diff --git a/Kalman Filters.ipynb b/Kalman Filters.ipynb index 76b4d8b..050b310 100644 --- a/Kalman Filters.ipynb +++ b/Kalman Filters.ipynb @@ -34,13 +34,13 @@ "\n", "class dog_sensor(object):\n", " \n", - " def __init__(self, x0 = 0, vel=1, noise=0.0):\n", + " def __init__(self, x0 = 0, velocity=1, noise=0.0):\n", " \"\"\" x0 - initial position\n", - " vel - velocity (+=right, -=left)\n", + " velocity - (+=right, -=left)\n", " noise - scaling factor for noise, 0== no noise\n", " \"\"\"\n", " self.x = x0\n", - " self.velocity = vel\n", + " self.velocity = velocity\n", " self.noise = math.sqrt(noise)\n", "\n", " def sense(self):\n", @@ -50,7 +50,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 1 + "prompt_number": 34 }, { "cell_type": "markdown", @@ -74,11 +74,11 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1.2396 0.5610 -0.5456 -0.8361 -0.8521 0.4101 -0.4417 0.0910 -0.4968 0.5187 -1.9393 -0.3410 0.0943 1.1800 0.1204 -1.0427 1.2128 -2.2642 -1.7840 -0.0621\n" + "0.0883 1.1333 1.3527 -0.1540 1.0787 1.1940 -0.4908 0.9334 -1.3604 -1.5230 -1.1513 -1.0829 0.5573 0.7816 0.0587 -0.0605 0.0651 -0.4040 0.3429 0.2245\n" ] } ], - "prompt_number": 2 + "prompt_number": 35 }, { "cell_type": "markdown", @@ -117,7 +117,7 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEACAYAAACTXJylAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFppJREFUeJzt3WtsU+cdx/GfCdkYUMKoQqAkjCodC05C7JESDYliIGTt\nRrqyplOTTUgENk19MxCTCt0LXE0qsG5SQ0v7Aras7RhUmtp1tIBGRE0DFcpQoGWagJGLgHLpKOKW\nCybJ2QuUYEoS7ONjn3Ps70ey5Ab7+K/SPvrqie3HYxiGIQCAa4ywewAAQGxYuAHAZVi4AcBlWLgB\nwGVYuAHAZVi4AcBlhl24a2trlZOTo+Li4oGfXb58WYsWLdL06dNVUVGhK1euJHxIAMAdwy7cy5Yt\n0549e+762YYNG7Ro0SKdPHlSCxcu1IYNGxI6IADgbp77fQCnvb1dlZWVOnbsmCSpoKBA+/fvV05O\nji5cuKBAIKDjx48nZVgAgIk97osXLyonJ0eSlJOTo4sXL1o+FABgaHH9ctLj8cjj8Vg1CwAgCiNj\nfUL/FsmkSZN0/vx5TZw4cdDHPfLII2ppaYl7QABIJ/n5+Tp16tSwj4m5uJ988km9+eabkqQ333xT\nTz311KCPa2lpkWEYjrqtW7fO9hncMJNT52ImZkq1uVpaDAUChr73PUPHj/f/7P7BO+zCXV1drTlz\n5ujEiRPKy8tTfX291qxZo71792r69Onat2+f1qxZE+vaDwBpra9P2rxZKiuTFi+WGhul73wn+ucP\nu1Wyffv2QX/e0NAQ05AAgNtaW6Xly6WbN6UDB2JbsPul1ScnA4GA3SPcw4kzSc6ci5miw0zRS+Zc\n8VZ2pPu+j9ssj8ejBF0aAFwlsrLr64dfsKNZO9OquAEgmays7Egxvx0QAHB/VuxlD4XiBgALJaqy\nI1HcAGCRRFZ2JIobAOKUjMqORHEDQBySVdmRKG4AMCHZlR2J4gaAGNlR2ZEobgCIkp2VHYniBoAo\n2F3ZkShuABiGUyo7EsUNAENwUmVHorgB4CucWNmRKG4AiODUyo5kurjr6upUXFysoqIi1dXVWTkT\nACSd0ys7kqni/ve//62tW7fqX//6lzIzM/X4449r8eLFys/Pt3o+AEg4N1R2JFPFffz4cZWVlWnU\nqFHKyMjQvHnz9O6771o9GwAklJsqO5Kp4i4qKtJvfvMbXb58WaNGjdKHH36o2bNnWz0bACSM2yo7\nkqmFu6CgQM8//7wqKio0ZswY+f1+jRhxb7wHg8GB+4FAwLHnzgFIH3190htvSOvWSWvXSitXShkZ\n9s0TCoUUCoVieo4lZ06+8MILmjp1qn75y1/euTBnTgJwmFjOfrRLQs+c/OKLLyRJp0+f1nvvvaea\nmhqzlwKAhHLrXvZQTL+Pu6qqSl9++aUyMzP1+uuva9y4cVbOBQCWcPNe9lAs2SoZ9MJslQCwUf9e\ndjAorVlj/152tKJZO/nkJICUk4qVHYnvKgGQMlJtL3soFDeAlJDqlR2J4gbgaulS2ZEobgCulU6V\nHYniBuA66VjZkShuAK6SrpUdieIG4ArpXtmRKG4Ajkdl343iBuBYVPbgKG4AjkRlD43iBuAoVPb9\nUdwAHIPKjg7FDcB2VHZsKG4AtqKyY0dxA7AFlW2e6eJev369/vKXv2jEiBEqLi5WfX29vv71r1s5\nG4AURWXHx1Rxt7e3a8uWLWpubtaxY8fU29urHTt2WD0bgBRDZVvDVHGPGzdOmZmZ6uzsVEZGhjo7\nOzVlyhSrZwOQQqhs65gq7gkTJmj16tWaOnWqHnroIY0fP17l5eVWzwYgBVDZ1jNV3C0tLXrllVfU\n3t6urKwsPfPMM9q2bZt++tOf3vW4YDA4cD8QCCgQCMQzKwCX6a/s7m4qeyihUEihUCim55g65f2d\nd97R3r17tXXrVknS22+/rUOHDmnz5s13Lswp70DacusJ604QzdppaqukoKBAhw4dUldXlwzDUEND\ng7xer6khAaSW1lZp4UJp27bblb16NYu21Uwt3CUlJVq6dKlKS0s1c+ZMSdIvfvELSwcD4C7sZSeP\nqa2SqC7MVgmQNiLfMVJfz4Idj4RtlQCAdLuyX3tNmj2byk4mvqsEgCmtrVJtrRQOSwcPsmAnE8UN\nICaRlV1ZSWXbgeIGEDUq2xkobgD3RWU7C8UNYFhUtvNQ3AAGRWU7F8UN4B5UtrNR3AAGUNnuQHED\nkERluwnFDaQ5Ktt9KG4gjVHZ7kRxA2mIynY3ihtIMy0tt7/Jj8p2L4obSBN9fdKrr97+vmwq290o\nbiANUNmpxVRxnzhxQn6/f+CWlZWlTZs2WT0bgDhR2akp7hNw+vr6NGXKFDU1NSkvL+/OhTkBB7BV\nZGVzKo17JOUEnIaGBuXn59+1aAOwD5Wd+uLe496xY4dqamqsmAVAnNjLTg9xLdzhcFg7d+7Uxo0b\nB/3zYDA4cD8QCCgQCMTzcgCG0H/C+osvSmvWSKtWSRkZdk+FaIRCIYVCoZieE9ce9/vvv6833nhD\ne/bsuffC7HEDScFedmpJ+B739u3bVV1dHc8lAJjEXnb6Ml3cHR0d+ta3vqW2tjY98MAD916Y4gYS\nhspOXQkt7jFjxujSpUuDLtoAEoPKhsQnJwHX4B0j6Md3lQAOR2XjqyhuwMGobAyG4gYciMrGcChu\nwGGobNwPxQ04BJWNaFHcgANQ2YgFxQ3YiMqGGRQ3YBMqG2ZR3ECSUdmIF8UNJBGVDStQ3EASUNmw\nEsUNJBiVDatR3ECCUNlIFIobSAAqG4lkurivXLmiqqoqzZgxQ16vV4cOHbJyLsCVqGwkg+ni/tWv\nfqUf/OAH+tvf/qaenh51dHRYORfgOlQ2ksXU0WVXr16V3+9Xa2vr0Bfm6DKkicgT1teulVau5IR1\nmBfN2mmquNva2pSdna1ly5bp008/1axZs1RXV6fRo0ebGhRwKyobdjC1x93T06Pm5mY999xzam5u\n1pgxY7RhwwarZwMcq69Peu019rJhD1PFnZubq9zcXD366KOSpKqqqkEX7mAwOHA/EAgoEAiYGhJw\nktZWqbaWyoY1QqGQQqFQTM8xtcctSY899pi2bt2q6dOnKxgMqqurSxs3brxzYfa4kWL6+qTXX5eC\nQfaykTjRrJ2mF+5PP/1UK1asUDgcVn5+vurr65WVlRXTiwNuEVnZ9fVUNhInoQu3FS8OOB2VjWRL\n2LtKgHTAXjaciu8qAb6i/x0js2fzjhE4E8UNRKCy4QYUNyAqG+5CcSPtUdlwG4obaYvKhltR3EhL\nVDbcjOJGWqGykQoobqQNKhupguJGyqOykWoobqQ0KhupiOJGSqKykcoobqQcKhupjuJGyqCykS4o\nbqQEKhvphOKGq1HZSEemi3vatGkaN26cMjIylJmZqaamJivnAu6Lyka6Ml3cHo9HoVBIR44cYdFG\nUlHZSHdx7XFzNBmSjcoG4izu8vJylZaWasuWLVbOBNyDygbuMF3cBw8e1OTJk/W///1PixYtUkFB\ngebOnWvlbIAkKhv4KtML9+TJkyVJ2dnZWrJkiZqamu5ZuIPB4MD9QCCgQCBg9uWQhjhhHekgFAop\nFArF9ByPYWKjurOzU729vXrggQfU0dGhiooKrVu3ThUVFXcuHMUR88BQIiu7vp7KRvqIZu00tcd9\n8eJFzZ07Vz6fT2VlZVq8ePFdizZgFnvZwP2ZKu6oLkxxI0ZUNpDA4gasRGUDseG7SmAr3jECxI7i\nhi2obMA8ihtJR2UD8aG4kTRUNmANihtJQWUD1qG4kVBUNmA9ihsJQ2UDiUFxw3JUNpBYFDcsRWUD\niUdxwxJUNpA8FDfiRmUDyUVxwzQqG7AHxQ1TqGzAPhQ3YkJlA/ajuBE1KhtwhriKu7e3V36/X5WV\nlVbNAweisgFniau46+rq5PV6df36davmgcNQ2YDzmC7us2fPateuXVqxYgVHlKUgKhtwLtPFvWrV\nKr388su6du2alfPAAahswNlMLdwffPCBJk6cKL/fr1AoNOTjgsHgwP1AIKBAIGDm5ZAkfX3SG29I\n69ZJa9dKK1dKGRl2TwWktlAoNOw6OhhTp7y/8MILevvttzVy5Eh1d3fr2rVrevrpp/XWW2/duTCn\nvLtKa6u0fLl08yYnrAN2imbtNLVwR9q/f79+//vfa+fOnTG/OOzXX9nBoLRmDZUN2C2atdOS93F7\nPB4rLoMki6zsAweobMAt4i7uIS9McTsWlQ04V9KKG+5BZQPux3eVpIm+PmnzZqmsTFq8mPdlA25G\ncacBKhtILRR3CqOygdREcacoKhtIXRR3iqGygdRHcacQKhtIDxR3CqCygfRCcbsclQ2kH4rbpahs\nIH1R3C5EZQPpjeJ2ESobgERxuwaVDaAfxe1wVDaAr6K4HYzKBjAYituBqGwAwzFV3N3d3Zo3b55u\n3rypcDisH/3oR1q/fr3Vs6UlKhvA/Zgq7lGjRumjjz7S0aNH9dlnn+mjjz7SgQMHrJ4trVDZAKJl\neo979OjRkqRwOKze3l5NmDDBsqHSDZUNIBam97j7+vrk8/mUk5Oj+fPny+v1WjlXWqCyAZhhurhH\njBiho0eP6urVq/r+97+vUCikQCBw12OCweDA/UAgcM+fp7P+yu7uprKBdBYKhRQKhWJ6jiWnvP/2\nt7/VN77xDf3617++c2FOeR8UJ6wDGE7CTnm/dOmSRo4cqfHjx6urq0t79+7VunXrTA2ZTtjLBmAF\nU3vc58+f14IFC+Tz+VRWVqbKykotXLjQ6tlSBnvZAKxkyVbJoBdmq0TS3ZVdX8+CDWB40aydfHIy\nQfr6pNdek2bPprIBWIvvKkmA1laptlYKh6WDB1mwAViL4rZQZGVXVlLZABKD4rYIlQ0gWSjuOFHZ\nAJKN4o4DlQ3ADhS3CVQ2ADtR3DGisgHYjeKOEpUNwCko7ihQ2QCchOIeBpUNwIko7iFQ2QCciuL+\nCiobgNNR3BFaWm5/kx+VDcDJKG7druxXX739fdlUNgCnS/viprIBuI2p4j5z5ozmz5+vwsJCFRUV\nadOmTVbPlXBUNgC3MnUCzoULF3ThwgX5fD7duHFDs2bN0t///nfNmDHjzoUdfAJOZGVzKg0AJ0nY\nCTiTJk2Sz+eTJI0dO1YzZszQuXPnzFwqqahsAKkg7j3u9vZ2HTlyRGVlZVbMkzDsZQNIFXEt3Ddu\n3FBVVZXq6uo0duzYe/48GAwO3A8EAgoEAvG8nCn9J6y/+KK0Zo20apWUkZH0MQBgUKFQSKFQKKbn\nmD7l/datW1q8eLGeeOIJrVy58t4LO2CPm71sAG6TsD1uwzC0fPlyeb3eQRdtu7GXDSCVmSruAwcO\n6LHHHtPMmTPl8XgkSevXr9fjjz9+58I2FTeVDcDNolk7TW+VWPHiVorcy167Vlq5kr1sAO4TzdqZ\nEp+c5B0jANKJq7+rhL1sAOnItcXN92UDSFeuK26+LxtAunNVcVPZAOCS4qayAeAOxxc3lQ0Ad3Ns\ncVPZADA4RxY3lQ0AQ3NUcVPZAHB/jiluKhsAomN7cVPZABAbW4ubygaA2NlS3FQ2AJiX9OKmsgEg\nPqaLu7a2Vjk5OSouLo7q8VQ2AFjD9MK9bNky7dmzJ6rHtrZKCxZIf/3r7cpevdqeQw5iPZAzGZw4\nk+TMuZgpOswUPafOdT+mF+65c+fqm9/85rCPcVplO/EvyYkzSc6ci5miw0zRc+pc95PQPe4FC9jL\nBgCrJfRdJU6obABIOUYc2trajKKiokH/LD8/35DEjRs3btxiuOXn59937U3YVsmpU6cSdWkASGum\nt0qqq6s1Z84cnTx5Unl5eaqvr7dyLgDAEDyGYRh2DwEAiF5Cfjm5Z88eFRQU6Nvf/rY2btyYiJeI\nSawfFkqGM2fOaP78+SosLFRRUZE2bdpk90jq7u5WWVmZfD6fvF6v1q5da/dIA3p7e+X3+1VZWWn3\nKAOmTZummTNnyu/3a/bs2XaPI0m6cuWKqqqqNGPGDHm9Xh06dMjWeU6cOCG/3z9wy8rKcsR/6+vX\nr1dhYaGKi4tVU1Ojmzdv2j2S6urqVFxcrKKiItXV1Q3/4Hh+OTmYnp4eIz8/32hrazPC4bBRUlJi\n/Oc//7H6ZWLy8ccfG83NzUP+ItUO58+fN44cOWIYhmFcv37dmD59uu3/ngzDMDo6OgzDMIxbt24Z\nZWVlRmNjo80T3faHP/zBqKmpMSorK+0eZcC0adOML7/80u4x7rJ06VLjj3/8o2EYt/8Or1y5YvNE\nd/T29hqTJk0yTp8+bescbW1txsMPP2x0d3cbhmEYP/nJT4w///nPts507Ngxo6ioyOjq6jJ6enqM\n8vJy49SpU0M+3vLibmpq0iOPPKJp06YpMzNTzz77rN5//32rXyYm0XxYKNkmTZokn88nSRo7dqxm\nzJihc+fO2TyVNHr0aElSOBxWb2+vJkyYYPNE0tmzZ7Vr1y6tWLFChsN29pw0z9WrV9XY2Kja2lpJ\n0siRI5WVlWXzVHc0NDQoPz9feXl5ts4xbtw4ZWZmqrOzUz09Pers7NSUKVNsnen48eMqKyvTqFGj\nlJGRoXnz5undd98d8vGWL9yff/75XX8xubm5+vzzz61+mZTS3