottatW6eXebUH1/L398fQoUP1mNN55KtYTFQpXk3c/bif\niYjFRLeRnZ3Nq4m7WWxsLPz8Sv9bbtmyBadPnzaciMj9WExUqbVr1+rlhIQE7oh3gyZNmqBPnz4A\nAKUUL+pKPonFRJWyLabExESDSXyL7SH5tvv4iHwFi4kq9P3332PPntJTzurXr4+oqCjDiXyH7X6m\nlJQUFBWVvzYykXdjMVGFbLeWoqOjERQUZDCNb+natSvCwsIAAAUFBdiyZYvhRETuxWKiCnEazxwR\nsZvOs/23IPIFLCa6RWFhITIzM/U4ISHBYBrfNHz4cL28evVqg0mI3I/FRLew3a/Ro0cPtG7d2nAi\n3xMVFaWnT/ft28ebB5JPYTHRLTiNZ15gYCBiYmL0eM0aXpSffAeLiewUFRXZHaLMYjJnxIgRepnT\neeRLWExkJysrCwUFBQCA1q1bo1u3boYT+a74+Hh9FYisrCycOnXKcCIi92AxkR1e7cE6mjVrpm+5\nrpRCcnKy4URE7sFiIk0pZbcvg9N45tkencf9TOQrWEyk7dmzB/v37wcABAUF8WoPFmC7nyk1NRVX\nrlwxmIbIPVhMpK1cuVIvx8XFITAw0GAaAoCOHTuic+fOAIDLly8jPT3dcCIi12Mxkfb555/r5Ycf\nfthgErLF6TzyNSwmAgAcOXIE27dvBwDUrVvX7kKiZJbtdN7atWtRUlJiMA2R67GYCID9NF5UVBRC\nQ0MNpiFbvXv3RvPmzQEA+fn5yM7ONpyIyLVYTATAvpgeeeQRg0moPH9/f7utphUrVhhMQ+R6LCbC\nyZMnsXHjRgClV7a23adB1vDoo4/q5aSkJCilDKYhci0WE2HNmjX6B13//v3RokULw4movEGDBqFR\no0YAgKNHjyInJ8dwIiLXYTGR3dF4nMazprp169pN5yUlJRlMQ+RaLCYfd/HiRWRkZOjxQw89ZDAN\n3Q6n88hXsJh83ObNm3H9+nUAQPfu3dGuXTuzgahS0dHRaNiwIQDg0KFD2Llzp+FERK7BYvJxtltL\nPKnW2urVq2d3YAqn88hbsZh82MWLF7F582Y9tp0qImuy/Tdavnw5p/PIK7GYfFhmZqaexrv//vv1\nNdnIumJiYhASEgIAOHDgAL799lvDiYicj8Xkw1JTU/XyqFGjDCYhRwUGBtpdLorTeeSNWEw+6syZ\nM9iyZYsejxw50mAaqg5O55G3YzH5qJUrV6K4uBhA6bXY7rrrLsOJyFHDhg1DUFAQgNJ7aO3atctw\nIiLnYjH5qKVLl+plTuN5luDgYLuTbRcvXmwwDZHzsZh80IkTJ/DVV18BKL023i9+8QvDiai6nnji\nCb386aef8lYY5FVYTD4oKSlJ/yDr1q0bwsLCDCei6oqJiUHTpk0BAMeOHUNmZqbhRETOw2LyQbbT\neDExMQaTUE3VrVvX7oAVTueRN2Ex+Zgff/xRn1Tr7++PwYMHG05ENWU7nZeUlIRr164ZTEPkPCwm\nH/Ppp5/q5Z49e+pbKZDn6du3rz6a8ty5c1i3bp3hRETOwWLyIUop/OMf/9Dj2NhYg2motkQEo0eP\n1mNO55G3YDH5kK1bt2Lfvn0AgJCQEE7jeQHb6bzk5GQUFhYaTEPkHCwmH/LRRx/p5ZEjRyIwMNBc\nGHKKe+65B926dQMAXLt2DStWrDCciKj2WEw+4sqVK3ZH4z311FPmwpBT2W41LVq0yGASIudgMfmI\n1atX62me9u3bo3///oYTkbOMHj0a/v7+AEqvGL9//37DiYhqh8XkI2yn8Z566imIiLkw5FStWrWy\nu+L4woULDaYhqj0Wkw84duwY0tLS9HjMmDEG05ArTJgwQS8vWrQIN27cMJiGqHZYTD7gk08+0Zcg\nGjx4MNq2bWs4ETnbsGHD0KpVKwCl10LkOU3kyRwqJhGJFZG9IrJfRKZWss5/i8gBEdkpIt1sHj8s\nIrtEZIeIbHNWcHKMUuqWaTzyPnXq1LH7t/3www/NhSGqpSqLSUT8AMwBMBTAvQAeF5HO5dYZBqCD\nUioCwEQA82w+XAJgoFKqm1Kql9OSk0M2bdpkd+7SI488YjgRucq4ceP08rp163Ds2DGDaYhqzpEt\npl4ADiiljiilbgBYCmBEuXVGAPgYAJRSWwGEikiLso+Jg69DLjB37ly9/PjjjyM4ONhgGnKlu+++\nG4MGDQIAlJSU2G0pE3mSOg6sEwbgqM04D6Vldbt1jpU9lg9AAUgTkWIA85VSf7/di+Xm5joQiRxx\n+vRpJCUl6fHAgQMrfH/5nrufq97zwYMH63ttzZ07F0OGDIGfH38vvInf6+4VERFRo+e54zv235RS\n3QHEAXhBRHgCjZusXr0aRUVFAICuXbuiY8eOhhORqw0aNAgNGzYEABw/fhw5OTmGExFVnyNbTMcA\ntLEZh5c9Vn6dOytaRyn1f2V/nxKRlSjd2tpU2YtFRkY6EImqUlRUhOTkZD3+zW9+c8t7e/O3R77n\n7uOO93zs2LGYPXs2ACA9PR0vvPCCy17LU/B73YyaXrvRkS2mHAB3i0hbEQkAMArAmnLrrAEwBgBE\npA+Ac0qpfBEJEpGQsseDAcQA+LZGSala1q5di7y8PABA8+bN8fOf/9xwInKX5557Ti+vXr0aP/zw\ng8E0RNVXZTEppYoBTAKQCuA7AEuVUntEZKKIPFu2zjoAh0TkIIAPADxf9vQWADaJyA4AWwCsVUql\nuuDroHL++te/6uUJEyagXr16BtOQO91zzz0YOnQogNLTBebMmWM4EVH1iFLKdAYUFhbqEKGhoSaj\neIW9e/finnvuAQD4+fnh0KFDaNOmzS3rcXrD/dz1nq9fvx5xcXEAgIYNGyIvLw8NGjRw6WtaGb/X\nzbCdygsNDXX4Omg8XMcLzZv302lkiYmJFZYSebehQ4fqg13Onz/PQ8fJo7CYvExhYaHdXWq549s3\n+fn54eWXX9bj2bNn68tSEVkdi8nLzJs3DxcuXAAAdO7cGVFRUYYTkSljxozRU+MHDhzA+vXrDSci\ncgyLyYtcvXoV77//vh7/5je/4cmVPiwkJMTuquO23xtEVsafWl5k0aJFyM/PBwCEhYXZ3dmUfNOk\nSZP0Lyfp6enYvXu34UREVWMxeYmioiLMnDlTj1955RUEBAQYTERW0K5dOzz88MN6/Oc//9lgGiLH\nsJi8xIoVK/SJlI0aNcIzzzxjOBFZxauvvqqXly9fjn/9618G0xBVjcXkBZRSeOedd/R40qRJCAkJ\nMZiIrKR79+5ISEgAUPq9wq0msjoWkxdIS0vDjh07AACBgYF48cUXDSciq3n99df18tKlS7F//36D\naYhuj8Xk4ZRS+NOf/qTHEyZMQLNmzQwmIivq1asXYmNjAZTeq+nNN980nIiociwmD5eWloaNGzcC\nAOrWrYtXXnnFcCKyqjfeeEMv/8///A++//57g2mIKsdi8mBKKcyYMUOPJ0yYgLZt2xpMRFbWt29f\nfcJ1cXEx3nrrLcOJiCrGYvJga9eu1TeCq1evHl577TXDicjqbLeaPvroI+5rIktiMXmooqIiTJs2\nTY+fe+45hIWFGUxEnuCBBx7AoEGDAJRuNdkeSk5kFSwmD7Vw4ULs2bMHANCgQQNMnz7dcCLyFLan\nFqxYsQJbtmwxmIboViwmD3Tx4kW7KZmpU6eiefPmBhORJ+nZsydGjhypx//xH/8BK9yXjegmFpMH\nevvtt+2uiTd58mTDicjTvPnmm6hTpw4AYPPmzVi2bJnhREQ/YTF5mIMHD+Ldd9/V4z/96U8ICgoy\nmIg8UYcOHfDSSy/p8ZQpU3Dp0iWDiYh+wmLyMJMnT8b169cBAL1798aYMWMMJyJP9cYbb+gp4Ly8\nPLz99tuGExGVYjF5kDVr1iA5ORkAICKYPXs277dENRYaGmp3BYiZM2di7969BhMRleJPNQ9x/vx5\nPP/883o8fvx49OzZ02Ai8gZPP/00evfuDQC4fv06Jk6cyFuwk3EsJg/x6quv4tixYwCA5s2bc9qF\nnMLPzw/z58/XB0JkZmZi4cKFhlORr2MxeYDMzEzMnTtXj2fNmoUmTZoYTETe5L777rO7xuKvf/1r\nHDlyxGAi8nUsJos7f/48xo4dq88ziY+Px2OPPWY4FXmbN954AxEREQCACxcuYPz48ZzSI2NYTBY3\nefJkHD58GEDpnWk/+OADiIjZUOR1goKC8NFHH+mDaTIyMjBnzhzDqchXsZgsbNmyZXbz/XPnzuX1\n8Mhl+vXrhylTpujxlClT9A0oidyJxWRRBw8exDPPPKPHo0aNwqhRowwmIl/w+9//Ht26dQNQepTe\nY489hgsXLhhORb6GxWRBly9fxi9+8Qv9A6FDhw7429/+ZjgV+YJ69eph2bJlCAkJAQAcOHAA48aN\n47X0yK1YTBajlMK4ceOwc+dOAEBAQAA+++wzhIaGGk5GviIiIsLuF6GkpCSenkBuxWKymLfeesvu\ngpqzZ89G9+7dDSYiX/TEE0/gxRdf1OPXXnsNa9asMZiIfAmLyUKWLFlidxfa5557Ds8++6zBROTL\n3nvvPTz8tfkZAAAJNklEQVTwwAMASrfkR40ape+YTORKLCaLyMjIwFNPPaXHDz74IN5//31zgcjn\n1a1bF0lJSWjfvj0A4MqVK0hISODt2MnlWEwWsGnTJgwfPhw3btwAANx7771YuXIlAgICDCcjX9es\nWTOsX78ejRs3BgCcPHkSUVFR+tw6IldgMRmWnZ2NuLg4XL58GUDpjf/Wr1+PRo0aGU5GVKpjx45Y\nu3atvu9XXl4eBg8ezHIil2ExGZSeno4hQ4bow8JbtGiBjIwM3HnnnYaTEdnr168fVq9erbfiDx06\nhAEDBnBaj1yCxWTIZ599hvj4eH3X0GbNmiEjIwOdOnUynIyoYtHR0fj88891OeXl5aF///7YsmWL\n4WTkbVhMbqaUwp///Gc89thj+k604eHh2LhxI+69917D6YhuLz4+Hl988YWe1jt16hQGDRqE5cuX\nG05G3oTF5Ebnz5/HyJEjMWPGDP1Yp06dsGnTJm4pkceIjo5Geno6mjZtCgC4evUqRo4ciWnTpqGo\nqMhwOvIGLCY3yc3NRc+ePZGUlKQfGzRoELKzs9G2bVuDyYiqr2/fvsjOzta3ygCAd955Bw8++CAO\nHDhgMBl5AxaTi12/fh1/+MMf0LdvX7sdxS+88AJSUlJ49B15rLvvvhtbt25FXFycfiwrKwtdu3bF\n7NmzeT8nqjEWkwtlZmaiW7du+O1vf6unOEJCQrB48WLMmTOH5ymRx2vUqBHWrl2LP/7xj/r27Feu\nXMFLL72EqKgofPfdd4YTkidiMbnAN998g8TERDz44IP417/+pR/v168fdu3ahdGjRxtMR+Rcfn5+\nmDFjBrZt24af/exn+vENGzbgvvvuw/jx43Hs2DGDCcnTsJicaP/+/RgzZgy6du2K5ORk/XhwcDD+\n67/+C//7v/+rL+9C5G26deuG3NxcTJ8+Xd8Jt6SkBAsXLkRERASmTp3KgiKHsJhqqbi4GMnJyRg6\ndCg6deqETz75RN+7RkTw5JNPYs+ePfj3f/93PdVB5K3q1auHN998E9u3b8fQoUP141euXMHMmTPR\nrl07PPHEE9i2bZvBlGR1LKYaUEph165dmDFjBiIiIpCYmIjU1FS7dRISErBr1y58/PHHvJID+Zyu\nXbsiJSUFaWlp+o64AFBUVIQlS5agd+/e6N69O2bOnMlLG9Et+Cu8g65evYqsrCykpaXh888/r/BS\nLCKCxMRETJkyBf379zeQkshaoqOjkZubi1WrVuH999/Hxo0b9cd27NiBHTt2YOrUqejTpw8SEhIQ\nHR2NHj16cHbBx4kjt0wWkVgA76N0C2uBUuqdCtb5bwDDAFwC8JRSaqejzy0sLNQhrHKn1uPHj+Pr\nr7/G119/jY0bN2Lz5s24du1ahes2atQI48ePx/PPP4+77rrLzUlrLjc3FwAQGRlpOInv8PX3fPv2\n7Zg1axaWLl2qr3xSXmhoKAYOHIjevXujZ8+eiIyMxB133FGr1/X1992UwsJCvRwaGiqOPq/KYhIR\nPwD7AUQBOA4gB8AopdRem3WGAZiklIoXkd4AZiml+jjy3LLwbi8mpRTOnz+PvLw85OXlYf/+/di7\ndy/27duH7777DidOnLjt84ODg5GYmIiRI0ciNjYWgYGBbsntTPzP6n58z0sVFhZi1apVWLZsGdLS\n0qq8YkT79u3RuXNn3HPPPejcuTPat2+P8PBwhIeH68sj3Q7fdzNqWkyObC/3AnBAKXUEAERkKYAR\nAGzLZQSAjwFAKbVVREJFpAWAuxx4bo0VFRXh8uXL+s+lS5f08sWLF1FQUICzZ8/i7NmzevnEiRM4\nduwY8vLy9AVUHdWpUycMHjwYMTExGDp0qEeWEZEVhIaGYuzYsRg7dixOnz6NlJQUpKenIy0tDceP\nH79l/R9++AE//PAD1q1bd8vHGjVqpEuqSZMmaNy4sd2f0NBQ5OXlITAwEPXr10dwcDCCgoIQHByM\nwMBA+Pv7u+NLpmpwpJjCABy1GeehtKyqWifMwefa6dKlC4qKiqr8c+PGDRQXFzsQv2aCgoLQvXt3\n9OjRA5GRkRg4cCDCw8Nd9npEvqpp06b45S9/iV/+8pdQSmHv3r3IyspCTk4OcnJysHv37ttuURUU\nFKCgoADffPNNjV7f398fdevWRZ06dez+rugxf39/iIjT/ziL1T7X4sWLa/Q8V+1hrPFXtGnTJmfm\ncCrbzVJvcPM6Z972dVkZ3/OqtW7dGo8++igeffRR01HIEEeK6RiANjbj8LLHyq9zZwXrBDjwXCIi\nIs2R85hyANwtIm1FJADAKABryq2zBsAYABCRPgDOKaXyHXwuERGRVuUWk1KqWEQmAUjFT4d87xGR\niaUfVvOVUutEJE5EDqL0cPGnb/fc8q9RnaM1iIjIuzl0HhMREZG7WOaSRCLyWxHJE5HtZX9iTWfy\nZiISKyJ7RWS/iEw1ncdXiMhhEdklIjtEhBeMcxERWSAi+SKy2+axRiKSKiL7ROSfImKNs/m9SCXv\ne7V/tlummMr8RSnVvexPiukw3qrsxOc5AIYCuBfA4yLS2Wwqn1ECYKBSqptS6ranTlCt/AOl39+2\npgFIV0p1AvAlgOluT+X9KnrfgWr+bLdaMXFfk3vok6aVUjcA3DzxmVxPYL3/d15HKbUJQEG5h0cA\nWFS2vAjAQ24N5QMqed+Bav5st9p/kEkislNEPuRmtktVdkI0uZ4CkCYiOSLyjOkwPqZ52dHCUEqd\nANDccB5fUq2f7W4tJhFJE5HdNn++Kfs7EcBcAO2VUvcDOAHgL+7MRuQm/6aU6g4gDsALIsLL0JvD\nI7/co9o/2916bXml1BAHV/07gLWuzOLjHDlpmlxAKfV/ZX+fEpGVKJ1Wte7lTrxLvoi0UErli0hL\nACdNB/IFSqlTNkOHfrZbZiqv7BvlpkcAfGsqiw/gic8GiEiQiISULQcDiAG/z11JYL9vYw2Ap8qW\nxwJY7e5APsLufa/Jz3Yr3Y1rpojcj9Kjlg4DmGg2jvdy9MRncroWAFaKiELp/73FSqnUKp5DNSAi\nSwAMBNBERH4E8FsAbwNYLiLjABwBMNJcQu9Uyfs+qLo/23mCLRERWYplpvKIiIgAFhMREVkMi4mI\niCyFxURERJbCYiIiIkthMRERkaWwmIiIyFJYTEREZCn/D1VqrcMRCoreAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -99,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true @@ -107,9 +367,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFS9JREFUeJzt3X+MHGd9x/G3E9uEEJpw/Ljzr+pc5LRYqPwoNaENxLTB\nSRG1XVUKRm1lCKoqUUpQK2yfkZrrH6XGFYI/Wv4Bgq60uARKLae0ITbiWkRFQosNSZwjdkgKF+Iz\nLZAWqgpDtn88z2Xn1rPenbudfWZm3y9ptM/O7Y+vbmc/++wzs/OAJEmSJEmSJEmSJEmSJEnSyLoN\nuB94ILYBxoDjwMPAPcA1mdtPAWeAOWDH8MqUJBXxYkK4XwFcTgj1FwKHgX3xNvuBQ7G9FTgFrAEm\ngbPAZcMrV5K0qFf4/hxwL/B/wE+AfwZ+E9gJzMTbzAC7Y3sXcAS4ADxGCPhtA61YktSXXgH/APBq\nwpDMlcDrgY3AOLAQb7MQrwOsB+Yz958HNgyqWElS/1b3+Psc8F7COPsPCcMvP+m4TSsu3Vzqb5Kk\nkvQKeIA74gLwp4Re+QIwAZwD1gHn498fBzZl7rsxrutk6EvS8qwa5IO9IF7+NPAQcDVhJ+v+uP4A\nF+9kXQtsBh7pUkwVA346dQFdTKcuIMd06gJyTKcuIMd06gJyTKcuoIvp1AXkmE5dQI5C2dlPD/5T\nwHMJO07fBjxJCPQ7gbcSdqbeEm97Oq4/Dfw43r6KYS5JjddPwL8mZ913gRu73P49cZEkJeQx6m2z\nqQvoYjZ1ATlmUxeQYzZ1ATlmUxeQYzZ1AV3Mpi4gx2zqAurKYRtJKq5QdtqDl6SGMuAlqaEMeElq\nKANekhrKgJekhjLgJamhDHiNol4nyJMawYCXpIYy4CWpoQx4SWooA16SGqqfs0lKoyi7E3agEyxI\nw2IPXurKA21Ubwa8FHjopBqnn4CfAh4E7gc+DjwDGAOOAw8TJuS+puP2ZwgTdu8YZLHSEBj0GhmT\nwDcIoQ7wCWAvYU7WfXHdfi6ek3VNvO9Z8j9EfAMppWyIt5Yurbx23v2kFAZ6Pvj/JszFeiVhh+yV\nwLeBncBMvM0MsDu2dwFH4n0eIwT8tiIFSSXqEtBmtpqpV8B/F3gf8E1CsH+fMDQzDizE2yzE6wDr\ngfnM/eeBDYMqVupTtlee8ydpNPQ6TPKFwDsJwy1PAp8EfrvjNr2+tnb723SmPYvzH2qgWpR8dOPi\ndu0hlCrT9rgsS6+AfwXwr8B/xeufBl4FnAMm4uU64Hz8++PApsz9N8Z1eaaLlyslcalPC4NeZZpl\naef39iJ37jVEMwdcBzyTsAHfCJwG7iLsbCVeHo3tY8AeYC2wGdgC3FekIKleHPJRve2jfZjkDOEI\nmTHgBPmHSR4k7FydA27q8pi+K1SmvCNgOte38td1ay/etrOd+zxSWQpta6m+VpY+QKqR1spsYqu6\nrF/8W8e6bu0l4v2W3MbtWcNQKDs9F42abkC9a/skqh9PVaAR4AiKRpMBLxXnJ4ZqwYCXCsvNd0Nf\nlWPAa5QZymo0A14jzHxXsxnwktRQBrwkNZQBL0kNZcBLUkMZ8GqCKp0Ppkq1aMR5qgI1icEqZdiD\nV4OY71KWAS9JDeUQjeqsal32qtWjEWcPXjVXpUxtdV5pXeK6VLp+Av5ngZOZ5UngHYRZnY6TP6vT\nFHCGMKvTjgHWK9WEWa76uQx4gjCx9mHCdH4A+4FDsb0VOEWY2m+SMH1f5weJW78Goc/p9nq1B/EY\nXduZWt3utWKlbkM7gC/E9hwwHtsT8TqE3vv+zH3uJkzcneWGrkGoQ8B3zOEqrUihbajoGPwe4Ehs\njwMLsb1AO+zXA/OZ+8wDGwo+jyRphYocRbMW+HWW9s4X9eqd5P1tOtOejYskqW17XEq3izDcsmiO\nMDQDsI72EM2BuCy6G3hlx2P5VVUrNcBhFIdoVBulDdG8ifbwDMAxYG9s7wWOZtbvIfT4NwNbgPuK\nFCVJGp5nAf8JPDuzbgw4Qf5hkgcJR8/MATflPJ49Ga2UPXiNokLb0KqyquihlfC51Qyt9sUqVtYe\nxGNcqv30k4DbvVamUHb6S1ZJaijPRaO6cZhD6pM9eNVJa8mFpEsy4CWpoQx4SWooA14qn2NKSsKA\nl0pnvisNA16SGsrDJKU0st16f/ykUtiDl4Yrc8oCh25ULgNeGipDXcPjEI3qwFSUlsEevGrCjJeK\nMuAlqaEMeElqKANekhqq34C/BvgU8BBwmjDH6hhwnPwZnaaAM4QZnXYMqlhJ0uDNALfG9mrgauAw\nsC+u2w8ciu2twClgDTBJmLqv84PEPWYqouRp9cqesq9nW+rXwLeXq4Fv5KyfA8ZjeyJeh9B735+5\n3d3AdR33daNWEQa8FBTaXvoZotkMfAf4KPAV4EOESbjHgYV4mwXaYb8emM/cfx7YUKQoSdLK9fND\np9XAy4G3A18GPgAc6LhNr55I3t+mM+3ZuEiS2rbHpTQTwKOZ69cDnyHscJ2I69bRHqI5wNIPgLsJ\nO2Wz/FqqIpo+ROP7Qf0a+BDNOeBbwLXx+o3Ag8BdwN64bi9wNLaPAXuAtYThnS3AfUWKkiQNz0sI\nwzNfBT5N2PE6Bpwg/zDJg4SjZ+aAm3Iezx6LihiFHrw9efWj0DaS6jzUrYTPrfppLd1kBt0u87GX\n04bOK1JUKDv9JatUKXbiNTgGvCQ1lAEvSQ1lwEtSQxnwqjoHpaVlMuAlqaEMeElqKCfdVpU4HCMN\nkD14VUyrS3vk+OtWrZgBL1WW2a6VMeAlqaEcg5eqL9uV9xw16psBr9Qch+iL5+dTcQ7RqALMeKkM\nBrwkNVS/Af8Y8DXgJO3ZmcaA4+RP+DEFnCFM+LFjEIVKAvy6oxI8Sgj0rMPAvtjeDxyK7a3AKWAN\nMEmY2anzg8SNVIsqMKNS6ucvWotGWKHXv8gQTecenp3ATGzPALtjexdwBLhA6PmfBbYVKUqStHL9\nBnyLMP/qvwG/G9eNAwuxvRCvA6wH5jP3nQc2rKxMSVJR/R4m+cvAE8DzCePucx1/7/XV0a+VkjRk\n/Qb8E/HyO8DfE4ZcFoAJ4BywDjgfb/M4sClz341xXafpTHs2LpKktu1xKc2VwLNj+1nAFwlHxhwm\n7FwFOMDFO1nXApuBR7h4/N4evRbVZMdmlWrRCBv467+ZENingAcIh0BCOKrmBPmHSR4k7FydA24a\nRpGqrZqEapVq0Qgr9Pqn+u1zK+Fzq1paSzeHFO3Uz1+0Ft87I6xQdnouGqVgL1QaAk9VoETMeKls\nBrwkNZQBL9WPO1vVFwNeqh2zXf0x4CWpoQx4SWooA16SGsqA1zC5c3Cw/F/qkgx4DZmZJA2LAS9J\nDWXAS1JDGfCS1FAGvCQ1lAEvSQ1lwEtSQ/Ub8JcDJ4G74vUxwuTbebM5TQFnCLM57RhMmZKkovoN\n+NuA07QPYj5ACPhrgc/F6xDmY31jvLwZ+GCB51DzZH/Y5AHw0pD1E74bgdcDH6Y9VdROYCa2Z4Dd\nsb0LOAJcAB4jzMu6bUC1SpIK6Cfg3w+8C3gqs24cWIjthXgdYD0wn7ndPLBhhTVKkpahV8C/AThP\nGH/vNtFrr/OL+NVckhLoNen2LxGGY14PXAH8FPAxQq99AjgHrCN8CAA8DmzK3H9jXJdnOtOejYsk\nqW17XEp3A+2jaA4D+2P7AHAotrcCp4C1wGbgEfJ7/vbqR0Pr4qXVcVmFdurnX0ktGjGFXvNePfhu\nD34IuBN4K2Fn6i1x/em4/jTwY+BtRQtSE7XoPsInqSyp3nW+40dDq32xiqXtvHWp2qmffyW1PH0n\n8D01Cgplp8eoS1JDGfCS1FBFx+ClXtznIlWEPXiVxJwfEv/R6sqAl2rNfFd3BrwkNZQBLzWLP4DS\n0wx4qTkMdi1hwEuN0eq8YuCPOANeaiSzXR4Hr8ExUaSKsQevATLjpSox4CWpoQx4SWooA16SGsqA\nl6SG6hXwVwD3EqbhOw38WVw/BhwHHgbuAa7J3GcKOAPMATsGWawkabCujJergS8B1xPmZN0X1+/n\n4jlZ1wCTwFnyP0Q83KJ5Rmge1FrVomYp9Jr2M0Tzv/FyLXA58D1gJzAT188Au2N7F3AEuECYq/Us\nsK1IQaolg0SqoH4C/jJCr3wB+DzwIDAerxMvx2N7PTCfue88sGEglUpaDj98R1g/v2R9CngpcDXw\nWeC1HX/v9VWw29+mM+3ZuEiS2rbHZVmKnKrgSeAzwC8Qeu0TwDlgHXA+3uZxYFPmPhvjujzTRQpV\nJdk7rIfF12lV0iq0HLMs7fzeXuTOvYZonkf7CJlnAq8DTgLHgL1x/V7gaGwfA/YQxus3A1uA+4oU\npLox46vP12hU9erBryPsRL0sLh8DPkcI+TuBtxJ2pt4Sb386rj8N/Bh4G25dkpREqq9srYTPrcFp\nLX0pi7SXe78y2qmff2i1+J6rv0LZ6S9ZJamhDHgtl0Nv9eNrNmIMeElqKANekhrKgJekhjLgVYQn\nsKo/X8MRYsBLI8VsHyUGvCQ1lAEvSQ1V5GRj0iK/59df9jX0F64NZQ9ey2C+N4OvY9PZg1c/TAKp\nhuzBq09mvFQ3BrwkNZQBL0kN5Ri8JI+oaah+evCbgM8DDwIPAO+I68eA48DDwD20p/YDmALOAHPA\njkEVK6ks7mMZVRPAS2P7KuDrwIuAw8C+uH4/cCi2twKngDXAJHCWiz9I3JrqpQWtxXOYDKg96Mez\nlsG1VWGFXp9+evDnCIEN8APgIWADsJMwXyvxcnds7wKOABcI87WeBbYVKUqV4BteqrmiO1kngZcB\n9wLjwEJcvxCvA6wH5jP3mSd8IKh2zHapzorsZL0K+DvgNuB/Ov7Wq6eX97fpTHs2LqoGk12qhu1x\nKdUa4LPAOzPr5gjj8wDr4nWAA3FZdDfwyo7HM0CqbUTGmq0lv60KK/T69DNEswr4CHAa+EBm/TFg\nb2zvBY5m1u8B1gKbgS3AfUWKkiQNx/XAU4QdrSfjcjPhMMkT5B8meZCwc3UOuCnnMe0lVNuI9FSt\nJb+tCiv0+qT6UUMr4XOrt1b7YhXltMt8bGtZWdv3ZoUVyk5PVaBF9t6Ux+2ixgx4SWooz0Uje2fK\n43bRAPbgRcd72Te2Wksu2lfcNmrGgFcH38PK2wbcLurIgB9tvmulBjPgJamhDHhJaigDXpIaysMk\nR5Nj79IIsAc/ssx4qekMeElqKANeUhF+9asRx+BHh29MacTYgx8pZrwGwtMW1IQBL6kgs70u+gn4\nO4AF4P7MujHgOPmzOU0BZwizOe0YTJlaAXtb0ojqJ+A/SpiiL+sAIeCvBT5He5LtrcAb4+XNwAf7\nfA6VynyXRlE/4fsF4Hsd63YCM7E9A+yO7V3AEeAC8BhhXtZtK65SklTYcnvX44RhG+LleGyvB+Yz\nt5sHNizzOSRVm18NK24Qh0n2GuPt9rfpTHs2Lhos34Aq2+I25kTd5dgel2VZbsAvABPAOWAdcD6u\nfxzYlLndxrguz/Qyn1tSZbQw20s1y9LO7+1F7rzcIZpjwN7Y3gsczazfA6wFNgNbgPuW+RxaPo+c\nkdSXI8C3gR8B3wLeQjhM8gT5h0keJOxcnQNu6vKYhk+5WtBaDPlMO29dqnbq57eWAdfSsf3ZyShJ\nof9pqu9WrYTP3XSt9sUqlrbz1qVqp35+axl8LVlPr/d9PliFstNj1JvB3pIqwE2wajzZmKQyZVPf\n3vyQ2YNvFrtQqiA3y1QM+HrrGJrxjSSpzYCvPUNdUj7H4OvHRJfUF3vwtWTGS+rNgJc0LPZMhsyA\nlzRMnb/Z8DccJXIMvl58I6jmnv4hZrdt2ePmB8gefD3Yy1EDtTqvtHLWawUM+OrqOGGTG72azO27\nDAZ8NRnqklbMMfhqMdElDYwBP3ydIb5q6XrPpCxF7nBdobKGaG4mTPhxBthf0nNUVbcdot3OG+MO\nVKmr3B2xvmf6VEbAXw78BSHktwJvAl5UwvMM2vbyn6KfI8PqYDZ1AVq22dQFdDFb4La575cygn/7\nAB8riTICfhthyr7HgAvA3wK7SnieQds+4MdrcG9jNnUBWrbZ1AV0MdvrBpf6Vtx5UMKg3nfbV3j/\n5MoI+A2EuVsXzcd1TdMZ4F2GYBqW7VISRb/9Fgr7hnbEygn4QfyTttL+h9+ywlryXri8YL69y/o+\ng7yzLakacsN+Jb8zuUQeVEsZe6avA6YJY/AAU8BTwHszt6nsP0SSKi7pEUWrgUeASWAtcIp67GSV\nJPXh14CvE3a2TiWuRZIkSdKg/AHwEPAAS8foU/sjwn6DsdSFAH9O+B99Ffg0cHXCWqr4A7ZNwOeB\nBwnb0TvSlvO0y4GTwF2pC8m4BvgUYXs6TdhfltoU4bW7H/g48IwENdwBLMQaFo0Bx4GHgXsI/7sq\n1FWlPLik1xL+gWvi9ecnrCVrE3A38CjVCPjX0T7a6VBcUricMOQ2SXjNqrJvZQJ4aWxfRRgarEJd\nfwj8DXAsdSEZM8Ctsb2a9OEwCXyDdqh/AtiboI5XAy9jaZAeBvbF9n7SvO/y6qpKHvR0J/ArqYvI\n8Ung56lOwGf9BvDXiZ77VYQPvkUH4lI1R4FfTVzDRuAEoRNTlR781YQwrZIxwgfycwgfOHcBNyaq\nZZKlQToHjMf2RLyewiRL68rqmQcpTxe8BXgN8CXCz9hekbCWRbsIP8z6WupCurgV+MdEz12HH7BN\nEno89yau4/3AuwjDfFWxGfgO8FHgK8CHgCuTVgTfBd4HfBP4NvB9wgdjFYwThkeIl+OXuG0qPfOg\n7LNJHid8+nV6d3zu5xDGAX+R0KP/mZLr6VXTFLAjs25Yx5t2q+kg7R7gu4EfEcYpU6j6bxeuIowv\n3wb8IGEdbwDOE8bftyeso9Nq4OXA24EvAx8gfAP744Q1vRB4J+GD+UnCt+ffIgxtVUkVf8yUOg96\n+ifghsz1s8BzE9UC8GLCJ/WjcblAOJ/OCxLWtOjNwBeBKxLWcB1Lh2imqM6O1jXAZwlhkdp7CN90\nHgWeAH4I/FXSioIJQk2Lrgf+IVEti94IfDhz/XeAv0xUyyQXD9EsdrrWUa0hmjeTPg96+j3gT2L7\nWsLXtCqpyhj8zYSjDJ6XuI6q/oBtFSFA35+6kBw3UJ0xeIB/IbzXIPzaPPWRay8hHPn0TMLrOAP8\nfqJaJrl4J+tiB+YA6XZmTrK0rqrkQU9rgI8Riv93qvV1FsIOqSoE/BngPwhf+U8CH0xYSxV/wHY9\nYaz7FO3/0c2XvMfw3EC1jqJ5CWF4pkqH2O2jfZjkDO2j6obpCGEfwI8I377eQnjvnyDtYZKddd1K\ntfJAkiRJkiRJkiRJkiRJkiRJkiRJknr7fxiwVv4MacJCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEACAYAAAAeHRm0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHp1JREFUeJzt3X+Q3Hd93/Hnyyfrh835IlNLKpIxJjoU2XVi3ItCwhBc\nEAKZVHbbGTDQ1opbMq0Bu0kmU8thhmGmM4IMGaIp8R804LkydoQwIVKntBYapXjSGsSCARkJIZX6\nLJbo7vDFd4ts+X743T/2u8feae9ud2/3vt/v7usxo9nvfr6f7/fep9vd934+38/381FEYGZmlqYr\n0g7AzMzMycjMzFLnZGRmZqlzMjIzs9Q5GZmZWeqcjMzMLHV1JSNJD0g6mfy7PylbL+mopDOSnpDU\nV1V/n6Szkk5L2tWu4M3MrDMsmYwk3Qz8G2AAuBX4HUm/DDwIHIuIbcBxYF9S/ybgPcB2YDfwsCS1\nJ3wzM+sE9bSMtgPfjIiXI2IGeBL458AeYDCpMwjclWzvAQ5GxHREPAucBXa0NGozM+so9SSjZ4C3\nJN1yVwF3ANcDGyNiGCAiLgAbkvqbgfNVxxeTMjMzs5pWLVUhIn4o6ZPA14CfA08DM7Wq1vtDx8fH\nPQeRmVmH6+vrq/sSTV0DGCLikYgYiIjbgReAM8CwpI0AkjYBI0n1IuWWU8WWpMzMzKymekfTXZc8\nvhb4Z8BjwBFgb1LlHuBwsn0EuFvSakk3AluBEy2M2czMOsyS3XSJL0u6FpgC7ouIiaTr7pCke4Eh\nyiPoiIhTkg4Bp6rqL9gt19fXt9Cu1BUKBQAGBgZSjmRxjrN18hAjOM5Wy0OceYgRYHx8vKnj6kpG\nEfHbNcrGgJ0L1N8P7G8qIjMz6zqegcHMzFLnZGRmZqlzMjIzs9Q5GZmZWeqcjMzMLHVORmZmljon\nIzMzS129N72aWQ3FkSHGJka59prr2LzhhmXXM+tWbhmZLcPYxCj/5b//J8YmRltSz6xbORmZmVnq\n3E1n1mLzu+SKI0NMTl1KOyyzTHPLyKzF5nfJjU2MMjU9lXJUZtnmZGS2kgJOnitQHBlKOxKzTHEy\nMmuFoK4Ec/FSaU6rqTgytOhxxZEhJy/rCk5GZi1w8VLp8pFySStosetFYxOjcxLT/MTjUXjWLZyM\nzJpQSRyLJZpKK6je60VOPNbN6l12/PclPSPp+5IeTZYUXy/pqKQzkp6Q1FdVf5+ks5JOS9rVvvDN\n0lFJHE0PTKij1WTWTZZMRpJeA3wEuC0ifpXycPD3AQ8CxyJiG3Ac2JfUv4nyEuTbgd3Aw5LUnvDN\n8mnRVpMHOVgXqrebrge4WtIqYB1QBO4EBpP9g8BdyfYe4GBETEfEs8BZYEfLIjbrcPMHOZh1gyVv\neo2In0r6U+A54EXgaEQck7QxIoaTOhckbUgO2Qw8VXWKYlJWU6FQaDr4lZKHGMFxttJSMU72lACY\nmZmZfSyVShQKhZr7KuaXLXZcqVSaPa5Sp9E4s8Jxtk7WY+zv72/quHq66X6JcivoBuA1lFtIHwBi\nXtX5z81sGdauWYs8xMi6RD3TAe0EfhwRYwCSvgL8FjBcaR1J2gSMJPWLwPVVx29JymoaGBhoKvCV\nUPkGkuUYwXG2Ur0xnjxXrtfT0zP7ePW6Xm7ZOlBzX8X8ssWOm5y5NJuMenvLdRqNM22Os3XyECPA\n+Ph4U8fV873rOeBNktYmAxHeDpwCjgB7kzr3AIeT7SPA3cmIuxuBrcCJpqIz6wYeWWdW1zWjE5Ie\nB54GppLHzwK9wCFJ9wJDlEfQERGnJB2inLCmgPsiwl141hEqk6C2MnFcvFTiseMHeP/bHmjZOc3y\npq5ZuyPi48DH5xWPUe7Cq1V/P7B/eaGZZUtxZIgLz59n8OinaicOt3DMmubLo2Z1Wmr27UZnXDCz\nX3AyMjOz1DkZmZlZ6pyMzMwsdU5GZmaWOicjMzNLnZORmZmlzsnIzMxS52RkZmapczIyywMvuGcd\nzsnILAe84J51urrmpjPrZu2YHLVpSQtp1TqYfintYMxaxy0jsyWMTYxmZs65SgvpFU2xal3tOsWR\nIXfnWe44GZnl0EuTF3lxslRz39jEqLvzLHfcTWeWc5VuxGuvuY7NG25IOxyzprhlZJZzlW5Et4Ys\nz5ZMRpLeIOlpSd9JHscl3S9pvaSjks5IekJSX9Ux+ySdlXRa0q72/gpmjam+plIcGfKQabMMWDIZ\nRcSPIuKNEXEb8I+Bi8BXgAeBYxGxDTgO7AOQdBPlJci3A7uBhyWpTfGbNaz6mkqtVsWqdb6nx2yl\nNdpNtxP4vxFxHrgTGEzKB4G7ku09wMGImI6IZ4GzwI4WxGq2Il6cTO7pGR/1MuJmK6TRAQzvBR5L\ntjdGxDBARFyQtCEp3ww8VXVMMSmrqVAoNBjCystDjOA46zXZU5qNo7JdKpUoFMr370xNl+tNXHyB\nL379M7z3rR8GYGZmZvYcle35jyu1D2DtmrX8n6f/BiVfKSu/Q/XvlxVZimUxeYgz6zH29/c3dVzd\nLSNJV1Ju9XwpKYp5VeY/N8uNtWvWMtlT4qXpEq/EzNIHZMBLkxc5+OSB3MRrtphGWka7gW9HxM+S\n58OSNkbEsKRNwEhSXgSurzpuS1JW08DAQCPxrqjKN5AsxwiOs1Enz5XjuGXrwOz25MwlDj55YLYV\nBNDT01PzMQv7qlXKent75/xOt2xN//WQlb/5UvIQZx5iBBgfH2/quEauGb0P+Muq50eAvcn2PcDh\nqvK7Ja2WdCOwFTjRVHRmZtYV6moZSbqK8uCF36sq/iRwSNK9wBDlEXRExClJh4BTwBRwX0S4C8+s\n3ZJ56yanLrH6yrVpR2PWkLpaRhHxYkRcFxGlqrKxiNgZEdsiYldEvFC1b39EbI2I7RFxtB2Bm9lc\nlXnrsjCHnlmjPAODWSfy+keWM05GZh3I6x9Z3jgZmZlZ6pyMzMwsdU5GZmaWOicjMzNLnZORmZml\nzsnIulPVDaJmlj4nI+tKXXODqO83spxwMjLrYL7fyPKi0fWMzHKrODLE2MSou+bMMsgtI+salSXG\nO75rziyHnIzMzCx17qazjlXplrv2muvYvOGGtMMxs0W4ZWQdq9It54v3ZtnnZGRmZqmrKxlJ6pP0\nJUmnJf1A0m9IWi/pqKQzkp6Q1FdVf5+ks0n9Xe0L38zMOkG9LaMDwFcjYjvwa8APgQeBYxGxDTgO\n7AOQdBPlJci3A7uBhyWp1YGbmVnnWDIZSboGeEtEPAIQEdMRMQ7cCQwm1QaBu5LtPcDBpN6zwFlg\nR6sDNzOzzlHPaLobgZ9JeoRyq6gA/AdgY0QMA0TEBUkbkvqbgaeqji8mZTUVCoVm4l5ReYgRHOd8\nkz0lAEqlEoVCYfb5zMzMbJ3KdnXZQvsWO26l9zUaZ+X/IC1+bbZO1mPs7+9v6rh6uulWAbcBfx4R\ntwEXKXfRxbx685+bWUasXbOWyZ4Sq9alHYlZbfW0jH4CnI+ISjr+MuVkNCxpY0QMS9oEjCT7i8D1\nVcdvScpqGhgYaDzqFVL5BpLlGMFxLuTkufLP6+3t5ZatA7PPe3p6ZutUtqvLFtq32HErva/ROCdn\nLnHwyQN88N0f5dabV+514tdm6+QhRoDx8fGmjluyZZR0xZ2X9Iak6O3AD4AjwN6k7B7gcLJ9BLhb\n0mpJNwJbgRNNRWdmZl2h3hkY7gcelXQl8GPgd4Ee4JCke4EhyiPoiIhTkg4Bp4Ap4L6IcBeeraji\nyJAnRDXLkbqSUUR8D/j1Grt2LlB/P7B/GXGZLcvYxOgvJkT1QnpmmecZGKzjdc1CevUIvNCeZZIn\nSjXrIhcvlYe3ewJZyxq3jMy6jFd/tSxyMjIzs9Q5GZmZWep8zcg6SmVBPY+cq0MyytDXjiwL3DKy\njlAcGeLkuQIXnj/vkXN18rUjyxInI+sIlVVdnYTM8snJyMzMUudkZGZmqXMyMut2yUAGz8xgaXIy\nMutyHshgWeBkZGZmqXMyMjOz1DkZmZlZ6upKRpKelfQ9SU9LOpGUrZd0VNIZSU9I6quqv0/SWUmn\nJe1qV/BmZtYZ6m0ZvQLcHhFvjIgdSdmDwLGI2AYcB/YBSLqJ8qqv24HdwMOS1NqwzawdKjNZeGSd\nrbR6k5Fq1L0TGEy2B4G7ku09wMGImI6IZ4GzwA7M2qDy4em56FqjMpOFR9bZSqs3GQXwNUnfkvRv\nk7KNETEMEBEXgA1J+WbgfNWxxaTMrOU8DZBZZ6h31u43R8TfSboOOCrpDOUEVW3+87oUCoVmDltR\neYgRujPOyZ7yyqUzMzM1HxvdV61V52zHvnbEWSqVZveVSqWW/p268bXZLlmPsb+/v6nj6moZRcTf\nJY+jwF9T7nYblrQRQNImYCSpXgSurzp8S1Jm1lKr1oE8HtSsIyzZMpJ0FXBFRPxc0tXALuDjwBFg\nL/BJ4B7gcHLIEeBRSZ+m3D23FTix0PkHBgaWE39bVb6BZDlG6N44T54roFfK2z09PTUfG91XrVXn\nbMe+dsTZ29s7u6+3t5dbti7/79Str812yEOMAOPj400dV0833UbgK5Iiqf9oRByVVAAOSboXGKI8\ngo6IOCXpEHAKmALui4imuvDMzKw7LJmMIuL/AbfWKB8Ddi5wzH5g/7KjM7OVEzA57VGJlg4vO25m\nQHnCVLO0+PKvmV3Oy0rYCnMyMrPLeFkJW2lORmZmljonIzNbUnFkyF121lYewGC5UxwZYmxi1PPR\nraBKd93mDTekHIl1KreMLHc8H51Z53EyMjOz1DkZmZlZ6pyMzMwsdR7AYLnhgQtmncstI8uF4sgQ\nF54/74ELZh3KychyYWxi1EnIrIM5GZmZWeqcjMzMLHVORma2sGT2bg8asXarOxlJukLSdyQdSZ6v\nl3RU0hlJT0jqq6q7T9JZSacl7WpH4GbWfpXZu6emp7yshLVVIy2jBygvJV7xIHAsIrYBx4F9AJJu\norwE+XZgN/CwJLUmXDNLi5eVsHaqKxlJ2gLcAfxFVfGdwGCyPQjclWzvAQ5GxHREPAucBXa0JFoz\nM+tI9d70+mngj4C+qrKNETEMEBEXJG1IyjcDT1XVKyZlZg3zja5m3WHJZCTp3cBwRHxX0u2LVI1m\nAigUCs0ctqLyECN0ZpyTPSUOPnmA9771w7NlMzMzcx5rlTW7r1qrztlpcZZKpYZfa5342kxL1mPs\n7+9v6rh6WkZvBvZIugNYB/RK+gJwQdLGiBiWtAkYSeoXgeurjt+SlJktadU6eHGyxFWre5l+Ke1o\nzGylLJmMIuIh4CEASW8F/jAi/pWkPwH2Ap8E7gEOJ4ccAR6V9GnK3XNbgRMLnX9gYGA58bdV5RtI\nlmOEzorz5LkCB48d4IN3fJSeNaCpKwHo6emZrVPZXqys2X3VWnXOTouzt7eXW7bW91rrpNdm2vIQ\nI8D4+HhTxy3nPqNPAO+QdAZ4e/KciDgFHKI88u6rwH0R0VQXnnWvOUOKLZOKI0Me6m0t01Ayioiv\nR8SeZHssInZGxLaI2BURL1TV2x8RWyNie0QcbXXQZpa+yoq7HuptreAZGMysMZ6VwdrAycjMGuIu\nVGsHJyMzM0udk5GZmaXOycjMzFLnZGRmZqlzMrLMKI4MeYRWHgW+18iWzcnIMmNsYtQjtHLo4qWS\n7zWyZXMyMjOz1DkZmZlZ6pyMzMwsdU5GZmaWOicjMzNLnZORmZmlrp6VXs3M6lIcGWJsYpRrr7mO\nzRtuSDscyxG3jCx1lUXafMNr/nmNI2vWkslI0hpJ35T0tKSTkj6WlK+XdFTSGUlPSOqrOmafpLOS\nTkva1c5fwPKrkoQuPH/eSxKYdbklk1FEvAz8k4h4I3ArsFvSDuBB4FhEbAOOA/sAJN0EvAfYDuwG\nHpakNsVvOVb5Fu0kZGZ1ddNFxIvJ5hrK15kCuBMYTMoHgbuS7T3AwYiYjohngbPAjlYFbGYZ5NVf\nbZnqGsAg6Qrg28AvA38eEd+StDEihgEi4oKkDUn1zcBTVYcXk7KaCoVCU4GvpDzECPmLc7KnBMDM\nzMycx1pli+1rtP5S52r1ObshzomLL/DFr3+G9771wwCUSqU5r8e8vTazLOsx9vf3N3VcvS2jV5Ju\nui3ADkk3U24dzanWVARmZtb1GhraHRETkv4X8C5guNI6krQJGEmqFYHrqw7bkpTVNDAw0FjEK6jy\nDSTLMUJ+4zx5rvy8p6dnzmOtssX2NVp/qXO1+pzdGGdvby+3bB3I7Wszi/IQI8D4+HhTx9Uzmu4f\nVEbKSVoHvAM4DRwB9ibV7gEOJ9tHgLslrZZ0I7AVONFUdGZm1hXqaRn9Q2AwuW50BfDFiPiqpG8A\nhyTdCwxRHkFHRJySdAg4BUwB90WEu/AMgFXrykO6fUOkmVVbMhlFxEngthrlY8DOBY7ZD+xfdnTW\ncV6cLDE2gZNRl1i1Lu0ILC88HZCZtc2Lk6W0Q7Cc8HRAZmaWOicjM2urtWvWcvJcgeLIUNqhWIY5\nGZlZW700edGTp9qSnIxs5XnqmM6X/I11xeVlbiFZLU5G1laVmbmrP4AuXip5gtQOV/kbvxIzl5W5\nhWS1OBlZW3l9GzOrh5ORmZmlzsnIzMxS52RkZmapczKyliuODHnElJk1xMnIWm5sYtQDFsysIU5G\ntjKivLKr/Iozsxr80WAr4uKlEgefPDDnvhMzswonIzMzS52TkZmZpa6eZce3SDou6QeSTkq6Pylf\nL+mopDOSnqgsTZ7s2yfprKTTkna18xewjPL8c7YEj7q0avW0jKaBP4iIm4HfBD4k6VeAB4FjEbEN\nOA7sA5B0E+UlyLcDu4GHJakdwVt2ef45W1DyReXC8+c96tJmLZmMIuJCRHw32f45cBrYAtwJDCbV\nBoG7ku09wMGImI6IZ4GzwI4Wx21mOeUvKlZLQ8uOS3odcCvwDWBjRAxDOWFJ2pBU2ww8VXVYMSmr\nqVAoNBJCKvIQI2QnzsmeEqHyqLmZmbmPtcoaqdOK+kudq9XndJwLH1cqlTLzuoXsvIcWk/UY+/v7\nmzqu7gEMkl4FPA48kLSQYl6V+c+ty6xa53uJzKw5dbWMJK2inIi+EBGHk+JhSRsjYljSJmAkKS8C\n11cdviUpq2lgYKDxqFdI5RtIlmOE7MR58lyBg8cO8P63PUAPPQD09Mx9rFXWSJ1W1F/qXK0+p+Nc\n+Lir1/Vyy9YBiiNDjE2Mcu0117F5ww2XHdtuWXkPLSYPMQKMj483dVy932E/D5yKiANVZUeAvcn2\nPcDhqvK7Ja2WdCOwFTjRVHRm1hW87pUt2TKS9GbgA8BJSU9T7o57CPgkcEjSvcAQ5RF0RMQpSYeA\nU8AUcF9EuAvPzMwWtGQyioj/DVze5i7bucAx+4H9y4jLzLqB70ezhC8127IVR4b8gWJN8TBvq3Ay\nsmWr9Pf7A8XMmuVkZGZmqWvoplezapXhuO6eM7PlcsvImubuOTNrFScjMzNLnbvprCnFkSF3z1lb\npT0rg60st4ysKWMTo+6es7Ypjgxx4fnznpWhizgZmVnm+MtO93EyMrPs8IwMXcvJyMwyo+aMDEmC\n8hLlnc3JyMwyrZKgfO2oszkZmZlZ6jy028xyx8O+O4+TkS2q8qZfc+VaXp66NPvoC8yWpsrsHx98\n90edjDqEu+lsUdUrcFY/etitmbXSkslI0uckDUv6flXZeklHJZ2R9ISkvqp9+ySdlXRa0q52BW6t\nV1mXyKOWLJMCvzY7WD0to0eAd84rexA4FhHbgOPAPgBJN1Fefnw7sBt4WJJaF661U3XrBzzlj2XL\nxUslj6jrYEsmo4j4W+Dv5xXfCQwm24PAXcn2HuBgRExHxLPAWWBHa0K1FZPc13Hh+fPujjOzFdHs\nAIYNETEMEBEXJG1IyjcDT1XVKyZlCyoUCk2GsHLyECMsP87JnhIAExdf4Itf/wzvfeuHZ/fNzMzU\nfGx032L123HOZs7V6nM6ztads1QqUSgUZl+rleetkof3etZj7O/vb+q4Vg1giBadx8zMulCzLaNh\nSRsjYljSJmAkKS8C11fV25KULWhgYKDJENqv8g0kyzFC6+I8ea58np6enjmPtcqa3bdY/Xacs5lz\ntfqcjrN157x6bS8INHUlAL2vKj9f7v1GeXiv5yFGgPHx8aaOq7dlpORfxRFgb7J9D3C4qvxuSasl\n3QhsBU40FZmZ2Tzz567zVEGdY8mWkaTHgNuBV0t6DvgY8AngS5LuBYYoj6AjIk5JOgScAqaA+yLC\nXXgZV7mx1SPnzCwtSyajiHj/Art2LlB/P7B/OUFZ+1VPp1IZ0v3+tz2QdlhmzUnuQfJsDPnlGRi6\n1Ow9ReNuEVn+Vd+D5Ju388nJqEss9Aa9eKnke4msM1TdH+frSPnjZNQlqltCXknTOlHNhfksN5yM\nuozfsNY1vEJsrjgZmVlHmh32PT7qhJQDTkZdwBOeWjfzBKv54MX1Olj1/UPulrOulnTZeWXY7HLL\nqIN5ITyzMs/UkH1ORmZmljp305lZ16megQTKy6dctbo35ai6m1tGHaRyY+uPhp7xvURmi6i+7+7C\n8+c5+OQBXpwspR1WV3My6hCr1jHnznNfKzKrIRnIUPmi5hlIssPddDlSuVdi84YbZrsZ1ly5lsme\nElPTIH+1MFvUxUslHjt+oO5Jgau78zwKr7388ZUjYxOjs9P5VLeCDj55gFfi8mWezax+a9esndPN\nXUlEHoW3MpyMMmj+pKaV55NTlzydj1mbvDR5cU43t2e0X1ltS0aS3iXph5J+JOk/tuvn5NVCs2gX\nR4Z+0eqZ1wpyAjJbOXOuJ3meu7ZrSzKSdAXwGeCdwM3A+yT9Sjt+Vl7Nb/5XktOF589ftqSyk5BZ\numrdNLtQD4YTVnPa1TLaAZyNiKGImAIOAne26WdlUnFkqL4X6bw1WJx4zDIseb/+aOiZBXswPDFr\nc9o1mm4zcL7q+U8oJ6jcKI4M1XUj3EKjbcYmRiGYnRtu8Oin+OAdH51zox00PrrHzNJT6/06v+zi\npfL9SpXRri9PXZrzePW6Xo/Mq0ER0fqTSv8CeGdE/F7y/F8COyLifoDx8fHW/1AzM8uUvr4+1Vu3\nXd10ReC1Vc+3JGVmZmaXaVcy+hawVdINklYDdwNH2vSzzMws59pyzSgiZiR9GDhKOeF9LiJOV/Y3\n0nQzM7PO15ZrRmZmZo1IfQYGSR+RdFrSSUmfSDuexUj6Q0mvSLo27VhqkfQnyf/ldyV9WdI1acdU\nkYeboCVtkXRc0g+S1+P9ace0EElXSPqOpMx2f0vqk/Sl5DX5A0m/kXZMtUj6fUnPSPq+pEeTSwup\nk/Q5ScOSvl9Vtl7SUUlnJD0hqS/NGJOYasXZ8GdRqslI0u3APwVuiYhbgE+lGc9iJG0B3gFk+QaC\no8DNEXErcBbYl3I8QK5ugp4G/iAibgZ+E/hQRuMEeAA4lXYQSzgAfDUitgO/Bpxeov6Kk/Qa4CPA\nbRHxq5QvXdydblSzHqH8nqn2IHAsIrYBx8nGe7xWnA1/FqXdMvr3wCciYhogIn6WcjyL+TTwR2kH\nsZiIOBYRryRPv0F5FGMW5OIm6Ii4EBHfTbZ/TvnDc3O6UV0u+WJ0B/AXaceykOSb8Fsi4hGAiJiO\niImUw1pID3C1pFXAVcBPU44HgIj4W+Dv5xXfCQwm24PAXSsaVA214mzmsyjtZPQG4LclfUPS30ga\nSDmemiTtAc5HxMm0Y2nAvcD/SDuIRK2boDP3IV9N0uuAW4FvphtJTZUvRlm+4Hsj8DNJjyTdiZ+V\ntC7toOaLiJ8Cfwo8R/n2kxci4li6US1qQ0QMQ/nLE7Ah5XjqUddnUdvXM5L0NWBjdRHlN9FHk5+/\nPiLeJOnXgUPA69sdUy1LxPkQ5S666n2pWCTOP46I/5bU+WNgKiIeSyHE3JP0KuBx4IGkhZQZkt4N\nDEfEd5Nu7qyOTF0F3AZ8KCIKkv6MchfTx9INay5Jv0S5tXEDMA48Lun9OXrvZPkLSUOfRW1PRhHx\njoX2Sfp3wF8l9b6VDA54dUQ83+645lsoTkn/CHgd8D1Jotzc/LakHRExsoIhAov/fwJI2ku5C+dt\nKxJQfXJzE3TSVfM48IWIOJx2PDW8Gdgj6Q5gHdAr6b9GxL9OOa75fkK5N6GQPH8cyOLAlZ3AjyNi\nDEDSXwG/BWQ1GQ1L2hgRw5I2ASv+GVSvRj+L0u6m+2uSQCW9AbgyjUS0mIh4JiI2RcTrI+JGym+y\nN6aRiJYi6V2Uu2/2RMTLacdTJU83QX8eOBURB9IOpJaIeCgiXhsRr6f8/3g8g4mIpCvpfPK+Bng7\n2Rxw8RzwJklrky+bbydbAy3E3NbvEWBvsn0PkJUvTHPibOazKO1lxx8BPi/pJPAykLk3VQ1BdrtG\n/jOwGvha+X3FNyLivnRDWvom6KyQ9GbgA8BJSU9T/ls/FBH/M93Icut+4FFJVwI/Bn435XguExEn\nJD0OPA1MJY+fTTeqMkmPAbcDr5b0HOUuzk8AX5J0L+WRve9JL8KyBeJ8iAY/i3zTq5mZpS7tbjoz\nMzMnIzMzS5+TkZmZpc7JyMzMUudkZGZmqXMyMjOz1DkZmZlZ6pyMzMwsdf8f8Mib8/WDDJYAAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -130,16 +390,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEKZJREFUeJzt3W2sHNddx/Gvsa+BPCiJwcTUudVtUVEtIbdFwXWUQBwe\nopsI1eJVX0RA6zbyC8KDiKhrKjUXqUI8CBVVPChKAzIQcKFKUIpSElvqFVGUOJj6oYU42I5NbNcq\nFqSWqFTVFcOLM5c7u569s7NP5+ye70ca+czszO7fO7O/PXtmdi9IkiRJkiRJkiRJkiRJkiRphBaB\nU8BpYF/N7Q8BJ4CTwEvA9spt58vlx4BXx1qlJGlg64EzwAIwBxwHtnWtcxdwS9leBF6p3HYO2DTe\nEiVJTb6r4fYdhLA/D1wDDgK7u9Z5Gbhato8Ad3Tdvm64EiVJw2oK+63Ahcr8xXJZLx8BnqvMF8Bh\n4Cjw8CAFSpKGt6Hh9qLFfd0H7AHuriy7G7gMbAYOEcb+X2xToCRpeE1hfwmYr8zPE3r33bYDTxDG\n7N+qLL9c/nsFeIYwLNQd9m3eUCRJq0Y2TL4BOEs4QbuR+hO0byeM6+/sWn4DcHPZvpFwpc79NY+R\nYtgvxS6gh6XYBdRYil1AjaXYBdRYil1AjaXYBfSwFLuAGkuxC6jRKjubevbfAR4BnidcmfMk8Bqw\nt7z9ceCTwG3An5bLrhF68FuApyuP8xTwQpviJEmj0RT2AF8sp6rHK+2PllO3N4D3DliXJGmEmq7G\nydVy7AJ6WI5dQI3l2AXUWI5dQI3l2AXUWI5dQA/LsQuosRy7gFmQ4pi9JKWuVXbas5ekDBj2kpQB\nw16SMmDYS1IGDHtJyoBhL0kZMOwlKQOGvSRlwLCXpAwY9pKUAcNekjJg2EtSBgx7ScqAYS9JGTDs\nJSkDhr0kZcCwl6QMGPaSlAHDXpIyYNhLUgYMe0nKgGEvSRkw7CUpA4a9JGXAsJekDBj2kpQBw16S\nMmDYS1IGDHtJyoBhL0kZMOwlKQOGvSRlYEPsAqTIikp7XbQqpDGzZy915L00m/oJ+0XgFHAa2Fdz\n+0PACeAk8BKwvcW2kqQErAfOAAvAHHAc2Na1zl3ALWV7EXilxbZgt0pxFVAUeBxq+rQ6Zpt69jsI\ngX0euAYcBHZ3rfMycLVsHwHuaLGtNA2KyiRNpaaw3wpcqMxfLJf18hHguQG3lRJmzmu6NV2N0+YI\nvw/YA9w9wLZLlfZyOUmxmOxK0a5yGkhT2F8C5ivz84QeerftwBOEMfu3Wm4LnWEvxVJcP9vzasyV\ndb1cU5OyTGdH+LFR3vkG4CzhJOtG6k+yvp0wNr9zgG3BXpTiqIzDF23a3dtLsYz8+HsAeJ0Q6PvL\nZXvLCeCzwH8Bx8rp1YZtu/mC0Tj1OrlaCXDDXlOp1fGXwkfQNT8rS0MqKofYuvrl1UOwsV1dQOUO\nuu9fGrdW2ek3aKV21upN2dtXsgx7aWTMeaXLsJfaM9U1dfzVS+VkRCHtaSZNH3v2yoydcuXJsJeG\n47uHpoJhLw2lNut9A1ByDHtJyoBhL0kZMOwlKQOGvSRlwLCXpAwY9po1Kf0+TUq1KHN+g1azypCV\nKuzZa0aZ9VKVYS9JGXAYR7Mita5891+1gvo/fCJNhD17zZCU8r4u66V4DHtJyoBhL02OXXxFY9hL\nUgYMe80Ce8xSA8NekjJg2EtSBgx7ScqAYS9JGfAbtJpmnpiV+mTPXtOq6PhH0poMe0nKgGEvTZYf\nRRSFYS9NlFmvOAx7ScqAV+NI8VW7+/7GvcbCnr0UT+UPkju8o/Ey7KVoDHhNTj9hvwicAk4D+2pu\nfzfwMvAt4NGu284DJ4FjwKsDVymtqvSGJY3KeuAMsADMAceBbV3rbAbuBD7F9WF/DtjU8Bi+cNVG\nAcVK4I+oPer7G6ot9avV8dLUs99BCPvzwDXgILC7a50rwNHy9jqecJKkyJrCfitwoTJ/sVzWrwI4\nTHgzeLhdaZKkUWm69HLYj5V3A5cJQz2HCGP/Lw55n5KklprC/hIwX5mfJ/Tu+3W5/PcK8AxhWKgu\n7Jcq7eVykiSt2lVOY7EBOEs4QbuR+hO0K5boPEF7A3Bz2b4ReAm4v2Y7T0qpDU/QSsHIj5cHgNcJ\nJ2r3l8v2lhPAFsK4/lXgLeBN4CbgnYQ3h+PAVyvbjr1gzTTDXgpaHS8pXClTkEYdmg5F5yEzivao\n72/YNnTPSDVaZaffoJWSYude42HYS1IGDHspTXbxNVKGvZQuT9pqZAx7KVnmvEbHsJekDBj2kpQB\nw17TxHENaUCGvSRlwD84rlTZi5dGyJ69Elb0aGen8hs60mAMe2kqmPMajmEvSRlwzF4psfvarPoc\n+cuY6ps9eyXGvG/mc6T2DHtJyoBhL0kZMOyl6eV4jvpm2EtSBgx7ScqAYS9JGTDsJSkDhr0kZcCw\nl6QM+HMJis3LB6UJsGevBJj30rgZ9pKUAcNemm7+URP1xbCXppo5r/4Y9pKUAcNekjJg2EuzwfEc\nrcmwV0wGlDQhhr0kZcCwl6QMGPaSlIF+wn4ROAWcBvbV3P5u4GXgW8CjLbeVJCVgPXAGWADmgOPA\ntq51NgN3Ap+iM+z72RY8SZez8tufRRG3HfvxR1WLMtNqnzf17HcQAvs8cA04COzuWucKcLS8ve22\nkqQJaAr7rcCFyvzFclk/htlWs8ceqBRRU9gP88L0Ra0uRbXh8SFNUNMfL7kEzFfm5wk99H602Xap\n0l4uJ820AlgXuwhpmuwqp7HYAJwlnGTdSO+TrBACu3qCtt9t7eHlIYGTn56g1UwZ+T5/AHidcLJ1\nf7lsbzkBbCGMzV8F3gLeBG5aY9uxF6wkJRCkhr1mSqt9nsLn6II06tB4FZ27OqV27McfVS2+jjLT\nKjv9Bq0kZcCwl2aLQzqqZdhLUgaaLr2UhmEPU0qEPXtNgJk/IT7R6smwl2aGWa/eDHtJyoBj9tJs\nqnbzvf5e9uyl2VR0zzjGkznDXpp55rwMe0nKgmP2Gge7klJi7NlrTMx7KSWGvSRlwLCXpAwY9pKU\nAcNekjJg2GvUPDMrJciwl/LhG3HGDHtJyoBfqtKo2GucDiv7yR9Hy4w9e42QeZ8+91GuDHtJyoBh\nL0kZMOwlKQOGvUbBgeDp4z7LjGEvSRkw7KV8+ecKM2LYa1AGxdRz9+XEsJekDBj2kpQBfy5Bw3Is\nYPpV96E/ozCj7NlrSGb9bHA/zjp79mrLVJCmkD17DcC8l6aNYS9JGegn7BeBU8BpYF+PdT5T3n4C\neF9l+XngJHAMeHXgKiVNSoHfocjSeuAMsADMAceBbV3rPAg8V7bfD7xSue0csKnhMTyopksBRSUQ\n2rQH3W7c7diPn2otSlyrfdTUs99BCPvzwDXgILC7a50PAAfK9hHgVuD2yu1eyiVJkTWF/VbgQmX+\nYrms33UK4DBwFHh48DIVWaXXp4y4z2dI06WX/e7oXr33e4CvAZuBQ4Sx/xdr1luqtJfLSUkp8ENa\nbtznidlVTgNpCvtLwHxlfp7Qc19rnTvKZRCCHuAK8AxhWKgp7JUWe3ZSGpbp7Ag/1mbjpmGco8C7\nCCdoNwIfBJ7tWudZ4BfK9k7gG8DXgRuAm8vlNwL3A19pU5wkaTSaevbfAR4BnidcmfMk8Bqwt7z9\nccKVOA8STuR+E/hwedsW4OnK4zwFvDCqwiVJ/UthQM6BwbQVq/+sY7j2KO5jHO3Yj598Lb4+09Qq\nO/0GrSRlwLBXHS+5Ux2Piynmr16qyhey6nhczAB79upS9JxRzq47Ljw2poxhrzX4elYdj4tpZNhr\nha9gaYYZ9pKUAcNekjLg1Thy+EbKgD17Yd5Ls8+wl6QMGPaSBuVHwinimH2efJFKmbFnny3zXiPh\nt2mnhGGfH1+YGiEPp2lh2EtSBgx7ScqAYS9pFBzPSZxX4+TDF6PGbeUY888YJsiefR6Kjn+ksfD4\nSplhL0kZcBhnttnVUgy9jjuHdyKyZz/zzHvFUPRoKxZ79rPHk2RKVTX1PT4nzJ797LI7pQR5WMZi\n2M+Ort8o8UUlaZXDONOtuH7WT8eSrmfPfurZg5fUzLCXFIO9lAkz7CUpA47ZTy97Rpp2fvlqggz7\n6WPIa0ZULyjouLig7hj3DWBIDuNMh4KOSyvNe80yv307Dvbs0+VllZJGxp590uzVSBX+cfMh9BP2\ni8Ap4DSwr8c6nylvPwG8r+W2OStqJvCAlrp1vyYM/hFbD5wBFoA54DiwrWudB4Hnyvb7gVdabAtp\n7rBdI7qf7hCvW15AURf6XcsHbY/iPtZqfymhWlJ9jlKtpWnfxXou6urqeI1QaVeXjdOuCTxGW63+\n3009+x2EwD4PXAMOAru71vkAcKBsHwFuBbb0uW2qdo3uropqo3Jg9tpPkzhuR2k5dgEa2HLsAnpY\nblqhqGl2h3/dNIxdQ24fXVPYbwUuVOYvlsv6WedtfWw7K+oOqpqDa9qCXEpRPx2l2nY/wT/JTwsT\n1RT2/f6Hx3mZyNtYffL3DHE/vXZiXQ/gsR7LG3oMxXUNSSlp/CTAAC/fSQ8pDaTp0stLwHxlfp7Q\nQ19rnTvKdeb62HZFv0/Qk+U0rDHtkLr3vHWR2+N+nN9KqJZUn6NUa2nad7Gei7q6xvE4vfT8ctdj\nfWxct91U2ACcJZxk3UjzCdqdrJ6g7WdbSVIiHgBeJ5xs3V8u21tOK/6ovP0E8KMN20qSJEmaZb8M\nvAZ8FfjdyLVUPQr8L7ApdiHA7xOeoxPA08AtEWtJ8Qtz88CXgH8lHEe/ErecDuuBY8AXYhdSuhX4\nPOF4+jfCEGxs+wn77ivAXwPfHaGGPwO+XtawYhNwCPh34AXCc5dCXSnlQd/uIzyZc+X85oi1VM0D\n/wicI42w/xlWr6D6nXKKod8vzE3aFuC9ZfsmwhBiCnUB/DrwFPBs7EJKB1i9um0D8YNiAXiD1YD/\nHPCLEer4ccKvAFRD9feAj5XtfcR53dXVlUoetPK3wE/GLqLG3wHbSSfsq34O+KtIj30X4U1wxcfL\nKTV/D/xU7CIIV6gdJnRqUujZ30II1pRsIrw530Z48/kC8NORalmgM1RPAbeX7S3lfAwLdNZV1ZgH\nqfwQ2ruAnyBcybMM3Bm1mmA34VLRk7EL6WEPq1dBTVo/X7aLbYHQEzoSuQ6ATwO/QRgOTME7gCvA\nnwNfBp4AbohaEfw38AfAm8DXgG8Q3iBTcDthCIXy39vXWDeWxjyY5E8cHyK8K3b7RFnHbYRxwx8j\n9PTfGbmm/cD9lWWT+n3hXjX9Jqu9wk8A3yaMa8aQ+nXENxHGo38V+J/Itfws8J+E8fpdcUv5fxsI\nV809Avwz8IeET2afjFjTDwG/RniTvkr4VP0QYegrJSl+cSp2HrTyReDeyvwZ4Psi1QLwI4R38HPl\ndI3wGz8/ELGmFR8CXgK+J2INO+kcxtlPOidp54DnCcGRgt8mfAo6B1wGvgn8RdSKQmfiXGX+HuAf\nItWy4oPAZyvzPw/8caRaFrh+GGelA/aDpDWM8yHi50Ere1n92twPEz7KpSSVMftFwtUK3x+5jlS/\nMLeOEKSfjl1ID/eSxpg9wD8RXmsAS8S/Au49hCuovpewHw8AvxSplgWuP0G70pn5OPFOhC7QWVcq\nedDKHPCXhP/Iv5DOx90Vb5BG2J8G/oMwJHAM+JOItaT4hbl7COPix1l9jhajVtTpXtK5Guc9hCGc\nlC7b+xirl14eYPXqvEn6G8I5g28TPpF9mPDaP0zcSy+769pDWnkgSZIkSZIkSZIkSZIkSZIkSZIk\nSWn5P0Tf0KWric9xAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF1xJREFUeJzt3X+QXWV9x/HPJxtCAoRUHMBpMPFHIlSKAt1GWixFqRKx\nJZ1xpg1UrToFWkWZ2h+0qNN2xpky1U4by9gSi452pGlFqThVGhhsGcZBshYwaNIk/ljDCtmFyOay\nsO5m8+0f99zl7M3du+fuj3uee+/7NZPZe37t/e5m7/3c5znPeY4jQgAApGJZ2QUAAJBHMAEAkkIw\nAQCSQjABAJJCMAEAkkIwAQCSUiiYbG+2vdf2Pts3Nth+te1Hs38P2H5NbtsPs/UP235oMYsHAHQf\nz3Udk+1lkvZJukzSjyXtkrQ1Ivbm9rlI0p6IGLW9WdJfRsRF2bbvS/qFiPjJEv0MAIAuUqTFtEnS\n/ogYjIhJSTskbcnvEBEPRsRotvigpLW5zS74PAAAFAqMtZIO5pYf18zgqfd7kr6WWw5J99jeZfua\n1ksEAPSS5Yv5zWy/QdK7Jb0+t/riiHjC9umqBtSeiHggf9zo6CjzIgFAF1uzZo2L7lukxTQkaV1u\n+axs3QzZgIftkq7Mn0+KiCeyryOS7lS1axAAgIaKBNMuSRtsr7e9QtJWSXfld7C9TtIXJb0jIr6X\nW3+S7VOyxydLerOkxxareABA95mzKy8ipmxfL2mnqkF2W0TssX1ddXNsl/QRSadJ+qRtS5qMiE2S\nzpR0p+3InuvzEbGz2fOtWbNmYT/REhkYGJAk9ff3l1xJc9S5uDqhzk6oUaLOxdYJdY6Ojs69UwOF\nzjFFxN2Szq5bd2vu8TWSjhvYEBE/kHT+vCoDAPQkhnEDAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIw\nAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEA\nkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJC\nMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSQjABAJJCMAEAkkIwAQCSUiiYbG+2vdf2Pts3Nth+te1H\ns38P2H5N0WOBbjE0PKjdBwY0NDxYdilAR5szmGwvk3SLpMslnSvpKtvn1O32fUmXRMRrJX1U0vYW\njgW6wuEjI/rUf35Uh4+MzLnv0PAgAQbMokiLaZOk/RExGBGTknZI2pLfISIejIjRbPFBSWuLHgv0\nosNHRgoFGNCLHBHNd7DfJunyiLg2W367pE0R8YFZ9v9jSa+KiGuLHjs6OjpdxP79+xfy8wClmeir\naMf927T1khu0Ymq1JGn5Kum5iYpOWrFaR59/YdnLpDim6f2AbrRx48bpx2vWrHHR4xZ18IPtN0h6\ntyTOJQGqhtCO+7fpuYnKjOVjMVVyZUC6lhfYZ0jSutzyWdm6GbIBD9slbY6In7RybF5/f3+Bktpv\nYGBAUrr11VDn4mqlzt0HqvuuXr1a523ob7iuttzX16eTV66WLJ126ulae8b6ttRYJupcXJ1Q5+jo\n6Nw7NVCkxbRL0gbb622vkLRV0l35HWyvk/RFSe+IiO+1cizQdULHj87L1k1Mjk+vGhuvzBgsUWRU\nH4Mm0AvmDKaImJJ0vaSdkr4jaUdE7LF9ne1rs90+Iuk0SZ+0/bDth5oduwQ/B1CaWqDUQqc+cPLr\nJo9Ozvp98qP6ZgspBk2gFxQ6xxQRd0fE2RGxMSJuztbdGhHbs8fXRMSLI+LCiLggIjY1OxboJrVA\naRY6TTVoTbUy9BzoNsz8AJSsaWuqUbcg0OUIJiBhjboFgW5HMAEAkkIwAZ2gwXkooFsRTEBqQscF\nUJFRfUC3KHKBLYBZDA0PLnorZmy8sqjfD+g0BBMwD0PDgzp8ZEQTk+Ozt2JCmjhK1xvQKrrygHko\ncu3S2HiFrjdgHggmAEBSCCYAQFIIJgBAUggmAEBSCCYAQFIIJgBAUggmAEBSCCag03ArDHQ5ggno\nMNwKA92OKYmAFuSnIipd1nJacYr07PMVDQ0Pau0Z62fsUqv3tFNPP24bkCpaTEALFnwb9UVUazlV\nxp/Rjvu3NWxBcYt2dCJaTEAXoYWEbkCLCegitJDQDWgxoaflWxiSaG0ACaDFhJ6Wb2HM1tpYvkra\nN/gYtzYH2oRgAmYxNDyoib6Knj9aSWrQA9DtCCZgFoePjGjH/dt0LKbKLqWYEC06dAXOMQH1suuD\nOu1Nfmy8UnYJwKKgxQTUqV0fRLcdUA6CCehGHdrqAySCCehKtPrQyQgmoBeEmI0cHYNgAnrA2HiF\n2SDQMQgmAEBSCCYAQFIIJgBAUrjAFpCqsyYcZWg1kIJCLSbbm23vtb3P9o0Ntp9t+xu2x21/sG7b\nD20/avth2w8tVuHAYhobr3T/0Ors2iZG5yF1cwaT7WWSbpF0uaRzJV1l+5y63Z6W9H5JH2vwLY5J\nujQiLoiITQusF8A81a5tYnQeUlekK2+TpP0RMShJtndI2iJpb22HiHhK0lO2f73B8RbnspCY2n2Y\nmBkBSE+RwFgr6WBu+fFsXVEh6R7bu2xf00pxwFLhNhZAutox+OHiiHjC9umqBtSeiHhgtp0HBgba\nUNL8pV5fDXU2N9FXnYl7ampqxtei61rZZ6m3NVpudlylUin174O/zcWVcp0bN26c13FFWkxDktbl\nls/K1hUSEU9kX0ck3alq1yDQdstXVf8BSFuRFtMuSRtsr5f0hKStkq5qsr+nH9gnSVoWEc/aPlnS\nmyX9VbMn6+/vL1BS+9U+laRaXw11zm73gepznn9u//Tjvr6+GV+Lrmtln6Xe1mi52XGrV6/WeRva\n//fB3+bi6oQ6R0dH53XcnMEUEVO2r5e0U9UW1m0Rscf2ddXNsd32mZIGJK2WdMz2DZJeLel0SXfa\njuy5Ph8RO+dVKQCgJxQ6xxQRd0s6u27drbnHhyS9tMGhz0o6fyEFAgB6C8O4AQBJIZiAXsMMEEgc\nwQT0GGaAQOoIJgBAUphdHF0vP/3QihNWll0OgDnQYkLXmzH9UHZ+hTnygHQRTOgptfMrzJEnBkEg\nWQQT0KOmB0GMjhBOSArBBPS4sfEKI/SQFIIJAJAUggkA55uQFIIJXWdoeFC7Dwxo3+BjjMAriItu\nkRKCCV2nNjycu9QCnYlgAgAkhWACACSFYALwAgZBIAEEE4BpDIJACggmAEBSCCYAQFIIJgBAUggm\ndJWh4UEuqF1EQ8ODDIRA2xFM6CqHj4xwQe0iOnxkhIEQaDuCCQCQFG6tjq6Qv306gM5GiwldgXnx\ngO5BMAE4XjYDBC1QlIFgAnCc2gwQtEBRBoIJAJAUgglAc0zsijYjmAA0xcSuaDeCCQCQFK5jQkfj\n+qX2q/3OTzv1dK09Y33Z5aAL0WJCR+P6pfar/c7p2sNSIZgAAEkhmAAASSGY0LG4xQXQnQoFk+3N\ntvfa3mf7xgbbz7b9Ddvjtj/YyrFAq4aGB7X7wICefPog55aALjRnMNleJukWSZdLOlfSVbbPqdvt\naUnvl/SxeRwLtIQBD0B3K9Ji2iRpf0QMRsSkpB2StuR3iIinIuJbko62eiwAAHlFgmmtpIO55cez\ndUUs5FgAKWHGcbRJchfYDgwMlF1CU6nXV9PNdU70VSRJU1NT0+tqj5utm++2ZvsvxfO1uq3R8lI8\n35GxZ/Rv/3OLfvtXr5ckVSqVef3/dfPfZhlSrnPjxo3zOq5Ii2lI0rrc8lnZuiIWciyAhK08caWW\nryq7CnSjIi2mXZI22F4v6QlJWyVd1WR/L+BY9ff3Fyip/WqfSlKtr6YX6tx9oHpsX1/f9Lra42br\n5rut2f5L8Xytbmu03I5aJqbGdfKqE3T+ucX+D3vhb7OdOqHO0dHReR03ZzBFxJTt6yXtVLWFdVtE\n7LF9XXVzbLd9pqQBSaslHbN9g6RXR8SzjY6dV6XoecyLB/SGQueYIuJuSWfXrbs19/iQpJcWPRaY\nj9ow8avfeEPZpQBYQsz8gKQNDQ9ygzqgxyQ3Kg/IO3xkRArRhZc4boWBxUSLCcmr3UGVmR7Sxa0w\nsJgIJgDzx0W3WAIEE4B5ozWLpUAwAQCSQjABAJJCMAEAkkIwAVg82WAIrj3DQhBMSFLtLrWM9uos\ntcEQDBvHQhBMSBJ3qQV6F8EEAEgKwQQASArBBABICsEEAEgKs4sDWBLMOI75osWEpDBMvHsw4zjm\ni2BCEmqB9OTTBxkmDvQ4gglJ4LolADWcYwKw+EKaOEp3LOaHYAKw6MbGK2WXgA5GVx4AICkEEwAg\nKXTloTTLV1VvkXDaqaeXXQqAhNBiQmmem+AWCb1k+Sppoq/CvZowJ4IJQFs8N1HRjvu38UEEcyKY\nAABJIZgAtFeI7jw0xeAHlI+LMbtbVAe5OPsYXLvGiQleMRtaTGib2nx49Z+Wx8YrTEXUxcbGq4Nc\njsXUces434RGCCa0DbNNAyiCYAIAJIVgAgAkhWACACSFUXlYUvnbawNAEbSYsKQaDniI6tQ05q8P\nQAOF3hpsb7a91/Y+2zfOss8nbO+3/YjtC3Lrf2j7UdsP235osQpH5xobr05Nkx8+DAA1c3bl2V4m\n6RZJl0n6saRdtr8cEXtz+7xF0isjYqPt10n6R0kXZZuPSbo0In6y6NUDALpOkRbTJkn7I2IwIiYl\n7ZC0pW6fLZI+J0kR8U1Ja2yfmW1zwedBNwtpYpLZHdDYbBdfozcVGfywVtLB3PLjqoZVs32GsnWH\nJIWke2xPSdoeEZ9q9mQDAwMFSipP6vXVpFLnRF91+pkjY89Mr5uamtmFl1+uPa7/2uq2dn2vpXi+\nVrc1Wu6UOicnJvWNh78uL5P+9b+3aeslN+iJH6VxAXYqr6G5pFznxo0b53VcO1oyF0fEhZKukPQ+\n269vw3MC6ADPT4xxvhHHKdJiGpK0Lrd8Vraufp+XNtonIp7Ivo7YvlPV1tYDsz1Zf39/gZLar/ap\nJNX6alKrc/eBaj19fX3T6/KPZ9tW/7XVbe36XkvxfK1ua7TcqXWuXr1a520o9283tdfQbDqhztHR\n0XkdV6TFtEvSBtvrba+QtFXSXXX73CXpnZJk+yJJz0TEIdsn2T4lW3+ypDdLemxelaKj1M4ZcF4J\nQKvmDKaImJJ0vaSdkr4jaUdE7LF9ne1rs32+KukHtg9IulXSe7PDz5T0gO2HJT0o6SsRsXMJfg4k\npnb9ErOGo1UMhEChmR8i4m5JZ9etu7Vu+foGx/1A0vkLKRBAb6l9qLnmrR/mXk09imHcAICkMFce\ngHRwN2OIYMIiq03ayqAHzEfttuvobXTlYVEx6AHAQhFMWDRDw4O0lAAsGMGERXP4yAgtJQALxjkm\nLBjnlbDU8jecZAh596PFhAXjvBKW0tDwoJ58+uDxN5xE1yKYACSNLuLeQzABSFOI+RZ7FMEEIElj\n45Xju4izsGIeve5GMAHoGLWw4lxTd2NUHoCOxoi97kOLCS0ZGh6kGwVJqY0KpRXVPWgxoSWHj4xI\nUf164gkr9dPJcU5OA1hUtJjQULObteX7+bl+CaVgEERXI5jQ0HT3yOiIdh8Y0L7Bxxi6i2QwCKK7\nEUxoitYRgHYjmAAASSGYAHQHzjt1DYIJQOcKTZ/35LxT92C4OI7DDf/QKbgVe3eixYTjhoYzmzM6\nGl16HY9g6lH5GRzqh4bTWkIny3fpNbseD+kimHrU4SMjx/XFN5zNGehUIW4w2KEIpl7G/W7QxcbG\nKy98yKJ7r6MQTD2MFhJ6BSP2Oguj8npM7RYBtJLQk7KWE7fISBstph5ROwlc63OnlYReNN1yGh2h\nWy9hBFOPYK474AVj4xW69RJGMAEAksI5pi5W66qgLx2YXf2t2ZevKrsiEExdLH+3WQY7AHVyl0t8\ndufHdc0VH9bhIyN6/mhFcazs4nobXXkdKn9Fe+3xvsHHNNFX0YpTXnjBMSQcaKz+tVFbPhZTsx6T\nnzEFS4dg6lD5aYTyV7fvuH+bKuPPEEbAAqw8ceWMOzfnp+9i0MTSKxRMtjfb3mt7n+0bZ9nnE7b3\n237E9vmtHIvmhoYHp18g9bc4n3F1O4BF8fzE2Iw7NzOPZHvNGUy2l0m6RdLlks6VdJXtc+r2eYuk\nV0bERknXSfqnoseiKt9FkO+aq117NP0CYdg30HYzuv1mmd6Ibr7FU6TFtEnS/ogYjIhJSTskbanb\nZ4ukz0lSRHxT0hrbZxY8tqfMNttxvouAEALSlb9I97huvmxdfRcgWlNkVN5aSQdzy4+rGjhz7bO2\n4LFdrzYc9cQTVqry3DMzRgDNmBqFSVWBjjE2XtHt922bfi1PTI5r8uikbr9vm65+4w0ztp14wkpJ\n0k8nx3XiCStnfGV6pOM5IprvYL9N0uURcW22/HZJmyLiA7l9viLpryPiG9nyvZL+VNLL5zpWkkZH\nR5sXAQDoaGvWrHHRfYu0mIYkrcstn5Wtq9/npQ32WVHgWAAAphU5x7RL0gbb622vkLRV0l11+9wl\n6Z2SZPsiSc9ExKGCxwIAMG3OFlNETNm+XtJOVYPstojYY/u66ubYHhFftX2F7QOSxiS9u9mx9c/R\nShMPANDd5jzHBABAOyU184Pt99veY3u37ZvLrqcZ239k+5jt08qupRHbf5P9Lh+x/UXbp5ZdU00n\nXHRt+yzb99n+Tvb3+IG5jyqP7WW2/9d2sl3lttfY/kL2d/kd268ru6Z6tv/Q9mO2v23789kpiNLZ\nvs32Idvfzq17ke2dtv/P9n/ZXlNmjVlNjeps+b0omWCyfamk35B0XkScJ+nj5VY0O9tnSXqTpJQv\nUtgp6dyIOF/Sfkl/XnI9kjrqouujkj4YEedK+iVJ70u0zpobJH237CLmsE3SVyPi5yS9VtJx3fpl\nsv2zkt4v6cKIeI2qpzq2llvVtM+o+prJ+zNJ90bE2ZLuUxqv8UZ1tvxelEwwSfoDSTdHxFFJioin\nSq6nmb+T9CdlF9FMRNwbMT1H8oOqjohMQUdcdB0RT0bEI9njZ1V9E11bblWNZR+UrpD0z2XXMpvs\nU/KvRMRnJCkijkbEkZLLaqRP0sm2l0s6SdKPS65HkhQRD0j6Sd3qLZI+mz3+rKTfbGtRDTSqcz7v\nRSkF06skXWL7Qdtft91fdkGN2L5S0sGI2F12LS14j6SvlV1EZraLsZNl+2WSzpf0zXIrmVXtg1LK\nJ4xfLukp25/Juhy3207qzkcR8WNJfyvpR6pe1vJMRNxbblVNnZGNflZEPCnpjJLrKaLQe1Fb78dk\n+x5JZ+ZXqfpi+nBWy4si4iLbvyjp3yW9op31TRfVvM6bVO3Gy28rRZM6PxQRX8n2+ZCkyYi4vYQS\nO57tUyTdIemGrOWUFNtvlXQoIh7JusNTHeG6XNKFkt4XEQO2/17Vrqi/KLesF9j+GVVbIesljUq6\nw/bVHfTaSfmDSUvvRW0Npoh402zbbP++pC9l++3KBha8OCKebluBmdnqtP3zkl4m6VHbVrVJ+i3b\nmyJiuI0lSmr++5Qk2+9StYvnjW0pqJgiF2wnIevOuUPSv0TEl8uuZxYXS7rS9hWSVklabftzEfHO\nkuuq97iqPQ0D2fIdklIb+PJrkr4fEYclyfaXJP2ypFSD6ZDtMyPikO2XSGr7e1BRrb4XpdSV9x/K\nirb9KkknlBFKzUTEYxHxkoh4RUS8XNUX2wVlhNJcbG9WtXvnyoj4adn15HTSRdeflvTdiNhWdiGz\niYibImJdRLxC1d/lfQmGkrIup4PZa1uSLlN6gzV+JOki2yuzD56XKa0BGtbMFvFdkt6VPf5dSal8\neJpR53zei1K6tfpnJH3a9m5JP1U2k0TiQul2nfyDqlNC3VN9jenBiHhvuSUVv+i6bLYvlvQ7knbb\nfljV/+ubIuLucivraB+Q9HnbJ0j6vrIL8VMREQ/ZvkPSw5Ims6/by62qyvbtki6V9GLbP1K1C/Rm\nSV+w/R5VRwj/VnkVVs1S501q8b2IC2wBAElJqSsPAACCCQCQFoIJAJAUggkAkBSCCQCQFIIJAJAU\nggkAkBSCCQCQlP8HohJYi8lMk84AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -160,16 +420,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGrVJREFUeJzt3XmYVNWZx/HvFRBFFMWNEVpbM7jFfSEqGpuoSDQRY3RM\n1Iy4RSch0UlUVGaULJpFjcaYECZuZNw1anQiIhg7IUZUFHADBQUEQSBoVNwAeeeP92BXF9VWVXd1\nnVt1f5/nuU/fukv3T+l+69S5554LIiIiIiIiIiIiIiIiIiIiIiIiIiJSQUOAmcAsYESB/ScC04Fn\ngceA3XL2zQ3bpwJPdmpKERFpty7AbKAR6AZMA3bKO2Z/oFdYHwJMztk3B+jduRFFRKSYdYrsH4AX\n+7nASuB2YGjeMY8Db4f1J4B+efuTjkUUEZGOKlbs+wLzc14vCNvachrwYM5rAyYCU4Az2hNQREQ6\nrmuR/VbG9xoEnAoMzNk2EFgEbA5MwPv+J5UTUEREOq5YsX8daMh53YC37vPtBvwO77N/K2f7ovB1\nKXAv3i2UX+zLeUMREZEWFesm7wq8gl+gXZfCF2i3xvv198vb3gPYMKxvgI/UGVzgZ6Sx2I+KHaAN\no2IHKGBU7AAFjIodoIBRsQMUMCp2gDaMih2ggFGxAxRQVu0s1rJfBQwHxuMjc64HZgBnhv1jgIuB\nTYDRYdtKvAXfB7gn5+fcAjxcTjgREamMYsUeYFxYco3JWT89LPleBfZoZy4REamgYqNxsqo5doA2\nNMcOUEBz7AAFNMcOUEBz7AAFNMcO0Ibm2AEKaI4doB6ksc9eRCTtyqqdatmLiGSAir2ISAao2IuI\nZICKvYhIBqjYi4hkgIq9iEgGqNiLiGSAir2ISAao2IuIZICKvYhIBqjYi4hkgIq9iEgGqNiLiGSA\nir2ISAao2IuIZICKvYhIBqjYi4hkgIq9iEgGqNiLiGSAir2ISAao2IuIZICKvYhIBqjYi4hkgIq9\niEgGqNiLiGSAir2ISAao2IuIZICKvYhIBqjYi4hkgIq9iEgGqNiLiGSAir1kmJ0ONjUs68dOI9KZ\nVOwly7YEngF2ApLIWUQ6lYq9ZN0bwOrYIUQ6WynFfggwE5gFjCiw/0RgOvAs8BiwWxnniohICnQB\nZgONQDdgGv6RN9f+QK+wPgSYXMa5AFbJwCKls5Fgl4K9D9ajjWOOBpsXlu2rm0/kU5VVO4u17Afg\nBXsusBK4HRiad8zjwNth/QmgXxnniqRdD7yhsgJvtIjUpGLFvi8wP+f1grCtLacBD7bzXJEUsJvB\nxoGdD7YB/jfyHl7sRWpW1yL7y/mYMAg4FRjYjnNH5aw3h0WkmnYB2xU4Gr/29LOwjFz7UBuJd0/O\ngOQX1YsoGdcUlnYpVuxfBxpyXjfgLfR8uwG/w/vs3yrzXGhd7EU6mSXABGBbvHsR4FB8sMEdwDmQ\nvAs2t41vMBT//T4CULGXammmdUP4knJOLtaNMwXoj7di1gWOB+7PO2Zr4B7gJLyPvpxzRTqR9QAb\nHpbd83YeApwJ3JizbQIkp3mhL+qpisUUqYJiLftVwHBgPD665npgBv5HAjAGuBjYBBgdtq3EL862\nda5ItWwIXI4P/e2CDxHOkUz0rx0ZEGa/AvYCXoDkmx34RiKdqlixBxgXllxjctZPD0up54pU0zvA\noxX6XqeC/S1v2y7A88BxYJsCP4FkSoV+nkjF6A5akdLcCHwGGFZg3wTgDLzLsk/1IomUTsVepCTJ\nFXjB34G1hxAvg+QPwKKqxxIpUSndOCL1oBvYmmtN7e1meRm4M6wv7HgkkepRsZes6A78FHgOuLt9\n3yKZgQ9IAOzQysQSqQ4Ve8mSD6nsgIFe+CgfkdRTn71I+7wDfIxPo/BOzvYrwW6JE0mkbWrZi7iL\ngOtKPzx5Etgvb+O5wD7A+RVLJVIhKvYiPm0CwPsF9u2Dd/+UIJkJtm6FMolUlIq9CMniNnbcBWyK\nT90tUtNU7EXalJwXO4FIpegCrWSR5rCRzFHLXuqI/Sf+PIUlkHyrjYP+h6rM12TfAw4AFkPy7c7/\neSKfTsVe6skAfNbV48B2xKffzpPMxR+V2dk+hw/LHFKFnyVSlLpxpN5MxqfVXopPu3142P5fEbI8\nH+FnihSklr3UmyWQnNR6k10E/DBKGpGUUMte6oD1AbsMyH8aVZC8B8kyX6piV+DYsL4B2FFgoUvJ\ndg2vj6xSFpHU6MhjgkQIBXSxt+Dts5GzrBMeh9gDrB/Y/WDzwU4N+38FNhOslEcfinyasmqnWvZS\nL5ZAchkkL8SNkayG5P2wLIDkKPzhJrl+HyOZZJuKvUh1dANbL3YIyS4Ve5HOtwq4huoM+RQpSMVe\napz1xOeVT7Hkm8A2sVNItqnYS627FR9X/06xA0WyTMVe6sHXIRkYO4RImqnYi4hkgIq9iEgGqNhL\njbIdwR7AJxwTkSI0N47UILseGITPcHk68FTcPCLpp2IvtagRuAx4FJJXImcRqQnqxpFaNacGC303\nYMvYISSbVOxFqmMV8CqwLbAkchaRKDTrpZTJHgE7JHaK9rMNNeulVEBZtVN99iJR2TrAr8OLcZDc\nHzON1C9144jEkYD1AtYDzgL6AfvGjST1TMVeJI6P8b77c/CP40/GjSP1TsVeaojtDdYM7B07Scck\n70LSC7gqdhLJjlKK/RBgJjALGFFg/47A48CHwPfz9s0FngWmopaLdNzGwEbA0cAzkbOI1JRiF2i7\nANcChwKv43cq3g/MyDlmGfAd/A8wnwFNwJsdDSoSvAVJc+wQIrWmWMt+ADAbb6GvBG4HhuYdsxSY\nEvYXknQgn4iIVECxYt8XmJ/zekHYVioDJuJvBmeUF00kE74bO4BkQ7FunI7e8DQQWARsDkzA+/4n\ndfB7itSLX+JP2oK1PzGLVFSxYv860JDzugFv3ZdqUfi6FLgX7xYqVOxH5aw3h0WkziWL+ORvxFTs\npZimsLRLsWI/BeiPzzK4EDge+Hobx+b3zffAL/C+C2wADAZ+0Ma5o4pHFRHJtGZaN4QvKefkYsV+\nFTAcf6BzF+B6fCTOmWH/GKAPPkpnI2A1cDawM7AFcE/Oz7kFeLiccCIZ0wWsG7AKEs0ZJXVHv9RS\nIjvEJ0GrRzYSbCWYga0fO43UhLJqp+6gFUmF5FJIuuE3J4pUnIq9SPqMAfta7BBSX1TsRdLlLKA7\ncAXYo2FmTJG6oD57KVE999nnsgawQWDvgG0WO42klh5eIlLbkvnAfLAVsZNI/VA3johIBqhlLzXC\nLgAOjJ1CpFap2EutOBr4C/C32EFEapGKvaSQ9can6AAfd96E36l9LySTI4USqWkq9pJGhwO/wZ9M\ntcZoYHGcOFENBFsXn4rkIUjeix1IapOKvaTVQ8CV+IR6b0LyfOQ8MbwB3Am8j4+93wlQsZd2UbGX\nFEumxE4QV7JLy7rNi5dD6oGGXkpKWDewnr7o97INx4H9Iyw7xA4jtUV/VJIWJwP/xJ9/0Bg3Smp1\nx+czfxOfclykZCr2kiY3AXPwB91IYR/iz5kQKYv67CVtrsRH4bwYO0gKnQv8KXYIkfbSRGgC2Olg\n18VOkV62Ndh2YFuAvRgecnJP8fOkjunhJSL1J3kNklchWQLsAhzL2s99FmmTir1IzUlW4zdZiZRM\nxV5EJANU7EVEMkDFXkQkA1TsRUQyQOPsJSLrBWwaXuh3UaQTqWUvMQ0DpgGzgAFxo4jUN7WmJLYb\ngX7ANsC4yFlE6paKvaRA8tXYCWrUgWATgW9D8lLsMJJu6sYRqU2PAV8HtgY2ipxFaoCKvUhNSpZA\nMhF4O3YSqQ0q9iIiGaBiL1L7jgQ7LHYISTcVe4nE7gHOip2iDjwIHAicFzuISDGazz6TbDnYV8F2\njp2k9tlgsIdjp5CqK6t2auilxDQekuWxQ4hkgbpxREQyQMVeRCQDSin2Q4CZ+PwlIwrs3xF4HH/q\n/ffLPFdERFKgCzAbaAS64ZNW7ZR3zObAPsCPaV3sSzkXdIE2o2w5WM/YKeqDLtBmVEUfOD4AL9hz\ngZXA7cDQvGOWAlPC/nLPlUywHmC9w6KHZItEUKzY9wXm57xeELaVoiPnSn0ZCbwOLAPOAnsZ2CBu\nJJFsKVbsO9LFou4ZyfXj8LU38CiwA/B+vDgi2VJsnP3rQEPO6wa8hV6Kcs4dlbPeHBapX8sgeTl2\nCJEa0xSWdilW7KcA/fGLrAuB4/FpVQvJ74st59xRRZOKiGRbM60bwpeUc3KxYr8KGA6Mx0fXXA/M\nAM4M+8cAfYCn8Dm1VwNnAzsDy9s4V7JtEPBk7BAiWZOGkRFGOnJIp7FL8f759cKGv0IyIWKgOmOD\ngXMhGRw7iVRVWbVTc+NIFSX/HTtBfbPxwEHAZEi+EDuNpIumSxCpH92By8NXkVbUspdOYnsC2wM9\ngV5omGW1rIgdQNJJxV46y8nA4fjcSa8BV8SNU/f2wD+p61qIFKRiL51pDCRXxw6RAdNpGSFnwBER\ns0hKqdiL1LxkMXCvr9vAqFEktXSBVqT+9ASbCLYY7I+xw0g6qNiL1Jf38Jsb+wM3A7uDHQPWL24s\niU3FXqSuJNMg2ROSbYBrgWeAXwEHxM0lsanYi9StZA4kxwCPxU4i8anYS4XZZmBLaRkdIiIpoNE4\nUmkJ3ojYGu8/FpEUULGXzrAakqWxQ4hIC3XjiIhkgIq9iEgGqNiLiGSA+uylguwAYO/YKURkbSr2\nUkmnALsAd8QOImvZA2wRJJNiB5E41I0jlXYDJMNjh5BWpgOfB26IHUSyzWIHkI6ybcA+BPsY7IzY\naaQQ6+8tezva/72kDtRc7ay5wJLPGsHmga0Hpq7BVLKtwO4Dew3slNhppCLKqp3qxpFKMUg+hGRV\n7CBSSLIQkqOBR2InkThU7EVEMkDFXkQkA1TspYPsBuCF2CmkLKPBZsUOIdmjC7Q1zW4FOw2sZ+wk\nUgpbH2x7sIWxk0iH6QKtVN0HkCyPHUJKkXwALAe6+KMK9SadFSr20g42AuxusKtjJ5F2WQ2sBF4C\nhsWNItWiYi/tcQCwAjgsdhBpj+QNSPoBN8ZOItWjYi/t9XzsACJSOhV76Yi+wH6xQ0iHdAHbLSxb\nxA4jnUe3tkt7LQS+F9afiBlEOqQnMA1YBlwB/CxuHOksKvZSBvtX4EfAPvjsln+MHEg67njgXTQj\nZt1TsZdy9AYGAOcCT0fOIh13E/AYPjJn37hRpLOp2Eu5lkFyW+wQUgnJFGCKr5uKfZ1TsReRNRKw\nncL6PyBZGjWNVFQpo3GGADOBWcCINo65JuyfDuyZs30u8CwwFXiy3SlFpBp+BLwITAK+EzmLVFkX\nYDbQCHTDr9rvlHfMEcCDYf1zwOScfXPwft5Po7lxaoYNANObdl2y9cF6heVisB/GTiRFlVU7i3Xj\nDMCL/dzw+nZgKDAj55ijgLFh/QlgY2BLYHHYlpQTSNLGtgAOCi9WxEwinSn5APjA1w1gGFgTcCgk\n+nevA8W6cfoC83NeLwjbSj3GgIn4RSA9m7Q2fRb4LTAa2DVyFqmOscBJwP6osVY3irXsS/2Y0NYv\nxIH4zTebAxPwvv9JBY4blbPeHBaJzvrhb9zPAx8DX46bR6ojmQfMA1sdO4m00hSWdilW7F8HGnJe\nN+At9087pl/YBl7oAZYC9+LdQsWKvaTHXcDW+Jvv3fi/7ZKYgUQyrJnWDeFLKvnNuwKv4Bdo16X4\nBdr9aLlA2wPYMKxvgN+8MbjAz9AF2tSyx8H2j51CYrGPwLrHTiFtqugF2lXAcGA8PjLnevzi7Jlh\n/xi80B+BX8h9Dzgl7OsD3JPzc24BHi4nnIiI1A+17FNLLftsU8s+5fRYQukIm+4X5uyB2EkkTWw8\n2N/Bzo+dRNpHxV4C2wLsYPw6y8VoyJ24Af4YSj4PPAdsFzmPtJOKvawxCB9xMx+f8rYB0MMs5Gzg\nWHxKlJeA48CmgvWJG0vKpYnQJNefITkebA9gr7BNk2Fl1814jfiFz3RqmwGPAg/h06eIlEUXaKOz\ny8H+AnZH7CRSC2w+WEPx46STVXTopWTDMfgwWk1yJlKnVOxljT9A8krsECLSOVTsM802AjZD/a8i\ndU+jcbLtWPyBM6vCIiJ1SsVe7oJkuzDToYjUKRV7EWmP28AuiB1CSqc++8yxwcC/hxfPxEwiNesE\n4Ev4g22kRqhlnz074I+N/DKwXuQsUpOSSfgDbfYBuxJsy9iJpDgV+0yxdfFPczP55HmjIu3yNHAd\n8A1gk8hZpAQq9tmyDPg5/ohBkQ5IXoTkSuDN2EmkNOqzz57ekLwL9rXYQUSketSyF5GO2hGsMXYI\nST9NhNbp7FywD8AMLDwX2N4AexXshrjZpLbZH8FWhQfe/ASsb+xEGVJztbPmAtceuyCMmlgfLDyU\nxAaCDQLLf4C8SJlsB7ALwRaC7R07TYbUXO2sucC1xVaHFv1PYyeRemdPq9hXlaY4FgDrhv/7JkAX\nSFZHDiTZsBXYxsBqYF3g92H7CZA8Ei+W6AJt/boYf7zgh7GDSGZ8BNwPTATuA/YG5gEv4IVfIlKx\nryv2E7B3wJaEDT+AZH216qU6kgMgSXxhOtADWIG/CXQF6x0WFf4IVOzrS3fgl8CmwNGRs0i2vQt8\nK3wF2BV/nvFi4KhYobJMffZ1wbrjE1P1ByYBw8KO6bESSdYlR7as2zigF/AsoKehRaJiX7MsXHgF\n/A/pNuABYCYk90eLJbK2ZcBJeN+9ZJiGXraLbROGVBrYSLB/xE4kUpzdDXZs7BR1QkMvM+Q14KHY\nIUTKtDvYIkgeix0kS3SBtj6cHTuASImeBQ4BbowdRKpP3Thls73ATgebB7YV2GfBdoydSqQ0tn1O\nF+StYEeB3QX2d7AHYqerITVXO2sucDy2Kdh3waaATQW7PnYikfLZOmA9wnw648DuB3sI7FqwleEN\n4Cthor5XwfTJtbCaq501F7i6bGuwq8Cu9jno7U2wa8D2jZ1MpLJsXbATwP4EdlGYTfOXYKNiJ0sp\nXaCtfbYOfnv5rvgt58cCm+F98zMg+W7EcCKdJFkB3Aq2Z9hgwFsRA9UVFft0+jzwZ3wSsyX4PCMX\n4nfIroqYS6Ra8u4A/+Sa1JuQLFnraCkqiR0Af/dOQ44qsxuAI4Atw4YReIHfAzgI2AaSpjjZRGKy\n/YHd8ZkztwIG4Q2gf+IPOb8UrxkfQfJ+rJQpUPHaOQSYCczCC1Ih14T904E9c7aXcm6d9tnbGWAv\nhWXDnO2fBxsL9i7YaWAHgd0EtiyMTljqF15tWKzkIulhTWCXhOUCsMvB3soZzfMSWJ/YKSOpaO3s\nAswGGoFuwDQg/8lGRwAPhvXPAZPLOLfigSukqePfwkaAXQe2HOwbYMeE5VqwSWAng22Uc3y/sO1k\nsC06L1fFNcUOUEBT7AAFNMUOUEBT7ABtaCq82c7DH4P4Hth2+BOyFoN9E+yLYRjyv4F9FJbBYdtW\n+PxRnZApqopeoB2AF+y54fXtwFBgRs4xRwFjw/oTwMZAH2DbEs5NqyagubRDrRH/qAn+Rmf4PDU7\nA+Pw/vav5J10JyRjW29KFtDy/7ECuaqmCWUqRRPKVKomCueaBewPjAeWQLLch20yEuhHy02i9wE9\ngZvC682Ac8CmhdczIClw4dcSWrpFDJLcYtpWpppRrNj3BebnvF6At96LHdMXL4DFzq0S2xBY01qe\nH6764+/4DArbp+P9hMAhu8IjJ4btLwMn40X8YfyhIBviv3gHAL3zfthTwD7AicCLkGjmSZGKSO7D\nC3nutjNa1m0rvKZ9AMnSnO2j8YnYTsIbYVeBNfhxn+iC/y0fH15/CxhdPJNtS+uZCOZBkspBFMWK\nfakfEzrxAqttDjyKX8jsjhfa/8O7hg4PB/0T/0QBPn/2X/A3ls0LfUM+eeh2QbfCtv3x7qkTcrZP\nAQ7DfyH+F2gA/g78EH8DeQOf4OlY/I3gTkg+Lu+/VUTaL1nYxvb/aFm3G4HheG37Uc5BhwArgWvx\nung+2G/CvmXwH8tg9Jrn634pfH0H2Ah4A3gf2M6/h3UL+1eF7/UScCQkqZ7eeT9aT7R1IWtfaP0t\n8LWc1zPxwlzKueD/07Vo0aJFS/lLxXTFHzbQiN/kU+wC7X60XKAt5VwREUmJL+IfQ2bjrXOAM8Oy\nxrVh/3RgryLnioiIiIhIPfsOPizzeeBnkbPk+j5+J1/+qJsYLsf/H00H7sEfRxhLKTfMVVsDfjH/\nBfz3KE1zCHUBpuKPjkyDjYG78d+nF/Eu2NguxP/tngNuxQdkVNsN+EPRn8vZ1huYgI/Me5iWwSCx\nc6WpHpRsEP4/c81V7EKjaGJowC8yzyEdxf4wWoZ5/TQsMZR6w1y19cGnmwAfZ/0S6cgF8D3gFiAt\nzwceC5wa1rsSv1A0Aq/SUuDvwIc8V9tB+CwAuUX158D5YX0Ecf7uCuVKSz0oy53AF2KHKOAuYDfS\nU+xzfQW4OdLP3p/WI60uCEva3IcPqYutHzARb9SkoWXfCy+sadIbf3PeBH/zeQA4NFKWRloX1TUj\nDMEbFDOrHShopHWuXEXrQVoeS9gfn+hoMn6X2j5R07ih+I1gz8YO0oZTaRkFVW1t3UiXJo14S+iJ\nyDkArgLOw7sD02BbYCn+aMBngN8BPaImgjeBK/HnKi/E752ZGDVRiy3xLhTC1y0/5dhYitaDak5x\nPAF/V8w3MuTYBO833Bdv6W8XOdOFwOCcbdWambOtTBfR0iocCYS5v6Oo6PjeTtAT748+G1geOcuX\n8Gmqp5Ke+VW64qPmhuN3fF+NfzK7OGKmzwDn4G/Sb+Ofqk/Eu77SpOLj2ysgdj0oyzjg4JzXs4FN\nI2UB2AV/B58TlpX4HD9tTVBWTcOAx4D1ImYo9Ya5GLrhc6ecEztIcBn+KWgOsAh4D/h91ETemJiT\n8/pA/K70mI7Hpy9e4xvAryNlaWTtbpw1DbB/IV3dOMOIXw/Kcibwg7C+Pf5RLk3S0mc/BB+tsFnk\nHGm9YS7BC+lVsYO04WDS0WcP8Ff8bw1gFPFHwO2Oj6BaH/93HAt8O1KWRta+QLumMXMB8S6ENtI6\nV1rqQVm64fPNPAc8TXo+7q7xKuko9rOAeXiXwFTgN59+eKdK4w1zB+L94tNo+X80JGqi1g4mPaNx\ndse7cNI0bO98WoZejqVldF413YZfM1iBfyI7Bf/bn0jcoZf5uU4lXfVARERERERERERERERERERE\nRERERERERERERCRd/h87pYJ42u5MMQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VfWd//HXJxtJgIRFCLIFIQGUVYyAawVcWwt2OlNx\na+1qrVbbOt3b6cyvnWk71k7tOG11qta2bq2tSqeKSNVaqyxBBGQNIGEPBMglYc3y+f1xL5cEAtyE\n5J5zk/ezDx+c77nn5L6TJvd9z7lnMXdHREQkLNKCDiAiItKYiklEREJFxSQiIqGiYhIRkVBRMYmI\nSKiomEREJFQSKiYzu9rMVpnZGjP7ajOP32hmS2L/vWFmYxs9tiE2f7GZLWjL8CIi0vHYqc5jMrM0\nYA0wDdgKLARmuvuqRstMBla6e8TMrgb+1d0nxx5bD5zn7nva6XsQEZEOJJEtpolAmbuXu3st8BQw\no/EC7j7P3SOx4TxgQKOHLcHnERERSagwBgCbGo0307R4jvUp4MVGYwdeNrOFZvbplkcUEZHOJKMt\nv5iZTQE+DlzcaPZF7r7NzPoQLaiV7v5G4/UikYiuiyQi0oHl5+dbossmssW0BRjcaDwwNq+J2AEP\nDwHTG3+e5O7bYv/uBJ4lumtQRESkWYkU00KgyMwKzSwLmAnMaryAmQ0G/gDc4u7rGs3PNbNusemu\nwJXAu20VXkREOp5T7spz93ozuxOYQ7TIHnb3lWZ2W/Rhfwj4NtAL+JmZGVDr7hOBAuBZM/PYcz3u\n7nNO9nz5+fmn9x21k9LSUgBKSkoCTnJyytm2UiFnKmQE5WxrqZAzEomceqFmJPQZk7vPBkYcM+/B\nRtOfBo47sMHd3wPGtyqZiIh0SjqMW0REQkXFJCIioaJiEhGRUFExiYhIqKiYREQkVFRMIiISKiom\nEREJFRWTiIiEiopJRERCRcUkIiKhomISEZFQUTGJiEioqJhERCRUVEwiIhIqKiYREQkVFZOIiISK\niklEREJFxSQiIqGiYhIRkVBRMYmISKiomEREJFRUTCIiEioqJhERCRUVk4iIhIqKSUREQkXFJCIi\noaJiEhGRUFExiYhIqKiYREQkVFRMIiISKiomEREJFRWTiIiEiopJRERCRcUkIiKhomISEZFQyQg6\ngEhH8OTc/2HX3goAsrNy+NS1X292uT3VlWzasS4+HtBnCL3zCpKSUSRVJFRMZnY18BOiW1gPu/sP\nj3n8RuCrsWE18Dl3X5rIuiIdQfn2NWzdVQ5Abnb3Ey63futKHpt9X3x8/dTbuWjMVe2eTySVnHJX\nnpmlAQ8AVwGjgBvMbOQxi60HLnX3ccD3gIdasK5Ih1ffUM/WynKqaiqDjiISeolsMU0Eyty9HMDM\nngJmAKuOLODu8xotPw8YkOi6Ih3Vq4tnsWz9AgCq91dRsXtzwIlEUoO5+8kXMPswcJW7fyY2vhmY\n6O53nWD5fwaGu/tnEl03EonEQ5SVlZ3O9yMSiFmLH6Jq/w4AsjJymDnpHuave5HV2xc1Wc4w8nPP\noGr/TgAG9RpBn+4DKCoYT3ZmbtJzi7Sn4uLi+HR+fr4lul6bHvxgZlOAjwMXt+XXFekoumTmMv3c\n23hr7Z8pq1jMpt2r2bR7Nd2ye5CX0xuArPQudMvu0WS9Q7UH2Hd4b3zcNSuPLpk5Sc0ukiyJFNMW\nYHCj8cDYvCbMbCzRz5audvc9LVm3sZKSkgQiJV9paSkQ3nxHKGfbSjTn3FW/oWp/dPpw3QEen/cD\n6uvrjlsuMyODkpISMnvUMnj7EN5692X2H6rh9dV/jC/Tt0d/PnDhTfHxOYUTeGftW/zfy/8bn3fT\nFZ+n5JxLWpQxaMrZtlIhZyQSadV6iRTTQqDIzAqBbcBM4IbGC5jZYOAPwC3uvq4l64qksjffncO7\n75Wyq3pHk/nNlVJj44ouYFzRBSxbN5/9h2qaPLajaiuPvnBvfPztj/287QKLpIBTFpO715vZncAc\njh7yvdLMbos+7A8B3wZ6AT8zMwNq3X3iidZtt+9GJMm27drIu7EDHADuuf5eKiPbeGz2j+PzJp09\nlUmjpgGQnpae9IwiqSahz5jcfTYw4ph5Dzaa/jTw6UTXFeloJo+6nNFnnU/fnv3ZXb2zyWODCooo\nGjCq1V/73399Bw3ecLoRRVKGrvwg0gb69y5k7LBJLV7v2gtv5uDhAwAsWfcWy98rPW4ZlZJ0Niom\nkQCNL74wPp2entGkmP5pym2MHDye7z52exDRRAKji7iKhFR6WgbpaXrvKJ2PfutFQiwjPYPBfYvi\n44071gaYRiQ5VEwirbCxYi2vLp7Fpor2LYq8rj355xt+FB//ds79LFj5ars+p0jQVEwiLXC47hDP\n/+0xlq6fT6RmV5t+7eKBo7lt+rfi4/5nFLbp1xdJFSomkRaor6/jb0tfaDLvlqu+yOC+w077a/fo\n1pse3Xqf9tcRSXUqJpFWyEjP5LpLbqV3XgGjzmp6SZhziy/k3LufCyiZSOpTMYm0QkZ6JpeO+0DQ\nMUQ6JB0uLiIioaJiEhGRUFExiYhIqKiYREQkVFRMIimorr6Ow7WHdIFX6ZBUTCIp6OlXfs4//+x6\nqqorg44i0uZ0uLhIglZvXEJVG1/toaUy0jPIzMiitu4wAMs3LGL3nggDehY1Wa6+vo7Ivj3xcZfM\nLnTNyUtqVpHWUjGJJOj5Nx5j8871gWaYOe0OZk67g+888mn2VO/k969G79eZk9mNjfun8g+XfgKA\nXXsr+N6v74ivd+HoK5g57Y5mv6ZI2KiYRFpo+MAx5Ad86aBzCidQXlEWL8oDtTVs2fkem3asA2DH\nnq1BxhM5LSomkRaaccmtDGqDa+Odjuun3U59Qz01ByI8N/cJFm2YS9nmZdz75D2B5hJpCyom6ZTq\nG+p5eeEz8XF+t96ML7ogPs7KzCY9LT2IaAlLT0snv2svsjK6BB1FpE2pmKRTamio54V5TzaZ9+Tc\nB+LT91x/L316nklldXSXWPn2Mvbu34OItD8Vk8gJrN+ykheWPgLAC0sDDiPSiaiYRJpx39NfDjqC\nSKelYhI5hR65ffj4tUcPKujbo3+AaUQ6PhWTyAlkZmTxoQl3kmbpnHXmyKDjnFBuVh79ewwjPz8f\ngJXlbwecSOT0qJhEGumWk8+E4RcD0assZGfmBpzo1Ab0HMaAnsMoKYneSffbv/wEkX27A04l0noq\nJpFGpk6YweUl/xAfl5aWBphGpHPSRVxFOpjhg8YyakgJo4aUxOdV7NnK/BV/oTKyPcBkIonRFpNI\nB3PLVV+IT/992Us8/crPWbdlOeu2LOdjV3+JM/L7BZhO5NS0xSTSgfXt2Z+JZ0+hV17foKOIJEzF\nJNKBFQ8cw81X3s2QfiOCjiKSMBWTiIiEiopJRERCRcUkIiKhomIS6URKV73Oc3/7FQcO7Q86isgJ\nJXS4uJldDfyEaJE97O4/PObxEcCjwATgG+7+40aPbQAiQANQ6+4T2ya6SNtofMvxwoKiAJO0v+Ub\nSlm+oZSpE2aQ0yX8V7WQzumUxWRmacADwDRgK7DQzJ5391WNFtsFfB64rpkv0QBc5u66mY2EwksL\nfkfFni0AZKRncuHoKwJO1P7OG3EJg/oOZfb8pzlUezDoOCInlciuvIlAmbuXu3st8BQwo/EC7l7p\n7ouAumbWtwSfRyQplr+3iNJVfw06RlKNGTqRaed9iKzM7KCjiJxSIrvyBgCbGo03Ey2rRDnwspnV\nAw+5+/+2YF2R07bvwF427lgXH++KXZbnyvP/kb49BwQVS0ROIBmXJLrI3beZWR+iBbXS3d840cJh\nv2hm2PMdoZxHba1az9zlTxw3P/1gN9L2dU8oQyr8PBPJWFtbC8CSJUvIyerW3pGalQo/S1DOtlBc\nXNyq9RLZxbYFGNxoPDA2LyHuvi32707gWVq2tSUiIp1MIltMC4EiMysEtgEzgRtOsrzFJ8xygTR3\nrzGzrsCVwL+d7MmO3FMmbI68KwlrviOU83iryjOYu/z4+SPPHnnKGwCmws+zJRmfXZzJwVoYN24c\neV17tne0JlLhZwnK2ZYikUir1jtlMbl7vZndCczh6OHiK83stujD/pCZFQClQHegwczuBs4B+gDP\nmpnHnutxd5/TqqQiItIpJPQZk7vPBkYcM+/BRtMVwKBmVq0Bxp9OQBER6Vx0GLdIJ/SrF3/EE3Mf\nCDqGSLN0o0CRTmjtluVU72/d/n+R9qYtJpFO5GNX38PMaZ8LOobISWmLSTqs+oZ6vvbgzTQ01Acd\nJTSGDxpDXtceQccQOSkVk3Rohw4fCDqCiLSQduVJh2eWxg8/+wTvG39t0FFCpXLvdr71y4/z/371\nWd5aPpddkYqgI4kA2mKSTsCAnC65XDNpJlPOnR6f3z03uSeYhk19fR1790Uv+v/k3Af4+Pu/TO/8\ngoBTiaiYpBPJze5GbnYw14cLk955BXzlxh+zZtMy1mxcwvbdm9hdvTPoWCJx2pUn0slkZmQxsM9Q\npk6YwWev+xcGF7TuQpsi7UXFJB1S2eZlLFn7VtAxUspjs3/Mlx74J2oO7A06inRy2pUnHcrc0j/y\n2uI/sXe/bpjcUg0N9TSgQ+sleNpikg7lUO3BJqXUPSefsUWTA0wUfh+9+ovcd8fvyM3uHnQUEUBb\nTNJBTZ1wHVMmTKdrdncy0jODjhNqR34+dorlRJJFW0zSIXXJyiG/ay+VUiuUbV7G+q2rgo4hnZiK\nSUSaePSFe3n6lZ8FHUM6MRWTiABQNHA0Q/qNOPWCIu1MxSQiAHzyA19l5rTbg44homISEZFw0VF5\nInKcij1bWLDy1fi4aMBoeuX1CTCRdCYqJukQKiPbmb/iFdZufjfoKB1CQ0M9v51zf3z8yQ98TcUk\nSaNikg5h996dvLTgd0HHEJE2oGKSDqVXXl8mnTONogGjgo4iIq2kYpKU9+Wf3xC/fXqvvL5cM+n6\ngBOJyOlQMUnK0+3TRToWFZN0GD/87BOkpekMCJFUp2KSDiOnS27QEUSkDaiYRCQuv2svrp969OoP\nf37rCWoORFi6bh47q7byvvHXkpmRFWBC6QxUTCIS1zUnj4vGXBUfryx/m6Xr5rNw1WsAXDjmShWT\ntDvtkBeRExozdBLTzruO9HS9h5Xk0W+biJzQpHOmAvDmsjkcqK/j5YV/IKdLVwAKC4oZMXhckPGk\ng1IxScp6fM5PKa8oCzpGp/KXRc/Gpy87d7qKSdqFduVJytpVvYPtuzcFHUNE2pi2mCTl3XD5nQzp\nNzzoGCLSRrTFJCmvd14BZ/YeHHQMEWkj2mKSlLOyfDErNixiZ9W2oKOISDtQMUnK2FpZzqw3HmNF\n+dtBRxGRdpTQrjwzu9rMVpnZGjP7ajOPjzCzN83soJl9qSXriiTqwKGaJqXUJSuHD136Cfr06Bdg\nKhFpa6fcYjKzNOABYBqwFVhoZs+7+6pGi+0CPg9c14p1RVqkX69BzLj4Y/TpcSZ9ew4IOo6ItLFE\ntpgmAmXuXu7utcBTwIzGC7h7pbsvAupauq5IS+Vmd2PUWSUqJZEOKpFiGgA0Pllkc2xeIk5nXREJ\nsU071vHq27OojGwPOop0MKE7+KG0tDToCCcV9nxHdMScFZGNANTU1CT9+0uFn2d7Zryo+DrcHYCy\nisVs3LWKdVuWs27LcqoqaxjUK/HzyFLhZwnK2RaKi4tbtV4ixbQFaHySyMDYvESczroiEhL9ewyN\nT6enpdM1K49Nu1dTcygSYCrpqBIppoVAkZkVAtuAmcANJ1neTmNdSkpKEoiUfEfelYQ13xEdNee/\nPvoZamsPAdCtW7ekfX+p8PNMfsbo8zw463ssf6+UoqIixgw99XOnws8SlLMtRSKte+NyymJy93oz\nuxOYQ/QzqYfdfaWZ3RZ92B8yswKgFOgONJjZ3cA57l7T3LqtSiqd2p7qStwbgo4hIkmQ0GdM7j4b\nGHHMvAcbTVcAgxJdV+RU5pb+kdnznwbgcN2h+Px/ufUXZGV0CSqWiCRB6A5+EAGob6hvUkhH9Ore\nh7S09AASyYn8+qX/YuSg6O0vzujRjxkX3xpsIEl5KiYJvdFnnU9amq43HFaHDh9gybp5AAzqOyzg\nNNIRqJgk1K48/x+59sKbg44hIkmkt6EiIhIq2mISkVaZdPZUhvU/B4CNO9byTtmbASeSjkLFJCKt\nMr74wvj0xgoVk7Qd7coTkTbT0FDPgUP7mj2iUiRRKiYJlci+3by+5AU2bF8ddBRphS2VG/jqL27i\nhbeeDDqKpDDtypNQ2RXZwTOvPRR0DGkhszSys3Kpq6+lrr426DiS4rTFJKHUPbcHF4+9hsJ+iV+1\nWoIzqO9Q/vP2J/jABTcGHUU6AG0xSSj1zi/gI1NuCzqGiARAW0wiIhIqKiYREQkV7coTkTbX4A00\nNNTHx2Z6DyyJUzFJaFTs2cKe6h1Bx5A28NriWby2eFZ8/KM7ng4wjaQaFZOExg8ev5v6+rqgY4hI\nwFRMErjfzrmftZvfjZdSr7y+9OreJ+BUIhIUFZMEbu/+KnZX74yPv3nL/5CZkRlgIhEJkopJQuOm\nK+6iaOAoMtL1aynSmekVQEKje24PeucVBB1DTkNudnf69RoUH2/fvSnANJKqVEwi0mYuGHU5F4y6\nPD6+54GPUFt/OMBEkopUTJJ0+w5WU165EoCMssNsqywPOJGIhImKSZKusmobf139BwD+qrtbiMgx\nVEwi0u6+/5u7qKuNXgmiOm06UyZMDziRhJmKSUTa3a69FfHp6gORAJNIKtAFrEQkqXbvrWBV+Tvs\nO7A36CgSUiomEUmqt9e8wc+e+1c27lgXdBQJKRWTJEVk3252Vm1jZ9U2KiPbg44jATkz/yxyu3QD\n4O/LZvOHv/6yyVXIRUCfMUmSPDX3ZyzfUHrc/EF9h8Wns7NykxlJkuyMbgO4YvRNzN/0J1ZvXMLS\ndfMBuO7iW4MNJqGjYpLA9O7Wny/fcF/QMaQd3fu5J+PTpYsWAXDxmKs5Z8h5PPf6ozgeVDQJMe3K\nE5F2k5aWfvS/2M0CxxVdwJRzp2NpevmR5uk3Q0REQkW78qRdVO+vonT16/Hx2q3LA0wjIqlExSTt\noqpmF8++/kjQMUQkBWlXnoiIhIqKSUREQiWhXXlmdjXwE6JF9rC7/7CZZX4KXAPsAz7u7otj8zcA\nEaABqHX3iW0TXVLRZeM/yDlDzmNN2Roy07sEHUdEQuiUxWRmacADwDRgK7DQzJ5391WNlrkGGObu\nxWY2Cfg5MDn2cANwmbvvafP0knKGDxrLyMLx1OysCzqKhMSf3vwNaWnRl6LigaM5u/DcgBNJ0BLZ\nYpoIlLl7OYCZPQXMAFY1WmYG8GsAd59vZvlmVuDuFYChXYYicgKvvP18fDo9LU3FJJj7yc+8NrMP\nA1e5+2di45uBie5+V6Nl/gR8393fjI3nAl9x97fNbD1QBdQDD7n7/x77HJFIJB6irKzs9L8rCdyu\nmm38ecnDdMnI4dIR/xCf37NrAdmZuvSQwG/e/A/cG5rMGzPwYs4tvCyYQNLmiouL49P5+fmW6HrJ\nOFz8InffZmZ9gJfNbKW7v5GE55UQ6NolnzN7nBV0DAmhS4d/KD69ensp2yPlAaaRMEmkmLYAgxuN\nB8bmHbvMoOaWcfdtsX93mtmzRHcNnrCYSkpKEoiUfKWl0QuQhjXfEWHI+b3HPse+g9UA5ObmNpsl\nDDkTkQo5UyEjHJ+zhKN5Z8/P4oV55fTvf2bg30eq/jzDKBJp3U0hEymmhUCRmRUC24CZwA3HLDML\nuAN42swmA1XuXmFmuUCau9eYWVfgSuDfWpVUUsbe/VUcPLw/6BiSgl5a8HuWrJ0XH3/95p9ilvAe\nIOkgTllM7l5vZncCczh6uPhKM7st+rA/5O4vmNn7zWwtscPFY6sXAM+amcee63F3n9M+34qEzTdv\neYDc7O5Bx5AUs333pqAjSMAS+ozJ3WcDI46Z9+Ax4zubWe89YPzpBJTUlde1JzldugYdQ0RSjK6V\nJ21mxYZF7IpUUFdfG3QUEUlhKiZpM39f9hLL1i8IOoakoN75BYwYNC4+Xr1pSYBpJGgqJjlt721b\nzaqN71CxJ3qw5sjCczkjr4D0dP16SWLOH3kZ54+8LD6+6/7rggsjgdMrh5y2DdtX8+K8o7fQvnjM\nVYwdNvkka4iInJiKSdpMYUExIwvPpW/PAUFHEZEUpmKSVtu7bw9vLJ3Nhu2rARhy5gg+cMGNAaeS\njmbNpqWs3Xz0DsiTRk2ld15BgImkvamYpNWq91cxe8HTQceQDuyx2ffx9pqmF4oZPnisiqmDUzHJ\naeuek8/FY6+hsN/woKNIB3NsKUnnoNtRyGnr3rUn10yeyTlDJgQdRTqoj139pfjJ2vsPVrN3X1XA\niaQ9aYtJREJn4tlT4tN9ew7gvBGX8sbS2azbuoJf/t8PMIz77342wITSnlRMIhI6N19593HzcrK7\n0S0nn5oDrbtitaQOFZMk5FDtQQ4eOnrF8JxsXQNPkuszH/wGDd7AF3569MaTby2fS+mqv8bHH37f\np+h/RmEQ8aQNqZgkIfNX/IVnXjt68+HCgmKGnDniJGuItL9dkQrKNi+Lj3W7lY5BxSStUl5RRnlF\nWdAxpJNynC07N7Arsj3oKNIOVExynBfnPdXkXeinrv16fLpLVg4Xj7mqyfJ5ub2Slk3kiB8+8YWg\nI0g7UTHJcbbv3sTaLUfPtP/agzeTnZULwMSRU5hx8a0BJROB/r0LOVh7gN17dwQdRdqJzmOShGjf\nvYRBmqXxtZvv54ZpdwQdRdqRtpjkhM4feRljh02mweuprTvMiEHjyMzMCjqWiHRwKiY5oVFnlTCu\nSLevkNTx4KzvkZWZzXc/+XDQUeQ0qJhEpMM4cGgfh2sPBR1DTpOKSeKWrJ3HX95+lh17tgYdReSk\neuX15crz/zE+HthnKIX9ivnOI58OMJW0FRVTJ/f9397F3v1VeEMD+w/VBB1HJCF9epzJtRfe3GRe\nXX0tAPUNdfzi+e/Sr9dArjz/n+KPd8nKIT0tPak5pXVUTJ3Mmk3LmLd8bny8bdfG45bp37uQj0y9\nnb49+yczmkibWbFhESs2LOKVt5+Pz/vS9f/JEN2aJSWomDqZysh2Slf/9bj544supKDXQAAGFxQx\ntP/IZEcTOS1paencNv1bbNyxjhfnPRl0HDkNKiYBohe/zO+mKzhI6kqzNEadVULaCXbXvbnsJVZv\nfIerJn4kycmkpVRMnYS74zjuDfF5JSPeF5/OzND5SdIxnF14Lj+9+7n4+L6nvkx5RRnzVvwFgKzM\nbHrn9WXsMJ0KEVYqpk6iMrKd7z52e3w8edTl3Hj5nQEmEkmOC0ZfSdHA0fxlUfTGgs++/gi98wso\n6DmQbjl5dM3JCzihHEvF1Ak89uJ9bNi+Jj622P9EOoMLR19BXX0tdfW1rHhvETsj29gVqeDff3Mn\nMy6+lWnnXRd0RDmGiqkTWL91JXtqKgHonV/Ad259MOBEIsmVkZ7Jh9/3KcYOm8TTr/yCmv0RnR4R\nYiqmTuSWq75Ir+59go4hEpjigWP41kf/h+f+9iivvP08765fQNfs7gDU1h+maMAoqvbvBGDfgb3a\nzRcQFVMHVFm9lVl//w0AO/ZsiW8tDet/Dr3yVEwiR6zbuoJ1W1c0+1h6t1qmTJie5EQCKqYO5cCh\nfby7+S3W7VhC5EBl0HFERFpFxZRi9h+s4fk3HotOH6phydq3yO/Wm67Z3dlaueG45Yf1P4fc7G6A\nDgkXOaJLZg55uT0BOFx3iNzsbgw4YwgAy9YvAGDJurfokpUDwLZd5U0uDnveiEsYPmhsckN3Iiqm\nFLJ33x72VFfy1vKXm8yP1OwiUrOrybypE65jcEERE4ZfnMyIIinhmskzuWbyzGYf+/nv/oOV2xaw\nfutK1m9d2ewy/c8oVDG1IxVTwKr3VzW5Xl2fHv3J7dKV15e8wNL18ynfvoa8rj3Zu2/PcesWFhRz\n5hmF7N23h4OH91My4n1s3LiRzPQsrrvk1iR+FyKdS119HYdqD5KZkUWa6UbgbS2hYjKzq4GfEL0V\n+8Pu/sNmlvkpcA2wD7jV3d9JdN3ObO2W5Tz6wr1N5nXN7s6+g9XxcXOlNKjvMO6Zee9x80sPl7Z9\nSJFOZMSZJQzqPZwRI0aw/+A+Hv7zD45b5vk3fsXzb/yKr910P1U1u3j+jV/FHxtXdAFjh00CIM3S\n6X9GYbKidxinLCYzSwMeAKYBW4GFZva8u69qtMw1wDB3LzazScAvgMmJrNuR1dXXsnTd/Ph4Y8Va\nwOPjKRNmNLte41J63/hr2XegmrOHTCArowsAIwePi+/7FpG2lZfTi7ycXhQPHEODN/DdTz4Sf+z/\n3vwti8v+zuG66OdNP3j87uPW37ZrI7PnPx0f33TF58nM6MKQfsPJze5OZkZWk13vWZnZdNNh6U0k\nssU0EShz93IAM3sKmAE0LpcZwK8B3H2+meWbWQFwVgLrhtq85X8hsm83W7ZsIc3SKCkpYceereyp\n3hlfZnBBMdX797C47E0A6uoPM6z/KPr27M+vXvzRCb9240vyH+vTH/wGfXv0j1/xW0SSL83Smlzc\n+KYr7+KmK+/i+7+9q9lbxjTn8Zf/u8l4QJ+z2LLzvfh49NCJ3HLlF+LjLlnZx+0ePHj4AO7RN7Vm\nRnYHf2OaSDENADY1Gm8mWlanWmZAguu2yLL1C6iqjh4KvXXXRiafMxVLYB/vywufIS0tnYz0TBau\neo2M9Ex65xVQGdlOfUMdE8+egruzcNVr9O05gCH9hlMZ2X7ch58Zc5wFK19NIOnvW/y9jS++MD49\nsM9QenY/o8VfQ0Ta31du+DEHDu/nybkPkJ4efRk9fPggxbEDIg4cqmHDttWs27qS+oa6Jus2LiWA\nd9cv4Ku/uDE+Tk/LiL8mHdHca05+Tm8AXloRLamGhnp2RrYxeuhElr9XypihE8nOyuHd90qZcu50\nDhyqYcLwS1hZvpj0tHS6ZGazbfcmSkZcSsWeLezeu4O83B7srt7J4IJiumR2YdXGJfTJ7wfAgD5D\nk3Y7HDt04YW8AAAE+ElEQVTSwidcwOzDwFXu/pnY+GZgorvf1WiZPwHfd/c3Y+O5wFeIbjGddF2A\nSCRy8hAiIpLS8vPzE75AZyJbTFuAwY3GA2Pzjl1mUDPLZCWwroiISFwixzkuBIrMrNDMsoCZwKxj\nlpkFfBTAzCYDVe5ekeC6IiIicafcYnL3ejO7E5jD0UO+V5rZbdGH/SF3f8HM3m9ma4keLv7xk617\n7HO0ZBNPREQ6tlN+xiQiIpJMoTpl2cw+b2YrzWyZmR1/VluImNk9ZtZgZr1OvXTymdl/xn6W75jZ\nH8wsNCdKmNnVZrbKzNaY2VeDztMcMxtoZq+Y2fLY7+Ndp14rOGaWZmZvm1lod5XHTiP5fez3cnns\nnMdQMbMvmtm7ZrbUzB6PfQQRODN72MwqzGxpo3k9zWyOma02s5fMLD/IjLFMzeVs8WtRaIrJzC4D\nPgiMcfcxwIlPAAqYmQ0ErgDKg85yEnOAUe4+HigDvh5wHqDJCdtXAaOAG8wsOcegtkwd8CV3HwVc\nANwR0pxH3A00f/+G8LgfeMHdzwbGAc1fiC4gZtYf+Dwwwd3HEv2oo/kL6iXfo0T/Zhr7GjDX3UcA\nrxCOv/Hmcrb4tSg0xQTcDvzA3esA3D3M9234L+DLQYc4GXef6+4NseE8okdEhkH8hG13rwWOnHQd\nKu6+/chltdy9huiL6IBgUzUv9kbp/cAvg85yIrF3yZe4+6MA7l7n7nsDjtWcdKCrmWUAuUSvWBM4\nd38DOPbaZDOAx2LTjwGB3yO+uZyteS0KUzENBy41s3lm9qqZlQQdqDlmNh3Y5O7Lgs7SAp8AXgw6\nRMyJTsYOLTMbAowH5p98ycAceaMU5g+MzwIqzezR2C7Hh8wsVJcvcPetwH3ARqKntVS5+9xgU51U\n39jRz7j7dqBvwHkSkdBrUVKvLm5mLwMFjWcR/WP6VixLT3efbGbnA78DhiYzXzzUyXN+g+huvMaP\nBeIkOb/p7n+KLfNNoNbdnwggYsozs27AM8DdsS2nUDGzDwAV7v5ObHd4WI9wzQAmAHe4e6mZ/YTo\nrqjvBBvrKDPrQXQrpBCIAM+Y2Y0p9LcT5jcmLXotSmoxufsVJ3rMzD4L/DG23MLYgQW93X3XidZp\nLyfKaWajgSHAEjMzopuki8xsorvvSGJE4OQ/TwAzu5XoLp6pSQmUmERO2A6F2O6cZ4DfuPuJL2wY\nrIuA6Wb2fiAH6G5mv3b3jwac61ibie5pOHL5+2eAsB34cjmw3t13A5jZH4ELgbAWU4WZFbh7hZn1\nA5L+GpSolr4WhWlX3nPEQpvZcCAziFI6GXd/1937uftQdz+L6B/buUGU0qnEbjfyZWC6ux861fJJ\nlEonXT8CrHD3+4MOciLu/g13H+zuQ4n+LF8JYSkR2+W0Kfa3DdE7DoTtYI2NRO+KkB174zmNcB2g\nYTTdIp4F3Bqb/hgQljdPTXK25rUoTDcKfBR4xMyWAYeIXUki5Jzw7jr5b6KXhHo5+jfGPHf/XLCR\nEj/pOmhmdhFwE7DMzBYT/f/6G+4+O9hkKe0u4HEzywTWEzsRPyzcfYGZPQMsBmpj/z4UbKooM3sC\nuAzobWYbie4C/QHwezP7BNEjhD8SXMKoE+T8Bi18LdIJtiIiEiph2pUnIiKiYhIRkXBRMYmISKio\nmEREJFRUTCIiEioqJhERCRUVk4iIhIqKSUREQuX/Ax4RA7K9WxtsAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -177,7 +437,7 @@ } ], "source": [ - "plt.hist(data, bins=200, normed=True, histtype='step')\n", + "plt.hist(data, bins=200, normed=True, histtype='step', lw=2)\n", "plt.show()" ] }, @@ -190,16 +450,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNW99/FPz8a+g8gquIGgiIgoIjrIVUEjLtGYa65P\nvBhCoiY3MU9Ek1wdNfeJ1xiTqNeoURO36BN9idHrhl4lIoIrixv7IsuwhG1gYGaYmXP/ONXQjDN0\n90x3nzpd3/fr1a+q7q7q+k539W+qT52qAhERERERERERERERERERERERERERyaAJwCJgKTCtkee/\nBSwAFgKzgWEJz60KHp8HvJ/VlCIi0myFwDJgAFAMzAeOaTDNaKBTMD4BmJvw3Eqga3YjiohIMgVJ\nnh+FLfargL3A08AFDaaZA+wIxt8D+jZ4PtayiCIi0lLJin0fYE3C/bXBY025Cng54b4B3gA+BKY0\nJ6CIiLRcUZLnTRqvNQ6YDIxJeGwMUA70AF7Htv3PSiegiIi0XLJivw7ol3C/H3brvqFhwB+xbfbb\nEh4vD4abgenYZqGGxT6dfygiIrJfxprJi4Dl2B20JTS+g7Y/tl3/lAaPtwU6BOPtsD11zm5kGSr2\n+5W5DhAiZa4DhEiZ6wAhUuY6QIikVTuTbdnXAtcCr2F75jwMfAFMDZ5/ALgJ6AL8IXhsL3YL/lDg\nuYTlPAnMSCeciIjkD23Z71fmOkCIlLkOECJlrgOESJnrACGSVu1M1htHcmum6wAhMtN1gBCZ6TpA\niMx0HUCaT1v2IiLp05a9iIgcSMVeRCQCVOxFRCJAxV5EJAJU7EVEIkDFXkQkAlTsRUQiQMVeRCQC\nVOxFRCJAxV5EJAJU7EVEIkDFXkQkAlTsRUQiQMVeRCQCVOxFRCJAxV5EJAJU7EVEIkDFXkQkAlTs\nRUQiQMVeRCQCVOxFRCJAxV5EJAJU7EVEIkDFXkQkAlTsRUQiQMVeRCQCVOxFRCJAxV5EJAJU7EVE\nIkDFXkQkAlTsRUQiQMVe5KDMHWDmgbncdRKRllCxFzm4AUA/oIfjHCItomIvktxe1wFEWiqVYj8B\nWAQsBaY18vy3gAXAQmA2MCyNeUVEJAQKgWXYn7LFwHzgmAbTjAY6BeMTgLlpzAtgMhlYJLPMX8GU\ng/m3Bo/3ALM6uMXcZJOIS6t2JtuyH4Ut2KuwP2WfBi5oMM0cYEcw/h7QN415RXxVALQD+rsOIpKK\nZMW+D7Am4f7a4LGmXAW83Mx5RULOjIfqV+H5P8HE02GNfpWKN4qSPJ/OyjwOmAyMaca8ZQnjM4Ob\nSIhUD4cf/Qs8PxI2AFxpN+pPBd4bCWYC9oF7ILbQYVDJX6XBLStOAV5NuH8jje9oHYZtsjmyGfNq\n60hCyvwWzCbYuAFOqsGuqwZK1sHIGmgT3Kcebl4LZgeY89xmlgjJaO0sApZjd7KW0PhO1v7YQn9K\nM+YFFXsJBdMZzLVgvpfw2Nuw+Odw+DbAQKcKYAJUHw9mA+zcCD+NF3wDN1eo2EsOZbx2TgQWYwv6\njcFjU4MbwEPAFmBecHs/ybwNqdhLCJgjwewGU7n/sdq34ZD3AAOH18IndwfTBsXebARjIPZtKAgK\n/qOfg5kN5koHf4REi3e107vAko/MkUEXy4Rif/0KwEC7PbBiE5hfBdM2KPbmerhls522Qz0s3wbm\nczBTXPwlEhkZ7XopElWD4K4BdvQ/Z8DA+iamuxO4GX5RB+dVw84YfH0b1L8LHJ+bqCLJqdiLfFUM\nuBdqY3D4S3DNqoNM+lNgBxS0hwd2QEcD8wfCDTrQSkJFxV7kK274HfBP0KkOHnwghRl+C9wFfdbD\nbTvtQw9Ogkp9v0QSqM1eQiDeZl9bCcfVAQZu3wHmdDC/D9roG2mzP+A1XoKaDdBlvZ3/JzNz/EdI\ntKjNXqT5nimETwqgVz38cHf68xeXwJXT7fjDI4FWGY0n0kwq9iL71AN3FNvxG3ZBm3RfYDGwBO54\nDXqsh+3t4KfPZTajSPMkO12CSIT8TwnMK4AeBqbsafDkIcnnj123f/zIfrD5XnhqLHajqqnePCKR\noTZ7CQFzJJxTBRi4qTpoky8P2uw7gukJpkMw7fFgKr7aZn+AYmgX9L3n3OznlwjyrnZ6F1jy0U1n\nQMxAKwMbdx1Y7Bsy/cE8AuZ3B3/Nsx/Hrt8vZiOxRJ53tdO7wJKP+t0HGLi8FszOgxf7VM2dDEV1\n2CacwzIUVCROvXFE0lQM6y+xo99NvN5s95a97MkVULoOe5CWTp0gkacte3HEnAvmWbjpT4CBo/dC\nXWWwZX8mmLFgOiV9maZf/xJ4OTi/TrcKtHElmeVd7fQusOQL8wMw2+HC4CCqX1bYE6GZnft3xrbo\n9S+B2nLoW29fn9Na/poi+6gZRyR1G5fb/acxA0deDrQF2mfu9QuBS+IHZ30rc68rkh4Ve4m4X1dA\nXQGY1+Gyl7Dt9N2BXZlbxhVVwcg3sBfyEYkkNeOIA+YcMDNg8DrsOnhFFpZxSXC++w0wZG+wnEn2\nwuVmEpgW7gCWiPOudnoXWPKB+X+waia2W2Q10DELyygC0xbMQLhuEXZd//9gFoOpBnNG5pcpEaI2\ne5HU3L4d2y3ydaAi868fq4XYboithDmTggcnwbYCYFvmlyfSNBV7ibA3hwYjz2Z/We+uhbH1QGt4\nJoM7gEVSo2IvEbWiDSw9HKgFXsjNMi8OTob2UufcLE8kXNRmLzlm2sENM7Dr3owcLvgwu8x29bBn\ng9rspYXUZi+SxD0wf3wwnoMmnH1Ww7B6qIzBDHXBlJxSsZcIKi+BGQbbE+f53C77/Fo7fL51bpcr\nUadiLxH0aF+oLwRmAZtyu+wLgxOtvdQKqmK5XbZEmYq9RNCMvsFIjnbMJhpRD33rYFMB3DI498sX\ncUc7aCWHqm+BLsGJz3BQbE0FTK20yx/2RO6XL3nEu9rpXWDxlXkW3tkNGChajT2gKtcZKuCVLTZD\nu1W5X77kEe9qp3eBxVdmHox9FrvO3eMoQwVUl0PH+GmPB7rJIXlAXS9FmvZx/KjZl9xlKCmB0prg\nzjnuckiUqNhLhKwqgsrBwB7g745CfAysgLPip1Ce4CiHSM6pGUdy5Lersevbi66TwJK52CwV6Bz3\n0jxqxhFp3Kvx68m+7DQGAEdVQ/tVQAd44q9gLnKdSPKbir1ERTG8E7+ubAiKPcBR8+xw/kTgZKdR\nJO+p2EtUnAyVBdB6JbDadRigEm4PznH/mr6HEglqs5cc+O4XgIEBT7lOst/Ov0IbAxj4xFFXUPFY\nxtvsJwCLgKXAtEaeHwzMAaqAnzR4bhWwEJgHvJ9OMJHMmneEHdZMd5sjUft6GBN0wXxS/e3FqUJg\nGTAAKAbmA8c0mKYHMBL4JV8t9iuBrkmWoS17ybZOUGiAvUCHZBPnjnkafl0BGDjlc9dpxDsZ3bIf\nhS32q7BflKeBCxpMsxn4MHi+MTqzn7hWCnVAq4+AnY6zNHBOtR1+ehj6rkgWJSv2fYA1CffXBo+l\nygBvYP8ZTEkvmkjGnGUHnWe5jdGYoV2gZz3sagsMcZ1G8leyYt/SJpYxwAnAROAaYGwLX0+kOYJi\nP/httzG+YhoUjICjFgf3xx90apEWKEry/DqgX8L9ftit+1SVB8PNwHRss1BjW1dlCeMzg5tIJvQH\njoYOBh6aB0e5zpMgFnQB/cHn8M4xwJnA3S4TSaiVBresKAKWY3fQltD4Dtq4Mg7cQduW/TvD2gGz\ngbMbmU87aCWbJgMGzq0C08t1mMbNvh37PdhO8g0wkbiM186JwGLsjtobg8emBjeAQ7Ht+juAbcCX\nQHvgcOw/h/nApwnzZj2wSIK/AAbu3BHeYm9ugO7bsd+Fk1ynEW94Vzu9CyzeiAEbAAMLN4e42F8P\n34mf3/4G12nEG97VTu8CizeOwa5f5VBXHt5iD/D9+7BZZ7hOIt7QWS9FAuOC4czwr+pXfmGHRaVA\nK5dJJD+F/Rsg0hLxYv+W0xQpGfUq9P4H1BbDX55znUYkG9SMI9lQgO3ya4CjwIS8GQegw/2AgR9v\ndJ1EvOBd7fQusHjhOOy6tRaI+VHsmQQYOLHSdRDxgtrsRTiwCceXDYq3gXpY0BbbfVkkY1TsJV8l\nFHvzANDpYBOHxHZo9xnUApzmOoxIpvmy1SX+KAC2YtetgWAMmKlg2jnOlYIjHsLm/rXrJBJ63tVO\n7wJL2I0YCxhotR7M1bbY++KSKdjvxEeuk0joebReW94FlrA780HAwJUm2Kq/z3Wi1M0bBcUGqIdP\nrgCjc9xLU7yrnd4FlrDrMxcwcN5/gBntOk16zBAYvRcw8DcDptB1Igkt72qnd4El1IqgqBK7XvVL\nNnFI3QoY+FG9ir0chHe107vAElamBI4+HTDQ2+e+6mcCBoYbMF+A+QeY4a5DSeh4Vzu9CyxhZX4G\n/2kAAxetSTp5eLUBqiFmYPNGMJvAnOg6lISODqqSKHu9xg5Lt7jN0SJ7gDn2u/xmCVDvOI/kARV7\nySN7CmB20MY97AG3WVpsph2848PBYCIpUTOOZMjj8XPCL042pQfOwB4rsAjMgqAL6ddch5JQSat2\n6nqXkkdeHRiMzHSZIkPeA6qgehAccghs+rPrQOI3NeNIHvn48GBkpssUGVIFzLGjm4MeRiLNp2Iv\n+aIIlg8Ixv/uMkgGxS+6Mu6gU4mkQMVe8sUIqCmBHluB9a7DZEi82Je6DCH5QcVe8kWpHRy32mmK\nzPoA2w1zKKwucR1G/KZiL/mi1A5O+9JpisyqBmbb0Ze6OU0i3lOxlzywqDfETrfjX8+nYg/7dja/\npWIvLaJiL3lgxWP2wiRH1sOwXa7TZFjQbv++ir20iIq95IHXDrHD4RuA5U6jZN4HwG74sj282dl1\nGJGWUP9haaFR5dj16J9dJ8mS1wADf1wN5lzXYSQ0dCI0iZRiWNg9GM+X/vUNBU05r8SA3k6TiLdU\n7MV3I6CqCDquJ3/61zcUFPs5Hd3GEJ+p2IvvSu1gwOdOU2TXx8AuKO8E7+osmNIsKvbiu1I7OPEz\npymyay8wy46+fT6YYU7TiJdU7MVnxdBqvB29Ip+37GFff/uFw4ALXAYRaS71xpHmOhkw0G0TmF6u\nw2TZSdi/dSuYf3cdRkJBvXEkMkrtoPMciJU7TZJ984AK2NIFPtCOWkmbir34rNQOhs5zmiI3atnX\nbv/MwINOKdIIFXvxVTFwmh39P/OdJsmdoAvmuyr2khUTgEXAUmBaI88Pxl5Rpwr4SZrzgtrspXmC\n9vr+u8GMdR0mR0YABrpsdR1EQiGjtbMQWAYMwG5JzQeOaTBND2Ak8EsOLPapzJvxwBIZ0wAD3yiP\nULEvhNZ7sN+Zw1yHEecyuoN2FLZgr8L29X2ar3b72gx8GDyf7rwiaTIxMF2h5Cx7v3SH2zw5VQeD\n4qdwLnUZRPyTrNj3AdYk3F8bPJaKlswr0pT2sHcLlAT96ydFbAt31KpgRNellbQkK/YtaWJR84xk\nyQe7YRdwRB30mQR85DpR7pwbv+ziOCDmMon4pSjJ8+uAfgn3+2G30FORzrxlCeMz2Xe0oEhj3grW\n29NqgJUQ2+00Tk59bSO02QN7+mP3h610HEhyp5QsNt8VYS8GMQAooemdrGALduIO2lTn1S8ASYPp\nAGfWAgYe2w7mSNeJcsvcBsd/jv3eTHadRpzKeO2cCCzG7my9MXhsanADOBTbNr8D2AZ8CbQ/yLxZ\nDyz57N4e0MoABjbuimax/85L2O/N467TiFPe1U7vAotLh30NMNB7vS18JmLXZjW3wd/uxX5v1qB2\n+yjzrnZ6F1hcancndp2503USN8xtULsWugW/bojYLxtJoBOhST6rKg1G3nCZwq3CIhhTHdwpdZlE\n/KFiL54wPWDhZKgbYQ/Ijp8ULKrOiBd79beXlKjYiy8Gw7KHgRiM2A1Uug7kUBcYXxOMq7+9eENt\n9pICMxYuX49dXyJ88Q4zBMxFUHcrdKrCvh9Hu04lTnhXO70LLC6YsfYMlxhgtOs07pmLYdxa7Pvx\nPddpxAnvaqd3gcWFJ7+OXVcqSH7kdwSYi+HeSsDA+E2u04gT6o0j+ejxE4ORt7BXbYq6HXBWUOQ/\n7A4VF7uNI5KctuwlBf1fw64rP3SdJFwKVwAGZle5TiI5py17yTsx2BDfso9w//rG1L1ihzMK3eYQ\nSU5b9pLEg9cCBrpXo26GDV0AGDi1znUQyTnvaqd3gSXXzv8TYKD1U66ThFBHoBYKDdDJdRjJKTXj\nSL5ZMNwOq15xmyOUKqDgPagDHU0rIactezmYNlBYg11PeroOE05tbsG+P/e5TiI55V3t9C6w5NQE\nwMCRW10HCa9+p2O/R8tcJ5Gc8q52ehdYcur3gIHJn7sOEl5vtoPO8VMeH+E6jeSMd7XTu8CSSyWr\nAAPT/8d1kvAybeDrwaUa+YHrNJIz3tVO7wJLzhwBGOhYB5UqYk0ybeCRoNjHXnOdRnLGu9rpXWDJ\nmWsAA6OXug4SbqYVrH4LYgaoAtq5TiQ54V3t9C6w5MpxSwADP3/ddRI/jAy27nt/w3USyQnvaqd3\ngSUnWkNx0OXy6H6uw/jhuwsBA4c+7TqJ5IR3tdO7wJIT5wAGeq13HcQjIwEDReXotBJRoCNoJS9M\nsoOTv3AbwysfQ/c6qD0UONZ1GAkXFXsJoxj7iv2lKvapq4fxu4Lx85wmEWmEmnGkoRHYHY0Gan7m\nOoxfHgsuVdhlgeskknXe1U7vAkvWlWG7XL5tuxVK6q49FIrrgXrgENdpJKu8q53eBZasmwcY+MVd\nroP4acwW7MFoV7tOIlnlXe30LrBk00cPAAba1MGmKa7T+OmWDwEDA+a5TiJZ5V3t9C6wZNOvgjbn\n8/eA+VfXaTzV0x5NW7AX6OA6jGSNul6Kz/67ox1Oqnabw2sbYchmqC8CJroOI+GgYi9h0hXe6wCF\nwAXaMdsi56y1w0OuBNPLaRSRgJpxJG4yYOCopWAmgznadSB/ffwCYKCDgYrfuE4jWeFd7fQusGTL\n8C8BA6fc6jqJ/8xTcFw9YODuZ1ynkazwrnZ6F1iyoisUGYjVwY90taUWM2PgzGcAA6ULXaeRrPCu\ndnoXWLIiaMJpPdN1kDxyDPY9rQK0DyT/eFc7vQssWfEqYKD/da6D5JdD1wMGxl8Dpr/rNJJRGa+d\nE4BFwFJgWhPT3B08vwA4IeHxVcBC7BGR7zcxr4q9dAP2QqGB245xHSa/fPNlwMBlBowuApNfMlo7\nC4FlwACgGJiP/WmY6Fzg5WD8ZGBuwnMrga5JlqFiL1cBBsZVg+npOkx+GXIUYKCwGra+6TqNZFRG\na+do7M/ruBuCW6L7gcsS7i8C4l/YldittoNRsY800wZ6fQIY+K8dKvZZMRsw8GglmD+7DiMZk9Ej\naPsAaxLurw0eS3UaA7wBfAjoPCfSiKuHQvmx0Br4Zx01mx1P2cGtS4ETnSYRZ4qSPJ/qf46mLoF2\nGrAe6AG8jt3qn9XIdGUJ4zODm+Q90xpGBBsBFwJddB6X7HgG+D2sGAqblroOI81WGtyaJVmxXwck\nXuy5H3bL/WDT9A0eA1voATYD04FRJC/2Ehk1Q2BnUOyP/QPwBbDTZaI8tRF4A8zZ8OdOrsNIs83k\nwA3hmzP54kXAcuwO2hKS76A9hf07aNuy/4x77bDthmc3sgy12UfW1G9jP//12M4Akj3fBAwM2eM6\niGRMxmvnRGAxtlfOjcFjU4Nb3L3B8wuwl5QDOBz7z2E+8GnCvA2p2EdW/2exn/8drpNEQGso3IF9\nv09INrF4wbva6V1gyYjWUFiB/fyHug4TDf2exL7f97pOIhnhXe30LrC0lLkKnghO0jW00nWa6Pjx\nxdjv23bYORvMu2B0nVp/eVc7vQssLWEOA3MHjKoBDPx6tetE0WGOg2FVgIHH68FsBdPXdSppNu9q\np3eBpSXMz+H9cuwFsQ1sn+86UXSY4+CePYCBQavBlIP5DIya0fykyxJK2E0rt8N/+gI6veA2S6Rs\nh0unQ0ktLO4P138Pe4xMW9fBJBq0ZR8Z5grYvBCKgyYcBrtOFFH3Yd//B8F8AOYk14GkWbyrnd4F\nluYy98L//YD9p9EQNwZhP4M9sH6eir231IwjYVULPBw/p/p9LpNE3GLsgZCt4Xc9XIeR6NCWfSSY\nnnD3TOznvZrkp+qQ7DoLMNCjBtaOdh1GmsW72uldYGmOumdh+F7s532t6zRCDPgMMHDWv7sOI83i\nXe30LrA0xxNvYz/rTaj3R1hMAQy0XYaadH3kXe30LrA0x/BN2M+6qXMkSe61gp7VgIELfuY6jKTN\nu9rpXWBJh7kL/hZcTLy4EtApdkNlzO2AgU6r0Na9b7yrnd4FlnSY5XBW0FZ/6nOu08hXtIIeuwED\nk37uOoykxbva6V1gSZUpgZfWAwY61MPcya4TSWMuvB8w0G0d2rr3iXe107vAkqraShhhAANlO8Fc\n4jqRNKoEuu7CfhevcB1GUuZd7fQusKTq0eAMiz2qYdcGFfswu3km9ru4DmjvNoukyLva6V1gSUlr\n6B+cs/43S8Co2Ifa3geh/zrs9/E/XKeRlHhXO70LLMmYjlAW7JQt+BT2vgOmRsU+zMxNMCdociuo\nwV5WVMLNu9rpXWBJ5pSRUBIvHOPAjAAzTldFCjtzOkz8EvudnO46jSTlXe30LrAcTMUgOC0o9Dzk\nOo2ka+6N0Cp+CupLXaeRg/KudnoXWJpiCuGk27Cf6Qagi+NAkjZzNdw8DzBQUgFrN4P50nUqaZR3\ntdO7wNKUBy6HDvGterXPe8lMhXoDZwef44RqqKtynUoa5V3t9C6wNGSuht0VMDQ4zwrPYM+qKN56\nYhJ0DHpTPbAXTBcwXe2vNwkJ72qnd4GlIfMjmBwcct9nDzr/TR4wJ8GfggOtWhmYWwHGgDnGdTLZ\nx7va6V1gSWSOg1/9HdvzZi/86hrXiSRjYlD8EGCgdz2s3aRiHyre1U7vAgvYn/OmCB56CoqDn/t8\n33UqybTfdYBRQfPcqBpYNMx1ItnHu9rpXWABMK/BvOAEZxjgHtROn696AmsAA11eB4od5xHLu9rp\nXWAB+HgWHFIHGDhhATpbYr4bDh2Dz7v1dHQN4TDwrnZ6F1g4EToHP+3PrIftOg96JLz4AnSMd619\nEihxHCjqvKud3gWOuPFQGPS8GfApzB4JpofrUJIrr3wI7YOCf+x62PA+GF1q0g3vaqd3gSOqAPgJ\nxGoBAxM3wppRrkNJrpnW8OQfoGtw+uqBNbBwHZhHwawA87HrhBHiXe30LnD0/NtAGL4C+1kZ+MZC\n2NLXdSpxqh8QnFahuAbuqoDazWC2uA4WId7VTu8CR8f9RdDvh9CqAjDQ2cD0ep29UgLtgcfZtxFw\nRjUs2uY4U5R4Vzu9CxwBMeAM6PYF+77IwzbD90eC6aVD5uVAl5dBt2A9KTLQ+wl4bDQYddHMLu9q\np3eB85P5LdQaeMHAkM3sK/Jdq4DLUR96aZLpCx/9FEa+C7FgvWlnoM9f4OyRYNRrJzsyXjsnAIuA\npcC0Jqa5O3h+AXBCmvOq2OeUORnMYjCvBg/E4MVH4ce7of0O9hd5A9ethyVXOQwrXjFt4YX/gqFL\n2LceYeBMA998EOjmNl/eyWjtLASWAQOwR83NBxqeG+Nc4OVg/GRgbhrzZjyw50qzv4g94+CzrfDH\nbXDsDGjzDw74YrIEjr8TVn8XzKnZz9OkUofLDptS1wHS99EGuLIaCuJnQjUQq4NeS+AXtfDiF/DI\nIDC903zh0sxn9VZGa+do4NWE+zcEt0T3A5cl3F8EHJrivKBin6gsg6/VHhgEZ34HTrsLuj8M3T+A\n9sG1YRNvXfdAp8eAUwlPc02Z6wAhUuY6QPrMH8E8B389EaY8CuNroLDBeoeBww30eguOfwg6XwWM\nBfoDhWBiYArsbZ+ynP8p4ZVW7Ux2yHMf7Dkx4tZit96TTdMH6J3CvLLfydiLPJ+L/SVUAsUlMKQ3\n1BXB5zugvghGD4JO3WBXIextD3vaQFUbqGoNxT1hexuobA9VwRfkzUYW1WoLVM8C3gNmwNagC51I\npsSmJNz5tr1d1wdmnQNLToEdI4DjYEUJUArlpUBCk2HM2FafbrGgN9gsYAu2daA9sBvYA4cW2OmK\nq2HHLli5HagLbrUJ44m3+Pmc4poaP9hzLZ0n55IV+1TDhWVrMORMD2AmcAjQHXgbON0+NwhYAnDF\n/un3YneDJJqT4rJa1dudqyWrYMsHcNJeuHQwHD8DxtzW7D9BpNnuWgc8EtzAbtQMBobDVbfAzv6w\nYBusLYHKjrAVe6MjcF7CC520f3RDcJNkkhX7ddiDJ+L6YbfQDzZN32Ca4hTmjYvIVuVX/ieenr1l\nVRdAeVtgiL29hb1xGnBr9pabUTe7DhAief5ePBwf6e4yRZQVAcuxO1lLSL6D9hT276BNZV4REQmJ\nicBibM+a+AmPpga3uHuD5xcAI5LMKyIiIiIi+eRS4DPs3vERDZ67EXsg1iLg7Bzncq0Mu29jXnCb\n4DSNG6kcjBcVq4CF2HXhfbdRcu4RYCPwScJjXYHXsb0ZZgCdHeRyobH3ogxPasVg4GjsXsPEYj8E\n275fjG3vX0a0roJ0M3Cd6xAOpXowXlSsxBa4KBqLPSI/scDdAVwfjE8Dbs91KEcaey/SqhUui+gi\ngr6GDVwAPIXtd7gK+8WP2nnTo9yVdRT2M1+FXQeexq4TURbV9WEW0PAsmpOAR4PxR4ELc5rIncbe\nC0hj3QjjFnNvDuyiGT9IK0p+gN3Z/TDR+Zka19RBelFlgDeAD4EpSaaNgp7Y5gyCYU+HWcIg5VqR\n7WL/OvZnR8Pb+Wm+Tr71w2/qfZkE/AEYCAwHyoHfOMroSr591i01BvvzfSJwDfbnvFjx0y5EVVq1\nIttXiD+rGfM0dpDWuszECY1U35eHgBezGSSEUjmQL0rKg+FmYDq2mWuWuzjObcSee2sD0AvY5DaO\nU4l/e9JaEZZmnMR2pxeAb2IPxBoIHEW0eiH0Shi/iAN3yETBh9jPfAB2HbgMu05EUVugQzDeDtsz\nLWrrQ0PvWU7FAAAAd0lEQVQvYM+1QzB83mEW17ypFRdh22b3YP9Lv5Lw3M+wO+kWAefkPppTj2G7\n2i3ArshRbJPUwXjWQGxvpPnAp0TvvXgKWA/UYGvFv2J7Jr1B9LpeNnwvJqNaISIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiLStP8FRXILpDlWT54AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcVvf99/HXhy2goKIgKA5wG/eMxp3EmDgymsQkzfg1\nxo6kbfq727R3992mu03bpEmaNLOZzWqWGrNMYl3gXrhFUUQQRQVkXd/7jwsNsSqXCpwLeD8fDx5y\nnesczpsjXG/Oub7nHHPOISIiEixCvA4gIiJSk4pJRESCiopJRESCiopJRESCiopJRESCiopJRESC\nSkDFZGZTzCzLzLaY2X2nef4mM1tT/bHIzPrXeG5X9fRVZra8LsOLiEjTY7Wdx2RmIcAWYBKwD8gA\nbnTOZdWYZySwyTlXZGZTgJ8550ZWP7cDGOKcO1RP34OIiDQhgewxDQe2OueynXMVwEvAjJozOOeW\nOueKqh8uBVJqPG0BrkdERCSgwkgB9tR4nMMXi+dUdwLzajx2wPtmlmFms889ooiINCdhdfnFzGwC\ncAcwpsbk0c65XDNrh7+gNjnnFtVcrqioSNdFEhFpwuLi4izQeQPZY9oLpNZ43LF62hdUD3h4DJhe\n8/0k51xu9b/5wBv4Dw2KiIicViDFlAGkm1lnM4sAbgTeqjmDmaUCrwFfds5trzE92sxiqz+PAS4D\n1tdVeBERaXpqPZTnnKsys7uBBfiL7Ann3CYzm+N/2j0G/BhoAzxsZgZUOOeGA4nAG2bmqtf1vHNu\nwdnWFxcXd2HfUROXmZkJwNChQz1OEvy0rQKnbRU4bavAFRUV1T7TaQT0HpNzbj7Q85Rpf6/x+Wzg\nvwY2OOd2AgPPK5mIiDRLGsYtIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJB\nRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUk\nIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJB\nRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBRcUkIiJBJczr\nACLNybody/lk9TsAtI5N4ObLvvmF57OyV1NeWQZAx3ZdadOqfYNnFPFaQMVkZlOAP+Pfw3rCOffb\nU56/Cbiv+uFR4OvOubWBLCvSnBw+WsCWPWsBaN865b+ef+mjhyk8cgCAWZO+wah+lzZoPpFgUOuh\nPDMLAR4CLgf6ArPMrNcps+0AxjrnBgC/BB47h2VFmr3Kqgr2FWSfLCWR5iyQPabhwFbnXDaAmb0E\nzACyTszgnFtaY/6lQEqgy4o0Z+8t/xeb96ylsCiPwqP5XscRCQqBFFMKsKfG4xz8hXMmdwLzznNZ\nMjMzA4gk2k6BC6ZtlZ27++Tnx48fZ+PWNews2ABAaXE5hw8cw+dztO3Qknf+8yL79+XTqU2PBssX\nTNsq2Glb1a579+7ntVydDn4wswnAHcCYuvy6Ik1Z7s5Cls3LImdbAc7nADCD5LQE9l1bwKwr5gAQ\n16ItoSH+X9mikoNUuUoAoiNiiQqP8Sa8SD0IpJj2Aqk1HnesnvYFZtYf/3tLU5xzh85l2ZqGDh0a\nQKTm68RfadpOtQvGbVW65gDLd/g/P1xcwLsvLGT1J/4JISFGUucEWrdMIGvTFvZuK+Dp377NysXr\nuWRmP64cfTNJcR2Ji2nLhx8/x96CXQDMvOQOxgwed0G5gnFbBSttq8AVFRWd13KBFFMGkG5mnYFc\n4EZgVs0ZzCwVeA34snNu+7ksK9JcvJ/5Om//51kAKiuqWPDPFWxfm0tIiDFoYjqDJ6aTnNSRn93x\nGB9nzuW+H97Lig+3sfaznRQdLMHnc4SFhzIgfZTH34lI/aq1mJxzVWZ2N7CAz4d8bzKzOf6n3WPA\nj4E2wMNmZkCFc274mZatt+9GJIjtztsKgHOO1XNz2b42l4ioMKbdNZLrps9iaK9xhIWGAxAbG8PI\nqb1J7dWed59YTvbGPD54YRWXf3mIl9+CSIMI6D0m59x8oOcp0/5e4/PZwOxAlxVpzvatqmDJxyuI\niAzjmrtH065jPGkpfUlP6ftf8yZ3a8vV37iYV/+yiK2r9hLfLgYLMQ9SizQcXZJIpAHl7izkjX/O\nx8yYcec42nWMP+18XZJ6cNPke7hp8j0kJMcx9X+GYQYZ729h7/aCBk4t0rBUTCINpOx4Oe8/vxLn\nHPfddx89BnQ647zt4jswsu8kRvadRGLrjqT2bM+QyT3AwfvPraT8eEUDJhdpWComkQby9ksfUlRQ\nTHrPNH72s5+d8/LDp/Ske69uHD1UyvL3ttR9QJEgoWISaQDbtm3jg38vAuAnv/w+kZGR5/w1QkND\n+Ob378IM1ny6g8L9R+s6pkhQUDGJNIBZt11LZWUVvYd3ot+APuf9dQYMvIjZs+/CV+Vj00Jdwkia\nJt32QqQeHTpawMPP/oHMxWsJjwhl1JXnXkrXT/wq5RXHAejQNpX77x/OCy+8wMql6+g2Ih4uqevU\nIt7SHpNIPSo+foTHHnoKgP5ju3Hr9LvpnHhu1w/r3rEffbsOpW/XobRp1Z6EhATuvfdeAJbO1WmB\n0vRoj0mkHq3IWMnurAOER4bx0x/9nIv7XUZ4WAQAv5z91Hl/3e985zv86YE/krO1gLUrNzBx8Iy6\niiziOe0xidSjvz3oPw99zOWDmDZu1slSulDx8fFced1kAF565o06+ZoiwULFJFJPtmzZwgfvfUho\nWAijLx9Y519/ytUTCQsPZdmiTNavX1/nX1/EKyomkXrywAMP4Jyj59BOxMZF1/nXj4tvSe8R/ov3\n//GPf6zzry/iFRWTSD04fPgwzzzzDACDxqfV23oGjU/DzHjxxRcpKNCliqRpUDGJ1IPnn3+e0tJS\nxlxyMW2SWtbbeuISYhh28SDKysp46qnzH0whEkxUTCJ1zDnH448/DsCsL99Q7+u78ppLAXjkkUeo\nqqqq9/WJ1DcVk0gdW7FiBWvWrKFt27ZcfsWl9b6+A7aJhMTW7Ny5kw8++KDe1ydS31RMInXsxN7S\ndddfw6bdK+ttPaEhoYD/luxpgxMBTr6v5Zyj8Ej+yY+KyvJ6yyFS11RMInXo2LFjvPDCCwCMmNSf\nBRmv1Nu6Zoy5jbum/RCAXkP9t9B45dV/sWHbKpzz8bOnZp/82LVfVyOXxkPFJFKHXn75ZY4dO8bo\n0aPp3PXz+y31TB1QL+trFdOaPp0H06ptNCnpCVRWVPHsc0+z58COelmfSEPQJYlE6tA//vEPAGbP\nnn1y2vhB05l5yR31sr7UxHTmzPgxR0oOkb3mavZu+5Tn/vk8pa2z62V9Ig1Be0wi56HwyAHmL3uZ\n+cte5q1Fz1Jy/BjrNqxh6dKltGzZki996UsNlsXMiItpw/CxgwiLCGXfjoMUFRQ32PpF6pr2mETO\nw8EjB5i79MWTjz9Y8ToZCzYDcNmUyeQf2cvuvG0NmimqRQRp/TuwOTOHrIw9jLiiV4OuX6SuaI9J\npA4459iyci8AvoR8/vjyd1m55bMGz9FrmP99razMPTifa/D1i9QFFZNIHTiYe5TC/UeJig6nQ3pr\nz3J07N6O2PgWHDlYQu6uQs9yiFwIHcoTqQNbV+UAkDYgmdBQ/99737j650SER9IqpuGKKiTE6D4o\nhVUfb2Pb6n0kd2vbYOsWqSsqJpELVPMwXo/BKbSL68B3bvgt0VEtMbMGy9E1qSfRkbEcGHiYVR9v\nY/vafVwysx8W0nAZROqCiknkAh3Yc5gjB0uIjYvmhqtvpV3rRGJatGrwHNeM+woA4wdO492nRnPs\ncCn7sw/RoWubBs8iciH0HpPIBTqxt3T11TO4YdIcJg6e6WkeMyN9QDIA29bs8zSLyPlQMYlcAOdz\nbF3lL6Yrpl3ucRq/mBatuPSKiQBsX7MP5xzLN36kq0FIo6FiErkAebsPUVx0nNj4Fgwc3N/rOAB0\nat+N33z3UVJSUjh6qJS83YdZtukj1m1f5nU0kYComEQuwI51+wHodlFSgw50qE1ISAjXXnst4N9r\nEmlMVEwiF2DHulwAul3UweMk/+26664DYF/WEZzTybbSeKiYRM5TYd5RDh04RmR0OMlpwXe+0MUX\nX0xSUhL79x0gP6fI6zgiAVMxiZynndWH8br0STx5Um0wCQ0NZeZM/wjBHev3e5xGJHDB99sk0kgE\n82G8E6ZPnw7Arg0qJmk8VEwi5+FAXj77sw8RGh5C517tvY5zRhMmTCCqRST5OUW88t7TfLZmrteR\nRGoVUDGZ2RQzyzKzLWZ232me72lmi83suJl955TndpnZGjNbZWbL6yq4iJc+ev9jAFJ7tOfLU7/F\njZO+QVLbTrUs1fCioqIYPNw/jH3nhv2s8OCK5yLnqtZLEplZCPAQMAnYB2SY2ZvOuawasx0E7gFO\nd8q7DxjvnDtUB3lFPLdm21Keff5pAEaMHcLF/S71NE9tZsyYyeJPMti5fj9c73UakdoFssc0HNjq\nnMt2zlUALwEzas7gnCtwzq0AKk+zvAW4HpFGYeuujezYlIMZ9BuS7nWcWt1xy2zMjJytBRwvLfM6\njkitAimMFGBPjcc51dMC5YD3zSzDzGafSziRYOFzPjZlr2JT9irmvvcOvipHSrf2zJx4i9fRatWu\nXTsGDRmAr8rH5jU7vY4jUquGuLr4aOdcrpm1w19Qm5xzi840c2ZmZgNEavy0nQJXF9vK56viuSW/\nBiBj8RoAhgwbTOlByDwY/P8X/Qf2Y2XmatYsyzrr9tDPVeC0rWrXvXv381oukD2mvUBqjccdq6cF\nxDmXW/1vPvAG/kODIo2Sc47sTXkA9BvU0+M0gRsxahgAm9fsoqqqyuM0ImcXyB5TBpBuZp2BXOBG\nYNZZ5j95wTAziwZCnHPHzCwGuAz4+dlWNnTo0AAiNV8n/krTdqpdXW6rqqpKnlsCh/KOcfRQKVEx\nEYwaM7zR/D/EJ0URlxBDUUExFRUVjBgx4gvP6+cqcNpWgSsqOr8rjtS6x+ScqwLuBhYAG4CXnHOb\nzGyOmd0FYGaJZrYHuBf4oZntNrNYIBFYZGargKXA2865BeeVVCQInNhb6tyrPSEhjWdMj5nRpU8i\nAPPmzfM4jcjZBfQek3NuPtDzlGl/r/F5HnC6kziOAQMvJKBIMMnOOgBA597Be1LtmXTunciaT3cw\nb9487r//fq/jiJxR4/mTT8RjFWWV7N12EAxSg/hqD2eSkt6WsPBQVq1aRc7eHK/jiJyRikkkQDnb\nCvBV+WjfKZ4WsZFexzlnYeGhpHRPAOC9+fM9TiNyZiomkQBlbzpxGC/R4yTnrkPbznxt5k/pUn0I\ncv789zxOJHJmKiaRWmzevYbvPjzrCwMfGpvoqFh6dx5E177JAHzwwQdUVp7uQi0i3lMxidTC53wU\n5B3iyMESoqLDSezc2utI5y0uIYb4djEcPnyYpUuXeh1H5LRUTCIByN7o31vq0b8rISFWy9zB7cSh\nyD88/Auy92/1OI3If2uISxKJNHonhol/7Y5vcf2N1wEQFRntZaTzdmLY+OLPlrF622I6J53fZWNE\n6ov2mERqcfz4cXK2FQAwc/o1tGnVnjat2hMdGetxsnP3f278PdOunElYeCj5OUUUFhz2OpLIf1Ex\nidQiY+kKqip8dOqaRFJSktdxLkjHdt24c9r3GDLCf977qmXrPE4k8t9UTCJnsa9gF2+8+RoAfQYH\n/72XAjVs1CAA5s2fxwP/+r7HaUS+SO8xiZzBI//+f2zKXsnSRRkA9BncdN6LGXaxv5j2bM6nvLzc\n4zQiX6Q9JpEzKD5+lKKCYg7nFxMRFcakcZO9jlRnbp4+h67dulBWWsHurfu8jiPyBSomkbM4MRrv\nqqnTuHL0TR6nqTuhIaGMnzgOgKw1u7wNI3IKFZPIWZy42sPUqVd6nKTuTZjkL6Z1K7LYd2g7Pufz\nOJGIn4pJ5AwqKyrJ2eofJj5lyhSP09S94SOHnRw2/ubSp6jy6RJFEhxUTCJnsCNrL5XlVfTq3YOU\nlBSv49S5+LjW9LyoKwC7qw9ZigQDFZPIGWxesxOAcRPHepykfiS2TmHO7d8EVEwSXFRMImewebW/\nmMY30WKCzw9R7s46QFVVlcdpRPx0HpPIaezevZu8vQcJjwxlyNBBXsepN+np6cQlxFBUUMyHi98l\nonUlia076vp54intMYmcoqKygt//7f8B0KlHOyIiIjxOVH/MjC59OgAw98N/89yCv5C5+ROPU0lz\np2ISOYXPV8ncee8C0LlX47tb7bnq2sd//b/dm/Q+kwQHFZPIKcrLy9mzxT9M/LabZxMX29bjRPWr\nU/f2hISGkLf7EKXFujyReE/FJFLDhp2Z3P79K6koq6RtUitum/EN4pt4MUVEhZOc1gbn/NfOE/Ga\nikmkBp/zsav6ag9d+jTuW1ycixOHLE9c6ULESyomkVOcuD7ez//3jx4naTide7cH/MPGfT5dmki8\npWISqSFv/wEO7jtCRGQ4kydd6nWcBtMmqSUxcVGUHC0je3uO13GkmVMxidSw+LOlAPTs343IyEiP\n0zSMa8d+hVHpU+neLxWA1998laUbPvQ4lTRnKiaRGhZ9sgSAfoN7eJyk4Yzqdyk9koYwZvQlgH/Y\n+MJVb3mcSpozFZNItcrKSpYuWg5A3yZ0t9pAjbl4HCEhRu7OQo6XlnkdR5oxFZNItaVLl3L06DHi\n28XQLqmN13EaXFpKb4YOG4LP58hYupIFGa+yIONV9hfu8TqaNDO6Vp5ItYefeACAzr2b/tUezmT8\nxHEsX5ZJ9qYDvLP4OQAS4pJIatPJ42TSnGiPSaTassWZwOdDp5ujE7db3511AOecx2mkuVIxiQD7\n9+9nx5bdhIaHcM2067lu/F1eR/JEv4v60iI2gqOHSjmUd8zrONJMqZhEgPfeew+AlLQEUpPTaNOq\nnceJvBESEkJqL/8eo64CIV5RMYkAT7/wOABdmvFhvBM6nygm3dVWPKLBD9KslZYV89Q7vz85TDy1\nGQ98OCG1V3sw2LvtIBVllV7HkWYooD0mM5tiZllmtsXM7jvN8z3NbLGZHTez75zLsiJeqvJV8fFn\nH3G8pIJWbaO5fNx00lP6eR3LUy1iI2nfKR5flY+92w96HUeaoVqLycxCgIeAy4G+wCwz63XKbAeB\ne4Dfn8eyIp468V7KVVdexbXj7qRT+24eJ/JeZ73PJB4KZI9pOLDVOZftnKsAXgJm1JzBOVfgnFsB\nnLrfX+uyIl7btdH/4vvlWXfQIjLa4zTB4cS5XLv1PpN4IJBiSgFqnvqdUz0tEBeyrEi9y92XS35O\nEWHhoYwbN87rOEEjMTWeyBbhHM4v5tV5z7J59xqvI0kzEnSDHzIzM72O0ChoOwXubNvq1ddfASC1\nZyIbNmxoqEhBa/f2vUzqMwuA93utYsuqHBZ/tpTkxI4cPVDhcbrgot/B2nXvfn7XnAxkj2kvkFrj\nccfqaYG4kGVF6t3SJf7bXHTr28HjJMEhPCySlNZppLROY8LYyYCGjUvDC2SPKQNIN7POQC5wIzDr\nLPPbBSzL0KFDA4jUfJ34K03bqXa1batVWYtZsnQxAN37d2rW2/R02yo5+X7+/penydlaQHxcfLPe\nPjXpdzBwRUVF57VcrXtMzrkq4G5gAbABeMk5t8nM5pjZXQBmlmhme4B7gR+a2W4ziz3TsueVVKSO\nLVuWQfnxStoktSSubazXcYJOcnIyaT26UlleRdb67V7HkWYkoPeYnHPzgZ6nTPt7jc/zgNNefvh0\ny4p46TfPf5uCw7l89NoKAPoP7cX3bvqTx6mC04iLh7B9y05WZ+j9N2k4uiSRNDsVleWUV5adHCY+\nfMxgWrdsntfGq82I0f7DVUs+W84T7/yGJ975DcWlRzxOJU2dikmapaKDxRzKO0aLmCgmjp/kdZyg\nddGgPkREhVG4/yifLvuQNduXUl5Z7nUsaeJUTNIsZVfvLV01dRqXj/iSx2mCV3h4+Mmrje/csN/j\nNNJcqJikWTpxGG/q1KkeJwl+XfslASomaTgqJml2yssqyNlWAMAVV1zhcZrg1qVDD756+zcJCQ1h\n37aDlJXqJFupfyomaXZ2Ze2jqsLHwEEDSEzUbS7OpmO7blwz6TbGjB6Dz+fI3qSTbaX+qZik2dmy\nJhuAyZdO9DhJ4zF9+nTAfzjveHkJlVXac5L6o2KSZqOsvJRPVr/LxpU7AJh8mUbjBepEMWVvzOOX\nz9zNyi2LPE4kTZmKSZqN0vISHnnu9xw7XEpMXBQDBvb3OlKj0b17dxI6xFNWWkHujkKv40gTp2KS\nZmXHev/IsovHDic6qqXHaRqXO26ZDWh0ntQ/FZM0KzvX5QLwna//gFYx8R6naVymTZsGwM71+3HO\neZxGmjIVkzQbu7N3U7DvCBFR4UyYMMHrOI3OqFGjiG0VQ1FBMdk799S+gMh5UjFJszFv7nwA0vqm\nEBkZ6XGaxicsLIz+w3oD8NnHiz1OI02ZikmajbnvzgOgx8DUWuaUMxk8si/gLyafrwqfr8rjRNIU\nqZikWdibu4f/LFqMhRjpF3X0Ok6j1W9IT0JCQ1i7aj1zfn0VP3/6q15HkiZIxSTNwj+efYSqqipS\n0trSIkaH8c5Xi+goOqa3xTnYtSHP6zjSRKmYpMn792dP8dyLzwDQrV8SCXFJHidq3Lpd1AGA7Wtz\nPU4iTZWKSZq8g4cK2LXJ/9f9zGuu5ltf+pXHiRq3bv07gEF21gHKSnVvJql7KiZp8tZmbKKyvIpe\nfdO585r/9TpOoxfTKorkbm3xVfnYsma313GkCVIxSZO3/LPVAFx6xSRaRsd5nKZxi49pS1KbTvQc\n7B/ZuGnFTo8TSVMU5nUAkfp0/PhxVi3bAMCEy8Z6nKbxmz7mVv/HsDVc9MpAtq3L4dixY8TGxnod\nTZoQ7TFJk1RWXkp2wSbeeu8Vyo6X0z41ng7JuvdSXUlO7kCHrm2orKhi7ty5XseRJkbFJE3SkZLD\nfLL5Nd6c+xoA3Qcme5yo6Unr7x+d9+qrr3qcRJoaFZM0WZUVVSevhJ3WX8VU19IG+Lfpv998g5/9\n46us2vofjxNJU6FikiZrd9YBKsqqaNcxjriEGK/jNDmt2kTTPjWeivJKli9eSWlZsdeRpIlQMUmT\ntW31PgDSdRiv3pw4RLp15V6ydq9mb/4ubwNJk6BikiapuLiEHdX3Xuo+MMXjNE1Xj8Edwfw3D1y2\n9hPez3zN60jSBKiYpEk5UnyY/MO5vPLay1SUV5HUpbUO49Wj2PgWpKQlUFXpY/vafazc8hnvLH7e\n61jSyKmYpEl5/dMn+MUzX+Nvj/4FgJ5DO9GpfRqd2qcR00K3Uq8PPYb490g3r8gBYMn6BV7GkSZA\nJ9hKk1NytIzdm/MJCTEGjuzNd2f90etITU7rlu348z3+w3aHbjlE8hsp7N16kGNFpbRsoatryIXR\nHpM0OVtX7cX5HKm92xMdG+V1nCbJzAgJCSUkJJS2bROYOnUqzjm2rtzrdTRpAlRM0uRsztwDQM8h\nnTxO0nzcfPPNwOeH80QuhA7lSaNXXHqE5VkLAfjoP/PI232Y8MgwuvbTJYgaylVXXUWrVi3Jzymi\nYH+R13GkkdMekzR6R0oO88anT/LGp0+yOdP/F3v6gA6ER+jvroYSFRXF9BnTAVi/ZLvHaaSxUzFJ\nk+F8jqwM/2G8HkM6epym+bn5lpsAWLtkO5WVlR6nkcZMxSRNxp4t+RwpLKFVm2g6dW/ndZxmZ9TF\no4hvF8OxolLmzZvndRxpxAIqJjObYmZZZrbFzO47wzx/NbOtZrbazAbVmL7LzNaY2SozW15XwUVO\ntWFJNgB9RqYyst9kJve9idHdp3ucqvkwM/qO6gzAP/7xD4/TSGNWazGZWQjwEHA50BeYZWa9Tpnn\nCiDNOdcdmAM8UuNpHzDeOTfIOTe8zpKL1FBy9Dg71uViBr2Hp9IrdQDJ8d1IbJXqdbRmpdewToSE\nGO+8+w5PvflXduzL8jqSNEKB7DENB7Y657KdcxXAS8CMU+aZATwL4JxbBsSZ2YkhURbgekTO26bl\ne/D5HF36JBEb38LrOM1WdMsouvZLwlfl4/HHH2XPgW1eR5JGKJBhSynAnhqPc/CX1dnm2Vs9LQ9w\nwPtmVgU85px7/Gwry8zMDCCSaDt97lDxATYu9R/Gu/mGWxnedyglB320iPA/r20VuAvZVqXlxwDo\nM7Iz29fmsnHZbnbtyiamsmluf/1c1a579+7ntVxDjKcd7ZzLNbN2+Atqk3NuUQOsV5qJtavXcTi/\nmJbx0Vx56dWEhWmYuBciwqIY1/NaxqT7WPivtRQVFJO1fit9O47wOpo0MoH8Bu8Fah6o71g97dR5\nOp1uHudcbvW/+Wb2Bv69rTMW09ChQwOI1Hyd+CtN28lvyYYPeOyfDwEwZGwfRo4cefI5bavA1dW2\nGoF/+78y/RVeffZdFi/M4Nc/+vMF5wsm+rkKXFHR+Z1sHch7PxlAupl1NrMI4EbgrVPmeQu4FcDM\nRgKHnXN5ZhZtZrHV02OAy4D155VU5DRy9+1j26q9mMHQ8X28jiPVLp02lpAQ47OPFvPdP93GH1/+\nnteRpBGptZicc1XA3cACYAPwknNuk5nNMbO7queZC+w0s23A34GvVy+eCCwys1XAUuBt55yuiS91\n5o2X38Xncwwa1Y+fzPmL13GkWpuEeLoPSsE5+PCdxRwo1DX0JHABHYx3zs0Hep4y7e+nPL77NMvt\nBAZeSECRMykpKeHt1+YDMPPGK2gZHe9xIqlpwLhubF6Rw8al2YybppcBCZyGcUuj9bs/30/R4SO0\nT42nZ980r+PIKRJTW9OhaxvKSivYsGyX13GkEVExSaPknOOxR/1XFxg0Lg0z8ziR1NS+dQo9Ow1g\n0rSLAVixcDM+n8/jVNJYqJikUfr1gz8hd88BYuKiGDiqD2kpGvgQTMYOuJJvXPNzHrr/WWLjoyjM\nO8p7772rLblRAAAOOklEQVTndSxpJFRM0ig99oj/PO3+l3Rl1qVfY3CPMR4nktMJDw+n/yXdAPjV\nr36Fc87jRNIYqJik0VmyZAnZWXmER4Yxe/ZdtG+tW1wEs4tGdyEqOoJFixbxySefeB1HGgEVkzQq\nRccKufverwIwYGw3brj8Tjq01S3Ug1lEVDhDJ/oH9X7rf7/B3CUvklF9x2GR01ExSaOy8NOPWLls\nLeGRoQwcr5F4jUWfizsRERXG2pUbeeLFh1mR9anXkSSIqZikUfnzHx8E/HtL10y8lfDQCI8TSSAi\no8MZMM7/h0TGgs0ep5Fgp2KSRmPZsmUs/OhTwiNDmXrtJK4YeSPhYSqmxmLg2G5ERoWzZ3M+69Zs\n5EjxYa8jSZDSZZil0fjJT34CQP9LuhHTUvdcagxCQ8IY3nvCycfHb27JP5/4F//+5wdEtLmTB+55\n1cN0EqxUTNIozJs3jwULFtCqVUsG6b2lRiMyPIpbLvvWycc9Owzm1ZffZN/2g2xfu8/DZBLMdChP\ngl7BoTy+/W3/i9vd3/46LWIjPU4k52vYRZfw21/9DoBP/72WT1fP48HXfsyDr/2Y1z990uN0EixU\nTBL0vnTXFLZs2UpcQgxhnQq9jiMX6M7Zd9I6MZaigmKeffJ5tuasY2vOOvbm7/Q6mgQJFZMEtcLC\nQpbM3QDAmJl9OVR8wONEcqHCwsIYM6MfAC8++RqlxeUeJ5Jgo/eYJOi8/umT5BzYDsBnr2+grKSC\njj0SuO2mrxAR7h+F1yqmjZcR5QJ17t2eTj3bsWdzPkve2cjEG3RbDPmcikmCzr78nWzbu4HcnYW8\n+tJnWIhxycx+zLzkdg0PbxKMlIQujL36KC/+fiEblmTTY3AK3XVlKammQ3kSlCrLq/jghZXgYPDE\ndBKS47yOJHUkPCyc79/yFwYPGsawS/2XKvrwpdWUHdchPfFTMUlQWjY/i8P5xXRL78KDf3qYX3zl\nScJCw72OJXVsyOTutO3QiiMHS3j3JV3gVfxUTBJ0dm7JYdXH2wgJCeHF519m1EWTiYtto5sBNkGh\nYSFMvmkQFmIsfHcZt9031etIEgRUTBJUioqK+OeDb+EcfGXObQwfPtzrSFLP2neKZ9CENHDwxuML\nKSzUKQHNnYpJgoZzjjGXDiM/t5C2ya24+9tf9TqS1KMRvSdy2bDrmDh4Jg898AjtU+M5eqiUW2+9\nVbdhb+Y0Kk88tyDjVT5e9Rb/mbuG9RlbiYgK48r/GU5klK7w0JSNvujyk58757ji9mG89IeFvPvu\nu3z3/36HX/zsl5iF0CIy2sOU4gUVk3iiqqqS59/338Iic/Mn7NmSz6K31gJw2S1D+OnX/kqSbgDY\nrLRqE81ltwzh7ceW8sDv/sL2I8sZN34s917/G6+jSQPToTzxhM85Mjd/QubmTziYe4R5T2fgHFx/\n6wy++j/fpGuHXkRHxnodUxrQnOk/okufRIZe2gPnYO6TGeTszPM6lnhAe0ziqaKDxbz5yGLKSioY\nMWYILzz5GqGhoV7HkgZmZvTtOpT0jv3wXeE4nH+Mbav38ej9L9Kn2wBuv/YeQkP0c9FcqJikwTnn\ncPgoPnKcNx9ZQvGRMnpdlMZfHvmDSqmZ++a1vwRg08w1XDZlMjlbCvjO135IbMuWTL74Ktq2SvQ4\noTQEHcqTBrcpeyVfvX86/354MUUFxQwePJhli1Yyot94r6NJkEhsm8yfH/4d7TvFceRgCV+99Vu8\n98lbHC3RXW+bAxWTNKj/rHuP+x/9Lq/8+VMK9x+lTVIr5s+fT6tWrbyOJkGkTat2XDvpDn770M9J\nSInjcH4xd91yD0/+60Gvo0kDUDFJg1q4cCGv/XURxw4fJ613Kls37KRdu3Zex5Igdfv0b/Gbv/2I\nlPQEio+U8cN7fsPHH3/sdSypZyomaRA+n4/f/va3/OTe31FWWsGAEb2YN28ubdro9hVydl+Z8X94\n/JmHSOvfgeJjJUyePJlb51zPrtyt5B7cTVGxrhTR1KiYpN7l7N3DkJED+P73v4+vysegCen87q+/\noHvnvl5Hk0YiIjKCKbcPY9hlPfA5H/987BXGjh/Njx6+i/czXvM6ntQxFZPUm6qqKn7/p9/Qp08f\nVmesJyomgml3jWTMjL4afSfnLCTEGDm1NzPmjKJFbAR7tuTz3K8+ZN4bH1FVVeV1PKlDGi4udSZ7\n/xYWr38fh+P1t19myVub2bcrH4BOPdsx+aZBDO8/mtDQMBLiOnicVhqTiLBIWkW3BiC1F/z8wXv5\n2++fJntjHk/+9SUWvZ/JxOsGM3LUCCLCI0lL6cPw3hM8Ti3nS8UkdaLk+DG25mzg5deeJ/ODrezd\nVgBAbHwLLpnZj7QBHbh8+PVcdfHNHieVxuiSAVO5ZMAXb4kxbMBofv/QL/n09XVs2bSNLb/Yxpvd\nPmD4ZT254dqbVEyNmIpJAlJeUcau/ZtPPo4Mb0FG1sd8umYuYb4WrPhsPRuX7aZg3xEAomNacNEl\nXbjnW9+ga8futG7Zjt6dB3kVX5ogMyOtfwdSe7Zj1cLtrP5kO7k7Cnnz0SVkzttJzt2l3H7b7Rr1\n2QgFVExmNgX4M/73pJ5wzv32NPP8FbgCKAZud86tDnRZCX6Hjx3kodd/cvLxsaJSdm3MY9eGPLI3\n5eGrcgC0iI1k5o1X8MgfniYuTrdDl/rTP20kyQmdAXgw8scMHNeNdYt2sWrhdvZm7+d73/0e//cH\nPyCtb0d6DOzMqLHD+PK0rwOQ2LoT4WG6I3KwqrWYzCwEeAiYBOwDMszsTedcVo15rgDSnHPdzWwE\n8CgwMpBlJbgcOLSXnPydAHy86i3SkntTVeUjrCKGrMw95O4oJHdnIQdzj5xcxswYPXYkM667iptv\n+DLJ7VO9ii/NSOuWCbRumQDAL+98CuccSyd8wFvjn2Pnhv1sXLab3Zvy2Lwmm81rsnn7mU/5Q9Jj\nJHdry6SJl3L5hKmMGDKG0NAQqnyVALSIjNVtNoJAIHtMw4GtzrlsADN7CZgB1CyXGcCzAM65ZWYW\nZ2aJQNcAlpV6tnzTxxw66n/Pp1tyb3y+z0cwtYyOY+325ZSWHOdAXh4FBwr5aMl8jhaWcKSwhEN5\nRyncf4zKii+OegqLCGXQsIuYdf2XueG6G0lOTm7Q70mkplYx/oERlw+/nsE9LuEXz3yN9AHJFB85\nzq6Neexcv589m/Mp3H+Uwv1HWb/4cf7yy8cJCTVat4+lTVIrWifGMnroBCaOnEpKxxS6p/UgNjYW\n5xzHy0tPrsvnfISYBjTXp0CKKQXYU+NxDv6yqm2elACXlVNkZC3keFkJRcWHaN86maQ2n9+XaOfe\nzWzdsp11WatYtuEjwkLC2bl3C+UV5cS2iKfoSCGd2qWTk7+LsrJSOrTpQva+bVSUVVJeVkVleSUV\nZVVUlFdyvLic0uJySo+V46s6+x1DY+OjaJcST4eubRg7dixdundk4tDpdO94UX1vDpFzkhCXxJ/u\nfoV/ffQox8tLSeuyh7Y3JpLavidPv/IwOdsOnNzrP3KwhIO5RzmYexSA5fM38wCPnvxaYeGhxLaM\nISTCEdki3P8RHU5MdCxRUZGERYRSVllCaHgIYWEhpKf2JffQLnp0uojWrRI4UnKI+JZtOVJSSEJ8\nEqVlR4lu0ZKSsqNER8USEhpCVEQUbVolkpqYdnK9Znbaz2t7fC7z1rZsXUhPTz+v5cw5d/YZzK4F\nLnfO3VX9+BZguHPumzXmeRv4tXNucfXjD4Dv4d9jOuuyAEVFRWcPISIijVpcXFzAzRfIHtNeoOab\nBh2rp506T6fTzBMRwLIiIiInBXKgNANIN7POZhYB3Ai8dco8bwG3ApjZSOCwcy4vwGVFREROqnWP\nyTlXZWZ3Awv4fMj3JjOb43/aPeacm2tmU81sG/7h4necbdlT13Euu3giItK01foek4iISEPydMyj\nmV1nZuvNrMrMBp/y3A/MbKuZbTKzy7zKGIzM7KdmlmNmK6s/pnidKdiY2RQzyzKzLWZ2n9d5gp2Z\n7TKzNWa2ysyWe50nmJjZE2aWZ2Zra0xrbWYLzGyzmb1nZjqbnDNuq3N+vfJ6MP464Grgk5oTzaw3\ncD3QG//VJB62+hjL2Lj9yTk3uPpjvtdhgkmNE7svB/oCs8ysl7epgp4PGO+cG+Sc0ykdX/QU/p+l\nmr4PfOCc6wl8BPygwVMFp9NtKzjH1ytPi8k5t9k5txU4tXRmAC855yqdc7uArej8p1OpqM/s5Enh\nzrkK4MSJ3XJmhvd/qAYl59wi4NApk2cAz1R//gwws0FDBakzbCs4x9erYP1BPPXE3L3V0+Rzd5vZ\najP7hw4j/JcznfAtZ+aA980sw8xmex2mEWhfPfIY59x+oL3HeYLdOb1e1Xsxmdn7Zra2xse66n+n\n1fe6G7NattvDQDfn3EBgP/Anb9NKEzDaOTcYmAp8w8zGeB2okdEosjM759erer/thXPu0vNY7Ewn\n7DYb57DdHgfers8sjVAgJ4VLDc653Op/883sDfyHQxd5myqo5ZlZonMuz8ySgANeBwpWzrn8Gg8D\ner0KpkN5NY9BvgXcaGYRZtYVSAc0Uqha9S/CCdcA673KEqR0Yvc5MLNoM4ut/jwGuAz9TJ3K+O/X\nqNurP78NeLOhAwWxL2yr83m98vRGgWY2E3gQSADeMbPVzrkrnHMbzexfwEagAvi60wlXNf3OzAbi\nH0m1C5jjbZzgEuiJ3XJSIvCGmTn8rwnPO+cWeJwpaJjZC8B4oK2Z7QZ+CvwGeMXM/gfIxj+KuNk7\nw7aacK6vVzrBVkREgkowHcoTERFRMYmISHBRMYmISFBRMYmISFBRMYmISFBRMYmISFBRMYmISFBR\nMYmISFD5/6xhMSHz3AmIAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -207,7 +467,7 @@ } ], "source": [ - "plt.hist(data, bins=200, normed=True, histtype='step')\n", + "plt.hist(data, bins=200, normed=True, histtype='step', lw=2)\n", "norm = stats.norm(mean, std)\n", "plt.plot(xs, norm.pdf(xs), color='k', lw=2)\n", "plt.show()" @@ -222,16 +482,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGjhJREFUeJzt3Xu0XWV97vHvJDcIIVwCcgkooAhUoS1gJKAYCmEkKiBS\nD1UUzqEqvehoK7XIOUfZjmMdPfVcaqtDPbR0qLWlXhE5CIYqLcglJ5aEmwGCpCYQJNzRKkZ8zh/z\nDVnZ2Xuvtfaaa73zN+fzGWONvW5zrYfNym/P9Xvf+U4wMzMzMzMzMzMzMzMzMzMzMzMzM7MKLQPW\nAvcDF0/w+LnAGuAO4LvA0X1sa2ZmNTADWAccDMwCVgNHjnvOYmD3dH0ZcGsf25qZ2Qjs1OXxRZQF\nez2wBbgCOHPcc24Bnk7XbwMO7GNbMzMbgW7FfiGwoeP2xnTfZH4buGaa25qZ2ZDM7PK4+nitk4EL\ngBOnsa2ZmQ1Rt2L/EHBQx+2DKPfQxzsauIyyZ/9kn9v6j4KZ2fQUVb3QTOABykHW2Uw8yPpiyt78\n8dPYFlzsqzaWO0DDjOUO0CBjuQM0TF+1s9ue/S+A9wDXUc6u+Rvg+8CF6fHPAB8C9gQ+le7bQjk4\nO9m2ZmbWQt6zr9ZY7gD90x6g/wy6F/Q46IegL4POA83LHG4s8/s3yVjuAA0TrnaGC1xzS3IH6I9+\nBbQB9FnQsaC9QS8FvQN0FegJ0MdA+2YKuCTT+zbRktwBGiZc7QwX2Kqio0GbQG+f4jkHgf4KtBn0\nTlBlA1JmwYWrneECWxW0O+gB0Lk9Pv9o0PfSN4BuY01mbRCudoYLbINSkXryn+hzu7mg60BfAc0Y\nTjazMMLVznCBbVA6D7QGtPM0tp0D+g7oQ9XnMgslXO0MF9gGoReBflQOxk77NQ5Ivf6TqstlFk64\n2hkusA1Cf1/Orhn4dU4H3QeaNfhrmYUUrnaGC2zTpdenQdm5Fb3eCtDvVPNaZuGEq53hAtt0aDfQ\nv4FOrfA1jwU9DNq1utc0CyNc7QwX2KZDHwf97RBe94ugi6p/XbPaC1c7wwW2fun4NKC6YAivvQj0\noKdiWguFq53hAls/NBt0F+icIb7HbaAzhvf6ZrUUrnaGC2z90B+BvjncZQ50Luj64b2+WS2Fq53h\nAluvtBfo0XKxs6G+z2zQI6DDh/s+ZrXSV+3sdg5as0F8CPgyFPcM922KnwN/B5w33Pcxs0F4z76R\ntH9anvhFI3q/o9JSyR6otbYIVzvDBbZe6M/KpYlH+p7fAy0d7XuaZROudoYLbN1oPugx0MEjft/3\ngr4w2vc0yyZc7QwX2LrRRXmKrvYBPeUjaq0lwtXOcIFtKipA94BOzPT+14H+Q573NhupcLUzXGCb\nil4Fun+48+qnfP8LypObmDVeuNoZLrBNRZ8EfTDj++8JerocNzBrtHC1M1xgm4zm5BmY3SHHN0Dv\nyJvBbOjC1c5wgW0yeiPoX3KnSMsnXJ07hdmQhaud4QLbZPSZeiw3rN1SK2ev3EnMhihc7QwX2Cai\nAvQQ6OW5k5T0ZdBv505hNkThame4wDYRHQu6N3eKbfSW8rSFZo0VrnaGC2wT0Rjof+ROsY3mpgOs\nRrQ2j9nIhaud4QLbRLQK9LrcKbanL4LemTuF2ZCEq53hAtt42h30LGhW7iTb01tB/zd3CrMhCVc7\nwwW28XQa6IbcKXak3UHPlLNzzBrHJy+xkTsBuDl3iB0VT1PmWp47iVluLvZWhZoWewC+BpyVO4SZ\nuY0TnGakA5j2zp1kYtovzcqZkzuJWcXcxrGRegWwCYrHcgeZWPEIcA9wcu4kZjm52Nug6tzC2cqt\nHLMacBsnNH2+/nPZ9TLQIz4ZuTVMuNoZLrB10gOgI3On6E53gk7IncKsQu7Z26hoP2BPoEZr4kzq\nStzKMcvKe/Zh6aw4R6jquHot1GY2MO/Z28hEGJzd6l+BeaDDcwcxy8HF3gYRqNgXvwSuAs7MncSs\nrdzGCUlzQD8BzcudpHdaDropdwqzioSrneECG5QzW/S93Cn6oznpaF+vcW9N4J69jcQJwHdzh+hP\n8RywAnhD7iRmo+Zib9MVqF+/na/jvr1ZFm7jhKMiHZH64txJ+qcFaY37XXInMRtQ5W2cZcBa4H7g\n4gkePwK4BfgZcNG4x9YDdwC3Ayv7CWa1dgjwC2BD7iD9Kx6nnIZ5au4kZnUyA1gHHAzMAlYD4w+N\n3wc4DvgIOxb7B4G9uryH9+zD0dvL87tGpfeBLsudwmxAle7ZL6Is9uuBLcAV7Njv3AysSo9PpOgn\nkIUQtV+/1VXA6SCPWVlrdPuwL2T7r+ob0329EnA95R+Dd/UXzWrsREIX+2Id8DjlzoxZK8zs8vig\nLZYTgU2UrZ4VlL3/Gyd43ljH9RvSxWpJ84GXUo7DRHYVcAZwa+4gZj1aki5DcTxwbcftS5h4kBbg\nUnbs2ffyuHv2oWgp6J9zpxicjgfdnTuF2QAq7dmvAg6jHKCdDZxDuUc0kfG9+bnAbun6rsBpwJ39\nhLNait6v32olsKA8sYmZASynXK98HeWePcCF6QKwH2Vf/2ngSeCHwDzgUMrZO6uBuzq2Hc979qHo\nOtDpuVNUQ5eVM3PMQgpXO8MFbi/NAD0F2jt3kmroDV4YzQILVzvDBW4vHd2sE4BoDuhJ0P65k5hN\ngxdCs6FpSr8+KZ4DrgHelDuJ2bC52Fs/XkO4lS67+gpwdu4QZm3gNk4ILyx+dkjuJNXSrmmN+wW5\nk5j1yW0cG4qjgGeheDB3kGoVP6E8ytvLHlujudhbr06jPAq6ib4CvDl3CLOmcxsnBF0HauhApuan\nNe7n505i1odwtTNc4PbRzqBnQbvnTjI8uhr0ttwpzPrgnr1V7jXAnVA8nTvIEH0Vz8oxGyrv2dee\n/hw0ljvFcGlBmpUzN3cSsx6Fq53hArePbgedmDvF8Ol6kAdqLYpwtTNc4HbRvmk9nFm5kwyffhf0\nhdwpzHoUrnaGC9wuehvoytwpRkP7p7Vy5uROYtYDD9BapU4DvpU7xGgUm4C7gVNyJzFrIu/Z15YK\n0EOgw3InGR29r1zn3qz2wtXOcIHbQ68APVgW/bbQ4aCN7fpvtqDcxrHKLAVWQNGmP8j3Ac9RrgVk\n1hgu9jaVFvXrtyoEfJPydJxmVqE27TUGojlpvZi9cicZPb0BdEPuFGZdhKud4QK3g04G3ZY7RR6a\n2/y1gKwB3LO3SqR+fRsV/055+sWTcycxq4qLvU2mhf367XwHWJI7hFmTuI1TO9o7LQo2O3eSfLS4\nXBPIrLbC1c5wgZtP54C+kTtFXprV3gFqC8I9extYi/v1WxVbgFuA1+ZOYlYFF3sbRwXu1291A+7b\nm1XGbZxa0eGgDV4uAEAngFbnTmE2iXC1M1zgZtN7QJfnTlEPmg36CWi33EnMJuCevQ3kFOCfcoeo\nh+LnwBrguNxJzAblYm8dNIOyR/3tzEHq5Dbg1blDmA3Kxd46HQM8nE7iYSUXe2sEF3vr5BbOjlKx\n94C1xeZib51c7He0HpgJHJg5h1l4no1TC9o5rfS4R+4k9aOrQb+ZO4XZOJ6NY9OyGLgHiqdyB6kh\n9+0tPBd728otnMm52JtVwG2cWtAtoFNyp6gn7QH6MWhm7iRmHcLVznCBm0fzUzHbJXeS+tJa0K/m\nTmHWwT1769tJwG1Q/DR3kBpzK8dCc7E3cL++Fy72ZgNyGyc73QlyIZuSjgXdlTuFWYdwtTNc4GbR\nfqAn0ro4NinNSitgzs+dxCxxz976cirwHSiezx2k3ooteAVMC8zF3k4Frs8dIojbgEW5Q5hF5TZO\nNipAD4FeljtJDHor6Ku5U5gl4WpnuMDNoSNB672iY6/0UtDG3CnMEvfsrWdLgRVQ+A9ub34A7Axa\nmDuIWb96KfbLgLXA/cDFEzx+BHAL8DPgoj63tbzcr+9LIWAl8KrcScyqNgNYBxwMzAJWA0eOe84+\nlDMUPsL2xb6XbcFtnEw0C/Q0aO/cSWLRGOijuVOYUXEbZxFlwV4PbAGuAM4c95zNwKr0eL/bWj6L\ngAegeCx3kGBW4hk5FlC3Yr8Q2NBxe2O6rxeDbGvDl/r11qf/BxwH8niXhdJtydZBWiz9bDvWcf2G\ndLHhOhX4cO4Q8RSbQZspW5J3505jrbIkXaalW7F/CDio4/ZBlHvovehn27EeX9MqofnArwI35U4S\n1M3AibjY22jdwPY7wpf2s3G3r6KrgMMoB1lnA+cAV03y3PFztfvZ1kbrdXhJ40HcDJyQO4RZ1ZYD\n91IOtl6S7rswXQD2o+zNPw08CfwQmDfFtuN5Ns7I6eOgD+ROEZeOAt2XO4W1XrjaGS5wfLob5AW9\npk07gZ4C7ZM7ibVauNoZLnBsWgh63EsaD0rXgjyV2HLycgk2pVOAb3tJ44G5b2+huNi3j5dIqMZN\nlAPdZtYjt3FGRgXo4XL1RhuMdgH92GeusozcxrFJHQn8DIoHcgeJr/gp5dIJr82dxKwXLvbtshS3\ncKr0beA3cocw64WLfbu4X18tF3uzPrhnPxJe0rh6mgV6BrQgdxJrJffsbUJpyWkvaVydYgvlrJwl\nmYOYdeVi3x7u1w+HWzlmPXIbZyR0E2hp7hTNo2NA38+dwlopXO0MFzgezQc9W84Nt2ppBugJ0AG5\nk1jruGdvOzgJL2k8JMXzlGuMn5w5iNmUXOzbwf364XLf3qwHbuMMnZc0Hi79CujB3CmsdcLVznCB\nY9EBXtJ42F5Yc+hluZNYq7hnb9s5FS9pPGSFgGuBZbmTmE3Gxb753K8fDRd7sy7cxhkaFaBNoENz\nJ2k+7ZWWTtg5dxJrjXC1M1zgOHQUyMsZj4y+6wPXbITcs7cXLAVW5A7RItcCy3OHMKsr79kPja4B\nnZ07RXvoONA9uVNYa4SrneECx6A5qYe8Z+4k7aGdQI+CXpI7ibWC2zgGwGJgLRRP5g7SHsUvgevw\nrByrIRf75nK/Pg9PwTSbhNs4Q6GVoCW5U7SP9gE9BZqdO4k1XrjaGS5w/b0w53tO7iTt5D+0NhLu\n2RsnAzdB8VzuIC11DfDG3CHMOrnYN9My4Fu5Q7TYlcCbyiOYzWwrt3Eq5RUY81MBWg96Ze4k1mhu\n47TcrwPPQLEud5D2KgR8HTgzdxKzrVzsm+eNwNW5Q9jWVo6ZbeU2TqW0EuTzoWanmaDHQC/OncQa\nK1ztDBe4vrQf6EnQrNxJDECXgf44dwprrHC1M1zg+tK7Qf+QO4VtpVNAq3KnsMYKVzvDBa4vXQf6\nzdwpbCvNAD0COix3EmukcLUzXOB60p7pqNl5uZNYJ/0V6L/mTmGNFK52hgtcT3oH6MrcKWw8nQD6\nvg+wsiEIVzvDBa4nXVkWfKsXFaC1ZdE3q1S42hkucP1od9DTPlFJXen9oMtzp7DGCVc7wwWuH50P\n+nruFDYZ7ZumxM7PncQaJVztDBe4fnQd6Ldyp7Cp6Kugd+VOYY0SrnaGC1wvelE6WcauuZPYVPQG\n0K25U1ijhKud4QLXi34f9IXcKawbzQRt9EqYVqFwtTNc4HrRStDy3CmsF/oI6H/nTmGNEa52hgtc\nH3oF6KHySE2rPx0K2uzTRVpFvJ59i5wPfB6K53MHsV4UPwDWAGfnTmI2kWXAWuB+4OJJnvOX6fE1\nlCfP2Go9cAdwO7Bykm29Zz8tmgnaBDo8dxLrh84G3Zg7hTVCpbVzBrAOOBiYBawGjhz3nNdTnmAZ\n4NVA54yDB4G9uryHi/206AzQzblTWL80K7XejsqdxMKrtI2ziLLYrwe2AFew46nWzgA+m67fBuwB\n7NvxuNcEGY7fBT6dO4T1q9gC/DXwO7mTWLt0K/YLgQ0dtzem+3p9joDrgVWADyipjA4FjgO+lDuJ\nTctlwFu9QqmN0swuj/f6NWGyvffXAA8D+wArKHv/E/Urxzqu35AuNrl3A5+D4qe5g9h0FBtB/wyc\nC3wmdxoLY0m6DMXxwLUdty9hx0HaTwOdh+qvZfs2zlaXAhdNcL979n3RzqAfgV6eO4kNQqeBVnvp\nYxtApbVzJvAA5QDtbLoP0B7PtgHaucBu6fquwHeB0yZ4Dxf7vugC0DXdn2f1pp1A60CLcyexsCqv\nncuBeykHai9J912YLlt9Ij2+Bjgm3Xco5R+H1cBdHduO52LfMxWgO0BLcyexKuiPQZ/LncLCClc7\nwwXOR6eA7vJX/6bQgrSI3YLcSSykcLUzXOB8dA3onblTWJX0uXIP36xv4WpnuMB56GjQw+UArTWH\nFqfevZcusX6Fq53hAuehz4M+kDuFVU1FmpUz0eQFs6mEq53hAo+eXgJ6HLRH7iQ2DLoQ9LXcKSyc\ncLUzXODR01+APpY7hQ2L5oGeAB2YO4mFEq52hgs8WlqQCsH4ZSqsUfRJ0Idzp7BQwtXOcIFHSx8E\nXZ47hQ2bXplWw5yVO4mFEa52hgs8OtolLY0w/qhlayTdWK53b9aTcLUzXODR0e+Bvp47hY2K3gZa\nkTuFhRGudoYLPBqaCXoAdELuJDYqmpO+yR2WO4mF4HPQNsTZwMNQ+GxUrVE8B/wtPrGJNZT37Hfw\nwoE2p+dOYqOmQ0Cby/EasymFq53hAg+fzgDd7gXP2krXgM7PncJqL1ztDBd4uFSAVoHenDuJ5aLT\nQbd2f561XLjaGS7wcGk56E4vjNVmmgH6N9Cv505itRaudoYLPDwqyj06nZM7ieWm/wL6P7lTWK2F\nq53hAg+PloK+X+7ZWbtpP9CToN1zJ7HaClc7wwUeDhWgfwG9PXcSqwv9I+g9uVNYbYWrneECD4eW\ngdaWB1OZAWgJ6B6P39gkwtXOcIGrpxmgNaCzciexOlEB+h7oTbmTWC2Fq53hAldP54Fu9rx625HO\nSlNx/dmw8cLVznCBq6V5oA2gE3MnsTrSTmkq7rLcSax2wtXOcIGrpT8F/V3uFFZneks6otqztKxT\nuNoZLnB19DLQYz4LlU1NBegm0DtzJ7FaCVc7wwWuhgrQ9aD3505iEehY0CP4pPO2TbjaGS5wNfQf\nQf/qqZbWO30an6LStglXO8MFHpz2TyepOCZ3EotE80DrPEXXknC1M1zgwahIS9j+t9xJLCItTu2c\ng3MnsezC1c5wgQejC9O86Vm5k1hU+gPQHeWevrVYuNoZLvD06WjKsxAdmTuJRaYCdBnoSi+l0Grh\name4wNOj+aD7vNCZVUOz08J5f5o7iWUTrnaGC9w/FaAvgj6TO4k1ifYB/aCc2WUtFK52hgvcP703\nTbPcOXcSaxodAdoEOjN3Ehu5cLUzXOD+6CTQo6CX5k5iTaXj0mfsdbmT2EiFq53hAvdOh6X59Etz\nJ7Gm02+kgu/z1rZHuNoZLnBvtAB0P+jduZNYW+jNaQ7+q3InsZEIVzvDBe5Oc9JMiY/lTmJto9PT\nHr6/TTZfuNoZLvDUNBP0JdBXPAfa8tBJoIdBH8AnPWmycLUzXODJaSbo70Hf9Mwby0sHgm5NOx3z\nc6exoQhXO8MFnph2BV2d1r1xobca0Jy0UuZ97uM3UrjaGS7wjnRIWu/mcq95Y/Wjt6RZYR/ES2o3\nSbjaGS7wNipAv5UGxP7I/VGrLy0EraA8sb2P+WiGcLUzXOCSXpl683eCFuVOY9addkorZm4GXeCd\nk/DC1c5AgbVTOnjly2k+8/vctrF49ErQatDXQC/KncamLVDtLNU8sOaATgN9ErSBch3x95QDsmZR\naQ7ov1Oe8P5P/HkOqea1c0c1DKy9QOdSrlT5VOpzXgw60l99rVn08nRcyKOgj4KOyJ3IelZ57VwG\nrAXuBy6e5Dl/mR5fA3SuzdHLtjUp9jo0DbJ+B/QM5YkhLgDtmzuZ2fDpMND/Sgdj3Q36eDoa13P0\n66vS2jkDWAccDMwCVgPjz7L0euCadP3VwK19bFt54N5pdjrS8KOgu1IP/rL0AZ+bJ1MlluQO0DBL\ncgcYLc0o5+TrEtA/gX6c+vufAp2X/ihM99vtkiqTWrW1czFwbcftD6RLp08D53TcXgvs1+O2MJJi\nryJNPVuePsTfTHvvq1KxP57mLG0wljtAw4zlDpCX5oBeDfpD0D+mcavNoKvSv6UllCdR6eUPwNiQ\nw7ZNX7Wz2wEWC4ENHbc3Uu69d3vOQuCAHrbtg2YDuwJzx/3svL5buswH9k45DgReAjxP2Wa6A7gM\nOBeKJ6afx6wNiueA29LlL8r7dCDlztxi4KPAEcBM0A+A9cBDwMM7/typqE3XtoW6Ffte/88MOGip\ne1KW8ZcZlC2gXdJ7/KTj8u8T/HwGeDb9vIvym8VDwA+BzVD4k2Y2sGIj8KV0SbQncAhl2/YAyh2t\nk9m247cQPjQfxt5P+W/1OeCX6aIuP5/vuPxikuvP07q/JP2V3W7F/iHgoI7bB1HuoU/1nAPTc2b1\nsG1STNTLn8j8dLGpXZo7QMP499lVr4Xnw7tQ7rxZzcwEHqD8az2b7gO0x7NtgLaXbc3MrCaWA/dS\nzqy5JN13Ybps9Yn0+BrgmC7bmpmZmZlZU41R9vNvT5dlWdPE1MsBbNa79ZQzt24HVuaNEtLlwI+A\nOzvu2wtYAdwHfAvYI0OuqCb6fY4RsG5eCrwvd4jAej2AzXr3IGVxsul5LeXR9J3F6c+BP0nXLwb+\nbNShApvo99lX3azTgURec2b6FlEW+/XAFuAK4MycgRrCn8npuxF4ctx9ZwCfTdc/C7xppIlim+j3\nCX18RutU7N9LOcD7N/jrXb8mO7DNpk/A9cAq4F2ZszTFvpStCNJPrzs1uJ7r5iiL/QrKryDjL2cA\nn6I8IOPXgE3A/xxhriZo2cEkI3Ei5dfm5cDvU36NtuoIf24H1VfdHOX5KJf2+Ly/Br4xzCAN1MvB\nb9afTennZuBrlK2yG/PFaYQfUa6b9QiwP/Bo3jjhdf7+utbNurRx9u+4fhbbD0JYd6uAw9h2ANs5\nwFU5AwU3l3KNJSjXXDoNfyarcBVwfrp+PnBlxixNELJufo5ymtsayg+Ae3n98wFs1TmEckbTaso1\nlvz77N8/UC6C9nPK8aT/RDm76Xo89XI6xv8+L8B108zMzMzMzMzMzMzMzMzMzMzMzMzMzMzMzMxs\ncv8fc5l4vsM2EcwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYXNeZJvD3q4JiByGEkIQACYFAgIT23dosy7Li2Nlj\np5M4Tjr2pONMzyTpTmfcPcn080ynpzPd0+1JJ7ETTyaZTsdJnDhe4kXyIsuyVrQDYhFiByEECBBb\nFVVn/ih8uSAEBVTVqeX9+fGje6rurfpUgnrrnjr3HFFKgYiIKFBYdBdARERkxmAiIqKAwmAiIqKA\nwmAiIqKAwmAiIqKAwmAiIqKA4lEwich+EakQkSoR+dYE939GRC6M/H9URFZ5eiwREZGZTHUdk4hY\nAFQBuBtAC4DTAB5SSlWY9tkM4LJSqltE9gP4rlJqsyfHEhERmXlyxrQRQLVSql4p5QDwHIAHzTso\npU4opbpHmicApHt6LBERkZknwZQOoNHUbsJo8EzkTwG8NsNjiYgozEV488FEZDeARwFsn85x3d3d\nnBeJiCiEJSUliaf7ehJMzQAyTe3FI7eNMTLg4RkA+5VSXdM5loiI6AOedOWdBpAjIlkiYgPwEICX\nzDuISCaA3wH4nFKqZjrHEhERmU15xqSUcorIEwAOwh1kzyqlLovI4+671TMA/gbAXAA/FBEB4FBK\nbbzTsZM9X1JS0iz/SuSpkpISAMD69es1VzJzTucwfv32j3Ci/K0xt8fYYpGZlgurxYq6a1XoH7o1\n5v7VuVvx8N1fRUxUnD/LDYnXPBjxddeju7t76p0m4NF3TEqp1wHkjbvtadP2lwF82dNjibzB7hjC\nT17+O1Q2XjBumxOfgg9v+zxW52xBZIQNAOByOXH+ynG8cuzfcKP7GgDgfPUxXO9qwVc/+l0kxM7R\nUj8RTYwzP1BQUkrhV2/965hQ2rhiN5783A+wIX+nEUoAYLFYsXb5dvzVZ/8F21buN25vuVGHp57/\na3Tf6vRr7UQ0OQYTBaUjF/6IM5VHjPZ9mx7Cn9zzHxFli7njMbaIKHx6z3/AZ/Z+De5rv4G2rib8\n9JXvwTHs8HnNROQZBhMFnZYbdXjhvZ8Z7a1F9+C+zQ/B/fXm1DYX3o1H9n8dFosVAFDfVo0/mB6P\niPRiMFHQeenoL+ByOQEAmWm5+PjOx6b9GGuXb8eD2x8x2u9dfBXnq495rUYimjkGEwWVqsaLKK8/\nCwAQCD6z96uIjIic0WPtWv1hFOdsMdovvPcz2IeHvFInEc0cg4mChlIKLx79udHeWLAHi+YtmfHj\niQg+s/cJxMe4L1Ho6m3H4XMvz7ZMIpolBhMFjcqGC2i87r5+O9Jqw4HND8/6MWOi4sY8zqHTz6On\n7+asH5eIZo7BREHj6KXXjO2tK/chOWGeVx53S9E9WDA3AwAw5BjE22f/4JXHJaKZYTBRUOjsacel\nq6eN9vZV93ntsa0WK+7f+lmjfaz0IAbtA157fCKaHgYTBYVjpQehlAsAsDxjFdKSvbt6SlH2Bswf\necxBez9OlL3p1ccnIs8xmCjgOZ3DOF560GjfteqA15/DIhbsXvOA0T58/mVjSDoR+ReDiQJeef1Z\n9A64J4NMipuLouwNPnmeDfm7EBedAADo7LmOS1dP+eR5iGhyDCYKeKcrDhvbG/J3wToyY4O32SKj\nxsyld/TS6z55HiKaHIOJAlr/0C2UmgY9bFixy6fPt7VonzGPXmXDBbTfbPXp8xHR7RhMFNDOVx/H\nsNM9weri1GwsTMmc4ojZmZuYisIl64z2sdI3fPp8RHQ7BhMFtPHdeP6wbeW9xvaJsrfgGLb75XmJ\nyI3BRAGro6cNNc1lAAARC9bl3eWX512RtQZzE1IBAH2DvTh/5bhfnpeI3BhMFLBKKkbXW8rPXI3E\nuGS/PK/FYsXWon1G+30OgiDyKwYTBSSl1LhuvJ1+ff7NhfcY6zVdbbmMlhv1fn1+onDGYKKA1NB2\nBde7mgEAUZHRWLVss1+fPzFuDopNz8lBEET+w2CigGQ+WyrO2QJbZJTfazBf03Tq8mEMcf48Ir9g\nMFHAcQzbUVI5+v2Sv0bjjZe7uGjM/HknL7+jpQ6icMNgooBzrvp99A/2AgDmJs5H7uIiLXWICHYU\nf8hov3uO8+cR+QODiQLO+5dGv8/ZVnSvMQhBh00FexAbFQ8AaO9uRWltibZaiMIFg4kCSnN7HWpb\nKwAAVksENhXcrbWeqMhobDVdcHv43EsaqyEKDwwmCijmiVOLczYjMW6OxmrcdhQfMM7arjSXoaHt\niuaKiEIbg4kCRk9fF06Wv2W0zVMD6TQnPgVrc7cb7cPnXtZYDVHoYzBRwHjn3EvGhK2ZabnISdcz\n6GEiu9Z82Ng+W30UN291aKyGKLQxmCgg9A/ewtGLrxntfRs+DhHRWNFYmWk5WJZeCABwuZw4cuFV\nzRURhS4GEwWEIxf+iCHHIABgwdwMFGVv1FzR7XabzpqOXXrDqJeIvIvBRNoN2Qdw+PwrRvueDR+H\nRQLvR7No6QbMS1oAwL2A4anytzVXRBSaAu+3n8LO+6UHjQtqUxLTsHa5f5a3mC6LxYqdq+832ofP\nvQyXcmmsiCg0MZhIK8ewA2+f/YPR3rv+Y7BqvKB2KpsL7kaMLRaA+4LbMl5wS+R1DCbS6tTlt9HT\n1wUASIxLxsYVuzVXNLkoW8yYC27fNXVBEpF3MJhIG6fLiTfP/N5o71n7ICIjbBor8syO4gMQuEcM\nVjde4tBxIi9jMJE2Z6uOoqO7DQAQG52AbUWBcUHtVJITUo2JZRUUzlYd1VwRUWhhMJEWLuXCmyW/\nM9o7V9+PKFuMxoqmZ13eDmP7bOV7GishCj0MJtKivPYMWjsaALgnSt1RfEBzRdNTnLMFVmsEAKDh\n+hVc72rRXBFR6GAwkRbmyVq3rbwXcdEJGquZvtjoeBQuWWe0z5gWNiSi2WEwkd919LThct1Zo719\n1X0aq5k5c3fexZoTGishCi0MJvK746VvQkEBAPIzVxuzKQSbgqy1Rnde8406dPW2a66IKDQwmMiv\nnM5hHC87ZLS3rdyvsZrZibLFIHfxSqNdVntGYzVEoYPBRH5VXn8Wvf03AbgvqC1aul5zRbNjrp+z\nQBB5B4OJ/Mo8SGDjij1GV1iwKlwyGkxVjRdhdwxprIYoNDCYyG+G7AO4dPWU0V6fF5iTtU5HSlIa\nFszNAAA4nHZUNV7UXBFR8GMwkd9cvHoKjmE7AGBhSiYWzVuityAvKWR3HpFXMZjIb8zdeOah1sGu\nwHQ9U0XjeY2VEIUGj4JJRPaLSIWIVInItya4P09EjonIoIh8fdx9dSJyQUTOicip8cdSeOgb6EFF\nw+ib9roAXXNpJpYuzIMtMhoA0NHdhvabrZorIgpuUwaTiFgA/ADAvQAKATwsIvnjdusA8DUA35/g\nIVwAdiml1iilAm+9bPKLS1dPw+VyAgCyFixHSlKa5oq8J8Iaidz0IqNd2XBBYzVEwc+TM6aNAKqV\nUvVKKQeA5wA8aN5BKXVDKXUGwPAEx4uHz0MhzDwzwuqcLRor8Y28zGJj23xmSETT58lY3XQAjaZ2\nE9xh5SkF4JCIOAE8o5T6yWQ7l5Twy2N/8/Vr7nDaUW6agkj640Lu33m4P9LYvlx3DqdOn4JF7vx5\nLNT+/sGCr7t/5ebmzug4f5zJbFNKrQVwAMBXRWS7H56TAkhLVw1cyt2NNyc2FYkxczVX5H1JMSmI\ntbknonU4h9DRy9nGiWbKkzOmZgCZpvbikds8opRqHfmzXURegPts644rq61fH9wzAQSTDz49+vo1\nL3t9dDTe5qI9IftvXHVzI06Wv+VuxA5O+Pf012tOY/F116O7u3tGx3lyxnQaQI6IZImIDcBDAF6a\nZH8xNkRiRSR+ZDsOwD4ApTOqlILSsNOBctO1PatyNmmsxrfyM1cb2xwAQTRzU54xKaWcIvIEgINw\nB9mzSqnLIvK4+271jIikASgBkADAJSJ/DqAAQCqAF0REjTzXL5VSB331l6HAc7XlMgbs/QCAuQmp\nSJ+3VHNFvrM8Y5WxXXetEgNDfYiJitNYEVFw8miiMqXU6wDyxt32tGm7DUDGBIfeArB6gtspTJSa\nzpaKsjdARCbZO7glxCZh8fxsNF2/CpdyobqpFKuWhe4ZIpGvcBg3+YxSCmVXTxvtwqUbNFbjH/kZ\no5/DOGycaGYYTOQz12+2oL3bPQuCLTIaOemFmivyvfwsfs9ENFsMJvKZstrRs6X8zGJERtg0VuMf\nSxeuMP6e7Tdb0NHdprkiouDDYCKfMX+/ZF63KJRFRkQixzQ9EbvziKaPwUQ+MWgfwNWWy0a7YOm6\nSfYOLRw2TjQ7DCbyieqmS8akrenzliApLvRme7gT87x5VY0XjdeBiDzDYCKfMK/kmpcZXlcMLEzJ\nRGJcMgCgf+gWGq/XaK6IKLgwmMgnzN+tmM8gwoGIjOnO4/dMRNPDYCKv6+q9gbbOJgDutYqWpRdo\nrsj/zGeJFfUMJqLpYDCR11U1jn7hn71oBWwRURqr0SMvY/QssfZaJQbtAxqrIQouDCbyugrTSLRw\n+37pA4lxc5A+bwkAwOVyorrpkt6CiIIIg4m8yqVcqDIFU36Yfb9kxlkgiGaGwURe1XqjHr0D7jVY\n4mISkZ4aurOJTyWP8+YRzQiDibxqTDdexqpJlxcPddnpKxBpdU9PdL2rGZ097ZorIgoO4fuuQT5R\naR4mnhG+3XgAYIuIQnb6CqNdybMmIo8wmMhrHMN21DSXG+1wHfhglp+5xthmdx6RZxhM5DVXWy7D\n4bQDAFLnLMLcxFTNFek3Zt68xotwKZfGaoiCA4OJvKZyzDDx8O7G+8CieVlIiJ0DAOgf7EXnrVbN\nFREFPgYTeU1F42hXVTgPEzcTEazIGu3Oa+q6orEaouDAYCKvuDXQg+brtQAAi1iQu3il5ooCR+HS\n0bWomjqrNVZCFBwYTOQVVY0XoaAAAJkLchETFae5osCRn7kaFosVANDZdw39Q72aKyIKbAwm8grz\n90v5GRyNZxYTFYecRaMT2TazO49oUgwmmjWl1Njrl/j90m0KzN15DCaiSTGYaNbab7ais9c9q0GU\nLQZLFizXXFHgKTIFU+vNq3AMOzRWQxTYGEw0a+azpdz0IlitERqrCUzzk9ORmrQQADDscuBKc6nm\niogCF4OJZq2ykdcvecI8Oq+stkRjJUSBjcFEs+J0OVHVOLrWUD6nIbqj8cGklNJYDVHgYjDRrDS0\nVWPQ3g8AmBOfgvnJ6ZorClzL0gsQYXHPNt7R04a2ribNFREFJgYTzcr41WpFRGM1gS3CGolFydlG\nu6z2jMZqiAIXg4lmxTzwgdMQTW1xco6xXVZ7WmMlRIGLwUQzNmgfQN21KqO9PGOVxmqCQ7opmK62\nXEb/0C2N1RAFJgYTzVh10yW4XE4AQHrqUmMWbbqzGFs8UuIXAQBcyoWKeq7RRDQeg4lmbMw0ROzG\n89jY7jwOGycaj8FEMzZm/SXOj+exxXNzje3yujPGWScRuTGYaEa6em8Yw50jrJHITl+huaLgMTdu\nARJjkwEAfYO9qG/jUhhEZgwmmpEq02wP2YtWwBYRpbGa4CIiKFi6zmizO49oLAYTzcj465doegqX\njM4CUcpgIhqDwUTT5lIuVHHgw6zkZxYbk9223KhD18js7ETEYKIZaL1Rj96BbgBAXEwi0lOXaq4o\n+ETZYpCbXmS0OQsE0SgGE01bef05YzsvYxUswh+jmeBs40QT4zsKTZt5Kp2CJesm2ZMmU7R0g7Fd\n1XgRdseQxmqIAgeDiaalb7AXta2VAACBYEXWWs0VBa+UpDQsTMkEADic9jHrWhGFMwYTTcvlurNQ\nygUAyFqwHAmxSZorCm7m0XnsziNyYzDRtJjfPM3fkdDMcPFAotsxmMhjTpcTl00DHwqX8vul2Vqy\nMA+x0QkAgO6+TjS112quiEg/BhN5rK61wlimISk+BenzOEx8tqwWKwpM39NxjSYiBhNNg/lam8Il\n67harZdw2DjRWB4Fk4jsF5EKEakSkW9NcH+eiBwTkUER+fp0jqXgUVbH75d8YUXWGuNasPq2avT0\ndWmuiEivKYNJRCwAfgDgXgCFAB4Wkfxxu3UA+BqA78/gWAoCHT1taO1oAABEWm3Iy+A0RN4SGx2P\n7EWjs7OX1XEWCApvnpwxbQRQrZSqV0o5ADwH4EHzDkqpG0qpMwCGp3ssBQdzN17u4iLYIjmbuDcV\nmi62ZXcehbsID/ZJB9BoajfBHTiemPaxJSX8pfQ3T17zY2VvGdvx1vn8d5ql216//mhjs7z2DE6e\nOgGrxZNfT5oO/tz6V25u7tQ7TYCDH2hKDqcd17rrjLZ5aXDyjsSYFCREuxcPHHY50NZdr7kiIn08\n+UjWDCDT1F48cpsnpn3s+vX8Ut1fPvj0ONVrfunqKbiUe/nvhSmZ2LV9r89rC1WTveaN/dtx+PzL\nAAB7ZA9/F7zI05918q7u7u4ZHefJGdNpADkikiUiNgAPAXhpkv3NY4ineywFIPO1NebvQsi7OAsE\nkduUZ0xKKaeIPAHgINxB9qxS6rKIPO6+Wz0jImkASgAkAHCJyJ8DKFBK3ZroWJ/9bcjrlFK3Xb9E\nvrEsvQBRthgM2QfQ0dOGa51NWJiSobssIr/z6NtVpdTrAPLG3fa0absNwIS/QRMdS8Gjqb0W3X2d\nAIDY6AQsWch/Sl+JsEZiReYanL9yDABQWnuawURhiYMfaFJj1l7KWgurxaqxmtBnnn+wnNczUZhi\nMNGkzBd7ctJW31uRNfoa17ZcRv/gLY3VEOnBYKI76um7iYZr1QAAi1iQn7VGc0WhLzFuDjLT3Nd+\nuJQLFQ3nNVdE5H8MJrqjy/VnoOAeGbZ00QrEjSzPQL5VsGR0tnF251E4YjDRHXE0nh7mVW3L687C\nNbJiMFG4YDDRhIadDlxuMC8KyOuX/CUjbRkSYtxL1t8a6EZj2xXNFRH5F4OJJlTTXI4h+wAAYG7i\nfCyYu1hzReHDIhasWGJePJDdeRReGEw0IfNovKKl67kooJ+NmQWijhOPUnhhMNGEzEsvsBvP//Iz\nVxuLBzZer+HigRRWGEx0m+tdzWi/2QIAsEVEISe9UHNF4ScmKm7M4oHldWc1VkPkXwwmuo35O428\nzGJERtg0VhO+2J1H4YrBRLfhbOKBocA0bLyi4TyczvELRBOFJgYTjTEw1I8rLeVGm9cv6bNg7mLM\nTUgFAAzZB1DTwon5KTwwmGiMiobzcLnciwIunp+NpPi5misKXyKCgqXmi205bJzCA4OJxhjTjbeE\nq33qZj5j5fdMFC4YTGRwuZxjRn+Zv3wnPXIXr0Sk1T34pK2zCR3dbZorIvI9BhMZ6q5V49ZANwAg\nIXYOMtNyNFdEtsgo5GasNNpl7M6jMMBgIkPpmNF4640LPEmvAlN3Xnktu/Mo9PGdhwylV08Z2yuz\nN2qshMzMCzRWN5XC7hjSWA2R7zGYCADQfrMV1zobAQCRVhvyMoo1V0QfSElMw4K5GQAAh9POxQMp\n5DGYCMDYbrzlmatgi4zSWA2NZz6DvVhzQmMlRL7HYCIAQNnV0WAq4mwPAWfVss3GdmltCZwj15oR\nhSIGE6F/6NaY2R4YTIEnMy0HSfEpAID+wV7UNJdPcQRR8GIwES7XnTNme8icn8PZHgKQiGBV9iaj\nze48CmUMJhozGq8om2dLgWrVstFgulRzEkopjdUQ+Q6DKcy5XE6U14/O9sBgClw56YWIjU4AAHTd\nuoG6a1WaKyLyDQZTmLve04iBoT4AQHL8PKTPW6q5IroTqzUCxaZBEGer3tNYDZHvMJjCXGPn6Kfu\nwuwNEBGN1dBU1i7fbmyfq37f+G6QKJQwmMKYUgr1HaNr/HC2h8CXs7gICTFJAICevi7UtHB0HoUe\nBlMYa+9tQr+9FwAQF52A5YtXTnEE6Wa1WLE6d5vRPlt5VGM1RL7BYApj9TdGz5ZWLdsMqzVCYzXk\nKXN33vkrx7jkOoUcBlOYcikX6kzdeGtMn8IpsC1dlI85Ixfb9g32orLxguaKiLyLwRSm6lorMWDq\nxjOv+UOBzSKWMWdNZ6vYnUehhcEUpkoqjxjbxTmbYbVYNVZD07V2+V3G9oWaE3AM2zVWQ+RdDKYw\nNOx0jPmUvXb5Do3V0ExkzF+GeUkLAABD9gGU152d4gii4MFgCkPldWfQPzjSjReViJzFhZoroukS\nkTFnTWeqjkyyN1FwYTCFoVOXDxvb2akruYR6kDJ/z1R2tQQDQ/0aqyHyHr4jhZm+gR6U1ZYY7ezU\nVRqrodlYNC8Li+YtAeBe2fbCleN6CyLyEgZTmCmpPAKny33dy7z4dCTFpmiuiGZjQ/4uY7uk4rC2\nOoi8icEURpRSOF56yGgvm8+zpWC3Lu8uCNzzG1Y3laKr94bmiohmj8EURurbqtHSUQ8AsEVEYWlq\nkeaKaLbmxKdgeYb7A4aCwplKDoKg4MdgCiPHLr1hbK9dvh22iCiN1ZC3rM/faWyfrjjMBQQp6DGY\nwsTAUP+Ya5e2FO3TWA15U3HOFkRG2AAArR0NaLlRp7cgolliMIWJM5VHYB8eAgAsSsnCkgXLNVdE\n3hJti8Gq7NFl109zEAQFOQZTmDhWdtDY3lJ0DxcEDDHm7rySyiNcQJCCGoMpDDS0XUHT9asAgEir\nbcwQYwoN+VlrEG9aQLC6qVRzRUQzx2AKA+Yh4qtztyI2Ol5jNeQLVosV6/JGpyhidx4FM4+CSUT2\ni0iFiFSJyLfusM9TIlItIudFZI3p9joRuSAi50TklLcKJ88M2QdQUvmu0d5adI/GasiXzGfCF64c\nx5BjUF8xRLMwZTCJiAXADwDcC6AQwMMikj9un/sALFNK5QJ4HMCPTHe7AOxSSq1RSm30WuXkkbNV\nR403qPnJ6cheVKC5IvKVjPnLMD85HQAw5BjEpZqTmisimhlPzpg2AqhWStUrpRwAngPw4Lh9HgTw\nCwBQSp0EkCQiaSP3iYfPQz5wrGy0G29r0T4OeghhIjJuiqJ377wzUQCL8GCfdACNpnYT3GE12T7N\nI7e1AVAADomIE8AzSqmfTPZkJSUlk91N09DVdx3116oAABaxwjaUPOHry9fc/3z1mkfZk43ty/Xn\n8N6xw4ix8TvFD/Bn3b9yc3NndJw/zmS2KaXWAjgA4Ksisn2qA8g7qtvOGduZKXmIjozVWA35Q3z0\nHMxPzADgnqKotr1Mc0VE0+fJGVMzgExTe/HIbeP3yZhoH6VU68if7SLyAtxnW0dxB+vXr/egJJqK\nfXgIvy35X0b7Q3d9GnmZxWP2+eDTI19z//HHa26P7sRzb/0QANDSW4XPrfuzsO/C5c+6Ht3d3TM6\nzpMzptMAckQkS0RsAB4C8NK4fV4C8HkAEJHNAG4qpdpEJFZE4kdujwOwDwAvsPCD89XHMDDUBwBI\nSUpDbsZKzRWRv6zJ3W5MUdTSUY/G6zWaKyKanimDSSnlBPAEgIMAygA8p5S6LCKPi8hjI/u8CqBW\nRK4AeBrAn40cngbgqIicA3ACwMtKqYO3PQl5nfnapS2F93CV2jASExWLNbnbjPbxsjc1VkM0fZ50\n5UEp9TqAvHG3PT2u/cQEx9UCWD2bAmn62jqbUNNSDgCwiAWbCvZoroj8bXPhXpy6/A4A9zyJH73r\nUdgiOZs8BQd+jA5Bx01DxIuyNyApbq7GakiHZYsKkJq0EAAwaO/H+SvHNFdE5DkGU4hxDDtwcuST\nMuC+donCj4hgc+Feo/3ehVc1VkM0PQymEHPp6kn0DfQAAJITUpGfyZ7UcLW5cC+sVndvfX1bNeqv\nVWuuiMgzDKYQYx70sLngblgsVo3VkE4JsUlYmzt62eB7F3nWRMGBwRRCbnRfQ2XjBQCAiAWbC+/W\nXBHptqP4gLF9tuooevtndl0JkT8xmELICdOw4BVZa5CckKqxGgoEWQuWI3N+DgBg2OngWRMFBQZT\niHAM23Gs1DxhK5e3ILfda0fnXD5y4VUuh0EBj8EUIkoq3sWtAXc3TXL8PBQu4dQr5LY6dytSEt2T\n/fcP9o75HpIoEDGYQoBSCu+cG50lasfq+43RWERWixV7TGdN75x9EcNOh8aKiCbHYAoBFQ3nca3T\nvepIVGQ0thTtneIICjebCu9GfEwSAKDr1g2cKHtLc0VEd8ZgCnJKKRw6/bzR3ly4F7FRXH+HxrJF\nROHudR8x2m+c+g3sw0MaKyK6MwZTkKtsuIArze41dywWK3at/rDmiihQ3bXqABJj3QsJdvd14v2L\nb2iuiGhiDKYgppTCK8d/abS3FOxFSlLaJEdQOLNFRmHfxk8Y7YMlzxtLoxAFEgZTELtYcxINbe5p\nZiKskbh306c0V0SBbkvhPuP6tr6BHhw8/VvNFRHdjsEUpIbsA/j9kWeN9l2r7sOc+BSNFVEwiIyI\nxAPbPme0D59/Be03WzVWRHQ7BlOQevXEr9DV2w4AiItOwL4Nn5jiCCK3tcvvwpIF7uXVnM5hvHj0\n/+otiGgcBlMQqr9WjcPnXzHaH93xRcTFJGqsiIKJiOCjO75otC/WnMSlq6c0VkQ0FoMpyAwM9ePn\nr/8jlHIBAJZnrMKG/F16i6Kgs3RhHjYVjE7y+5t3nsbAUL/GiohGMZiCiFIKv3n7R7jRfQ0AEGWL\nwaf3fAUiorkyCkYf2f6IcdFt960O/PH4v2muiMiNwRREjl58DWeq3jPaD+35ClLnLNRYEQWzuJhE\nfHznl4z2exdeQ21rpcaKiNwYTEGiuqkUvzONwttcuBfr8nZorIhCwdrld2FF1loAgILCc2/9K+fR\nI+0YTEGgs+c6/s+r/wCXywkAyJi/DJ/Y9WXNVVEoEBF8as/jsEVEAQBaOxpwqOT3mquicMdgCnBD\njkH85JXvoW+gBwCQEDsHf3r/t403EqLZSklMw4EtnzHab5z8Nbv0SCsGUwBTSuHfD/1vNLfXAgCs\nlgh86UPfQnLCPM2VUajZufp+ZC9cAQBwKRd+8fo/cZQeacNgCmCvn/w1zlW/b7Q/ufsxZC9aobEi\nClVWixWUQuTiAAAKkElEQVSf2/+fEG2LBQB09LTh+cPPaK6KwhWDKUCdqXwPr518zmhvX3Ufthbt\n01gRhbqUxDR8es9XjPbpisM4XfGuxoooXDGYAlBtayV+eegpo52XWYyP7/jSJEcQece6vLuwccVu\no/2bd37MufTI7xhMAaazpx0/feV7xpDdtOTFePTAX3CpdPKbT+x6DPOSFgBwTxb801e+hyH7gOaq\nKJwwmALIoH0Az7z839HbfxOAe3LWxx54kivSkl9F22LwyP5vGB+GWjsa8P8O/gtcI9NgEfkagylA\nuFxO/Pz1f0TLjToAIyPw7v8rzuxAWmQtyMWnd49+33Sx5gTeOMW1m8g/GEwB4sWjP0dZbYnRfuju\nryAnvVBjRRTuNhfejZ2r7zfar534FS7WnNBYEYULBlMAOFZ6EO+ce8lo7133sTEzPxPp8pG7HsXy\nxSuN9i/e+Gc0tF3RWBGFAwaTZpUNF/Cbd5422quWbcL92z6rsSKiUVaLFY8e+AukJKYBAOyOQfzo\nxb9FW2eT5soolDGYNGq8fhU//ePfG3PgLU7Nxufu/c+wCP9ZKHDExSTisQf+GrHRCQCAvoEe/OsL\n30FnT7vmyihU8R1Qk/abrfjxi39rDMNNipuLxx54ElGR0ZorI7rdwpQMfOXBv4Ft5Ofz5q0O/PCF\n7xgjSIm8icGkQU/fTfzoD//N+KWOiYrDVz7yHcyJT9FcGdGdZS1Yji/f/21jGPn1my344QvfZTiR\n1zGY/GxgqA8/fulvjVVoI602PPbhJ7FoXpbmyoimlpdZjC/s/wZkpLu5+UYd/uW3/wVdvezWI+9h\nMPlRd18nnnr+STRdvwoAELHgCwe+iWXpBZorI/Jccc4W/Mk9XzPC6frNFvzjr/8S9deqNVdGoYLB\n5CeN12vwz7/5NppHLqAF3Eujr8zeqK8oohnauGI3Hr3vm7Ba3N16PX1deOr5J3Gy/G0opTRXR8GO\nE7D5mNM5jMPnX8Yrx34Jp2sYAGARCx7e+wQ2FezRXB3RzK3O3YqYqDj87NXvo3/oFhxOO3556ClU\n1J/DJ3Y/hriRUXxE08Vg8hGny4kLV47jj8f/He03W4zboyKj8cj+b6Aoe4PG6oi8Iy+zGF//9D/g\nJy//Hdq63Nc2nal6DxWNF/DAts9jU8EeXv5A08Zg8rL2m60oqXgXJ8reRNetG2Puy5yfg0fu+wbn\nv6OQMj95Eb750PfxuyPP4kTZmwDc1zr96s0f4HjpIXxy92PImL9Mc5UUTBhMXtDbfxNnq46ipPII\n6q9V3XZ/TFQc7t34Sewo/hAirJEaKiTyrShbDD6z9wkULd2A3737U2OUXt21SvzPX30Ta5Zvw70b\nP4WFKZmaK6VgwGCaoSHHIC7VnERJxbuoaDg/4ZIA8TFJ2L5yP3au/hDiYhI1VEnkX6uWbUJeZjEO\nnX4eb535A5yuYSgonK06inNV72N17lbs2/BJpKcu0V0qBTAG0zQMOx2oaryIksojuFhzEnbH4G37\nWCxWFGStxfr8nViZvRGRETYNlRLpExUZjfu3fhYbV+zGC+/9zJg1X0HhXPX7OFf9PpalF2JL4V6s\nzN6ImKg4zRVToGEwTcHuGEJFw3lcuHIcpVdPYcDeP+F+2QtXYF3+DqzJ3YZ4nh0RYX5yOh5/4K/R\n0HYFr5/8NUprTxv31TSXoaa5DBHWSGQvzMey9EIsSy/AkgV5sEVGaayaAoFHwSQi+wH8M9zXPT2r\nlPofE+zzFID7APQB+IJS6rynxwaS3v5uNLVfRU1zGa40laG+rdoY5j1eWvJirM/fifV5O5CSlObn\nSomCQ2ZaDh574Ek0tF3Bm2d+j4s1J42Ji4edDlQ1XUJV0yUA7h6HtOR0pM9bivTUJVg0bwnS5y1F\nYtwcnX8F8rMpg0ncl3f/AMDdAFoAnBaRF5VSFaZ97gOwTCmVKyKbAPwYwGZPjvU3pRR6+7vR1Xsd\nnb3t6OxpR2fPdVzrbERrRwNuDXRPevzchFQU52zB+vydWJyaDRHxU+VEwS0zLQdfPPCX6O7rxKnL\nh3Gu+qgxC8oHXC4nWjsa0NrRgJLKd43bE2OTsSh1CRalZCJ1ziLMT05HWnI6EmLn8HcwBHlyxrQR\nQLVSqh4AROQ5AA8CMIfLgwB+AQBKqZMikiQiaQCWenDsHbmUC45hO+yOQdgdQxhyDGLIMehuDw/B\nPtIeGrnfPu7+8ffZHYPo7e+Gw2n39PUBACyYm4GV2RtRnLMFGfOX8ReBaBaS4ubinvUfwz3rP4au\n3hu42lKOK83lqGkuw7XOxgmP6envQk99Fyrqz425PdoWi9Q5C5EUNxfxMYmIj52DuOgEREZEIsJq\nQ4Q1AhHWSDR2NMBisSKpKRoR1khEWCNH9olEpGm/iAgbrBarP14GmoQnwZQOwPzT0gR3WE21T7qH\nx47xX5/9EuzDdjgcQ9MOEG+IjLBhwdwMLF2Yh2XpRchJL0BCLLsRiHwhOWEe1uXtwLq8HQCAgaF+\ntHbUo6m9Fi03atHcXoeWjno4hid+Lxi096Pxeg0aUePR871VPvU+IhZEjoSXO6xGty0WC2TkP4x8\nQBX3Qe7bRm4w9jG1x+/v3pbb2sb+psc1Pgp/8DxB8tn4oZ1fm9Fxvhr8MOOX7Ruf+Cdv1jFrLgfQ\n3T15916wys3NBRC6f79AxNd8ailxi5AStwjFS7bpLoU08SSYmgGYr4pbPHLb+H0yJtjH5sGxRERE\nBk8msToNIEdEskTEBuAhAC+N2+clAJ8HABHZDOCmUqrNw2OJiIgMU54xKaWcIvIEgIMYHfJ9WUQe\nd9+tnlFKvSoiB0TkCtzDxR+d7Njxz5GUlBQkPaZERORrwrVTiIgokATMfPQi8h0RaRKRsyP/79dd\nUygTkf0iUiEiVSLyLd31hAsRqRORCyJyTkRO6a4nVInIsyLSJiIXTbcli8hBEakUkTdEJElnjaHo\nDq/7tN/bAyaYRvyTUmrtyP+v6y4mVJkufL4XQCGAh0UkX29VYcMFYJdSao1SissX+87P4P75Nvsr\nAG8qpfIAvA3g236vKvRN9LoD03xvD7Rg4ndN/mFcNK2UcgD44MJn8j1B4P3ehRyl1FEAXeNufhDA\nz0e2fw7gI34tKgzc4XUHpvneHmi/IE+IyHkR+SlPs33qThdEk+8pAIdE5LSIfFl3MWFm/shoYSil\nrgGYr7mecDKt93a/BpOIHBKRi6b/L438+WEAPwSQrZRaDeAagMC60pbIO7YppdYCOADgqyKyXXdB\nYYwjv/xj2u/tfl32Qil1j4e7/gTAy76sJcx5ctE0+YBSqnXkz3YReQHubtWjeqsKG20ikqaUahOR\nBQCu6y4oHCil2k1Nj97bA6Yrb+QH5QMfA1Cqq5YwwAufNRCRWBGJH9mOA7AP/Dn3JcHY7zZeAvCF\nke1HALzo74LCxJjXfSbv7YG0UOA/iMhquEct1QF4XG85ocvTC5/J69IAvCAiCu7fvV8qpQ5qrikk\nici/A9gFIEVEGgB8B8DfA/itiHwRQD2AT+mrMDTd4XXfPd33dl5gS0REASVguvKIiIgABhMREQUY\nBhMREQUUBhMREQUUBhMREQUUBhMREQUUBhMREQUUBhMREQWU/w8Jl6Nr+y7TAwAAAABJRU5ErkJg\ngg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -260,16 +520,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH0dJREFUeJzt3XucFNWd9/FPMYAKKJGAojiK4g2zsioRMUpE4wUv8Raj\n6+rGRNdgnojmssrGvDaebFbNxo3mcX2MJrqPikaym6gxXqIQHUWCKApoFAggJDACIhIRbwxa+8ev\nhulpe6a6e6r7VHV9369Xvbq66/aj6Pn1qVOnzgEREREREREREREREREREREREREREUnQBGAhsBiY\nXGL5KcB8YC7wPHBUwbLlwIvRsmdrGqWIiFStCVgCDAf6APOAkUXr9C+Y3z9av90yYFAN4xMRkTL0\nilk+Bkvey4E2YCpWki/0TsH8AOCNouVBD+ITEZEExCX7YcCKgvcro8+KnQosAB4BLin4PASmA3OA\nC6sPU0REeqJ3zPKwzP3cH03jgCnAPtHnhwGrgCHANKzuf0blYYqISE/EJftWoLngfTNWuu/KjGif\nnwTWYYkeYC1wH1YtVJzsy/1BERGRzhKrJu8NLMVu0Pal9A3aEQUHPChaH6AfsG003x+YCRxb4hhZ\nSfbOdwBlcr4DKJPzHUCZnO8AyuB8B1Am5zuAMjnfAZSpotwZV7LfDFwMPIq1zLkNq5ufGC2/BfgC\n8CXsBu5G4O+iZUOBewuOczfwWCXBiYhIMuKSPdhN10eKPrulYP5H0VTsVeCAKuMSEZEExbXGkQ4t\nvgMoU4vvAMrU4juAMrX4DqAMLb4DKFOL7wDK1OI7gEaVlTp7EZE0qSh3qmQvIpIDSvYiIjmgZC8i\nkgNK9iIiOaBkLyKSA0r2IiI5oGQvIpIDSvYiIjmgZC8ikgNK9iIiOaBkLyKSA0r2IiI5oGQvIpID\nSvYiIjmgZC8ikgNK9iIiOaBkLyKSA0r2IiI5oGQvIpIDSvYiIjmgZC8ikgPlJPsJwEJgMTC5xPJT\ngPnAXOB54KgKthURkRRoApYAw4E+wDxgZNE6/Qvm94/WL3dbgDCxaEVE8qOi3BlXsh+DJezlQBsw\nFSvJF3qnYH4A8EYF24qISB3EJfthwIqC9yujz4qdCiwAHgEuqXBbERGpsd4xy8u9TLg/msYBU4B9\nK4zDFcy3RJOIiHQYH01ViUv2rUBzwftmrITelRnRPgdF65W7rYuJQxIT7oT9KD8JwRrf0YhI2Vro\nXBC+Msmd9waWYjdZ+1L6JusIIIjmD4rWL3db0A3aOgsnQBhC+DnfkYhIjySeO48HFmE3W78TfTYx\nmgAuB/6INb2cARwcs20xJfu62pLs74RwD9/RiEjVMpc7MxdwtoXzomQfQvj3vqMRkaol2vRSGs8n\nfAcgIvWnZJ8r4QXAbr6jEJH6U7LPl1t9ByAifijZi4jkgJJ9wwsHQvgghKf6jkRE/Il7qEqyry9w\nIrC970BExB+V7PPjM74DEBF/lOwb37UF8290uZaINDQl+8bXC/inos9+6CMQEfFHdfaN7yNgXTS/\nAdgWuB3r02gShPOBN9QpmkhjU8k+PzYAN0OwNQSLgMeAsVi/Rt/wGpmI1JxK9g0r3Ae4DBsqsgWC\ngUUrPFK4cr2iEhE/lOwb187ABcDamPXilotIA1A1johIDijZi4jkgJK9iEgOKNmLiOSAkn3jG+I7\nABHxT8m+cQ0rmF/hLQoRSQUl+8b1447Z4Pf+whCRNFCyb1wrfQcgIumhZC8ikgNK9vn1BnAY8N++\nAxGR2isn2U8AFgKLgckllp8DzAdeBGYCowqWLY8+nws825NAJWnBBxD8AXjN3ocHRP3piEgONQFL\ngOFAH2AeMLJonUOB9k62JgDPFCxbBgyKOYY64aqJ8HkIQ5u6Xe8KCK+O1p1Xn9hEJAEV5c64kv0Y\nLNkvB9qAqcApRevMAt6K5mcDuxQtDyoJSLzaxncAIlIbccl+GJ3baK+kc/vtYhcADxe8D4HpwBzg\nwmoCFBGRnovr4riSy4QjgfOxm37tDgNWYU9xTsPq/meU2NYVzLdEk4iIdBgfTVWJS/atQHPB+2ZK\nt98eBfwcq7NfX/D5quh1LXAfVi0Ul+wlOSdiN89FJPta6FwQvrKSjeOqceYAe2E3aPsCZwEPFK2z\nK3AvcC5Wv9+uHzbeKUB/4FjgpUqCkx5bA0Gr7yBExL+4kv1m4GLgUaxlzm3AAmBitPwW4HvA9sBP\no8/asBL8UOxHoP04d2Pjnkr6HOc7ABFpfGp6WRPh8xCOLmO90zqaaIaLah+XiCQkc7kzcwGnX3h0\nlLzLSPagZC+SSYm2s5dsGgy8DJSbvCcAG4ENNYtIRLxSsm9cf4RgY3mrBo9i3V6siltTRLJJyb6h\nhJMgXIe1nBIR2ULJvrEMxfoiugPYyXMsIpIiSvaNpfCGTVyz2lJ6Q7g9hLoyEGkwSvZS6HjgTeDz\nvgMRkWQp2Uu7tb4DEJHaUbJvXBVW4wSzsCemRaQBVVOvK+n2L1h/Rq/4DkRE0kPJviEF5/mOQETS\nRdU4IiI5oGQvIpIDSvYiIjmgZC8ikgNK9lLoLd8BiEhtKNlLoYOBeb6DEJHkKdk3jLAX1o99DwTL\ngFeTiEZE0kXJvnFsi40N/K7vQEREStGwhIkIB0KYQJ17+HsI9YMhkn6Zy52ZCzidEkv2oyF8ref7\nEZEa0xi0+RP2BfYGtktgZ+uB9xPYj4ikiJJ9Y9gNeNZ3ECKSXuUk+wnAQmAxMLnE8nOA+cCLwExg\nVAXbiohICjQBS4DhQB+sDfbIonUOBQZG8xOAZyrYFlRnn4Dw6xCGNvV4X3tAqOaXIumXaJ39GCxh\nLwfagKnAKUXrzKLjycvZwC4VbCvJONF3ACKSbnHJfhiwouD9yuizrlwAPFzltlK9TcBpEAS+AxGR\ndIobvKSSy4QjgfOBw6rY1hXMt0STiIh0GB9NVYlL9q1Ac8H7ZqyEXmwU8HOszn59hdtC52Qv/u0O\n4UEQvOA7EBHZooXOBeErk9x5b2ApdpO1L6Vvsu6K1c2PrWJb0A3aBIT3Q3hqQvv6JITrIfxaMvsT\nkRpJPHceDyzCEvp3os8mRhPArcA6YG40PRuzbTEl+x5LMtkDhLdHrXv+Prl9ikjCMpc7Mxdw+iSe\n7KdEyd4lt08RSZi6S5Ae0/dCpMHojzrzwkNJ/vmFPye8PxHxLK41jqRfL+zm90PJ7TK4AsJNye1P\nRHxTyb4xvAtBm+8gRCS9VLLPvl8BH/kOQkTSTSX77FsGfNF3ECKSbkr2mRYejPU6KiLSLSX7bNsF\nWIuNF1ALV0LYr0b7FpE6UrLPvpkQrK3Bfv8zelVPmiINQMleuhCsA971HYWIJEPJXkQkB5TsRUSk\nLtQRWtXCzRA+WcP9vwNh/9rtX0R6IHO5M3MBp0f4ZwhH1XD/SvYi6aVeL3OkDd1EFZEyKNmLiOSA\nkr2ISA4o2YuI5ICSvXSnH7ARwtt8ByIiPaNkL91pv/n7aa9RiEiPKdlLdy6LXjd7jUJEekzJXkQk\nB5TspRzDINzadxAiUlsTgIVYn+mTSyzfF5gFvA98u2jZcuBFYC7wbBf71xO0VQn3gjCEcM8aHmM0\nhE9FxzmkdscRkSokmjubgCXAcKAPMA8YWbTOEOwG3r/x8WS/DBgUcwwl+6qEE6MkPLQOx5qtZC+S\nOol2lzAGS/bLsUfzpwKnFK2zFpgTLS9Fg1/Uzs8gWO07CBFJv7hkPwxYUfB+ZfRZuUJgOvZjcGFl\noYmISFJ6xyzvaRXLYcAqrKpnGlb3P6PEeq5gviWapHuXA0/4DkLqxHEscAQwC8eDvsMRL8ZHU1Xi\nkn0r0Fzwvhkr3ZdrVfS6FrgPqxaKS/ZSnj2Ar/sOQurAsTfwD8DpwOE4xgFLcfzMb2BSZy10Lghf\nWcnGccl+DrAXdoP2NeAs4Owu1i2um++H3eB9G+gPHAt8v5LgpFsbgZm+g5AacmyL/Q1dAYzFroxH\nYg0ingEleylfXLLfDFwMPIp96W4DFgATo+W3AEOB54DtgI+AS4H9gB2AewuOczfwWIKxizS6acAh\n2JXxd7EC1HeBd3wGJdkUl+wBHommQrcUzK+mc1VPu43AAVXGJZIvjh2AW4FNOM4oWPI6atEmCSgn\n2YtILTm2B04FjgL64wiBl4F9gDeL1m4CPqxvgNII1F1C5oRbQfgHYIDvSCQxewE/Au7BEWDVNDsA\nnwVewKpvwK6W38V+ALbBlbyiFilJJfvs6QUcCjyEeqPMLscgYDCwIfrkT7hOz6IMAdZgrdiWAC/j\n+ANwG47DgF8CM3E8BZwD/BXYG8faev0TJFtUss+m9yE4CYL36njM3aw/HknIRKyxw1UlljVj3Yz8\nGcfPcEyKEr1xzASOB7YCTsYeWPwQ1e1LN1Syl3L9MnpVQknOupKfOtZXsI/3cdyK4+pkQpJGpZK9\niF8B+gGVOlCyl3Loe5Ikx+HYQ1IAJ2IPSInUlP6IpRwagzZZX8Buzs6O3j+EY0wV++mbXEjS6FRn\nL5VY5DuABvIrrCVONUkerAnmy1grHJFYSvbZ0x/QEIF551gKHN7FsjuAM4DLcNxUz7AkvVSNkz2l\nmurV2jGoh81a2apG+3wXFeakgJJ99rQBk+p7yGA68Hh9j5kLK4E/YL3LJk3DfUon+uUX8cXxKNaj\nbFKuwHFNgvuTBqKSfaaE56LqlGxzXIG1xknaNVj34quxcSdEOlHJPlu+4fn4+0AYQqCHgMrlOCqa\nm4njA+BT2NgO93a9UVXHuR7Hb7HRrALg6ET3L5mnZJ8t6to2e6Zhg/o8gaM/1pvlwzj+nPiRHEuw\n3jPBMSzx/UumKdlnyzvYDdqFvgORiqzHBvLpC2yq43En4NgfOA6YhuOCOh5bUkZ19tnyBnBu1DpG\nsmUIlujrNQ7Bo1g/+Cdjz2YMrtNxJaWU7KVcq4F/9h1ERu0UDUrybeCHwIs1P6LjIaC9UKDqP1E1\njpQr+CuEPwcm+44ksxxTfIcg+aWSvUhjq8UTupJBKtmLNK7l2NO5fTzHISmgkr1ILTgG4ViJz78x\nx104jgauA4ZG/ehLTpXzRZyANfVbTOn62n2BWcD72A2oSrYVaVS9sFYwzVg7e5/WYIPTX+s5Dkmx\nJmxk++HYpeA8YGTROkOwwS3+jc7JvpxtQR02lSlshvB9CM/0GMMge4I2PBNCXRWW4jgcxzoci3G8\n4TucLRyH4pjlOwxJVEW5M+4PdgyWsJdjD/NMBU4pWmctVi/YVsW2Ur5zsZttL/kOBBt8XMm+mOMA\n4BLsj3BHz9GIdBJ3g3YYsKLg/UrgkDL33ZNt5eNOBx6EYIHvQKRLewP7AFdjV7sb/YYj0iEu2fek\niqWSbV3BfEs0SWfvAD/2HMPbwGeBpzzHkWaLcFznO4gu7IHjX3F8z3cgUpXx0VSVuGTfit1gateM\nldDLUcm2rsx9ildBGzAj+h0/E/iF33ikAsuAm4CLcBwYfXZG1BOnZEMLnQvCV1aycVy96xxgL+wm\na1+sn+wHuli3uNvbSraVbHmG6gfKbkyOPYGxvsPokmM1cBewLdb98XHovkuuxJXsNwMXY50qNQG3\nAQuAidHyW4ChwHPAdlgTs0uB/bD6ylLbSvb9N7Cr7yBSZgLWACHNA3xvAG4HPgD+j99QJI/U9LIs\nYQuE431HYcJvQni97yhSw3EpjrU4bvQdStkc7+HYxncY0iOJNr2UVAhHA0f4jkJKcEwELgLuAf7V\nczSVOkYJPz+U7LNhKPY8w8u+A5GPORCYAdyM43XfwVRgOlYdt4PvQKQ+lOyzYWdgHgRrfQciJb2A\n4xXfQVTE8XmsGwXJCSX7bLgB//2rSDHHT7AmqCKpp2SfDcuAb/kOosg3IDzHdxCe7Qb8APgf34GI\nxFGyl564yHcAKbAcxzrfQYjE0eAl0hMa2zT7JuHYGdgduBrHb30HJLWhZC+SXzdi1YNNWDfkQ/yG\nI7WkahyRajj6kPW/H8e1WM+022HdkH8Ox2i/QUmtqGQvUp0WrMvu/+85jp66ChiM9b9/BnAM8LzX\niKQmlOxTL+wL9PMdRZFHo+l934F44RiB/Z8cgWOm73B6xPGbgvntPEYiNZbty9B8OAdr4peidvbB\nK8CdwLu+I/Hkd8BA4D3fgYiUSyX7bLgdgoW+g5BOjsOx2HcQIuVSspeeOBvCnwGzIWjsUq6jFzbU\nYC/0dyMZpGqc9JtIOv+fnoxen8CGKmx0fYDZwCxsQB6RTFEJJbXCXsCzwGjgZs/BlBC05nAogk04\ntvIdRM05zsQGJnoCx+m+w5FkKNmn22jgfuBe34FIbozEGgR8CAzwHIskKI3VA2L+3V6C0yDY4DeU\nWBrirnGcDBwJPO07EEmWkn169Qa+6zuIGO03Zf/WaxS1Zn3HLPUdRh2sBv4C3Eq6x9KVKqgaJ71C\n0v/Q0nbA/sAdvgOpCRuybwg2UlgTsKffgGrM+uf/STR/rN9gJGkq2UsPBJtp7J4vjwSWAw8Bm3Gs\n8BtO3e2D4yUcT/gORHpOJXuR7r2OXcH81XcgHgwAtsX6zpGMU7IX6d4LOE7wHYQH7wJvABuAXTzH\nIgkopxpnArAQWAxM7mKdG6Ll84EDCz5fDrwIzMXajItIFjiexrEP1jpHGkBcyb4JG+DgaKAVeA54\nAFhQsM4J2I2rvbAuX38KjI2WhcB44M3EIhYRkYrFJfsxwBKshA4wFTiFzsn+ZDpaY8wGPoH1jb0m\n+ixIItB8CYcAzcBK35HkkqM3cATwbeADz9GkQS8cV0XzV+Fy29tppsVV4wyDTi0QVkaflbtOCEwH\n5gAXVh9mnoQt2E3BMzwHkmffwr63I2hviphvg4ArsPOyjedYpEpxJftyOz/pqvR+OPAa1lZ5Glb3\nP6PEeq5gviWa8mp/3wEIANfiuNx3ECnwJmy5QT0V+DmOSThaPcaUV+OjqSpxyb4Vq05oV6pqoXid\nXaLPwBI9wFrgPqxaKC7Z5908rD+cG3wHUoH9IRwBQR6eMs0XxwdYQQ0cXwX+E2uKqmRffy10Lghf\nWcnGcdU4c7Abr8OBvsBZ2A3aQg8AX4rmx2Ltkddgw7ZtG33eHzgWeKmS4HLqQ+wH9VLIxMMs66PX\nxmht5fgKcJ7vMFLJ8WvgLd9hSHXiSvabgYux8UabgNuwm7MTo+W3AA9jl3lLgHeAr0TLhtLRW2Nv\n4G7gsaQCb3DvQJCRkn2wAsJxwAwI/wLBrr4jqprjc9gwkM9hwy6KNIw0tJQJSUccKRE+BvwHBBn6\nYQyHAqtsPsju/6XjTqwa8hpcVHUhnTkWYFdxHwE34XjOc0R5VlHuVN84qRJuj/UnnjVt0DDjsd6u\nRB/reKy12HDPcUgFlOzT5dNYyXJ93IrpEqwD9iWHQ1flVG86ureWjFCyT5/pEOjSuN6sS9/G7sI4\nGUuxfu/1YFXGKNmLmG9hDQzUfLQ7jpNw7IfdxB6BYwffIUl51OtlaoSXk/2SZQDhr4GrIXjedzCx\nHIdgfwOfB0YB5+OY6TeozHgV607iqzj6AXfqIbR0U7JPj2jMWaZ7jaJ6Ida09nTse3WK33C64eiL\nxTeVjqvb/we87C2mrHFMxjEAu1HbG2jGMRTHas+RSReU7NNnK98BVCcIIXwce3gu7dWD/YFfYM+B\nnI1js+d4smwwsAw4Chu39nS/4UhXlOzTZ4nvABJwEoQjIVgQv6o3G3F80XcQGfcDrPuEdcA44Fy/\n4Uh3lOzTJyNPznbrbfSgXOOzKpvV0bykXNovt/PkdWB3bGSvrLoL+AwdYxmISEqoZJ8eHwKbIPjI\ndyDVC1qBVgi3BkZBuDAV/x7HmcA1wK7Yd36R34BE6k8le6mF9cA9wAu+A4l8Euu19XHgd9gVlCRv\nfxzX4zjYdyDycSrZexeOAG4HdvIcSIKCURB+Efi+70gKPIjjazgGYkNpbvIdUIN5GZiJnduzcPwp\n+vwYHG3+wpJ2Svb+XYiN6HUTNhZAo1hGGh6pd4wDJtA+kI7jLWCKz5AakmMR8GUce2PVZNsBW6Mb\n9amhahz/QuAKCL4Ogf/kmKzREB7uOYajsGqcRz3HkRdLsIGLhmDdIEtKpOFXN8f92Yf9sK6Bb4Tg\nGt/RJCvcHmtZdB0E19f10PbY/l7AzcBJQC9cZUO4SQIcm7AnwmcBfYC7Cqp3pOfUn302hDtgg0Ds\nTOlxeTMuWA88DVwH4cA6H/wk4O+AbwLH1PnY0uE0bNzpSVg/Ol/GqQ98X5Ts/RkEfAq4FIKnfQdT\nI/8Uvf6Ph2O/hw0xOIDs9jeUbY6HsP+H7bFqtHOAI7zGlGO6QetFeAA2mDvZGWu2GkErhBcBN0MY\nAgMh2FCng38TmAusxvFmnY4pH3c21t/Tc1jXCsdEHdH1AZ7EqfO5eklDXXnO6uzD/YCDseaWZHrM\n1rKEW9MxqlFtkr2jF3AF1sHZEcB+wMk4nkr8WFI9e7jtMKxqZwfgaRzn+Q0q0yrKnWlINHlL9oVD\n9z0FQYNf1oZbASux3hHfAkZB8JfEdu9owoZyXAZ8F7taXQX8BsfaxI4jybIkfxVwK04961RJyT59\nwgC7bL0GGxEJ4FUIRviLqd7CC4BbgachGNfj3Tk+BVwO7IaV5lfg2LXH+5X6cDQD/wh8D3se4xJg\nStSCR8qTeLKfAPwEaML+WP+9xDo3YCPOvwt8GasrLXfbPCT7QVg3sAB3AxdA8IHHgDwJT8P6kP8F\ncB4Elfcjb90SfxUrwQ/GntJ9E8fjCQYq9eDYCvhbLOGfCLQBzwPbAifhWO4vuExINNk3YU/DHQ20\nYjdZzgYK+yk/Abg4ej0E+L/A2DK3rThgj8YDLZVvFu4IW0bvuRH4NgS1LL2Mp6o46yHcDvvx/wpM\n3whH7wLBW91u4vg09gO5N/BBNEU3e3kMx3G1jTnN53OL8aQ/RuguTrtp214AWo8VGPtj/Stdj2Nx\n7cPbYjzZOJ8V5c641jhjsCfilkfvp2LDuRUm7JOBO6L52cAngKFYZ1Nx22bJeMr+AoRHY22L/ws7\nHwB7Q1CPL+x4UvtFDTYA50M4BZ5+HI7+K4Q3AL/kwFv/wmeu248hCw7CqrsKrQMuBfbA+hD6HXaF\nUI8RpsaT2vO5xXjSHyN0H2cbHX8r47Ek9gXga8CXcDyJfQ9+DbTi2luz1T3OzIpL9sOAFQXvV2Kl\n97h1hmEPC8Vt20DCoVhLg1bgAOxH8GSsieWUOiX69HBRicMRFn3+Az7s+2lu2vdJtj9kB4Y9+zXC\npkvY+TkYsgA29f+Idwc/xZsjXgM2stXbP2DYc604PvTwr5B6se9J+1Xeb6LX+6Obt8Oxh+N2B/4D\n2LPglu58rCD5DlbSXY51F74z1h/SymjZW7gtVantxyz9HW1Qccm+3JOQhWqYMoSfwR7AWQa82nnZ\nZYfCte2P3D+IPaVZcifYQCTtJkHwTLJxVsDxD8BFWH8l7f9PQYmp0s/jttkJCKIeD9uwUngbMJCm\ntt78zUtw5AkArbxy+jJe/5vDWXwCPD+xF/DZgn/BP0bblerbZndgBHA0BDMrPDOSBY6lwFLg99H7\nwdgQiAOiNY7C7t0Mw/4mh5fYyyagb/QD8SbW3XX79GrUiVsv2r+/D7MnJzAuet+r6LXU/IdYVxA3\nJvXP9mEsdsnc7jvA5KJ1bsYeTW+3ENixzG3BkqMmTZo0aap8Skxv7Fd1OPYrOA8YWbTOCcDD0fxY\n4JkKthURkZQ4HmtVswQrnQNMjKZ2N0bL5wMHxWwrIiIiIiKN5IvYUGYf0vlqAOwqYDFW/39snePq\njsPu7s+Npgleo+lsAna+FlP63khaLMf6uZ+LdfGcFv8FrAFeKvhsEDAN+BPwGB1NA30qFacjfd/L\nZuAJ7G/8j9gTspC+c9pVnI70nNOtsWbt84BX6GianLZz2aV9sQdlnqBzst8P+0f1wer7l5Cerpiv\npKO7gzRpws7TcOy8pfn+yDLsS5o244AD6ZxEf4R1yQD2A/rDegdVQqk40/i9HIo1QQZrObMI+06m\n7Zx2FWfazmm/6LU3dl/0cCo8lz6T6EIoOWrNKcA9WHO75VgSG1O/sGKlsZlp4cNvbXQ8wJZWaTyH\nM7AnNwsVPjB4B3BqXSMqrVSckL5zuhordABsxB6mHEb6zmlXcUK6zmn7kKV9scLdeio8l2kpMRfa\nGbt8atf+kFZaTMJuRN9Gei6bunqwLY1C7FmGOdhg62m2I1ZlQvS6o8dY4qTxe9luOHY1Mpt0n9Ph\nWJztLQrTdE57YT9Ka+iodqroXNY62U/DLjeLp89XuJ9E25PG6Crmk4GfYg/yHIB1o/vjOsbVnXqe\nn546DPuDOh74OlYtkQWJt2tOUFq/l2BVI7/Gurt4u2hZms7pAOBXWJwbSd85/SiKZRfsocMji5bH\nnstaj1RVzfifrdhNk3a7RJ/VS7kx3wr8tpaBVKD4nDXT+eooTVZFr2uB+7AqqLSOwbsGq9NdjT0R\n/Hr3q3tTGFeavpd9sEQ/Bbg/+iyN57Q9zrvoiDOt5/Qt4CFgNBWey7RU4xTWjT2APZHbF/tl3Yv0\ntNrYqWD+NDrfJPNpDnaehmPn7SzsPKZNP6z7WrAeDY8lPeewlAdgy0hK59GRCNImjd/LAKv+eAXr\n6bRd2s5pV3Gm6ZwOpqMaaRusQDqX9J3LLp2G1TO/h/0yPVKw7ArshuNCqHkXtpW4E2s2OB87sWmq\nb8zCA2y7Y/WO87BmbmmK8x6s46xN2PfyK1iroemkq2lbcZznk87v5eFY1cM8OjdfTNs5LRXn8aTr\nnO6PdfU8L4rpsujztJ1LEREREREREREREREREREREREREREREREREZH0+F934C28zZiVAwAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW5x/HPk0AICfsW2UWIiLQsGtAWd1tFq8W6U2vr\njr219tbaaxe1e21taxe9tqJYtVeL9VoUl1Ko9qqIKBFBEJDIJptshrCEJctz/zhDMgkJmYQk58zM\n9/16zStn+818czLwzO/M75xj7o6IiEhUZIQdQEREJJ4Kk4iIRIoKk4iIRIoKk4iIRIoKk4iIRIoK\nk4iIREpChcnMxpvZMjNbbma31bH+82a20MzeMbO3zGxc3LrV8euaM7yIiKQea+g8JjPLAJYDZwIb\ngHnA5e6+LG6bHHcvjU1/Evibuw+Lza8Ejnf34pb5FUREJJUk0mMaCxS5+xp3LwOmAhPiNzhQlGI6\nAJVx85bg64iIiCRUMPoCa+Pm18WW1WBmF5jZUuA54Jq4VQ7MMrN5Znb94YQVEZHU16a5nsjdnwGe\nMbOTgJ8Cn42tGufuG82sJ0GBWurus+PblpSU6LpIIiIprHPnzpboton0mNYDA+Lm+8WW1SlWdI4y\ns26x+Y2xn1uAaQSHBkVEROqUSGGaBwwxs4FmlgVcDkyP38DMBsdNHwdkufvHZpZjZh1iy3OBs4DF\nzZZeRERSToOH8ty9wsxuAmYSFLIp7r7UzCYFq30ycJGZfRnYD+wBLo01zwOmmZnHXutxd595qNfr\n3Llz03+bEBQWFgJQUFAQcpLGU/bWl6y5QdnDkszZS0pKmtQuoe+Y3H0GMLTWsgfipu8G7q6j3Spg\nVJOSiYhIWtIwbhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQV\nJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhERiRQVJhER\niRQVJhERiRQVJhERiRQVJhERiRQVJhERiZQ2YQeQaJu/fDbuTs8uvRmQNyTsOCKSBhLqMZnZeDNb\nZmbLzey2OtZ/3swWmtk7ZvaWmY1LtK1E2yP/+DWPzvgNbyyeFXYUEUkTDRYmM8sA7gPOBoYDE83s\nmFqb/cvdR7r7aOBa4KFGtJUkUFFZHnYEEUkTifSYxgJF7r7G3cuAqcCE+A3cvTRutgNQmWhbERGR\neIl8x9QXWBs3v46g4NRgZhcAdwE9gc81pm28wsLCBCJFT7LmhsSyb926NZK/YxQzJSJZc4OyhyUZ\ns+fn5zepXbONynP3Z9x9GHAB8NPmel4Jz96y0oY3EhFpZon0mNYDA+Lm+8WW1cndZ5vZUWbWrbFt\nAQoKChKIFB0HPsUkW25oOPtzr/+larpHjx6R+h2Tdb8na25Q9rAkc/aSkpImtUukxzQPGGJmA80s\nC7gcmB6/gZkNjps+Dshy948TaStJwizsBCKSJhrsMbl7hZndBMwkKGRT3H2pmU0KVvtk4CIz+zKw\nH9gDXHqoti30u0gLapPZNuwIIpImEjrB1t1nAENrLXsgbvpu4O5E24qIiNRHlyQSEZFIUWGSOq3f\nspola+ZXze/Zu4t9+/eEmEhE0oUKk9TpX4VPs37Lqqr5t5e/xqP//G2IiUQkXagwSZ321tE72lby\nUQhJRCTdqDBJwjZu+5DbH7qaXz7xzbCjiEgK020vpMqK9UuYt+z/ACgp/bjObXbsLmbH7uJWTCUi\n6UaFSapsKl7PnMUzD1o+IC+fDzcV1Vi2s7SEDu07YTrxVkSamQ7lSZN8/8GvhB1BRFKUCpOIiESK\nCpOIiESKCpMc0hdOuYah/UeEHUNE0ogKkxzS6aM/z8AjmnazLxGRplBhkiZzrww7goikIBUmqVfv\n7gMOuX7aa39upSQikk50HpOwv2wfD794N0tWvw3A8CMLuPj068nMOPTbw9A5TCLS/FSYhEqvrCpK\nAB1zu9C9U16IiUQknelQnhxkf9nesCOISBpTYZKDnHPixLAjiEgaU2GSg3TK6ZrQdpuK11NRUd7C\naUQk3agwSaOcMvJzDOp9DABL18xnR+n2kBOJSKrR4AdpUN8eg7jk9EkAjDjqBJZ9+A6rNi4LOZWI\npCoVJqkhp12Hg5Z175zHySPOqZo/4dgzef6NJyjZta01o4lImlBhkirt2mbzixv/J+wYIpLmEvqO\nyczGm9kyM1tuZrfVsf6LZrYw9phtZiPi1q2OLX/HzN5qzvDSPOYt/XfYEUREqjTYYzKzDOA+4Exg\nAzDPzJ519/gvGVYCp7h7iZmNByYDJ8bWVQKnubvuxx1Be8t289TrkwHYp/OXRCQCEukxjQWK3H2N\nu5cBU4EJ8Ru4+1x3L4nNzgX6xq22BF9HQrCvbE/V9JFHDA0xiYhIwNz90BuYXQSc7e43xOa/BIx1\n95vr2f5W4Oi47VcC24EKYLK7P1i7TUlJSVWIoqKiJv4q0liL181hY8lqNm5fCcDnRl5L9w69E2r7\nv/N+T+n+nZx89BcY1HN4S8YUkSSVn199y5zOnTsnfHHNZh38YGanA1cDJ8UtHufuG82sJzDLzJa6\n++zmfF1pmsXr57C/PDh816l994SLElDV7oNNC1SYRKRZJVKY1gPx9z/oF1tWQ2zAw2RgfPz3Se6+\nMfZzi5lNIzg0WG9hKigoSCx5RBQWFgLJlxvgsderv1PKzs5u1O/w9Pz2lO8pI69X71B+92Td78ma\nG5Q9LMmcvaSkpOGN6pDIdz/zgCFmNtDMsoDLgenxG5jZAOBp4Ep3XxG3PMfMOsSmc4GzgMVNSiqR\ncslpN4QdQURSVIM9JnevMLObgJkEhWyKuy81s0nBap8M3AF0A+43MwPK3H0skAdMMzOPvdbj7j6z\npX4ZERFJfgl9x+TuM4ChtZY9EDd9PXB9He1WAaMOM6OIiKQRDeMWEZFIUWESADYXHzSeRUQkFCpM\nclgWFM1h4QdvsL98X9hRRCRFqDClsey2uc3yPFNe+CVLV89vlucSEVFhSmPtsw6+xUWiRg35VDMm\nERGppsIkTZKRkRl2BBFJUSpMAkC7rPaNbpOb3bEFkohIulNhEkYMPpHzP31lo9uNOea0qukpL/yy\nGROJSDpTYRLGn3App4w8t9HtLjz1Wvr3GgxA1449mzuWiKQpFSY5LFedcysAxTu3sHHbhyGnEZFU\noMIkhyUjo/ottHztuyEmEZFUocIkh6Vd28YPmhARORQVJjksHdp3atL3UyIi9VFhEhGRSFFhEhGR\nSEnofkySeu6Yci0lu7eFHUNE5CDqMaWpkl0qSiISTSpMIiISKSpMIiISKSpMIiISKSpMIiISKRqV\nl2YqKyt4af6zYccQEamXekxpptIree71x5r3OSsrAXj6lYdY+MHcZn1uEUk/CRUmMxtvZsvMbLmZ\n3VbH+i+a2cLYY7aZjUi0rbSuZ157pNmf092rpqe88AtK9+1q9tcQkfTRYGEyswzgPuBsYDgw0cyO\nqbXZSuAUdx8J/BSY3Ii20ooqvbLFX6OiorzFX0NEUlciPaaxQJG7r3H3MmAqMCF+A3ef6+4lsdm5\nQN9E20rrMqzGfPcOfcjOygkpjYjIwRIZ/NAXWBs3v46g4NTnOuAfTWxLYWFhApGiJ1lyb968ucb8\nmcdexuqidaxmXZOfc8uWLTXmFyxYSPus3CY/X2Mky36vLVlzg7KHJRmz5+fnN6lds47KM7PTgauB\nk5rzeUVEJH0kUpjWAwPi5vvFltUQG/AwGRjv7sWNaRuvoKAggUjRceBTTLLkXrVzPu9/VHPZ4WZf\nUTKP5Zuq50eNGknHnC6H9ZwNSbb9fkCy5gZlD0syZy8pKWl4ozok8h3TPGCImQ00syzgcmB6/AZm\nNgB4GrjS3Vc0pq2EZ0ivUWTa4Xeau3bsQe/uAxreUEQkAQ3+r+TuFWZ2EzCToJBNcfelZjYpWO2T\ngTuAbsD9ZmZAmbuPra9ti/02krCLT7uenLK8Znmus8ZewlljL+F7k7/Crj1N+4QkInJAQh+X3X0G\nMLTWsgfipq8Hrk+0raS2vfv3kNU2m3Zts8OOIiJJSFd+kGb3k0e/ygPTfxp2DBFJUipM0iI2bF0T\ndgQRSVIqTNIivBWuMCEiqUmFSUREIkWFSVrEnn272Vm6PewYIpKEVJik2dQeKr7mo6KQkohIMtON\nAtPEivVLuPfp21v06uInDDuDN5e+3GLPLyLpQT2mNNLSt7zI7//JFn1+EUkPKkzSbAqOOZXffv1p\njhk4OuwoIpLEdChPmk2GZYBBpmWGHUVEkph6TCIiEikqTCIiEikqTGlif/m+sCOIiCREhSlN/OnZ\nn4QdQUQkISpMaaB451Zdu05EkoYKUxpYtXHZQcvy+41osdfbWhLcu33ycz9j3rJXWux1RCQ1abh4\nmjlh2BkMyBtC7+79Wb9qU4u8RmVlRdX0/rK9LfIaIpK6VJjSyOj8cVxx1s1hxxAROSQdyksDf39l\nStgRREQSpsKUBvbs213jp4hIlKkwpYGc7A4AjBl2eshJREQapsKURvL7faJVXscy9LYSkabT/yDS\n7PK69q2afvLlP4aYRESSUUKFyczGm9kyM1tuZrfVsX6omc0xs71mdkutdavNbKGZvWNmbzVXcImu\n68//HmOOOQ0Aw8INIyJJp8HCZGYZwH3A2cBwYKKZHVNrs23A14Ff1fEUlcBp7j7a3cceZl5JEieP\nPBcAx5mzeGbIaaQh3/y9c9KNweP51z3sOJLmEjmPaSxQ5O5rAMxsKjABqLqcgLtvBbaa2Xl1tDd0\nyDDt9O7Wv2q6eOfWEJNIIpauhjmLgunNxaFGEUmoMPUF1sbNryMoVolyYJaZVQCT3f3BQ21cWFjY\niKeOjijn3l9WBsC7CxeS067TQetbInulV9K7y1Fs3L6SjRs2tNj+ifJ+P5Qo5V67pR0L3j8ayAJg\n9erVFBZuq3f7KGVvLGVvXfn5+U1q1xo9mXHufhxwLvA1MzupFV5TQpZhGfTq2C/sGJKAbz80mM0l\nWWHHEKmSSI9pPTAgbr5fbFlC3H1j7OcWM5tG0NuaXd/2BQUFiT51JBz4FBPl3M8uaMue/TBi5Ei6\ndOhetbyls2+pWMHCtdC7T59mf41k2O91iWLu9u1rfqd05JFHUlAw6KDtopg9UcoejpKSkia1S6TH\nNA8YYmYDzSwLuByYfojtq4ZhmVmOmXWITecCZwGLm5RURJpNRYXz6oLg8d6qYNmYYcHPlRtg5Xpn\nS7EGQUg4GuwxuXuFmd0EzCQoZFPcfamZTQpW+2QzywMKgY5ApZl9AzgW6AlMMzOPvdbj7q4hWq3o\n3RVzKdn9cdgxJGL2lcFpX6t73c8fDR43TID7b3V27wmW796bQU473ddLWl5CVxd39xnA0FrLHoib\n3gT0r90O2AWMOpyAcni2lrTMrS0kecxZ5CxeGUyPHAInDE/83LIt26H3+QfmRjPnnrebPZ9Ibbrt\nRZro2bl31TXzJL08+RLc+1T1/H9e5vzuyYO3GzYQOuXCS7HBX1uK4b7/rbnND/4yiF4znDuuhqMH\n6ORpaRk6vyhNDD9qDFlt2oUdQyLg9XfrXn7rFTDr98b9twbz67bAzx6tuc2sd7rx+EzY2rTvtEUS\nosKUwv49fzrPvPbnYMb1RbYE5i0NfvbtCe0OMUq8VDcflpCoMKWw7bt0xQWpdmDU3QHt28HyqbD6\n6eBxdK1viQ+M1ht9NGRm1lx3wy+gcKk+7EjL0HdMIilo2ERn3RaqRtQBfOFU+NZEuPzOoChlZ0H/\nvIa/J8quo1e1ZDWs2ggFww5eJ3K4VJhEUlDpvppFCYJidOmZxqVnJv48542D6XcbbU9R70hajw7l\niaSBUfnwqWa6T+SBQ4KX3YGuRC4tQj2mNHDep7/Emcd/IbTX/+dbf2PlhqVce95t5LTTkPUwfO8r\nMPbYpg/v/vrF8NFHwTlxm3flVS3/YN1hRxM5iApTiior3897q4OTIdtktiEzI7OBFi2raN0iSnYV\nqzC1gsnPOmtj51W3yYQBeZCbnXj7K8fD+bFLLR/4fumem43CwqAKlWfncekdsG5zM4YWiaPClKJK\n9+5ic3HC19qVFLCl2Pn0JFgR92f/4G8w4IjG9ZRy2xu57etff+InjAtPdf7wVP3biBwOFaY00L1T\nXsMbSVL6ywzn9snB9CcG1SxK15wHHXJa9vVv+QO0yXRuulhXgZDmo8KUot5dMReATrldGTnkUyGn\nkZayaw9Vh+2O6Fa9fPmTMLgvmLV8wVjzUYu/hKQZjcpLUQe+X9qxO7z7ZLfPyqFbx56hvX66yusG\nQ/pZixalb1wKF5zSYk8vaU6FKUVlZwVfEvTpPjC0DKeNPp8fXvMged10J9vWcOBSQ61hUB+rGn6+\nuRhKdmnYuDQfFaYU9OLcvzJ/eXCT4M+OuTjkNJLq/jIDup4NE+90vvE7FSg5fCpMKejNJS+HHUHS\nQE6tIehPvgQvzgkni6QWFaYUtLN0e9gR6vT3Vx+iorIi7BgpqfYFWlvD1y4y/ucHNZetWA9fv0e9\nJjk8Kkwp6MB3OhecfBXHDBgZchrY9HFwYub7Hy6kaO2ikNOkpm6d4IufDR5fOLX1XrdXVzhlFPTp\nUb3sv5+GF+Y4+8tUoKRpNFw8BbVrGxxjGZiXT277TiGngbPGXMLMeTobsyUd2Rv++O3WP5foM2OM\nz4wJBj88/Dx8695g+fnfhq3/gG5tWz2SpAD1mKTFnffpKxjaP/yem7Sczh2M/7gQztUpc9IM1GMS\nSUJ/meHMfQ/+NC3sJNXaZRnP/xq6j3eKd4adRpKZCpNIEvr32/DIi2GnEGkZOpQnIiKRklBhMrPx\nZrbMzJab2W11rB9qZnPMbK+Z3dKYtiKSuH++6Tz1svPUv8NOItJyGjyUZ2YZwH3AmcAGYJ6ZPevu\ny+I22wZ8HbigCW1FJAH/9d/Or58IO0Xi+k6Affuds0+AX3wVRubrCuSSmER6TGOBIndf4+5lwFRg\nQvwG7r7V3d8GyhvbVkQS8+D0sBM0zr79wc9/vgmF+igqjZDI4Ie+wNq4+XUEBScRjW5bWFiY4FNH\nS1RyT39nMttLg1uLLlv2PsUb9zTYpjWy79ixA4DlRcvZtaX255emi8p+b6ym5K6oGEld/2RHD95J\nNtspLGydW8o2lL2unKtXr6awcFsLpkpMsr5fIDmz5+fnN6mdRuWlmANFKWrKK8sA2LpzA91y88hu\nmxtyouR17IDdLPkw2H93TFzN+SeG/x9+feKziiQqkcK0HhgQN98vtiwRjW5bUFCQ4FNHw4FPMVHI\n/erCmuOHjzlmKIP7Dq93+9bMPm1+cEmABR/+H8OHfpKCYw/vNaO03xvjcHJnZgaX+Dl9TC6DYncS\nOWnskRQUDGq2fIeSaPaR+c6O3cF0p9xc+BC69TyS7n2OBKB9Oziie+t+35Ss7xdI7uwlJSVNapdI\nYZoHDDGzgcBG4HJg4iG2j3/HNbatiDTgJ9dDl47RHUjwyv3V2a69y3ltIUz9V/Xlij73aXjuVyGF\nk6TQYGFy9wozuwmYSTBYYoq7LzWzScFqn2xmeUAh0BGoNLNvAMe6+6662rbYbyMiIkkvoe+Y3H0G\nMLTWsgfipjcB/RNtK+knKysb9gTd+sdn3UtGRiZjjjkt3FARt7/M+TgYM0Jmkp8KH3933RfmwA2/\ndCbfFt1en4Qryd/ukiyO7jeixvzHO7aElCR5zFkEfT4fPE76athpmlehjpvIIagwSauY+JmvMXxQ\n8n15K4fn/m/BndcE94vKzARTJ0kSoMKUgnKzO3LVObfSq2u/sKPU64U3Hqe8oizsGNLC2mUZP7zW\n2PoPo+xVo/DhsBNJMtB5TClo9NEncdzRJ4Udo0HuusNpfd5Y7Fzz8+r5orX1byuSalSYpNW0zcwK\nO0JS+Oss54ofhp2iZS0oCq79B3DXjZCZqWN8Uk2H8lLEth2bWLlhCRDdnsjwQQWM+8TZYceIvLWH\nuHjHDRMgK0VuV/7rJ4JHZTTfrhIi9ZhSxJxFM5m/fDYAFZXNdy265nTCsWdwwrFn8ObSl/X9Uj2+\n/4Bz12PB9NhjYfJtkJsdzJvBUX3Vs5DUp8Ikodm47UMG5A0JO0ak7Iq75u4po2DEEBUiST86lJeC\nMiI+JvdAb2n2ohkhJ4mu734Z7rw67BStI/cMWPORjudJNRWmFNSnR+tc1PNwtclQh70+vbpCh5xo\nf8BoigF58OB3gscB5RUw6CJ4/V0VJwmoMKWAiopyitYvBuC8T13BKSPPDTnRoV1y2g0AlJXvp9Ir\nQ04jral7Z+Pa84PHrpegZ5ewE0kUqTClgD37S1m98f2wYzTam0tfZlvJprBjSEhyso31zwaDPETi\n6VhKiunaqWfYERqUkZEZdoRIuvJHzuMzw07Rutq0Mdpk6hCe1KQeUwrJze6YFFfsHvfJs+neOS/s\nGJGzd3/YCUSiQT0mkZANvNBZG3dEc8r34IqzwssjEjb1mCQUlZXBoIf9ZXuprKwIOU20dMyBrLap\nNyJPJFEqTCmgaN2isCM0WvHO4H5Mv3zim6zcuCzkNBIFU56Dqf9ynn/d+WCdvndKZzqUlwLmv/8a\nALv37gw5iTTWZ26uPox325dgwBEwOj/cTGF55MXgAXDLRPj1TeHmkfCoMKWAdlntAcjJ7hhyksQd\nO/A4lqyZH3aM0OzZ5zw3G15+u3rZV78AA45I70N4XTtCsT5fpT0dykshXzg5ea5hc+MFdzK4T/qe\nwFKyCy6/s3p+5u+Cqz2kuyHRvbeltCL1mCR0qza+z5C+w8OO0SrmLOnEnX8ZxI7S6mWXnAFnHA8Z\nGenZW/rRdbB1ezD9+iKYtzTcPBI+9ZiS3KaP1/HW0n+HHaNJ9pfvA2DmvKdCTtJ6yiuMHaXVnwfz\nusGTP7G0LUoAZxYYl30meAyInd52z18hY5zz80c1CCIdqTAluWS+r1FW2+BGQ7269Ak5SThuvwq+\neXnYKaLtn2+GnUDCkFBhMrPxZrbMzJab2W31bPMHMysyswVmNjpu+WozW2hm75jZW80VXGD52nf5\n5RPfrJofMfiEENM0XjJ9J9bczh8HP77e+K8r0renVJebL4EFj8LEz4adRMLUYGEyswzgPuBsYDgw\n0cyOqbXNOcBgd88HJgF/jFtdCZzm7qPdfWyzJRfKymtew6Z9u9yQkog0j6y2xoghxqQLwk4iYUqk\nxzQWKHL3Ne5eBkwFJtTaZgLwGIC7vwl0NrMDF0OzBF9HGmnPvt1V0/16HRViEmlI6V5nW4lTslvj\njUQaksi/kr7A2rj5dQTF6lDbrI8t2wQ4MMvMKoDJ7v7goV6ssLAwgUjRE0bux17/LQB9ugzmjPyJ\nTc4Q1j7funMDAGs3r+DFl6fRq1P/Rj9HMrxfdpZm8rtn+vHcmz2AIwHYXrKdwsIVoeZqqtbY58s+\n6AAM5a0llTz29PtgcOyA0gbbNSQZ3i/1Scbs+flNO1u8NT6+jXP3jWbWk6BALXX32a3wuimvc/vu\nlOzZxp79yX9G4u59JUDjC1My+O20fjz/Vo+wYySlfWUZXHXPMLLaVDL7N++EHUdaSSKFaT0wIG6+\nX2xZ7W3617WNu2+M/dxiZtMIelv1FqaCgoIEIkXHgU8xrZn77fdf49EZv6ma/+pFd3BEt6b3NsLa\n57v37ODFdx8GYMW2dxgz+tMcecTRCbUNO3tj9PjnwUOeu3TukhTZ47XmPi9tU3Of7S/PYNaS4wG4\n9nzo1bVxg0aS6f1SWzJnLykpaVK7RL77mQcMMbOBZpYFXA5Mr7XNdODLAGZ2IrDd3TeZWY6ZdYgt\nzwXOAhY3KalU2VS8LuwIzSK3fSeOO/pkADZsW8OK9UtCTtSyxgwLO0Fy+/4DwWPTx2EnkZbWYGFy\n9wrgJmAm8B4w1d2XmtkkM7shts2LwCoz+wB4APiPWPM8YLaZvQPMBZ5z9zS7R2fzqqisYPHKeWHH\naDafPGpM2BEkgo49Ev5+Fzzxo4PXjfwyzHpLJ96msoS+Y3L3GcDQWsseqDV/0LWA3X0VMOpwAkpN\nZeX7WbdlZdV87+4DaJPZNsREh+f4oaewdvMKXp7/LM/OfoSy8n2MP+GysGM1i4VFzp59MPe9YP6q\nz8HPr1wAwNgC/bM4lB5djAtOgb376i5AFZWtHEhalcauJrGvjL+F44eeEnaMZvXi3L9yysjPkZPd\nIewoh+2KH8KS1dXz2VnQOTe4KWLHXJ1Ym4iMjOBkZIDSfbC5GBatgFcXwKh854ju2o+pSIUpSbVr\nm50yRalrx5415veV7UmJwiSHL6ut8ezd1fPn3OIsWgG/+AsM7hsMhJDUoxNfJXSnjjqPb0+8J+wY\nzerC73pVb6lbJzh5JOTpthaHbXjceeTX/wKmv6bvmlKRCpNEQv9eR9GlQ/ewYzSbf8fdA/GV/4ZX\n7jfO/bQOOx2uX99kXH1e9fyCovCySMtRYUoiW7Zv5AcPXwfAvrK9IaeRREz9MQw8IuwUqeWqc6Bv\n7Ojv6o9g9UZn08fqOaUSFaYk8rd//6nG9fEkevbsc8Zc45TsCubPGgsdctRTak4njzKu/lww/cgL\ncNTFcN1d4WaS5qXClEz0oTDyKivh7ffDTiGS3FSYkkhmRmbVdN+eg0JM0rK2lmwKO0KTbN3ufC/u\n7L63HoIO7cPLk8omfham/aJ6VN4Lc2DS3frklio0XDxJ7CzdzpI1wTfqkz5/O8MHJd91sxpSURmc\n43Pv07dzy2V3J3zdvLC9vcz567/gvZXVd1zNyYaCYTqE11KGHWkMOxIyM5wpzwXL5qX2Fa3SinpM\nSWLukpfDjtDidpZur5ouK99PZaxQRVnxDuf5OXDPX2veBvwH14SXKZ2cOBzu/lrYKaS5qTAliRfe\neLxqulNuap4Q87ub/141fe/Tt/PS/GdDTNOwigrnV0/Aj6ZUL+vXKzhn6du6ZXqr6NHFODN28GBB\nERz7RR3OSwUqTEniwG0t8vt9kv69BoecpmVkWM2343OvPxZSkkM791tO7hlO21OCKxAc8J+XwYfT\njFfuV1FdvkU5AAAK1ElEQVQKy7I1MPwKZ/gVzvotKlLJSoUpyVx4SmofIxqYV/OOl+u3rAopSd0u\nvd2ZMRf27Ku5/NtXwD03qyCF4RNHwaK4DwhLVwePm34Dt93vLCxSgUo2KkwRt3HbWt5+/zU2bF0d\ndpRWcdNFP+G2L/6uav6D9e+FmOZgc+PiTDgZRgwJHr1T56IVSadtG2PoAFj8P8HjwN/i2dfgV4/D\n6KvgmTf0B0omGpUXYe7O2++/ysx5T4UdpdW0a5tNlw7dquZnFT7NqaPOO0SLlldZ6VU9pN17gp+P\n3hEUpk66SngktGljHBs7g2LMMGfjNpi3tHp96d7MuhtKJKnHFGHlFeVpVZQOyG3fiZNGnAPAjt3F\nrPloeWhZNmxxvvpr6PiZ4FG8M1h+2mgVpah65pfGmw8Zm1+AC08NO400hQpTEunX66iqQRCpbmj/\nEVXTv3nyv2oMJW9NG7bCg9EeHCj16NHF6J8XTG/f3YYtJW0p3avvm5KBDuVFzKbi9SxZ/TYAOe1y\na6zr1aUvmZnp8Sf7xFFja8y7B4c2zVqnl/LRNuexGfCd+2vnCn62TY8/Q8p4ZFZvHpnVm3Ej4Ikf\nOpkZ0KenerxRpX9eEbNu80qmvfrwQctvuvDHdMxJzfOX6pKZkck9Nz3FLfddAsDtD13FUX2Gcenp\nN9Knx8AWf/2/v1KzKB0/FOY9rP/Iks2gPjD6aPjwozK27WjL6+/CwAuDdZee4Uz9if6mUaRDeRFQ\n6ZXs2VfKnn2llFeUHbQ+M7MNR/cfQe/u6XEY74A2mW1rzK/csJQnX/5jnfuoOby9zJn1lvPcbGfZ\nmurln/oEPPidFnlJaWE3X2K8/WfjPy9Ye9C6v70Mo7/ibN+pw3tRox5TBOzYXcydU64FYECt83gA\nfnT1Q60dKTLGfXI8ry+aUTW/auMy3lzyMu1o3uG/33/AuauO83lv/ALcf6s+VSe7Y/qV8q0LP6Rr\njwG8vQymvRosX/gBdBsPd17jXHoGHNUHstvp7x02FaaI+XBTcEvOAXn5fGX8LeRkdyA3u2PIqcJz\n2Rk3ctkZN/LiG39lxltPArDwgzc4uvsJdMnp2ajnen+N817sfN3+eTAmdpHV6a/VXZQAsrOaHF0i\nZGDePgbmbaGgYCCVlc67H8BxV1ev//HDweOH18J15zs52dClowpUWBI6lGdm481smZktN7Pb6tnm\nD2ZWZGYLzGxUY9qms73797Byw9KDlnfO7UrPLr3TuijFO/dTEykYGoz9XfbhAlZuXkRlZUXVFclr\nW7XBqx7l5cGhmmmvwsXfDx4nXAfX3eVkjHMuqOcw3U9u0NUcUlFGhjHqaGPpE3D6cTXX/XAK9Lsg\n6EX1mxC8P+6ZGryP3HXIr7U02GMyswzgPuBMYAMwz8yedfdlcducAwx293wzOwH4E3BiIm3T3aaP\n1/LIP3590PLunXU/7tratqnuvixeP4fF6+fw4nu9+PqFP6F757wa2w6+pHr6z9+H3Xudqf+q+XwP\nP19z/ozjYfJt0KdHMN9G52SmtKEDjZfuDaavu8sPej9s2Br8vPXe4PHcryA7yzl+qHpTLS2RQ3lj\ngSJ3XwNgZlOBCUB8cZkAPAbg7m+aWWczywMGJdA2bVRUVrB3327WbCpi3rJXWLt5BZuL1x+03dXn\nfjsl77d0uD5/0pcBeOO9WUAwhPzjHZv50SOTAMjJHseMOZfRObc7kFPV7uqf1Xyedllw141UPUfb\nNvC1i4L51hqOLtHy3SuDmw6u3wIVFcH9tL7zx+Caewec/+3gZ9+ecPYJQe+pdC906wSTLgjeR/17\nwc5S6NkFMjP1XmqqRApTXyB+SMs6gmLV0DZ9E2ybtOa+9xJL1y0Gd3r17wLAm0teJq9bXz7c9AEV\nlRXs2F1M0bpFCT3fqaPO46JTr2vJyM1uYZGzaiNkGFj8A8jIqJ4+sDwjo+a8Wf1tF34AsxdCr66w\nvxzKyjuwdvP5vPD6f9Cn53ts2DIcgJzsYkr3Jj6U/qSRDzB6aD/yuvbjmIGjGm4gKW9wP2Nwv5rL\nzj8p+Nn1bKesPChCEBSv2r2r+/9ec/6YgdC7e/Whv+KdsGojfOdKyGoDr7wD85cHVxBZtgby+8PQ\nAdC9M+zYDWXl8JkxQZFcUtSBikrj4wqnohLKK6CiMth+2JGpWfysoeOmZnYRcLa73xCb/xIw1t1v\njtvmOeAud58Tm/8X8F8EPaZDtgUoKSnRwVsRkRTWuXPnhKtoIj2m9cCAuPl+sWW1t+lfxzZZCbQV\nERGpksiovHnAEDMbaGZZwOXA9FrbTAe+DGBmJwLb3X1Tgm1FRESqNNhjcvcKM7sJmElQyKa4+1Iz\nmxSs9snu/qKZnWtmHwC7gasP1bb2azSmiyciIqmtwe+YREREWlOo18ozs4vNbLGZVZjZcbXWfTd2\nwu5SMzsrrIyJMLMfmNk6M5sfe4wPO1NDkvnEZzNbbWYLzewdM3sr7DyHYmZTzGyTmb0bt6yrmc00\ns/fN7J9m1jnMjPWpJ3tSvNfNrJ+ZvWxm75nZIjO7ObY88vu+juxfjy2P/L43s3Zm9mbs3+YiM/tB\nbHmj9nuoPSYzGwpUAg8At7r7/NjyYcATwBiCARP/AvI9ot272M7f6e73hJ0lEbETn5cTd+IzcHmy\nnPhsZiuB4929OOwsDTGzk4BdwGPuPiK27JfANne/O/ahoKu7R+4ysfVkT4r3upkdARzh7gvMrAPw\nNsE5lFcT8X1/iOyXkRz7PsfdS80sE3gduBm4iEbs91B7TO7+vrsXEZy6Em8CMNXdy919NVBE9M9/\nSqbvyapOmnb3MuDAic/JwkiSK+O7+2ygdgGdADwam34UuKBVQyWonuyQBO91d//I3RfEpncBSwk+\n5EZ+39eTvW9sdTLs+9LYZDuCcQxOI/d7VP9x1z4xdz3Vf5iouil2ncCHonh4oJb6TohOFg7MMrN5\nZnZ92GGaoFds1Cru/hHQK+Q8jZVM73XM7EhgFDAXyEumfR+X/c3YosjvezPLMLN3gI+AWe4+j0bu\n9xYvTGY2y8zejXssiv08v6Vfuzk18HvcDxzl7qMI/hiR7mqngHHufhxwLvC12CGnZBbJQ9T1SKr3\neuxQ2P8C34j1Pmrv68ju+zqyJ8W+d/dKdx9N0EMda2bDaeR+b/HbXrj7Z5vQrL4TdkPTiN/jQeC5\nlszSDBI5aTqy3H1j7OcWM5tGcGhydripGmWTmeW5+6bY9wmbww6UKHffEjcb6fe6mbUh+I/9L+7+\nbGxxUuz7urIn074HcPcdZvZ/wHgaud+jdCgv/tjpdOByM8sys0HAECCyo69iO/qAC4HFYWVJUNKe\n+GxmObFPkphZLnAW0d/fxsHv76ti018Bnq3dIEJqZE+y9/rDwBJ3/33csmTZ9wdlT4Z9b2Y9Dhxi\nNLP2wGcJviNr1H4Pe1TeBcC9QA9gO7DA3c+JrfsucC1QRtCVnRla0AaY2WMEx4ErgdXApAPHU6Mq\nNtT091Sf+PyLkCMlJPZBZRrBoYA2wONRzm5mTwCnAd2BTcAPgGeApwiOCqwBLnX37WFlrE892U8n\nCd7rZjYOeBVYRPBeceB7BB9w/0aE9/0hsn+RiO97M/skweCGjNjjSXf/mZl1oxH7XSfYiohIpETp\nUJ6IiIgKk4iIRIsKk4iIRIoKk4iIRIoKk4iIRIoKk4iIRIoKk4iIRIoKk4iIRMr/A7rbOuOdh3q2\nAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -279,8 +539,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "mean = 13.96\n", - "std = 2.81\n" + "mean = 13.99\n", + "std = 2.80\n" ] } ], @@ -294,8 +554,8 @@ "\n", "d_t = f(data) # transform data through f(x)\n", "\n", - "plt.hist(data, bins=200, normed=True, histtype='step')\n", - "plt.hist(d_t, bins=200, normed=True, histtype='step')\n", + "plt.hist(data, bins=200, normed=True, histtype='step', lw=2)\n", + "plt.hist(d_t, bins=200, normed=True, histtype='step', lw=2)\n", "\n", "plt.ylim(0, .35)\n", "plt.show()\n", @@ -324,16 +584,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHGW59/FvZZJAMoAhJBACCWHfdwjI5rCHsCqoIC4c\nFDko7ueAC0fK49GD2ytHEQVEUURxRXFBFmUAEQIkIWELkI0lJCQEAgQTMknq/eOunq7u6e6qnu6u\np6r797muvqa6lq57ZqrvfvqpZwEREREREREREREREREREREREREREWmiKcAc4Gng4grbTwVmATOB\n6cBRkW0LgdnhtgdaGqVI/Rq5tuOOFcmVLmAuMAkYBjwM7Fq2T3dkec9w/4IFwOgWxicyWI1c20mO\nFcmUITHbJ2MX9UKgD7gRK+1EvRFZ3gh4qWy710B8Iq3SyLWd5FiRTIlL9lsBz0WePx+uK3ca8ARw\nC/DxyPoAuAN4CDhv8GGKNF0j13bSY0UyIy7ZBwlf5/fY19iTgesj6w8F9gVOAD4KHF5vgCItMthr\nW99UJZeGxmxfBEyIPJ+AlWKquSd8zc2A5cDicP0y4Cbs6+89ZcckfdOJDFalBD3Ya3t0uF+SY3Vt\nS6s1rfAxFJiH3YgaTuUbUdtHTrhfuD/ASGDjcLkbuBc4rsI5XL4h/A47r8tzuzpvteurkWs7ybG1\nzu2a7zqAKnzXAVThuw6girqur7iS/VrgQuBWrAXCtVj95fnh9quA04H3YzeqVgJnhtvGAb+LnOcG\n4LZ6ghNpoUau7WrHikgNKtl3xrldndfl9aWSfX181wFU4bsOoIq6rq+4G7TtrrfDzuvy3K7OKwP1\nug6gil7XAVTR6zqAdpHV0o+0B5XspV2pZC8iIqWU7EVEOoCSvYhIB1CyFxHpAEr2IiIdQMleRKQD\nKNmLiHQAJXsRkQ6gZC8i0gGU7EVEOoCSvYhIB1CyFxHpAEr2IiIdQMleRKQDKNmLiHQAJXsRqcem\nwM6ug5B80gQP0kqavKS5Po9NsO7F7Sgtl7vrK3cBS64o2TfXb7Hf6yDXgYhmqhKR1tkf+CtwiOtA\npD5K9iKS1Biszv4OYJLbUKReSvaZF2wNwXkQTHIdiXS8icACYD5K9rmTJNlPAeYATwMXV9h+KjAL\nmAlMB46q41iJtytwNfBZ14FIxxsDvAQsRMm+7XQBc7F/7DDsLvyuZft0R5b3DPdPeiy0502sJgqO\nhSCAYK3rSHJKN2ib5yzgRqwq51XUIse1pt6gnYwl7IVAH/aPPrVsnzciyxthn/xJj5Vk5gBLXAch\nHW8MsBxYET4f5TAWqVNcst8KeC7y/PlwXbnTgCeAW4CP13msiOTDZlhhLsDezxPchiP1GBqzPenX\nhN+Hj8OB64Fd6ozDjyz3hg+RwegJH9J8m2H33wBeBMY6jEXqFJfsF1H66T0B+0Sv5p7wNUcz8JO/\n1rF+TBwiSfVSWli4tMa+U4DLsftLPwS+Vrb9bOAirG76deACYHa4bSHwGrAOq6ac3FDU+TAGuC9c\nXgps7jAWabKhwDzsJutwKt9k3Z7ijZr9wv2THgvtdxOryYJjIXgCglofslJdtesrSQOCtwJvCZen\nAPdHti3ACjWDOXde3QYcHy5/B/iEw1ikzusrrmS/FrgQuBV7c1yL1c2fH26/CjgdeD9WulkJnBlz\nrEgWRBsQQLEBQfQavS+yPA3Yuuw1Oq01SqHOHlSyl0Fot9JPk6lk36Bq19cZwDWR5+8Fvlvjdf4D\n6+9QMB/rW/IQcF6d586rZyi2r/8wpX8/SV9TS/Yi7aqeN8qRwLnAoZF1hwKLsZuUt2PNY+9pWnTZ\nNIpis8ulwBYOY5E6KdlLp0ra+GAvrAQ7BXglsn5x+HMZcBNWLVQp2fuR5V7y29LMw/rRrAyfqxon\nfT3kvKVZu33VbTJV4zSo2vWVpAHBRKxe/+Cy9SOBjcPlbuBe4Lg6zp1HI4F/RZ7vgFVliTuqxhFJ\nIEnjgy9iQwN8P1xXaGI5DvhduG4ocAPWUqWdbUyxVA/Wzl4le6lLO5V+WkAl+wZpbJzm2J5is2qw\nap1VlI6NJenS5CVt5gJgA9dBSMcrL9kHWL29etHmhJJ99h2KtfYQcWkjrBdxlG7S5oiSffatAH4F\njIZAowyKK+Ule1CyzxUl+3xYB4zAqnREXFDJPueU7PNhMXCZ6yCko6lkn3NK9iKShEr2OadkLyJJ\nVCvZa8iEnFCyF5EkKpXs1bEqR5TsRSQJ1dnnnJK9iCSxMZXr7FWNkxNK9iKSxEbAG2XrlmETmiiP\n5ID+SSKSxEgGVuP0YfPwbpZ+OFIvJXsRSWIkNvBZOd2kzQklexFJonw8+wLdpM0JJXsRSaJWstdN\n2hxQsheRJKole1Xj5ISSfaYF7wB2ch2FCCrZ556SfbZtDdxPcSLs7SDQG0tcGIFK9rmWJNlPAeYA\nTwMXV9h+NjALmI1NvLxXZNvCcP1M4IFGAu1gD4JXaN/8IeBKl8FIR/Ko3hpHN2hzIm7C8S7gCuAY\nYBHwIHAzNjFzwXzgCOBV7IPhauDgcFsA9AAvNy1i0bcxSdswYD3Wrr6cqnFyIi5xTAbmYiX0PuBG\n4NSyfe7DEj3ANKzqIcprLEQJ6e8orlSrrwdV4+RGXMl+K+C5yPPngYNq7P9B4C+R5wFwBzbT0lXA\nNYOIUcw3gDXAdq4DkY5TrQoHVLLPjbhkH9TxWkcC52ITZBccis2yNBabNHsOcE+FY/3Icm/4kBLe\ncgjmApNcR5JxPeFDmqdWyX4l9q2zm4Fj50iGxCX7RcCEyPMJFFuGRO2FldqnAK9E1i8Ofy4DbsKq\nheKSvUgjeiktLFzqJoy2UivZBxRL9/NTi0jqFldn/xCwI1aaHA68G7tBGzUR+B3wXqx+v2AkNiwq\n2Kf+ccAjjYUrIg7USvZg9fbjUopFBimuZL8WuBC4FWuZcy3WEuf8cPtVwBeBTYHvh+v6sBL8OOxD\noHCeG4DbmhW4iKSmWhv7gheALVOKRQYpLtkD3BI+oq6KLH8ofJSbD+wzyLhEJDviSvaLsMYckmFq\nsy0iceKS/QvA+JRikUFSsheROCrZtwEle+lkjQwFEndsO6nVzh5Uss8FJXvpVIWhQKYAuwFnAbuW\n7VMYCmQv4MvYUCBJj20nqsZpA0r2+XMEBJrzs3GNDAWS5Nh2omqcNqBkny8LgW2A7R3H0Q4qDQVS\nK2FFhwKp99i8i0v2r2It+zausY84lqTppWSGdzcED7qOok00MhRIPcf6keVe8jkUyEis41Q1AVa6\nHw88mUpEnamHBoYCUbKXTtXIUCBJj4X2GAokrlMVFOvtlexbp5cGhgJRNY50qkaGAklybDuJq8YB\nS/btXJWVeyrZS6dqZCiQase2qyTJvlCNIxmlZC+dbLBDgVQ7tl0lLdlPTCEWGSRV44hInLhOVaDm\nl5mnkr2IxElajTMBnxHAJ4CTsBnqfg9cgV9x/lpJkZK9iMRJkuwXMoJJ2ORE+0fWHwG8HZ8T8DWT\nlUuqxhGROPHJfn+WcAabU5roCw4HrsPHa0FskpCSvYjEiW9nfzLnsn1JMv8C8JXI8zPChziiZJ8/\nQ4AREKgKTtJSu2TvsxE2UFzB1/H5Kj6XYB3SCi7DZ3hrQpQ4Svb5szvWi+5sx3FIZ/CIb41zHrA5\nAG/yCqW9hv8TeDlc3g5dt84o2WdW4AHHwoB6zrdi46uLpGE41olsbcWtPl3AJ/ufz+R+/MgHg8+r\nwDciR3xSdfduKNlnl4c1X3usbPXDwMMO4pHOFFeqP5JCZ6o+XufvrKiwz1UUq4H2wnohS8qU7LMt\nAO8HroOQjhbXEud9/UsruI01JQPEGZ9XgF9G1rynWcFJckr2IlJL9WTv0w2c3v98KT/F5luo5IbI\n8pn46uOTNiV7EamlVsn+NKA7XH6CXm4BtgCGVdi3F1gcLm8OHNXEGCWBJMlekzKLdK5adfbviCz/\njGX0YZOcbD1gT5912PSNBWc2K0BJJi7Za1Jmkc42EioMc2Dt5Y+NrLkp/LkQG+e/kmi9/VR81Syk\nKe6PrUmZRTpbN5WSvQ2BUJhzdgH2DR7sW/yOVV7rQeClcHkLYJ8mxSgJxCV7TcqcTRsB10FQ17Rk\nIoNQLdmfGFn+M37/vLxPATtVfCWf9cBfI2tOaEaAkkzcHXFNypxtI10HkEE9NDApswxQ7QZtabIv\neopiDqjkFmyaR4CplI6fIy0Ul+w1KXM2rQt/1vOB2il6aWBSZhlgYMneZxuKpfdVlP69q5fszW3Y\ndesBB+MzGr9/OAVpobhqHE3KnE3nAt90HYR0hEol+57I8t34rI48n4e95ys1vwSfl4AHwmdDgLc1\nI0iJF5fsoxMrP47dTS9MylyYmDk6KfNMiv/IasdKw7yVwHLXUUhHqFRn3xNZ7i3bthp4ltql++gx\nSvYpSdKLTZMyi3SubqxKNqonstxb4ZjZWNXuYxW2AdxFsd+Nkn1K1M5VRGoprcbxmUSxHf0bwPQK\nx8wG9qzxmvcC68PlvfHZtNEgJZ6SvYjUUl6NEy2J/6PKROKzgb2rvqLPa8CM8JkHHNZgjJKAkr2I\n1FJ+gzaa7HurHDMDOICBczFE3VXlNaVFlOxFpJbykv3BkeV7qxzzHNY8eFKN140me5XsU6BkLyK1\nFJO9zyiK41uto3J9PVg7+vuwWdWquT+yvC8+GzQWpsRRss+3D0Kgm1vSStFqnOgMU7Pwa05qch+1\nSuw+y7A2+WD9cDROTosp2efX34Ex2Dg5Iq0SrcY5KLL+/gr7Rt1B6aiYlUyLLB9UdS9pCiX73PIe\noPrwE5JM3HwLu2Al1NXAZ8q2LcRanUQ7ErajaMk+Wl8fl+xnY6NibldjHyX7FCnZS6dKMt/CcuBj\nVB6aIsA6F+1Le0+gbSV7PxzLpigu2a/HxsE5vsY+0ddQsm8xJXvpVEnmW1iGjfFUqS051G5a2C66\nsZL9DsDocN3LlI6DVc2twHE1ts8C1oTL2+MzZrBBSjwl++w6m85IJq40Ot9CgNVLPwSc18S4sqQL\nu3m6itJS/bTI+PW13I4NfV5tULQ3sWqwApXuW0gzvGfXYcA/YvYZg402+r+tD6ftNDo89KHYBNpj\nsaQ2B7inwn5+ZLmXfM3VUKivD6ivCqdgKXY/5DDgzir73E8xyR9E6dj4UqqHBuZqULLPrvXAz2P2\nuRX4KgTTwbsthZjaST3zLVSyOPy5DJt/dTLxyT5vojdn62mJE3UzVj1WLdnrJm1yvTQwV4OqcfLt\n7VhVgtSvnvkWyqvTRlKcf7Ubq5d+pPkhOle4ObsBpWPdPFjHa/wBOIXqVZLRZD9Zk5C3jkr2ueYF\nEGi2qsGJzrfQBVxLca4GsGG8x2GJbRPsm9YnsJY7m2MT9oC9h27AWp60m0LJfneKuWIBfv9sdEk8\nghUqdwcerbB9ATYJ+RhgFLAtxc5W0kRK9tLJ4uZqWEJpVU/BSjqjx2ehQ1X0d51ZZd9qAopVOQOT\nvU+AzwyKrXb2Q8m+JfSVSUSqKST7fSPr6k32UKzKqSb6mvsN4vUlASV7EammUI3TaLK/G7s/Mr7K\n9hmR5X2r7CMNUrIXkWq68XiD0puzg0n2fVh12TuqbI8m+/3C3rrSZEr2IlLNSMYzlOJge0spNjmt\n13XYXNWVEvl84LVweSz1dW6ThJTs28M4CHaFQCUiaaZutqU78nxmwp6zlfwNa9V0wIAtPuuBhyNr\nVG/fAkr2+bcd8BPgcfT/lObqZjyjIs8HU4VTsB64Bvhwle2qt28xJYf8izaf3RkCzfgjzTKSsWwW\nef5w1T2T+TFwOlZVU6603l6aLkmy15jf2RZN7o9hrR5EmqGbtzAu8ryRkj1Yv4VfY53TyinZt1hc\nsteY39n3J6wXqEhzjWUsw/vr7FeSbFjjOF8D/h14S9n6J7ECI8DW+BVL/9KAuGSvMb8zzzsPvCmu\no5A2NKGkVcys8EZqo+YDf6G8dO+zFhvfvkD19k0Wl+w15rcTwfZY6UfEnXFNrcKJ8rFkP65svapy\nWihubByN+e3GhsDrwG8GceyFdPYHRQ8NjPktEWNLZo5qZrKfD1yJtSI7BXgzXF9M9n0l4+dLE8Ql\ne4357c5z4C0bxHGdXiLqpYExvyVis5J69WYme4D/Bn6BjYo5DVjFDYzl7HDr65wM/B/wSRovdArx\n1Tga8ztf5mFTyIk0xmcUm7Bh+KwPa+nVTH3AO4FzsG/903mOOwhYB8BohjCCI6jeLl/qFFey15jf\n+fFHrMWEuppLM0SHNX4Mv39i8GYKgH+GD2uL43EehbF4juNK/sCXgJ+iQkzDkoxnrzG/c8E7BYK3\nAXdCsDN4T7qOSHKt0ZEuB2smhWS/L938gVnYAGo3pBhDW1IP2vbyPPZtbC/XgUjuuUz20RiuAz6Q\n4vnblpJ9W/HmYRNFAMFuEEx0Go7kV5CJZL8Pdo/wYGDTFGNoS0r27esxSqvbRJLxGUFpT/nZKZ49\n2rFqt7Aj190Upy2UQVKyb08fD392OY1C8mp3vP5rZy5+/1jzrWfnKgzLMBTYA+txe0JqMbQpJfv2\nNBZr6bA3BFu4DkZyx1UVTkF0dM19sX4ThzuIo60o2befjYGdseaym1NzFMzgcgjmpxOW5IjrZF9+\nk3YOMJqBwytIHZTs209hDKL7gHuLq4M/QfCdcPnHEHwQ6w+xbbrhSQ5kLdmvx67nQxzE0jaU7NvP\nm1XWnwicFC6fA7wPODqNgCRHfLoobbrrOtnvHcY0jUpTGkpiSvbtZxk2QfRl4XMPgsLY4GsgOCZc\n3gb9/2WgnbChTmAVq/B5MfUIfJZgnTUJY9kRa6Wzd+qxtBG92duOF4D3BnhrsNEzdwSWhhu7gKnh\n8iRsZM0VqYcoWVaswlnhINEXlVflKNk3SMm+va3GxjMq2AFrwjYnfH72gCOk0xWT/St1jXDbbOXJ\nfiHW+GCzintLLCX79nZh+PN68DxsIpldKNbrp9d+WvKimOxfYp7DOMp70gbYqLl7uAkn/5TsO0Nh\nDoGF4c+fhck/7BkZvADBj9IPy7kp2Lecp4GLK2zfBWsFshr4TJ3H5o+PRzTZP8sT7oIpK9lbbE9i\nzYplEJTsO8v/hD/LW+xsiTXD7CRdwBVY0t4NOIvSIQIAlgMfA745iGPzaGusPTusYS0LmjLB+GAt\noPjNcww2dPdTKNkPmpJ9R/GesRK9990KG9emHo5bk7Fu+QuxiTRuBE4t22cZNoFP3yCOzaNoFc4b\nrONlZ5HYmDjlE5CrZN8AJXvpVFsBz0WeP0/yiV8aOTbLisl+CX24b6lVfpNWyb4BSSYvkfx6GZvU\nudZEJqNSiiVrGpnXtJ5j/chyL6Xz42ZNMdkvwgNecRcKMDDZfw2YiOWtTvsmCtATPgZFyT6b9sGm\neWyQ9yzWWzYJ12/stC2idIa1CZC4qWE9x/p1R+ZOcbL6RWxI9kr2b2J9RrYCnnESkVu9lBYWLq3n\nYFXjZNN/Ai+keL4ngQMh6KThEx7COpxNAoYD78YmyqjEa+DYfPAZS+EDLGA1S9kQ901zH4f+uW+3\nwWc0luQnOYsox5Tss2kF6TTnew1rXng5sAXWDr9TrMX6IdyKJZVfAk8A54cPsFEWnwM+BVwCPIsN\nRVHt2DwrlurX8zjreQ0bgMwdnz7g0ciafbCb4pNchJN3qsbpaN464EkI9nQdiSO3hI+o6OxeSyit\nrok7Ns+KyX4VT5CdaQBnUoyt0JN2kqtg8kwlexEB2L9/aTkLyM49nPKetAuxQfykTkr2IgLRkv1T\nLCKbyV4l+wYkSfbqUt7+ZgE/xEbBlE5jNz4Lk9isYTorgZccRhQ1m2JT110Yz2KU7AclLtmrS3lH\n8J7GbtI+F7entKXozFSPsJrRZCXZ+6zECosAXbyHUVjTS91vrFNcsleXcpH2t39keTo2Fs0yR7FU\nUqzK2Yg9sNjGO4smp+KSvbqUpy7wsG9FImmJJvsZwFiymuztW4ja2g9C3FchdSlP33XAYa6DyLEe\nGuhS3qH2iyxPB44lK9U4pjzZz0UtcuoWl+zVpTx97we+Al6vg3PvBsEe4D0av2tm9dJAl/KO4/MW\nbAYzsM5ij5LlahzYiy7+xrr+G8qSUFw1jrqUp28pUGkI4lZ7BWtRdYSDc4s70Zuzj+KzmqxV4/gs\nwwqPABuyC2tQyb5ucSX7aLfwLmw+00KXcrDehuOAB7GBu9YDn8Ba36yscqxkkvcCBD92HYWkrry+\nHizZZ6kaB6x6ye757UE3jynZ1ytJ8yV1KRdpX+X19UOwoRKWuwmnqgeAUwDYmq3QDdq6qQetSGc7\nILI8A9gMGyCvvCm1aw/0L3WzMzaFovJXHfTHkqghwPdcByEp8dkU2Cl8thbrST2edIfXTurB/qUh\n7MVQVmBVyJKQkr1E+a4DkFRNjiw/jM8qbPL57CV7nxUUZ1wbygSWo6qcuijZS9RSGutbIflycGR5\nWvhzPLDYQSxJFKtytudN1CKnLkr2Ip3roMjy/eHPbJbsTTHZT2QDVLKvi5K9SCfy8ShN9vkq2Y9l\nLCrZ10XJXqQz7QCMDpdfxoYggGyX7GdRaCU0grFs1N/zVxJQshfpTKX19X7/vZrslux93gQe7n++\ndX9LIklAyV6kM1WqwgGYSLbnNShW5YxjHAOHaZEqlOwzJfgssLnrKKQjREv2hZuzG2CdqrJajQM2\nK56ZCNjQDpKAkn22DAO+jTWBFGkNnxHA3pE1hdLyBGzAsXWpx5TcP/qXtqaLEWznMJZcUbLPnjfA\nU1t3aaUDKY6L9SR+/+Ti22ATg2SXzzMUqpmGM4Q9OdxtQPmhZC/lPAg+7joIaanoMNb3RJYnkfVk\nb4ql+y051GEcuaJknxlBF7Adbm84BcCvQa0c2lw02d8dWc5+yd4Uk/0YdncYR64o2WfHJsA5OB1a\n1guwkp6qkdqVzzDgkMiaaLLfDliQbkCDEk32E8IOYhJDyT5bVoD3bddBABdCsKPrIKQl9gO6w+Vn\nwjrwgh2Bp9IPqW6PAa8CMIINQDdpk1Cyl3LXYC0ydG20p2pVOB5Wffd0uuEMgs864J/9z9fpJm0S\nekNLGW818IbrKFIyBZiDJbiLq+zznXD7LErna10IzMYmw35g4GGZVS3Zb4Yl/KxNR1hNsSpnNVMc\nxpEbSaYlFGlHXcAVwDHYN5kHgZspnSd5KjaGzI5Yj9PvU+yMFAA92Lgy+eDTBSWl4GiyL1Th5OV+\nTTHZDyv5AJMqVLKXTjUZG/xrITa41o3AqWX7nAL8JFyeBowCtohsz9uNwT2At4TLL1JaZbML+aiv\nL5gG/AuA4WyJz7Zuw8k+JXvpVFtROgbM8+G6pPsEwB3AQ8B5LYqx2Xoiy3dFBj8D+yB4JN1wGmCD\nokW/mRzjKpS8ULKXSkYBx7sOosWSVldUK70fhtXhnwB8FHJxk/DYyHJv2bY9yVOyN7dHlo+tupcA\nqrPPiGA37GZfl+tIQrOBM7Gbk+1qETYWTMEErORea5+tw3VQHCxsGXATVi0U7Y1a4EeWexmYZNPh\nswFwZGTNrWV77AE8ml5ATRFN9kfj0xW21GlXPZR+O2u6VrdYyMsNoRYKDoHgDQiOjN83DcExENzh\nOoomqXZ9DQXmYUMEDMfGSd+1bJ+pwF/C5YMpjg45Etg4XO4G7gWOq+Pc6fPpwScIH3PLto4BVpC3\nexA+HpeyOPJ7HeA6pJTVdX3FVeMUWixMAXYDzqLyG6LQYuHDWIuFaDA92AfAZKSaI4CnwbvTdSAd\nZC1wIVbCfRz4JdYS5/zwAZbo52M3cq8CPhKuH4eV4h/GbhT+CbgtrcAHKVrNUR7rAcAMsvThlIRP\ngEe0UKKqnBriqnGiLRag2GIh2jytWouFF8N1+SotuHEBMN11EGWOhuB28Nr5DXRL+Ii6quz5hRWO\nmw/s05KIWif6zaM82R9IvvoKRN0OvDdcPhb4X4exZFpcyb4TWyy48DLwZddBRCzB3vxq4dAOfMYB\n+4fP1gHl3yAnY/0M8ihasj8Un42cRZJxcSX7ZrRYeAGbTeZ2rO4/uzexJOQ9CsE7yGdpr4cW38TK\noRMpvkfvwQ/HlTEe1mHsIwOOygOfF/gc89iA7bF7L8cBv3McVSbFJXsXLRZEGtFLaWHhUjdhZMop\nkeWby7btBrxOtuedrc3jt8BF4bNTUbKvKK4a5yHsxusk7FPz3Qy8WG4G3h8uH4zd1X+RgS0WjiN/\n7XhF8s1nJKU3Lsvfvz3k/Zv0cH4TeXYSvpqUVxL3R4m2WOgCrqXYYgHsZtZfsBY5c7EBtP4t3DaO\n4ifsUOAGst9iQaTdHA2MCJcfx2de2fZjgN+mG1LTTWcVqxjBCGA0Nl7/3THHdJwkn4Cd1GJBSnVD\nMAK8Va4DkUE7PbL8x7JtGwJHkffGEz7rOZcZTOyfovDtKNkPoOESnApOhOD7wHjXkVQQYINmfdJ1\nIDJIPhtiia/g12V79GBVq3kZ1ri65SVVOe8KR/iUCCV7t44C/h3YHFjjOJYy3gvAZa6jkIZMwaa7\nBOstPKNs+5m0y83MhVzNG/2tB8eTj7GKUqVk71bh4vw5eI85jUTa0ZmR5RvLRrkcibVc+UW6IbXI\nLP7FgpIWRWc5iyWjlOzd+yVwiesgpM34bAKcHFlzY9keZ2JT+y1OLaZWW8gfIs/OwGe4s1gySMne\nvYfAW+A6CGk7Z2Kld4BH8UtGtPSAjwPfTT2qVprF1bzWP+rlaEo/7Dqekr1Ie/pQZPmHZdvOwIZN\naK+m0H08xuxw9irzYWexZJCSvTPBFcBnXEeRwLYQnAnBfq4DkYR89sYGNwO78f+zyNZhwFeAzwLr\nU46s1QIe4a8E/fcmjtN0hUVK9k4EXVhLCRg4/ESWLATeht3Eu89tKFKHCyLLv8NneeT5B4FnKJ34\no328yE94lhWRNSrdh7Iw/HBANuJIUTAV+DMwFbzyDmsZExwIXA7sCN7mrqMZBJfXV/rn9hkLPIt1\nmAI4Er9/OIRubJKhk8nekNrNMpzdWM67+ke/fAWYiM9Kl0G1SF3Xl0r2qQqGQfBHrCfjzOwnegDv\nQaxj1TPTzml8AAAKEklEQVSuI5FEPkIx0U8H7ops+yQ2EGG7JnqANczht6zq7yi2KfZtpuMp2afr\nUOAk7O++Scy+IvXx6aZ06JJvRdrWjwM+RSc0813PL/knr0fWfBqfYc7iyQgl+3R9ABv++VNoWGdp\nvk9g88mCVeVEhxD4JtYq5+m0g3LgDu5nBOt5JXw+ETjXZUBZoGSfrnWAD97l4P0sbueMOQCCE1wH\nIVX4bEpxTHeAL+PTFy4fiQ0fkKXZ0Fqpjz5+wAyeiqy7NBzuuWMp2UsST2IDZn3adSBS1SXYwHUA\nTwHXhcvjgZ9iYzC9kX5YzlzFrexM0N9DeEs6/PpVspcEvNeAK9GctNnksw9WhVPwX/isBbYD/gZc\nwcBhytvdEvr4Mw8wLbLuC/js4Cwix5TsWy7YAYJrIAjId6uAn9FZJcN8sFmZroL+IX3vxIYynoL1\njfge8DU3wTl3KbdyOGv7h4rYEPgBfqc19TZK9i0TbAzBxVgzt0LX9Y9gX6nzagQEd0DQC8E418EI\nYHPsTg6X17CGj+DzOWxWuTOwUn2nmsd6ruQXLKbYW/hoOnSOhix8wrVpp6qgBytlFXwDvIuq7JwD\nwUZQ0pztePDyMLZK+3aq8jkeq56xc7zOZXyL/YCNgHdhLb863UhgBuewgEn9vdbXAm/D558O42oG\ndapyLxiFzdO7MFxxab4TPWBVOJtib5727GqfJz77Yk0r7c3+Ai/y/7gAmIYNcaFEb/4FnMb17M9q\nHg/XDQX+gM8uDuNKnZJ90wSfs3r5IMC6aJ8J3AzsQFt8lfYC8FZE5qM9BILzINA1lLb/Ym/WcQeE\nQwKspI8/cjkBk4AvYiVXKZrDOt7HD9iCdbwWrhsD3IbPTi4DS5PeqA0J3hkm+HOAr0LJ18KzgS+C\nNw+8l52E1zpbYnXFV9M5bbezYDcO5HrWMoMuRgOwntfZiH1ZzGVQMgCYlLqVFZzGdaxlXX//gwnA\nvfgc4jKwtGShrjzjdfZBNzZc7NPgLYLgWKxUEDBwSrcJwMVYl/Wh4K2jLQV3Y510bsface+Ojfdz\nKXgzXUZWQZ7r7D1gH+AkhvEujmIbDmbjyCu+Ckxtg7rnNG3FHvyGUzmIYf1/ybCzI1/Hz9pc0DU1\nvc5+CjAH62Z9cZV9vhNunwXsW+exGRCMCJN6JZOwG63XQnAPcD3wcyzR/w24KdzvEuA1rDPLe6Bk\nvs824x0BnodNVr17uPJk4LMQDHUXV92ycm0PA3bG/oafwZpS3gksYQi/4kgO4SI2460liX4JcIQS\nfd0W8Shv5X4uZHV/dVcX9g31EXzOatdxdOI+Fbqw3pPHYDd8HsQm8n0iss9UrCQ7FTgI+D/g4ITH\ngtuSVw/QC8FDwP5Y3IuAQ4ATsEHLxlQ59hqsKmMp4IFXTz1peF4nmnjuYBT2IfdpSv+HS4HtgXnA\ndPCmNve8dal2fbm4todg19n+wE6Rx0RsXoOngKcYylwOAw5kL0ZyEh5blr3uHcD78FmS7E8wQA/u\nrr9aekgzrkvYhjX8iZHsUbK+j+Ws5FdsyPWMYBo+R6QaV3J15c64UthkYC7FViU3YjPSRy/qU4Cf\nhMvTgFHYCHvbJjjWtZ6wtL5B+Pz+KvstBx7Hfr+bsAT2ZmPnbYdk760A/iN8AMGd4etvTrGZ5gl2\nX+OiV+Dri8NzXw08AZ7Lr8xpXttDsdZZn8e+/d1LF0+xJTPZlZfZlz5Gsi2W+PfABu3auMLrvAx8\nDvghfkOzTPWQzeTVQ5px/Q/PhK2aPkbAl/DCv/kwNmNTLgAuYBXr2Js32YlHeJM5rGMWw7mPXXiK\nDXgVn9xU1cYl+62A5yLPn8dKOHH7bIXV5cYdmwXHY2+wT2Ml0rvAC2ePCoZgf6O14LXbFG6t8F6s\njnki9sa9FfgCsB2M3BRrurkb1rkMCF7HSsnLsW9KG2NVQ5sAL2DJbQV40XlFmyWda/si5vEvtmIY\n6+lmBUPZFOvstAnJS2UvYpODfw9fN2GbyoaV+DY+12MzfH0U2KJ/+wi6GMVIducgKv2PP88a1rOa\ngDeBNXi8icdqPFYxhNUMoY8h/R/MQeRBleVK26rFXpe4ZJ+03jnLN1iPBn6MvWHKvvZesBNWFfNP\n8L498FhvPeTqho1j3iKK7bu/H/78UfjThy/5thhMAL4NnB5uGwn8d7j8nwNfN/hT5MkJwIfB+9HA\n/eqSzrU9ku0iYy2OqOPIRdgN8F8Afw+TkrSKz0vYSKFfB07EvtWdSPVqXDOc4cDwlsfXBHHJfhHW\nwqRgAgPnTC3fZ+twn2EJji1o4c3M/vfqhMrbfwBWR5/2DdVLUz5fFs4dnrfu/HlS2fNrw0cj0rm2\n/UHHtxVwTvhoBZfXXy1u4/KrrL+ryvo2MhS7yTYJ+/R6GNi1bJ+pwF/C5YMp1nsnOVbEFV3bImVO\nwFoezMVuDoHdbDo/ss8V4fZZwH4xx4pkha5tERERkWZ4J/AY1nstWmKaBKwCZoaPK1M6L1gJ7Wms\ns8xxTT5vOR+r5y38nlNq7t04lx3cFgKzsd/zgRae50fYjfhHIutGYzc6nwJuw5pPtlJWrq9afNK9\n9uJkufPlQtK5duNk4doetF2wdsV3MjDZP1LpgBafdzes7nVYGMNcWjt20KWkN01aF/b7TMJ+v7Tr\nmBdAOJZLax2O9XKNXj9fpzg368XAZS2OISvXVy1pXntxXF+bcdK6duM0fG27HAhtDpRMCOz6vKdi\nzdz6sE/zuRQnhWiVtJqsRjsQ9VHsBJSmNH7Xe7ARR6OiHaN+ApzW4hiydH3VkpXm0lm4NuNk4W/V\n8LWd1VEvt8W+NvUCh6V0zvGUNp8rdKBppY9hN/6upbVfwap1DkpLgHXxfwg4L8XzgnWQeTFcfpFo\nh5l0ubi+aknr2ovj+tqM4/LajVPXtd3qQatux7qXl/s8NkpiJS9g7ZZfwb4G/x4bbOv1Kvs367yV\nNNr2vlocX8A6HRU6En0Z+Batm6PW9aBshwKLgbHY32QOVlJJW3yvxGSycn3VkpVrL47razNOVq7d\nOLHXdquT/bGDOGYNxV6rM7D2zDuGy608b6UONI3O9pM0jh9SX5KoV5IORK20OPy5DBtbaDLpvWFe\nxJLeEmwc/qVNeM2sXF+1ZOXai+P62ozj8tqNU9e1nZVqnGid2Bjspg3Adliin5/CeW/GZpcajlUj\n7Uhr775HRzJ8O629Kf0Q9vtMwn6/d2O/bxpGUhzUqxtrhdLK37XczcAHwuUPYN8U0+Ly+qolzWsv\njstrM47razeOy2u7Lm/H6upWYZ9Mt4TrTwcexersp2PjU6RxXrCv4XOxr2rHN/m85X6KNemahf2T\nWl2X7KoT0LZYC4uHsf9rK8/9C6wacA32P/43rCXFHaTXPC0r11ctaV97cbLaQS3NazdOFq5tERER\nEREREREREREREREREREREREREREREZH8+P/YNKALSG4Y4gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8lNW9+PHPNzshJJCwJ+y7IIvsILiggEsF16pV61Lr\n5afdbG9ttdarrdflVlttr73iVrVudYdaEVSqsoct7BAMAbIQCJAQEhKynN8fz+SZmZBlkszMM5l8\n37588WznzDcDk++c85znHDHGoJRSSoWKCKcDUEoppTxpYlJKKRVSNDEppZQKKZqYlFJKhRRNTEop\npUKKJiallFIhxafEJCJzRWSXiOwRkfvqOX+FiGSIyCYRWSci0z3OZXue82fwSoWqVn5mGi2rVLiT\npp5jEpEIYA8wC8gD0oHrjTG7PK6JN8aUubbPBv5hjBnh2s8CxhtjjgfmR1AqtLTmM+NLWaXCnS8t\npklApjFmvzGmEngbmOd5Qe0HzCUBqPHYFx9fR6lw0ZrPTJNllQp3viSMVOCgx36O65gXEZkvIjuB\nxcDtHqcMsExE0kXkztYEq1Qb0ZrPjE9llQpnUf6qyBjzEfCRiJwL/B642HVqujEmX0S6YSWoncaY\nFZ5li4uLdV4k1aYkJSVJa+to5DPTJP3MqLamOZ8ZX1pMuUBfj/0017F6uZLOQBFJdu3nu/48AnyI\n1VWhVDhrzWemWWWVCke+JKZ0YLCI9BORGOB6YJHnBSIyyGP7HCDGGHNMROJFJMF1vCMwG9jmt+iV\nCk0t/sz4UlapcNdkV54xplpE7gGWYiWyl4wxO0XkLuu0WQhcLSK3AKeBU8B1ruI9gA9FxLhe6w1j\nzNLGXi8pKanlPw2wfv16ACZMmNCqetpDXaEYUyjXVVxc7NN1rfnMNFS2sddr7WcmkPz5/geaxup/\nvn5m6vLpHpMxZgkwrM6x5z22nwSerKfcPmBsiyJTqg1r6WemobJKtSc6jFsppVRI0cSklFIqpGhi\nUkopFVI0MSmllAopmpiUUkqFFE1MSimlQoomJqWUUiFFE5NSSqmQoolJKaVUSNHEpJRSKqRoYlJK\nKRVSNDEppZQKKZqYlFJKhRRNTEoppUKKJiallFIhRROTUirkffDBB5x//vm89tprToeigsCnhQKV\nUsopVVVV3HHHHRQVFbFixQomTpzIiBEjnA5LBZC2mJRSIW3btm0UFRUBUF1dzYMPPuhwRCrQNDEp\npULa6tWrvfaXLl2KMcahaFQwaFdeCPl8/QdUVJYTEx3HxROucjocpULCmjVrvPZLSko4fPgwPXr0\ncCgiFWiamELIZ+v+QUVlOdFRMZqYlHLZtGnTGccyMzM1MYUx7coLIacrKwCorDrtcCRKhY78/Pwz\njmVmZjoQiQoWTUxKqZBVVVXF0aNHzzi+Z88eB6JRweJTYhKRuSKyS0T2iMh99Zy/QkQyRGSTiKwT\nkem+llVKqYYUFhbWO9BBW0zhrcnEJCIRwF+AOcBI4AYRGV7nss+NMWOMMeOAO4AXm1FWKaXqVVBQ\nUO/x/fv3BzkSFUy+tJgmAZnGmP3GmErgbWCe5wXGmDKP3QSgxteySinVkMOHD9vb/fv3t7fru++k\nwocvo/JSgYMe+zlYCceLiMwHHgO6AZc1p6yn9evX+xBS0/xVTzDrMhifrmvONa2NSetyGzJkiB8i\nUc3h2WIaM2YM2dnZ9vGamhoiIvQ2eTjy29+qMeYjY8wIYD7we3/Vq5RqvzxbTP369aNz586ANSii\nsLDQqbBUgPnSYsoF+nrsp7mO1csYs0JEBopIcnPLAkyYMMGHkBpW+824tfU4UdfrK8VuNVV1KGbK\nyFkBjastv1dO1FVcXOzztSIyF/gT1pe/l4wxT9Q5fyNQOxioBPh/xpgtrnPZQDFWl3ilMabRXoZw\n5tli6tGjB7169bKnJ8rPz6d79+5OhaYCyJcWUzowWET6iUgMcD2wyPMCERnksX0OEGOMOeZLWVW/\n9bu/cjoE1UI+DvrJAmYaY8Zg9TAs9DhXA5xvjBnXnpMSeLeYunfvTq9evex9vc8UvppsMRljqkXk\nHmAp7m9/O0XkLuu0WQhcLSK3AKeBU8B1jZUN0M/S5sVEx1JRWe50GKr17EE/ACJSO+hnV+0FxhjP\neXbWYN2PrSXoM4YAHDlyxN7u1q0bvXv3tvc1MYUvn6YkMsYsAYbVOfa8x/aTwJO+llX1i4mO08QU\nHpo76OcHwKce+wZYJiLVwEJjzAv+D7Ft8Ow+7dy5s7aY2gmdK08pB4nIBcBtwLkeh6cbY/JFpBtW\ngtppjFnRUB3+HL0YKC2N0fMeU05ODlVVVfZ+RkZGQH72tvB+1gr1WFs6klW7C5TyP58G/YjIaKx7\nS1cYY47XHjfG5Lv+PAJ8SBOPWISzkydP2tsdO3YkJSXF3j927JgTIakg0BaTUv5nD/oB8rEG/dzg\neYGI9AXeB242xnzrcTweiDDGnBSRjsBs4OHGXswfIw4DpbWjIk+dOmVvz5gxg06dOtn7lZWVfv3Z\n/TmCM9DaSqzNGcnqSROTUn7m44ChB4Fk4DkREdzDwnsAH4qIwfp8vmGMWerMT+IsYwwnTpyw9xMT\nE72Gh3uO2FPhRRNTiNpzcAurti1j2qiLnQ5FtYAPA4buBO6sp9w+YGzAA2wDSktLqamxZjfr0KED\n0dHRXmswaWIKX3qPKYQdOnrA6RCUcoxnN1BSUhIAKSkpWA1MOHr0qNdgCBU+NDGFiMqq05x2DRXv\nkZzmcDRKOa9uNx5AZGQkXbt2tY97PuekwocmphCxcPGj9jNMowZMdDgapZxXX4sJ0PtM7YAmphAk\niNMhKOW4hhKT3mcKf5qYQsyC+Q/RKb6z02Eo5bj6uvLAu8XU0EKCqm3TxKSUCknaldd+aWJSSoUk\nTUztlyamEPbvzYvJytvV9IVKhSFfuvI0MYUnTUwh7vDxRtdVVCpsNZSYPAc/6D2m8KSJKQQN7XO2\n0yEo5bjS0lJ7OyEhwd7WFlP408QUglK7DWDyiAudDkMpR9WdWbyWJqbwp4kpBJwoLeLQsRynw1Aq\npHi2mBpLTMaYoMalAk8TUwj4cuOHFJ88Wu+5rzL+SUlZUZAjUsp5DXXlJSQkEB8fD0B5eTklJSVB\nj00FliamEBMbHee1n3tkH8dLCh2KRinnNNRiAu3OC3eamELIvHNvZWDvEQAM7TvG4WiUclZD95hA\nE1O408QUoiYOP4+07gOdDkMpxzTUlQeamMKdJialVEjytStPn2UKP5qYlFIhqbGuPJ1hPLz5lJhE\nZK6I7BKRPSJyXz3nbxSRDNf/K0RktMe5bNfxTSKyzp/BK6XCU01NDWVlZfZ+7Si8WtqVF96imrpA\nRCKAvwCzgDwgXUQ+NsZ4TuKWBcw0xhSLyFxgITDFda4GON8Yc9y/oSulwtWpU6fs7Q4dOhAZGel1\nXrvywpsvLaZJQKYxZr8xphJ4G5jneYExZo0xpnYq4DVAqsdp8fF1lFIKaLwbD7TFFO6abDFhJZmD\nHvs5WMmqIT8APvXYN8AyEakGFhpjXmjsxdavX+9DSE3zVz3BqOvQIesbX07OQdYb9/myUqsrY+fO\nnRw+eOZDtu3xvXKyriFDhvghEuWLxgY+gN5jCne+JCaficgFwG3AuR6Hpxtj8kWkG1aC2mmMWeHP\n11VKhZfGhoqDtpjCnS+JKRfo67Gf5jrmxTXgYSEw1/N+kjEm3/XnERH5EKu11WBimjBhgm+RN6D2\nm3Fr6wlmXTmntrIjD9LS+jBhvPv8l5lvcqwURowYQd8eg/0eV1t8r5ysy3PhOhVYTXXlpaSkICIY\nYzh69CiVlZVER0cHM0QVQL7c+0kHBotIPxGJAa4HFnleICJ9gfeBm40x33ocjxeRBNd2R2A2sM1f\nwSulwlNTXXlRUVGkpKTY+4WFOm1XOGkyMRljqoF7gKXAduBtY8xOEblLRH7ouuxBIBl4rs6w8B7A\nChHZhDUoYrExZqnffwqlVFhpKjGBd3feoUOHAh6TCh6f7jEZY5YAw+oce95j+07gznrK7QPGtjLG\ndm/Xgc2kdR9IhOjgRtU+eHbl1XePCSA1NZUdO3YAkJeXx7hx44ISmwo8/U3XBvxz1d8xNTVOh6FU\n0PjSYkpLS7O3c3J0PbNwookphPXvOazpi5QKQ5qY2jdNTCHsugvuIiIisukLVchp5TRejZZtD5oa\nLg5WV16t3NwzBgqrNkwTk1J+5jGN1xxgJHCDiAyvc1ntNF5jgN9jPWrha9mw19RwcdAWUzjTxKSU\n/7VmGq8my7YHze3K0xZTePHrzA+q+dJ3fcWXGz92OgzlX62Zxqu5Zf06dVOgNDfG/fv329tHjhyp\nt3xRUZHX9aE4RVeghXqsLZ3GS1tMDjPGt9F227M3BDgS5QSPabza5b2khnjOLl53yYtaSUlJxMbG\nAlYLy7P7T7Vt2mIKEWMHT+P8sZefcbymphqAj7/5G6MHTQ52WKplWjONl09lPfljuqVAaemUUDEx\nMfb22Wef3WD5AQMGsGuXtQJPly5dGDNmTAsj9e/0VYHWVmJt6TRe2mIKEdFRMURGnvk9Ia3bQAAd\nnde2tHgaL1/Ktge+3GMCKzHVysrKCmhMKng0MYW4W+b+zOkQVDO1ZhqvhsoG/YdwmC8zP4B3Ytq3\nb19AY1LBo115SgVAS6fxaqhse+Nri2ngwIH2traYwocmJqVUyGlJV96+ffsoLCvk7W1vk3sil+Fd\nh3PViKvoFNspoLEq/9PEpJQKOb525Xm2mDZXbmbAMwM4edpd9oEvH+Ctq99iRr8ZgQlUBYTeY1JK\nhRxfW0yDBg2yNkZC3vQ8r6QEkFuSy9w35rImZ01A4lSBoYlJKRVSKisrOX36NAAiQlxcXIPXdurU\nie5ndYf57mODugziZ1N+Rtf4rgCUVZZx3bvXUVRe1EAtKtRoYmojCo7n8NXmfzodhlIBV7e1JCIN\nXmuMoXJOJbhWVU+NTWXdnet4es7TrLx9JckdkgE4eOIgv/r8VwGNW/mPJqY25Nu8HU6HoFTA+TKz\neK3FexZzPMn1bHINzK+ebyejoSlDWXj5QvvaFza+wPbD2/0fsPI7TUwhLqljMqMGNjpVmlJhxdf7\nS8YYfrv8t+4D66B4l/dMA1eNuIqLB14MQI2p4dFvHvVvsCogNDGFuA6xHZkwbKbTYSgVNL4mps+z\nPiejIMPaOQ18Azt3ej+LLCI8Nusxe/+d7e+QdVyfdwp1mpiUUiHF16Hiz6x9xr2zCSi1ElNNjffE\nyON7j/dqNb208SW/xqv8TxOTUiqk+NJiOnTyEJ/u/dTe77KnCwBlZWUcPHjwjOvvnni3vf1qxqtU\nuyZHVqFJE5ODDh/P4+9Ln2n6QqXaEV9aTG9ufZMa15IxM/vNZFTvUfa5HTvOHCR06ZBL6d6xO2A9\n27Qsa5k/Q1Z+ponJQRWV5U6HoFTI8aXF9PqW1+3tW0bfwogRI+z9uveZAKIjo7l59M32/subXvZH\nqCpAfEpMIjJXRHaJyB4ROWNBMxG5UUQyXP+vcK0z41NZZbl44tVOh6BUSGiqxbS1YCubD20GIC4q\njmvOuoazzjrLPr99e/1Dwm8be5u9/dGujygub9laQSrwmkxMIhIB/AWYA4wEbhCR4XUuywJmGmPG\nAL/HWvzM17LtXmq3AfRM7uN0GEqFhKZaTG9te8venjdsHklxSZx99tn2sS1bttRb78juIzmn1zkA\nVNZUet2jUqHFlxbTJCDTGLPfGFMJvA3M87zAGLPGGFP79WMNkOprWaWU8tRUi2nRbve6idePuh7A\na+XarVu3UlVVVW/dVw6/0t7+aNdHrY5VBYYvs4unAp7DXHKwEk5DfgDUfhVpbll7yeDW8lc9gazr\n6MlDgDWSqLHXyC60nrs4fuy413Xt6b0KhbqGDBnih0hUUxpLTFnHs9h+xOqqi4uKs4eBp6SkkJqa\nSm5uLhUVFezZs8ere6/W/OHzeXD5gwD8K/NfVFRVEBsVG6gfRbWQXwc/iMgFwG2A3ksKgP1Hd3L0\nZL7TYSgVUI115S3evdjenjVgFh1j3OfHjh1rb2/evLneukd2G8nALtZSGSWnS/h39r/9EbLyM19a\nTLlAX4/9NNcxL64BDwuBucaY480p62nChAk+hNSw2m/Gra0nGHUdPJzFJxkQHx/f6GtE7Cnn692u\nnfhT9vH29F6FQl3FxXqzPBgaazEt3uNOTN8Z+h2vc2PGjOGTTz4BICMjgxtvvPGMukWE+cPm8/Sa\npwH4cNeHzBk8x2+xK//wpcWUDgwWkX4iEgNcDyzyvEBE+gLvAzcbY75tTlnVtK5JPZ0OQamgaajF\nVFxezFf7v7L3Lx96uVc5X1pMAPOGu29zf7r3U4wxrYpX+V+TickYUw3cAywFtgNvG2N2ishdIvJD\n12UPAsnAcyKySUTWNVY2AD9HWOvbYzCzJ17rdBhKBUVDLaYv9n1BVY01qOGcXueQmpjqVc5zAERG\nRkaD9U9Nm0qnGGu59QPFB9h7bK9f4lb+49PS6saYJcCwOsee99i+E7jT17JKKdWQhpa9+CLrC3t7\nzqAzu98GDRpEfHw8ZWVlFBQUcOjQIXr2PLO3IToymgsGXGCP7luWtYwhKTqwJZTozA9tzCer3+Tj\njf9HWcUJp0NRKiA8W0yeXXlf7HMnposGXnRGucjISEaPtp/tb7Q7r3Y0H6DTE4UgTUxtUPGpQnue\nMKXCTX1deTkncth91BoBFBcVx7Q+0+otO27cOHt7w4YNDb6GZ2L7ct+XdhehCg2amJRSIaW+rjzP\nbrxz+55LXFRcvWUnTpxob6enpzf4GsNShpGWmAbAiYoTpOc2fK0KPk1MbdRHG//qdAhKBUR9XXmf\n7/vcPjZrwKwGy06a5H5+f926dQ1eJyJe3Xme3YTKeZqY2qgI0b86FX6qq6s5dcr9rF58fDzGGL7c\n96V9rL77S7WGDx9uJ7P8/HxycnIavPaC/hfY298c+KY1YSs/099ubcSs8fN5+PYXufvKhwGoqqnk\n9c/+5HBUSvlXWVmZvR0fH09ERAT7ivaRV5IHQGJsIuN6jmuoOJGRkV7deStXrmzw2hn9Ztjbqw6u\n0vtMIUQTUxvRIbYjXTp1pW8P97DWo8UFDkaklP/VN/BhxYEV9rHpfaYTGRHZaB0zZ860t7/++usG\nr+uX1M++z3Ty9EkySzJbFLPyP01MbUxsdCyTB17idBiqCT6sYTZMRFaJSLmI3FvnXLZrbTP7YfX2\nor6BD56J6dy+5zZZh6+JSUSY0dfdatp8rOHh5Sq4NDG1MRERkXTu2M3pMFQjfFyH7CjwI+B/6qmi\nBjjfGDPOGNPobPzhpr6BD3VbTE2ZMmUKUVHW3AHbtm2joKDhngXPRKeJKXRoYmrDikqPUlZxsukL\nVbD5soZZoTFmA1DfjQ2hnX4267aYjpYdZWehNYtZdEQ0E1MnNlTU1rFjR6ZNcz/n9OmnDS8IWLfF\npPPmhQafpiRSoenYicMsXvl3vnvhfzgdivLW7HXI6jDAMhGpBhYaY15o7GJ/rlsVKL7GuHHjRnu7\nurqaV5e/au8PTxzOjowdPtUzduxYuxvv9ddfZ9SoUfVeV2NqSIxO5ETlCY6dPsaB0gPIevHpNUJB\nqP/dt3QNs3b5rayti5TGb/6qNm+6MeYc4FLgbhFp+sZKmKg7VDzjmHsy1jHJY+orUq/p091dfqtW\nrfIa7ecpQiIY3cU9jVHG8YYnf1XBoy2mNqhrp1QmD7yEtVmfYkw1NTXVAIhEINJ2vu2FsWavQ+bJ\nGJPv+vOIiHyI1dpa0dD1/lhrKlCaux7Wjh3uFlFaWhp7K90zf18z8RomDPetnvHjx/Pwww+zY8cO\nysvLyc7O5pZbbqn32svLL2fFF9bbu+nYJh658hGfXsNJ/lxnLJBauoaZtpjauFXblvHTP1/NT/98\nNRWV5U6HoyzNXYfM/jYhIvEikuDa7gjMBrYFMthQ4jn4IbZjLOvz3F1VDc2PVx8R8UpECxcubPBa\nz+eZdABEaNDEpJSf+bKGmYj0EJGDwM+AB0TkgCsh9QBWiMgmYA2w2Biz1JmfJPg8Bz+cTDrJ6erT\ngDW3Xbdmjka9+eab7dF5K1euZNWqVfVeN6H3BHvuvZyyHApO6vOBTtPE5JAaU8OG3V81faFqk4wx\nS4wxw4wxQ4wxj7uOPW+MWejaLjDG9DHGdDbGJBtj+hpjThpj9hljxrqGip9dW7a98GwxHYk7Ym/7\n8vxSXb179+amm26y95944ol6r4uJjGF8r/H2/trctc1+LeVfmpicYgxfbvzY6SiUCimeLaaCaHfL\npTndeJ5++ctf2tuLFi3yuoflaXLqZHt7bY4mJqdpYgoBZ/U7x+kQlAoJni2mg8Y94t4zcTTHiBEj\nuOKKK+z9Rx6pf2DD5DSPxKQtJsdpYnKYSATfmX6z02EoFRLsFlMinKixVmlOiElgeNe6E2f47oEH\nHrC333nnnXpXtvVMfOl56boQp8M0MbVRA7uN4qz+45u+UKk2xG4xpbqPTew9scmJWxszadIk5s+f\nb+//5je/OeOavkl9SY5NBqyFA3cV7mrx66nW08TURkVHxdKlk86Zp8JLfYlpUmrrpwv83e9+Zz/j\n98knn/D55597nRcRRnV2zw6h95mcpYlJKRUy7K48PyemUaNGcfPN7i7zu+++m4qKCu9rPBOT3mdy\nlCYmpVTIOHnypPW4cW/3sZYOfKjriSeeIDExEYA9e/bw5JNPep0f2Xmkva2JyVk+JSZdWyY0XTH9\nZn73g5edDkMpvyktLYVuQKy137tTb1ITUxst46uePXvy6KOP2vuPPPIIq1evtvfPSjoLcU3CsbVg\nK2WV9c+vpwKvycSka8uErg6xHUnqmExsdJzToSjlFydPnvTqxvNXa6nWggULmDzZqrOqqorrrruO\nwsJCABKiE+if0B+AalPNhrwNfn1t5TtfWky6toxSKijqJiZ/3F/yFBkZyTvvvEOXLl0AyMnJ4cor\nr6S83JpnUu8zhQZfZhdvk2vL+HOdkkDUZT8nYUyL668tV11t1bVp40aio2JbXI8/hHNdLV1bRvmm\nurraWp4igIkJoF+/frz++utcfvnlAKxYsYJbb72Ve++9l1GdR7E4ZzGgiclJwVj2YroxJl9EumEl\nqJ3GmAan8FetszVnJYdPWN8jpgy6hI6xSQ5HpJRvSkpKIBprGltAECb0DsyyDpdddhl/+MMf+MUv\nfgFYD97GxsYy+5bZ9jU6ZNw5viSmNrW2jD/XKQlkXfsPZVonRJpdf9263lkXQVUNbMxfyu4D7oXO\nho8YRo/kNJ/raY32UFdL15ZRvjlx4gT0wu74H9FtBImxiQF7vXvvvZfs7Gz+8pe/APDaa6/Ro1cP\nOnTqwKmqUxw8cZD8knx6deoVsBhU/Xy596NrywTA60v/BIDxw9QntesweSYlpdqaEydOBLwbz5OI\n8Kc//clrLr2n/ucp+sf0t/e1O88ZTSYmXVsmMCLEeuvj4zoF7DWqqquorq5vPIpSoae4uDigI/Lq\nExkZyVtvvcWkSVYSrKmpYefnO+3za3LWBDwGdSaf7jEZY5YAw+oce95juwDoU0/Rk8DY1gQY7n5y\nzaNNX9RCT7z5U/p0H8R/3vBUwF5DKX8JdoupVnx8PIsXL+acc84hNzfXGt7l8oe3/kD6Y+ksWLCA\na665JijxKB3GHXZumHW30yEo1SIHjx0EaxQ3ETURnN397KC9dvfu3XnppZeYOHGi1x306u7VfLn8\nS6699lp+//vfBy2e9i4Yo/JUgM0aP5+q6iriYxOYOupilqa/x9ETDS8P/c9Vb7B9Xzplp04xc+hV\nQYxUqYZtPbbV3u5a2ZXoyOigvn5KSgr/+7//S15eHt9N/y4V0RUQB6QAhfDQQw9x2WWXMW7cuKDG\n1R5piykMzDv3Vq4+7wdcMuV6ACKaWCLgeMkRcguzOV5aQHVNZTBCVKpJu0rcS02k4p9piJpLRJg3\nbx6zR7qHjQ+cORCw7j/9+te/diSu9kYTUxi6+rw7mDXeWn/GGMNL/3yc37x4Gw++eDulp044HJ1S\n9cs6nWVvD4gZ4GAk3ve3plw1xV4yY+nSpRw4cMCpsNoNTUxh6Kz+4xk35FwAco5kkfHtGk6UHqe4\n9Bg1xjgcnVJnMsaQa9w3d4Z3avmKtf7gmZj2lO3hoosuAqw4X3/9dafCajc0MbUzD7zwfdJ3/dvp\nMJTysvfYXioiXOsjlcGAJGdbTJ4zTmQcyuCGm2+w9xcvXuxESO2KJqYwldAhkZgWzJunlBPW5Xqs\niJMLSUnOTqWV3CGZIcnW3IiVNZWkjk8lIsL6dZmens6xY8ecDC/s6ai8MJWc2J1H7niJ4lLrA/TV\n5sWs2rasweuz8nZyovQ4YHUFxkRrUlPBUzcx1S7o56RJqZPIPGZNHba7ZDcTJ05k7dq11NTU8MUX\nX3Dttdc6HGH40sQUxuLjEoiPSwDgkik3NJiYCo7l8Kd33aONLp1yA6u3LeP4yULiYuK578Y/kpLU\nIygxq/ZpXV5otZjASkxvbH0DsOK7+OKLWbvWmqLoq6++0sQUQNqV186tz17Gf//9x17HKirLOX7S\nWjyt/HQZJ8qKnAhNtROnq0+zKX+T+0AudOoUuKm6fOU5AGJd7jrOPfdce782QanA0MTUzh0q3n/G\nRLL78nc1cLVS/re1YCsV1a6BD8eBMkhOTnY0JoCxPccSHWE95Lvn6B6Gjh5qn8vIyLAXF1T+p4mp\nHRrWdwypXfs3eD4rb6fX/h//cR+VVacDHJVqr+reXwLsFWadFBcVx5ieY+z9zLJMhg61klNlZSWb\nNm1qqKhqJU1MyidGn39qFhGZKyK7RGSPiNxXz/lhIrJKRMpF5N7mlA03de8vxcXFERcX51xAHib1\n9u7OmzzZPeP5hg0bnAipXdDEpOo1KHUkv77pWafDaJNEJAL4CzAHGAncICJ1nxg9CvwI+J8WlA0r\ndVtModCNV6vufaYxY9wtqK1bt9ZXRPmBJibVoF4pfYmMsAZuFpceo7S8xOGI2oxJQKYxZr8xphJ4\nG5jneYGRvFDrAAAgAElEQVQxptAYswGou2BWk2XDyYmKE+w84uo6rgHyQ6Mbr1bdxHT22e4Zz7ds\n2eJESO2CDhdvJ+Ji4rn6vB8A0KVTVz5d87bX+X49hpB/9ACnqyq8jlfXWL83f/fqAkYPmswPLtdJ\nLH2QChz02M/BSjgBKVu7fHwoayjG9YXrMbi6iQ8DlRATE+Poz+T52jWmho5RHSmtKqWgtICCcves\n/RkZGaxbt85+8NYJof53P2TIkBaV0xZTOxEbHcd5Yy/nvLGXM3rQlDPOpyT1BNdElUoFy/bi7e4d\n1wJ9oTBUvFaERDAiaYS9nyd5dovu1KlT5OXlORVaWNMWUzv1/Ut+ztoNq9hzaAOjhpxDr5S+bNuX\nbp+PjQ6Nm89tVC7Q12M/Da/l5/xbdsKECY2ddlTtN/qGYnws6zH3juunHDBggCM/U0OxXlR0EetX\nWueOxh1l7NixLF++HIDo6OiQijXUFBcXt6ictpgckFeYzaFjB5u+MIB6JvchtcsgLhhxHZdMuZ6x\nQ6Z5nf+PeQ+eUWbLt2vZka0jkXyQDgwWkX4iEgNcDyxq5HrPpmpzy7Zp9Q0VD6XBD3DmfabaIeMA\ne/bscSKksKeJyQFL0993OoQWy87XD2JTjDHVwD3AUmA78LYxZqeI3CUiPwQQkR4ichD4GfCAiBwQ\nkYSGyjrzkwRWXkkeOSes/rtoEw1HrOOhNPgBvBPT+rz1DBo8yN7PzMx0IqSwp115DgulyVJjo+M4\nXVlOdGSM06G0ecaYJcCwOsee99guAPr4WjYcpee6u467VnYl3+QDoZeYUhNT6d2pN3kleZRWlhI3\nyN3NrYkpMDQxOej7c+8lJTF0Jke98aJ7qKw6TWSk+59FdGQMldXuWR+WrHuHopOFXD7tZhI7dnYi\nTBUmPLvxEksSycdKTKHWlQcwOXUyH+76EIDiBPd9E01MgaFdeco2csAExg6ZxtkD3V0Xv7vzZR7/\nj79zwbgr7GNrdnxB+ekyJ0JUYcRzxofow9H2digmJs/uvOyqbHuI+IEDB3TOvADwKTHp9Cr+c+zE\nYTJz2s4T4/GxCcTHJhAXE+90KCqM1Jgar668qmz3c8bdu3d3IqRGeSamDYc20K9fP8Caquvbb791\nKqyw1WRi0ulV/Gv97q8p0WUkVDu3u3A3xRVWl1i3+G4c33/cPheKiWl8r/GIa/Dk1oKtDBw20D6n\n3Xn+50uLSadXCZCEDs4vhuarYX3HMu/cW50OQ4WJVQdX2dtT0qZwtPCovd+tWzcnQmpUUlwSw7ta\n36mrTTVJw9yfXU1M/ufL4Ic2Ob2KP6fq8GddubnWwxqjUqdRcriS9YdbXnew36sk0ugU14WS8uNs\n27aNxA5nPvUequ+7P+pq6fQq6kyeiWlc13EsrloMWEuqx8aGzkhVT5NSJ7Gz0Bq5X92r2j6uicn/\ndPCDUiroVuW4E9OQOHfCD8VuvFqTU91LXhR2KLS39SFb//OlxdSmplfx51QdgagrNTWVTfuhZ69e\nLa7XX3G1pJ5Pt8VRUg6jRo2ie5fefo8plOtq6fQqytvRsqPsKrRWSY6KiKJndU/7XCgnpul9p9vb\ne065k5G2mPzPlxaTTq+ilPKbNTlr7O1zep1D8VF3wg/F+0u1RnYbSWJsIgBHyo8QkWL9+szLy+PU\nqVNOhhZ2mkxMOr2KUsqfPO8vTUubxuHDh+39UG4xRUZEMjVtqr2fPNb9vFV2drYDEYUvn2Z+0OlV\nlFL+4nl/aVqfaexc5/6uGsqJCWB6n+l89u1nAMQOjoUvrONZWVmMGDGikZKqOXTwQxCVV5aRebDt\nPFyrlL9VVld6TUU0ve90Dh06ZO+HfGLyuM9UluKe/WTfvn1OhBO2NDEFUWFJLrsPZjgdhlKO2VKw\nhbJK6xd6v6R+9O7U236EAqzBQaFscupkIiUSgKKYInDN55qVleVgVOFHE5NDuiaFzuStzVE7oevT\n7/ySN5b92eFoVFvjdX+pj7UGWE5Ojn0s1BNTx5iOjO05FsBaEj7NOq6Jyb80MTngrP7jmTZqttNh\ntIhx/VlWcZJDRw84Gotqe1YeXGlv1yamttRiAus+k811Z10Tk39pYlLNEin6T0a1jDGGr/d/be9P\n7zOd06dP26PyRISePXs2VDxkeN5nqn1KMysrC2NM/QVUs+lvGdUs00dfwqDeZzkdhmqDMo9lkn/S\nWnMpKTaJ0T1Gk5+fb/9C79GjB9HR0Y1VERK8WkxpQASUlpZSWFjYYBnVPJqYVLNcPOEq5s241ekw\nVBv07+x/29sz+80kMiLSqxsvLS3NgaiaLzUxlf6d+1s70YBrAhTtzvMfTUxKqaD4av9X9vb5/c8H\n2t79pVq18QMwwPpDE5P/aGIKklOnT/LlznecDkMpRxhjvFpM5/U7D7BWgK3VlhLTBf0vcO/0t/7Q\nxOQ/mpiCpNpUN32RUmFq77G95JVYy6QkxibaQ649V38dOHBgvWVDkVdi6gtEamLyJ01MDrh82vec\nDsEv9hdksjlzVdMXqnbPsxuv9v4SeP8yHzRoUNDjaqk+SX0YnDzY2okGUnX2B3/SxBRkXRK6ktat\n7XwzbMqO/RudDkG1AfV144F3i6ktJSao02oaoC0mf9LEpJqtS0JXUtrozBUq+OreX6odOFBVVeU1\nK3db6sqDMxPTwYMHOX36tHMBhRFNTKrZkhKSuXjCNU6HodqInLIcckus0Xee95dycnKoqqoCoGfP\nnnTs2NGxGFvCa2ReGtRE1HgN5lAtp4kpSD5Yr/PKqfYpvTDd3j6377lERVir7ezdu9c+3tZaSwC9\nOvVieNfh1k4U0Ee78/xFE1OQREfGAlB2utThSPxr/6E9FJceczoMFcJWH1ltb88e6J4jcvv27fZ2\nW13L6ML+F7p3+usACH/RxBRk/3Xr801f1IbkHz2gI/NUg6pqqkg/6m4xzR7kTkxbt7rXJhs1alRQ\n4/KXCwd4JKZB3q1A1XKamIJMIsLjLU/okOh0CCFNROaKyC4R2SMi9zVwzbMikikim0VknMfxbBHJ\nEJFNIrKuvrJtxfai7ZRWWb0EfRL7uLu+gG3bttnbbTkxCWLtpMLWb3UhUH8Ij9+SIW7/oUwqqyuc\nDsOvRg+azMwxlzkdRkgSkQjgL8AcYCRwg4gMr3PNJcAgY8wQ4C7grx6na4DzjTHjjDGTghR2QKwp\nXGNvzx40GxHrl3hNTY1XYjr77LODHps/dOnQhTHJY6wdgS2lW5wNKExoYgqCj755xekQAur9r17k\neOlhp8MIJZOATGPMfmNMJfA2MK/ONfOA1wCMMWuBJBGpHYMvhMlnc80Rd2KaM2iOvZ2VlUVpqdWS\nSklJCfkl1RvznRHfsbcPJRyisrLSwWjCQ1j8428rIiTSXpY53FRUlTkdQihJBQ567Oe4jjV2Ta7H\nNQZYJiLpInJnwKIMsCOlR9hRtAMAQZg1cJZ9bu3atfb2hAkT7JZUWzTvLPd3DjPIkLVPR+a1VpTT\nAbQnF4+8kdiYDk6H4TdTR17E1xmfOB1GOJpujMkXkW5YCWqnMWZFQxevX78+iKH57p85/6SGGgBG\ndxlN1vYssrB+aX/88cf2df369Qupn6G5sdSYGqIqoqiKrYKO8Pyi57nx/BsDFJ23UHrf6jNkyJAW\nldMWk2qx1G4DGJw60ukwQlEu9tqmgLWcXG491/Sp7xpjTL7rzyPAh1hdg23O1wXu1Wpn9JjhdS4c\nRuTVipAIepf1tvdXHGnwO4TykU8tJhGZC/wJK5G9ZIx5op5rngUuAUqB24wxm1zHs4FirBu6lW39\nZq5SPkgHBotIPyAfuB64oc41i4C7gXdEZApQZIwpEJF4IMIYc1JEOgKzgYcbe7EJEyb4/QdorfKq\nctYtdQ8o/H8X/j9GdLOeVTpx4gSZmZn2uZtvvpnOnTsHPca6alsfLXk/Z38zmxdPvAhAZmRmwP9O\nWhNrMBUXF7eoXJMtJh1h1HKbMlfx+Bs/5du8HU6HooLIGFMN3AMsBbYDbxtjdorIXSLyQ9c1/wL2\niche4Hng/7mK9wBWiMgmYA2w2BizNOg/RCv9O/vflFa6honHew8TX758OdXV1jIw48aNC4mk1FrX\njrsWrNmVKIotIuu43mdqDV9aTPYIIwARqR1htMvjGq8RRiKSJCI9jDEFhNEIo+YqKy8hrzDb6TCU\nA4wxS4BhdY49X2f/nnrK7QPGBja6wFu0e5G9PaPHDK/BDcuWLbO3Z8+eTTiYNHYSvAAMtfY/2PEB\nv5j+C0djast8SUz1jTCq2/JpaIRRAe4RRtXAQmPMC429mL9u5vnzpmBL69p/aL/f6qpPKLxXJSUl\nfqurrlCrq6U3ctub6ppqPtj5gb0/s8dMe9sYw7/+9S97P1wSU+fOnelS0IXjQ48D8M7mdzQxtUIw\nRuU1a4RROFiZuYhTp0+SV+Ruzvfvehax0W1r9uTmyDueRfdOfYiICM/h8Mp3X+//moLSAgCSY5MZ\nm+xuAG7YsMGeTy4pKYnp06c7EmMgTOg0gWVmGQhsKNxAwckCeiTo8jAt4Uti8tsIIxGpHWHUYGJq\n7c08f94UbGldH29+zmti02mjLmZw0mTH4wpEPauyP6TgBGzLXcXI1KlMnzSj6UJBiCsQdbX0Rm57\n84/t/7C3Z/Wc5fXs3rvvvmtvz5s3j9jY2KDGFkgzzpnBsqxl0B8Mhnd3vMs9k87orVU+8OXejz3C\nSERisEYYLapzzSLgFoC6I4xEJMF1vHaE0TbCXI2pcTqEoOnbQ7u3lFtVTRXv73zf3r+o10X2tjGG\nf/zDnbSuu+66oMYWaJMmTfL67fbm1jedC6aNazIx6Qgj1Zj5M24lPjbB6TBUiFi+bzlHyo4A0Cuh\nl1c33vr16+0Va5OSkrj44oudCDFgJk6cCDsAa8Ahq3NW6+i8FvLpHlN7H2GkGldeeQqAHXlrSNgb\nxZjBUx2OSDnltS2v2dvXnnUtEeL+7vvGG2/Y21deeSUxMTFBjS3QkpOTGdZnGLu/3W2Pznt729vc\nP+N+ZwNrg9rlMG7lXzU11lfErTkrWbVtWRNXq3BVXF7Mezves/e/P/b79nZZWRmvvvqqvX/DDXWf\nNw4PF1xwAXisfPFaxmsYY5wLqI3SxBQAMdHWDd0Lz5nHtRfcxfhhM5so0bZFRuqUiwre2f4O5VXl\nAIzuMZpxPce5z73zDkVFRQAMGjSIiy66qN462rpZs2bBbsC1ys3uo7tZcSCsByEHhCamAJp+9lxm\njL6EIWltc60ZX10143Z6dR7gdBjKYS9vetnevn3s7V4P1f71r+7JYO666y4iwmTBzLrOP/98pFK8\nWk0vbGz00U1Vj/D81+GAUxVl5B89wNtfPMfR4gKnwwmqGWMu5azek50OQzloS8EW1uZaS1lER0Tz\nvdHfs89t3bqV9HRrefXY2Fhuu+02R2IMhq5duzJt2jTY4D727o53OX7quHNBtUGamPxk94HNPPb3\nH7Nqmw46VO3PM2uesbfnD59P1/iu9v7ChQvt7e9+97t07dqVcHb11VdbU/fmW/vlVeW8mvFqo2WU\nN01MATKy/wQSOiQ5HUbQ7dy/kUdfu4etWeuavliFhSOlR3hjq3vE3U+n/NTezsjIYM0aaxXbiIgI\n7r8//EeoXX311VY3pscsWM+sfYaqmirngmpjNDH5QU1NNWUVJwEYM2gKz/7kI+6a9xs6xMY7HJkz\nCo7nUH76lNNhqCBZuGEhFdXW3f4JvScwNc16XMAYw//93//Z1910000MGzas3jrCSd++fZkzZw5s\nAVwLO2cXZXvNH6gap4nJDwqLD/H2F885HYajEjukML7/rKYvVGGlrLKMP6/7s73/08k/tQc9vP/+\n+/aUUJGRkTz44IOOxOiEBQsWQCXg0XHwP6v+R4eO+0gTUyvtzd3O1qx0ez+clk5vjk5xXRiZOtUe\nGv/6Z3/kwRdvdzgqFWh/Tf+rPWFrWmIa1468FoCTJ0/y05+6u/QWLFjA4MGDHYnRCZdeeilpaWnW\nhG6V1rH1eeutufRUkzQxtcKG3V/z7HsP8PGKvwHQJaErN83+ibNBhZDi0mM8//HvnQ5DBUjp6VKe\nWOlezPqBGQ8QE2nN5vDb3/6W3Fxrrufk5GR+97vfORKjU6KiovjhD39oree92X38/i/u11aTDzQx\ntVBW3k5eXfK01zEJ02czWmN79noyc7Y2faFqc55d+6w9L16fxD7cPs5qIX/xxRf88Y9/tK/78Y9/\nHBar1DbXggUL6NixI3yN3WrakL/Ba5JbVT/9TdpCBw9/67U/ZtAUJo+40KFoQkevlL4M7TPa69jq\nbZ87FI0KlLySPB795lF7v7a1dPToUb7/ffdURFOnTuXSSy91IkTHde3alXvuuQdK8LrXdP8X91NR\nVeFYXG2BJqYW+DZ3B+9/9aK9f9+Nf+SOy3/FJVOudzCq0DB74jXcc9UjPHz7CzpVURi77/P7KK0s\nBWBkt5Hccc4dlJaWcuWVV9pdeCkpKfz2t7/1mgGivfn5z39OfHy8tQKdNVsTmccyeXLlk47GFeo0\nMTVTxelTXiPwZo65jNRuOh1PXV06dePGi6wJ53dkb+BIUb7DESl/+XLfl/x9y9/t/WcveZa9e/Zy\n3nnn8c0339jHX3755bB/mLYp3bp14yc/+QmcAr50H3/0m0fZe2yvY3GFOk1MzVBSVsxvXrqdguM5\nAPRITuOyqd9ropQqqzhJxt7VToeh/KCovIjvf+TuqpvTZw6v/PYVRo4cyYYN7nl4nnrqKa644gon\nQgw5999/P6mpqdYIvTzrWEV1Bbd+dKs+dNsA7WtpQPnpU5RXWk/Hbc1axyer3ySvMNvrmu9Mu6nd\nPkTri6SOyfb2opWvsWjla0wecSEDe49g6qjwWiSuPTDGsOCTBeScsL6YdTAdWPrTpZgS9yiz6Oho\nnnnmGes5HgVAQkICTz31FNdffz0sBu4EImDlwZU8/O+H+d2F7WvEoi80MXkoKSti4aJHOXQ8h4om\nZi74yTWPMih1ZJAia5uG9hnNrPHz+WLDR/axtTu/5FjJEU1MbdAfVv2Bt7e9be+f+scp68a+y5w5\nc3j88ccZO1bXBq3ruuuu429/+xtLliyB5YDrWfRHv3mUyWmTuXzo5Y7GF2q0Kw84UXqcQ8cOkle4\nn/0FmY0mpY5xnbj7yoc1KflowrDzue3S/3Q6DNVKH+36iPs+v899YAOw09qcOXMmq1evZsmSJZqU\nGiAivPLKK3Tv3t0aCOFacd1g+O573yU9N73R8u2NJiZg2fr3+e/Xf8T/fvhQo9eNHzaTx+56nWF9\nxwQpsrYvtVt/xg2ZTkx0nH0sM2cr7/37Bfbl73IwMuWrD7Z9wLX/uBaDq8tuP/Av6NChA88++yzL\nly9nypQpjsbYFvTs2ZPXXnsNDPA+4FoJo6yyjEvfvJSN+RudDC+ktOuuvJKyIrZmpbO6nuXAe3RJ\nIy1pGCN6TWLYWUMAiI6KCXaIYWPs4Klk7F1NRaU1ZvbrjE/4OuMTfvW9P9G7a39ng1NejDFkZmay\nZMkSXtzwIlv7bYVI18ljwDswddJUXn31VYYMGeJkqG3OnDlz+MMf/sAvfvELeAO4A+gAhWWFXPDq\nBXz03Y+4YMAFTofpuHaVmLZlpfPqkqeoqCxHEDp36srxkiNnXJfUMZkHbvmLPQFlUkLyGdeo5rlp\n9k+YNmoOr332NMdOHLaPf7NlCZdNvZHKqgoiJJLoqBhqTA0Roo35YCouLmb58uUsWbKEzz77jOzc\nbLgI8Fz/8Rh0fK8j//Xwf/Gzn/2MyMjIBmpTjbn33ns5ePAgzzzzDPwduAnoACcqTnDR6xfx3xf+\nN/85/T/b9WcgbBNTTU01+/J3s/tgBsdPHGHtzi+9zhtMvUkJoKz8ZDBCbHcG9h7Of922kOKTx/jd\nqws4XVXByq1LWLl1idd1V46/m05xXRyKMnwZY9i7dy+ZmZkcPnyYw4cPc+DAAVauXElGRoZ7DrdB\nwH8AKe6yMcdjuD3udh7Z/AjdunVzIvywISI8/fTTdOjQgccffxxeAW4GOkGNqeFXX/yKl1a9xIvz\nX2Tm0JlOh+sInxKTiMwF/oR1T+olY8wT9VzzLHAJ1rSFtxpjNvtatq7sQ3vIyrPurI4cMIGYqBhy\nj2QDUHTyKFGR0by7/Hkqq0/bZaaOvJgNu7/mdFUF8TGJ/H11KTU11b78eAB0iIln6qjZjBwwgdRu\n/X0up5ovKSGZC865gs/WvVvv+Q83/C+CEJd8P7269iUlsQeHj+dx+HguJWVFpCT1ZECv4URHRQc5\nct8F+zPj6fjx4xQUFHD48GEOHTpERkYG6enppKenU1RU1EDAwBBgGlDnefE5fefw3q/fIyEmoTlh\nqEZERETw2GOP8Z3vfIcf/ehHbHxhI1wD9LXOZ57K5Ly3zqPj/o6MOjmKCT0mMHTIUEaPHs3UqVMd\njT0YmkxMIhIB/AVrgGMekC4iHxtjdnlccwkwyBgzREQmA/8HTPGlbH12H8jgk9XWiphrtn/OoWMH\nm/xBVm933ycqO32iwevmz7iVqSMvJioyhqfe/gVgze/2/Ut+3uRrKP+5bOr3vBLTReOv4vMN7oXU\nDIaFi6252FKSenC0uMCr/K9v+jO9UvqwNWsdBcdy+Neat5g04gJSu/Znxhhn52YL9mempqaGzz77\njFdeeYVVq1bZUwI1KRroAwwDhgN1FlxOjE3k6dlPc/u429v1tEKBNG3aNNLT01m6dCl/fu7P/Gvf\nv+Bc7Ht6pf1KWcta1h5bCx8BT0GHYx0Ye/ZYBgwYwLhx40hJSSE5OZk+ffowePBgEhMTnfyR/MKX\nFtMkINMYsx9ARN4G5gGeH5R5wGsAxpi1IpIkIj2wvns1VdbLtqx0OykBPiWl+lw29Ub69xxGh9iO\nGGMoP209LDskbRQREdbf+q9ueqZFdSv/uOeqRzDGEBMdy4Bew9mUuZKjJwrOuK5uUgJ47O8/OuPY\nqm1LAfhk9ZuUVZxk9KAplJWcYly/C8k/epC4mDiiImPoFB/wJe+D+pkZNWoUO3fuPPNEBNABiAPi\ngc4QnxpP0oAkyjuXUxRThJEzl2CIlEjuGHcHD53/EL079W7+T6+aJSIigrlz5zJ37lyys7N58uUn\neevQWxT19GjdJgPnWf+fqjzF6kOrWX14NW9+8CacwHqe7ARQDl0TuzJ08FAGDx7M4MGD6dmzJ4mJ\nifX+36lTJ6KiQu+Oji8RpQKe2SEH64PX1DWpPpb1silzpQ8hQVRkNLHRccyeaC1MNmH4TLZlpbN8\n/ScADO0zhgG9wn8Z57as7izkD932PGXlJ1n69WKKyo6QmppKTHQs5adPkeaaj3Dhokfdw5YbULvM\n/ZZv1wCw93CGNR1ME84fdwUdYuKprqki+9AeLp92E/17Dm3BTxbcz8zO83bChVjfsiOBKJAYwUSf\n+T6Vuf6rT3KHZG4fezsLJi5gYJeBjb2kCpD+/fvz3CPP8RzPsXrfap76+ik+PfApZTUef2e1Ld0+\n9ddRSCGFlYWsOr0KCoECoKbh/yMiIoiMjCQyKpKoyCiiIqOIjIyst5UsNN1y9rxmz3/t8fEnr1NH\nU4tWicjVwBxjzA9d+zcBk4wxP/a4ZjHwmDFmlWv/c+CXWN/+Gi0LUFxcrCtnqTYlKSmpwU+ofmaU\nOlNjn5m6fGkx5WLfkgMgzXWs7jV96rkmxoeySoUb/cwo1Qq+DJRPBwaLSD8RiQGuBxbVuWYRcAuA\niEwBiowxBT6WVSrc6GdGqVZossVkjKkWkXuApbiHr+4Ukbus02ahMeZfInKpiOzFGvp6W2Nl675G\nc5p4SoU6/cwo1TpN3mNSSimlgsnROS9E5BoR2SYi1SJyTp1zvxaRTBHZKSKzm1nvGBFZLSKbRGSd\niExoZZw/csWxVUQeb01drvp+LiI1ItLiuY5E5ElXTJtF5H0RafbDCyIyV0R2icgeEbmv6RIN1pMm\nIl+KyHbXe/Tjpks1WWeEiGwUkVZ1Y7mGYb/req+2u54ZamldP3P9e90iIm+4utqCKlCfmUATkYdE\nJMf1d7rR9RBxyPDXZyEYRCRbRDJqf785HY8nEXlJRApEZIvHsS4islREdovIZyLS9PMaxhjH/sd6\ntG8I1qLD53gcHwFswupq7A/sxdW687Hez4DZru1LgOWtiPF8rG6VKNd+11b+zGnAEmAfkNyKei4C\nIlzbj2ON8GpO+QjX+9oPawDqZmB4C2PpCYx1bScAu1tal0edP8OaSWxRK+v5G3CbazsKSGxhPb2x\nFiuIce2/A9zSmthaGEdAPjNBiPsh4F6n42ggNr99FoIUbxbQxek4GojtXGAssMXj2BPAL13b9wGP\nN1WPoy0mY8xuY0wmnDE4fh7wtjGmyhiTDWTSxLMcddTgfo69M60b1bQA642scsVc2Iq6AP4ItHqB\nImPM58aYGtfuGqyE1xz2Q6DGmEqg9kHOlsRyyLim0zHGnMRaqSe1JXWB1QIDLgVebGkdrnoSgRnG\nmFdcsVUZYxqeFqRpkUBHEYnCemQ1rzXxtUQAPzPBEKr3xfz2WQgSIUSXLDLGrMBe0MM2D3jVtf0q\nML+pekLyh+PMhwxzad4vup8BfxCRA8CTwK9bEctQYKaIrBGR5a3pFhSRK4CDxpitrYinPrcDnzaz\nTEMPeLaKiPTH+sa0thXV1Cbv1t4AHQAUisgrru6jhSLSoSUVGWPygKeAA1j/HouMMZ+3Mj5/au1n\nJhjucXU9v+hTd07wBOSzEEAGWCYi6SJyp9PB+KC7sUacYow5BHRvqkDA56IQkWVAD89DWG/sA8aY\nxYGoF6ub6yfGmI9E5BrgZaDBtbwbqes3WO9RF2PMFBGZCPwDaPCx+Cbqur9OHI1+g/TlvRORB4BK\nY8ybjdUVDCKSALyH9d63aIp2EbkMKDDGbBaR82ndt+wo4BzgbmPMehH5E/ArrG6l5sbVGeubXz+g\nGDaSIrkAAAKhSURBVHhPRG4MxPseqM9MoDXxmXwOeMQYY0Tk98DTWKsRqeabbozJF5FuWAlqp6ul\n0lY0+YUz4InJGNNgQmhEQw8f+lSviLxujPmJ67r3ROSllsYoIv8BfOC6Lt01aCHFGHO0OXWJyCis\nvv8MERHXz7RBRCYZYw7XV6ap905EbsXq8rqwsesa4MtDoD5zdW+9B7xujPm4pfUA04ErRORSrJne\nOonIa8aYW1pQVw5WC3W9a/89rD7ulrgIyDLGHAMQkQ+w5uL2e2IK1Gcm0JoR9wtAKCVYv34WAs0Y\nk+/684iIfIjVFRnKialARHoYYwpEpCdQ7+87T6HUlef5zXgRcL2IxIjIAGAw0JzRJ7kich6AiMwC\nWjZhk+UjXL/4RWQoEN1QUmqMMWabMaanMWagMWYA1i/NcQ0lpaa4RjX9J3CFMaaiBVX4+0HOl4Ed\nxphWzYxrjLnfGNPXGDPQFdOXLUxKuLoPDrr+3sCasXtHC0M7gDX7d5zri8UsrHtpTvLnZyagXL+Q\nal0FbHMqlnq0mYeaRSTe1TOBiHQEZhNa7yVY/y7r/tu81bX9faDpL64Oj+CYj9W3ewrIBz71OPdr\nrJEyO3GNsGtGvdOA9VijlFZjJYCWxhgNvA5sddV5np9+9ixaNyovE9gPbHT9/1wL6piLNYIuE/hV\nK2KZDlRjjWba5Ipnrh/eo/No/ai8MVi/eDZjtXyTWlHXQ65/j1uwbuJG++PfQjNjCMhnJghxv+Z6\n3zZjfdnr4XRMdeLzy2chCHEO8PicbQ21WLF6EPKACqwvc7cBXYDPXe/vUqBzU/XoA7ZKKaVCSih1\n5SmllFKamJRSSoUWTUxKKaVCiiYmpZRSIUUTk1JKqZCiiUkppVRI0cSklFIqpGhiUkopFVL+P6++\nb1fU6CT+AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -343,8 +603,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "mean = -1.57\n", - "std = 2.10\n" + "mean = -1.59\n", + "std = 2.09\n" ] } ], @@ -354,7 +614,7 @@ "\n", "d_t = f2(data)\n", "plt.subplot(121)\n", - "plt.hist(d_t, bins=200, normed=True, histtype='step')\n", + "plt.hist(d_t, bins=200, normed=True, histtype='step', lw=2)\n", "\n", "plt.subplot(122)\n", "kde = stats.gaussian_kde(d_t)\n", @@ -379,7 +639,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -390,7 +650,7 @@ "-1.5*sin(x/3)*sin(1.5*x + 2.1) + cos(x/3)*cos(1.5*x + 2.1)/3 - 1.6" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -412,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -423,7 +683,7 @@ "-1.66528051815545" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -442,16 +702,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XncXOP9//HX5L6TyIIkpEQSIiih1hIhaNBqUtReUWrX\ntKW6oLG0za3V0vqqX9W3KGqrr61FUZVINRWKCJLYQlZZrInIvtzL5/fHdeae60xm7pm579nOnPfz\n8TiPzJxl5jNzT95z5jrnXBeIiIiIiIiIiIiIiIiIiIiIiIiIiEgRjQRmArOAsRmWHwNMB14DXgEO\n85bNB2YEy6aUtEoREWm3OmA2MAjoDEwDhqSt08O7vXuwftI8oE8J6xMRkTx0yrF8KC685wONwP24\nPXnfau92T2BJ2vJEB+oTEZEiyBX2/YGF3v1Fwbx0xwJvA/8ELvTmGzARmAqc1/4yRUSkI+pzLLc8\nH+fRYDoYuAfYOZg/HPgA6As8jWv7n1x4mSIi0hG5wn4xMNC7PxC3d5/N5OAxtwCW4oIe4BPgEVyz\nUHrY5/uFIiIiYUVrJq8H5uAO0HYh8wHaHbwn3CdYH6A7sGlwuwfwPHBEhudQ2Kc0VLqAKtJQ6QKq\nSEOlC6giDZUuoIoUlJ259uybgAuA8bgzc27Htc2PCZbfApwAnI47gLsKGB0s2xp42Huee4EJhRQn\nIiK1Q3v2KQ2VLqCKNFS6gCrSUOkCqkhDpQuoIgVlZ66zcaS8JlW6gCoyqdIFVJFJlS6gikyqdAHS\nftqzFxEpXFHb7EVEqkHcdwo7fNaNwl5EoiKuV+MX5YtObfYiIjGgsBcRiQGFvYhIDCjsRURiQGEv\nItJ+84E1wEpv+gNwJuF+wDbDdRnzEG5skDuB9WnbnVSekisn7qdUiUhu1ZoT8wiPzpd0Jqmw7w28\nDPyF1A72HcAv8nyObK9dV9CKiFSJvsC/ccOznga0VKoQnWcvIlFX7L3+Qs/nz7Z+H1z3DpOA84vw\nPJFXrT/PRKR6tJUTVuSpEPNx7e3LvOlc4AxgBa5dfmiG7e4E1nrbfJzj9RUyv2pFrmARKbtqDftc\nbfYX4gZy2ittednb7NWMIyJRV83NITcAXXHDso4A3vSWlbVuhb2ISMfkCu1rcYE/EfgS8G4e2xSd\nwl5EpGMeB5q9+08DfyfczHIVqcAfQfuajCIvdi9YRAoW55zQefYiIpIfhb2ISAwo7EVEYkBhLyIS\nAzobR2LORgA7AXMg8UyFixGpqJHATGAWMDbD8mOA6cBrwCuErybLtS3E+yi7VJzdBbYYbDLY0ZWu\nRrKKc06UpbuEOmA2MAjXB/M0YEjaOj2827sH6+e7LcT7jygVZ3eB3Q72BNiSSlcjWcU5J8py6uVQ\nXGDPBxqB+3F78r7V3u2eQPI/TD7bilSDZ3F9mYjUrFxh3x9Y6N1fFMxLdyzwNvBPXMc/hWwrIiIl\nlusAbb4/Ex4NpoOBe4BdCqyjwbs9KZhERKrdfKAfsA2ud8uk14A9cc3YC3AtHQ3AAbgBTGYDN+G6\nOs7XiGBql1xhvxgY6N0fiNtDz2Zy8Jh9gvXy3bYhRx0iItXIgLnAKcCNwbzdgW6kdpYPACbgujQ+\nDfgU2Af4CYWF/STCO8Lj2ldyZvXAHNy3UxcyH2TdgVQPbvsE6+e7LcT7wItUnN0FdgbYljpAW9Wq\nNSfmAVcAU7x5/wNcjtuD3w54DjcIeXuVbfCSUcA7uJ8dlwXzxgQTuG+nN3A/WyYD++XYNl21/hEl\nFhT2EZE1JwysmFOBdc0DDsedYr4L7izEhcC2uLAfAjThujZuL41UJdJxCvuIqPawvwL4Ne7aovG4\n0G8BDgz+/Xy7XnXrSyxofka6glZEpGMMd2LKZGB74G5STdvLcGHfDzdoScWobxwRibQEJIo5tbOM\nBbgDtaOAh735a4AXgBM7+DI7TGEvIlIc5+C6i1nrzTPccc0zgYuBLYL5ewL3lbM4hb2ISHHMBV71\n7ifb1F/AfQkchjtDcSlwC/CPchanNnsRkfbbPsv8JtxB2qSXga+VvpzstGcvMWY/A75Y6SpEykFh\nL3F2Pq6bj1dzrSgiHafz7KVC7EOwrYPbW4ItAxsE1rWiZUkmcc6JsnRxLBIXLcBy3LnQX6hwLSJF\np7AXASDxKSQGAa9Xtg6R0lDYi4jEgE69FJGoiHO7fYcp7EUkCtrbjYEE1IwjIhIDCnsRkRhQ2IuI\nxIDCXkQkBhT2IiIxoLAXEYkBhb2ISAwo7EVEYkBhLzFkO4A9A/SpdCUi5aKwlzjqCQwCRgLLMizf\nIvhC6F/WqkQqbCQwE5gFjM2w/FRgOjADeB7Yw1s2P5j/GjAly+OrvwspM9sTbHqWZa+AjQdbCzap\nrGWJFKao2VkHzMbtBXUGpgFD0tY5ANg8uD0SeNFbNo/cP5UV9lJmeYX9BIW9VLmiDl4yFBf284FG\n4H7gmLR1XsAN+gDwEjAgbbk6MJKoOaTSBYgUW66w7w8s9O4vCuZlcw7wpHffgInAVOC89hQoUmbH\nArsDN1e6EJFiytXFcSE/Ew4FzgaGe/OGAx8AfYGncW3/kzNs2+DdnhRMIhWQCHZuLP0XqkiljQim\nkhgGPOXdv4zMB2n3wDX37NjGY40DLsowX232UmZttdm3rjNCbfZS5YqanfXAHNwB2i5kPkC7LS7o\nh6XN7w5sGtzugTtT54gMz6GwlzJT2EtNKCg7czXjNAEXAONxZ+bcDrwNjAmW3wL8HOgN3BTMa8Qd\n2N0aeNh7nnuBCYUUJyIitUN79lJm2rOXmlDUUy9FRKQGKOxFRGJAYS8iEgMKexGRGFDYi2S3Fdgp\nYHWVLkSkoxT2Ipl9jLuu5F5yn6IsInnQqZdSZvmcetm67nqwrqWtR6RddOqliIiEKexFRGJAYS8i\nEgMKexGRGFDYi4jEgMJeRCQGFPYiIjGgsBcRiQGFvYhIDOgycJHcuoJ1ApohsaHSxYi0h/bsRXJb\nDqwBflfpQkTaS3v2EjO2A3BIARscBiSAw4G+JSlJpAwU9hI3xwPfBZ7Mb/XE8+5f2wuFvUSYmnEk\njv4GiQsqXYRIOSnsRURiQGEvIhID+YT9SGAmMAsYm2H5qcB0YAbwPLBHAduKiEgVqANmA4OAzrhh\n2oakrXMAsHlweyTwYgHbgkaqkrKyS8Cubcd2F4DdWPx6RNqtqCNVDcUF9nygEbgfOCZtnRdw5yED\nvAQMKGBbEREpg1xh3x9Y6N1fFMzL5hxSp7QVuq1ItdsBbFkwDap0MSKFyHWefSE/Ew4FzgaGt2Pb\nBu/2pGASqTadgGW4Jkqd3CDlNiKY2iVX2C8GBnr3B+L20NPtAdyKa7NfVuC2EA57kWp1GK5ZUqQS\nJhHeER5XzAevB+bgDrJ2IfNB1m1xbfPD2rEt6ACtlFW7D9B2A9sCrDfYXLDBxa9NpCAFZWeuPfsm\n4AJgPO6n6+3A28CYYPktwM+B3sBNwbxG3MHZbNuKRFBiLbDW3db+iUh76H+OlFF79+xDj6E9e6kG\nRd2zF5E2mPvVOhz4Mq5JszOwANe2+kzC/dIVEbRnL2VVnD37rqwdbHCqwTsGlmX6wOB8c18AIsUW\nueyMXMESZR0P+8/x4fzlbPpMGyGfPr1gsH2xXoFIQM04IqVisOM8hvXfjJXbebOXAw8AU4BmYE/g\nZKBfsHwY8LLByARMLWvBIlVEe/ZSRu3fszcYbPB+2l77DZbqG8pft5vBTw0avXVXGuzf8dcgAkQw\nOyNXsERZ+8Le4HMGc5PBvZ7OTQ9xwqV5bHeAwVIv8JcY7Ny+2kVCIpedkStYoqzwsDfobPCfZGA3\nUrfhKB57E+w7eW6/m8EnXuC/Y7BZ++oXaVXUXi9FBH5NapByq6f5hCc4enK+GyfgTeAoYE0w6/PA\n7eYGMhcpC4W9SBsMDgcu9mZdkYDHC32chOv++9verBOBMzpYnkjeFPYiWRj0BO7wZj0FXNPex0vA\nvcDN3qwbzF2IJVJyCnuJEfsxbo86Xz8j1XPrUuDsRMePMV2M6zgQYFPg+g4+nkhk6ACtlIlNBLse\nLL2H1o3XhCFpp02enrbGzWDjwb5VcBUwPO30zS8X+hgiRDA7I1ewRJVNBMsZrAYJg4leGD/nHUzd\nA7gCBvwXdlsBext8pRm4GtfffV6/lg3u9h7/LXWpIO0QueyMXMESVXmH/Te8IG7e4K6IPRJ42S1u\nc5qH6wK8zfA26GewwnueH3XopUkcRS47I1ewRFXusA/OqZ+TDOFP3DgMT5A75NOn14F9cjzXxV7Y\nLzfYsoMvUOIlctkZuYIlqvIK+/NSV8myvLc7MOuH+FrgPtxpkwfAoIPhgfXA/7Lxuo2kBvrJ9Fxd\nDGZ6gd/uM30kliKXnZErWKKq7bA36GqwIBm+l7pOzfzwvgnYOm2r7mDJi6W6A5fiLp7yt7uOLBdQ\nGZzkhf0qg74deokSJ5HLzsgVLFGVM+zPTwbvR2A9UmH9AfClLFv5YZ+0I/Aq4cC/mQyBb9DJYIYX\n+L9tzyuTWIpcdkauYImq7GFvrpfK1h4tf5gK6RlA/zYeM1PYg9vL/xvhwL+WzIF/vBf2awy2KvSV\nSSxFLjsjV7BEVZth//1k4C4C28R9Ll8Geud4zGxhD268iLsJB/73Mjx3J4NpXuBfl/9rkhiLXHZG\nrmCJqsxhb1Df6LXVX+A+k28AW+TxmF7YW1+wIWD+qFT1wCOED9oOz1DDMWlt930Kf30SM5HLzsgV\nLFGVOexXuLFkk6daWndYAgzK8zGDsLdHU1ltU9JW6oYboco/BtAv9CjuQi6/7f6ywl+fxEzksjNy\nBUtUbRz2Bol58HEyZK+EFtyVsPk+ZjLsnwM7zj2+TQHbCWxnsGS/9dsBn5AK/OdIGxbU4HQv7D8w\n6NqBFyu1r+jZORKYCcwCxmZYvgvwArAOuCht2XzcAa7XcONzZqKwlzLZOOyvh0uSAbsGbFfX+Vkh\nj9kdbD3YdLCDwIYGYf9Z8JAneysfTvh0ztBIV8F594u9wD+rXS9T4qKo2VmH66FvEO7y72nAkLR1\n+gL7AlexcdjPI3fbo8JeymSjsN98IqxNhutD7vNa4IAitgnYS8G0V1rYj08Le4ArSIX9euALoUeD\nsV7Yv2Ea4ESyKyg7c3XaNBQX9vNxB5buB45JW+cTXHtkY5bH0IdVqtJB8OfDYRNwbTfrYTQF73wk\n1kFi/2CalscGv8Gd5QPQBbiLcD86twCrgtu74X5Zi3RYrrDvDyz07i+izXOON2LARNyXwXmFlSZS\nLFYH9hqwvzdz1ElwfPLOfJhymhtNqtSagDNxe/Xg+s9pbc5JwGfAbd76F5ahJomB+hzLO9rEMhx3\n5kFf4Glc23+msTsbvNuTgkmkmPYEvgjMATbZFG48w1s4GC4v0fN+G6wbJO705r2FOzaQvFr2Ctwo\nVnOD+zcAP8D9Kh5psGMiNeCJxNeIYCqJYbih2JIuI/NBWoBxbNxmn89ytdlLiVkdWLM342ff9s6T\nbIRZxWsbD7XZnwh2F9ifM6xYR7jL5MdCjwJP6CIryaGo2VmP2xMahGtfzHSANqmBcJh3xw27BtAD\neB44IsN2CnspsVDYb5+AtdO8sDe3F12s5xoKNjs4E6cX2NlZwh7cMTH/6tojWx8FRnn1LTP3/0nE\nV/TsHAW8g/sZmbzQYwyprlu3xrXrLweWAQtwAzUPxn05TMNdjZjtIhGFvZRYKOwfHe4FfQusNuhV\nxOfaCeyvwdQjR9iDa59Phv0cggPGQRcKs73AP6d4NUqNiFx2Rq5giZrWsD8csHvDe/V/KvFznw32\nMth3sqzQF7eTlAz81p0ig4u8Ol/VaZiSJnLZGbmCJWqsDpqagVc/F1wB5YXoXiV+7qFgt4AtamOl\n80mF/XKCEasM+ph3HYC5Y2giSZHLzsgVLFFjdXBPC2CXh4P++TI9/4Bw2NumYLu7CXDn2c8kFfjX\nt64Jt3v13l6eeiUiIpedkStYoubw7rCd1YG9Fw77U8vz/BuF/UiwVa6EVseRCvsNuGNeGAzz6l1t\nsBkiTuSyM3IFS9TUXQzYkeGg/7h8HY35YW+Xgi3EdaXgf/YTuF8aycD/P9yNhMHrXt3Z2v4lfiKX\nnZErWCJlU4KBwB8Oh30Zh/8Lhf3vwH4Dtl1Qyulg2wQrHkj4VMy9cDcu9Op+pXx1S5WLXHZGrmCJ\nlMsB2wpsQzjsdy5fCTYgeNq1YE+B/RgsAXY32Adg/vUn/kAnj0DGA7X7ZHiOp8DeBDulHK9IqkLk\nsjNyBUtkbA58Ctgl4aDP1GVHCVkCrBvY20HzzY+9ZRPSwn4PQnv3zzyHu3FPsv7HOfItsDvBvNC3\nOWDPg2007KHUrIKyM1dHaCJRdiHBGLLnhDqWLPdZLQmDxFpc55oZx8D1zAD+mrp77dDgxq3JOYfw\n7JBNWbEfMBB3le4FuC+2VYhUMe3ZSyn0wvUgacPDe/UrzHXfUQHWHXdVrffNk75nb1vAyINxXwzJ\nPfx9DRLr6dx6Re3F/PZ1sGPAdgRbDnYj2EPas4+VyGVn5AqWSGggCMv7YbkX9rdUuK40NgHsLLC+\nwf33wRrha5/SGvaJJ8ASz3PA/yZfx+vstgzsCbDVYEGPmPZHhX2sRC47I1ewVL3euCtRbVN3YHad\nF/ZDc21cXnYn2JLgZKF/B8eRr4MXJ7vmn2TgX3jGl5lw9AbqW5KvZX9emAJ2G1jP4LEU9vESueyM\nXMFS9X5JEJI/dAN3J4N+RnX2L2MXBwdu54EdCpY8//8+WsN+xzfBznyKIz5Jvp4/cP5asGu9x1HY\nx0vksjNyBUtV60WwVw/YR+GeI4vYlXExtYb962kLhhBqu58w9UQenOG9nqXhC8OSYW+bBF8c88D2\nR2qVzsaRWPseQZcCX4R5n4MdANbTBeAvFayrPd7G7d0Hfr/Hwxy/CHgvmNEHODbDdglgG9z40GW6\nSliqncJeakl34EfJO3+AWcnbj3KsJdyVtFFzdermPzq3UH8J4PePn62f+xZgXenKkqhR2EstOZeg\ne+Cu8N4w2De54HbOqfbmwgFZ5r8B/N27fylwB6mf8F8x2L6UhUltUNhLregCXJK882uYmHDNHBi8\n9y8Or1hheXgdeAF4OMtyb++eUxKuS+Tx3ryzvNsHAo8XtzyR4qj2PS6JhrNJXYT0YSNMTB7IfJGh\ndxIecDyKJpJ6fTcZnOAdqF1oUBccoJ0A9gLYV8CeBTukwnVL6UQuOyNXsFSdOuBdgjA8CK42aDGw\nFmjZjnmfgT1T4Ro76jBSYb9+H9jWXDfNycAfFYT9GrBH3Sb2LNh5YMeCjahc6VIikcvOyBUsVecb\npIJw2XIX9mZgi+k3FeyfFa6vGBLAi6Re57UG/+OF/d9wnXvuDNbfbWLPBnv6H4O9XLnSpUQil52R\nK1iqSgKYRhCCneEqgwXJELyT039VI2EP8HVSYb9yQngUq0aDrcKrt4b9eIV9TdJ59hIro4A9g9tr\nprmDnQOD+0su4roXK1NWSTwBvBnc7nkEHEFqHN164FsVqUoiQWEvUZYArvDu/2lX16STdNdStmwq\nc02l1EL4zJwfLA1fKHZuhu4gdil9WVIrRuJGvp8FjM2wfBfcaWPrgIsK3BbUjCPtdwipZo0Nl8Je\nQXNGsmljCNioGmrGAbcHP5fgdfeDS4Num5Ov+aDUqnaS6x7IfqBmnJpU1OysA2YDg3Dn9k7D9dfh\n64u7eOUqwmGfz7ZFL1hi5SlSYX+rwU+80AtGo6q5sAcYQ+p1v7/Bvfbk675j49VtP4V9TSpqm/1Q\nXGDPBxqB+4Fj0tb5BJgaLC90W5H2+iLw1eB2Sxc3gPi53vLbyl9S2dwFfBDc7neB+z+Y9A1zo1aJ\nhOQK+/7AQu/+omBePjqyrUgul3u3H1zvOv7aKbi/AvgrWCfcL8xasw64LnnnVjjZ3IFpcP0Dja5I\nVVLVcoV9R5pYCtm2wZtGdOA5JR52BY737l9NeK/+3gT2Jdx4ro/jDmzWmltwg6ljMPgReM1bdm7m\nTSTiRhDOyqIahmsXTbqM7AdaxxFus893W7XZS6HuJtVm/ZhBb4O1Xrv1PmBvB+eYf63CtZbSOIL3\noS/MbAmPyLVnajXbD+w9sO+4vu6lRhQ1O+uBObiDrF3IfpAV3DeNH/b5bquwl0IMBppIhf0wgwu8\nkHvFrWZvg2X7rNaKPsBKgvfiXXjWex9uSK1mg8BuBlsP1qcypUoJFD07RwHv4A62XhbMGxNMAFvj\n2uaXA8uABUDPNrYtecFS024iFfT/MjdQ63Qv5L7rVotF2AP8huD9+DrM9N6HTw3S9uLtU4V9TYlc\ndkauYKmYbYD1pML+MIP9vIBbkzoTJTZhvzXugK0lwFaFx9w9Jbyqwr7GqLsEqVkX4ZoEAV4C/g2c\n5y1/MOF+YcbJhwSnmRpwS3h0Kh2olaqiPXvJxxbAalJ79Ucb9DRYmeXq0bjs2QNsi7uWxfqDtUCz\n957skFrNPgWbC3ZUpQqVotKevdSkH+DOIQd3SuUTwKmkjg/NJNUpWNwsAO4BWAz8NzzWrj9G7X64\nQcx7IlIB2rOXXDbDHfxP7tWPDg7MzvD2YH8Y3iRWe/YAn8ddT2DHpN4TM/jIoGtqNbsfTBdd1YbI\nZWfkCpayG0sq6N8F6gwO9gJttUGv8CaxC3uABwCrA/vYHaxOvj+nplZR2NcQNeNITekB/Ni7fw3Q\nDJzvzftLAj4ra1XV6dfg3pzfh0+7vKAy5YiEac9e2nIxqb36BUAXg35pXRnvsfFmsdyzB9c9hPUF\n2xA+ULuvW6w9+xqiPXupGT0Jd7HxK2AD8G3cFdoAzyXcAVtxfgGuG8z7w/+/z8+8ukj5aM9esvHb\n6ufj9uo7G7zv7bGenHnT2O7ZQ7B3PzR8oHadwZbas68pkcvOyBUsZbEpsIRU2J+Hu3GSF2AfWOoi\nq4ANAFsdrBLXsN+H4H2bEg78sQr7mhK57IxcwVIWl5EK+nm40c4w+I8XXlduvJkNBFsM1gPXn31c\nPQLY6eGwf6+eDQ8o7GtG5LIzcgVLyW2G66s9GfZn427s7gVXk2UcDMcGgi3ceH7s7AlYV7BPvMAf\nw02TFfY1I3LZGbmCpeR+Siro55Daq7/DC/uHMm+qsPf8FbBfe2E/jT0+AnsLLNu4FBIdkcvOyBUs\nJdWb8NWyZ+JubGOwwQv7YRtvapuDHaywb7U7wbdfoxf4x/LwXWB3VLo46bDIZWfkCpaSupZU0M8i\nOMXS4Gov6J/LvKmdC7YCLMvyWHoAsHu9sH+DXV9U2NeEyGVn5AqWktmOoG/2YDoJd6OnwTIv7I/L\nvLmdC3ZbuYqNiJ2Bpr29sG8m0TyIuRvc6akSYZHLzsgVLCXjjy37EpDA3bnQC/pZBnWZN1fYZ/FH\nwCZ6gb+AAXeDvV/pwqRDIpedkStYSmJPgl4bg+kQ3I3OBvO8sP9u9odQ2GexFbDqq+G9+9V9WPJB\npQuTDolcdkauYCmJp0gF/ePJmQZnekG/xFJ92megsG/DOMBmeIF/FZevqHRR0iGRy87IFSxF92VS\nQd8M7Ia7U2fwrhf2V7T9MAr7NvQEPjzNC/tP6dVi7poGiabIZWfkCpaiqgNeJRX2rWFt8E0v6JdZ\n62Di2SjscxhTBzbLC3xzVypLNEUuOyNXsBTVeaSCfg3BVbEGnQzebLtrhHQK+xzqgZlnemG/lq4r\nL+CGAZUuTNolctkZuYKlaHrjeuNNhn1roBuc6AX9SoM+2R/GHgJbArZGYZ/T0fW4Uce98+6vq3RR\n0i5Fz86RuMGcZxHuW9x3Q7B8OrC3N38+rq/x14ApWbZV2MfXH0gF/XyCg69BW72/V3912w9jy8G+\nCXYYWL8S1xx1CeDJc72w30DdUtMg5FFU1OysA2YDg3D9k0wD0ruN/RrwZHB7f+BFb9k82twjAxT2\ncbUH7mBsMuyPTy5IOwNnpUHfzA9hvcGOCvboc7Tni+fzXWDD/HDb/c8rXZQUrKjZeQDulLikS4PJ\ndzPhASRm4s7rBRf2W+R4DoV9/HTCdXmQDPqnSV1AtYnBe14Ijcv+MDYM7DOwJ8B6lKHuWnL1WV7Y\nr6Jb8468e1Oli5KCFDU7TwRu9e6fhvvp7XscONC7PxE3eALAXFwTzlSCwScyUNjHz3dJBX0j3q9F\ngx95Qf+xuUFMsrBhYC9mXy5t6FkPi97wAv8vfPO9ShclBSkoO+tzLM/3wRJZ5h8EvI/7Gf40bq9/\ncob1Grzbk4JJalN/4Dfe/WuAtwGCc779c+mvSsDKMtYWJ6ua4PuXwcOPBTO+wQMDT4XBCbeTJtVn\nRDCVxDDCzTiXsfFB2psBfzAEvxnHNw64KMN87dnHRwJ4lNRe/Uxgk+RCg996e/XzDLq2/XDas++o\nBPxtcuhgbbZxAqQKFTU763GDRwzCjfWZ6wDtMFIHaLuT+gneA3geOCLDcyjs4+MbpILegIOTCwx2\ntnB/9afmfjiFfRH0O8gdBPcP1h5a6aIkL0XPzlHAO7izcpJX240JpqQbg+XTSbXXD8Z9OUwD3iD7\nlXoK+3joT3iowVuSCwwSBuO9sJls2ZsGPQr7Ijn3Pi/sV7hfVZ0rXZTkFLnsjFzBUrBOwATC59S3\n9slicKwX9M0Ge+X3sAr7IkkMYssZK73AXwqXV7ooySly2Rm5gqVgF5IK+hbCzTc9LNyF8R+zP4x1\nBftNMO0NdoLCvlge/sYlbNKS/Dusdk1q21S6KmlT5LIzcgVLQfYiPPrUNf5Cgxu8oF9qbV6XYT3d\nMUR7D2xCcI79w6UsPk56w+i3vL37WTA1v+Y0qZDIZWfkCpa89cId4E8G/TS8M2wMDkk7MHhG2w9n\nPcFWgT3vmpYtj87RpBAjOML/e9hk+Emla5KsIpedkStY8pJ+muUK3Hio4GZ0N5jtBcs/cu9Ftob9\nELD9wPqXsP6YWm53wmfJv8syaH4IPl/pqiSjyGVn5AqWvFxK+DTLE/2Fac03n1nQtXHbkmEvpWN2\nEAydB63t98/D++PUnFONIpedkStYcjqe8Hiy1/sLDY5La745O7+HVdiXnhnAz+Aq/290U/jiSqkO\nkcvOyBUHZ8cwAAAKkElEQVQsbRqKG4QkGfTP4p2zbTDYvGYCg0fzaL4ZCzYdbKLCvtTMwA4BO+RB\nus1M/p3Wg30Pflnp6iQkctkZuYIlq+2BD0kF/Sy8s2sMuhq87AX9PHMDmLTBuoH92Z1iaa+BjS9h\n/YI9G0xzN2H5u1PYrHXv/j2w4XBcpSuUVpHLzsgVLBkNwHWglQz6pcBOyYXBVbJ3e0G/wdyvgBxs\nPtg6sHNKU7ZkZiPArj+Qv/3uUzq1Bv5EaNrSu05CKipy2Rm5gmUjW+O61EgG/TrgEH8Fg3Fp7fQ/\nyPxQ9nOwx4Pp5iDsB5W0emnT8dz0qf+3uxM21MN+la5LopedkStYQrYB3iQV9BtwneO1MjgtLehv\nzdxOb6eCTQP7Jdh3wZbiLpwaVPqXIdnZ4qn0/rP/N7wS1qLAr7TIZWfkCpZWn8f1c5MM+ibS2nTN\n9XvT6AXFBMvayZY1gv0friuELV2m2JVgOdr1pbRscTdW93/fHUxvDfzz3S+4r1S6uhiLXHZGrmAB\nYF/gY1JB30h4eMpMQf+6QRtjxVojmHpbrDq2GOzFXnx69FJ4wQ/877sv+FMqXWFMRS47I1ew8C3c\nz/hk0K/BdYXdyuDEtKB/N/eFUwr76mQHgP0T7N4vMOO4VTDdD/wfuc/Ar4C6SlcaM5HLzsgVHGNd\ngN+TCnnD9VF/QHKF4Kybn6S10ecR9KCwr2Z2Gq7zufsNNl/rOklr/Rtf7/5wE2izIzspsshlZ+QK\njqndgFcIB/1beP2mBOfR35YW9O+Eg962ATsC7FCw58Krminsq5mNBrsfwGDT9WlNOk+C9XJjTn+1\nwoXGReSyM3IFx0w9cDHhbooN+BupYScx2MXgtbTk/s9DnDAAbF+wa8AuC/5NnmXzDtjlYJeAnQ22\nGZj6YKlaNhrsQbA+YHdvyvJXn2X4Av9vPgtsf/f5uBlvgBopichlZ+QKjpFDcUNK+iG/DvgxwamT\nBp0MvmOwJi3o7zToCrYX2Nog4BeDjQf7B9jUYNqlYq9OCmSj036FPdeJpmdv5HuhwG8EG+d+on2I\n67a6U6Urr1GRy87IFRwDexHunjg5vYprzgE3Y1+Dl/z/6C2w7hO2GLs5y3qBHQT2e7BpwRb3BMH/\nl7K/IikC6+Jaasw7o8oOBptsMLoZVvifhbfAvuI+N1NwB/D1q624IpedkSu4RiWAg4BH2DjkVwFj\ncQdoMdh5If3/0UwitJv3BrvaIUx6Om3v7yWwH7qnsK3AdnD/Sm1wYQ9wMvd9awED3k0/CPMY2BdT\noX88rmlQOi5y2Rm5gmtMH+A7uFGk0kPeYIvH4I17EjQvOYrH/rWWrg+2uEHBW/8zb6C++XGOHN+b\npb8ImmmacAdgTwbbs4KvTUrODgZ7AewWsPmdaLIfcZ2toltTeuj/E+zLYJ1gIfBTYLtKVx9xkcvO\nyBUcTbYvrnOrbYG+wOnA33HdG2QI+c6PwKvLBrDAfsjvWmaxw8r0/7zB9ITBjsFzHAn2oQt7iQc7\nEDdEpIFdFByjObw/C98zuCPTZ2Yu2BVgO7nP2vO4fpJ2Rs08hSp6do4EZuK6qx2bZZ0bguXTgb0L\n3FZhn5N1xg3c0aOdD7A13DUPfrAOBiwkPLCIN3WzHhyz+DD+ZFfyM5vCvs1ZAt7eZMi7P6fhorQ6\n+4OdAja6Ay9WIs8G447TbtibVz58kpEfNXk9Z4ab/rCrwUa5gwHvAX/CXYk9GIV/LkXNzjpgNjAI\n15/JNGBI2jpfA54Mbu8PvFjAtkUvOOJGZJ5tY7z/H2e5A2TWDWxAamocBTO+D/f8Di66D769AL68\nHLb4jIzB7h7kQLBvM8huZr81U9lj7Xo6Z/xPGRx8Xd1Ep9sbqfti5d6LWBpR6QIKY13Adgb7f2C/\nA7viC8yY+WfO/GglPdZn+3w1g70K9kew88EOpUfLVuz+cQKuBc4FvoRr89eXgFNQduZ60w4AxuH2\n0MGNKwpwjbfOzcC/gQeC+zNxH87t89g2WbD+eE4DbjSg7kAPNw3oBT/9Jmw2FD5pgk1GwBLgE9y/\ni9YnWFTXmffru7OG7kA3oBeuMX4L79/PAQOBbYHt6GR9aMnnfW8CngH+CjyYgOVFfL1taQgmqaH3\nwmCTxzj60q346IzdmTGoO+tybvMZrpF/IfBHYF/qbAVd135Gz3XL6LV+FV0/WMuqN1fRfdl6ls37\njGWLlrD2oyb3WV0BrATWB1MTtbODWVB25joq3h/3Hictwu2951qnP67r21zbCtAAv/wSjL0D6s+B\ncfW4n0Xu30XU8R3C89zUBegGXbvTnk5J2gz6N4H/4IYUnJCAZQU/vEgGCVgHjzeAXb89cw+/lGv2\nOos7Nl/LJkf0ZPXOnTJcVNcrmHbHnc7TQHMC1nR308cA/YB9/G1acJ03rSGV8M3Bvy3Br4hmOtFM\nAqOlyc2zFiNhLXTqlMAsgTV3wqyFRJCo1pIIfoUkvC8MC25b6j7pN4Mb5q+TqY/vPN7CVoWOIJMr\n7PN9cu2Zb8RGA7/A7VT/t601FzF6txE80HkSaSN+lN563C+xN7zppYT72SBSQonl8+DhMW4CVmHu\nitthwJ4Gu66Dvethl87QtdBH70TrT+OMT+6mluT9LqlFhvta8NXGD4FcYb8Y98s/aSBuD72tdQYE\n63TOY9uk2ng3Q0Lff0e1teZtwQRwZanKyawrsGcwVaNxlS6gitT8e5HvHmOZ/4/ERj0wB3eQtQu5\nD9AOI3WANp9tRUSkSozCjS86G7gsmDcmmJJuDJZPJ9x2lmlbERERERGpJSfhzvpoJvxrYBDuQPpr\nwfTHsldWftneC3C/iGbhDqQeUea6Kq0Bd5wn+VkY2ebatSmfCxPjYj4wA/dZmFLZUsruz8BHwOve\nvD7A08C7uIFjelWgrrzsghv44t9sHPavZ9qghmV7L3bFHevojHtfZhOv7mLH4bpTjqt8L0yMi3m4\ngIujg3G9E/jZ+FvgJ8HtsWx8DVNIJYNjJu4bSbK/F8cA9+EG856P+48/tHxlVYU4n9Y7FPc3n4/7\nDNyP+0zEWVw/D5PZ+HqXrwN3BbfvAo5t6wGqdS9xe9xPtUm4bnfjahvCp6smL1iLk+/jDvzfThX/\nTC2RbBcsxpUBE4GpwHkVrqUabIVr2iH4t82uw0vdr/TTwNYZ5l8OPJ5lm/dx5+QvwzVpPIobMGNl\nKQoso/a8F5nU2jUJ2d6XK4CbcBemgetG4jrgnDLVVQ1q7W/dUcOBD3C9tj6N+0U8uaIVVY9kn1dZ\nlTrsv9KObTYEE7iRkeYAOwW3o6w970WmC9YWF6ecqpHv+3IbhX0p1oJ8LmqMkw+Cfz/BDbIzlHiH\n/Ue4HaUPcV1GfNzWytXSjOO3w21JqquXwbign1v2iirHfy8eA0bjLkrbHvdexOkshH7e7eOI34H7\nqbi/+SDcZ+Bk3GcijrqTGuC+B+7MtLh9HtI9hhvjl+DfRytYS5uOw7VHrsV9M/0zmH8Cro+W14BX\ngCMrUl15ZXsvwDXzzMb9ZP1q+UurqLtxp9pNx32Q4zicoS5MdLbHnY00DZcPcXsv7sM1cW/AZcVZ\nuDOTJhKBUy9FRERERERERERERERERERERERERERERERERMru/wNamHgFBJCymgAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEACAYAAAD4NNLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjdUfwPHPubOaGYaxGwzDGFL2NSpLtkqUFlpkjdIi\nPyQkUiklJUWiLBUSUZIkIiHGFtlGtrEz+77ce35/PHfu3GFwMXPvLN/36zUv95znnPt872P43ud5\nznOO0lojhBBC5BcmVwcghBBC2JPEJIQQIl+RxCSEECJfkcQkhBAiX5HEJIQQIl+RxCSEECJfcSgx\nKaU6K6UOKqUOK6VezWH7g0qpPUqpXUqpbUqpVnbbjttvy83ghRBCFD7qes8xKaVMwGGgPXAG2A70\n1FoftGvjo7VOsr6+A/hOa13HWj4KNNZaR+fNRxBCCFGYOHLG1AwI11qf0FqnA4uAbvYNMpOSlR9g\nsSsrB/cjhBBCOJQwAoEIu/Ipa102SqnuSqkDwE9AP7tNGvhNKbVdKTXwVoIVQghR+Lnn1htprZcD\ny5VSrYG3gA7WTa201meVUmUxEtQBrfUm+76xsbEyL5IQQhRi/v7+ytG2jpwxnQaq2pUrW+tyZE06\nwUqpAGv5rPXPi8APGJcGhRBCiBw5kpi2AzWVUkFKKU+gJ/CjfQOlVA27140AT611lFLKRynlZ633\nBToC+3IteiGEEIXOdS/laa3NSqkXgDUYiWyO1vqAUmqQsVnPAnoopXoDaUAy8Ji1e3ngB6WUtu7r\nG631mmvtz9/f/+Y/jbghYWFhADRp0sTFkRQdcsxdQ467a8TGxt5UP4fuMWmtVwOhl9V9bvd6MjA5\nh37HgAY3FZkQQogiSYZxCyGEyFckMQkhhMhXcm24uBBCFGUZGRlkZGS4OgyXUErh6emJUg6PCL8m\nSUxCCHGL0tLSAPDy8sq1/5wLErPZTFpaGl5eXrnyfnIpTwghbpHFYsnVM4aCxs3NjevNu3ojJDEJ\nIYTIVyQxCSGEyFckMQkhhMhXJDEJIUQhV61aNXx8fChRogTFixenRIkSvPTSS8ybN4+77rrL1i4u\nLo5WrVrx6KOPkpGRQZ8+ffDy8srWb8mSJXkeryQmIYQo5JRS/Pzzz8TFxREfH09cXBzTpk2zbQOI\njo7m3nvvJTg4mMWLF+Pu7o5SildffTVbv0cffTTP45XEJIQQRcC1Rs1dunSJdu3aUa9ePRYsWIDJ\n5NrUIIlJCCGcYPz48Silbvpn/PjxeRJXZGQkbdq0oVWrVsyePTtP9nGjJDEJIUQR0L17dwICAihV\nqhQBAQHMmTMHgIiICMLDw3nmmWdy7Pf+++/b+pUrV84psUpiEkKIImDFihVERUURHR1NVFQU/fv3\nB6BBgwZ88MEHdO7cmd27d1/Rb8SIEbZ+Fy5ccEqsMiWREEI4wfjx4/PscpwjrnWP6cUXXyQlJYWO\nHTuyfv166tat68TIriSJSQghBCNGjCA1NZV7772XjRs3EhIS4rJYJDEJIUQR0LVrV9ucdkopOnTo\nQLdu3bK1GTt2LKmpqbRv354NGza4KFJQuTnx3s2KjY21BSFLqzuPLDftfHLMXSOvj3tKSgre3t55\n8t4FRU7HwH5pdX9/f4dnuJXBD0IIIfIVuZQn8pVtB9ZzMeYsAJ4e3nRo8rCLIxJCOJskJpGvhB3a\nyMETuwAoXsxfEpMQRZBcyhNCCJGvSGISQgiRrziUmJRSnZVSB5VSh5VSr+aw/UGl1B6l1C6l1Dal\nVCtH+wohhBD2rpuYlFImYDrQCagL9FJK1b6s2VqtdX2tdUOgPzD7BvoKIYQQNo6cMTUDwrXWJ7TW\n6cAiINtTWVrrJLuiH2BxtK8QQghhz5FReYFAhF35FEbCyUYp1R2YBJQF7r+RvvYyH4QTzpOfjnmc\n3QN56RkZ+Sq23FRYP1d+l1fHPSgoqMg/YBsfH8++ffuy1d3stEa5NvhBa71ca10H6A68lVvvK4QQ\n4tZUq1YNb29voqKistU3bNgQk8nEyZMnAdi2bRv3338/pUqVokyZMrRo0YK5c+c6PV5HzphOA1Xt\nypWtdTnSWm9SSgUrpQJutC/IVC3OlB+nx9l26mfOxBivLTqD8+mHCK50G3WCGro2sFySH495UeCM\nKYnyM6UU1atXZ+HChQwZMgSAffv2kZycbFtafcuWLXTs2JE33niDBQsWEBAQwK5du5g8eTJ9+vS5\n7j6KFy9+xfG1n5LoRjhyxrQdqKmUClJKeQI9gR/tGyilati9bgR4aq2jHOkrxNWkZaTy67YlHI74\nx9WhCFHgPf3008ybN89WnjdvXrbFAUeOHEnfvn0ZPnw4AQEBgHFGtXDhQqfHet3EpLU2Ay8Aa4B/\ngUVa6wNKqUFKqWetzXoopfYppXYCnwCPXatvHnwOUchUr1ib0Kr1XR2GELln/HhQ6uZ/bnEtpxYt\nWhAfH8+hQ4ewWCwsXryYp556CoDExES2bNlCjx49bv1z5gKHpiTSWq8GQi+r+9zu9WRgsqN9hbie\nTs0e4/Sl4xw6ucfVoQhRaGSeNd1zzz3UqVOHSpUqobUmOjoai8VCxYoVXR0iIHPlCSFEkfHUU09x\n9913c+zYMXr37g0Y958CAgIwmUycPXuWWrVquThKmZJICCGcY/x40Prmf3JhWfaqVatSvXp1fvnl\nFx5+OGuCZB8fH1q2bMnSpUtveR+5QRKTEEIUIV9++SXr1q2jWLFiAGQuFjt58mTmzp3LlClTbMPK\n9+zZQ69evZweoyQmIYQo5DKHhANUr16dRo0aXbGtZcuWrFu3jt9//50aNWpQpkwZBg8ezP3333/F\n++U1ucck8r3dRzZzLiqCx9oOolTxsq4OR4gC5+jRoznWu7m5YTabbeUmTZqwatUqZ4V1VXLGJPK9\nyNjz/HssjNT0/P0QoxAid0hiEvmC2WImNT0FiyXr21uDmi0Z2HU0/n6lXRiZEMLZJDGJfGF3+GZG\nfNYz2ywPZUtW5I7gZnh7FHNhZEIIZ5N7TCJfUcqEh5sHJiXfmYQoqiQxiXylYcid9Oky3NVhCCFc\nSL6WCiHELTKZTKSlpdmeCSpqzGZztiHpt0rOmIQQ4hZ5enqSkZFBamqqq0NxCaUUnp6eufZ+kphE\ngbH678UElg2mQ5OHr99YCCdzd3fH3V3+S80NcilPFBg7D2/inyNbXB2GECKPSWIS+V7n5o/RvnF3\nV4chhHASSUwi32scejf1a97p6jCEEE4iiUm43LmoCGISIl0dhhAin5A7dcLlJn87jAxzukNt45Ji\n2LB7JTUDbyewbLW8DUwI4RJyxiTyjXKlAvH3Dbhmm+j4iyzdMJujZw84KSohhLPJGZPIN159Yioe\n7jk/C1Hcx5+7699P+Km9nI086eTIhBDOJGdMokAoXaI8j7QZSHCl21wdihAij0liEkIIka9IYhJC\nCJGvOJSYlFKdlVIHlVKHlVKv5rD9CaXUHuvPJqVUPbttx631u5RS23IzeCGEEIXPdQc/KKVMwHSg\nPXAG2K6UWqG1PmjX7Chwt9Y6VinVGZgFtLBuswBttNbRuRu6EEKIwsiRM6ZmQLjW+oTWOh1YBHSz\nb6C13qq1jrUWtwKBdpuVg/sRQgghHBouHghE2JVPYSSrqxkA/GJX1sBvSikzMEtr/cW1dhYWFuZA\nSCI3ufqYWywWAHbu3Imb6dq/khcvXgDg5ImThKUV3N8VVx/zokqOu3OFhITcVL9cfY5JKdUW6Au0\ntqtupbU+q5Qqi5GgDmitN+XmfoUQQhQejiSm00BVu3Jla1021gEPs4DO9veTtNZnrX9eVEr9gHG2\nddXE1KRJE8ciF7cs89ujq4/5t1tNWMxmGjVqdNUHbDP9FxfG4XNQNagqTeoVvN+V/HLMixo57q4R\nGxt7/UY5cOTez3agplIqSCnlCfQEfrRvoJSqCiwFntZa/2dX76OU8rO+9gU6AvtuKlIhhBBFwnXP\nmLTWZqXUC8AajEQ2R2t9QCk1yNisZwGvAwHAZ8pY+D1da90MKA/8oJTS1n19o7Vek1cfRgghRMHn\n0D0mrfVqIPSyus/tXg8EBubQ7xjQ4BZjFOIK56MiOHBiF6FV6mEyubk6HCFELpJh3KJA2rhnFTOW\nTyDDkuHqUIQQuUwSkyhQKgRUJrRqfRTK1aEIIfKIJCZRoNzT4AGGPDQBdzcPV4cihMgjkpiEEELk\nK5KYhBBC5Cuygq1wme//mMWWfWvJMKe7OhQhRD4iZ0zCZcxmM+nmtFt6j93hmzl65kAuRSSEyA/k\njEm4XI97BtDy9g43NaDh6zUf0yDkToIr1cmDyIQQriBnTMLl3EzueLp7YUwa4pj6IS2pVjH0+g2F\nEAWOJCZRIPXu9AptGnR1dRhCiDwgiUkIIUS+IolJCCFEviKJSQghRL4iiUkIIUS+IolJCCFEviKJ\nSRR4J84eZt7qDzl18airQxFC5AJJTKLAi064xI5DG4lNiHJ1KEKIXCCJSRRY1SrU4ulOr1CpTDVX\nhyKEyEWSmESBFVCiHE1r30NJ3wBXhyKEyEWSmIQQQuQrkpiEEELkKzK7uHC6s5ERLFk/kwsxZ1wd\nihAiH5LEJJwuJS2JI6f/dXUYQoh8yqFLeUqpzkqpg0qpw0qpV3PY/oRSao/1Z5NSqp6jfUXRVT6g\nMi/2mMgdwc1cHYoQIh+57hmTUsoETAfaA2eA7UqpFVrrg3bNjgJ3a61jlVKdgVlACwf7iiLK29OH\nkMp3uDoMIUQ+48gZUzMgXGt9QmudDiwCutk30Fpv1VrHWotbgUBH+wohhBD2HLnHFAhE2JVPYSSc\nqxkA/HKTfQkLC3MgJJGbnH3ML8afAiAxITFX9h0bZ3wnCg8/QnLkLb+dU8jvuWvIcXeukJCQm+qX\nq4MflFJtgb5A69x8XyEccTr6CCnpidQsX9/VoQghboEjiek0UNWuXNlal411wMMsoLPWOvpG+tpr\n0qSJAyGJ3JD57dHZx/zY2eL88g/4+vnmyr7DTq3idDQcOheGXzF/et7fPxeizBuuOuZFnRx314iN\njb1+oxw4co9pO1BTKRWklPIEegI/2jdQSlUFlgJPa63/u5G+QtyqOtUa0axOW1eHIYTIJdc9Y9Ja\nm5VSLwBrMBLZHK31AaXUIGOzngW8DgQAnymlFJCutW52tb559mlEkXRPgweIT4ph24H1rg5FCJEL\nHLrHpLVeDYReVve53euBwEBH+wrhMlrDqVNw/DikpIDJBFWqQFAQeHm5OjohBDLzgyhkEpJjeXvB\nC7bys13HUNbTH5Yvh6VLYd06iIm5sqOnJ7RqBffdB717Q7lyToxaCGFPEpModM5HGcPRvVPS8X5v\nCsyeB5cuXbtTWhqsX2/8jBkDPXvChAlQrVreByyEyEYSkyh8tKbRztM8tGIfxeNWXbm9ZEkIDQU/\nP0hNhRMnIMLucbu0NJg/HxYvhmHD4I035DKfEE4kiUkUKsWS0um1aBcN/jmbfUO1ajBgADz8MNSu\nDUpl337mDPzyC8yeDVu3GnWpqTBpEqxcCV9/DfXqIYTIe7Iekyg0Kp2JZcSUP7IlpdgSXqx6rguE\nhxuX6OrUuTIpAVSqBP37w5Yt8Oef0MxugpK9e6F5c/juOyd8CiGEJCZRKPj+uZVXZ4RRJjLJVhf5\nZA/eHt2e32/zY9KiYew49Kdjb9a6tZGgpk+HYsWMupQUePxxmDjRGNknhMgzkphEwbd0KaYHuqLi\nE4xy8eLw/fckfPAOKd4epJvTOBt5kqSUeMff02SCIUNgxw6oVSurftw4GD5ckpMQeUgSkyjYli0z\nRtBlZBjlypXhr7+gRw8qlg5i1JMf0TCk1c2/f506xj2nDh2y6j78EF56SZKTEHlEEpMouFavNi6v\nZSal0FDjEtwdxhpPnh5eVCpTDV/v4re2n1KljAEQDz+cVTd9ujFaTwiR6yQxiYJpxw545JGspFSr\nlvEMUuXKV+2SnJpITEIkFm258f15ehrDxx9/PKtu4kT45JMbfy8hxDVJYhIFz8mTxgwNiYlGuWpV\nY0aHihWv2W3llm8YN6c/6RlpN7dfd3fj+abOnbPqhg41hpkLIXKNJCZRsCQlQffucOGCUS5Vyrik\nFxh41S7eXr74+wbkzv49PY2pjVq0MMoWi3EWtX9/7ry/EEIesBUFiNYwcCDs2mWU3d2NOfDq1LFr\nojlw4AAbNmxg//79HDlyhJiYGJKTk7kQdwqvYu5wdAT17qhPmzb3EBwcDIDJ5OZ4HD4+xn6bNjVm\njIiPh4cegrAwY0SgEOKWSGISBcfnn8O332aVP/kE7r4bgH///Zd58+bx7bffcvr0Ndei5JP9022v\n/cv4cnvzGiz4ZDnVq1d3PJby5eGnn+DOO42zuMOHjQd0Fy/O+QFeIYTD5FKeKBj27DHu52QaMAAG\nD+bPP/+kS5cu3H777bz//vvXTUqXi72UyF8//0ONGjV49NFH2b17t+Od69eHWbOyykuWwIwZN7R/\nIcSV5IxJONXeo9uIuPDf9RvaS0oy7uOkphrlevX47+WX+V/37qxYseKK5iVLlqRt27Y0b96c0NBQ\nypUrR7FixXhvwf+Ii0mgWdB9LP3pWw7tPUp6mhkwLgF+//33fP/99zzzzDNMmjSJitcZTAHAk08a\nz01lJqThw6F9e2PouhDipkhiEk61YtM8LkTf2FkNY8bAoUMAaF9f5nTsyAtNmpCamagApRQPPfQQ\n/fv3p2PHjri7X/mrXXlzWdIySvDa86Oo0MCNvUe2cezf8xzadpqj/56xtZs3bx7Lli1j6tSp9OvX\nD3W9S3NTpxrz6+3bB8nJxnpOf/1l3AMTQtwwuZQnXKJutSbUqdrw+g03boSPP7YV361QgYEffJAt\nKT399NMcOnSIpUuXct999+WYlOy9NX8I+4/vwM3djZr1K/HYS+3ZtWsXDz74oK1NfHw8AwYMoGvX\nrly63lpOXl7G7OMeHkZ52zZjVnIhxE2RxCRcovtdfbivZa9rN0pIgD59bFP/rPHwYPR/WZcBGzVq\nxLZt25g/fz4hISEO7zs2IfKKugYNGrBixQp+++03atnNjffzzz/b9nNN9evDm29mld9803gIWAhx\nwyQxifxr5Eg4dgyAaKBPejoAbm5uTJw4ka1bt9K0aVOH325M7+k82ubZa7a599572bVrF0PtBlpE\nRERw9913s2jRomvvYMQIY5QeGDNSPPWUcWlPCHFDJDGJ/Gnt2mwj3F4EzgKBgYFs2LCBsWPH4pF5\n6cxBpYqXxc/H/7rtfHx8mDp1Kj/99BMlS5YEIDU1lV69evHuu+9evaObmzEzhK+vUT54EN5664Zi\nFEJIYhL5UVIS+tmsM5vlwDdA8+bN2bFjB61a3cJs4TfggQceYMeOHdSxe4D3tddeY9y4ceirzSxe\nowZ88EFW+f33ZVYIIW6QJCaR71jefhtlvYQXCQwCHn30UdavX0/58uWdGktwcDCbN2+mbdu2trqJ\nEycyZsyYqyenZ5/NuqSXng6DBxtTFwkhHOJQYlJKdVZKHVRKHVZKvZrD9lCl1GalVIpSathl244r\npfYopXYppa5zB1kUdZYDBzDbXS57FXho0CAWLlxIsczVZG9B3epNmDjgSyYO+JJXn/jIoT4lS5Zk\n1apVdOnSxVY3adIkRo4cmXNyMplg5sys4eJ//glz595y7EIUFddNTEopEzAd6ATUBXoppWpf1iwS\n4zbA+zm8hQVoo7VuqLVudovxikJMWywc7tABD+vZxRagxMsvM2PGDNzcbmAuu2vwdPfC3zcAf98A\nSviWcrift7c3P/zwA127drXVffDBB4waNSrnDnfcAcPsvqONGAEXL95s2EIUKY6cMTUDwrXWJ7TW\n6cAioJt9A631Ja31DiAjh/7Kwf2IIkxrzTcPPkht65RCZuD3Hj2YMnXq9R9wdRIvLy++//57Hnro\nIVvd5MmTmTZtWs4dxo2DoCDjdVSUkZyEENflyKPpgUCEXfkURrJylAZ+U0qZgVla6y+u1TgsLOwG\n3lrkBmce85SUFAD27dtHhM85W/3iWbMY9vPPtvKP1arRceRIduThs0Ap6cZ6ThnpGTd0DEaOHElU\nVBQbNmwAYOjQoaSkpNCuXbsr2voPHUrIK68YhXnz8LvrLhLq15ffcxeR4+5cN/J8oT1nnMm00lo3\nAu4DhiilWjthn6IAWb9+PRW/+ILMmekueXpSefZsTCbXnWgfOruD3/cvsv1kmNNt29zd3Xnrrbe4\nw7qEu9aa119/PccJYGNbtybKLmFVmTJFBkIIcR2OnDGdBqralStb6xyitT5r/fOiUuoHjLOtTVdr\n36RJE0ffWtyizG+Pzjjm0fEXiYq7iJubcVnu9ttvp3xAZXbt2sXX48Zh/z3Wf/ZsmrZvn+cxxSfF\n8t02cPdwp0mTJizdMJuYeGP6oT1Ht2Zr27BhA7w8sw++WLduHXfeeSfh4eGkpaUxcuRINm/eTO3a\nl92CnTMHateG1FR8Dxyg9M8/U33ChDz9bCI7Z/6uiyyxsbE31c+Rr6TbgZpKqSCllCfQE/jxGu1t\nNwSUUj5KKT/ra1+gI7DvpiIVBVrYwY18/P1oohOy5p07c+YMXbt2ZWJKCpmPyqa3aIHHU085NbbE\n5DjCDm5gw+6V7PlvK3v+23r9TkCZMmVYvXo15cqVAyA6Opru3bsTFxeXvWG1atnuLwV++qmxuKAQ\nIkfXTUxaazPwArAG+BdYpLU+oJQapJR6FkApVV4pFQG8AoxRSp20JqTywCal1C5gK/CT1npNXn0Y\nkf/5+5UmuGIdMtLNdOvWjTqnT5M5dapWCo/p012y0N78X6dec3uGJYMMczoZ5nQsOutSXHBwMCtX\nrrQNZT906BC9e/fGcvnlulGjbMu/e0ZGwjvv5O4HEKIQcWhefq31aiD0srrP7V6fB6rk0DUBaHAr\nAYrCpWnoPTzYujf9+vVjV1gY9ndlVJ8+0Lixq0KjfKnKWLSFizFnrtj22udP214/23UMtwdnzdHX\ntGlTZs+ezZNPPgnAihUrePvtt3n99dez3sDXF959F562vs+HHxqLHdaokTcfRogCTIZxC6ebM2cO\nX331FQOB2zMrfX3h7bddGJXx8O3QRyfRq/0Q24+jnnjiCV7JHH0HvPHGG/xsN8rQ2ogE64AJ0tKM\nRQWFEFeQlcyEUx0NP8GoIW/jD0y03zB6NDiyYmwu8nT35J4GD9jKwZXqUNzHn5a3d7DVLd04h7T0\nFIfeb/LkyezZs4d169ahtebJJ5/krU9HkIjxYK23pw8d//c/6vTpY3RYvhw2bYLWMlBVCHuSmITT\npCal897700lNTWU8UCZzQ1AQ2J1tOIuXZzF63DMg197P3d2dRYsW0aRJE06ePElsbCwfjJ/B/YMb\n4eZuwsfLj8QmDxPZuTOlV682Oo0YAZs3u+S+mhD5lSQm4RRaa9Yu3Mm50xcIBF623/juu5AL8+Dl\nhac7vozZYgbgu3UzSUpNADAGQGjN9GXjuBBzBoWiYpkgnu/+BsuWLaNly5akp6dz4shpNv/kzV0P\n2S5acvq55yi9bp1xOW/rVli2DHr0cMnnEyI/kntMwil++n41R/caMz2MB2xpqHFjeOwxF0V1ffVr\ntqRRrdY0qtWa6hWN55P+PRbGpAUvMfSTHhw5/S9xidHEJkaRkGw8s9G4cWPefz9r2sjdG/7j2L9Z\ns1ykVaoEL76YtZPXXjNmIRdCAJKYhBPs27ePzz+eD0AdoJ/9Zav33jNm4y5A/tr3K+ejT11RHxsf\nyYpN85i+9HWCGvnTtFXWgNS13+wkLjopq/Ho0WBdhJDwcPjimjN1CVGkFKz/EUSBk5ycTK9evUhP\nM84IPvIphilzqYiOHcEJMzzkltuqN6ZRrewDFdo2fJDhPY2FAeOTY/l9xw8cPrWXdTuXU/++iviV\n9AYgJSmdn77chNlsXBYkIMBITpnGj5eHboWwchs/fryrYyA1NdUWhLe3twsjKVrOnDGe16lUqVKe\n7WPYsGGsXLkSgNZuirfT7C5ZLVni9JF4tyKofAh31GhOo1qtuateF+6q14XQqvXx9vTBt5g/aRkp\nxCRE2tp7eLpRrkopDm4/CUBcVBJeXl40aNDAOOaNG8OCBRAbC0lJnIs7x5GQsiSnJVKqeJmrhSFu\ngjN+18WVUlNTba+9vb0dnodLBj+IPLNy5UqmT59uK39aqhhcsl7O6tULGjZ0UWQ3z83kRsXSVa+o\n79DkYWITLnH87KFs9YE1StOsU23+Xn0QgM8//5yWLVsac7Z5exPz6lBKDjHWbSr1xXymlztDtUb3\nMOCB1wDYvO83fv17MQDRCZeoGViX2lUb0LHZo3n5MYVwKbmUJ/LExYsX6d+/v608vG4I9TKTkocH\nvPWWiyJzviYdQigfZCxKmJGRwYjXhrHot8+JTYhibagPpyqVAMArzUwXawLLlJqWTHTCJdscg0dO\n/8uuI5ud+wGEcDJJTCLXaa157rnnuHDhAgCVK1ZkbEJiVoPBgyE42EXROU+NSrdxW7XGBAfWocOT\njXD3MFbhPRtxgcmT3ichOQ7cTPz4YF1bn5ZbT1Ay4gJmi5mjZw4SGXceAC8Pb9o16u6SzyGEs0li\nErlu0aJFLF261FZe1bMn/ieMa/wZxbxh7FhXheZUg7q9zuBurzOo21hKlfOjVbesBLTrj//YstmY\nxfxg7XJENzdG8Jk0NJn3K6lpyXy0ZBQb9xjTGrWs24HGoXcDcCH6NFMWjWDHoT+d/ImEcA5JTCJX\nnT17liFDsuaYe75vX+5YssRWPtKrC1iXiShq7mhVjaq1rZ9dwysvDicpMRmAo0P72NpV+/sAps1b\nAFDKRLWKoQSUyDpm6RlpnDgfTnxSjNNiF8KZJDGJXKO1ZuDAgURHRwMQFBTElOBgOGU88xPn58V/\nj3d2ZYgupZSifa8GePsYq0+dijjN5Lc+AiChdg2iu3a0tfUYOw60xtuzGMMee482DbtSrlQlhj0+\nmYYhrVwSvxDOIolJ5Jq5c+dmm1F7wbRpeH/4oa28unMoZp+i/TiAn38x2jxa31b+d+sx/vvHuMx5\nbuizZFgHWPQrAAAgAElEQVRX+HXbspXb7WaLAOM+U7UKtSjhawykiEuKITYxitjEKBJT5BkoUXjI\ncHGRK06ePMnQoUNt5RdffJG7Nm8G69lTUuUKbG4ZRDtXBegE9WveSdmSWc/JuLvl/M8rpGEgR/ed\n4/AO40xy249HqT7hdqL9zrGpVXXabDwKQNeVB5jW4OqDRNaGLWVtmHEv747gZgzsOvqqbYUoSOSM\nSdwyrTX9+/e3LSkeEhLCey++CB9/bGtz5LleWNwK969bSOXbuafBA7YfdzePq7a9p8cd+PobZ4+X\nLkUybOhwtNas6ViLFC8joVU8F0+jv485JXYh8hM5YxK3bObMmaxduxYAk8nE3LlzKfbee5BiXceo\ncWPOt28JW4+6MErX8fb0YUSvKQDs37+fk5EHqVy5KlV9GvD60EkALF26lCat6pHg58Xv7Wpy/y/G\n80ydVu6F5OR8O/u6EHmhcH+FFXnuv//+Y7jdSqzDhw/nzpIl4auvbHURw57lYty5nLoXCW4mN6qU\nq0GVcjUo7VeRhkFt6dL8cca+/A4DBw60tZs04QMSY1NY36YGccW9ACgRnQSffHLdfZyJPMHSDbM5\nc+l4Xn0MIZxGEpO4aRaLhb59+5KUZMzocNtttzFhwgRjclKLBYD09m15/+Iqtu7/3ZWh5ltTpkwh\nKCgIgLjYeNZ9t5tUTzd+6Rya1WjSJIiKuub7RMaeZ8PulVyKLbpfAEThIYlJ3LRp06bx55/GQ55u\nbm7Mnz8f7x07YMUKW5uUN8cZ203u1KpSjzIlC86krc5QvHhxvrI7uzz+73kObotgS4sgUqtVMSpj\nYozFFK+ic/PHc5y/T4iCShKTuCnh4eGMtlu2YcyYMTRu1AhGjcpq9MQTWOrXA8DXuzgvPPwmd97e\nwdmh5ntt27blhRdesJW3/nSYzk36kjHxzaxG06ZBRESO/ds07EoZ/woAfLv2U7797RO+/e0Tdhza\nmKdxC5FXZPCDuGFms5m+ffuSnGzMWlC/fn3GjBkDK1fCpk1GIw8PmDjRhVEWLO+++y6rV6/myJEj\nJCQkMvXtmXT65Rf4ZAZs2wapqfDGG/Dll3S982m6tOhp61vM09f2Oikl3nbZ1MuzmG0aIyEKEofO\nmJRSnZVSB5VSh5VSr+awPVQptVkplaKUGnYjfUXB88knn/DXX38B4O7uzty5c/E0mbKfLQ0ezOni\niqNnDl7lXYQ9X19f5s6di7Ku7rtmzRpmffGFscJvpnnzYN8+PD288PHys/0o+xWBhSgErpuYlFIm\nYDrQCagL9FJK1b6sWSTwIvD+TfQVBUhOl/AaNGgAc+fC/v1GZfHiMHYsKzbN46tVk10TaAHUqlUr\nhg3L+l73v//9j2NBQdCli1FhsWRf9VaIQsqRM6ZmQLjW+oTWOh1YBHSzb6C1vqS13gFk3GhfUXDk\ndAlv9OjRkJgI48ZlNXz11WwTtVYqHUT1iqGXv53IwcSJE6ld2/julpiYSN++fbG8/TZknhX99BP8\neeWs4s1va0e31n3o1roPpf3LOzNkIXKdI/eYAgH7u66nMBKOI264b1hYmINvLXKLo8f822+/tV3C\nc3NzY8SIEfzzzz9UnD2bwLNnAUgrW5Z999yDJSyMWOtMEHXK30lgqRryd2vnWsdi1KhR9OvXD4vF\nwoYNGxj5zTeM6tKFMqtWAZAwZAgH58zJSlYAuONPZQCqB9QjMvY3Lpy/IMf8MnI8nCskJOSm+smo\nPOGQkydP8tlnn9nK/fr1IzQ0FPfISCosWGCrPzNoEBbvoj1R662qW7cuzzzzjK08ffp0tj/wABYP\nY4ojv717KfnHHy6KToi858gZ02nA/iGJytY6R9xw3yZNmjj41uJWZX57vN4xN5vNDB06lNTUVMC4\nhDd9+nQ8PT1hyBCwPmBL3bpUe+MNqrkbv1bbIlZyNgZq1apFnaCGefdBChBHj/mMGTMICwtj7969\npKamMnHBAjo9/7xt/sGac+bAK6+A+5X/hON3nSHsGJQrX07+PVk5etxF7oqNjb2pfo6cMW0Haiql\ngpRSnkBP4MdrtLe/vnCjfUU+lOMoPE9POHQIPv88q+F77+X4H6W4cV5eXsyfPx936/HcsmULn5Us\nCSVKGA0OHco27ZMQhcl1E5PW2gy8AKwB/gUWaa0PKKUGKaWeBVBKlVdKRQCvAGOUUieVUn5X65tX\nH0bkvquOwgNjhJjZbLxu0wbuu8/5ARZiDRo04PXXX7eVh7/7Lhf69s1q8MYbWWerQhQiDt1j0lqv\n1lqHaq1DtNbvWus+11rPsr4+r7WuorUuqbUO0FpX1VonXK2vKBiuOgoPYPNmWLYsq/HkyZfdjBe5\n4bXXXqNx48YApKam0mPjRnRF67ROZ89mW1pEiMJCBj+Iq7rqJTytYcSIrIY9e0LTprZiXGIMhyP+\nkVVVc4GHhwfz5s0zjjuwadcuVtkdayZNggsXXBSdEHlDEpPI0eWX8EaPHp11CW/ZMuOMCYyph95+\nO3vfU/8wfdk4Ii7856xwC7W6devy5ptZ8+Y9smoVKdWrG4X4+OzPkAlRCEhiEle46lx4YCz+Z7f+\nEkOGQHDOy3/7FfMnpPId+Hj55XXIhd7w4cNp0aIFACkZGfxP66yNX3wBe/de0WfD7pVMWTSCKYtG\nMG/1h84KVYhbJolJXOH999/P+RIewNSpcPy48TogAOxuzl+uVpV6vNhjIkEVbu4hO5HFzc2NuXPn\n4m19Ruyz48cJz/xCYLEYQ8ftk5XVifPhnDgfztnIk84MV4hbIolJZLNr1y7G2V0aev3117Mu4Z09\nm/2y3ZtvGslJOEVoaCiTJk2ylXscP452czMKv/9uzO4uRCEgiUnYpKSk8NRTT5Geng5A8+bNs91n\nInNePIC6dWHQIBdEWbS99NJL3H23sZTFXouFhZnPNQH873+QlkbVcjVo16g77Rp1J7RqfRdFKsTN\nk8QkbEaPHs1+6wzhPj4+LFiwwPaAJ2FhxgzimaZOlYdpXcBkMvHVV1/h62uswfRSdDTJXl7GxvBw\n+PRTagTWpftdfYyf1n1cF6wQN0kSkwBg3bp1TJ061VaeMmVK1gSMWsPQoVmNu3aFDrISrasEBwfz\n/vvGCjORwFjrVFEAjB8P5865JC4hcoskJkFMTAx9+vSxlbt06cIg+8t0X38N1sEQeHjAlClXfa/P\nlk/g121L8ihSkWnQoEG0b98egE+Ao9YJXomLg5EjXReYELlAEpPgxRdfJCLCWJ2kdOnSzJkzJ2tV\n1JiY7MPDX34ZrjGVffipvZyLirjqdpE7TCYTX375JcWLFycdeNZ6XxCABQtyXLNJiIJCElMRt2bN\nGr7++mtbedasWVTMnPIGYOzYrJkFAgON+dkcMLjb63Rs+khuhiouU7VqVdvl19+B7+w3DhkCGVnr\ndsYlRvPjXwv47/R+p8YoxM2QxFSEnT59mnfeecdWfuaZZ3j44YezGuzcCTNmZJU/+gj8HHtYNqRy\nPSqVCcqtUMVV9OvXj/usk+f+D0jKPNPduxc+/dTWLiE5lrVhSzl5/ogLohTixkhiKqLS09MZO3Ys\nidbh39WrV+dj+wlBLRZ47jnjT4COHaFHDxdEKq5FKcUXX3xBQEAAp4AJ9g/ZjhtHifg0HrjzKapX\nrO2yGIW4UZKYiqjXX3+dffv2AcbsDosWLcLf3z+rwezZsG2b8drTE6ZPl9nD86lKlSrxlXVtpqnA\nwcwNcXEUH/0GHZs+QlB5mX1DFBySmIqgNWvW8N5779nKkyZNolmzZlkNzp2DUaOyyq++es0BDwCL\nf5/By9MexmzOuGY7kTcefPBBXn75ZdKBIfYbFi+Gn35yUVRC3BxJTEXMuXPnePrpp23lFi1aMGzY\nsOyNhgyB6GjjdXAwvPbadd9Xo9Hakpuhihv03nvv0bBhQ9YB2da2ff553BONCXmj4i9w7OwhzBaz\nK0IUwiGSmIqQ9PR0Hn/8cS5YR9mVLl2aCRMmYDLZ/RosXZp9AcAvvoBixRzex6NtB/HRi0txd5NZ\nIZzNy8uLxYsX4+fnx3DgfOaGU6eo+4Xxd7ph90qmfvcqqWnJrgpTiOuSxFSEjB49mo0bNwLGczBv\nvvkmAfaTsEZFGWdLmQYMgHbtbmgfJmXCZHLLeg5KOFVISAgzZ84kCnjJrr7G8vW0jPVBKfknL/I/\n+S0tIpYuXcoHH3xgK0+cODH7fSWAYcPgvPV7dqVKYJ325lqSUhM4eGI3MQmRuRmuuAVPPvkkgwcP\n5jvA/u5Sr4W78FOergpLCIdJYioCDh06RN++fW3lrl27Msp+cAPA6tUwb15WecYMKFnyuu99PuoU\nny0fz/7jO3IrXJELPvroI5o1a8bzgG2B+4MH6fTjHgDm/zqVNdu/d1V4QlyTJKZCLj4+nh49ehAf\nb/z3FBwczLx587LfV4qMhP79s8o9e8KDD97Qfrw9fQitUh9/X1mfKT/w8vJiyZIlJJcujf3Mea1/\nP0jN8EvsP76D4+cOuyw+Ia5FElMhZjabefLJJ/n3338B8Pb2ZunSpZQqVSqrkdbw7LNw5oxRLlsW\n7B+0dVCFgCoMeXgCtwc3zY3QRS6oWrUqCxcu5HNgtbXOpGHA9wfxTk6/VlchXEoSUyE2ZswYfrJ7\nhuXzzz/PWo3WqvRPP2Ufhffll1CunLNCFHmsQ4cOvP3OO/TDWCIDwOd8JD2W7XVlWEJck0OJSSnV\nWSl1UCl1WCn16lXaTFNKhSuldiulGtrVH1dK7VFK7VJKbcutwMW1zZ8/P9tDtCNGjKB3797Z2nhF\nRFDVbkAEgwfDAw84K0ThJKNGjaJNr17YrzfcfHsE1f/a57KYhLiW6z5soozxpdOB9sAZYLtSaoXW\n+qBdmy5ADa11iFKqOTADaGHdbAHaaK2jcz16kaMtW7YwcOBAW/mBBx5g0qRJ2Rulp1N93Djckq3P\ns4SGXnOdJXub9/3Gxj0/A3Dm0vHcCFnkIaUUc+bM4Z4jR5i/fTuZX09af7IMnjsBQTLZrshfHDlj\nagaEa61PaK3TgUVAt8vadAPmA2it/wb8lVLlrduUg/sRuSA8PJwHH3yQtLQ0AOrWrcs333yDm5tb\n9oZjx+JnnSsPd3f45hvw8XFoHwlJMZy5dFySUgFSrFgxVqxYwaSKFTmRWZeUSvpDD4H9CrhC5AOO\nPJ4fCNiv/HYKI1ldq81pa915QAO/KaXMwCyt9RfX2llYWJgDIYmcREZG0q9fPy5dugSAv78/b731\nFocPZx99VXL9empOnmwrnxo0iHNag4PH/vTp01fUJSQmyN/dDXDVsRozeTJP9+vL7+kZeAAeu3Zx\nulcvzo4e7ZJ4nE1+R50r5DpzbF6NM+aNaaW1PquUKouRoA5orTc5Yb9FSmJiIkOHDuWMdXSdl5cX\nH374IZUrV87WzuvECapPmGArx7RqxbnL7j3ZOxdznH2nN9vKDYPaZttercxtABT3lmHiBUHt2rVp\n+doLjHzzI6Za6wJ/+IHEhg2J69LFpbEJkcmRxHQaqGpXrmytu7xNlZzaaK3PWv+8qJT6AeNs66qJ\nqUmTJg6EJOylpaXRtWtXDh40bvuZTCa+++47Hrz8WaTEROjb1/gTSK1UiWMTJtDk8hkg7IQdTGTN\nv0dt5W5tnkb5pLDrJHRo0oOurZ6+al9xpcxv7K78PfcsZWbo/nV8//0/ZK4xXOXNN/F65BFMdeq4\nLK68lB+Oe1EUGxt7U/0cufezHaiplApSSnkCPYEfL2vzIxj3VJVSLYAYrfV5pZSPUsrPWu8LdARk\nKFAuysjIoHfv3qxZs8ZWN3PmzCuTktYwaBBk3lfy8uK/997DbL8GkygS/Ir588gTDzG7U13CrXXF\nMjK42KoVOirKpbEJAQ6cMWmtzUqpF4A1GIlsjtb6gFJqkLFZz9Jar1JK3aeUOgIkApnz35QHflBK\naeu+vtFar8lpP+LGmc1m+vbty+LFi21148ePzzYiz+bdd40BDpk++4yk2je+qmmGOZ10c9rNhCvy\nieBKtXn+ofF4uHsy6ux0vv7nLMWA8tHRhDdsSM3wcJSnzKknXMehe0xa69VA6GV1n19WfiGHfseA\nBpfXi1tnsVgYMGAAX3/9ta3uhRdeYNy4cVc2XrgQ7G9uDxgA/fo5PNjB3hc/vXMz4Yp8SClFxWea\n8MaMMCYfOQtAyMmTbG/WjCY7d6JMMphWuIb85hVAFouFwYMHM3fuXFvdoEGDmDZt2pXLTfz5J/Tp\nk1Vu2xY+/dQpcYr8z+RmInFwE6aU87PVNd2zhzWdOrkwKlHUyWpuBUxGRgYDBgxgnt1M4P379+ez\nzz67MikdOgTdu4P1mSZuu82YfugmLtM0rnUXPe8dwrYD6211VcrVuKnPIPIXN3cTR0e0Ydlba3k4\nNgWADmvX8s1DD/HEsmWytpZwOklMBUhKSgo9e/ZkxYoVtrrevXsza9as7LOFA0REQOfOxuJ/AOXL\nw88/O7SUxdV4eXhzVz0ZUlxYNL+tPTUq1QVg097VbHitLdXf3kDD+CRMwGPLlzO9Sxee//nnKx/Q\nFiIPSWIqIOLi4ujWrRt//PGHrW7AgAHMnDnzyqR0+rRxye74caPs4wMrV0K1atfcR1p6KpFxxkKB\nFouFX/5eSFJKQu59CJGv3BGc9ZiAUoplMXM4Omc8ZftOoHJiIh7AwF9/ZWLbtrz22294eXm5LlhR\npEhiKgDOnDlD165d2blzp63u1VdfZdKkSVdeZjl3zlgO/b//jLKnJ3z/PTjw/Mapi0f5aMlruRm6\nKGjKlaL8vn1cuOMOyiUk4A0M//NPhrdqxcS1ayl5C2fcQjhKBj/kc2FhYTRt2jRbUnrvvfd49913\nr0xKFy5A+/aQOQWRuzssWQI3+US/yWRcvnm0zbO0vL3jTb2HKFg27F7JpD/eZfG47lz0Nu5F+gFv\n7djB8/XqER4efu03ECIXyBlTPrZ48WL69OlDSopxQ9rNzY2ZM2cyYMCAKxsfPw6dOmUlJTc3WLTI\n4ZVok1ITSElLAqB6xdq88ti7ufERRAF0KfYclzxh2YTHeOrNH/BNTMQfmB0RQd+GDRnwww906NDB\n1WGKQkzOmPKhjIwMxowZQ8+ePW1JqVSpUvz66685J6Xdu6Fly6ykZDIZD9P26OHwPqcsHMHMFRNz\nI3xRAAVXqkO31n3o1roPtasajx5GVwrAd/NmUkqUAMAH+CYxkQWdOvHxxx+jtXZhxKIwk8SUz5w6\ndYp27drxzjtZD7KGhoby999/0759+ys7rFsHd99t3FsC457S4sXw+OPX3E9aRioRkYeJiDzM3qPb\nuBhrPGDp7emDl2exXPs8omCoWr4m7Rt3p33j7nRr3QeAM5EneH3bR8wYeS8X/Y3fCXdgvtacGDqU\nhx96iCiZwkjkAbmUl4+sXLmSPn36EBkZaavr2LEjixcvzvmm8+zZ8PzzkJ5ulP39YcUKuOeea+7n\nzz2rOHxqL3uObAFg/cGsbcN7fkC5UpVu+bOIwiE2MYpYP/h42F0899lWAs/HAfAh8NWKFTSvX5+v\nFi6kdevWrg1UFCpyxpQPxMfHM2TIELp27WpLSiaTiTfffJNVq1ZdmZSSk6F/fxg4MCspBQYaszxc\nIylFXDjKik3zWPLHLFtSEsIRcf7FmPZyKyJqVrDV9QW+PXWKJ+++m3HjxpEqCw6KXCJnTC7266+/\n8uyzz3Ly5ElbXWBgIAsXLuSuu+66ssPRo/DII7BrV1bdHXcYzylVrXplezvnoiL4fccPWfspVRN3\nkwdVAqvZ6op5ObaKrSi8vDy9Ca1S31auHdQAL49ifLd+Jh8924THluyh+XZjXdCmwHat6TVxIo2W\nLmXOnDm0aNHCRZGLwkISk4tcuHCBkSNHZptaCODBBx9kzpw5lClTJnsHrWH+fHj5ZbBf4+Tpp2Hm\nzOsuiz52dl9S042BFIFlqtEo9G7cU4pT3LuUrFEjsinjX4EhD0/IVnfq4lFa3NaeQxH/8M0TJgK7\nPErgO9NQGRmUA34HPt6/n/YtWzLgpZeYOHEiJayDJoS4UXIpz8lSU1OZPHkyISEh2ZJSmTJl+Pbb\nb1m+fPmVSenUKbj/fmMy1syk5OkJM2bAvHnXTErbD/7Bd+tmEpcYTWpaMgAVSlelQ5OHKe5dKrc/\nniikKpcN5okOLxrzIyrF7k4NOfHNDHS5crY2LwM7ga3TphESEsKsWbMwm80ui1kUXHLG5CQWi4Wl\nS5cyatQojh49mm1bz549mTZtGmXLls3eyWyGOXNgxAiIi8uqDw42lrK4ysqzsYlRnDgXzrdrp5OU\nEp9t25v95+Dl4Z0rn0kUXWu2f88GD2/e373buNf588+AsTbOZmD6hQu8OmgQ06dP54MPPqBDhw4y\nGaxwmCSmPGY2m1m6dCkTJ05k377si/fWrl2bDz/8kC45zcywdi0MGwZ799qqtFKkPz+YtPGvg68v\nvlqjlCIuMYbPlo8HID0jjYsxZ654u8plg2lZ915K+JbCpOREWdycKuWCSU1P5tDJPaSmp/DSd8/h\n0akYjYs34JHl+/FMScMN4+zpSWDs3r106dSJFnfeydixY+ncubMkKHFdKj88JBcbG2sLwr+QLPWd\nkpLCokWLmDx5MgcOHMi2LSAggPHjxzN48GA8PDyyd/znH2NRP+s30ExJVSry1SN1OBRUPFu9j5cf\nSalXn2i1fEBlBjzwGsV9/PHx8su2Lcy6UKDcY3KewnDMU9KSGTmj1xX1AZFJ9Fq8i9DDl7LV/wNM\nAH4AGjVuzGuvvUa3bt1wd3fe9+LCcNwLoli7++H+/v4OfyORM6ZcduLECWbMmMHs2bOzPY8E4Ovr\ny/PPP8+oUaMICAiw1SelxJP8+6/4fjwD79/WZeuT6unG2vYhrGtbg3TPK/+6ckpKvt5G8vpfz/cp\n41/hiu1C3AoPNw/63jcCAIvFzLzVHwIQVdqHT5+7k/r/nOWJ1ccpdvYiAPWApcC/wNs7dvD4I49Q\nITCQQYMGMXDgQCpUkN9RkZ2cMeWC+Ph4li9fztdff83atWuxWCzZthcvXpyXXnqJoUOHZh/YkJwM\ny5YRP2USxXf9m62PVoqtzarw8321ifPPmomhYUgrdoX/ReWywZgtGZyNzBpm7u9Xmon95zgct3yL\ndL7CeMwnLxzGqQvZ75t6pJnpe9BE7W9X456Slm3bMWAW8CUQ7eHBAw88wJNPPsn999+Pt3fe3P8s\njMe9IJAzJieLjY1l9erVLF++nBUrVpCcnHxFm6pVq/Lcc88xaNAgSpWyjoDTGnbuJOaTKfgt+wn3\n+ATsL85ZFCR26cA/PduzOMp4CLZ8qcqAsWJs786v0JcRtvYJyXGYzRkAcu1euETNwNsp6Wd84dp3\ndBsA6Z5uzKoHftXb0faPI9z91wm8UoyHwasDk4A3geXp6cz74Qee+OEHvEuUoEePHjz00EO0b98e\nn+s8AiEKLzljcpDZbOaff/5h/fr1/Pzzz2zcuJGMjIwc2957773UbFoWn0oZKKVIT0vhcZ8GVPhj\nO2XXbaX4hegr+mS4KbY3rcLadiFcLOeHm8kdsyWDTs0e5f6WT+bJZ5Jvkc5X2I/5r9uWsOXf3wCI\nirtgq/dJTKP3YTdqLd+Ae2z8Ff1igB+BJcA6wOLtTbt27bjvvvto164dtWvXvqUvXoX9uOdXcsaU\ny+Lj49m5cyfbt29n06ZNbNy4kejoKxNKppq1gqnTNIhytYrhU8Kd8ufPU+uPi4SEXyLkyCV8k37M\nsd+l0j5saRHE382qZLtkZ7bknPSEyM86NXuUTs0eBYxBEtHxl1i2cTaHTu5hZkPwqHsPHU5oQlZt\nocaxrAlgSwK9rT9pwOaUFH5btYoFq1YxDChZrhz33HMPrVq1onHjxtSvX5/ixYvnEIEoDBxKTEqp\nzsBHGA/kztFav5dDm2lAFyAR6KO13u1oX0fsP76Dc1GnjH2haNso+zpD56NPczE6a5h0rar1OB91\nmtgEYwBCdMIlSvmV4atV7+Pp6Y2HmwcxCZHc3+Iplv6yAF9dlpPHTnP4UDgx55M4ffLcdaf1L1fF\nn+DbytOySklus2iqRJwiKCyGKhEx+CalX7Vfsrc7+26vwNbmVTlSowxVK9aiFBDiX4G2jbqhtcZs\nyaBSmWq4meS7gyiYvD2LUbF0FepWa4KPlx+7wv8i3dONVSHAy3dR8WwcTbdH0GDPGcpEJtn6eQJt\nrD9vA6nArgsX+HvJEnYsWcLXwCGgUmgojRo1ou7tdShV3o+q1argH+BLhbKV8fctLZMRF2DX/V9P\nKWUCpgPtgTPAdqXUCq31Qbs2XYAaWusQpVRzYCbQwpG+jgo7tJGwgxuyAnc3hlmnpCaRlpHCpr2/\nkpic9RDq+L5fsH7nCjbt+o3khDQSY5OJj7b/SSI+KonpkT+iLddOQMWBIKBWMXfqlfYl1M+TYDcT\ngdHJlPv9CB4Zlmv2B6BCBXjwQS60ac7c1J1Y3I3VYfu16EX9mjK3mCi82jTsSsu697Ir/C9bXWDZ\n6tzf9Qmiel3gP3cvzu4P59znH1J3/3kqnc1+qc8LaGH9sXfy0CH2HzrEAYxEtRY4rSCmVDHSy5fg\nvnaPULlyZQIDA0lISKBs2bLUrl2bf0/+TVqGMSAj/NReSvqWBowVm7vf1SePjoK4Ede9x6SUagG8\nobXuYi2PArT9mY9SaiawXmu92Fo+gPGFp/r1+kL2e0weHh6kpKSQmppKSkoKB4/9wze/fkJaWjoZ\n6WbMGWbSU82kpqSTlpJBWko6ackZpKUa5dTkdJLjUyHNRGJUDB4W4xc788cHI9EUB0rYvc4sl7X7\nKe+mKKvB5zqJK0elSxvrJLVrZ/zUqQP5bHCCXHd3vqJ6zM0WM0dOZT1gXrJ4GcqXCszW5rVZvUlM\njqNEbAq1wi8SeugiwceiKHsp8Yb3lwacBS4BkdY/M1/HmxQpXm6keXmQ5u1Ouo8HGT6emH2Nn0qV\na/8eUBUAAASUSURBVHBHnVZEZ8RyKu4E2gMCSpXB08uTHu364evrh5u7CQ8Pd1Aan2K+uLkZXzR9\nvPxwc5OrHJny8h5TIBBhVz4FXD4XTk5tAh3sm80uX19MGNf93IDywHDra/v6y1+7YSQeT7s/b5nZ\nwYRUsSLcdhs0aABNmxo/1avnu0QkhKu4mdwIrVr/mm0mPTvf9vrk+SPEJ8VwAfjv5H9U/O8cxXbv\nw3TgICVOnMX92HFMGVefh88T4ypHUE4bLRqSM4yfHB0Bfs1qjpHo0oE0ppFmLScCZoyBG9raTqvM\nPxUW6z9/bTJh0RqLUljQoBQWa3s3dw/MFgsmk8n2/4VCARqNxs3NHZPJzZitRRlb7Omb+T/G2ufy\n/91u5L1VDv3t3ztTaOaq2jcor1L7Tf+PfHtMzC3t2AIkW39cyn5uu3wqJCQEyP6tRuQtOeaO8fcu\ni7+3de7IgBBoAPQwiq78t+1u/ZGB7HnLkcR0GrBf6Keyte7yNlVyaOPpQF8hhBDCxpHZPLcDNZVS\nQUopT6AnxiMH9n7EGOmZeU8qRmt93sG+QgghhM11z5i01mal1AvAGrKGfB9QSg0yNutZWutVSqn7\nlFJHMC699r1W38v3cSM3xYQQQhRu+WLmByGEECKTSxfmUUo9opT6f3v37yNFHcZx/P1uLNDGiGBL\nYoKERilsaGgErAALg5VEQ0wMvRIKEmJBLGhIaIAYCg2RgqAU/LAxocKEH0r44TWHgeDJn4D4WMxA\nNkfu9rxzbiZ7n1ey2cnszuyTzDfzzM5+n2dvqU/VTbNe269OqXfUrX3FOOnUg+oD9Vr72N53TJNM\n3a7eVX9Xv+g7npVCnVZvqtfVq33HM6nUk+qM+uvIulfVS+o99aI6tu9c3/8Y9xuwC/h5dKW6AfgQ\n2EDTTeKY6VDapSNVtal9XOg7mEk1UnC+DdgIfKS+1W9UK8Y/wJaqeqeq5i1ZiSX5hmZ8j/oS+Kmq\n1tO0Qtw/bie9JqaquldVU7w4vXwHcLqq/q6qaWCKMfVPsSRJ+svjXWCqqu5X1RPgNM1Yj+5J/xfi\nE6+qrgCzm4ruAE61y6eAneP2M9QDNbsw92G7LrqxT72hnljI1+xYtLkK0aN7BVxWf1H39h3MCrOm\nnaVNVf0JrBm3Qee9M9TLNA0cnq+iGSQHqurHrj8/5j8GwDHgUFWV+hVwBPh0+aOM6NTmqnqkvk6T\noO60V/ex/MbOuOs8MVXVe4vYbK6C3ViE/3AMjgO5WOjOQorVowNV9ah9fqyepbmtmsS0PGbUtVU1\no74B/DVugyHdyhv9neMHYLf6kroOeBPITJoOtAPlmQ+AW3O9N5YsBec9UFepr7TLLwNbyTjvkrx4\nPt/TLn8MnBu3g17b4Ko7gaPAauC8eqOq3q+q2+r3wG2a3omfVwquuvK1+jbNrKVp4LN+w5lcCy04\nj//dWuCsWjTnvG+r6lLPMU0k9Tuaf5Z4Tf0DOAgcBs6onwD3aWZcz7+fnO8jImJIhnQrLyIiIokp\nIiKGJYkpIiIGJYkpIiIGJYkpIiIGJYkpIiIGJYkpIiIGJYkpIiIG5V9i2JUjwXKD4gAAAABJRU5E\nrkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -459,7 +719,7 @@ } ], "source": [ - "plt.hist(d_t, bins=200, normed=True, histtype='step')\n", + "plt.hist(d_t, bins=200, normed=True, histtype='step', lw=2)\n", "plot_normal(xs, f2(mean), abs(float(m)*std), color='k', lw=3, label='EKF')\n", "plot_normal(xs, d_t.mean(), d_t.std(), color='r', lw=3, label='MC')\n", "plt.legend()\n", diff --git a/Supporting_Notebooks/Iterative-Least-Squares-for-Sensor-Fusion.ipynb b/Supporting_Notebooks/Iterative-Least-Squares-for-Sensor-Fusion.ipynb index 2d73f1b..d4241c8 100644 --- a/Supporting_Notebooks/Iterative-Least-Squares-for-Sensor-Fusion.ipynb +++ b/Supporting_Notebooks/Iterative-Least-Squares-for-Sensor-Fusion.ipynb @@ -21,7 +21,7 @@ "@import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n", "@import url('http://fonts.googleapis.com/css?family=Vollkorn');\n", "@import url('http://fonts.googleapis.com/css?family=Arimo');\n", - "@import url('http://fonts.googleapis.com/css?family=Fira_sans');\n", + "@import url('http://fonts.googleapis.com/css?family=Fira+sans');\n", "\n", ".CodeMirror pre {\n", " font-family: 'Source Code Pro', Consolas, monocco, monospace;\n", @@ -116,9 +116,9 @@ " white-space: nowrap;\n", " }\n", " div.text_cell_render{\n", - " font-family: 'Fira sans', verdana,arial,sans-serif;\n", + " font-family: 'Vollkorn', verdana,arial,sans-serif;\n", " line-height: 150%;\n", - " font-size: 110%;\n", + " font-size: 130%;\n", " font-weight: 400;\n", " text-align:justify;\n", " text-justify:inter-word;\n", @@ -264,11 +264,8 @@ "#format the book\n", "%matplotlib inline\n", "from __future__ import division, print_function\n", - "import sys\n", - "sys.path.insert(0,'..')