t6uI0eOqKyszO5R1NfXJ5/Pp5yc\nHM2fP19er9fukbRq1Sq9/PLLGjHC9q+Pv4vH41F5eblKS0u1ZcsWu8dRW1ubsrOztWzZMn33u9/V\nz3/+c3V2dto91oAdO3aopqbG7jE0YcIErV69WlOnTtVDDz2k8ePHq7y83NaZioqK1NjYqMuXL6uz\ns1Mffvihzp49O+TjLf8/wePxWH3JlHbjxg1VVVWprq5OY8eOtXscjRgxQkePHtXZs2f18ccf2/6R\n4A8++EATJ06U3+93VN1K0sGDB3XkyBHt3r1bmzdvVmNjo63z9PT0qLm5Wc8995yam5s1ZswYbdiw\nwdaZ+oXDYe3cuVPPPPOM3aOopaVFr7zyitrb23Xu3DnduHFD27Zts3WmgoICPf/886qoqNATTzwh\nv98/bKhYvnBPmTJFZ86cGfjnM2fOKDc31+qXSQm3bt3S008/rZ/97Gd66qmn7B7nLllZWfrhD3+o\nw4cP2zrHJ598on/84x96+OGHVV1drX379mnp0qW2ztRv8uTJkqTs7GwtWbJETU1Nts6Tm5ur3Nxc\nPfroo5KkqqoqNTc32zpTv927d2vWrFnKzs62exQdPnxYc+bM0YMPPqiRI0fqxz/+sT755BO7x1Jt\nba0OHz6s/fv3a/z48frOMB85t3zhLi0t1X//+1+1t7crHA7rnXfe0ZNPPmn1y7ieYRhavny5vF6v\nVq5cafc4kqRLly7pypUrkqSuri7t3btXfr/f1pleeuklnTlzRm1tbdqxY4cWLFigt956y9aZJKmz\ns1PXr1+XJHV0dOif//yn7e9amjRpkvLy8nTy5ElJt/eUCwsLbZ2p3/bt21VdXW33GJJu1+2hQ4fU\n1dUlwzDU0NDgiC3BL774QpJ0+vRpvffee8NvKyXiN6S7du0ypk+fbuTn5xsvvfRSIl4iJs8++6wx\nefJk42tf+5qRm5tr/OlPf7J7JKOxsdHweDxGSUmJ4fP5DJ/PZ+zevdvWmT777DPD7/cbJSUlRnFx\nsfG73/3O1nm+KhQKOeZdJa2trUZJSYlRUlJiFBYWOuK/c8MwjKNHjxqlpaXGzJkzjSVLljjiXSU3\nbtwwHnzwQePatWt2jzJg48aNhtfrNYqKioylS5ca4XDY7pGMuXPnGl6v1ygpKTH27ds37GP5AA4A\nuIyzfk0PALgvFm4AcBkWbgBwGRZuAHAZFm4AcBkWbgBwGRZuAHAZFm4AcJn/A66lmo+KjWusAAAA\nAElFTkSuQmCC\n", "text": [ - "" + "" ] }, { @@ -128,7 +128,7 @@ ] } ], - "prompt_number": 3 + "prompt_number": 36 }, { "cell_type": "markdown", @@ -167,13 +167,13 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOX6wPHvIC6pCLgAIiiGC4IbiqbZgiJWJqa5Ukc9\nilmZlSfMtU7+WhRTS80yF3Lf62RkHjMjrBOauZR7KMLggmQKKJjK8vz+eHQURXCBWZj7c11zXc77\nvjPc8xZz82z3Y1BKKYQQQohbcLB0AEIIIaybJAohhBBFkkQhhBCiSJIohBBCFEkShRBCiCJJohBC\nCFEkSRTC7jk5OZGcnGzpMISwWpIohN07f/48Pj4+lg6jgCVLluDg4EB0dPQtr7l06RJDhgzB2dmZ\n2rVr8+GHH5oxQmFPHC0dgBCioPT0dCZNmkTTpk0xGAy3vG7ixIkkJiaSkpJCamoqHTt2xN/fn8ce\ne8yM0Qp7IC0KUSb4+Pgwffp0WrRogYuLC/379+fSpUum8/Pnz6dhw4bUqFGDp556itTUVNM5BwcH\njh49CsCGDRsICAigWrVqeHl5MX36dNN169evp2XLlri6utKhQwf27t1bKp9l3LhxvPrqq9SoUaPI\n65YsWcKbb76Js7Mzfn5+DBs2jEWLFpVKTMK+SaIQZYLBYGDt2rV8++23JCUlsWfPHtOXZmxsLOPH\nj2ft2rWkpqZSr149+vfvX+j7REREMG/ePM6dO8f+/fvp1KkTALt37yYiIoL58+dz9uxZnn/+ebp3\n787ly5cLfZ/mzZvj6upa6GPEiBG3/Bzbt29n165dvPDCC0V+3vT0dFJTU2nRokWBn7l///4iXyfE\n3ZCuJ1FmvPLKK3h4eAAQFhbGb7/9BsDy5cuJiIigZcuWAEyePBlXV1dSUlKoW7dugfeoUKEC+/fv\np1mzZjg7OxMYGAjAvHnzeP7552nTpg0AAwcOZNKkSWzbto1HHnnkplj27Nlzx/Hn5eXx0ksv8fHH\nHxfZ5QSQlZUFgLOzs+lYtWrVOH/+/B3/XCGKIy0KUWZcTRIA9913H9nZ2QCmVsRVVapUoUaNGpw4\nceKm9/jiiy/YsGEDPj4+BAcHs23bNgCMRiPTp08v0DI4fvx4gS6se/XJJ5/QvHlz2rZtazp2q5qd\nVatWBeDcuXOmY5mZmTg5OZVYPEJcJYlClHmenp4Fpr9mZ2dz5swZ6tSpc9O1QUFBrFu3jtOnT9Oj\nRw/69u0LQN26dZkwYQLp6emmR1ZWFv369Sv0ZwYEBODk5FToY/jw4YW+JjY2li+//JLatWtTu3Zt\n4uPjiYyM5JVXXrnpWldXV2rXrm1qNQH8/vvvNG3a9E5ujRC3RbqeRJl19a/x8PBwwsPDeeaZZ/Dz\n82P8+PG0a9fupm6nnJwc1qxZQ7du3XB2dsbJyYly5coB8Nxzz9GzZ086d+5MmzZtuHDhAnFxcTz6\n6KOmv+6vdzdjBYsWLTINwCulePrpp+nTpw8RERGFXj9w4EDeffddgoKCSE1NZcGCBSxevPiOf64Q\nxZEWhSiTDAaDqZ8/JCSEd955h169euHp6UlSUhKrVq0qcO1Vy5Yto379+jg7OzNv3jyWL18OQOvW\nrZk/fz4jRoygevXqNGzYkCVLlpRozM7Ozri5ueHm5oa7uzsVKlSgWrVqpu6k5cuXF2gx/N///R++\nvr7Uq1ePjh07MmbMGLp06VKiMQkBYCitjYuGDBnCN998g5ubm2ka4dmzZ+nXrx9GoxEfHx/WrFmD\ni4sLoAcYP/vsM8qVK8esWbPkf3ghhLASpdaiGDx4MBs3bixwLCoqitDQUBISEggJCSEqKgqAAwcO\nsHr1ag4cOMDGjRsZPnw4+fn5pRWaEEKIO1BqieLhhx/G1dW1wLGYmBgGDRoEwKBBg1i3bh0AX331\nFeHh4ZQvXx4fHx8aNGjA9u3bSys0IYQQd8CsYxRpaWm4u7sD4O7uTlpaGgAnT57Ey8vLdJ2Xl1eh\nUxeFEEKYn8UGs68fbLzVeSGEEJZn1umx7u7unDp1Cg8PD1JTU3FzcwOgTp06HDt2zHTd8ePHC53j\n3qBBAxITE80WrxBClAW+vr4cOXLkrl9v1hZF9+7dTfO8Fy9eTI8ePUzHV61axeXLl0lKSuLw4cMF\nVqdelZiYiFJKHkrx1ltvWTwGa3nIvZB7IfdCP5YsUfRuayQ/v+Dxe/0Du9RaFOHh4WzZsoW//voL\nb29v3n77bcaOHUvfvn2Jjo42TY8F8Pf3p2/fvvj7++Po6Mgnn3wiXU9CCHEHcnPhnXfg00/rUtJf\nn6WWKFauXFno8c2bNxd6fPz48YwfP760whFCiLLl77/hvvtMT1etAg8P6Nix5H+UlPCwUcHBwZYO\nwWrIvbhG7sU1ZfZeKAXz5qHefZfvZ+zj4ElnEhNh7VpYupQSb01AKa7MLg0GgwEbClcIIe7J+fMQ\nEgKbNoGLC2A0wtChkJnJyi4LeWtNAJ07g68vNGsGoaGFJ4p7/e4sEy2K6tWrk56ebukwygRXV1fO\nnj1r6TCEEMC6dfDrr7B6leJ5wzx44w2IjIRRo5j5kCMzZkDXrqUfR5loUUhLo+TIvRTCejz+OLi5\nQca+48Q4D4DZsyEggIQEePhhOHECHG/jz31pUQghRBmUlgbbtkFKCjRu7MWhFT/g56fPLVsG4eG3\nlyRKgpQZF0IIK7R6NYSFQbVqMGAAXN1qRCmdKAYMMF8skiiEEMJaKAXr14NSrFgBzz6rDw8aBEuW\nQF4e/PwzVKoErVqZLyzpehJCCGtw3Yymo54PkZTkQufO+lRAAHh6wubN8J//6NaEOdckS4tCCCEs\nSSmYOxeCgvRc2Ph4lq13oW/fgmMQ//wnfPopfP75tZaGucisJzuVm5uLYyEjYXIvhTCjv/7So9KZ\nmbBwIQQEoBT4+ekxiXbtrl165oxuVXToALGxd/Zj7vX3WloUZjBlyhS8vLyoVq0afn5+xMbGopQi\nKiqKBg0aULNmTfr162daC5KcnIyDgwNLliyhXr161KpVi0mTJpneb/v27QQFBeHs7IyHhweRkZGm\nczExMQQEBODq6krHjh05dOiQ6ZyPjw/vv/8+zZs3x8nJSXYRFMLSqlWD3r0hPl73LwE7duixiAce\nKHhpjRowZAi89JIF4lQ25FbhWvPHOHTokPL29lapqalKKaWMRqNKTExUM2bMUO3bt1cnTpxQly9f\nVs8//7wKDw9XSimVlJSkDAaDGjZsmLp48aL6/fffVcWKFdWhQ4eUUkq1a9dOLVu2TCmlVHZ2ttq2\nbZtSSqk//vhDValSRW3evFnl5uaq999/XzVo0EDl5OQopZSqV6+eCgwMVMePH1cXL14sNF5rvpdC\nWIsXX1Rqx467f/2hQ0o1bKhUcnLB4/n5SnXqpNTMmfcW343u9ffapr4V7iVR6I7Ae3/cqcOHDys3\nNze1efNmdfnyZdPxJk2aqO+//970/OTJk6p8+fIqLy/PlChOnDhhOt+2bVu1evVqpZRSjzzyiHrr\nrbfU6dOnC/yst99+W/Xr18/0PD8/X9WpU0dt2bJFKaWUj4+PWrhwYTH3yab+lxDC7E6cUMpgUCo0\n9O5efzUZBAUpFRKin1+1YoVSLVoodeVvuxJzr7/XdtP1VFKp4k41aNCAGTNmMHHiRNzd3QkPD+fk\nyZMkJyfTs2dPXF1dcXV1NZVYv7o9LICHh4fp35UrVyYrKwuA6OhoEhISaNKkCW3btuWbb74BIDU1\nlbp165peYzAY8Pb2LrCtrLe3951/CCGEydq1eljhyBH48cfbfJHRqKcqZWaybBmkp8P//gfnzulx\nbNDDFKNGwZw55ltId7vsJlFYUnh4OD/99BNGoxGDwcCYMWOoW7cuGzduJD093fS4cOECtWvXLvb9\nGjRowIoVKzh9+jRjxoyhd+/eXLhwAU9PT4xGo+k6pRTHjh0rsFug7PMhxL1ZvRr+8Q/497/hzTeL\n+QPy+hlNAQGcuViF11/XhypWhEWLdPmmpCR46y1dsqN9e3N9ktsniaKUJSQkEBsby6VLl6hYsSKV\nKlXC0dGRF154gfHjx5OSkgLA6dOniYmJua33XLZsGadPnwbA2dkZg8FAuXLl6NOnD9988w2xsbHk\n5OQwffp0KlWqxIMPPlhqn08Ie5KSAgkJ0LmzThanTsH33187f/YsTJsG48fDW/80csCrC2mTojm5\nIg7GjmXMBEf69IE2bfT1/v4wejT07AkrVsCUKZb4VMWzsgZO2XPp0iXGjRvHwYMHKV++PB06dGDe\nvHm4u7ujlKJLly6cPHkSNzc3+vfvT/fu3YGi//L/9ttviYyM5MKFC/j4+LBq1SoqVqxI48aNWbZs\nGS+//DInTpwgMDCQr7/+utBpsEKIO7dmjf5SL19eP584UbcIQkL0uZEjoUsXCKx9imFftGFPyGtM\ndx5FzDOOuLtDRgbs31/wPSMjdRnxkSOhZk2zf6TbIusoRAFyL4W4tTZtYPJkTCum8/OheXOoXBku\nXID586/rOjp1Sm85h57uunUrODlBixbmj/tef68lUYgC5F4KUbjERHjwwZtLe2/ZAr/8olsEFSpY\nLr6iSKIo4ri4c3IvhSjc5Mlw7Bh88skNJ86f100FKyYrs4UQwgxWr4Z+/a47cHVGU6NGcGVySVkl\no5xCCFGMP/7QGwk99NCVA9dVemXzZqhVy6LxlTZpUQghRDHWrtUlmco53Fzp9WqNprJMWhRCCFGM\ntWvho4/QJVy//BLi4uwiQVwlg9miALmXQhSUkACPPgrHj0O5cpaO5u7IYLYQQpSitWuhVy/bTRIl\nQRKFnXBwcODo0aOWDkMI26AUfPEF5OWxdi306WPpgCxLEoWV8vHxIfZOt7ESQtw7o1HX4ZgyhaM7\nzhac7WSnJFFYKRkrEMLMCtm7etX3tey+2wkkUZjF1S1Pq1WrRkBAAOvWrTOdmz9/Pv7+/qZzu3fv\nZsCAAaSkpBAWFoaTkxPTpk0jLi7upr0krm91bN++nfbt2+Pq6oqnpycvv/wyOTk5Zv2cQtia+Hjo\n3x8up6XrVkR0tJ7RNHYsODpKt9NV97TtkZndKlxr/xhr1641bYW6evVqVaVKFZWamqrWrFmj6tSp\no3Zc2VPxyJEjymg0KqX0bnTX74D3ww8/KC8vrwLve/01O3fuVL/88ovKy8tTycnJqkmTJmrGjBmm\naw0Gg0pMTCw2Vmu/l0KUlN9/V8rNTe80NzoyV6mFCwtsLZeQoJSHh1K5uZaLsaTc6++1/bQoJk4E\ng+Hmx8SJt3/9ra4tRu/evU271fXt25eGDRuyfft2oqOjGTNmDK1btwbA19e3wA51d6JVq1a0bdsW\nBwcH6tWrx7Bhw9iyZctdvZcQZd2RI/DEE3ptxH//C8tXlWOz1z9N1f4uXoRx43Rrwt67ncCeup4m\nTix8b9OiEsXtXluMJUuWEBgYaNr2dN++ffz1118cO3YMX1/fu/xABSUkJNCtWzdq166Ns7MzEyZM\n4MyZMyXy3kKUJSdO6F6mt96Cvn31HhCLFsE//6lLNqWm6nUTjo4QFWXpaK2D/SQKCzEajQwbNoyP\nP/6Ys2fPkp6eTtOmTVFK4e3tzZEjRwp93Y0bF1WpUoULFy6Ynufl5Zl2uQN48cUX8ff358iRI2Rm\nZvLee++Rn59fOh9KCBt1cKOR3Y36EvmPNIYNu3a8c2d49lldpqNtWwgLg5Ur9T4TQhJFqcvOzsZg\nMFCzZk3y8/NZuHAh+/btw2AwMHToUKZNm8auXbtQSnHkyBHT1qju7u4kJiaa3qdRo0ZcvHiRDRs2\nkJOTw7vvvsulS5dM57OysnBycqJy5cocOnSIOXPmmP2zCmG1lGLPS3Op1TUIr+6teOnfNW665J13\nwM0NZs3Su9bJ9vLXSKIoZf7+/kRGRtK+fXs8PDzYt28fD12ZlN27d28mTJjAM888Q7Vq1Xj66adJ\nT08HYNy4cbz77ru4urrywQcf4OzszCeffMLQoUPx8vKiatWqBWZBTZs2jRUrVlCtWjWGDRtG//79\nC7RKitpaVYiyICMD/v67kBNGIylNupA3P5qTy+NouXJswZ2HrqhQQa/C7tmz9GO1NRap9TR58mSW\nLVuGg4MDzZo1Y+HChWRnZ9OvXz+MRiM+Pj6sWbMGFxeXgsFKradSJ/dS2KoePaBePZg587qD6enk\n+zXh7cyRDN4/inq+9lkH1eZ2uEtOTqZTp04cPHiQihUr0q9fP7p27cr+/fupWbMmo0ePZsqUKaSn\npxN1w0iSJIrSJ/dS2KLTp+H++6FSJT1Yff2WpNHvn+G7XTVYtcpy8VmazRUFrFatGuXLl+fChQvk\n5uZy4cIFPD09iYmJYdCgQQAMGjSowKI0IYQoyooVukXRpAls2FDw3IIvazBwoGXiKivMniiqV69O\nZGQkdevWxdPTExcXF0JDQ0lLS8Pd3R3QA7lpaWnmDk0IYaMWL4aIp9MZNEj/+6rDhyEpSU+HFXfP\n7B12iYmJzJgxg+TkZJydnenTpw/Lli0rcI3BYLjl4OvE69YyBAcHExwcXIrRCiGs3d49ii5J83j0\n+TdpHbeTyEhv/vpLr49YuhTCwwsduy7T4uLiiIuLK7H3M/sYxerVq/nuu+9YsGABAEuXLmXbtm3E\nxsbyww8/4OHhQWpqKh07duTQoUMFg5UxilIn91LYFKORhEeGcl9OJt7fLYSAAJ59Ftq1g5deAl9f\nXS28VStLB2pZNjdG4efnx7Zt2/j7779RSrF582b8/f0JCwtj8ZU24+LFi+nRo4e5QxNC2IorlV5V\nUBBrzoZw4btre1df7X76+WeoUgUCAy0caxlgkemx77//PosXL8bBwYFWrVqxYMECzp8/T9++fUlJ\nSbnj6bHVq1c3rT8Q98bV1ZWzZ89aOgwhinbuHAwcyJYu7zFmSQDbtl07lZenp8nefz88+SSMGWO5\nMK2FzU2PvRfSLSJE2ZeTAy+8AO+9B1dqad5S377QqZO+/npjx8L770NKCnh5lV6stuJevzvtbIhH\nCGEtduwAb2+4MtnRZO1aWL1af8l/+y043KKDPDUVvvtO7zV0o+ef12spJEmUDGlRCCHMLj8fGjWC\nFi30YPNVSumB54kTYfp06PqEYqzPKujVq+AqOmDCBMjMhNmzzRu7LZIWhRDC5sTFQcWK8OuvetC5\nQwd9PDYWLl3S1VvbuhtJeHQo530zcXr0UfD0NL0+KwvmzaPA2IQoPVIUUAhhdvPnXxuHiIzULQmA\nqVNhVKTCYf5caocF4dY/hJbZ8Zyt5Fng9QsXwiOP6OmvovRJ15MQwqzOnNFf8ElJ4OwMQUF68NnP\nD3p1Oc8fAU/jcD5TZ4OAAF5/Xe9tvXEjODnpWU0NG8Ly5dC+vaU/jW2QWU9CCJsyYwbs3KlXTYPu\nbho6FB54AJo3U4y7f7XeQejKcur8fBg+HPbt09uWfvstfPih7rISt0cShRDCZigFTZvCnDm66+iq\nsDD44Qc4dgxcXW9+XX6+nsl06JDec2LCBNk34k7Y3MpsIYT92roVcnPh4YcLHv/oI93TVFiSAD1F\ndu5cPVPq3Dno3r30YxXXSItCCGE2gweDvz+83tcIr76qdxmqV++2X68UZGdD1aqlGGQZJC0KIYRN\nOHcOvvyP4nnDXD2C3a4d1KlzR+9hMEiSsARZRyGEMIsNc4xsqTiUamsy9UKKK0X8hPWTrichROnL\nziatuh9n+79Ek+hR9rdBhIXJrCchhNX74w8IeySTAyecJUdYgIxRCCGs3qJF8NRASRK2SloUQoiS\ndfo01KplepqXB3Xr6kqv/v4WjMuOSYtCCGEdruw6h78/JCSYDm/apMt9S5KwXdIQFELcO6NR1+HI\nvDKjqVEj06mFC/X6CWG7pEUhhLh7V1sRQUEQEqKr91037fWvv3SLon9/C8Yo7pm0KIQQd+/iRd2C\nuG5dxM8/6x3qtm+HvXt1jSYXF4tGKe6RDGYLIUpMSgq0bg2jRukS4K1ayUpqayDrKIQQVkEp6NoV\nHnpIV3cV1kNmPQkhSp9SsHixrsgHHD8O339f8JIlS+DUKRg92gLxiVIliUIIUTSjEUJD4eOP9fZ0\nwJQp8OSTepA6LQ1SU+H11/UMp/LlLRyvKHGSKIQQhbt+RlNoqJ7RVLcuubmwZo0erK5XD5o1g6ee\n0oPWLVtaOmhRGmTWkxDiZhcvQrduujb4li0FVsvFxYG3NzRvrh/9+0N0NLzxhuXCFaVLWhRC2JkD\nB/RM1m3birioUiV4+WXdirhhSfXKlRAefu15YCDMng0VK5ZOvMLyZNaTEHZm4EA9Jv3TT3qs4U5W\nTV+6BLVrw549uiyHsA33+t0pXU9C2JHkZPjmGzh6FE6e1GMLu3fr8QVPT70wLjcXDh6E33+HrCx9\nzuFK38O330LTppIk7I0kCiHKKKX01qHXmzYNnnsOnJ3149fPjSQ/8SKjv/mAn8/4cemSfk3dunpg\n+sgR/Zg+Xb/+xm4nYR+k60mIMig/X6+QHjwYXnlFH0tLgyZN9BiFh7uCefP0CPSoURAZCY6OZGfr\nRFG5sn5NerpeQBcRca3VceRIgSriwgZI15MQ4iY//qjHIWbP1hOXJkyAWbP0DCWPS0YIjSh0RlOV\nKgXfx9UVNm6EDh3g1191WQ5JEvZHEoUQZdDChfDii7qbqEsX+PNPWLECfv3fJejUCYYNM7UiiuPt\nDRs26JbFrFlmCF5YHel6EqKMOXdOjzEcPqz/+j97Fp54Qm8RsXQpuqlxY9PhNqSl6fdzkEn1NkeK\nAgohCliwQLcA/vOfa8dycvS4hax1sE9SFFAIUcBnn8GQIej5r1e+HMqXlyQh7p5FEkVGRga9e/em\nSZMm+Pv788svv3D27FlCQ0Np1KgRXbp0ISMjwxKhCWHTDh6EpKOKJ1LmQosWeucgIe6RRRLFq6++\nSteuXTl48CB79uzBz8+PqKgoQkNDSUhIICQkhKioKEuEJoRNWzfTyI+VQim3KFrPaGre3NIhiTLA\n7GMUmZmZBAYGcvTo0QLH/fz82LJlC+7u7pw6dYrg4GAOHTpUMFgZoxCicEqRN2ceGSPeIO9fo3Cb\ncnszmoR9sLkxiqSkJGrVqsXgwYNp1aoVzz33HNnZ2aSlpeHu7g6Au7s7aWlp5g5NCNuVm8tv87cz\npt0W3KaPkSQhSpTZE0Vubi67du1i+PDh7Nq1iypVqtzUzWQwGDDcWHtACHFLX8SU5+mz0bz3pX/x\nFwtxh8z+Z4eXlxdeXl60adMGgN69ezN58mQ8PDw4deoUHh4epKam4ubmVujrJ06caPp3cHAwwcHB\nZohaCOu1dy+88IJeQX2lUS7sXFxcHHFxcSX2fhZZR/HII4+wYMECGjVqxMSJE7lw4QIANWrUYMyY\nMURFRZGRkVFoS0PGKIRdU0rPf+3ZE6pX58wZaNsW3nkHnnnG0sEJa2WTC+5+//13hg4dyuXLl/H1\n9WXhwoXk5eXRt29fUlJS8PHxYc2aNbi4uBQMVhKFsGdGo67Od+4crF4N9evTrx/UqQMffGDp4IQ1\ns8lEcbckUQi7pAqv9BobqxfWHThwrdqrEIWR6rFClGU5OfDkk5CRUaDSa06OLh8+fbokCVH6pISH\nENasfHmSe4/ihebxpNW4NqPpk0/AwwOeftqCsQm7IV1PQlixv/+GNm3g/vth+3aYM0fvDREQcNNW\nEkLcknQ9CVGGjR6t96heuRK2boWBA/We1gMHSpIQ5iNdT0JYA6MRHnsMdu40HVq/Hr7+Gj79VG9P\n+uCD8NtvMGIEvPWWBWMVdkcShRCWpBTMnQtBQXrnuRYtAEhNheee0xsNXT9LvGpVPfGpWjULxSvs\nknQ9CWEp16+LuDLg8PffsGAOvP8+DB8ODz9s6SCFkBaFEJaRmwtdu0JoKMTHk+Hpz/vv60Hr77/X\nu9O9+aalgxRCkxaFEJbg6Ag7d5J8qhIzX4fFi/W+1t9+K1tICOsjLQohLGD/fng2ohJBQXqb0t9/\nh+XLJUkI6ySJQojSduyY7moCDh3Si+RCQnRSOHpUj0d4e1s4RiGKIIlCiNJydUZTq1awcyc5OdCj\nh57gdPQojBkjs5eEbSg2Ubz++uucO3eOnJwcQkJCqFmzJkuXLjVHbELYLqNRD1RHX9m7+oEHmD8f\n6taFceOkPpOwLcUmik2bNlGtWjXWr1+Pj48PiYmJTJ061RyxCWF7rl8XcWVGE/7+ZGbC22/D1Kl6\n8ZwQtqTYWU+5V/pW169fT+/evXF2dpZtSoUoxIULcHC/4r4vDnBs/Ba6jPQ3JYUpU/Sspivr6YSw\nKcUmirCwMPz8/KhUqRJz5szhzz//pFKlSuaITQiLe/ll6NZNV9coysiRuiHRqJEDTZvO5OBS+GCj\n3kbCwUGf+/1388QsREm7reqxZ8+exdnZmXLlypGdnc25c+eoXbu2OeIrQKrHCnNSCjw99eykb7+9\n9XVZWeDlBYcPQ61a+lhODkybpveLuP9+6NIF3n3XPHELcaN7/e4sdozi8uXLLF26lL59+9KrVy8+\n++wzatasedc/UAhbcfKk/sLftQuSkm44eXXXuRMniInRpb+vJgnQayPGjYOfftLdTaNHmzV0IUpU\nsS2KiIgIcnNzGTRoEEopli5diqOjIwsWLDBXjCbSohDm9NVXusvIzw/uuw/ee+/KietrNK1YQbeR\nDQgPh2eftWi4QtxSqe+Z3bx5c/bs2VPsMXOQRCHM6c039Qyl8HBd2DXFqCi/sODe1WcyHfH1hePH\ndWVXIaxRqW9c5OjoyJEjR2jQoAEAiYmJODpKiShR9v36q67g2qQJNGqQz5l2T+LheKbA1nKffw6P\nPy5JQpRtxX7jT506lU6dOnH//fejlCI5OZmFCxeaIzYhLEYp2LFDL4cAeO55B6Z+NJ7pP7fXBf2u\nWLECIiMtFKQQZlJs19Pff//N9OnTiY2NxcXFhaCgIF577TWLTJGVridhLsnJeoD6xAn9/OJFXY9p\n+3aoX18fO3YMWrbUg94VK1osVCGKVeqzngYOHEhSUhJvvvkmI0aM4OjRowwYMOCuf6AQVk+pAq0J\ngEqV4B8XBlZgAAAYQklEQVT/gPHj9Vg2wOrVusCfJAlR1hXb9bR//34OHDhget6pUyf8ZVd3UVYZ\njTB0KH/VfIOgoEcLnBo7FiZOhNatoWlTSEnRpZyEKOuKbVG0atWKrVu3mp5v27aN1q1bl2pQQpjd\n9TWaOnfmi1MdaNOm4CXu7jBnju6OGjkSeveGRx6xTLhCmFOxYxR+fn4kJCTg7e2NwWAgJSWFxo0b\n4+joiMFgMOs0WRmjEKVh41wjvpMjaOh2DhYtIt/Pn+rVC660FsKWlfo6iuTk5CLfwMfH565/+J2S\nRCFKmspXHKjShtX5fej0TSTBnR05fFgXfi3mf30hbEapr6MwZyIQwty+22xgzP3xTJxUgWHDYc8e\nvX7i+oFsIezdbRUFtBbSohAl7fHHoV8/GDwYevWCgABd5M/dXe9AJ0RZUOpdT9ZEEoW4W7m58HuM\nkdZd3fVcV2DfvmtdTBUr6kHqli319qTz5ul9rYUoC0p9HYUQtu6v04qPms6lbq8gPh38C/n5+viH\nH8JLL11bB1GnDvzf/+n9rFu1sly8QlgbaVGIMm3fN0YyekdQz/UclVcvovtYf3x8ICpK7zNx+DBc\nXzU/Px++/163NIQoK6RFIezagQMwaBBkZ99wQil+Gz4Xj7Agqj0dindKPDUe9mfzZr1lacuWemzi\nxq1VHBwkSQhxI2lRCJuVmgoPPqgHnj084IsvoFw5fe5/Pyl+ffwNuix6loA+BSsJ5OXB1Km6fHi9\nehYIXAgzk8FsYZeysuDRR6FnT7173OOP666kGTPg4EEIDoZly6R1IATYcNdTXl4egYGBhIWFAXpf\n7tDQUBo1akSXLl3IyMiwVGjCyuXm6m6jwECYMAEqVID//Ac2bYJ//xueeELvVy1JQoiSYbFEMXPm\nTPz9/TEYDABERUURGhpKQkICISEhREVFWSo0YeUmT9Z7Wc+ZAwZ0jSaX04fZsAHmz4cXXgApcCxE\nybFIojh+/DgbNmxg6NChpuZQTEwMgwYNAmDQoEGsW7fOEqEJK5eVBbNmwccfQ/mTRt1siI4GpfDx\n0cVfx461dJRClC0WSRT/+te/mDp1Kg4O1358Wloa7u7uALi7u5OWlmaJ0ISVW7AAgh9VNIy9Uuk1\nNBTi46FRI0B3QwkhSpbZN79ev349bm5uBAYGEhcXV+g1BoPB1CUlxFWXL8P0aYq99z8F0acK7F0t\nhCg9Zk8U8fHxxMTEsGHDBi5evMi5c+cYMGAA7u7unDp1Cg8PD1JTU3Fzcyv09RMnTjT9Ozg4mODg\nYPMELixuxQpo7GfAZfKbeiTb0ez/+wphE+Li4m75h/jdsOj02C1btjBt2jS+/vprRo8eTY0aNRgz\nZgxRUVFkZGTcNKAt02PtV36+Ltj30UfQubOloxHCttjs9NirrnYxjR07lu+++45GjRoRGxvLWBmR\nFErpB/D111C5shTqE8ISZMGdsEqZe4z82T2C9b4j+aFKN3bsgJkzoU8fS0cmhO2RldmibFEKNXce\n5199g68bjyLnlUhcazni4QFt24LMcRDizpX6DndCmI3RCBERnEk6xxDvLazZ7n916wghhAVZfIxC\n2K+8PL2L3A8/oMciBg0iPSiUZufieecLSRJCWAvpehIW8/bbEBMDf/0FrVvDlPdyGfqCI1276kJ/\nQoiSYfOznoR92rJF12qKidHVXlu1glZtHVEKIiMtHZ0Q4nrSohCl7oMPICUFXn9dbzd6ZpeRh8Jc\n+TC6Go8/fu26P//UJThcXCwXqxBlkbQohFXbuROmTNH/btZUsfzRuZRrF8SoDlsLJAkANzdJEkJY\nI2lRiFJz+TK0aaNbEv942MjlARGkHTnHVP9FTP+vP+XLWzpCIeyDtCiE1Zo8Gby94dksXem1wpN6\n7+pZmyVJCGFLJFGIO3bypF4l/dBDervRwuzZA7Nnw6efgiEzQ49ejxkjhfyEsEHS9SRu26lT8M9/\nwi+/wFNPwQMPwDvvQEICVK167bqcHGjfHl58ESIiLBauEOIK6XoSZpGUpFsQbdtCaiosWqQTQadO\nMHVqwWvfew9q1oQhQywSqhCihEmLQhRr71544gkYPx6GDy94LiVFbw2x53dFnW/msa9yW0JGBbJ7\nN3h6WiZeIURBUutJlKpDh/T+DzNmQHj4zefr1oXR/Yxkto3Ao3Ymr595hNmzJUkIUZZI15MoUnQ0\nDB1aeJJAKZg7l9dXt+bL8yH0dN9KjYeaSClwIcoYaVGIW1IKPv8c1q27xQX9+kFSEg4/bsF1SwC/\nRenZTkKIskXGKMQt7doFffvC4cO32Adizx7w9wdHXaPpwgWoUsXsYQohiiFjFKLUfP459O5dxGZB\nzZub/mkwSJIQoqySMQpRqKvdTr16XXmSn2/pkIQQFiKJQhRq3z64dAmCahmhSxdYvdrSIQkhLEQS\nhQAgNrZgo+GLzxXTGs7F0CZIr6qTqUxC2C0ZzBbs3q03DurXDxYvhoqnjGwNGEoz7wyqfr4IAgIs\nHaIQ4h7c63enJArBK69A5cp6dlNmJnx+sRtz9nRgzF+v41BB5jsIYetk1pO4J5cuwYoVsGOHLgk+\nYgTUWRTDkKEOOFSwdHRCCGsgicLOxcRAixbg46Off/IJNGvmQKdOFg1LCGFFpOvJnhmN9BtShe5D\navLss5YORghRWqTMuChSUlIhB6/UaMprFYTjLz/Ts6fZwxJC2BDpeirDvvkGuneHEyfAw+PKQaNR\nV/nLyCD6H3E4XQqgcmWLhimEsHLSoiijLl2CkSOhcWNYs+bKwfnzIUivi1DxW5m6IYDBgy0aphDC\nBkiiKKNmzIAmTeCDD2DlyisHL12CuDgYN46ftjpSoYLesU4IIYoig9ll0MmTul7ftm1Qrx7UqaP3\nua5f/9o1YWHQtavezlQIUbbJYLady8iA4GDo0QM2bdJlOMaOheeegwYNoHx5XQF21aprr9m9G3bu\nRLqdhBC3RRKFDbtwAbp1062HJ5+E0aOhYQNF7a/n8uajP5quCw/Xi+qumjQJRo2CSpUsELQQwuZI\n15ONysnRrYgaNWDRInBwAJVsJLPPUMpnZ1Dl88V6UyF0K6NePfjvf6FcOXj0UT1tVvaPEMI+SNeT\nHcrP191G5crpPa0dDHpdhKFNEC5Pd6LKnq2mJAE6ifTvrwe1J0+GV1+VJCGEuH2yjsIGLVgAf/wB\nP/6oxyAYMBAOHdIzmm5R6TU8XA9e5+TArFlmDVcIYePM3qI4duwYHTt2JCAggKZNmzLryrfW2bNn\nCQ0NpVGjRnTp0oWMjAxzh2YTTpyACRNg4UK4774rB994A7ZuLbIceGAguLjoWU4uLuaJVQhRNph9\njOLUqVOcOnWKli1bkpWVRevWrVm3bh0LFy6kZs2ajB49milTppCenk5UVFTBYO18jEIpPS4RGAgT\nJ975648eBU9PGcQWwt7Y3BiFh4cHLVu2BKBq1ao0adKEEydOEBMTw6BBgwAYNGgQ69atM3doVm/t\nGsXRw3mMG3d3r7//fkkSQog7Z9HB7OTkZHbv3s0DDzxAWloa7u7uALi7u5OWlmbJ0KxO+m9G3Ad2\nYV1YNBUrWjoaIYQ9sdhgdlZWFr169WLmzJk4OTkVOGcwGDAYDIW+buJ1fS7BwcEEBweXYpRWQCny\nP52Hw8g3OB/0Gr7vDbF0REIIKxcXF0dcXFyJvZ9F1lHk5OTQrVs3nnjiCUaOHAmAn58fcXFxeHh4\nkJqaSseOHTl06FDBYO1tjOJKpdfUgxlE1ljEol8DqCC7zgkh7pDNjVEopYiIiMDf39+UJAC6d+/O\n4sWLAVi8eDE9evQwd2gWUeR/u7FjOezdibZ5utKrJAkhhCWYvUXxv//9j0ceeYTmzZubupcmT55M\n27Zt6du3LykpKfj4+LBmzRpcbpjHWRZbFO+/D4mJMHfuzeeSkxTt2htYvVqvphZCiLtxr9+dUsLD\nwtq1g7174auvoHPna8cvXICHHoIBA+Bf/7JcfEII2yeJwoalp+saTGumGnl3cjk2HfCicmXdHfXs\ns7pEx5IlcItxfSGEuC02N0Yhron9XvGu91wefyOI3p7xvPOOPj5tGiQkwLx5kiSEEJYntZ4sxWjE\nf+RQOjhkQlwc4TUDaNYMqleHDz/UGw2ZSnQIIYQFSYvCEqKjISiIr/8O4fRX8RAQgLu7ruw6YYLe\n49rb29JBCiGEJmMUlrB4MSluQTwwJICTJ691LykFx45B3bqWDU8IUbbIYLaN+vRTiI/Xg9VCCFGa\nZDDbRn33HYSGWjoKIYQonrQoSotSetqSl5fe0Po6eXlQqxbs3w+1a1soPiGE3ZAWhTUyGnVzIToa\n6te/6fSOHVCnjiQJIYRtkERRkpTeu5qgIL3MOj6+wN7VV333HXTpYoH4hBDiLsg6ipL03HOwZ0+R\ne1dnZsLatTBlinlDE0KIuyUtimLk5MCDD0Jy8m1cPGGCbkXcIknEx0PLlvr9rq/rJIQQ1kwSRTE2\nbYKtW2HmzOKvTatcH1Xu5kZaXh68/TY8/TTMmAFz5oCjtOWEEDZCEkUxli+HsWNh8WLIyLhyUCnd\n1LjizBkYOlQPUD//POTmXnv9xYvQty98/z3s2gVPPWXe+IUQ4l5JoihCVhZs2ACvvQZPPAELFnBt\nRtPs2SilF8wFBEDlypCSoldW9+wJ2dk6sTz2mG49bNoEnp6W/kRCCHHnJFEUYd066NBBr3l47V+K\nM5Pmoq7OaHr5ZcaNg6lTYf16mDVLJ4KYGKhZEzp1gocf1mMSK1dCxYqW/jRCCHF37GrBXX6+3gOi\nRo3bu/6JJ+Af/4BnHzJCRAQHt5/j6BsLeXJ0ANOn6xbGTz/pxHA9peC996BKFRg5UkqFCyEsS2o9\n3YGFC+Gdd+DgweL/wv/zT2jYEE6cgKqvDYP772e93yjeeseRV16Bf/8b/vc/qfIqhLB+kijuwIAB\numvozTdh1Kiir/3oI9i2TQ9moxQYDOTnQ5MmulXy44/g53fXoQghhNlICY/bpBRs2QLLlkFUFJw+\nXfD8vn36y//SJf18xQq9HSlg6jtycIBFi/QMJkkSQgh7YTctiqNH9cD0yZPw6qt6vGL2bH3um29g\n8GBo627k2NEcqrdtwP79utupfPkS/ABCCGEB99qisJtlX3FxEBysGwf//rfuQhoxAnbuhMjXFL8M\nmUf96DfI/nAGsbUbUKGCJAkhhAA7ShRbtuhEAXqW0tixEBYGNbKMHLk/gqqx5yAujioBAYRZNFIh\nhLAudjFGoZRuUTz66LVjI0bABM+F/Hw5iKpPdS6yRpMQQtgzu2hRJCfrQerGja8dq1gR/vmyEzSJ\nkwQhhBBFKJOJIien4PjC1W6nmxa+9e5tzrCEEMImlbmup02boHp1XfH1qhu7nYQQQty+MpUo9u7V\nJTdee01XbP3zT0ApPNfPpXv2SkuHJ4QQNqnMdD2dPAnduunifP3761Lfr/YwEm2IoE/mOTwfX2jp\nEIUQwiaViRZFVhY8+SS8+KJOEijFO15zmbMjiPlHOzPlqXgMTWXAWggh7kaZaFF8/LEu4DdmzJUD\nL7+Mw/bt5G2OY+ozAUwIsWh4Qghh08pECY/AQPjww2sL6jhxAtzdwdGRv/4CFxfZelQIYb/svnrs\nH39Ax456Z7ly5SwUmBBCWDH7rh6rFJ8vu0jfvpIkhBCitNhuojAaUaGhOH06lX79LB2MEEKUXVaV\nKDZu3Iifnx8NGzZkypQphV+kFMydC0FBnArozMzK42jXzrxxCiGEPbGaRJGXl8eIESPYuHEjBw4c\nYOXKlRw8ePDmC0NDIToa4uKYXXUsvfs72uWe1HFxcZYOwWrIvbhG7sU1ci9KjtUkiu3bt9OgQQN8\nfHwoX748/fv356uvvrr5ws660qvyD2DVKuy220l+Ca6Re3GN3Itr5F6UHKtJFCdOnMDb29v03MvL\nixMnTtx84dix4OjIzp16ADsw0IxBCiGEHbKa1QWG2+w/SkuDAwf0Nqb9+hVSEVYIIUTJUlZi69at\n6rHHHjM9nzRpkoqKiipwja+vrwLkIQ95yEMed/Dw9fW9p+9nq1lwl5ubS+PGjfn+++/x9PSkbdu2\nrFy5kiZNmlg6NCGEsGtW0/Xk6OjI7Nmzeeyxx8jLyyMiIkKShBBCWAGraVEIIYSwTlYz66k4t7UY\nr4w6duwYHTt2JCAggKZNmzJr1iwAzp49S2hoKI0aNaJLly5kZGRYOFLzycvLIzAwkLCwMMB+70VG\nRga9e/emSZMm+Pv788svv9jtvZg8eTIBAQE0a9aMZ555hkuXLtnNvRgyZAju7u40a9bMdKyozz55\n8mQaNmyIn58fmzZtKvb9bSJR3PZivDKqfPnyfPjhh+zfv59t27bx8ccfc/DgQaKioggNDSUhIYGQ\nkBCioqIsHarZzJw5E39/f9NsOXu9F6+++ipdu3bl4MGD7NmzBz8/P7u8F8nJycyfP59du3axd+9e\n8vLyWLVqld3ci8GDB7Nx48YCx2712Q8cOMDq1as5cOAAGzduZPjw4eTn5xf9A+5pKNxM4uPjC8yI\nmjx5spo8ebIFI7Ksp556Sn333XeqcePG6tSpU0oppVJTU1Xjxo0tHJl5HDt2TIWEhKjY2FjVrVs3\npZSyy3uRkZGh6tevf9Nxe7wXZ86cUY0aNVJnz55VOTk5qlu3bmrTpk12dS+SkpJU06ZNTc9v9dlv\nnFH62GOPqa1btxb53jbRorjtxXh2IDk5md27d/PAAw+QlpaGu7s7AO7u7qSlpVk4OvP417/+xdSp\nU3FwuPa/rz3ei6SkJGrVqsXgwYNp1aoVzz33HNnZ2XZ5L6pXr05kZCR169bF09MTFxcXQkND7fJe\nXHWrz37y5Em8vLxM193O96lNJIrbXYxX1mVlZdGrVy9mzpyJk5NTgXMGg8Eu7tP69etxc3MjMDDw\nlvX17eVe5ObmsmvXLoYPH86uXbuoUqXKTV0r9nIvEhMTmTFjBsnJyZw8eZKsrCyWLVtW4Bp7uReF\nKe6zF3dfbCJR1KlTh2PHjpmeHzt2rEBGtAc5OTn06tWLAQMG0KNHD0D/lXDq1CkAUlNTcXNzs2SI\nZhEfH09MTAz169cnPDyc2NhYBgwYYJf3wsvLCy8vL9q0aQNA79692bVrFx4eHnZ3L3bs2MGDDz5I\njRo1cHR05Omnn2br1q12eS+uutXvxI3fp8ePH6dOnTpFvpdNJIqgoCAOHz5McnIyly9fZvXq1XTv\n3t3SYZmNUoqIiAj8/f0ZOXKk6Xj37t1ZvHgxAIsXLzYlkLJs0qRJHDt2jKSkJFatWkWnTp1YunSp\nXd4LDw8PvL29SUhIAGDz5s0EBAQQFhZmd/fCz8+Pbdu28ffff6OUYvPmzfj7+9vlvbjqVr8T3bt3\nZ9WqVVy+fJmkpCQOHz5M27Zti36zkh5QKS0bNmxQjRo1Ur6+vmrSpEmWDsesfvrpJ2UwGFSLFi1U\ny5YtVcuWLdV///tfdebMGRUSEqIaNmyoQkNDVXp6uqVDNau4uDgVFhamlFJ2ey9+++03FRQUpJo3\nb6569uypMjIy7PZeTJkyRfn7+6umTZuqgQMHqsuXL9vNvejfv7+qXbu2Kl++vPLy8lKfffZZkZ/9\nvffeU76+vqpx48Zq48aNxb6/LLgTQghRJJvoehJCCGE5kiiEEEIUSRKFEEKIIkmiEEIIUSRJFEII\nIYokiUIIIUSRJFEIUYTMzEzmzJkD6NWtffr0sXBEQpifrKMQogjJycmEhYWxd+9eS4cihMVYzVao\nQlijsWPHkpiYSGBgIA0bNuTgwYPs3buXRYsWsW7dOi5cuMDhw4eJjIzk4sWLrFixgooVK7JhwwZc\nXV1JTExkxIgRnD59msqVKzN//nwaN25s6Y8lxB2RrichijBlyhR8fX3ZvXs3U6dOLXBu//79fPnl\nl/z6669MmDCBatWqsWvXLtq3b8+SJUsAGDZsGB999BE7duxg6tSpDB8+3BIfQ4h7Ii0KIYpwfc/s\njb20HTt2pEqVKlSpUgUXFxfTtqzNmjVjz549ZGdnEx8fX2Bc4/Lly+YJXIgSJIlCiLtUsWJF078d\nHBxMzx0cHMjNzSU/Px9XV1d2795tqRCFKBHS9SREEZycnDh//vwdveZqy8PJyYn69evz+eefm47v\n2bOnxGMUorRJohCiCDVq1KBDhw40a9aM0aNHm3YCu3HHsBv/ffX58uXLiY6OpmXLljRt2pSYmBjz\nfgAhSoBMjxVCCFEkaVEIIYQokiQKIYQQRZJEIYQQokiSKIQQQhRJEoUQQogiSaIQQghRJEkUQggh\niiSJQgghRJH+HwtcgfrbfdW/AAAAAElFTkSuQmCC\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1OXawPHvIKalgLiwKCqGC4J7aNqKIpqmlhsub2pu\nVKa2WLnWsTLFzJN22lzINfdOhmamiFget1wS11CCwQXRBPcFgef945HBUUBUmGGY+3NdXMlvnhnu\n+SVz+6y3QSmlEEIIIXLhYO0AhBBCFG2SKIQQQuRJEoUQQog8SaIQQgiRJ0kUQggh8iSJQgghRJ4k\nUQi75+TkREJCgrXDEKLIkkQh7N7Fixfx9va2dhhm5s+fj4ODA+Hh4bm2uX79OgMGDMDFxQVPT08+\n//xzC0Yo7ImjtQMQQphLTU1l4sSJ1KtXD4PBkGu78ePHExcXR2JiIklJSbRs2RI/Pz/atm1rwWiF\nPZAehSgWvL29mTp1Kg0bNqRcuXL07NmT69evmx6fNWsWtWrVokKFCrzwwgskJSWZHnNwcODvv/8G\nYM2aNfj7++Ps7IyXlxdTp041tVu9ejWNGjXC1dWVJ598kn379hXKexk9ejRvvPEGFSpUyLPd/Pnz\nef/993FxccHX15fQ0FDmzp1bKDEJ+yaJQhQLBoOB5cuX8+uvvxIfH09MTIzpQzMqKooxY8awfPly\nkpKSqF69Oj179szxdQYOHMjMmTO5cOECBw4coFWrVgDs2bOHgQMHMmvWLFJSUnjllVfo1KkTaWlp\nOb5OgwYNcHV1zfFr6NChub6PHTt2sHv3bl599dU8329qaipJSUk0bNjQ7GceOHAgz+cJcT9k6EkU\nG8OHD8fDwwOAjh078ueffwLw/fffM3DgQBo1agTApEmTcHV1JTExkWrVqpm9xkMPPcSBAweoX78+\nLi4uNG7cGICZM2fyyiuv0LRpUwD69u3LxIkT2bZtG88888wdscTExNxz/BkZGbz++ut89dVXeQ45\nAVy6dAkAFxcX0zVnZ2cuXrx4zz9XiLuRHoUoNrKSBMDDDz/M5cuXAUy9iCxlypShQoUKnDhx4o7X\n+OGHH1izZg3e3t4EBgaybds2AIxGI1OnTjXrGRw/ftxsCOtBff311zRo0IBmzZqZruV2ZmfZsmUB\nuHDhguna+fPncXJyKrB4hMgiiUIUe5UrVzZb/nr58mXOnj1LlSpV7mgbEBDAypUrOXPmDC+++CIh\nISEAVKtWjbFjx5Kammr6unTpEj169MjxZ/r7++Pk5JTj15AhQ3J8TlRUFD/++COenp54enqyZcsW\nRowYwfDhw+9o6+rqiqenp6nXBLB3717q1at3L7dGiHyRoSdRbGX9a7xXr1706tWL3r174+vry5gx\nY2jevPkdw043btxg2bJldOjQARcXF5ycnChRogQAgwcPpnPnzrRu3ZqmTZty5coVoqOjefbZZ03/\nur/V/cwVzJ071zQBr5SiS5cudO/enYEDB+bYvm/fvkyYMIGAgACSkpKYPXs28+bNu+efK8TdSI9C\nFEsGg8E0zh8UFMTHH39M165dqVy5MvHx8SxZssSsbZaFCxdSo0YNXFxcmDlzJt9//z0Ajz32GLNm\nzWLo0KGUL1+eWrVqMX/+/AKN2cXFBTc3N9zc3HB3d+ehhx7C2dnZNJz0/fffm/UYPvzwQ3x8fKhe\nvTotW7Zk5MiRtGnTpkBjEgLAUFiFiwYMGMDPP/+Mm5ubaRlhSkoKPXr0wGg04u3tzbJlyyhXrhyg\nJxi/++47SpQowRdffCF/4YUQoogotB5F//79Wbt2rdm1sLAwgoODiY2NJSgoiLCwMAAOHjzI0qVL\nOXjwIGvXrmXIkCFkZmYWVmhCCCHuQaEliqeffhpXV1ezaxEREfTr1w+Afv36sXLlSgB++uknevXq\nRcmSJfH29qZmzZrs2LGjsEITQghxDyw6R5GcnIy7uzsA7u7uJCcnA3Dy5Em8vLxM7by8vHJcuiiE\nEMLyrDaZfetkY26PCyGEsD6LLo91d3fn1KlTeHh4kJSUhJubGwBVqlTh2LFjpnbHjx/PcY17zZo1\niYuLs1i8QghRHPj4+HD06NH7fr5FexSdOnUyrfOeN28eL774oun6kiVLSEtLIz4+niNHjpjtTs0S\nFxeHUkq+lOJf//qX1WMoKl9yL+Re2PO9WLhQ0aaN/nNGhqJHCyOTJ5u3edB/YBdaj6JXr15s2rSJ\nf/75h6pVq/LRRx8xatQoQkJCCA8PNy2PBfDz8yMkJAQ/Pz8cHR35+uuvZehJCCHyYeZMyNq87+AA\nYYuqERAAzz8P/v4F8zMKLVEsXrw4x+uRkZE5Xh8zZgxjxowprHCEEKJ4uXqVQwkPExsLnTplX/b2\nhi+/hII8H1J2ZtuowMBAa4dQZMi9yCb3Iltxuxd790LDhvBcW8WpD2dA7dos+PI8/ftDyZLmbXv2\nhObNC+5nF9rO7MJgMBiwoXCFEOKBKaV7CB99BN+ONhIwYxBn486z4aU5fPqzP9u3w6OP5v0aD/rZ\nWSwOBSxfvjypqanWDqNYcHV1JSUlxdphCGH3zpyBqCiYOxf+OaM4MHwmbpPGwYgRlO7zDofed6R1\n67sniYJQLHoU0tMoOHIvhbCuqCh4+22Ij4dnn4W2bWFwu+M8NLCP7lrcxwz1g/5eS6IQZuReCmE9\nO3dCu3YQHq7/e/vcw/2SoSchhCgGjhyBjh1h9mzzVUxFgax6EkKIQvLmm3BLEcJcJSXpIaaPP1K8\nUGK1nsEuQqRHIYQQhWDrVpg+Ha5ehRkzcm934QK0bw9vdTEyaNkgOH8ennoKbtbqKQqkRyGEEIXg\ngw9g3DhYsQJuVri9Q1oadO2ieMdpBkPnBUBQEGzZUqSSBEiPwm6lp6fj6Cj/+4UoDL/9BnFxsGaN\n/vMvv8DNo+1MlIK3+vzDlL29aOh9HkN0dMGduVHApEdhAZMnT8bLywtnZ2d8fX2JiopCKUVYWBg1\na9akYsWK9OjRw7QXJCEhAQcHB+bPn0/16tWpVKkSEydONL3ejh07CAgIwMXFBQ8PD0aMGGF6LCIi\nAn9/f1xdXWnZsiWHDx82Pebt7c2nn35KgwYNcHJykiqCQhQCpeD993WPomRJeOklWLjwznbvvw9/\n/u1M3fe7Ydi6pcgmCQCUDckt3KL8Ng4fPqyqVq2qkpKSlFJKGY1GFRcXp6ZNm6ZatGihTpw4odLS\n0tQrr7yievXqpZRSKj4+XhkMBhUaGqquXbum9u7dq0qVKqUOHz6slFKqefPmauHChUoppS5fvqy2\nbdumlFLqr7/+UmXKlFGRkZEqPT1dffrpp6pmzZrqxo0bSimlqlevrho3bqyOHz+url27lmO8Rfle\nCmELIiOVql1bqZu/diolRSlnZ6VSU7PbrFypVPXqSiUnWyamB/29tqlPhQdJFDrPP/jXvTpy5Ihy\nc3NTkZGRKi0tzXS9bt26asOGDabvT548qUqWLKkyMjJMieLEiROmx5s1a6aWLl2qlFLqmWeeUf/6\n17/UmTNnzH7WRx99pHr06GH6PjMzU1WpUkVt2rRJKaWUt7e3mjNnzl3uk039lRCiSMnMVKpFC6W+\n/978eufOSs2erf+clKSUu7tSmzdbLq4H/b22m6GngkoV96pmzZpMmzaN8ePH4+7uTq9evTh58iQJ\nCQl07twZV1dXXF1dTUesZ5WHBfDw8DD9+ZFHHuHSpUsAhIeHExsbS926dWnWrBk///wzAElJSVSr\nVs30HIPBQNWqVc3KylatWvXe34QQIl82b4azZ6FHD/Prg9sYqTq2D+qcPsRv8GB48knrxHg/7CZR\nWFOvXr34/fffMRqNGAwGRo4cSbVq1Vi7di2pqammrytXruDp6XnX16tZsyaLFi3izJkzjBw5km7d\nunHlyhUqV66M0Wg0tVNKcezYMbNqgVLnQ4jC8+WXMHQolChx84JSMGMGz70fwLYL/oydWIazZ/X8\nhS2RRFHIYmNjiYqK4vr165QqVYrSpUvj6OjIq6++ypgxY0hMTATgzJkzRERE5Os1Fy5cyJkzZwBw\ncXHBYDBQokQJunfvzs8//0xUVBQ3btxg6tSplC5dmieeeKLQ3p8QQjtxAtavh379bl4wGqFNGwgP\nxxAdzfGXRjH9K0cWLiy4ozksRdZHFrLr168zevRoDh06RMmSJXnyySeZOXMm7u7uKKVo06YNJ0+e\nxM3NjZ49e9Lp5t79vP7l/+uvvzJixAiuXLmCt7c3S5YsoVSpUtSpU4eFCxcybNgwTpw4QePGjVm1\napUsgxXCAmbOhF69wNkZOHUKmjbVp/u98w44OjJmjK4TUbu2tSO9d3IooDAj91KIe5eWBtWrw4YN\n4Od38+KpU3DLPKM1PejvtQw9CSHEA/rhB50gTEkCikySKAiSKIQQ4kFcvMhXX8Hrr1s7kMIjiUII\nIe7HzRVNaTVqc/HvM0XuaPCCJLOcQghxr4xGrvcZRNJf5+l9I5KRX1SiOK8ZkR6FEELk181exBX/\nAMJ2BvH1/23hp6P+9O5t7cAKVzHOgUIIUcDOnuX60h9pZYhm2WF/bjkIoViTRCGEsGtKQb4PLKhY\nkWlt1+Lnjd0kCZChJyGEHdu0CSpXhvnz83eWW2amrlb32muFH1tRIonCTjg4OPD3339bOwwhiozM\nTL1x+tVX4fPPoV07SEi4+aBSenNERobZc9atA1dXCAiweLhWJYmiiPL29iYqKsraYQhRbC1erM9c\n+uAD2LEDnn0WmjSBTg2N7HFrQ/xrk4lakWL2nG+/1YnF3s7WlERRRMlRGkIUnqtXYcwYmDpVf+iX\nLAmjRykSxszgh8QASrUL4pdxW/i/Nyvx/ff6OceP67KmvXpZN3ZrkERhAVklT52dnfH392flypWm\nx2bNmoWfn5/psT179tCnTx8SExPp2LEjTk5OfPbZZ0RHR99RS+LWXseOHTto0aIFrq6uVK5cmWHD\nhnHjxg2Lvk8hbMUXX+jhI1NNiNRUaNMG52XhlNwcjd/8UQwZ7khkJLz3nj7wb/ZsnSTKlrVq6Nbx\nYHWTLCu3cIv621i+fLmpFOrSpUtVmTJlVFJSklq2bJmqUqWK2rlzp1JKqaNHjyqj0aiU0tXobq2A\nt3HjRuXl5WX2ure22bVrl9q+fbvKyMhQCQkJqm7dumratGmmtgaDQcXFxd011qJ+L4V4UKdPK1Wh\nglKxsbdcTE9Xas6c7PqltzhyRJctLVNGqZgYS0VZsB7099p+ehTjx+s+5u1f48fnv31ube+iW7du\npmp1ISEh1KpVix07dhAeHs7IkSN57LHHAPDx8TGrUHcvmjRpQrNmzXBwcKB69eqEhoayadOm+3ot\nIYqbXbvg00+ha1do0ABefhlq1bqlQYkS+mIO26tr1tRDTh98APXrWyriosW+EkVOtU3zShT5bXsX\n8+fPp3Hjxqayp/v37+eff/7h2LFj+Pj43OcbMhcbG0uHDh3w9PTExcWFsWPHcvbs2QJ5bSFsWXg4\ndOgAJ0/qRPH77zBlyr29RrVqegjKXtlPorASo9FIaGgoX331FSkpKaSmplKvXj2UUlStWpWjR4/m\n+LzbCxeVKVOGK1eumL7PyMgwVbkDeO211/Dz8+Po0aOcP3+eTz75hMzMzMJ5U0LYiM8/h48/1j2C\nadOg95NGao4JwXA6+e5PFiaSKArZ5cuXMRgMVKxYkczMTObMmcP+/fsxGAwMGjSIzz77jN27d6OU\n4ujRo6bSqO7u7sTFxZlep3bt2ly7do01a9Zw48YNJkyYwPXr102PX7p0CScnJx555BEOHz7MN998\nY/H3KkRRkTUA8O23OknUqqnPaCIgQK+BrVDB2iHaFEkUhczPz48RI0bQokULPDw82L9/P0899RSg\n5y7Gjh1L7969cXZ2pkuXLqSmpgIwevRoJkyYgKurK//+979xcXHh66+/ZtCgQXh5eVG2bFmzVVCf\nffYZixYtwtnZmdDQUHr27GnWK8mrtKoQxc3MmbBihU4S1VR27Wqio2HUqBznIkTurFIKddKkSSxc\nuBAHBwfq16/PnDlzuHz5Mj169MBoNOLt7c2yZcsoV66cebBSCrXQyb0Utu6vv+Cpp/RchK97KtSt\nC2++aapdbY8e9Pfa4okiISGBVq1acejQIUqVKkWPHj1o3749Bw4coGLFirz33ntMnjyZ1NRUwsLC\nzIOVRFHo5F4KW3bjBjzxBPTvD0OG3Lx49qzdDzXZXM1sZ2dnSpYsyZUrV0hPT+fKlStUrlyZiIgI\n+vXrB0C/fv3MNqUJIcTtrl3TG+ZGjtQrmgA+/BAqVbrt0D47TxIFweL9sPLlyzNixAiqVavGww8/\nTNu2bQkODiY5ORl3d3dAT+QmJ8uqBCFE7mbOhIcf1gmjXj144ZlUftnmyp9/2t9ZTIXN4okiLi6O\nadOmkZCQgIuLC927d2fhwoVmbQwGQ66Tr+Nv2csQGBhIYGBgIUYrhLC29HS9H+7Wj4QrVyAsDH7+\nGRo3UnxSbSaGf73Pnlm78PComvuL2Yno6Giio6ML7PUsPkexdOlS1q9fz+zZswFYsGAB27ZtIyoq\nio0bN+Lh4UFSUhItW7bk8OHD5sHKHEWhk3spiprQUJ0Y5s8Hh5uD5VOnwpYt8MO/jTBoEJw/D3Pm\ngL+/dYMtomxujsLX15dt27Zx9epVlFJERkbi5+dHx44dmTdvHgDz5s3jxRdftHRoQogi6Lff9DHg\no0bp7y9dgimfKr7wv7kvIihIZw1JEoXG4kNPDRs2pG/fvgQEBODg4ECTJk0IDQ3l4sWLhISEEB4e\nbloem1+urq6yT6CAuLq6WjsEIUxSU+HECfj7b3jmGahSRR8R3u6pi1SJ+UXvi5AEUeisso/ifsmw\niBD2Zf16mDBBlyw1GvUqp4sXYft28PW1dnS240E/O+1z94kQwibs2AHNmuk/V68Oa9bopCFJwrLk\nCA8hRJG1Y7uia9piSEsD9BHhw4ZZOSg7JIlCCGEVGzdCfHzuj6sEI2//2obGmz6Hf/6xXGDiDpIo\nhBBW8dZbulbQHUPnSp/0mvlYAL8/FMRDf2yBypWtEaK4SeYohBAWl5wMCQng7Q1Ll0LPnjcfuHgR\nunSB8+fZ8H40O6L8MZS0YqACkB6FEMIKNmyAwED4z3/g3Xf13ggAypaFgQNhyxYiT/qbJrKFdUmi\nEEJYXGQkBAfD00/r/RETJ958wGDQ3QtHR7MVT8K6ZB+FEOKBZQ0j5YdSugZ1ZCTUqaM31DVsCNu2\nQc2auk1GBpQrB4mJIHtAH5zNHeEhhChe4uOhRg349NP8tf/rL/DKMFJ75ItgNFKlCrz3nh5xyqru\ne+iQnr+WJFE0SKIQQjyQqCh93NJ33+k61Xn+w1UpTo6fwbrUAAzNm+szOYARI8DNDXr31qfFyrBT\n0SKJQgjxQDZs0NMKmzbBf/+rewdXr0Jm5m0Njbp2tdev4fz+UbRZ7eoSJWDhQj2pHRqqh6EkURQd\nkiiEEPdNqewehbu7PqNv+3YoX17ngIcegueeg+spl+Gpp8gIDKJ5xhaavnznQX6lSulEc/iwPjFc\nEkXRIYlCCHHfDh6ERx7RcxSgE8Rvv+keRUYGXLgATk4wYFgZMmP2sy1wFN41HalUKefXK1NGFyMK\nDYVGjSz3PkTeZNWTEOK+ffEF7NsHs2bl3ubqVWjVSvc6HB3195MnWy5GIafHCiGsKGt+wsyZM9za\nZXj4YYiIgBYtdH2JpUstG6N4cDL0JIS4L+npepipVaubF26e0YSfH8TGmrWtVEkfEV6vnq4pIWyL\n9CiEEPdl927w8tKT2BhvqV0dHQ21a9/RvnZtvTJK2B7pUQgh7suGDdCq5c1ehNSuLtakRyGEyJdr\n1/QS1qzy9Bs2wJuvXIP/Rkvt6mJOVj0JIe4qLU1Xl3Nygg8/1PMSFSvqc5pcXKwdnbgbWfUkhCh0\n336ra1YPHqx3Xl+/rjsQkiTsg/QohBB5Sk2FOrUVu96YT9W3upH5cBmWLwdnZ2jXztrRifx40M9O\nSRRCiDx9Emqk888D8atyAVas0GeEC5six4wLIQqHUpyZMINXZgdQtX+wXtEkScIuyRyFEOJO165B\nhw6c332ByKGbeHWCn7UjElYkPQoh7MypU7petdGYextVqjQrPIfRvtwW+oZJkrB3kiiEsDObN+uj\nvAMDdXW626Wnw2uvwYR9LxC92ZFHHrF4iKKIkaEnIezM9u0wbJiuSd2ypa4n8eij+rHTp7NLkv72\nm17ZJIT0KISwMzt2wOOPw+uvw4TBRhL82/Ny88O4u+vzmLy8dE0ISRIiiyyPFcKOpKeDqyscS1SU\nWzYTxo0jrss7xL0wAv+GjlSunH1Ehyg+ZGe2ECJH7dvD1KlQt272tYMHoambkXLdB+ryc5s24ePn\nh4/1whQ2QIaehCiGzpyBX36B5cvNr+/833WWnG4FwTf3RfjJiiZxd5IohCiGfvsN3Nzgp5/Mr2/b\nU4ofP4yBkSN1XVIh8kEShRDF0KZN8MYbeq9EYmL29e3bocnTZawXmLBJkiiEsGFK6a/bRUdDu4Yn\neb69IiJCX7t8GY4ehYYNLRqiKAaskijOnTtHt27dqFu3Ln5+fmzfvp2UlBSCg4OpXbs2bdq04dy5\nc9YITQibMn68/rrVP2cULWNn0OjlhvRptM80/LR7N9SvDw89ZOkoha2zSqJ44403aN++PYcOHSIm\nJgZfX1/CwsIIDg4mNjaWoKAgwsLCrBGaEDblxx91rYi0tJsXjEYyWwczpHQ4hk2baB7agG3b4Nw5\nPezUrJlVwxU2yuKJ4vz58/z+++8MGDAAAEdHR1xcXIiIiKBfv34A9OvXj5UrV1o6NCFsyqlTcOwY\n1KoFq1dl167eVjaYle/qFU1ly+qjOtasyd5oJ8S9sniiiI+Pp1KlSvTv358mTZowePBgLl++THJy\nMu7u7gC4u7uTnJxs6dCEsClRUfoIjldegTmz0nUm2LSJ9y+N5Nmg7BVNL7ygVz/t2CE9CnF/LL4z\ne+fOnbRo0YItW7bQtGlT3nzzTZycnPjyyy9JTU01tStfvjwpKSnmwcrObCFM+veHpk3h5Zf1sRt7\n90KZMuDtDWfPQsmSul1yMvj46LmJs2dl57U9srmd2V5eXnh5edG0aVMAunXrxqRJk/Dw8ODUqVN4\neHiQlJSEm5tbjs8ff8vMXWBgIIGBgRaIWoiiRSmIjITRo+GRR6BnT5g7V09Wt2iRnSQA3N31Sicn\nJ0kS9iI6Opro6OgCez2rnPX0zDPPMHv2bGrXrs348eO5cuUKABUqVGDkyJGEhYVx7ty5Oya0pUch\n7J5S8N13xPp3JrhHeRIS9If/7t3QpQt06gSenjqB3GrePH0ibGioVaIWVmaTNbP37t3LoEGDSEtL\nw8fHhzlz5pCRkUFISAiJiYl4e3uzbNkyypUrZx6sJAphz4xGfQb4hQvMa7+U347VIDw8++EmTeCv\nv2D9enjiCeuFKYoem0wU90sShbBLSsFMfdIr77wDI0bwYjdHevSAXr2ym339Nbz7LqSmyl4JYU4S\nhRDF2Y0b8PzzeiPE3Lng50d6OlSsCLGx+jynLJcv63mLF16wWrSiiJJEIYSNunwZYmL05HOe1q2D\nVq1Mh/ht3apLlf75Z+HHKIqHB/3slLOehLCSJUv0ad933TLUpo3ZSa/r1+vnCWEpkiiEsJLoaChf\nHj75JOfHT53S8w4tW+r61g0aQOfOMGcOtG5t0VCFnZNEIYQVKAUbN+pexfffQ+LvRmjbFnbtQild\nz7puXV1b6I039HzEvHnwf/8Hb7+tk4cQliKVS4SwgqNH9X9bNFfMe2Im5YLHwYfvQMOGjBsHf/yh\n60g4OWU/x80NGje2TrzCvkmiEMIKoqOhW1MjhjYDaZd6gZZlN/FlOz82fQMrVsDmzeZJQghrkkQh\nhBVs2pDOf3a0h+F9KTFiBF2/ciQkBC5dgt9/h0qVrB2hENlkeawQhSwzExxumQ1UCipXhi1R16hR\ntzSgj9fo3h0+/lgq0ImCJ8tjhSjCYmP12Uv792df++svvXPa27e06VqpUhARIUlCFE2SKIQoJOnp\n0K8fPFX9GO+8mW6qbR0drVctyUmuwlZIohCikHw6WRGSOoMV8U1wObqLNWv09Y0bddU5IWzFXRPF\nu+++y4ULF7hx4wZBQUFUrFiRBQsWWCI2IWzWgTVGnvwwu3b1y988zttv69rWWT0KIWzFXRPFunXr\ncHZ2ZvXq1Xh7exMXF8eUKVMsEZsQtkcpbnw5A89OAZTtHEypnbp2dbt28OijMHSorkJXvbq1AxUi\n/+66PDY9PR2A1atX061bN1xcXDDI4KoQOVOKIxEH+XezTcxa4ge3/KpMnaqP4ejb13rhCXE/7poo\nOnbsiK+vL6VLl+abb77h9OnTlC5d+m5PE8I+OTjwcYXptO5x52S1nx9MmACPP26d0IS4X/naR5GS\nkoKLiwslSpTg8uXLXLhwAU9PT0vEZ0b2UYiiLiND16j+80/w8rJ2NEJohb6PIi0tjQULFhASEkLX\nrl357rvvqFix4n3/QCGKBaW49O+ZcOKE2eWdO/W+CUkSoji569DTa6+9Rnp6Oq+//jpKKRYsWMBr\nr73G7NmzLRGfEEWP0cjxtgNJ+usCbg1bUb1K9kNr1+pDYIUoTu6aKP744