\n", - "sys.path.insert(0,'../code') \n", - "from book_format import load_style\n", - "load_style('..')" + "import sys;sys.path.insert(0,'..');sys.path.insert(0, '../code')\n", + "import book_format; book_format.load_style('..')" ] }, { @@ -293,7 +290,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqIAAAGNCAYAAADKExONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lOW9PvD7nS3JZCb7vkECIWGHAAHBsoMCVlFwwaWu\ndatdbKu/Y3uq7WnP6ek5Pd3rVtGqVdxFFBQQ2fewQ9hCEhKyhySTySSzvu/vjwiyJJPMzPvOlvtz\nXVwqM88z3wxjuPOsgiRJEoiIiIiI/EwV6AKIiIiIaGBiECUiIiKigGAQJSIiIqKAYBAlIiIiooBg\nECUiIiKigGAQJSIiIqKAYBAlIiIiooBQJIhu3boVN910E7KysqBSqfDGG29c9vj9998PlUp12a+p\nU6cqUQoRERERBSlFgmhHRwdGjx6Nv/zlL9Dr9T0+Z968eWhoaEB9fT3q6+uxZs0aJUohIiIioiCl\nUaLTBQsWYMGCBQCAe++9t8fnREREIDk5WYmXJyIiIqIQELA1otu2bUNqaioKCgrw8MMPo6mpKVCl\nEBEREVEAKDIi2pcFCxZgyZIlyM3NRWVlJX7+859jzpw52LdvH7Ra7WXPNZlMgSiRiIiIiGQUGxt7\n1e8FJIjedtttF/995MiRKCoqwqBBg7B69WosXrw4ECURERERkZ8FxfFN6enpyMrKwunTpwNdChER\nERH5SUBGRK/U1NSEmpoapKenu31eT0O64aqkpAQAMHHixABXEpz4/vSO7417fH/c4/vTO7437vH9\ncW+gvj99LbFUJIhaLBaUlZVBkiSIooiqqiocOnQICQkJSEhIwC9/+UssWbIE6enpqKiowM9+9jOk\npaXh5ptvVqIcIiIiIgpCikzNl5SUYPz48ZgwYQKsViuee+45FBUV4bnnnoNarcaRI0ewePFiFBQU\n4P7778fw4cOxY8cOREdHK1EOEREREQUhRUZEZ8yYAVEUe338iy++UOJliYiIiCiEBMVmJSIiIiIa\neBhEiYiIiCggGESJiIiIKCAYRImIiIgoIBhEiYiIiCggGESJiIiIKCAYRImIiIgoIBhEiYiIiCgg\nGESJiIiIKCAYRImIiIgoIBhEiYiIiCggGESJiIiIKCAYRImIiIgoIBhEiYiIiCggGESJiIiIKCAY\nRImIiIgoIDSBLoCISC6SJMFq60KbuQ1t5laYzK0wmU3otFrgEl1wuVyoqCgHAJxpOg6VSg2NWoMI\nXSTiY+IRa4xDnDEBscZY6COjIQhCgL8iIqLwxiBKRCFHFEXUN9fhbG05quoqUVV3Fq2m82gzt8Hu\nsLlt22YyAQDK6k64fZ5Wq0OsIRbxsYnISs3GoIw8DM7IRXpyJtRqtVxfChHRgMYgSkRBr8V0Hicr\nSlFVV4nK2gpU1VbCZrcq+poOhx3NrU1obm3C6cpvQqtWq0N2Wg4GZeRicOYQ5OcMQ0pimqK1EBGF\nKwZRIgo6kiThbG0FDp7Yh8MnD6CqrjLQJV3kcNhRXl2G8uoyAOsBAOnJmRhXOAHjCicgN2sIVCou\nvyci6g8GUSIKCnaHHScrSnHwxH4cPrkfre0tgS6p3+qaalDXVIPPt66CMToGYwuKMLawCCOGjEKE\nLjLQ5RERBS0GUSIKqIbzddi0ZwO2H9iMzi5LoMvxmdnSjm37N2Hb/k2I0EXimnHXYlbxPGSmZge6\nNCKioMMgSkR+53K5cOTUQWzcsw7Hyo4EuhzF2OxWbNrzJTbt+RL5gwsxa9JcFI0shkbNb71ERACD\nKBH5UXuHCVv3bcSmvRvQajof6HL86nTlCZyuPAHjmhhMnzgbMybNQUJsYqDLIiIKKAZRIlJcZ5cF\na7evxvodn/d5vFK4M1vasXrzSqzd9hlmTJqDRTNvRkx0TKDLIiIKCAZRIlKM3WHHxt3rsWbrJ7B0\ndgS6nKDidDmxYddabNu/GfOnLcR10xYhMiIq0GUREfkVgygRyc7lcmHHwa1YtfHDATcF7ymb3YpP\nN36ETXu+xA0zFmP6pDnQarSBLouIyC8YRIlIVqVnjmDF6jdQ11QT6FJCitnSjhVr3sC6HZ/jtuvv\nwoSRxYEuiYhIcQyiRCSLLmsn3l/7NraUfBXoUkLa+bYmvPDOnzBx1BTcecN9XD9KRGGNQZSIfHas\n7DD+ufIfQTENLwgCDHoj4mMSEGOIRZwxHnHGOOh0kVCr1KioKAcA5OUNgdPlhN1hQ3uHCW3mVrSZ\n29BuboOpow2SJAX06yg5ugsnK0px97cf4OgoEYUtBlEi8lqgR0HjjPHIyRjcfe97Rh6y0nIQa4xz\ne05nSWQJAGDixIm9PsflcqHdYsK5+qqL99tX1pT7PWibLe0cHSWisMYgSkReOX7mKF79+CW/hrPE\nuGSMKyzCiCGjMSgjF3Ex8Yq8jlqtRnxMAuJjEjB62LiLv99uacfZmnKcqCjFwRP70NBcp8jrX+nC\n6Og9Nz6IohGT/PKaRET+wCBKRB6RJAnrtq/BB+ve9sv0dV72UIwtKMK4wgnISMmCIAiKv2ZvYqJj\nMHrYOIweNg63Xncn6pvrcOjEfhw6uR+nz55Q9P0wW9rx/Io/YtGMxVg859aAvg9ERHJhECWifrM7\n7Hhz1XLsPLhV0ddJSUjFjElzMWXsNMQa4xR9LV+kJaUj7dpFuO7aRejoNGPv0V3YuHs9ahvPKfaa\nqzevxLn6Kjy09HFEReoVex0iIn9gECWifmlrb8Xz7/wR5dVlivQvCALGFhRhZvFcjBw6JuRG/Ax6\nI2YVz8PMSXNxqvIENu1dj/3H9sIlumR/rUMn9+O3//glnrjzx0hJTJO9fyIif2EQJaI+VdScwd/f\n+gPazK2y9x0VGYWZk+ZhxqQ5SIpPlr1/fxMEAQW5w1GQOxwmcxu2lHyFDbvWoqPTLOvr1Daew3++\n/Cweve0HGD5klKx9ExH5C4MoEbm158hOvPrRi3A6HbL2q9FoMat4HhZOvwnGaKOsfQeLWGMcvj3r\nFsy95nqs3b4a63d8DpvdKlv/ls4O/PGN/8ayRfdiVvE82folIvIXBlEi6tXWfZvwxif/kHUTjiAI\nmDp+Om6ctQSJcUmy9RvMoiL1WDznVsyech1Wb/oYm/dugNPllKVvURTx1qevwWa34fprb5ClTyIi\nf2EQJaIebdyzHm99+pqsfXbvNr8LGSmZsvYbKmKiY7Bs0b2YO3UBPl7/LvYc2Slb3x+sfRsOhx03\nzLw55NbXEtHAxSBKRFfZsPMLrFjzhmz96aOisWzhdzBl7LUMSQCS41Pw8G3fR/HoqXjz0+Uwmdtk\n6feTrz6AS3Rh8ZxbZemPiEhpDKJEdJnNezfIGkLHFhThnhsfVOzw+VA2bvgEDB00DO+seRO7Dm2T\npc/PNn0MrUaLRTMWy9IfEZGSGESJ6KLtB7bgX5++KktfHAXtH4PeiIeWPo6JIyfLNjr68ZfvQaPW\n4rprF8lQIRGRchhEiQgAcPjUAfzz45dk2ZiUlz0Uj9/xJEdBPXBhdPTl9/6G0jNHfO7v/bVvwRht\nxNTx02WojohIGapAF0BEgVfbWIN/vP83WULo1PHT8dP7/50h1AsGvRE/vOdpzJu6QJb+3li1HOXV\np2Xpi4hICQyiRAOcpasDf3/7/9Bl7fKpH0EQcPuCu3H/zY9Ap9XJVN3Ao1arcfuCe3DfzY9Ao/Zt\n0srpdOD5FX9Ca3uLTNUREcmLQZRoAHO5XHjp3b+i4Xy9T/3oI/Vfj+Qt5HpQmVxbNANPPfALxBhi\nfeqnzdyKv7/9B9gddpkqIyKSD4Mo0QD2wbq3fV6PGB+biGce/g+Myh8rU1V0wZCcfPz7o79BWnKG\nT/1U1pTjjU9ekfViAiIiOTCIEg1Q2w9swfodn/vUR1J8Mp5+8BdI9zEoUe8SYhPx9AO/QFZajk/9\n7Dq0DWu3r5apKiIieTCIEg1AtY01eHPVcp/6SElIxdMPPovk+BSZqqLexBhi8dP7f46c9ME+9fPh\nuhUoqzolT1FERDJgECUaYFwuF177+EU4nQ6v+0iMS8ZP7v85EmITZayM3DHojXjy3meQkZLldR+S\nJOG1j1/ielEiChoMokQDzNrtq1Fx7ozX7eOM8fjJfc8gMS5JxqqoP4zRRvzkvp8hNSnd6z4amuuw\ncsP7MlZFROQ9BlGiAaS2sQarvvrA6/ZarQ7fv/unSElMk7Eq8kSsMQ4/vPsp6KOive5j/Y41nKIn\noqDAIEo0QFycknc5ve7j/psfwaCMXBmrIm+kJKbh0dt/4PVRWZyiJ6JgwSBKNED4OiW/aMZiFI++\nRsaKyBcjhozG7Qvu9ro9p+iJKBgwiBINAA3n63yakh9XOAGL59wqY0UkhzlTrse1RTO9br9+xxpU\n1Hj/wwkRka8YRIkGgI+/fN/rKfn05Ew8tPRx3pgUhARBwF3fvh9DsvO9ai9JEj5Yu4IH3RNRwDCI\nEoW5yppylBzd5VVbtUqNh299ApERUTJXRXLRarR46NbvIUIX6VX7kxWlOFZ2WOaqiIj6h0GUKMx9\ntP5dr9sumrkY2emDZKyGlJAcn4Kl1y3zuv1H69/lqCgRBQSDKFEYKz1zxOu75HPSB2Ph9JtkroiU\nMnPSXBTmjfSqbVVdJfYe2SlvQURE/cAgShSmJEnyejRUrVLj/psfgUatkbkqUoogCLh38Xe9nqJf\nucH7dcRERN5iECUKUyXHdqOyptyrtpySD02+TNE3tjRg676NMldEROSeIkF069atuOmmm5CVlQWV\nSoU33njjquf88pe/RGZmJvR6PWbNmoXS0lIlSiEakCRJwmebPvaqbUpCKqfkQ9jMSXMxODPPq7ar\nN62Ey+WSuSIiot4pEkQ7OjowevRo/OUvf4Fer7/q8d/97nf44x//iL///e8oKSlBSkoK5s2bB4vF\nokQ5RANOdcNZ1DRUe9V28ZxbOSUfwgRBwJL53o2KtplbUXbupMwVERH1TpEgumDBAvzmN7/BLbfc\n0uPZg3/+85/xzDPPYPHixRgxYgRef/11mM1mvP3220qUQzTgHDi116t2OemDMYm3J4W84XkjMXLo\naK/a7j+5R+ZqiIh65/c1ohUVFaivr8e8efMu/l5kZCSmT5+OHTt2+LscorDT0WXGybPeLXVZMv8O\nHlwfJm6Zd4dX7c7WV6C5rUnmaoiIeub3+bf6+noIgoDU1NTLfj81NRW1tbVu25aUlChZWlAaiF+z\nJ/j+XO3w6f0QJRFtJpNH7Qal5aKz1TZg3tOB8HWmx2fjeOVRj9sdPLUXSXHJClQUHgbCZ8cXfH/c\nG2jvT36++5vfuGueKIyIogsHT3n3TW7G+DkcDQ0z08fNhsqLP9MjZw7C7rArUBER0eX8PiKalpYG\nSZLQ0NCArKysi7/f0NCAtLQ0t20nTpyodHlB48JPTAPpa/YE35+eHThegvbOdgBAXGxsv9sNHVSA\nGxfcrFRZQWWgfXZONxzH/tL+r/tsM5lgc9jg0HRh6sSpClYWegbaZ8dTfH/cG6jvj6mP2Tm/j4jm\n5uYiLS0N69evv/h7VqsVW7duxbRp0/xdDlFY2bZvk1ftZhfP6/tJFJJmFc/1qt22/ZvkLYSIqAeK\njIhaLBaUlZVBkiSIooiqqiocOnQICQkJyM7Oxo9+9CP89re/RUFBAfLz8/Gb3/wGRqMRy5Z5f1cy\n0UBns9tQWu75ekBjdAzGj5ikQEUUDArzRiI1KR0NzXUetas4dwZt7a2Ii4lXqDIiIoVGREtKSjB+\n/HhMmDABVqsVzz33HIqKivDcc88BAJ5++mk8+eSTeOKJJ1BcXIyGhgasW7cO0dHRSpRDNCAcP3MU\nDi/W9U2fOBtajVaBiigYCILg9ajokVMHZa6GiOhyigTRGTNmQBRFuFyuy369+uqrF5/z7LPPoqam\nBp2dndi4cSNGjBihRClEA8bBE/s8biMIAqZPnK1ANRRMpo6bDp02wuN23nymiIg8wV3zRGFAkiQc\nOrnf43ajh41DYlySAhVRMNFHRaPYi4sKSsuPwma3KVAREVE3BlGiMFBxrgxmS7vH7SaMnKxANRSM\nJows9riNw2HH8TOerzsmIuovBlGiMHDwhOejoYIgYPSwcQpUQ8GoIHcEInSRHrfj9DwRKYlBlCgM\nHD51wOM2Q3KGISY6RoFqKBjptDqMHDrG43aHTx2AJEkKVERExCBKFPJsditqGqo9bjeucIIC1VAw\nG1tY5HGb9g4Tzrc1K1ANERGDKFHIq6o769WIFYPowDN62DivrnE9W1uhQDVERAyiRCHvbG25x21S\nElKRlpSuQDUUzGKiYzAkO9/jdlV1lbLXQkQEMIgShbzKGs9Hq4YOKlCgEgoFeV4E0UovftghIuoP\nBlGiEOfNtOmg9MHyF0IhYXBmnsdtztZUcMMSESmCQZQohNnsVtQ313rcbpAXYYTCw+CMXI/bdHSa\n0WI6r0A1RDTQMYgShTBvNioJgoDstEEKVUTBLjkhFfpIvcftuGGJiJTAIEoUwuqbPB8NTU/ORITO\n83vHKTwIgoAcL0ZF65pqFKiGiAY6BlGiENZmbvW4zSAvQgiFlxwv1gibzG3yF0JEAx6DKFEIa/Mi\nHPDYJkpPyvC4jTefNSKivjCIEoUwkxcjorHGeAUqoVASY4z1uI03nzUior4wiBKFMG+m5uOMcQpU\nQqEkPibB4zYcESUiJTCIEoUwb9btxXFEdMCLNXj+w4jJ3MqzRIlIdgyiRCFKkiSYOjwPopyaJ2N0\nDFQqz779O11OWLo6FKqIiAYqBlGiEGXuNEMURY/aaNQaGPQGhSqiUKFSqRAT7cU60Q6TAtUQ0UDG\nIEoUoux2m8dtDHojBEFQoBoKNTEGz4Oo3eH5Z46IyB0GUaIQJYouj9toNBoFKqFQ5M1nQfJwBJ6I\nqC8MokQhSvRi44hapVagEgpFKsHzb/9Ol+c//BARucMgShSiXF6MiKoYROlr3nwWvPnMERG5wyBK\nFKK8GdESJU6tUjdvPgvefOaIiNzhdxWiEKX28PgdwLt1pRSevPksqNUcUScieTGIEoUob6ZWucaP\nLnB58VlgECUiuXELLVGI0qg9/9+3s8vS62OSJMElSlAJAgQBPOYpzHlzOD03uxGR3BhEiUKUIdrY\n53NsDidsDhccThF2pwsOpwm//ddXaO8S0dLehVazFQ6XCJco4spN+Bq1CipBQEx0BOINkUiIiUKC\nMeqqf2Ylx0CnZUAJJd23cnl+OL03h+ATEbnDIEoUorpvSTKio9MMALDanbBYHWhu7UKXwwVXQydc\n4tVHPG0+eBJaXd93jTtd3ZtZmk2daDZ1AjU9P08lCMhJjcHQjAQMzez+lZsez3AaxDqtFjgcdo/a\nCILg1SH4RETuMIgShSBJknCq+jzq21w4V98Mi9VxMXQ6HQ4AgEar7bGty9nZryDaX6IkobLehMp6\nE77cXwHgm3Can5mIiQUZGJ+fhqiInush/zOZPR8NjTXEeXw/PRFRXxhEiUKEze7EwbJ67D5eg70n\na9HWYUVjvRVdnZ6NbLlcva8Tlcul4XT9vnJo1CqMHZKK4sJMFA/PRFKsXvEaqHdt5haP28QY5fvh\nhYjoAgZRoiDW0WXH9iNV2H28BofONMDuvHyns1oT7XGfLmenXOX1m9MlYt+pOuw7VYcXVpUgLz0O\nk4dn4drROchJ5XSvv5nMbR63iWMQJSIFMIgSBaEzNS1Yves0Nh86e1X4vJRa4/nIotNh9qU0WZTX\ntaG8rg0rvjqKUbnJWDg5H9eMzIZGzalff2hubfK4TZwxXoFKiGigYxAlChJ2hwvbjlRhze7TOFl9\nvl9t1GrPg6jd1uxxGyUdrWjC0YomxBkicd2kIbi+eCin7hV2trbC4zaxHBElIgUwiBIFWGOrBat3\nncL6knKYuzxb76nRxnj8enZbMyRJhBBk1zW2dVjx7sZjeG/TMUwenokbpgzDmCGpPM9UAWfrKj1u\nkxSfInsdREQMokQBYuqw4r1Nx7Bmd9nFo5I8pYtI8riNJLngsLdBF5Hg1WsqTZKAXaU12FVag9G5\nKbj3urEoyPH866SetVva0Wrq34j7pQZn5CpQDRENdAyiRH7WZXNg5bYT+GjrCVjtTp/6Umv00Gj0\ncHq4AcluawraIHqpIxWN+OmL63HNiCzcM38MslO4sclXZ2vKPW6j1eqQlpShQDVENNAxiBL5icPp\nwhd7yvDuxmMwWWyy9auLSIbTedajNt3rRAtkq0FpO0vPYdfxc5hblIc7547mGlIfVHoRRHPSBvGe\neSJSBIMokR9sP1KFVz8/gMY2+Y9O0kUmo9PiYRC1Nspeh9IkCVi/rxybDlXi29cMw7I5oxGp47cw\nT1XUnPG4zSBOyxORQvhdnEhBpg4rXlhVgu1HqxV7DV1Essdt7NZGuJxdUGuiFKhIWQ6niI+2nsDO\nY+fwwyWTMTKXm2j6y+6w40R5qcftBmXmKVANEREQXNtmicLItiNVePxPaxQNoYCXG5YAdHVWyV+M\nH9W1dOCZVzbg5U/3+bzWdqA4UXEMdofny0IGpQ+WvxgiInBElEh2/hgFvVT3hqVoOJ2eXd3ZZTkL\nQ0zorBPtiSQBn+48hZKTtRwd7YeDJ/Z73EanjUB6cqYC1RARcUSUSFb+GgW9UqQ+2+M21s5qiGJ4\njCReGB39x2ccHe2NJEk47EUQHTFkFDcqEZFiGESJZOB0iXjhk7343YrtaO+Ub0d8f0VFD/K4jSg6\nYeuqVaCawJAkYNWOU3jqxXVoaOkIdDlB52xtBdrMrR63G1s4QYFqiIi6MYgS+ajdYsOzr27Emt1l\nAashUp8JQfB81KrT4vlVj8Gust6EJ/++FkfKGwJdSlA5eLzE4zaCIGBswXgFqiEi6sYgSuSDyvo2\nPPn3L3CkIrDHIalUWkTqszxu12k+A1F0KFBRYJm77PjFqxuxZtfpQJcSFFwuF7Yf2OJxu9ysIYgx\n8BIBIlIOgyiRl3aVnsNTL65X5GxQb+i9mp53wGI+dfG/VWF0r7tLlPDCqhI8v3Kv11eohouDJ/ah\ntb3F43ZjC4oUqIaI6BvcNU/kIUmS8O7GY3jryyOBLuUy7taJRurU0EdqEaHRQKtRQatRQ/f1Pwdn\n2PHL790GtVoF4esgKooSnC4R7Z02nDd1orXDipb2LrSYu9DS3oWqRhMq6tpgd7r89eV57fM9Zahu\nMuHfll2LWENkoMsJiE17vuzzOZIoAk4HVNYuQHTBJTqQ33ge5pVvdz/mcnYvxAUAlQpQqSGoVBD0\n0VAbYyEYY6AyxEBtjIXKGANBF6HwV0VE4YBBlMgDoijhbx/vwfp9nl+TqDS1Ro+IyBQIUh30OjUS\n42MQHamFPlILtar3yY/65nOoqClD/qBvjnJSqQToVGokxep7vU7T6RJxrqkdZTUtOH3ufPc/a1ou\nZpVgcrSiCU+/tB7/+dCcQJfid3VNtThefvSb3xBFSDYrRGsXJJsVkrULksMBSN2jxmpH96kDsXoj\n4o4dgdXLUXJBFwF1QhI06VnQZGRDk54NTUo6BK3W56+JiMIHgyhRP7lcIv704S5sOujZdZpKEwSg\nIDsRk4dnwdkVgQ9WvwIIAuJiDf3uY+PudZcF0f7QqFUYnBaHwWlxmDuh++Ydc6cNJSdrsft4Dfad\nqguqo5Rqz3fg/720HrdNSkKiceCM1m3ctBKutpbuwGntgmTv36kORbGpF0fIvSHZbXDW18BZXwMc\n2A0AEFQqqFPSoUnPgjZ7MLRDh0Nt5BpUooGMQZSoH5wuEb9/d4ffzwd1Z9zQVEwfMwiTCjMR9/WU\nc2fXIHyy9g04XJ5tQNpfuhet7S2Ij0nwqSajPgKzxudi1vhcOJwuHClvxM5j1dh06GxQhNLGtk78\nbc0JPHZ9aB/k744kinCeOwv7qWMwHTuATbtXwuXy7L1XCcA18RnK1PZ1OLV+HU41mTmIGDYSuoJR\nUKek+xR+iSj0MIgS9cEVRCE0OlKLuRPysKB4KDKTY656XB8VjZF5Y3Dw9D6P+nW6nPh008f4zo0P\nylUqtBo1ioalo2hYOh5YOB4bD1Ri9a5TqGpsl+01vNFmseP5z0+iaPw4pCX0f9Q4mEkuJ+ynT8B+\n8gjsp0ohdnafo7qhsRxWD0MoABRGxSNO65/1tM6aKjhrqmDZ+DnUsfHQFYyErnAMtIOHMpQSDQAM\nokRuiKKEP324K+AhNC89DjdcMwzTxwxChM79/7bjCyZ5HEQBYNu+jZg/dSHSktK9LbNXURFaLJyS\njwWTh6K0sglrdp/GtiPVEAO0oNTUacfPX9mA/354LpLjogNSgxxc7W2w7t8F6/6dEM2XB3yz047N\nLd59bosNgbkq1WVqRdeebejasw3qxGRETZiKiPGToYqMCkg9RKQ8BlGiXkhS98akQK4JzU6Owb3X\njUXx8Mx+jw6lJqQjKzkbHXbPRh5FUcTKDe/j0dt/4E2p/SIIAkbmpmBkbgrummvGv9YfxtYjVYq9\nnjuNbZ34+Stf4b8fnouEmNAJOpIkwVFZBuvebbCdOILedoetb6qEXfT8VIMkbSTyIq8ebfc31/km\ndKz7BJavViNi9ARETboWmnTPz8olouDGIErUi3c3HgvY7vikWD3unjsas8bnQqXyfHpyfMEkbD2y\nweN2JUd3oeLaRcjNHOJxW09lJBnx9LJpWDJ9OF5fewgHyuoVf80r1bV04NdvbsZ/f3dunyPNgSa5\nnLAe2I2u3VvganZ/gcJ5exd2ttV49TqTDClBNSUuObu/buuB3dBmDkLUNTOhGzE2qGokIu8F93de\nogDZeaw6IOeERkdqsWz2KCyYnA+d1vMrOy8oGDQSB87sQUen2eO2H69/Dz++7xmvX9tTQzIT8B8P\nzMLhMw1YvmY/yuva/PbaAFBW04q/fLQbP719alCGG0mSYDu6H50bP4er9Xy/2nzeVO75sgdBgFYb\ngdE5I+AwxCKqcARUBiOEaCMErQ5QqyB8fQxY97miIiSHDWKHGaLZBNHcDrHj619mZdYBO2rOwvHB\n69CkZyF6ziJo8wqC8s+MiPqPQZToCpX1bfjD+7v8/roTC9LxxOJiJPZybqcnNGoN5k1dgI+/fM/j\ntqVnjmA45SicAAAgAElEQVR/6V4UjZjkcx2eGDMkFX94/Dp8uOU4Vnx11K+3IW05XIXBaXG4deZI\nv71mXyRJgqPsBCwbPoOzobbf7co723DA1OD+SWo1VBFRECIjIURGQYiIgqDVYu4118OVMgIWAIaJ\nE72vXRThammGs64aztpqOOvOwVlbDclh97rPSznrzsH0r5egHTwU0XO/DW1mjiz9EpH/MYgSXaLd\nYsOv39js16OGoiO1+O6iIswuypV1dGfuNdfjq93rYDJ7PsL4r09fxbDBhTDojbLV0x9qtQq3zRqJ\nycMz8acPd6GsptVvr/3m+sMYlBqH4uGZfnvN3jjOVcLy5WdwnD3jUTu76MI7tcevfkCtgcpghEpv\n6A6ePRwqHxkRhYUzFuPU8VNXt/eQoFJBk5QCTVIKMHoCgO5g7TrfBOe5SthPl8JedqLfZ5r2xlFZ\nhrZX/oiI4WOhn72w+/WIKKQwiBJ9zekS8d9vb/Pr3fFyjoJeKUIXiRtm3oy3Pn3N47btHSasWP06\nvnvrE7LX1R+D0uLw+0fn+3V0VJKA/313B/7vsfnISQ3MIeuitQuWdZ9cPGPTU2say3He3gWg+2Yj\nlcEIVbQRQlTfn6/rpi1CTLRym5QEQbgYTiPHFUNyOeGoPAP7qaOwnzwKl8n7JRm244dgO3EY+mvn\nQj9jPgQ1/2ojChW93/tHNMD847N9OFLhfhOIXAQBeHDheDz7nRmKhNALvjVhFlISUr1qu/vwDhw4\nXiJzRf13YXT0fx+d1+s1o3Kz2p349ZubYe70baTOG/ayE2h94X+8DqHlnW3Y1l4PdWIytLn50A4e\nCnVSar9CqDE6BvOnLfTqdb0lqDXQDSmAYcESxP/wWcQ//BNEFX8LQoSX55dKEjq3rkfby3+As+6c\nvMUSkWIYRIkAbDtShTW7y/zyWtGRWvzy3plYfG2h4hstNGoNFs+51ev2b65a7tWGJzkNzUzAHx6f\nj8KcRL+8Xn2LBX/+cDckP51xKlq7YF71DkxvvQSx3btRQSlrED6KcEGbmw91Ykr35iIP3DBjMSJ0\n/jnAvieCIECTngXDgluQ+ONfwnDDbdCkenezk7OxDq3/+AMsX62B5MVh/kTkXwEJor/61a+gUqku\n+5WRIf91ckT9Yeqw4oVP/DPyl5lkxP89Nh9Fw+Q/NL43k0Zfg5z0wV61be8w4c1Vr/otlPUm3hiF\n/3poDuYW5frl9XYfr8HWw8qfb+rLKKig1SJq0jTEP/b/sC4lBuclZ/dQu4eS4pMxo3iux+2UIugi\nEDXhGsQ98lPEPfBDRIye4PnXxdFRopARsBHRwsJCNDQ0oL6+HvX19ThyxP9H5RABwAurStDuh6nY\nCcPS8X+Pze/xak4lCYKAJfPv8Lr9vmO78fnWVTJW5B2tRo0fLJmM7y4q8iZveezFVSVoNXcp0rfk\ncqFj7UqvRkEFlQpRE6ch/vs/h2HhUuysOo5Ne770upbFc26FJgjXVAqCAG32YMTccjfiH/83RIwY\n63EfF0ZHu3ZtDvgPU0TUs4AFUY1Gg+TkZKSkpCAlJQWJif6ZdiO61LYjVX65vnPWuMH4xT3TER3l\n2ZSpXEYOHYPi0dd43f7jL9/DoRP7ZazIO4Ig4MZpBfi3ZddCo1b225e5y47nP9kre4ARuzrR/vY/\n0LVrs8dtI0aNR/z3noFh0VKojbE4ffYk3vrM881oF4wYMhqTx0zzur2/aJJSEHPrfYh76Eno8oZ5\n1liS0LF2JTo+fReSk1P1RMEmYEG0vLwcmZmZyMvLw7Jly1BRURGoUmiA8teU/PyJeXjy1ilQKxyc\n+rJs0X0werkrWpIkvPz+31DTGBzTnFNHZeNndykfRneVyjtF72xuQNsrf4S9/KRH7XR5BYh/+CeI\nWfIdqBOSAADn25rx/Io/wunlOsjIiCh856aHQupAeG1mDmLveQyxdz/q8XWf1gO7YXrj7xA7Arvm\nmYguJ0gBmK9Yu3YtzGYzCgsL0djYiF//+tc4ceIESktLER8ff9lzTSbTxX8/ffq0v0ulMCVJEv65\n8QwOVyp7TuWUYUm4bdrgoPnL/lRVKT7a9K7X7eMM8bh30cOIivDPLva+lFa34bUNZXCKyn0bi47Q\n4OmbRyFGf/XZm57Q1JxF9PZ1EDw41F2MiETXpOlw5Ay9bJ2k3WHHW18sR0Or99eiXj/l2xg3zPtD\n6wNOFBFx6jAiD+6G4EEYF/UGWGYshCshWcHiiOiC/Pz8i/8eG3v10XgBGaK57rrrsHTpUowaNQqz\nZ8/G6tWrIYoiXn/99UCUQwPQocpWxUPoxCGJQRVCAWBYzgiMGDzK6/ZtHa34eNO7cDodMlblvRHZ\ncbhn5hCoFHyPLTYnPtx51vsOJAkRpQdg2LzaoxBqzx4C86JlcAzKvyyEiqILq7d/5FMIHZyeh7H5\nE7xuHxRUKtgKx8G88HY4k9P636yzA4Z1H0F7lgMbRMEgKFao6/V6jBw5ss8Rz4k+XDkXakpKuqeM\nB9LX7Alf3h+H04UXvvoMcXFxcpd10YRh6fjFPdMDMh3f13tTOKIAz/71abR3mHp8vC/t1lbsKduG\nx5c9GRSbXCZOBAblDsGfPuzfzvO2tu7NQZ78+VeZJEQm5mBUrmc390iSBMv6VeiqKAV6GAnoiSpK\nD8PCpdCNHHfVDzGSJGH5hy+gwVSLuH72d6XIiCg889hzSIxL6vHxUPzeI82cDevuLbB8tbrf60Dj\nju6BYVAOoib2f41sKL43/sT3x72B+v5cOrPdk6A4R9RqteLEiRNIT/ffkTY0cH2+u0zR25Myk4x4\n6vapAV8T2huD3oh7bnzQpz4OnzyAl977q9frE+U2Z0IebppWoOhr/POLgx5tXJIkCZbPP0TXzk39\nbqPLH9G9Q3zU+B5D6BufvIJdh7b1u7+e3Hb9Xb2G0FAlqFSIumYm4h55CpqM7H6361j9gUd/PkQk\nv4D8TfnUU09hy5YtqKysxO7du7F06VJ0dnbi3nvvDUQ5NIB0Wh14d+MxxfqPjtQGdHd8f40fPhHT\nJ83xqY8DpXvx4jt/hiNIpunvv34cxg/t/xStp05Wn8fu4zX9eq4kSej47D107d3e7/7135qHmGUP\nQWUwXvWYKIr458qXsXXfxn7315OiEcX41oRZPvURzDRJKYi77/uIHNP/ZQcd6z5B5/YNClZFRO4E\nJIieO3cOd955JwoLC7F06VJERUVh165dyM7u/0+yRN5Yue2EYmeGCgLw/5ZN8/s5od66c9G9yB9c\n6FMfB0/sw9/f/gPsHqx9VIparcLTy6YhI9Gg2Gu8sfYQXH3cey9JEixrPoR1/65+9SloNIhZei+i\nZy/scT2xy+XC8g+fx/b9nh/3dKmstBw8uOTRoFqzrARBq4Vh8V2InvvtfrexfPkZR0aJAiQgQXTF\nihU4d+4crFYrqqur8f7776Ow0Le/EIn6Yuqw4uNtJxTr/4EF4zE+P3SWl2jUGjx2x4+Q4OM07dHT\nh/C/r/4abe3Kbv7qD0OUDr/4zgzoI3zb4d6b6qZ2fHWg96PmJEmCZd0n6Crp30ioKiau+/agkeN6\nfLyj04w/v/k/2H14h1f1XmDQG/HEnT8J6DWe/iQIAvTTZiP2zu/2++76Dg/+3IhIPsG5iI1IAe9u\nPAarXZk1jZMKMhRfo6iEmOgYPHHnj6HTRvjUT8W5M/jNi/+OipozMlXmvazkGDx2k3KbAd7ecBR2\nh6vHx7q2bej3QfXa7MGI/+6Pez0Ps7axBv/10rMoPePbrXNqlRqP3fEjJMUPvOOKdPkjEPfQjy6e\nvdqXjtUfwHbsoMJVEdGlGERpQGhsteDzPWWK9B0dqcUTNxeH7JRnTvpgPLjkMZ/7aTO34nev/IfP\nm2nkMGPsIEwenqlI382mTqzZffUJH7YTR2H5anW/+tDlFSD2nsd6XA8KAIdO7sd/vfwsGlsafKoV\nAJYtuhcFucN97idUaZJSEffAD6FJ6d9shXnlW7yfnsiPGERpQPhs5yk4+1jb563vLipCQkyUIn37\ny4SRxfj2rFt87sfpdOCVD57HB+tWQBSVeb/7QxAEPH7TJBgU2jT2yfaTl60VdTbWwfzRm/1qqxs2\nEjF3PAhBe3VtkiRhzZZV+Ntb/werzfd77mcWz8XM4rk+9xPqVNEGxN77vX7dxiQ5nTC9s5w3MBH5\nCYMohT27w4X1+8oV6XtSQQZmF+Uq0re/3ThrCaaOny5LX19s/RS/f+0/0STDiJ63EmKi8PANRYr0\n3WzqRMnJWgCA2GlB+zvLIfVjw5Zu2EjE3HYfBO3Va1jb2lvx17d+j4/WvyPL/fbjCifgjoXf8bmf\ncKHSRyP2nsf6FUbF9ja0v/cqpCA5nowonDGIUtjbevgsOrrk39Ud6lPyVxIEAfctfhjFo6+Rpb9T\nlcfx3N/+DRt2rZUlWHlj5rjBik3Rr951GpLLifb3/wlX6/k+n68bUoiYW++DcMUlAJIkYefBrXj2\nr0/h8MkDstQ2Kn8sHrn9B0Fx4UAwUUXpu++p78c0vaO6Eh2rPwjYZ5dooGAQpbC3epcyV/ktmz0q\n5Kfkr6RSqfDAksdQNKJYlv7sDhtWrH4d//vqbwIyOioIAh6+YQI0ClwucKCsHjUfvQtHZd9rj7XZ\nuYi5/X4ImsuD4YVR0OUfvoBOqzyXLBTmjcTjy56EVqPMyQGh7sLIqDq+7w1M1gO7Yd2z1Q9VEQ1c\nDKIU1k6fO4/TNS2y95sSp8fCKfmy9xsMNGoNHr7tCUwYOVm2Pi+Mjn6583O/38aUEh+NRQr8WeVa\natG4se+D0NWx8Yi5/YHL1oSKooit+zbJOgoKACOGjMb37/opdD2sP6VvqAxGxCx7EIKu79MiLOs+\n4eYlIgUxiFJYW6PQaOhdc8dAq1Er0ncw0Kg1ePjWJzBlbP/v4e6L3WHDO2vexLN/eQp7Du/w65Tn\nbTNHIkon3zR1hMuO6ecPosnU6XZTlqDVdd+WFN19yL4kSTh0Yj9+9fwzeH3ly7KNggLA6GHj8MRd\nP0FEP8IVAZrkNBiX3NPn8yRRhPmTFVwvSqQQBlEKW+ZOG7YcrpK930GpsZg5brDs/QYbtVqNB255\nDNMnzpa138aWBrz8/t/w6xd+jiOnPLu/3Vsx0RG4Zbp8Rxh96/wh6F02uEQRLe297243Lr4TmtQM\nAMDpsyfxu1d+hb++9XvUNFTLVgvQfXXn9+78MUdCPRQxbCSi597Q5/OcDbXo3PqlHyoiGni4kp3C\n1rYjVbA7ez543BffmT8WKlV4bFDqi0qlwj03Poi0pAy8v/YtWUNjVV0l/vzm/6AgdwRumHkzCnNH\nKLrxa/G1hfhs5ym0tfnWT66lFvmWb6Zqm02dSIqLvup50TOvh274GJRXn8Znm1fKOgV/qRtmLMZN\nc24Nm01z/hY1dTacDXWwHdnn9nldW9dDPXkuXAkD72IAIiUxiFLY2n28RvY+8zMTMKkwQ/Z+g5kg\nCJg/bSEyUjLx8nt/lXU6GQBOVpTiZEUp0pMzMbN4Lq4Zey30UVcHO19F6jRYMn04/rDC+01TF6bk\nL2XussPpEi/bECUMG4F90TpsfPHfUVXb+5WgvtBqdXjglkcxadQURfofKARBgPHbt8PV3OB2Lagk\nitDv+grm65b6sTqi8MepeQpLVrsTh87Iv0t70ZT8ATvyNCp/LH72yK+RmtS/G2o8VddUgxWrX8dT\nv/8+3li1HOfq5V9WMW/iEGh92EF/YUr+SqYOKwCg0daJVW3V+NXpHXj9k38oFkLjYxPxzHd/yRAq\nE0GrhfGWu686WutK6tZmRJbu91NVRAMDR0QpLB04XSf7TUrGKB2+NWaQrH2GmrSkdPz84f/Ay+//\nDUdPH1LkNWx2K7bs3YAtezcgKy0H4wqKMHb4BAzOyPP5hwBDlA5FQxKw+1Szx22zuhovm5IHujcf\ntYhWnGxoRXOLFdVd7dBk5EDlUG6t5tCcYXh82ZOIMcQq9hoDkSYpFfrZC2FZv8rt8yKOlsDV0tzv\n++uJyD0GUQpLSkzLz52QB502fHfK95c+Kho/uPspfPLVB1iz5RNFNxudq6/CufoqfLZ5JeKM8RhT\nWISxBeNRmDsCEbpIr/qcVpjieRCVJExuOQYAcEoi6l0WVDrbcdbZDrNoByAg1hABdUxcr/fHy2Fm\n8VzcvuAenhGqkKgpM2AvPQRHzdlenyOIIiwb1yBmCW+tIpIDgyiFHVGUsPdErez9Lpg8VPY+Q5VK\npcLNc2/D2ILxWP7Ri2horlP8NdvMrRdHSgVBQHpyJgZl5GJwRi4GZeYhOy2nX+E0OykaOcnRaHf0\n/Zqi6ITD3oLEtuMoNR3BZrELrS4rRFwZviU4oYIuOc27L64PCXFJuG/xdzFiyGhF+qdugkoFw+Jl\naHvx926Pa7IdPQDn1Nn9ui6UiNxjEKWwc7K6Ge2dV6/j88X4oWlIT1RupCtU5WXn47nHf4tPvvoA\n67av9tvZoJIkobbxHGobz2Hnwe6bbwRBQEpiGuJjEhBnjEOsMR6xhjjodVGI1huh0+ggQMDZc+Uo\nSOzC9jONgCRBhAsuVxdcoh2iqwtOpwUuVydcTgucDhMgiVB3NcMiuT9H0hQZh2i1/CPm0yfNwa3z\nlyEqUi9733S1/k7RWzasRuzdj/ipKqLwxSBKYUeJafkZYwf22lB3dFodbr3uTkwYMclvo6NAdxi1\n221wOp1wOZ1wOl1oqK//+t+//j2XE1cOXjocDkgAOm09HO0lqCAJKuCSX1GSA6LogBOAWhDQ0yrV\nTnUkTA4V5DxPgaOggRM1ZQZsh0vgbOh9ZsV+5gTsFaehyw3PG9aI/IVBlMJOaWWTrP0JAjCxYGAd\n2eSNS0dHv9zxOVyifGe4SpIEm80Gm9X6zS+77aqQ2V8CAI1adfWGNkmEIF36exLgsqP9khfSCAI0\nEKARuv9dLQho1RnhcLhgd7qg8/HGLUEQ8K2JszkKGkCCSoXoOTfA9PbLbp9n2fAZtA/+aMCepEEk\nBwZRCiuiKKG8rlXWPofnJCHW4N3GmIHmwujojImz8fGG97D3yC6v+nE6nei0dMDa5Xvo7I1W00MQ\nvYJGdEG44oWdkgQnpIv1uAQ1XNZ2CCoNmprUSElKgFbr3WaiMQXjccvc25GVluNVe5KPdmghtIOG\nwHH2TK/PcdZUwX7iCCKGj/FjZUThhUGUwkpNcztsDnlvUyouzJS1v4EgJTENj9z2A1w37QZ8/OW7\nOFZ2pM82NqsVFksHLB0dsFnlXePbE61ajS64X/epkfr6LAlwqDSA6IIgutDa3ISu9jboInSINhgQ\nbTAiMrLvH2KG5gzDLfPuwLDBhR58BaQkQRAQPfcGtC3/s9vnde3ewiBK5AMGUQorZTUtsvc5eQR3\nxnprcGYenrz3GRwvP4YP161AZU35xcckSUJXZycsHd3h0+l0HwrlplIJUKsEuMSeh1rV0tWjoVdy\nCmpIl6wadX7dl91mh93WgtbzLVCr1V+HUgOi9HqoVN8cqJ+RkoUl8+7AmILxnN4NQtqswYgoGAXb\nyaO9Psdx9gycjXXQpChz0QNRuGMQpbAidxBNTzAgM4m75X01PG8kfv7Ir7G/dC9WrnsPB4/tQ0eH\nGVIvIdBfNBoVXPaeRz3V/RoNvXw9qKuHqX6Xy4V2kwntJhMEQYDeEI1Rw8bipvm3YsrYaZcFUwo+\n+jmL3AZRALDu3Q7DIl79SeQNfgeksHL6nLxBtDAniSNVMrDb7ThYshcHN+2BviUSYxLGICsmG2pV\nYC8I0PQSAgWIUEvu1486BTVwxR56SQLEXo6wUgkqZMRkYnTCaMR1xODIln3Yt3sXrF1dXtVO/qFJ\nTkPEiLFun2M9tBeizeqniojCC0dEKWwosVFpSEa8rP0NNM2NjTiwdw+OHDxw2bpPQ4QRI1JHYlhy\nAeraa1HVVoUOm9nv9al7uXde048d/85eQrTLJUJ1yc55vU6P7NgcZMZmQav+ZhNTS3MzvlyzBpvX\nr8eIMWMwYfJkpKbzdIZgFDnpWthKe7/SVnLYYTtcgqhJ1/qxKqLwwCBKYaP2vFn2jUr5WYmy9jcQ\nSJKE0yeOo2TXLpwtL3f7XI1Kg+y4HGTFZqPN2oYGcz0aOxrQ5fDPKKFKECAI3SOZ35Cg6WM01CWo\nLlsbetljogijJhrJhhSkGlKRoE90O6rucDhwaN8+HNq3DxnZ2ZgweTJGjB7DKfsgoh00BOqkVKCt\nrdfnWEu2I3LiNM6gEHmIQZTCRlObRdb+BAHI44ioRyrPnMGm9etQV+PZpQKCICA+Kh7xUfEoSC6E\nxW5BY0cDmiyNaOvq/S9/OWjUKjic3wTP7in5vjcpXUmn0kOvjkdWXDpGZGV5FUhqq6tRW12NnZs3\nY8a8+cgvLGSwCQKCICBq0jSg7GSvz3E21sNZXQltTq4fKyMKfQyiFDZa2uUdRctKikGkjv+L9Edd\nTQ02rV+HyjO9n7nYX4IgwBBhgCHCgLzEIbA7bWi0NKK1swXt1nZ02DtkqPgbapUKDlwaRN2PqksQ\nIApqaFWR0Kn0iFQZoVfHQaOKAABoEOFzeGxuasKHb7+FzOxszJw3Hzm5DDeBFjFmIqT334TgdPT6\nHNuJwwyiRB7i37IUNlrM8gZRjob27XxzM7Zs+BInjrrfVewLnSYCWbHZyIrNBgA4RSfMNjParaav\nf/kWTtWqS0OjBHUPm42iBB30iIBBiIRTlwCHNhEqoedvn5eOrvqqproab726HEOGDcPMefORkpYm\nW9/kGVVkFOyDhyGi7Fivz7GfOgbMv8mPVRGFPgZRChutZnl3rSbH8nrF3pjb27Ft00Yc2lfi9yOY\nNCrNxWn8C1yiCzaXDTanDXanDVanFTZn9387RDtEobtGCRK6rN0/sERFRkGAALvTBZejExpBgyhJ\nQKJkgw4aaAUNdFBDCw3UwjfrNau1yVAJva/fdDjlXacMAGdOnUL56dMYMWYMps+Zi7h4/pAUCPYh\nhW6DqOt8E5zNjdAkpfixKqLQxiBKYUPuEdGEmChZ+wsHkiTh0L4SbPjic9ht9kCXAwBISExEUmoq\njMYYGGKMMBiNMBi+/qfRiCi9/rKp8pKSEgDAxIkTAQCmDivu/s+PANGJKU37kWOugk2SYBMl2CQR\nNkmCxSXCIoqwqnRwuQmhAOBwiZAkSfa1nZIk4dihQzhZegzTZ8/FpKlTuaHJz1yJqRAj3f+Aaj91\njEGUyAMMohQ25F4jmmBkEL2Uqa0Nn3+yEhVlZQGrISExEWkZGUjLyERaZgZS09IRGeXbn1NMdATU\nahVc0KDA3gK9pudvi05JwjZDHmp18RCs7RBs7YC9Ez1tbHK4ROg0ypyR6nQ48dXaL3Cy9BgW3bIE\niUlJirwO9UAQ4MgcDJyv7fUp9pNHoZ86y381EYU4BlEKGxwRVUb3KOg+bPhijd9HQWPj4pBfWIgh\nBQXIyMzyOXT2RBAExBujoGo8B72r9+UdGkFAbfwQiNpLbtoSnd2htLMZqo5GwNEJALA7XIoF0Qtq\nqqvx6vN/4+ionzmyBrsNoo6qcoidFqj00f4riiiEMYhS2GjrkHeNaDxHRAMyCpqRlYX8wkIMLShE\ncmqqX44vijdEIq6ywe1z2rQGmLRXXPeq0kDSJ0DSJ0BMGgbYLVBZmhCbFAGxsxVSL7csyeXC6Oip\n46VYePMtHB31A2daFoRjGkhOZ6/PsZcdR+SYiX6siih0MYhS2LDLvEkk3hApa3+hxN+joBnZ2Rgz\nfjyGFhTCGBOj+OtdKSEmCsk299fDVkb1Y8e6LhqiLhpTF01DUV4iyk6dxNGDB/s82N9X56qqODrq\nLxottEMKYD/Z+6YlZ81ZgEGUqF8YRCksSJIEuQefdNrA3oMeKA67HWtWfozSI0cUfR2NVoORY8ai\nqHgy0jICe7VlhEaFZJv7g/Or9P0/OsnlEqGPjsaY8UUYM76o16tO5XRhdLSy/AxuuvU2RZYxUDfd\n0BHug2jtOT9WQxTaGEQpLLhkPkJIrRIG5I027SYTPnz7LdTX9r4GzlcJSUkoKi7G6HHjgyYs6e2d\niBR7H/mVADRE9P/IpCs/j0kpKZi36AbMmDcfxw4dxP49u9FY734pgLfKT5/G6y+/hKV33c2peoVo\nM3PcPu6sPwfJ5YKgHpg/zBJ5gkGUwoIocxBVqQZeCK2pqsKHK96GpUPem4suGJSXh2umT8fgvCFB\nF/KNHc1uH2/TGuFU9f/bpUvs+VB7nU6H8ZOKMW7iJNRUV2Hnlq0oO3nCo1r7o6W5Ga+/9CIW33Y7\n8vLzZe9/oFOnpEFQayC5el4nKjmdcJ1vhCYl3c+VEYUeBlEKC3LnGoX3mASdw/v34YtVq+ByyX8Y\ne2p6OmbOn4/cIUODLoBeEN3e6PbxJl2cR/2p+vg6BUFAVs4g3Hr3IFSfPYtN69biXFWVR6/RF5vV\nivfefAOzr7sek6ZODdr3PhQJag3Uqelw1lb3+hxnbTWDKFE/MIhSWFDLvDmjtxGtcONyubBx3Vrs\n3bFD9r7jExIwfc5cDB89OuhDkN7U1MNpoN9oivAsiKrV/f88Zg8ahLsf+i7OnDqJTevXo6lBvil7\nSZKw4YvP0dhQj+u+fSO0Wq1sfQ902owc90G0rhoYV+zHiohCE4MohQWVSoAgyDeSKUndG048CRSh\nxtrVhY/ffQeVZ87I2m+0wYBrZ83C2AkToQ6BNXKSJMHQ3gSzm+d4HEQ9XNohCAKGFhQiL38YSg8f\nxpYNX8LU5n7zlCeOHDiA883NWHrnXYg2GGTrdyDTZGS5fZwbloj6J3z/lqUBR+5R0fZOZXY3B4Ou\nzk6s+OdrsofQiVOm4NEnf4yi4skhEUIBQLLZAGtn74/D86l5bz+LKpUKo8aNw8M//BGmzZgJQca1\nyrXV1fjX8ldgbjfJ1udApklzH0Rdre7XHRNRNwZRChuGKJ2s/bWa5T0gP1hYLB14+7Xlsu6Mj0uI\nx2uARMwAACAASURBVF0PPIh5i26ATifvn4PSxA4THK7el2JY1FEebVQCfP8sajQaTJ87F/c+/CiS\nU1N96utSLc3N+NfyV2BqbZWtz4FKneT+z0W0dEBSYM01UbhhEKWwkWCU9wD68+29j5KFKnN7O95e\nvlzWo4MmTpmCB7/3feTk5srWpz+J5nbYHb0HBovG889VokzXw6ZnZuK+Rx+TdXS0raUV/1r+ClrP\nn5elv4FK0GohRLr/bIgWdws+iAhgEKUwIvfd8OE2Imrp6MDbr72K5qYmWfoL5VHQS3W1tEB0s7i4\nU+15EJXzelglRkfbTSa89epytLa4v02K3FMZYt0+Lprb/VQJUehiEKWwEW+QN4i2mLtk7S+QOi0W\nrPjna2hplmfd2piiCSE9Cnopc5P798TiYRCN1GkQFSH/PtALo6PF06bJ0p+5vR0rXnsV7SauGfWW\nymB0+ziDKFHfGEQpbMg9InreFB5T89auLrzz+j9lORZIUAmYf8MNWLh4cUiPgl7Kct79qKCnI6Lx\nhkjFjqvSaDSYc/0CfHvpUmi0voddU1sb3n51OcztDEzeUBn7GBHt4PtK1BcGUQobCTJOhwJAdVPo\n/yXidDrx/r/eRENdnc99RemjcMe992PC5ClBfy6oJ0wN7pcqeLpGNDFW+WtLR40dh7sffAgGo/sR\nuf5obWnBO/98DTZreC1F8QeVMcbt46KZo81EfWEQpbAh94jomdpW2a8O9SdJkvDFqk9kubEnKSUF\n9z7yGAbn5clQWXAxNbsfEe3yeERU+SAKAOmZWbjv0ceQkZ3tc1/NTU1Y9cH7EAfIRQ5yURncB1Gp\n0+KnSohCF4MohQ25R0StdidqmkN3VHTvzh04cuCAz/3kFxbiOw8/gviEBBmqCj6t7e7DglPw7DxU\nuX8gcscYE4M7738Ao8eP97mvspMnseXLL2WoauAQ+ripSpIY7In6wiBKYSMnNVb2O+fLakJzV3F9\nbQ2++uILn/spnjYNS+68CxERETJUFXzsDhc6LO6npEUPP1SDUt2vG5SbVqvFoptvwcx5833ua+fW\nLaiqKJehqoFBUPXxQwpHmIn6xCBKYSNSp0Fmku9r5i51pjb0Dv42m0zYvXkzJB/vO/3W7NmYfd31\nYbUe9EoVda0Q+hi1EuHZ1z800/8jx4Ig4Jrp0zH/hht87qtkx3bZTlcIe33doMUD7Yn6xCBKYUXu\nEHCqOrQO/bZ2dWH7xq9gd9h96mfmvPm4dtbssA6hAHBa5hFvrUaF7BT/joheasLkKVi4+Gaf/txc\nLhd2bPqKO+llEbprzIn8hUGUwsrQDJmD6LnzsHT5Fur8RRRFrPrgfZ/vEp993fW4Zvp0maoKbgdO\n10Hs49ugyoMwkZsWB406sN9Wx06YgIU33+xTH12dnfjonRVwOp0yVRWm+pp6V8t/nixRuGEQpbAi\n94ioS5Sw75TvRx/5w/ZNG3Hm1Cmf+pg+Zw4mX3utTBUFN5vdiYNlDX2uAVV5sMQhENPyPRkzvgjX\n33ijT33UVlfjyzWrZaooPEliH1PvfU3dExGDKIWXIZkJsm9Y2n38nLwdKqC+thbbN2/yqY+pM2Zg\n2sxZ8hQUAg6daYDd6epzRFQt9X+dX7AEUQAYP6kY8xYu8qmPA3v3ouJMmUwVhSGHw+3DgsC/Yon6\nwv9LKKwosWFp36k6OF3Bu/vV5XJh9ccfQvLhzNNR48Zh+py5MlYV/C78gGFTuz+CR+/q/0HvwRRE\nAWDiNdf4fCXompUf87D7XogdZrePC1F6P1VCFLoYRCns5GcmytqfxepAaaX723cCafvGjWis9/76\nzozsbFx/401hvzHpUpIkYc+JWgB93yWvd9n61adOow7oRqXezJp/HfLy871u395mwlfr1spYUfgQ\nO9yvx+7r5iUiYhClMDSxIEP2Pnceq5a9TznU19Zix9bNXrc3GI245Y5l0PZxMHe4qWzsQFtH9yhf\nX3fJRzu7+tXn+Py0gG9U6olKpcJNt96GhKQkr/s4yCn6HvU1ItrXXfRExCBKYahoWDrUKnlH9zYe\nrITVHlw7iH2dkldrNFh6110wxgy8UZudp745J7Ozj7vk+zsiOnl4pk81KSkyKgpL77obEZGeXVd6\nKU7RX83VxwkVHBEl6huDKIUdQ5QOIwcny9qnxerA1sNnZe3TV75OyS9cvBjpmVkyVhQaLFYnDpR/\ncz5sX1Pz0a7+jYgqMRIvp8SkJCy+7Xavl2Bwiv5qUof7s1ZVBo6IEvUloEH0+eefR15eHqKiojBx\n4kRs27YtkOVQGJk8/P+3d+fxUdV3v8A/Z87MJJnMZJKQfQNCQsIqSUiARPZdi6i4odVa6q29Xa7L\nbV/t9dH7aG1re5+nj12e1rq1atW6W1RQQZQ1LEkgLIGEBAhLNhKyL5PMcu4flEggTGZOzsyZ5fN+\nvXiBk/M755vjSeY7v+X7Uz7B+mT38VHvVqSU0Q7Jz547F1Ovm6FgRP5jX3ULbPav/z+ONDRvsI3c\nC5iVOgZRJu/tMS9XemYmFi5bLrs9h+i/JlmtcFicf0jRGI1eiobIf6mWiL799tt4+OGH8fjjj6O8\nvByFhYVYuXIlzp3z/VI55PsKPDBMerKh3Sd2WpIkCZs3bpA9JJ+cmor5S5YqHJV/kCQJuyrPD3mt\nR3SeQBrtfdA6nE/LKMj23WH5KxUUFSEjK1t2+y82bICDe6jD3up8AaPGYITAgvZEI1ItEX322Wex\nbt06rFu3DllZWfjDH/6AxMREPPfcc2qFRAEkIdqIsfHKD4tt3Fut+DnddeJ4Fc6dljdNQKvT4sZb\n10ATpIW29x9vwIWuoXM+BzRa9GuuvVhLABAz4HwuoC/PD72SIAhYcdNNsueLtjQ348jBcoWj8j+2\nBuedJpoo3yrlReSrVHk3slqtKCsrw9KlQ3tlli1bhuLiYjVCogDkiV6q7YfO4Hxbj+LndZXD4cC2\nLzbLbj9v0RKMGcXqaX8mSRLe23706i8IApr1kU7bxva3X/NrcZEGpHngQ48nmSIisOzGb8huv2PL\nFlhHKOYe6GwNzitp6BJTvRQJkX9TZdygpaUFdrsd8fHxQ16Pj4/Hli1brtmutLTU06H5nGD8nt3h\n7P5EoBft7ddOIOT69d824O556Yqf1xWnT5zA8aoql45t7xj6vY+JjYNGrw/aZ+rYuQ7sPPB1j/bl\nz8Zpux7xThKr8I4GtEvD16fNSQ1FWVmZcoF6iSRJCDMa0VA3fM/elc/PlV979x9vYuLkKZ4Kz6eV\nlpbCuL8UWie/Xxq6ezEQpD9rwfo7xlXBdn8yR6hjHJzjcxQUUsYYMDY2XPHzlp64gPrWXsXPOxK7\n3Y6K8gOy2oqiiPzCIghBOiQvSRI2lF57KLVJ67zMToJt+NXRggAUZilbocFbBEFA3pxC6HV6We0r\nDx3CwMCAwlH5CYcDYluL00PsUf75XBB5myo9ojExMRBFEU1NQ0vPNDU1ISEh4ZrtZs6c6enQfMal\nT0zB9D27w9X78x1xDP7r3T2KX/9go4Sblnn3/03p7t3QabWINDsfRr7Uk3X5cYuWr8Cs66/3aHy+\nbFt5LXocekRG6gd7QiMjv74/fVYtdH3Hrtk+Af2IiTDCphn6KzNvYiJWLPLv+xoVEYGP339v8L+H\ne36uxdbbi8LCQo/F5msu/d6ZMS4VbaZrr4gXRC0mLF4adIuV+L7lXLDen46OEerteimOIXQ6HfLy\n8rB589C5bps3b0bRKPdFJrpc0dQ0mMLk9fg4s6+y3qvbfvb392PXtq2y2iYmJyM/iJKFK9nsDrz+\nxSGnx3Rqw0dcsBQ7cPUw7I2z5W+d6SumXHed7C1A9xXvQneX892FApGtzvliQTEhKeiSUCK5VBun\ne/TRR/HKK6/g5ZdfRmVlJR566CE0NDTgwQcfVCskCkB6nYhl+RM8cu6/fnoADpkllNxVUrwLvT3y\nFkktWr4iaFfJAxfrvza2jnDvBAEtIyxYSusdOoITF2lA3kTfLmLvCkEQsGj5ClmF7q1Wq+wPSP5s\noPravecAFyoRuUO1d6c77rgDv/vd7/DLX/4SOTk5KC4uxqefforUVP4Ak7JWFmRA5mYyTlWdvYD1\nuyqVP/EVrFYrSvfsltU2PTMTaePHKxyR/6hv6cLfNznvDb2kKSTK6dfH9TYM+e+VszKhUXgrWbXE\nxsdj6gx5Gxwc2l+Gvl7vz5lWjc2GgRrnP/fa5DQvBUPk/1TtJvne976HkydPoq+vDyUlJRyWJ4+I\njzZipod6rl7ffBh1zc63+RutqooK9PW6ts3k5QRBwIKlyzwQkX+QJAm/f38PBmx2l44/bbj2/HQA\niLZ2IcLaDQDQihoszVOncoKnzF24CKIout3OZrXh0P79HojIN2nP10GyOl+kpc+Y5KVoiPxf8I7X\nUVDx1Fy+AZsdv3t/j0eH6Mv27ZXVbvL06YhPTFQ4Gv/xcfFxHD3tfGXz5ZpCotGncT6feFxvIwBg\n7rQ0mI3yCsL7KnNUFHJnzZLV9kDJPp/Z/tbTdOdqnX89eSw0RpN3giEKAExEKSjkTkzEpDTPFHKv\nPOO5IfrG+nrUn3VeOHs4Go0Gcxct9kBE/qG+pQuvfn7QrTaSIIzYKzqutxGiRsDaxVNHE57PKpw3\nHzrttRdtXUtbaytO1QTBHvSSBF3dKaeH6LMC89kg8hQmohQUBEHAt5Zf57Hzv775MGoblS+ev19m\nb2h6ZhaiooNzi0Gb3YFn39vt8pD85UZKRBMtLbhhRjISxwRmj5chPBwTp8hLpOQ+q/5EbGuBptf5\nwjd9VnAW+SeSi4koBY0p4+MwM8szQ9UDNjuefm0bOnv6Rz7YRZa+PlQccq9XD7jYGzpp+nTF4vAn\nkiThLx+VovLMBVntz4TFw+7k16JWAG6JDewi7hMnT4ZeH+J2u5qqKnS0tXkgIt+hP+l85EOMjIYY\n6/zDDBENxUSUgsq3ls/wyAp6ADjf3otn3twBm92hyPkOlx+AzWpzu13quPEIDQtTJAZ/s3FPNT4v\nOSG7vU2jRV3YtXfEiY82QjxSEtDzIbU6HcZlZLjdTpIklJcF7taF0kD/iImoPmuqrDJYRMGMiSgF\nlXEJkVhw3TiPnf/IqWa8+Mno9x2XJAn79+2T1XbCxKxRX98fHTrRhBc+Gf3q7VOG4XvNRY0GidFG\n2FuaYD0tP9n1B+kyn6Hy0lLYbO5/ePIHlsP7IYy0Wj57mpeiIQocTEQp6NyzZBq0ouce/Y17a/Dp\n3upRnaPu7Bm0tri+4vuS+MRERMcG3x7XDRe68Os3d8KhQE9ltTEFVuHqXXGSxhgh/uu5sZTsHPV1\nfJkpIgLjZfSK9vb04GT1cQ9EpC5JkmAp3eX0GHFMLHRjPbN5BlEgYyJKQSc+2ogbZrn/JuuO5z8u\nQ0llnez2NZVVstrlFhQE3dBge7cFT726DV19yszdtGp0qDIO3VhDrxURF/X13uIDlYdh73K+f7K/\nyy2QV8qputLzmzx4m+3cadganf88h+UVBt3PHpESmIhSUPrm0umIizR47Px2h4RfvbET5TWNstpX\nVzrfQnA4IaEhmDzdc5UBfFFXbz+e+OuXqGtRdr/zioihu1GNT4wcsouS5HCgf/8eRa/payZMnIgI\ns9ntdjVVVXA4lJkn7Ssspc57wAWtFiEzCrwUDVFgYSJKQSksRIf/dau8Hh9X2ewOPP3adhx0Mxlt\nu3ABLc3Nbl9v2owc6PXOC7IHkq7efjz+8peobVS+Z7JVb0Z9yBgAQKzZgIjwq4vX9+3bAUe/RfFr\n+wpRFJGTn+92u96eHtSfc7/2ra+yt7ag/8gBp8eETMuDJsxzH2yJAhkTUQpa12UkYEW+Z+d0Ddjs\neOq1bSirqne5TXWVvKHNnPzg6ZHp6LbgsZe24GSD8rVbL6mISIdeKyI1bvheQUdvD/p2b/XY9X3B\n9Nw8WcPNcqeW+KKerzZCGqGHNyz/ei9FQxR4mIhSUFt3Q45Hh+gBwGpz4Bev78D2g6ddOl7OHLsx\nsTGIiYtzu50/amztxs9e/MIjPaGXOxmehLHjkwcXKA2nr/grOHq6PRqHmowmE1LHjnW7nZypJb7I\n1nBuxN5QXfJYaBNTvBQRUeBhIkpBzRtD9MDFYfr/eLsYf9900GkNyr7eXpw9Xev2+TOzJ40iOv9x\n6EQTHv3T5zjXrOyc0OEsyc9A8uKlTo+RrAPo3b7J47GoKSMr2+02Lc3NaLsgb1MBX9Lz5YYRjwmd\nPc8LkRAFLiaiFPSuy0jAygLPrqK/5J2tR/GLv29Hr8U67NdPVB+H5HC/BFFmtvvJgj+RJAkb91Tj\nib9+pdjqeGdizAZ854ZchM6aD40h3OmxlrJi2Nv8P+m6lgyZz5bcKSa+YqC2BgM1zr8HbVwiQqbk\neCkiosDERJQIwLdXzkBKrHf2D99XWY8fP7cJDReu7tWTMywfZjAgKSV15AP9lM3uwJ//WYLnPipV\npE7oSDSCgEdumw1DqA6a0FAYrl/i9HjJbkfPV596PC61jImJQXRMjNvt/LmMkyRJ6P3ikxGPC1/y\nDZZsIholJqJEuDhE//g35yE8VOeV651t7sSjf96EXYfPDHn93GnX5pFeLiMrCxpNYP4oN1zowmMv\nbsFno9i2010P3JiD6RPiB/87NP96iOZIp236D5dh4ETgLNC5kpwe9/pzZ2G32z0QjedZSnfBWuf8\nZ1E3dgJ0GcExJYbIkwLz3YtIhuTYCPx0bZHH9qK/UnffAH79j134zT92oqPbgq7OTnR3uT/3Uc4c\nPl8nSRI+Lq7CD3//KY6dcX+HKbmWzUzHN+ZMHPKaoNXCsGDliG27P34rYMs5Zcp4xmxWGy7IKEOm\nNnvbBfRs/njE49gbSqQMJqJEl8nJTMR3Vnp3ztfOw2fxg99vxOadzlfnDkcURaRnZnogKvU0XOjC\n/3lxC174ZD8GbN7rUZs8Ngb/c3X+sMlFyPSZ0MYlOG1v72hHz+aPPBWeqpJSUxFmCHO7XWO9/N3F\n1CBJEro+egvSCHvKh2RNhS5lnHeCIgpwTESJrnBTURYW544f+UAFdfT049X1O1BT3wqrG8lXYnJy\nwBSxt9kdWL+zEj/8/aeoqPVuT1qM2YDH7pkL7TVKNQkaDQyLbhzxPJay3QE5RC+KIlLHuf8z0VDn\nX4mopXQXrLU1zg8SBBgWj/wsEJFrmIgSXUEQBPzg5nxkp43x7nX7O9Ha2YeDJ5pwrrkDNhe2SUxI\nTvZCZJ4lSRK2HzyN7z+7AS9tPODVXlDg4j7yT9w7D2bj1bsnDTlu4hTos6aMeL7uj98OyCH6xKQk\nt9s0NjR4IBLPcHVI3jJpBrSxznvHich1TESJhqHTinjsnrkeL3Z/OaG/EwDgkCTUX+jGoRNNaLjQ\n5XSleGKS/yaikiRh//EGPPzfn+E/3i5GQ6v3C8MLAvC/75iD9KQoF44VYLzxdmhCnQ9R2zva0LPx\nfaf1Yv1RfKL7iej5xga/WLAk2W3o+uebIw7J2yMiYZkWPDuYEXkDE1Gia4gyheFXDyxGjNkLyait\n/+Kfy1+yO3C2uROHTjShqa0b9mF6SBNk9FKpTZIkHKhuwOMvf4l/f2WrR7fpdEYQgIfXzEbhVNdL\nX4kmM8JX3DricZZDpbDs2Taa8HxOQrL7z5q/LFjq/vRDWM+cHPG43jmLAa3WCxERBQ8mokROxEcb\n8Yt1CxE1wrDtaF3qDR3OgM2O000dKK9pRG1jO3r7LxbD1+n1suo7qqWrtx//3FmJB3/7Cf7v37bi\n0Mnzqsbz/dX5WCRjLnDI9DzXhug3rcfACf+tpXml8HAjIiLNbrfz9QVLfSU7YSkrHvG4sMKFsMdw\nSJ5IaUxEiUaQHBuBX3xnEczhIR67hrNE9BK7Q8L59h4cOXUex043Y0BjgNU28jxSNUmShKozLfj9\ne3tw/6/X4+WNB1QZgr/SrbPTsELmblquDtEDQOd7r8LWom7CraQEGVNBGurrPRCJMgZqa9Dz2Ycj\nHieOiUW4CyW8iMh9TESJXJAWb8avv7sE0Sb3S9i4QrD2uXV8V98A9tZ24e5ffICfv7oNn++rQWun\ne+fwlAGrHaVV9fjTh/tw/6/X48d/2Ywv9p/y+iKk4QgCcHvhWMydHD/ywU64OkQvWSzofOslOCy+\n8f9mtOQsWOpsV2fqxUjsbRfQ9c7fILmwKNB0890QdN7Z7IIo2HCyC5GLUmIj8OvvLsa/vfQlmjt6\nlT25zf3906WQCAzY7CipqkdJVT2AEkxMicYYfT/GxoYja3I/TAbP9eJeYrXZUdvYjpq6VhyobsSB\nmkZYBmwev667BAF46NZZMEutipwvZHoerCerYDlU6vQ4+4VmdL3/GiLu+g4E0b9/5cpZsCRnkwZP\nc1j60PnWy3D0jfxzHL7oBtYMJfIg//6tSORliWNM+M2DS/Dz17ahtrFDsfMK9v6RD7qS9up5q8fP\ntaL9Xz1Qb+09j7hIAzKSo5GRHI30xCjERoYjOiIM4aE6t3eFGbDa0drVh9bOPpw534GaulbU1LXi\ndFMHbHbfniKg14r433fMQeHUVJSWKpOICoIA4zfugP1C84jbQQ7UVKLr/ddhWnMvBFFU5PpqMEc6\n3+p0OL6WiDr6Leh8/XnYzo9cWipkygyEXb/EC1ERBS8mokRuio0Mx/97cCn+693d2HNUoYUYNvcT\nUUk7cm/n+fZenG/vRXHFuSGv67QaRBlDMSbCgChTKEJ0Wmg0AkSNAEm6uGLf7nCgo6cfrZ19aO3q\nQ4/F6naMviDGbMAT985zqUSTuwSdDqY7v432F/8Lji7n83z7jx0E1msvDvNq/HNWVLjJ5Habnu5u\nOBwOaHzge5YG+tH55osjfnAAAG1CMkyr13IbTyIPYyJKJENYiA6P3TMXb35xGG99VTG6k0kOwO7+\n0DxcSESvxWpzDCapgWxSWgwe++ZcRHqw6oFoMiPizu+g45U/QrI5n5LQf7gMAC4mOH7YMxoaGgpR\nq4V9hO/zcpIkoae7G6aICA9GNjJHv+ViEupCmSaNwYiIux6AoAuMXcuIfJn6H1GJ/JQgCLhn6XT8\ndG0R9NpRJBUy5odCIwIafo50ZmleOn75wCKPJqGX6JLTYLzpLpeO7T9chq73/w7J7nvzaEciCAJM\nMnpF1R6ed1j60Pn3v7iUhAqiiIg710E0uz8NgYjcx0SUaJSun5aG//jeUtmF7wW7jO0gRc8vQvJX\nGkHAd7+Rix/dWgDdaD4guCl0Wh4MRYtdOrb/2EF0vumfq+mNsobn1UtE7R1t6Hjlv10ajgcA4423\nQZfmfn1ZIpKHiSiRAtKTovC7HyxH3sRE9xvLWTE/imH5QBZjNuDpdQuxqjBLlbl9hsU3IjRnlkvH\nDpysQvtLz/pdndFwo9HtNl2dI9fJ9QTrmZNof+G/YGtyrZZp+OIbEZoz28NREdHlmIgSKcRsDMW/\nf2s+HlozC4YQ12sOCjIWKo1mfmigWpqXjv/+XysxfcLoaoSOxqWV9CHT8lw63n6hGe0vP4uBGv/Z\ngUnOXM+ebu9vYmDZvwcdr/0Zjl7Xrm2YvxwGrpAn8jpOMiNSkCAIWJKXjhkZCfjvD/eh7PjIJWIg\nuV/oXRK5iOKSGLMBP7w5H3lZ7te49ARBo4Fp9VrAbkP/0YMjHi9ZLOh443mEL1uNsNnzfX6Vtpwe\nUavVexUXJLsdPZvWo2/fDpfbGIoWwzB/uQejIqJrYSJK5AExZgP+/VvzsWX/Kbz4yf7B/eGHJUnu\nX0DgYAZwsRf0OzfkIDzMtxJzQRRhuvVeCFotLIfKXGrTs2k97I3nEL5yjUvbh6pFlFGU3+GlOrP2\nznZ0ffgGrLU1LrcxzF8Ow/zlPv8BgChQMREl8pDLe0f/9M99KK26Vu+onEQ0uN80fa0XdDiCKMK4\n+m5A1MJyYK9LbSyHyjBQewKmVXdCn5Ht4QjlETTuP3sOh2e3d5UkCf0HS9D9+YeQLK4v/gtffCOH\n44lUxkSUyMNizAb83/vmo7ymEa98Vo6TDVfsvS2nRxTBmYgaw/S4ff5kfGPOROh1vl+HU9BoYFx1\nJzRGE3p3fOFSG0dnOzreeB6hObMQvmy1z/WOajTu33eHC/u5y2XvbEf3J+9goPqYy20EjQbhK9cg\nbGahx+IiItcwESXyAkEQkJOZiBkZCdh5+Az+vukQGlovLaJgIjoSvVbETYUTsWb+ZBh9bBh+JIIg\nIHzRjRDjEtG9/h8jFr2/xHJgLwZOVPlc76hGTo+orA9bzsntBdUYwmG6/X7ox2UoHhMRuY+JKJEX\nCYKAudPHYs6UVGwqOYG3vjyCjgtykkrl39h9kUYQsGxmOtYunoboCN/qGXRX6NRciFEx6Hz7r3B0\ndbjU5lLvaMiUGReT2egYD0fpQkwO9589pbf3tNadQc8XH7s1FxQAtHGJiFj7AMTIaEXjISL5mIgS\nqUAranDD7Ewsyh2PP73Ug707amG1uTGPzgM9TL5EK2pw/bRU3LVwKpJj1d0aUkm65DRE/Y9H0fn2\nX10usA4A/RXlGDh2CCE5s2GYvwyiyezBKJ2TM99TqUTU1nIevV9uRP+xkasRXClk0nSYbr4bgp6l\nz4h8CRNRIhWF6rUompaG/vp4tHVbcL6tB529rtQVDcxENNZswIqCDCzLn+CVrTnVoDFFwHz/D9H9\nyTuwHCxxuZ3kcMBSVoz+QyUImz0fYYWLVJk/Kme+52gTUXtnO3q3fX5x0ZeMD2FcGU/ku5iIEqlM\noxEhCAKiTWGINoWhb8CK8209aOnohf1aw6AeXoXsbXkTE3HDrEzMzEqSNQfR3whaLYyr10KXkY2e\nje/D0dfrclvJakXvji9gKS1G6MxChOYVQjRHeTDaoWwyaoKKMhY4AYCtuRGWkp2wHNjr8tzaIdeN\njIbxprugH58p6/pE5HlMRIlUpg8ZOlQYptdhbHwkUmPNaOnsRUtHL3r6Bob0gQp297cF9TWxswCY\nZwAAH7hJREFUZgOun5aGlbMykDjG/f3L/Z0gCAidmgv9uEx0b3gX/ZWH3Wrv6OtF744v0LvjC+iz\npiAs/3ro0j2/tWl3l/v7xutDXF9gJtltGKg8gr7SXW7PAb1cWH4Rwpes4lA8kY9jIkqkMqNp+J1q\nNBoBcZHhiIsMh9VuR3u3Be3dFnT29MMmZ1tQH5CZHI1Zk5JRMCkZ4xIiOVQKQGM0wXTHt6GvOOB2\n7+glA1UVGKiqgBgVg9D8IoROnwlNuPs7ILlCTiJqNI38QcPe3grLgb2w7N8NR7f717iEvaBE/oWJ\nKJHKjKaRF+PoRBGx5nDEmsPhkCTYNCGIyZmAfZX1aO3q80KU8ui1Iq6bEI+CSckoyE72+5XvnjLa\n3tFL7G0t6Nm0Hj2b1kOXOg76iVOgz5oKMSZesaRfXiJ69TMuSRJs9WcxUHUEA1VHYDvvwna4I2Av\nKJH/YSJKpDJXeosupxEEhGns+P7N+fg+gPNtPaipa734p74VJYe70dPv/ny60dKKGoxLMCMjKRoZ\nyRf/jE2IhFbkdqSuutQ7GlpTiZ4tn8DWVC/7XNaztbCerUXPlg0Qo2Kgz5oCfcYkaJPTRrXIqae7\ne+SDrnDpGXd0d8F67jQGao5i4HgFHF2dsuO4nG5cBsKXrIIuOU2R8xGR9zARJVKZITwcgiBAcmM1\nsN1uh6WvD2EGA+KjjYiPNqJo2sU34ZISE9p6BhA+JhUnG9rQ3N6L1q4+tHb2obWrDz0W9xebXKLT\nagYXVUVHXPx7bLyZSaeCBEGAPnMSdBnZ6K84gN4vN8LedmFU57S3taBvzzb07dkGABCjYqBNTIY2\nKRXapDRoE1NcSk4lSXK5R1Sy2yBZ+iBZLHBs+hAXWppcrp/qKm1iCsIXfwO69Imc5kHkp5iIEqlM\no9Eg3Gh0e8izu6sLYQbDVa8LgoBoYwhmTksbTE4vN2C1o7WrD21dfWjrssBqs8PukGB3OGB3SNAI\nAkSNAFHUQNQIMBlCBhPP8FAd3/C95NJwfcik6bDs34PebZ/D0eN+b+Rw7G0tsLe1oP/o1/U4NYZw\naIwRCO/qgRRmQE9nEzTGCGiMJkCrgyBo0DswAFt357+qh0mAw3FxNbvdBslmBWw2SDYbJLsVsF8s\n86QRBGhOVsGh4HMjRsUgfPGN0E++js8jkZ9jIkrkA4wmk/uJaHcXYuPj3b6WXiciIdqIhGjPLGYh\nZQmiFmH51yP0unz07d2BvpKdivcsAoCjtweO3h7o2tsBAL2tjVcd02IZgO2ce9MFDFpRsWRRHBOL\nsNkLEJpTAEHk2xdRIOBPMpEPcHeeKAC0XWjF+AkeCIZ8kqAPgWHuEoQVLsTA8QpYSnZi4FS1V2Po\nGHB/Wke4Vl4N0UGCgJDs6QjNL4JuXAZ7QIkCDBNRIh9gjHB/G8vG+joPREK+ThBFhEyajpBJ02Fr\naYKltBiWg/sgWSwev3aLxf36tQaZiajGFIHQ3DkIzZ0NMSJS1jmIyPcxESXyAVHR0W63aayXv6Ka\nAoM2Jh7GFbcgfNEN6D968GIppBOVkGTsfuSK8zISUbPe9bcZTZgB+sxJ0GdNgz5rCoffiYIAf8qJ\nfEBCUrLbbVrOn4fNZoNWyx/jYCfoQxA6owChMwogWa2w1lajv+qIoiWSJElCc5/7GynEhjqv6SlG\nxUCfPRX6iVOgSx0PQRzlUD4R+RW+gxH5gITERLfb2O12NDc1IjE5xQMRkb8SdDroMydDnzl5sGi8\nteYYrHVnYGs4K3vXoi6rHZZ/rYR3R1zY0O09RXPUxbJRyWOhz5oCcUwc530SBTEmokQ+IDQsDFHR\n0WhrbXWrXWN9PRNRuiZBEKBLThtS6N3e1QFb/VnYGs5d/LvxnEu9ps0W93tDQ0JDETs9F7qkNGiT\nUqBNTIXGEO72eYgocDERJfIRCcnJshJRIneIJjPELDNCsqYOviZZrXD0dMHR1Yn6kr0Q+nqQmBgP\nR2cHHJZewCGhrfokBEMvBAAQBAACIAAQRQhaHaDVQhB1ELTaf/1bi7QJE2C+c51K3ykR+QMmokQ+\nIiEpCccOu7fHeEMdV87T6Ak6HcTIaIiR0bA2tQAAwmfOHHJMx6uvQGdzb/5mvIwpJ0QUXLgfH5GP\nkLNg6XxjI3oU2m2H6FqsVivOnq51ux2njRDRSJiIEvkIOQuWJEnCiaoqD0RD9LXTJ0/AZrW53S4x\nKckD0RBRIGEiSuQjLi1Ycld1ZaUHoiH6mpxnLCQ0FJEynmciCi5MRIl8yNj0dLfbnKqpgdVDBcyJ\nJElCjYxe97Rx41iWiYhGpEoiumDBAmg0msE/oiji7rvvViMUIp+SmZ3tdhur1YrTJ094IBqii1vJ\ndne5X3s0M3uSB6IhokCjyqp5QRCwbt06PPPMM5AkCQAQFhamRihEPmVs+gRodVq35+NVV1UhI8v9\nJJZoJNXH3B+WFwQBGVlZHoiGiAKNakPzBoMBsbGxiIuLQ1xcHEwmk1qhEPkMnU6H8RMy3G5XU1k5\n+KGOSEnVVcfcbpOUkoJwo9ED0RBRoFEtEX3rrbcQGxuLqVOn4ic/+Qm6u1mChgiQN6TZ3dWFc6dP\neyAaCmYXWlpwvrHJ7XYcliciVwmSCt0oL730EsaOHYukpCRUVFTgZz/7GSZOnIjPPvvsqmM7OjoG\n/11dXe3NMIlUYenrwyfvvgMJ7v1opo0bj1nz5nsoKgpG5SX7UH3sqNvtlt10M8yRkR6IiIj8TWZm\n5uC/zWbzVV9XrEf0iSeeGLIA6co/oihi+/btAIAHHngAS5cuxZQpU3DHHXfgnXfewaZNm1BeXq5U\nOER+KzQsDNExMW63O3fmNCx9fR6IiIKRzWrF6Zoat9sZjSZEDPNmQ0Q0HMUWKz3yyCO49957nR6T\nlpY27Ot5eXkQRRHV1dWYMWPGNdvPvGLLuUBWWloKILi+Z3cE+v0Z6O3Bts2b3W6ncdgH/x2o92a0\nAv3ZGa1L9ydUp4PBYIABBrfa5xcWIj8/3xOhqY7PjnO8P84F6/25fGR7OIolotHR0YiWWbz40KFD\nsNvtSOS+xEQAgInZk2QlogdKSlAwbz4EDUsEk3ySJGF/yT5ZbeWUICOi4OX1d6uTJ0/i6aefRllZ\nGU6fPo2NGzdi7dq1yMvLQ1FRkbfDIfJJMXFxSLnGCIIznR0daKg754GIKJi0trSgqaHB7XbRY8Yg\nbdx4D0RERIHK64moXq/Hli1bsGLFCmRnZ+Phhx/GihUrsHnzZu7CQXSZnIICWe249zyN1okqedvG\n5hQU8Pc4EbnF6wXtU1JSsHXrVm9flsjvZE+Zii82bkRfb69b7Rrr69DZ3u6hqCjQ9fX24lxtrdu1\nnbU6Labl5HooKiIKVJxIRuSjtFotZuTJm9ReUX5A4WgoWBw7dBD2yxa9uWrytOu4Qx4RuY2JKJEP\ny8nPlzXUee7MadSdPeuBiCiQtV5owcnq47La5s2apXA0RBQMmIgS+TBzVBQmTJwoq+3WzZu47Se5\nZdsXX8h6ZpJSU5GQlOSBiIgo0DERJfJxuQXyeprOnDqFUzIKklNwaqirQ+WRI7La5ubLW1hHRMRE\nlMjHpWdmIjI6SlZb9oqSq7Zu3iSrXZghDNlTpyocDREFCyaiRD5OEATMmTtPVtumhgYcO3xY4Ygo\n0NSeOIHaEydktS0oLIJOp1M4IiIKFkxEifzAtJxcWfvPAxd7ugYGBhSOiAKF3W7Hls8+ldU23GTE\nzDmFCkdERMGEiSiRHxBFEfOXLJHVtqO9HV9t+lzhiChQ7N6+HecbG2W1vX7BQuj1eoUjIqJgwkSU\nyE9kTZ6CxORkWW33792L2pMnFY6I/F1TQwN2bf1KVtuo6GhcJ7POLRHRJUxEifyEIAhYsHSZ7PYb\nP/yAQ/Q0yG63Y8OHH8DhcMhqP2/xEoiiqHBURBRsmIgS+ZFxEyZg3IQJstpyiJ4ut3v7djQ1NMhq\nG5+YiEnTpikcEREFIyaiRH5mNL2iHKInYHRD8gCwYNkyWTt+ERFdiYkokZ9JTE4eVd3GjR9+gP7+\nfgUjIn9is9lGNSQ/Nj0d4ydkKBwVEQUrJqJEfmjxipUICQ2R1bajvR0fv/cuC90HIUmS8PnHH8se\nkhdFEctu/AZ7Q4lIMUxEifxQhNmMxStukN2+urISO7ZsUTAi8gdle/bg0P4y2e3nLlqMmLg4BSMi\nomDHRJTIT03PzUV6Zqbs9ru2bcVR7roUNE6dqMEXn22U3T4pJQUFRUUKRkRExESUyG8JgoCVq2+W\nPUQPABs+fB+N9fUKRkW+qO3CBfzz7bchOeRNxxBFETfecivLNRGR4piIEvmx0Q7R26w2vP/mG+jp\n7lYwKvIl/RYL3nvjdVj6+mSfg0PyROQpTESJ/Nxoh+g7OzrwwT/ehM1mUzAq8gUOhwMfvfceWpqb\nZZ+DQ/JE5ElMRIn8nBJD9OfOnME/334LdrtdwchITZIk4dP161FTVSn7HBySJyJPYyJKFAAizGYs\nu3HVqM5RXVmJj957l8loAJAkCZs++XhUK+QBYP6SpRySJyKPYiJKFCCmzpiB/MLCUZ2j8sgRbPzw\nQ9nFzkl9kiRhy2efYv++faM6z+Tp0zkkT0Qex0SUKIAsXLYc8YlJozrHkYPl+Jg9o35JkiRs3rAB\nJcXFozpP9JgY3HDzLSxcT0Qex0SUKICIoojZ8+bDaIoY1XmOHj6M9e+8zWTUj1ycE/pPlO3dM6rz\nhIaFoXDhQuh0OoUiIyK6NiaiRAFGHxKCooWLoA/Rj+o8VUeP4r03Xke/xaJQZOQpVqsVH737Dg6W\njW5OqCiKKFywCGGGcIUiIyJyjokoUQCKiIzE6tvvGPXQ6snqarz2wvNovdCiUGSktK7ODrzx8kuK\n7JK1YvVqjImNVSAqIiLXMBElClAZWdlYsHTpqM/T0tyMV/7yF5w6UaNAVKSkurNn8cpf/oKGurpR\nn6ugqAjTc3IViIqIyHVMRIkC2Kzr52JaTs6oz9NvseDt115F6e7dkCR520SSsg4fOIA3/voyuru6\nRn2ujKwsLFy2XIGoiIjco1U7ACLynEvF7q1WKyqPHBnVuSSHhM0bN6CpsRHLV62CVstfH2pwOBz4\natPn2LdrlyLnGzdhAm6+8y5oNOyXICLv4zsJUYATRRE33XY77DYbqivl77JzyaH9ZWhpPo+b1tyG\nqDFjFIiQXNXV2YFPPvgAtSdOKHK+1HFjsebue7hCnohUw4/AREFAFEXcfOddo9qT/nL1Z8/ipT/9\nkUP1XiJJEg4d2I8X//hHxZLQpNRU3P7N+6DXj666AhHRaDARJQoSWq0Wt669GxMmTlTkfDarDZs3\nbsAbf30JbRcuKHJOulpXZwfeff3v2PDBB4qV0kpJS8Nd930LISEhipyPiEguJqJEQUSn02HN3fdg\n4uTJip3zbO1p9o56wOW9oCeOH1fsvGPT03Hnt+5HSGioYuckIpKLiShRkBFFETffcScmT5um2Dkv\n7x290Nys2HmDVUdbm+K9oACQnpmJ2795L4fjichncLESURASRRGrbrsdxogIxVZfAxd7R1/84x8w\nPTcX1y9chAizWbFzB4Oenm4Ub9uGA/v2Kb696vTcPFY7ICKfw99IREFKo9Fg8YqViItPwKcfrYfd\nZlPkvJIk4WBZGSoOHUTerNmYM3cewgwGRc4dqPr7+1FSvAt7du6EdWBA0XMLGgFLVtyAvNmzR73T\nFhGR0piIEgW5aTk5iI6JwQf/eFOR4uiX2Kw27N25E+WlpZg9dy7yZ8+BjkPCQ9hsNpSXlGDXtq3o\n7elR/PyhYWG4+c47MX5ChuLnJiJSAhNRIkJyairu/9738P6bbyqyXeTl+i0WbNu8GWV79iB/zhxM\nz82DITxc0Wv4G0tfH46Ul2Nf8S50tLd75BoxsbFYc889iB4T45HzExEpgYkoEQEATBFm3POdB/Dp\n+n+i4uBBxc/f3dWFrzZtwvYvv8SkqVORWzALSSkpQTVc3NTQgP0l+1Bx8KDiQ/CXy8jKwk233c6V\n8UTk85iIEtEgnU6HVWtuQ1x8PLZu3uyRckx2mw1HystxpLwcCUlJyC2YhcnTpgXssL3NZkPV0Qrs\n37sX586c8fj15sydh3lLlnDLTiLyC0xEiWgIQRAwe+48pI1Px4YP3keLB8sxNdbXY+M/P8SWzz7F\npGnTMDF7EtLGj/f7LSftdjvO1taiuvIYjh4+7JH5n1cyR0bihltuxbj0dI9fi4hIKUxEiWhYSSkp\nuP9/fh+7vvoKe3bu8Gix+n6LBeUlJSgvKYFOr8f4jAxkZmdjwsSJCA83euy6Surr68PJ6uOoqazE\niepqRet/jiS3oAALli3nTklE5HeYiBLRNel0OixYtgwTJ0/2eO/oJdaBARw/ehTHjx6FIAhITk3F\nhKwsJKemIiExyWfmPQ4MDKCpoQH1Z8/iRPVxnKk9Bcnh3Z2l2AtKRP6OiSgRjcibvaOXkyQJ586c\nGTK3MjomBgmJiUhISkZCcpJXktOBgQGcb2xAQ10dGuvq0VhfhwstLapuacpeUCIKBExEicglavSO\nDqe1pQWtLS04evjw4GvmyEiYIiIQbjTCaIqAMcIEo8kEo/Hi36FhYRBFERqNZnC1el9vLxySAw67\nHRaLBd1dXeju7Lr4d/e//u7qQndXJzra2lVNOi/HXlAiCiRMRInILUkpKVj3gx/i8IH92PHll4oW\nwZero73d5Xqc7R0Xj9v66UZPhqS4MEMYCucvQE5+gd8v5iIiuoSJKBG5TRRFzJiZjynTr0Ppnj3Y\nvWO7VxfnBBOdXo+CwiLMKirymfmxRERKYSJKRLLp9HrMmTcPM/LzsXfHDpTsKYbNqsye9cFOo9Fg\nRn4+rl+wEOFG/6gcQETkLiaiRDRqYWFhWLBsGfJmz8LOrVtxsKzU6yvIA8nk6dMxb/ESREVHqx0K\nEZFHMRElIsWYIsxYedNqzL5+Lvbv24vDB/ajr7dP7bD8gj5Ej6kzcpBXMAsxcXFqh0NE5BVMRIlI\ncVHR0Vi8YiXmLV6CY0cO48C+fag/d07tsHxSbHw8cgtmYcp117EUExEFHSaiROQxOp0O03NyMT0n\nFw1157B/XwmOHj4Y9PNIRVFE1uTJyJ01GylpaRAEQe2QiIhUwUSUiLwiMTkFN96SgkXLl+Nw+QEc\nO3IE9WfPqh2WV8UnJiJ7yhRMz82D0WRSOxwiItUxESUirwozGFBQWISCwiJ0dXbixPHjqK6sRO3J\nmoDrKRVFEWPT05GRlYWMrGyYIyPVDomIyKcwESUi1ZgiIjBj5kzMmDkT1oEB1J48ierKY6ipqkJP\nd7fa4ckSZgjDhMwsZE7KxvgJGaz9SUTkBBNRIvIJOr0emdnZyMzOhiRJaKyvQ0NdHRr+tbd7y/nz\ncDgcaoc5hCAIGBMbi4SkJCQmJSMxORkJyckQRVHt0IiI/AITUSLyOYIgIDE5BYnJKYOvWa1WNDc1\n/StB9X5yemXSmZCchLiEROj1eq9cn4goEDERJSK/oNPpkJSSgqSUr5NTh8OBnu5u9HR3o7urE91d\nXeju6kZXVyd6urrQ3dWFnp5uOOwOOBwX/+h6eiABCAkNhUajgSiK0Gg0MISHw2gywWgyIdxogini\n67+NJhMM4Ub2dBIRKYyJKBH5LY1GA1NEBEwREQCSXGpTWloKAJg5c6YHIyMiIldo1A6AiIiIiIIT\nE1EiIiIiUoXiieiLL76IRYsWISoqChqNBmfOnLnqmPb2dtx7772IjIxEZGQk7rvvPnR0dCgdChER\nERH5MMUT0d7eXixfvhxPPfXUNbetW7t2LcrLy7Fp0yZ8/vnn2L9/P+677z6lQyEiIiIiH6b4YqWH\nHnoIAFBWVjbs1ysrK/H555+juLgYBQUFAIDnn38ec+fORXV1NTIzM5UOiYiIiIh8kNfniO7evRsm\nkwmzZ88efK2oqAjh4eEoLi72djhEREREpBKvl29qbGxEbGzsVa/HxcWhsbHRadtgmkd6qWc4mL5n\nd/D+XBvvjXO8P87x/lwb741zvD/O8f4Mz6Ue0SeeeAIajeaaf0RRxPbt2z0dKxEREREFEJd6RB95\n5BHce++9To9JS0tz6YIJCQlobm6+6vXz588jISHBpXMQERERkf9zKRGNjo5GdHS0IhecM2cOuru7\nsWfPnsF5osXFxejt7UVhYeFVx5vNZkWuS0RERES+RfE5ok1NTWhsbERVVRUkSUJFRQXa2tqQlpaG\nqKgoZGdnY/ny5XjwwQfx/PPPQ5IkfO9738OqVau4Yp6IiIgoiAiSJElKnvCpp54atobo3/72t8Fa\noR0dHfjRj36Ejz76CACwevVq/PGPf0RERISSoRARERGRD1M8ESUiIiIicgX3mvdBrmyTOm7cuKsq\nFzz22GMqROtd3ELWfQsWLLjqWbn77rvVDksVf/7zn5Geno6wsDDMnDkTO3fuVDskn/DUU09dVQ0l\nKSlJ7bBUs2PHDqxevRopKSnQaDR47bXXrjrmySefRHJyMgwGAxYuXIijR4+qEKk6Rro/3/72t696\nnoZbAxKInnnmGRQUFMBsNiMuLg433XQTKioqrjoumJ+fKzER9UGubJMqCAKefPLJwTm5DQ0NePzx\nx70cqfdxC1n3CYKAdevWDXlWnn/+ebXD8rq3334bDz/8MB5//HGUl5ejsLAQK1euxLlz59QOzSdk\nZ2cPPiONjY04fPiw2iGppru7G9OmTcMf/vAHGAyGq77+m9/8Bs8++yz+9Kc/obS0FHFxcVi6dCl6\nenpUiNb7Rro/ALB06dIhz9PGjRu9HKU6tm/fjh/+8IfYvXs3vvrqK2i1WixZsgTt7e2DxwT783MV\niXxWaWmppNFopNOnT1/1tXHjxkm//e1vVYjKN1zr3hw7dkwSBEHavXv34Gs7d+6UBEGQjh8/7u0w\nfcKCBQukH/3oR2qHobpZs2ZJDz744JDXMjMzpccee0yliHzHk08+KU2bNk3tMHyS0WiUXn311SGv\nJSYmSs8888zgf/f19Ukmk0l64YUXvB2e6oa7P/fff7+0atUqlSLyLd3d3ZIoitInn3wy+Bqfn6HY\nI+rH/vM//xMxMTHIycnBr371K1itVrVDUh23kB3eW2+9hdjYWEydOhU/+clP0N3drXZIXmW1WlFW\nVoalS5cOeX3ZsmVB/Vxc7uTJk0hOTkZ6ejrWrl2LU6dOqR2STzp16hQaGxuHPEuhoaGYN28en6XL\n7Ny5E/Hx8cjKysJ3v/vdYeuHB4POzk44HA5ERUUB4PMzHK9v8UnKeOihh5CTk4MxY8Zg3759+OlP\nf4ra2lq88MILaoemqtFsIRuo7rnnHowdOxZJSUmoqKjAz372Mxw+fBifffaZ2qF5TUtLC+x2O+Lj\n44e8Hh8fjy1btqgUle+YPXs2XnnlFWRnZ+P8+fN4+umnUVhYiKNHjw6+gdJFjY2NEARh2Gepvr5e\npah8y8qVK7FmzRqMHz8etbW1+Ld/+zcsXrwYZWVl0Ol0aofnVQ899BByc3MxZ84cAHx+hsNE1Eue\neOIJ/PKXv7zm1wVBwFdffYV58+a5dL6HH3548N9Tp05FREQE7rzzTvzmN7/xuzcOpe9NMHDnnj3w\nwAODr0+ZMgXp6ekoKChAeXk5ZsyY4Y1wycctX758yH/Pnj0b48ePx6uvvjrkdw2RK+64447Bf0+Z\nMgW5ubkYO3YsNmzYgJtvvlnFyLzr0UcfRXFxMXbt2nXNNQ3ERNRrlNwmdTgFBQWQJAk1NTXIz8+X\nfR41cAtZ943mnuXl5UEURVRXVwdNIhoTEwNRFNHU1DTk9aampoB6LpRiMBgwZcoUVFdXqx2Kz0lI\nSIAkSWhqakJKSsrg63yWri0xMREpKSlB9Tw98sgjeOedd7B161aMHTt28HU+P1djIuolSm6TOpwD\nBw5AEAQkJiZ67BqeouYWsv5qNPfs0KFDsNvtfvmsyKXT6ZCXl4fNmzdjzZo1g69v3rwZt99+u4qR\n+SaLxYLKykosWrRI7VB8zvjx45GQkIDNmzcjLy8PwMX7tWPHDvz2t79VOTrf1NzcjLq6uqD5nfPQ\nQw/h3XffxdatW6/aMZLPz9WYiPqgkbZJ3bNnD/bs2YOFCxfCbDZj3759ePTRRwfrugUybiHrnpMn\nT+KNN97ADTfcgJiYGFRUVODHP/4x8vLyUFRUpHZ4XvXoo4/ivvvuQ35+PoqKivDcc8+hoaEBDz74\noNqhqe4nP/kJVq1ahbS0NDQ1NeHpp59Gb28vvvWtb6kdmip6enpQU1MDSZLgcDhw5swZHDx4ENHR\n0UhNTcXDDz+MZ555BllZWcjMzMQvfvELmEwmrF27Vu3QvcLZ/YmOjsaTTz6JNWvWIDExEadOncJj\njz2GhIQE3HLLLWqH7nE/+MEP8Prrr2P9+vUwm82DozBGoxHh4eEAEPTPz1XUW7BP1/Lkk09KgiBI\nGo1myJ9LJTL2798vzZ49W4qKipIMBoM0adIk6ec//7nU19encuSeN9K9kSRJam9vl+69917JbDZL\nZrNZuu+++6SOjg4Vo1bP2bNnpfnz50sxMTFSaGiolJmZKT3yyCNSW1ub2qGp4rnnnpPGjx8vhYaG\nSjNnzpR27typdkg+4a677pKSk5OlkJAQKSUlRbrtttukY8eOqR2WarZu3Trs75lvf/vbg8c89dRT\nUlJSkhQWFiYtWLBAqqioUDFi73J2f/r6+qTly5dL8fHxUkhIiDRu3Dhp3bp10rlz59QO2yuGuy8a\njUZ66qmnhhwXzM/PlbjFJxERERGpgnVEiYiIiEgVTESJiIiISBVMRImIiIhIFUxEiYiIiEgVTESJ\niIiISBVMRImIiIhIFUxEiYiIiEgVTESJiIiISBX/H5T77ExQK1w0AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -374,7 +371,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Derivation of ILS Equations (Optional)" + "### Derivation of ILS Equations" ] }, { diff --git a/Supporting_Notebooks/Linearizing-with-Taylor-Series.ipynb b/Supporting_Notebooks/Linearizing-with-Taylor-Series.ipynb deleted file mode 100644 index d5a0cae..0000000 --- a/Supporting_Notebooks/Linearizing-with-Taylor-Series.ipynb +++ /dev/null @@ -1,92 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Linearizing with Taylor Series\n", - "\n", - "Taylor series represents a function as an infinite sum of terms. The terms are linear, even for a nonlinear function, so we can express any arbitrary nonlinear function using linear algebra. The cost of this choice is that unless we use an infinite number of terms the value we compute will be approximate rather than exact.\n", - "\n", - "Before applying it to a matrix lets do the Taylor expansion of a real function since this is much easier to visualize. I choose sin(x). The Taylor series for a real or complex function f(x) at x=a is the infinite series\n", - "\n", - "$$f(x) = f(a) + f'(a)(x-a) + \\frac{f''(a)}{2!}(x-a)^2 + \\, ...\\, + \\frac{f^{(n)}(a)}{n!}(x-a)^n + \\, ...$$\n", - "\n", - "where $f^{n}$ is the nth derivative of f. To compute the Taylor series for $f(x)=sin(x)$ at $x=0$ Let's first work out the terms for f.\n", - "\n", - "$$\\begin{aligned}\n", - "f^{0}(x) &= sin(x) ,\\ \\ &f^{0}(0) &= 0 \\\\\n", - "f^{1}(x) &= cos(x),\\ \\ &f^{1}(0) &= 1 \\\\\n", - "f^{2}(x) &= -sin(x),\\ \\ &f^{2}(0) &= 0 \\\\\n", - "f^{3}(x) &= -cos(x),\\ \\ &f^{3}(0) &= -1 \\\\\n", - "f^{4}(x) &= sin(x),\\ \\ &f^{4}(0) &= 0 \\\\\n", - "f^{5}(x) &= cos(x),\\ \\ &f^{5}(0) &= 1\n", - "\\end{aligned}\n", - "$$\n", - "\n", - "Now we can substitute these values into the equation.\n", - "\n", - "$$\\sin(x) = \\frac{0}{0!}(x)^0 + \\frac{1}{1!}(x)^1 + \\frac{0}{2!}(x)^2 + \\frac{-1}{3!}(x)^3 + \\frac{0}{4!}(x)^4 + \\frac{-1}{5!}(x)^5 + ... $$\n", - "\n", - "And let's test this with some code:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "estimate of sin(.3) is 0.30452025\n", - "exact value of sin(.3) is 0.295520206661\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "\n", - "x = .3\n", - "estimate = x + x**3/6 + x**5/120\n", - "exact = np.sin(.3)\n", - "\n", - "print('estimate of sin(.3) is', estimate)\n", - "print('exact value of sin(.3) is', exact)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is not bad for only three terms. If you are curious, go ahead and implement this as a Python function to compute the series for an arbitrary number of terms.\n", - "\n", - "Now we can consider how to linearize a nonlinear " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.1" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Supporting_Notebooks/Taylor-Series.ipynb b/Supporting_Notebooks/Taylor-Series.ipynb new file mode 100644 index 0000000..0d6e496 --- /dev/null +++ b/Supporting_Notebooks/Taylor-Series.ipynb @@ -0,0 +1,351 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#format the book\n", + "%matplotlib inline\n", + "from __future__ import division, print_function\n", + "import sys;sys.path.insert(0,'..')\n", + "from book_format import load_style;load_style('..')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Linearizing with Taylor Series\n", + "\n", + "Taylor series represents a function as an infinite sum of terms. The terms are linear, even for a nonlinear function, so we can express any arbitrary nonlinear function using linear algebra. The cost of this choice is that unless we use an infinite number of terms the value we compute will be approximate rather than exact.\n", + "\n", + "The Taylor series for a real or complex function f(x) at x=a is the infinite series\n", + "\n", + "$$f(x) = f(a) + f'(a)(x-a) + \\frac{f''(a)}{2!}(x-a)^2 + \\, ...\\, + \\frac{f^{(n)}(a)}{n!}(x-a)^n + \\, ...$$\n", + "\n", + "where $f^{n}$ is the nth derivative of f. To compute the Taylor series for $f(x)=sin(x)$ at $x=0$ let's first work out the terms for f.\n", + "\n", + "$$\\begin{aligned}\n", + "f^{0}(x) &= sin(x) ,\\ \\ &f^{0}(0) &= 0 \\\\\n", + "f^{1}(x) &= cos(x),\\ \\ &f^{1}(0) &= 1 \\\\\n", + "f^{2}(x) &= -sin(x),\\ \\ &f^{2}(0) &= 0 \\\\\n", + "f^{3}(x) &= -cos(x),\\ \\ &f^{3}(0) &= -1 \\\\\n", + "f^{4}(x) &= sin(x),\\ \\ &f^{4}(0) &= 0 \\\\\n", + "f^{5}(x) &= cos(x),\\ \\ &f^{5}(0) &= 1\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Now we can substitute these values into the equation.\n", + "\n", + "$$\\sin(x) = \\frac{0}{0!}(x)^0 + \\frac{1}{1!}(x)^1 + \\frac{0}{2!}(x)^2 + \\frac{-1}{3!}(x)^3 + \\frac{0}{4!}(x)^4 + \\frac{-1}{5!}(x)^5 + ... $$\n", + "\n", + "And let's test this with some code:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "estimate of sin(.3) is 0.30452025\n", + "exact value of sin(.3) is 0.295520206661\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "x = .3\n", + "estimate = x + x**3/6 + x**5/120\n", + "exact = np.sin(.3)\n", + "\n", + "print('estimate of sin(.3) is', estimate)\n", + "print('exact value of sin(.3) is', exact)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is not bad for only three terms. If you are curious, go ahead and implement this as a Python function to compute the series for an arbitrary number of terms." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/table_of_contents.ipynb b/table_of_contents.ipynb index cc7feb3..a40799a 100644 --- a/table_of_contents.ipynb +++ b/table_of_contents.ipynb @@ -1,161 +1,432 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Kalman and Bayesian Filters in Python

\n", - "

\n", - "

\n", - "Table of Contents\n", - "-----\n", - "\n", - "[**Preface**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/00-Preface.ipynb)\n", - " \n", - "Motivation behind writing the book. How to download and read the book. Requirements for IPython Notebook and Python. github links.\n", - "\n", - "\n", - "[**Chapter 1: The g-h Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/01-g-h-filter.ipynb)\n", - "\n", - "Intuitive introduction to the g-h filter, also known as the $\\alpha$-$\\beta$ Filter, which is a family of filters that includes the Kalman filter. Once you understand this chapter you will understand the concepts behind the Kalman filter. \n", - "\n", - "\n", - "[**Chapter 2: The Discrete Bayes Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/02-Discrete-Bayes.ipynb)\n", - "\n", - "Introduces the discrete Bayes filter. From this you will learn the probabilistic (Bayesian) reasoning that underpins the Kalman filter in an easy to digest form.\n", - "\n", - "[**Chapter 3: Gaussian Probabilities**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/03-Gaussians.ipynb)\n", - "\n", - "Introduces using Gaussians to represent beliefs in the Bayesian sense. Gaussians allow us to implement the algorithms used in the discrete Bayes filter to work in continuous domains.\n", - "\n", - "\n", - "[**Chapter 4: One Dimensional Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/04-One-Dimensional-Kalman-Filters.ipynb)\n", - "\n", - "Implements a Kalman filter by modifying the discrete Bayes filter to use Gaussians. This is a full featured Kalman filter, albeit only useful for 1D problems. \n", - "\n", - "\n", - "[**Chapter 5: Multivariate Gaussians**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/05-Multivariate-Gaussians.ipynb)\n", - "\n", - "Extends Gaussians to multiple dimensions, and demonstrates how 'triangulation' and hidden variables can vastly improve estimates.\n", - "\n", - "[**Chapter 6: Multivariate Kalman Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/06-Multivariate-Kalman-Filters.ipynb)\n", - "\n", - "We extend the Kalman filter developed in the univariate chapter to the full, generalized filter for linear problems. After reading this you will understand how a Kalman filter works and how to design and implement one for a (linear) problem of your choice.\n", - "\n", - "[**Chapter 7: Kalman Filter Math**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/07-Kalman-Filter-Math.ipynb)\n", - "\n", - "We gotten about as far as we can without forming a strong mathematical foundation. This chapter is optional, especially the first time, but if you intend to write robust, numerically stable filters, or to read the literature, you will need to know the material in this chapter. Some sections will be required to understand the later chapters on nonlinear filtering. \n", - "\n", - "\n", - "[**Chapter 8: Designing Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/08-Designing-Kalman-Filters.ipynb)\n", - "\n", - "Building on material in Chapters 5 and 6, walks you through the design of several Kalman filters. Only by seeing several different examples can you really grasp all of the theory. Examples are chosen to be realistic, not 'toy' problems to give you a start towards implementing your own filters. Discusses, but does not solve issues like numerical stability.\n", - "\n", - "\n", - "[**Chapter 9: Nonlinear Filtering**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/09-Nonlinear-Filtering.ipynb)\n", - "\n", - "Kalman filters as covered only work for linear problems. Yet the world is nonlinear. Here I introduce the problems that nonlinear systems pose to the filter, and briefly discuss the various algorithms that we will be learning in subsequent chapters.\n", - "\n", - "\n", - "[**Chapter 10: Unscented Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/10-Unscented-Kalman-Filter.ipynb)\n", - "\n", - "Unscented Kalman filters (UKF) are a recent development in Kalman filter theory. They allow you to filter nonlinear problems without requiring a closed form solution like the Extended Kalman filter requires.\n", - "\n", - "This topic is typically either not mentioned, or glossed over in existing texts, with Extended Kalman filters receiving the bulk of discussion. I put it first because the UKF is much simpler to understand, implement, and the filtering performance is usually as good as or better then the Extended Kalman filter. I always try to implement the UKF first for real world problems, and you should also.\n", - "\n", - "\n", - "[**Chapter 11: Extended Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/11-Extended-Kalman-Filters.ipynb)\n", - "\n", - "Extended Kalman filters (EKF) are the most common approach to linearizing non-linear problems. A majority of real world Kalman filters are EKFs, so will need to understand this material to understand existing code, papers, talks, etc. \n", - "\n", - "\n", - "[**Chapter 12: Particle Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/12-Particle-Filters.ipynb)\n", - "\n", - "Particle filters uses Monte Carlo techniques to filter data. They easily handle highly nonlinear and non-Gaussian systems, as well as multimodal distributions (tracking multiple objects simultaneously) at the cost of high computational requirements.\n", - "\n", - "\n", - "[**Chapter 13: Smoothing**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/13-Smoothing.ipynb)\n", - "\n", - "Kalman filters are recursive, and thus very suitable for real time filtering. However, they work extremely well for post-processing data. After all, Kalman filters are predictor-correctors, and it is easier to predict the past than the future! We discuss some common approaches.\n", - "\n", - "\n", - "[**Chapter 14: Adaptive Filtering**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/14-Adaptive-Filtering.ipynb)\n", - " \n", - "Kalman filters assume a single process model, but manuevering targets typically need to be described by several different process models. Adaptive filtering uses several techniques to allow the Kalman filter to adapt to the changing behavior of the target.\n", - "\n", - "\n", - "[**Appendix A: Installation, Python, NumPy, and FilterPy**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-A-Installation.ipynb)\n", - "\n", - "Brief introduction of Python and how it is used in this book. Description of the companion\n", - "library FilterPy. \n", - " \n", - "\n", - "[**Appendix B: Symbols and Notations**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-B-Symbols-and-Notations.ipynb)\n", - "\n", - "Most books opt to use different notations and variable names for identical concepts. This is a large barrier to understanding when you are starting out. I have collected the symbols and notations used in this book, and built tables showing what notation and names are used by the major books in the field.\n", - "\n", - "*Still just a collection of notes at this point.*\n", - "\n", - "\n", - "[**Appendix C: Walking through the Kalman Filter code**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-C-Walking-Through-KF-Code.ipynb)\n", - "\n", - "A brief walkthrough of the KalmanFilter class from FilterPy.\n", - "\n", - "\n", - "[**Appendix D: H-Infinity Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-D-HInfinity-Filters.ipynb)\n", - " \n", - "Describes the $H_\\infty$ filter. \n", - "\n", - "*I have code that implements the filter, but no supporting text yet.*\n", - "\n", - "\n", - "[**Appendix E: Ensemble Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-E-Ensemble-Kalman-Filters.ipynb)\n", - "\n", - "Discusses the ensemble Kalman Filter, which uses a Monte Carlo approach to deal with very large Kalman filter states in nonlinear systems.\n", - "\n", - "\n", - "[**Appendix F: FilterPy Source Code**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-F-Filterpy-Code.ipynb)\n", - "\n", - "Listings of important classes from FilterPy that are used in this book.\n", - "\n", - "\n", - "[*Appendix G: Designing Nonlinear Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-G-Designing-Nonlinear-Kalman-Filters.ipynb)\n", - "\n", - "Works through some examples of the design of Kalman filters for nonlinear problems. *This is still very much a work in progress.*\n", - "\n", - "\n", - "[**Appendix H: Least Squares Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-H-Least-Squares-Filters.ipynb)\n", - "\n", - "**not written yet**\n", - "\n", - "Introduces the least squares filter in batch and recursive forms. I've not made a start on authoring this yet. Many authors develop KF explanations by covering least squares first. I am not, so I may move this chapter deeper in the book, or remove it.\n", - "\n", - "\n", - "\n", - "### Github repository\n", - "http://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.4.3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Kalman and Bayesian Filters in Python

\n", + "

\n", + "

\n", + "\n", + "## Table of Contents\n", + "\n", + "[**Preface**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/00-Preface.ipynb)\n", + " \n", + "Motivation behind writing the book. How to download and read the book. Requirements for IPython Notebook and Python. github links.\n", + "\n", + "\n", + "[**Chapter 1: The g-h Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/01-g-h-filter.ipynb)\n", + "\n", + "Intuitive introduction to the g-h filter, also known as the $\\alpha$-$\\beta$ Filter, which is a family of filters that includes the Kalman filter. Once you understand this chapter you will understand the concepts behind the Kalman filter. \n", + "\n", + "\n", + "[**Chapter 2: The Discrete Bayes Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/02-Discrete-Bayes.ipynb)\n", + "\n", + "Introduces the discrete Bayes filter. From this you will learn the probabilistic (Bayesian) reasoning that underpins the Kalman filter in an easy to digest form.\n", + "\n", + "[**Chapter 3: Gaussian Probabilities**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/03-Gaussians.ipynb)\n", + "\n", + "Introduces using Gaussians to represent beliefs in the Bayesian sense. Gaussians allow us to implement the algorithms used in the discrete Bayes filter to work in continuous domains.\n", + "\n", + "\n", + "[**Chapter 4: One Dimensional Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/04-One-Dimensional-Kalman-Filters.ipynb)\n", + "\n", + "Implements a Kalman filter by modifying the discrete Bayes filter to use Gaussians. This is a full featured Kalman filter, albeit only useful for 1D problems. \n", + "\n", + "\n", + "[**Chapter 5: Multivariate Gaussians**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/05-Multivariate-Gaussians.ipynb)\n", + "\n", + "Extends Gaussians to multiple dimensions, and demonstrates how 'triangulation' and hidden variables can vastly improve estimates.\n", + "\n", + "[**Chapter 6: Multivariate Kalman Filter**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/06-Multivariate-Kalman-Filters.ipynb)\n", + "\n", + "We extend the Kalman filter developed in the univariate chapter to the full, generalized filter for linear problems. After reading this you will understand how a Kalman filter works and how to design and implement one for a (linear) problem of your choice.\n", + "\n", + "[**Chapter 7: Kalman Filter Math**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/07-Kalman-Filter-Math.ipynb)\n", + "\n", + "We gotten about as far as we can without forming a strong mathematical foundation. This chapter is optional, especially the first time, but if you intend to write robust, numerically stable filters, or to read the literature, you will need to know the material in this chapter. Some sections will be required to understand the later chapters on nonlinear filtering. \n", + "\n", + "\n", + "[**Chapter 8: Designing Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/08-Designing-Kalman-Filters.ipynb)\n", + "\n", + "Building on material in Chapters 5 and 6, walks you through the design of several Kalman filters. Only by seeing several different examples can you really grasp all of the theory. Examples are chosen to be realistic, not 'toy' problems to give you a start towards implementing your own filters. Discusses, but does not solve issues like numerical stability.\n", + "\n", + "\n", + "[**Chapter 9: Nonlinear Filtering**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/09-Nonlinear-Filtering.ipynb)\n", + "\n", + "Kalman filters as covered only work for linear problems. Yet the world is nonlinear. Here I introduce the problems that nonlinear systems pose to the filter, and briefly discuss the various algorithms that we will be learning in subsequent chapters.\n", + "\n", + "\n", + "[**Chapter 10: Unscented Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/10-Unscented-Kalman-Filter.ipynb)\n", + "\n", + "Unscented Kalman filters (UKF) are a recent development in Kalman filter theory. They allow you to filter nonlinear problems without requiring a closed form solution like the Extended Kalman filter requires.\n", + "\n", + "This topic is typically either not mentioned, or glossed over in existing texts, with Extended Kalman filters receiving the bulk of discussion. I put it first because the UKF is much simpler to understand, implement, and the filtering performance is usually as good as or better then the Extended Kalman filter. I always try to implement the UKF first for real world problems, and you should also.\n", + "\n", + "\n", + "[**Chapter 11: Extended Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/11-Extended-Kalman-Filters.ipynb)\n", + "\n", + "Extended Kalman filters (EKF) are the most common approach to linearizing non-linear problems. A majority of real world Kalman filters are EKFs, so will need to understand this material to understand existing code, papers, talks, etc. \n", + "\n", + "\n", + "[**Chapter 12: Particle Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/12-Particle-Filters.ipynb)\n", + "\n", + "Particle filters uses Monte Carlo techniques to filter data. They easily handle highly nonlinear and non-Gaussian systems, as well as multimodal distributions (tracking multiple objects simultaneously) at the cost of high computational requirements.\n", + "\n", + "\n", + "[**Chapter 13: Smoothing**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/13-Smoothing.ipynb)\n", + "\n", + "Kalman filters are recursive, and thus very suitable for real time filtering. However, they work extremely well for post-processing data. After all, Kalman filters are predictor-correctors, and it is easier to predict the past than the future! We discuss some common approaches.\n", + "\n", + "\n", + "[**Chapter 14: Adaptive Filtering**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/14-Adaptive-Filtering.ipynb)\n", + " \n", + "Kalman filters assume a single process model, but manuevering targets typically need to be described by several different process models. Adaptive filtering uses several techniques to allow the Kalman filter to adapt to the changing behavior of the target.\n", + "\n", + "\n", + "[**Appendix A: Installation, Python, NumPy, and FilterPy**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-A-Installation.ipynb)\n", + "\n", + "Brief introduction of Python and how it is used in this book. Description of the companion\n", + "library FilterPy. \n", + " \n", + "\n", + "[**Appendix B: Symbols and Notations**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-B-Symbols-and-Notations.ipynb)\n", + "\n", + "Most books opt to use different notations and variable names for identical concepts. This is a large barrier to understanding when you are starting out. I have collected the symbols and notations used in this book, and built tables showing what notation and names are used by the major books in the field.\n", + "\n", + "*Still just a collection of notes at this point.*\n", + "\n", + "\n", + "[**Appendix D: H-Infinity Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-D-HInfinity-Filters.ipynb)\n", + " \n", + "Describes the $H_\\infty$ filter. \n", + "\n", + "*I have code that implements the filter, but no supporting text yet.*\n", + "\n", + "\n", + "[**Appendix E: Ensemble Kalman Filters**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-E-Ensemble-Kalman-Filters.ipynb)\n", + "\n", + "Discusses the ensemble Kalman Filter, which uses a Monte Carlo approach to deal with very large Kalman filter states in nonlinear systems.\n", + "\n", + "\n", + "[**Appendix F: FilterPy Source Code**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Appendix-F-Filterpy-Code.ipynb)\n", + "\n", + "Listings of important classes from FilterPy that are used in this book.\n", + "\n", + "\n", + "## Supporting Notebooks\n", + "\n", + "These notebooks are not a primary part of the book, but contain information that might be interested to a subest of readers.\n", + "\n", + "\n", + "[**Computing and plotting PDFs**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Supporting_Notebooks/Computing_and_plotting_PDFs.ipynb)\n", + "\n", + "Describes how I implemented the plotting of various pdfs in the book.\n", + "\n", + "\n", + "\n", + "[**Iterative Least Squares for Sensor Fusion**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Supporting_Notebooks/Iterative-Least-Squares-for-Sensor-Fusion.ipynb)\n", + "\n", + "Deep dive into using an iterative least squares technique to solve the nonlinear problem of finding position from multiple GPS pseudorange measurements.\n", + "\n", + "\n", + "[**Taylor Series**](http://nbviewer.ipython.org/urls/raw.github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/master/Supporting_Notebooks/Taylor-Series.ipynb)\n", + "\n", + "A very brief introduction to Taylor series.\n", + "\n", + "\n", + "### Github repository\n", + "http://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#format the book\n", + "from book_format import load_style\n", + "load_style()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}