w9iYmJM3wcFBdGgQYNC\nDUqIIulm7eqr74xjgeM77A8ZgecvjnwWlN3k11/ho4+sF6IQheGuicLR0ZGjR49Ss2ZNAOLi4nB0\nlLMEhZ3JzITnn+f04bP0dtrEjN/96GGAZs10YnjkEUhJ0Ud1PPWUtYMVomDd9RN/ypQptGrVikcf\nfRSlFAkJCcyZM8cSsQlhddOmwS+/wOXLDtROHsPG9BZE/u6Ij49+vHlzWLwYBg6EyEh4+mmQRYGi\nuLnrqqerV68ydepUoqKiKFeuHAEBAbz99ttWWSIrq56EJe3fD61a6dKjzs56o9yjj+qypFnWroUx\nY2DXLhg0CBo1gmHDrBezEDl50M/OuyaK7t274+zszEsvvYRSikWLFnH+/HmWL19+3z/0fkmiEPci\nI0P/t0RmiJ8aAAAZrklEQVSJe3yiUmAw0K4dtGsHw4fn3jQzE+rU0WVKu3fXx3PUqnW/EQtROAo9\nUfj5+XHw4MG7XrMESRTiXkyZonsDP/1k/uF9/DgMGQLPPw+hobdtjDMaYdAgtgePo8/sZ9m/Xx8J\nnpfPP4eFCyE1FeLi5FRYUfQU+j6KJk2asHXrVtP327Zt47HHHrvvHyiEpaxeDQEBenJ53Tp9bdUq\nfa1+ffjyS3j5ZbhyBd2LmDEDAgLIaNWa0HlPMmXK3ZME6Nc4fBiee06ShCie7tqj8PX1JTY2lqpV\nq2IwGEhMTKROnTo4OjpiMBjMls4WNulRiPy6eFFvfEtO1vMHPXroBBETA4sWwZNPwuXL8OqrcPoP\nI0vLDsSJC5SYP5eZm/1YtEgfB57fD/7PP9cJqWnTwn1fQtyPQh96SkhIyPMFvL297/uH3ytJFCK/\nVq3SK5Y2bNDfG43w7bfw7rtQvnx2O5Wp+KdGU76/0Z33U0dQ3s2R8+chKgqaNLFO7EIUtEJPFEWJ\nJAqRX8OG6WM0Ro7MR+O0NHjoITIyICFBD0XVr1/YEQphOZIohMhBnTqwZAk0bmztSISwvkKfzBbC\n1hiNegVSw4Y5PHDtmlViEsKWSaIQNiE2Vu9ZyI/166F1a3DI+tt9y4omtm8vtBiFKK4kUQib0LIl\n/Pxz/tquWwdt2tz8xmiE4GAID4dNm+DZZwstRiGKK0kUosg7eVJ/5ecwgIwMvdIpuPUtvYjgYNii\na1cLIe6dHAMrirydO/V8w6pVeoohr2PGdu3S+yeqVAESE3UvQhKEEA9EehSiyNu5Ezp00Mkia4d1\nbtavvznsZDDAJ59IkhCiAFgtUWRkZNC4cWM6duwI6LrcwcHB1K5dmzZt2nDu3DlrhSaKmJ079QhS\nSAgsW5Z32zVr9EiTEKLgWC1RTJ8+HT8/Pww3z0gICwsjODiY2NhYgoKCCAsLs1ZooghRKjtRdOmi\nz2+6evW2BjNmwJEjHD6sD+ULCsr15YQQ98EqieL48eOsWbOGQYMGmTaBRERE0K9fPwD69evHypUr\nrRGaKGKOHdPLXKtUAQ8PvYHu119vPnjriialmD1bH9CXn4P8hBD5Z5VE8dZbbzFlyhQcHLJ/fHJy\nMu7u7gC4u7uTnJxsjdBEEZPVm8g6nC8kBJYtvXNF0/XqtZk/XxcPEkIULIuvelq9ejVubm40btyY\n6OjoHNsYDAbTkJSwb1mJIkuXzgrv4S+QeeQUDresaPpxBTRoADdLuwshCpDFE8WWLVuIiIhgzZo1\nXLt2jQsXLtCnTx/c3d05deoUHh4eJCUl4ebmluPzx48fb/pzYGAggYGBlglcWMXOneYV5tw9DKxq\n9D5X3mlMV7/sv74zZ+ojw4UQEB0dnes/xO+HVQ8F3LRpE5999hmrVq3ivffeo0KFCowcOZKwsDDO\nnTt3x4S2HApoX5SCChXgwAG9NyLL6tV6iOmHH3RdidhYePppPZ8h8xNC3OlBPzutvuEua4hp1KhR\nhISEEB4ejre3N8vutg5SFHvxfyseeRg8Pc2HITt00DWqO3eG//xHb7Lr10+ShBCFRY4ZF0WT0Uhy\nh4HMKvMm47Z1yLHJ3r3QsSOcPQt79kDt2haOUQgbIceMi+LllpNed5UPxtDuuVybNmwIW7fCZ59J\nkhCiMEmPQhQdRiMMHAgXLsDcubQa6sd778FzuecKIUQ+SIU7UTwopc8Sb9cORowg08ERV1c4ehQq\nVbJ2cELYNpufzBbF08WL4OR0D08wGCAyEhz1X8kflusVT5IkhLA+maMQBe7kSb2c9ejRe3yioyPp\n6TBmDIwYAYsWFUp4Qoh7JD0KUeAmT4br12Hjxlx2ShuN4OoKzs6mS2lpOrEMG6Y7F7t2SW9CiKJC\nehSiQCUlwYIF8MEHumaQmVtrV2/dyvXr0KcP+PjoYaqOHfUGul9/lSQhRFEiPQpRoKZM0R/+vXpB\nYKDODQYD5iuabp7R9Marei5j7VqoXl02zAlRVEmiEAUmORnmzoX9+/UchVLw99/gEzkDxo2Dd97R\nkw+OjoSH63yxfbvZCJQQogiSRCEKzJQp8H//B5Ur6+8DAyE6GnzOnTOrXf3HHzB6NPz2myQJIWyB\n7KMQBeL0afD1hZgY8PLS12bOhM2bYf787HYpKbr40LRp+qwmIUThkyM8RJGwZImejM5KEpDdo7j1\n7+dnn0HbtpIkhLAlkihEgfhhhWJE2Rn6dL6batWCGzcgIUF/n5KiFz2NHWudGIUQ90cShXhgZ3Ya\n+XBLMPW2zYbSpU3XDQZ49tnsZbLTp+ueRPXqVgpUCHFfJFGI+3dzX0TZwMc45R+Ew/atULeuWZOs\n4afz5+Grr/QkthDCtkiiEHcIC4MVK/LRsEcPmD2bNxpuosS40aZzmm6V1aP4z3/g+ef15johhG2R\nVU/CzKVLULUqlCwJixdDUFAejWNiSPX0w7umIydOQNmydzZRCjw89JEe27dDnTqFFroQIhey6kkU\nqBUrdP3p5cv17uo//8yjcYMGRKxxpFWrnJME6HmKwEBo316ShBC2SjbcCTPffQdvvaWHjL75Rg8X\nbf5dUcNbgcOd/6744QcICcn7NadPh4cfLqSAhRCFToaehMnRo/DEE3D8ePa5S/M/NuIzaRB+nw3A\ndUgvs/YXL0KVKpCYCOXKWSFgIUS+yNCTKDBz58JLL91MEjdXNPX9IoAbT7fi6S+6c/q0efs1a/Rp\nr5IkhCjeZOhJAJCRoRPFL7+gT3odNAjOnYPoaAL9/enyAbRurWtMXL+ul7rOnKn/K4Qo3iRRCEBX\nIfX0hPr1gQ6vQ6tW8O67piWvH34I167pc5ouXtSH//3vf1C7tnXjFkIUPpmjEAD07AnPPANDhgCZ\nmTlOXCsF69dD06a6QJ0QwjY86GenJAo7d/WqPqhv+nQ4ckQSgBDFkUxmCzMpKRAXd/d2SsGvM408\n5fsPe/fqGtWSJIQQOZFEUcwMHar3PqSn59FIKbYPmEHT1wL4buD/WLFCDuoTQuROEkUxEhMDUVFQ\nsSLMm5dLI6MR2rSh3A+z2TU1moYfvGDRGIUQtkfmKIqRF16Ali2heXPo3l3POdxy6jfMmgVjxnBh\n0Ns8+s27HD/laP64EKJYkjkKAegD93bvhldf1YkiIAC+/vq2RtevQ3Q037mPpmNnSRJCiPyRHkUx\n0bq1PvV78GD9/YEDeivEkSPg7GzetlkzmDAB2rSxfJxCCMuTHoUgKkpPPbz8cvY1f3947jmYOtW8\n7ZEjum2rVhYNUQhhwyRR2LgrV/Rprx99pGtIZJ3RxG+/8eGH+oiNbduy2y9ZonseOdQYEkKIHEmi\nsGFKwYAB0KiR3lmdtaKJ2bOhYkW8vWH+fD3JvW+fbr9oka4zIYQQ+SWJwoZNngx//w0zvlUYZs7Q\nM9itWsHWreDnB+iCQdOnQ7t28N//6vOamje3cuBCCJsiAxA26uefdR3qHTugdGhfOHwYoqP15MRt\nevaE8+f1ktlRo3TVOSGEyC+Lr3o6duwYffv25fTp0xgMBkJDQxk+fDgpKSn06NEDo9GIt7c3y5Yt\no9xthQ6K+6qnK1dg1Sr9gZ7DmXwmKSm6rOhPP+lCQ/z1F/j43HXiYelSXea0cuWCjVsIUbTZ3KGA\np06d4tSpUzRq1IhLly7x2GOPsXLlSubMmUPFihV57733mDx5MqmpqYSFhZkHW4wThVLQp4+uBxEQ\nAAsXQqVKObddsUKXLF2zxrIxCiFsk80tj/Xw8KBRo0YAlC1blrp163LixAkiIiLo168fAP369WPl\nypWWDs2qpk+HgwchIQEeewyaNIHNm29rpBRkZLBhAwQFWSNKIYQ9supkdkJCAnv27OHxxx8nOTkZ\nd3d3ANzd3UlOTrZmaBa1cSOEhenJZicnmDhRr3Dt0kXvtgayVzSFhxMZqTfYCSGEJVhtMvvSpUt0\n7dqV6dOn4+TkZPaYwWDAkMuM6/jx401/DgwMJDAwsBCjLHyJidC7tx5q8vbOvt6+Pbz2GiyYr2jy\nx0wYNw7efpvE1gM4N/ZmJTohhMhBdHQ00dHRBfZ6VjnC48aNG3To0IF27drx5ptvAuDr60t0dDQe\nHh4kJSXRsmVLDh8+bB5sMZyjCAmBevXggw/ufOxIpJGkDoN4uv45DHPngr8/c+bA2rV6YloIIfLD\n5uYolFIMHDgQPz8/U5IA6NSpE/Nuno09b948XnzxRUuHZnGHDsGmTfD22zk/Xit8FHvKtWLzp1tN\ny15l2EkIYWkW71Fs3ryZZ555hgYNGpiGlyZNmkSzZs0ICQkhMTHRbpbHvvSS3hc3ZkwuDZTik4kG\nkpLgyy/1XHblyvC//8Gjj1o0VCGEDbO55bEPojgliiNHoEULvbP69tNdb3X0KDz1FBw/rrdLdOgA\n8fGWi1MIYfse9LNTdmZbyaRJ8PrrN5OE0QglSoCX1x3tataEKlX0ENX+/TLsJISwPDnryQoSEvSu\n6jeG3zzpNSAAtmzJtX3PnnryWvZPCCGsQYaerGDwYKhZ0sjII4P0IUxz5uR4RlMWo1FvwktPh9hY\ncHOzYLBCCJtnc6ue7FlGhq4d4bYqnHeXBejuwZYteSYJgOrVoVYt/V9JEkIIS5M5Cgu5eFHXgbh6\nFSI+cMTh2ei7JohbDR8OSUmFF58QQuRGhp4s4MABnSRatNDLXEuWtHZEQgh7IkNPRci1a3qvQ5ar\nV2HsWAgMhKFD4dtvJUkIIWyPDD0VkIwMvQnu6lVo0ADq11OUWzYTJ18vYmKex9PT2hEKIcT9kURR\nQHbsgIoV9RLW2PVGvMYPpFz5C7jMmAuSJIQQNkyGnu7RhAmwaNGd11etgg7PKyr9dwZPvhFA9QGt\ncTmwxVS7WgghbJVMZt+DK1f0LulHH4Vdu8wfq18fImsMwv1UzF33RQghhCXJER4WtGIFNGumK9Ht\n25ddEyIhAU6fhoo/jgXvqnetXS2EELZEhp7uwaxZ8Morurb1zRPRAVi9WhcaKlGzhiQJIUSxI4ki\nnw4d0ie+duwI/foqli68QXq6fmzVKn2qqxBCFEeSKPJp9mzo3x9KnjRSZ2gw75T+knXr9I7rrVt1\nOWshhCiOJFHkw/Xrunb122VunvTaujWl3x3G3Lmwbp3ecX1b2W8hhCg2ZEA9H9bNMvJLxkAqRVyA\n6Gjw9yckFUaO1UlEhp2EEMWZ9CjuQikwTPwEx7atzU56dXXVw00REXreQgghiivpUeRBKXjnHdjk\nOYP/zTXccbdCQyExEby9rRKeEEJYhN32KNLToXdvvZIpJ0rBqFGwcSOsW2+gVKk727RuDf/7X+HG\nKYQQ1ma3iWLTJj0RHRQE8fE3LxqNcPQoSulTX3/9Fdavh/Llc3+dEiUsEq4QQliN3Q49LV0KI0dC\nmTLQqqVi1yszKf/vcRx+dRpDt9bkn38gMhIqVLB2pEIIYV12edbTjRtQuTLs3AnVMZIYPJDUxAtM\nbziH6DP+jBund19L7QghRHFgt4WLtm6F1NT7e+6GDVCzJlSPmgMBAVQb0Jr9M7bw9Kv+/PUXDBgg\nSUIIIbLYZI9CKfDx0Tul33//3l+nf39o2BDe9FoBdevKSa9CiGLtQXsUNpkoDh2CJk2gRg1dj9pg\nyP9rXL8Onp4QEwNeXoUXqxBCFBV2OfS0ejW8/LKuD7F/f95t//1vmDs3+/v163UHQpKEEELkj80m\nio4doUcPWLw493ZKwbTPFYfenMHiTovJzNSrnXr0sFysQghh62xu6OnsWYW3NyQnw+HD0LUrxMXl\nPPz090YjJ9oNpLnfBQYwh6uP+rNhgz4y3MPD4uELIYRV2N3Q06+/wrPPwsMPQ6NGenXSH3/c1kgp\nmDEDz04BJPm1puSOLcze6s/DD8Pjj0uSEEKIe2FzG+5Wr84+rdVggF699PBTs2a3NBo2DHbsYHSL\naJq85A+OUMoRFiyAjAyrhC2EEDbL5oaeypdX7N2bPRl96JA+cykx8ZbjNE6cILOSO5U8HYmJgSpV\nrBayEEJYnd0NPVWrZr5iqW5dqFQJNm++pVGVKvy53xE3N0kSQgjxoGwuUZgVCVIKrl2jZ0/zJbCg\nd18HBVkyMiGEKJ5sN1EYjRAcDFOmEBoKa9bA3r3Z7SIjJVEIIURBKFKJYu3atfj6+lKrVi0mT56c\nY5umAXpFU1btakaPpnx5+PBDGD5cdzKuX9fF6AIDLRu/EEIUR0UmUWRkZDB06FDWrl3LwYMHWbx4\nMYcOHbqjnUPbYAgP17WrR40CR71wa/BgOH8eli+Hbdv03IWrq4XfhAVFR0dbO4QiQ+5FNrkX2eRe\nFJwikyh27NhBzZo18fb2pmTJkvTs2ZOffvrpzoatzWtXZylRAr74At59F1atKv7DTvJLkE3uRTa5\nF9nkXhScIpMoTpw4QdWqVU3fe3l5ceLEiTsb3tKLuN0zz0CLFvD558U/UQghhKUUmQ13hns5AjYP\nU6ZAbCw8+WSBvJwQQghVRGzdulW1bdvW9P3EiRNVWFiYWRsfHx8FyJd8yZd8ydc9fPn4+DzQ53OR\n2Zmdnp5OnTp12LBhA5UrV6ZZs2YsXryYunXrWjs0IYSwa0Vm6MnR0ZEvv/yStm3bkpGRwcCBAyVJ\nCCFEEVBkehRCCCGKpiKz6ulu8rMZr7g6duwYLVu2xN/fn3r16vHFF18AkJKSQnBwMLVr16ZNmzac\nO3fOypFaTkZGBo0bN6Zjx46A/d6Lc+fO0a1bN+rWrYufnx/bt2+323sxadIk/P39qV+/Pr179+b6\n9et2cy8GDBiAu7s79evXN13L671PmjSJWrVq4evry7p16+76+jaRKPK7Ga+4KlmyJJ9//jkHDhxg\n27ZtfPXVVxw6dIiwsDCCg4OJjY0lKCiIsLAwa4dqMdOnT8fPz8+0Ws5e78Ubb7xB+/btOXToEDEx\nMfj6+trlvUhISGDWrFns3r2bffv2kZGRwZIlS+zmXvTv35+1a9eaXcvtvR88eJClS5dy8OBB1q5d\ny5AhQ8jMzMz7BzzQVLiFbNmyxWxF1KRJk9SkSZOsGJF1vfDCC2r9+vWqTp066tSpU0oppZKSklSd\nOnWsHJllHDt2TAUFBamoqCjVoUMHpZSyy3tx7tw5VaNGjTuu2+O9OHv2rKpdu7ZKSUlRN27cUB06\ndFDr1q2zq3sRHx+v6tWrZ/o+t/d++4rStm3bqq1bt+b52jbRo8j3Zjw7kJCQwJ49e3j88cdJTk7G\n3d0dAHd3d5KTk60cnWW89dZbTJkyBQeH7L++9ngv4uPjqVSpEv3796dJkyYMHjyYy5cv2+W9KF++\nPCNGjKBatWpUrlyZcuXKERwcbJf3Iktu7/3kyZN43VKrIT+fpzaRKApqM56tu3TpEl27dmX69Ok4\nOTmZPWYwGOziPq1evRo3NzcaN26cayEWe7kX6enp7N69myFDhrB7927KlClzx9CKvdyLuLg4pk2b\nRkJCAidPnuTSpUssXLjQrI293Iuc3O293+2+2ESiqFKlCseOHTN9f+zYMbOMaA9u3LhB165d6dOn\nDy+++CKg/5Vw6tQpAJKSknBzc7NmiBaxZcsWIiIiqFGjBr169SIqKoo+ffrY5b3w8vLCy8uLpk2b\nAtCtWzd2796Nh4eH3d2LnTt38sQTT1ChQgUcHR3p0qULW7dutct7kSW334nbP0+PHz9OlbtUeLOJ\nRBEQEMCRI0dISEggLS2NpUuX0qlTJ2uHZTFKKQYOHIifnx9vvvmm6XqnTp2YN28eAPPmzTMlkOJs\n4sSJHDt2jPj4eJYsWUKrVq1YsGCBXd4LDw8PqlatSmxsLACRkZH4+/vTsWNHu7sXvr6+bNu2jatX\nr6KUIjIyEj8/P7u8F1ly+53o1KkTS5YsIS0tjfj4eI4cOUKzZs3yfrGCnlApLGvWrFG1a9dWPj4+\nauLEidYOx6J+//13ZTAYVMOGDVWjRo1Uo0aN1C+//KLOnj2rgoKCVK1atVRwcLBKTU21dqgWFR0d\nrTp27KiUUnZ7L/78808VEBCgGjRooDp37qzOnTtnt/di8uTJys/PT9WrV0/17dtXpaWl2c296Nmz\np/L09FQlS5ZUXl5e6rvvvsvzvX/yySfKx8dH1alTR61du/aury8b7oQQQuTJJoaehBBCWI8kCiGE\nEHmSRCGEECJPkiiEEELkSRKFEEKIPEmiEEIIkSdJFELk4fz583zzzTeA3t3avXt3K0ckhOXJPgoh\n8pCQkEDHjh3Zt2+ftUMRwmqKTClUIYqiUaNGERcXR+PGjalVqxaHDh1i3759zJ07l5UrV3LlyhWO\nHDnCiBEjuHbtGosWLaJUqVKsWbMGV1dX4uLiGDp0KGfOnOGRRx5h1qxZ1KlTx9pvS4h7IkNPQuRh\n8uTJ+Pj4sGfPHqZMmWL22IEDB/jxxx/5448/GDt2LM7OzuzevZsWLVowf/58AEJDQ/nPf/7Dzp07\nmTJlCkOGDLHG2xDigUiPQog83Doye/sobcuWLSlTpgxlypShXLlyprKs9evXJyYmhsuXL7Nlyxaz\neY20tDTLBC5EAZJEIcR9KlWqlOnPDg4Opu8dHBxIT08nMzMTV1dX9uzZY60QhSgQMvQkRB6cnJy4\nePHiPT0nq+fh5OREjRo1WLFihel6TExMgccoRGGTRCFEHipUqMCTTz5J/fr1ee+990yVwG6vGHb7\nn7O+//777wkPD6dRo0bUq1ePiIgIy74BIQqALI8VQgiRJ+lRCCGEyJMkCiGEEHmSRCGEECJPkiiE\nEELkSRKFEEKIPEmiEEIIkSdJFEIIIfIkiUIIIUSe/h8qPUSWgG3w6gAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 4 + "prompt_number": 37 }, { "cell_type": "markdown", @@ -200,13 +200,13 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtcVHX+/1/DxRtyl4uAgILIzWuKqV1Iwvq2aeaFsk39\nlmXbPX+2abfNdktxdbfNLXfTpZa0tNq+uZSmpYTl/ZoKXlCEERUQuYNy//z++HBmzsycM3PmwswA\n7+fjwUPmnDPnfGaK8zrvu4oxxkAQBEEQMrg4egEEQRCEc0NCQRAEQRiFhIIgCIIwCgkFQRAEYRQS\nCoIgCMIoJBQEQRCEUUgoiG6Pp6cnioqKHL0MguiykFAQ3Z66ujpERkY6ehkAgIULFyI2Nhaurq7I\nzMw02P/ee+9h4MCB8Pb2xoIFC9Dc3KzZV1lZiQcffBD9+/dHZGQkNm3aZPRaxs5FEOZAQkEQdmTU\nqFFYu3YtxowZA5VKpbNvx44dWLlyJbKzs6FWq3Hx4kW89dZbmv3PPvss+vTpg2vXruGzzz7D008/\njdOnT0tex9S5CMIsGEF0ASIiItjq1avZiBEjmLe3N3vooYdYY2OjZv+6detYdHQ08/PzY9OmTWNX\nr17V7FOpVKygoIAxxtjWrVtZfHw88/T0ZKGhoWz16tWa47799ls2cuRI5uPjwyZOnMhOnjzZaZ/n\ntttuY5mZmTrb5syZw15//XXN6+zsbBYcHMwYY6y+vp716tWLnT9/XrN/3rx5bOnSpZLnN3YugjAX\nsiiILoFKpcJXX32FHTt2oLCwECdPnsS///1vAEB2djZee+01fPXVVygpKUFERAQefvhhyfMsWLAA\n69atQ21tLfLy8jB58mQAwPHjx7FgwQKsX78elZWVeOqppzBt2jRZd82IESPg6+sr+fPcc89Z9BlP\nnz6NkSNH6lyjrKwMVVVVyM/Ph5ubG6KjozX7R44ciby8PLPPRRDm4uboBRCEUl544QUEBwcDAKZO\nnYpff/0VAPDZZ59hwYIFGDVqFABgxYoV8PX1xaVLlxAeHq5zjl69eiEvLw/Dhw+Ht7c3Ro8eDQBY\nt24dnnrqKYwbNw4AMG/ePCxfvhwHDhzAHXfcYbCWkydP2vzz1dfXw9vbW/Pay8sLAI+x1NfXa14L\neHp6oq6uzuxz+fr62nrpRDeHLAqiyyCIBAD07dsXDQ0NAKCxIgQ8PDzg7++PK1euGJzj66+/xrZt\n2xAZGYnk5GQcOHAAAKBWq/GXv/xFxzK4fPkySkpKOvlTaenfvz9qa2s1r2tqagBwQdDfJ+z39PQ0\n+1wEYS4kFESXJyQkRCf9taGhARUVFQgNDTU4duzYsdiyZQvKy8sxffp0pKWlAQDCw8Px+uuvo6qq\nSvNTX1+Phx56SPKaCQkJ8PT0lPx55plnLPocCQkJGisJAE6cOIGgoCD4+voiJiYGra2tuHDhgs7+\nxMREs89FEOZCQkF0WVhHh/w5c+bgk08+wYkTJ9DU1ITXXnsNt956q4HbqaWlBZ999hlqamrg6uoK\nT09PuLq6AgCefPJJ/POf/8ShQ4fAGENDQwO2bt2K+vp6yWvn5eWhrq5O8mft2rWya25paUFjYyPa\n29vR3NyMxsZGzeeYN28eMjIycObMGVRVVeFPf/oTHnvsMQDcSpoxYwb+8Ic/4MaNG9izZw++/fZb\nzJ07V/I6xs5FEGbj4GA6QSgiMjKS7dq1S/N62bJlbO7cuZrX//znP1lUVBTz8/NjU6dOZVeuXNHs\nc3FxYQUFBay5uZnde++9zNfXl3l5ebGkpCS2d+9ezXHbt29n48aNYz4+PmzgwIEsLS2N1dXV2fRz\n3HnnnUylUjEXFxemUqmYSqViu3fv1uz/61//yoKCgpiXlxd7/PHHWXNzs2ZfZWUlmz59OvPw8GAR\nERFs06ZNmn1qtZr179+fFRcXKzoXQZiDirHOGVz0+OOPY+vWrQgMDMSpU6cA8IKhhx56CGq1GpGR\nkfjyyy/h4+MDgAcgP/74Y7i6umLNmjWYMmVKZyyLIAiCMJNOcz099thj2L59u8629PR0pKamIj8/\nHykpKUhPTwfAU/m++OILnD59Gtu3b8czzzyD9vb2zloaQRAEYQadJhS33367QeAsKysL8+fPBwDM\nnz8fW7ZsAQD897//xZw5c+Du7o7IyEhER0fj0KFDnbU0giAIwgzsGswuKytDUFAQACAoKAhlZWUA\ngKtXryIsLExzXFhYmGRqI0EQBGF/HJb1pFKpDHrd6O8nCIIgHI9dK7ODgoJQWlqK4OBglJSUIDAw\nEAAQGhqK4uJizXGXL1+WzIGPjo5GQUGB3dZLEATRHYiKitKpwTEXu1oU06ZN07RWzszMxPTp0zXb\nN2/ejObmZhQWFuL8+fNISkoyeH9BQQEYY/TDGN566y2Hr8FZfui76DnfRXg4A8DQ2qr8uygvZ/Dz\n025fvZph0aLOWV97O0NwMENhofHjnnqKYe1ay69z4gRDYqLMfrXaYJu1D9idZlHMmTMHu3fvxvXr\n1zFo0CD88Y9/xNKlS5GWloaMjAxNeiwAxMfHIy0tDfHx8XBzc8PatWvJ9UQQhA7NzUBpKeDhAdTV\nAR2Z9SZpaAD69dO+9vEBZHopWk15OdDUBIg6ykji7Q10dFWxiOvXgQEDZHbqFZragk4TCrmhKjt3\n7pTc/tprr+G1117rrOUQBNHFUauBsDCgpYXfZJUKxY0bXFwEfHyA6urOWePly/w+beo511qhKC8H\nQnxvAuhr+UnMgFp4dFGSk5MdvQSngb4LLc78XTAGzJgBtLVZ9v7CQmDwYMDLC9DrjyiJ8F1IWRSd\nJRRXrgAS4VUDjAnFmTPAZ58ZeTNjCNryET74IcY6tTEDEoouijPfEOwNfRdanPm7qKkBvvmGu00s\n4eJFYMgQ84XCnhbF1atASIjp44wJxbZtgGy7MLUamDIFQ3/OwMZHt/MT2YFuIRR+fn6adFv6se7H\nz8/P0f85iW5KRQX/9+pVy94vFgpzHqRv3OhaFsW5c/xHB8aAjz4Cxo4FUlLw5+n7wOITrF6vUrrF\n4KKqqiow1iktq3oclERAdBaCUJSUAB3zoszi4kV+nzx+XJlFIdDQoGtR+Pp2rkUhkbBpgLe3/BrO\nnePfVUUF4O/fsfHKFWDzZiAnB0hIQNnDwK0Btlq1abqFRUEQhPMjFgpLMDdGIaBvUQjv74x2cray\nKEJD9ayKsDDgp5+ABG5FGM166gRIKAiCsAuOcj3pB7Pd3PhrmVEjVnHlirIYhY+P9GeoqeHrTU6W\ncD+JIKEgCKJbUlEB9OplmUVRVcUtAD8//jRurkUhdj0BnRenuHpVuUUhdf1zZxkWBH2H2GHMqFCU\nlwMB5HoiCKK7UVEBxMZaJhQXL3K3k0plvutJ36IAuFBUVZm/DmM0NvJCQCVP+t7e3LIpLRVtVKsR\ntmAKnq/6IxIH1cgKBWPcotDEL+wACQVBEHbh+nUgMdEy11NhIXc7AZZlPdnDoigpAYKDARcFd1WV\nChg3Djh0CDoZTacCUvDZs/swZIyPrFDU1wPu7kBf+9TaASCh6LG0trY6eglED6OiAhg+3HKLQhAK\nS1xPUhaFrYVCaSBbYPx4IDfnOjBlCpCRAeTkYL3/UsTEu2HoUP6Zpf5M7R2fAEgo7MLKlSsRFhYG\nLy8vxMbGIjs7G4wxpKenIzo6GgMGDMBDDz2Eqg5buKioCC4uLvj0008RERGBgIAALF++XHO+Q4cO\nYezYsfD29kZwcDAWL16s2ZeVlYWEhAT4+vrirrvuwtmzZzX7IiMj8ec//xkjRoyAp6cnTREk7EpF\nBbcoSkvNzzgSC4Ulrid7WBRKi+0EkpKAPSe9gFmzgH37gIQEnDsHDBvGrYXgYKCoyPB99o5PACQU\nnc65c+fw4Ycf4siRI6itrcUPP/yAyMhIrFmzBllZWfj5559RUlICX19fPPvsszrv3bt3L/Lz87Fr\n1y788Y9/xLkOW/TFF1/EokWLUFNTg4sXLyItLQ0AkJ+fj0ceeQRr1qzB9evXcd9992Hq1Kk61sPm\nzZvx/fffo7q6Gi5KbGSCsBEVFfxG6umpzYBSihCjAKwvuAOcw6JISgL2H+2F9iefAtzc0NYGFBQA\nMTF8/7Bh0plPZFF0IiqVbX7MxdXVFU1NTcjLy0NLSwvCw8MxZMgQfPTRR3jnnXcQEhICd3d3vPXW\nW/jPf/6j85T/1ltvoXfv3hgxYgRGjhyJEydOAAB69eqF8+fP4/r16+jXrx/Gjx8PAPjiiy9w//33\nIyUlBa6urnj55Zdx8+ZN7Nu3r+M7UOGFF15AaGgoevfubf2XShBmIBSQDRxovvtJHKMw1/UkF8x2\ntFAEBvJ1nD/PX1+6xAVAsH5IKBwAY7b5MZfo6Gj87W9/w7JlyxAUFIQ5c+bg6tWrKCoqwoMPPghf\nX1/4+vpqWqwL42EBIDg4WPN7v379UN+R+J2RkYH8/HzExcUhKSkJW7duBQCUlJQgXNRiWKVSYdCg\nQTpjZQcNGmT+hyAIG2CpULS18Zuo0LrbkoI7h7ue1Gpg7lwDUygpqSOgDWjcTgJyQkGup27KnDlz\n8Msvv0CtVkOlUmHJkiUIDw/H9u3bUVVVpfm5ceMGBg4caPJ80dHR+Pzzz1FeXo4lS5Zg1qxZuHHj\nBkJCQqBWqzXHMcZQXFysMy2QWnQQjqCxkQdmPTz4zdSczKfLl/nTd58+/LW1BXeAHS0KcY+mhAQD\nxUpKAg4e5L8rFQqyKLoh+fn5yM7ORlNTE3r37o0+ffrAzc0Nv/vd7/Daa6/h0qVLAIDy8nJkZWUp\nOufGjRtRXl4OAPD29oZKpYKrqytmz56NrVu3Ijs7Gy0tLfjLX/6CPn36YOLEiZ32+QhCCYI1oVKZ\nb1GI4xMAv9c2NfG5FEqQsig6o9+TgUXR0elVyGjC0qW8eEKE2KI4e1ZXKGJjSSh6DE1NTXj11VcR\nEBCAgQMH4vr161ixYgVefPFFTJs2DVOmTIGXlxcmTJiAQ8L/MTD+5L9jxw4kJibC09MTixYtwubN\nm9G7d28MGzYMGzduxPPPP4+AgABs3boV3377LdzcukXvR6ILIy4QM1coxPEJQFt0V1en7P32CGYz\npte+o7SUF0qkpGgymqQYMwbIzeXCp29RhIbyz6jvZrt+3f6uJ7qDdDLDhw/HQcG21GPRokVYtGiR\nwfbIyEi06U13+emnnzS/b9iwQfZ606dP18wi16ewsFDJkgnC5lRUaJ+CQ0KAn39W/l5xaqyA4H5S\n0hXfHumx1dXcWPD07NgQHAycPMn/NYKHB89yOnHCUChUKr7v3DmuOQLl5WRREATRDRG3zDbXorh8\nmTdPFWNO5pOcRWHLFh6SPZ5MiIRAUhKwaxdfj36uiVScglxPBEF0S/SFwpxgdk2N4SA3czKfOj2Y\nXVdndmqsmPHjgQ0bgKFDDdt/kFAQBNFj0BeK0lLl6ea1tdJCoSTzqaWFp9fqlw0JMQ6rmhMIGU0x\nMag4W25WVbaYpCQ+J1vsdhLQF4q2Ni5w9h5ESUJBEESnIxaKfv14qqtS14+URaHU9SS4nfRzQ1xd\ngf79zavH0EGc0bRzJy7WBVhsUcTH81hFbKzhvmHDeDaUQGUlt4ZcXS27lqWQUBAE0enojPWEee4n\na1xPUqmxAha5n/RmVwsZTeb2eRLj6sqD1XFxhvtiYoALF/jnABzjdgJIKAiCsAP6QhESojygXVPD\nhUGMUteTVCBbwCKhqKgAvvnGoC7CmhgFAGzaBMycabi9f39g2jRg1Sr+2hGpsQClxxIEYQf0B+2Y\nk/kkFaNQ6nqSSo0VkBKKggKeiitbxjRgALB9u8Fma4XCWILUn//M6y0ef9wxqbEAWRQEQdgBKYtC\nieupqYkHnIX2HQLmuJ7MsSjuvZd7k8zFGteTKcLDgWeeAZYsIdcT0cm4uLjg4sWLjl4G0UMRF9wB\nyi0KIT6h/4Sv1PVkzKLQb+PR0sKrwE+fBo9FfP01TzMyQWsrcO2a4rIJi1iyBPjlFyAryzGuJxIK\nJyUyMhLZ2dmOXgZBWE1bG3/69/HRbjNXKPQxN+tJCn2L4tIlvtbSgx0ZTStX8jQjCTIztdlI165x\na8nd3fR6LMXDA1ixAti6lSwKQoRKpQKzpK85QTgZVVX8xi5O6VTqepIKZAPKXU9SxXYC+kJRcIHh\naZeP8MKnoowmicf3igrg+eeBO+4Avv/e+viEUh55BJg0Sdtu3Z6QUNgBYeSpl5cXEhISsGXLFs2+\n9evXIz4+XrPv+PHjmDt3Li5duoSpU6fC09MTq1evRk5OjsEsCbHVcejQIUyYMAG+vr4ICQnB888/\njxal7TUJohPRj08Ayi0KqUA2YF7Wk6JgdlUV4l6aghc8MjDTP0ey06vAxo08E+mbb4AFC4A//anz\n4hNiXFx4stWMGZ1/LYNr2/+SPY/o6Gjs2bMHtbW1eOutt/Doo4+itLQUX331Fd5++21s2LABtbW1\nyMrKgr+/PzZs2IDw8HB89913qKurw8svvyx5XnGHWTc3N7z//vuoqKjA/v37sWvXLqxdu9ZeH5Eg\nZDEmFKaMZjnXk62C2ZqiPy8v7I34Lba8sg/7ahLQMSPMAMaA9euBJ57gT/f793OXlbgNemfi5mbZ\npE1r6TlCsWyZ9GzTZcuUHy93rAlmzZqlmVaXlpaGoUOH4tChQ8jIyMCSJUtwyy23AACioqJ0JtSZ\nw5gxY5CUlAQXFxdERERg4cKF2L17t0XnIghbIiUU/fvzm54pq8DaGIXi9FhXV3zR938RHeuGoUOl\n50AAfMhQUxNw5538dUQEnyeRnm56LV2ZniUUUrNNjQmF0mNN8Omnn2L06NGasae5ubm4fv06iouL\nERUVZeEH0iU/Px/3338/Bg4cCG9vb7z++uuoMHeCPUF0Avo1FAJK3E/GYhS2LrgrKACionhLjdOn\npd/zr39xa0L8VN+rl/w1ugs9RygchFqtxsKFC/Hhhx+isrISVVVVSExMBGMMgwYNwoULFyTfpz+4\nyMPDAzeEOn4AbW1tmil3APD0008jPj4eFy5cQE1NDd599120W9XxjCBsg5RFASgTCrkYRd++PC21\nqcn4+w0sCrUaSEsDysp0hIIxPvciKoq30jhzxvBcdXU8Y3b+fOPX7I6QUHQyDQ0NUKlUGDBgANrb\n2/HJJ58gNzcXKpUKTzzxBFavXo1jx46BMYYLFy5oRqMGBQWhoKBAc56YmBg0NjZi27ZtaGlpwTvv\nvIMm0V9JfX09PD090a9fP5w9exb/+Mc/7P5ZCUIK/RoKAaUWhZRQqFR8u6kpdxqLQtyjacwYwN9f\nRyjKyrj4eHnJC8XmzcBdd3VuvYSzQkLRycTHx2Px4sWYMGECgoODkZubi9tuuw0Aj128/vrreOSR\nR+Dl5YUZM2agqiO69uqrr+Kdd96Br68v/vrXv8Lb2xtr167FE088gbCwMPTv318nC2r16tX4/PPP\n4eXlhYULF+Lhhx/WsUqMjVYliM5EzqIYMIC7pYwhJxSAMvdTQwMQcEN6drVYKAS3E8CFQsr1JASx\neyTMASxfvpzFx8ezxMRENmfOHNbY2MgqKirY3XffzYYOHcpSU1NZVVWVwfvkluugj9Etoe+SsDUz\nZjD21VeG25ctY+zNN42/d/ZsxjZtkt43YgRjx44Zf//8aZXshncQYytWMNbSorOvrY0xFxfGWlsZ\ny8xk7JFH+PbGRsZ692asqUl77KlTjIWG8mO7Itb+XdvdoigqKsL69etx7NgxnDp1Cm1tbdi8eTPS\n09ORmpqK/Px8pKSkIL27pxEQRA9BzqLw9+f7jGHMolCS+VTe6ouf1+ZJ1kW4uPAZ17W1uhZF7948\nm+n8ee2xn3/OC97sPQfCWbC7UHh5ecHd3R03btxAa2srbty4gZCQEGRlZWF+R5Ro/vz5OkVpBEHY\nn4YGYOFC689jTChMuZ7kgtmAslqKhgag10CJi3cg9HsSCwWgG6dgjLcBf+QR49fqzthdKPz8/LB4\n8WKEh4cjJCQEPj4+SE1NRVlZGYKCggDwQG5ZWZm9l0YQhIjTp7lfXukkOjmMxSissSgMYhQSCzWW\nHgtoU2T1hUKcInvgAA90jxxpfK3dGbvPoygoKMDf/vY3FBUVwdvbG7Nnz8bGjRt1jlGpVLLB12Wi\nWobk5GQkJyd34moJoueSn8//zc0Fbr/dsnMwJl9HodT1JFVHAYhcT4wB69YBb74JHD0KiJI8jBXc\nAfJCERcHbNvGfxfcTl0pHyQnJwc5OTk2O5/dheLIkSOYOHEi/Dv+z5kxYwb279+P4OBglJaWIjg4\nGCUlJQgMDJR8/zILi94IoqfDmHk3O8FHf/Kk5UJRX8+7qurPkwCUuZ5MWRR8dvUT/MCfftIRCUCZ\nRXHpEhcUcdprXBzwl7/wWo0vv+StOroS+g/Rb7/9tlXns7vrKTY2FgcOHMDNmzfBGMPOnTsRHx+P\nqVOnIjMzEwCQmZmJ6dOn23tpBNFtWbOGP3CbQ34+kJQEnDpl+XXl3E6AaddTWxtw8yZv92EAY7jz\n7EeY93fd2dX6GOseC3ChOHrUcKpdbCz//D/8wPcNGSJ/jp6A3S2KkSNHYt68eRg7dixcXFwwZswY\nLFy4EHV1dUhLS0NGRgYiIyPx5ZdfKj6nr68v1QnYCF9fX0cvgegErl7lg2/MIT8fmD2bD8uxFLli\nO4DfwNvb5Z/6a2t5VpKL1ONsXR1iC7/H3x7IwRtLDQVCwFj3WIALxaFDum4ngItTQACwfHnPDmIL\nOGRm9iuvvIJXXnlFZ5ufnx927txp0fkqZYaLEATBqavjT87Nzbw3kSkY40Ixcybw7rvmu60EjFkU\nKpU2TiElFMbiE/Dywp6Xt+Dcj/LXZkyZ6+nXX4Hf/c5wX1wc8OOPvG1HT4cqswmiB1Bby/si/fqr\nsuPLyng9QXQ0f6pXqy27rjGhAIy7n4zFJwDTldmNjVwUjdU++PhwMZHqzRkXB9x9N9CRjNmjIaEg\niB5AXR2/4SkNyp4/Dwwdyn8fPtzyOMX168ZHdxrLfKqpAby9OooYmpsN9psquDNlTQDa8axSQvG7\n3wGrVhl/f0+BhIIgegB1dUBqKq8JUEJ+PhATw3/vbKGQy3xquaDG389NAd57T/IgUwV3plJjAeNC\nMWwYMGKE8ff3FEgoCKIHUFvL++IptSjEQjFiBE+RtYTr1yXHTmuQdD11dHqd9NJYnA3tyGiSmDVq\nyvWk1KJwdXXMHOquBAkFQTiIhgaecWMP6uqAW27hgqFkVrU9LQodoair03R6/eaFHOyeID+72pTr\nSYlFERDAx5i6uxs/rqdDQkEQDuKXX4DFi+1zrbo6fmMdP56P8zTF+fNaoYiL40N9TA0JkqK83EzX\nU//+wIIFwL59KPJIMBnMtjZGERcH7Nlj/BiChIIgHEZtLX/qtQd1dTx7acIE0+6ntjbe0iI6mr/u\n3Zs/dUsN8zGFKYvCwPWkUgEPPwy4uRltCCisizGe3SSFEqFQqSirSQkkFAThIOwlFO3t/Dr9+wO3\n3mo6oF1czG/g4pvsiBGWuZ+sznoyIhQqFY8xyDUtVOJ6IpRBQkEQDqKuzj5CIbSxcHHhrqejR4GW\nFvnjxfEJAUviFMYaAkKtBqZPx8BmtWzWk9GCuw6GDOFuMSmUWBSEMkgoCMJB2EsoBLcTwJ/QIyKM\n3/TF8QkBS4Siro67h3QaAopnV996K7ziQi22KADek0nOJUYWhe1wSAsPgiDs53oSeiYJCHGKMWOk\nj8/P1xbbCQwfbn6KrIHbSa3mQ6dravjs6oQE+FfL11GYilEAPBh99qz0PrIobAdZFAThIOrquAvI\nmBvIVtcRC4WpOIWU6ykigp/HnLZqOjUUDQ3AbbcZdHr19uYdYiUKr8micCJIKAjCQQipnZ1tVdTV\n6fr6x48HDh+WP15KKFxcgMRE4MQJ5dfVSY318OATkPRmV6tUgJ+ftAApiVHExpJFYQ9IKAjCQdTV\n8X/tIRRiiyIiArhyRfrY5ma+b/Bgw33jxhkXGH0MXE8y5oFcGw8lFsWQIXy9UimyJBS2g4SCIByE\nvSwK/RiFpyd3d924YXjsxYtAeLh0pbLSYj2UlwMwnRorIJUiyxhftymLwt2di4UwtlUMuZ5sBwkF\nQTiIujruerG3RaFSAYGBmvu5DlKBbAGTQiFkNMXHA/n5ioVCqt9TQwPPllLSWkMuoE0Whe0goSAI\nB1FXx4O99o5RAFworl0zPLagQLqTKsCf3JuagMuXJXaq1ZoeTcjJAWJizLIo9F1PSuITAnIBbbIo\nbAcJBUE4iNpaYOBA+7ueAHmLoqQECA2VPo9KxWdo61gV4roIvYwma1xPSuITAmRRdD4kFAThIOrq\ngOBg+7ueAHmLorSUr0mOW2/VE4rGRm5B5OQYZDSZajEuIOV6Mkco5DKfTM3LJpRDQkEQDkConxgw\nwLlcTyUlxoXCIE7Rty+fQNdhRYgx1TlWQMr1pKTYTmDYMB5baW/X3S60LiGsh4SCIByAcPP28HA+\ni2LgQPlzJSUBx44Bra2mr2ut60lpjMLTk9diXLqku51cT7aDhIIgHIAQN/DwAOrr7XMtMWa7nhgD\nMjPh496A0FAgL8/4NdvagOpqwNfX9PqsdT0B0u4nCmbbDhIKgnAAwlO+tRbFzz+bnpKn1KJobuY3\naAMrQK3mA7c//BCoqDCMU0hQVcVv9DLD6XSQy3oyRyji4gwzn8iisB0kFAThAGzhempr4z32/vxn\nZdcSIyUU167x4LOLcFcQZzSlpvKMpvBwjB9veqaFUrcTYH3WE0AWRWdD3WMJwgGIXU/FxZad45tv\n+BN7djaPGcg9vSt1Pem4nRobgfvv52/evZsX0XUwfjzwwQfG12aOUPj6cmFoawNcXbVrjoxU9n6A\nC8XmzdrXra38p3dv5ecg5CGLgiAcgLUWBWNAejqwfDlvuWHM/STlegoI4FlJjGm36WQ89ekDPP88\ntyJEIgHwluNqtfF51eYIhZsb/y7Ek+oscT2JLYqbN7nbSaVSfg5CHhIKgrAxjJnOChJbFJYIxa5d\n/H3TpgH+Vk8TAAAgAElEQVT33ANs3y6/FimhEAYK1dRotxlkPD3wgKSZ4u4OjB5tvEFgebmyGgoB\nffeTuUIRHMyrxoVzUGqsbSGhIAgbs20bMHu28WOstShWrgSWLOHxhHvvBXbskD6usZHf2KV6Jum7\nn0wV24kZPx7YuVPXIhFjjkUBGGY+mSsUKpWuVUGBbNtCQkEQNubIEdNzG6yxKI4c4TfERx7hrydN\n4q+lRopKxScEAgOBmpNq4L77gLNnTRbbiXnkER4jiY4G3ngDOHdOd7+5QqGf+aSkc6w+sbHAX/4C\nbNzI54JTINt2kFAQhI3JywOKirgrRA5r0mNXrgQWLwZ69eKve/UC7riDP+HLXccAxvBow0cYsWAs\ncOedQHS0yWI7MWPG8HTUr77inzMpSbdtuSVCYY1FAQBvv80TtL77DnjrLS5ihG2grCeCsDG5udzV\nc+GCZGcLAPwGHhVlvlC0tQHffw+sW6e7XYhTPPSQ4XUMnszVamDBAtx7tRZbXtqNh5bwYLU5rieA\nu3vGjOE/e/bwlNnJk/k+S1xPYovCEqGIiABee8289xDKIIuCIGxIUxNQWAjcdZehO0aMpa6ns2f5\nU79+xfO99wI//GAYMzBwPTU18bt5air+/eQ+nHPVZjSZ43rS5847efGfgKUWRWMjsHAhD4T7+1u2\nFsL2kFAQhA05d46PER0+XHrqmoClwexjx4BbbjHcHh3Ns5hycw2voyMUvXsDJ08CS5ZgQLCbJpjN\nmPkWhZg77uDlFgKWCMWvv/J4S00Nt06UDC0i7AMJBUHYkNxcIDGRdzTtDIvi6FHu6pFCKk1WMkbR\nEeUVZz3V1vIbs6UB4Ntu4+myQlxGaedYgcBAnvI7fz4vnJMLwBOOgYSCIGxIXh4XipgY40Ih3MD7\n9uU9ltralJ3/6FFpiwKQSJO9ehW1NUw2e0gsFNa4nQBuHcXGasWisdG8GMNvfsOD4y+8QEVyzohD\nhKK6uhqzZs1CXFwc4uPjcfDgQVRWViI1NRUxMTGYMmUKqqurHbE0grCK3FwewFZiUXh58ZuiUqui\nvZ27Z+QsirFjO1xPQo+mkSPRO/+U0fRYQSjMyXiSQ3A/VVRwV5I5N/xevShLyZlxiFC8+OKLuO++\n+3DmzBmcPHkSsbGxSE9PR2pqKvLz85GSkoL09HRHLI0grEJwPQUGcitBqrYB0HUJKRWK/Hwe5JVr\n3R0cDHhVqdGWkspnV+/ejULPEYqFwhqLAtAGtM2NTxDOj92FoqamBr/88gsef/xxAICbmxu8vb2R\nlZWF+fPnAwDmz5+PLVu22HtpBGEVDQ3chRMVxZ+mjbmfxGmrSoXCmNsJjMFl/Uc40DoWlWNSNT2a\nJNNjO/Dz44Hj1lbrXU8Aj1Ps38/PRULRvbC7UBQWFiIgIACPPfYYxowZgyeffBINDQ0oKytDUFAQ\nACAoKAhlZWX2XhpBWMXp09zlJLRHknM/tbbyuETfvvy1UqGQy3jSnPTQIfw+aTeOpS7RLMJYZbar\nKxeL69dt43ry9+cdX3/8kYSiu2F3oWhtbcWxY8fwzDPP4NixY/Dw8DBwM6lUKqgookV0MfLydAvs\nhFnO+ghuJ+F/cXMsCrn4BNzdgYwMqBLioVYbXksOwf1kC9cTwN1PX39NQtHdsHtldlhYGMLCwjBu\n3DgAwKxZs7BixQoEBwejtLQUwcHBKCkpQWBgoOT7ly1bpvk9OTkZycnJdlg1QZhGiE8IxMTozkgQ\n0H/KVyIU7e3A8eNGhKKDyEjePkRAqVDYwvUE8ID2Bx+QUDianJwc5OTk2Ox8dheK4OBgDBo0CPn5\n+YiJicHOnTuRkJCAhIQEZGZmYsmSJcjMzMT06dMl3y8WCoKwJ+fPA6dOATNmSO/PzQWee077Ws71\npH/zViIUBQWAjw8wwJ8BGR8DDz7I/UZ6REby7rUCpprriS0Ka11PABcKwLwW44Tt0X+Ifvvtt606\nn0N6Pf3973/Hb3/7WzQ3NyMqKgqffPIJ2trakJaWhoyMDERGRuLLL790xNIIQpaffwY+/9y4UIgt\niqFDgYsXdSe3AYY3byVCcfQocG+cGkhdwE8webKkUEREwKGup6AgXk9BFkX3wiFCMXLkSByWmHqy\nU6r9JUE4CVVVum4dMdXVPIMoPFy7rV8/fiNWq4EhQ7TbpSyK+nojF2YM7h+vw1/3vgH84WXeOlZm\n7qklrqcrV/hns9XNffVqPtiI6D5Q91iCUEh1NXDpkqGFAPBAdnw8HyQkRkiR1RcKxRZFSwvwm98g\n4UA1jv11N25/Kl7mQE5ICM9iamribZ2UCMWePdxVpP+ZLOU3v7HNeQjngVp4EIRCqqp4Furly4b7\n9N1OAlJxCrOC2e7uYItfxm0u+zDsQeMiAfCbfWgoUFysvZapGMWJE7ZxOxHdFxIKglCI0FWmsNBw\nnzGh0E+RNcuiAFA4dAr6erpBJhHQAMH91NzMs6V695Y/NjDQdhlPRPeFhIIgFFJVxePHUkJx+jR3\nPekjVZ1tbnrs4cNGCu0kiIzkcRH9eg0pBPGxRcYT0X0hoSAIhVRX8zoGKaE4cwaIizPcLuV6kgpm\n9ylT8z7hR48anOPwYT5qVCkREdyiUDJ3WhAKsigIY5BQEIRCqqt5No++UNTU8JvyoEGG7wkPByor\nuTgI6NzAGcOIAx/hzayxPOV15EiDcxw+DHTUpypCcD2ZCmQDQP/+fOARCQVhDBIKglBIVRW3KPRT\nZM+c4bUDUi4eFxe+7/Rp7TbNDVytBlJTMfTnDCwZvxtYssQg7bWtjfd4GjtW+TqFWgolQqFScauC\nXE+EMUgoCEIhchaFIBRyDB+uO6K0rg7w9mgF7rsPSE3F8Q/24ayLdEbTmTPSM7KNYY5FAXBLKCJC\n+fmJngfVURCEAhobeQZRdLRunQIgH58QSEzkrT8EamuB/j5uPB7Rpw/6HZAPZh86ZJ7bCQDCwoCy\nMj4Lw1SMAuBT8fr1M+8aRM+CLAqCUEB1Ne+15OrKb8TiNhmmhELKovD0BA8OwHjWk7mBbIB7r4KD\n+bqUWBQeHjR+lDAOCQVBKKCqSuv+iYzUdT+ZEoqRfsU4c6pV89qcXk/mBrIFIiO5FaNEKAjCFCQU\nBKEAwaIAgMGDtULR2MgrtSXnPXfMrg7+zRjENhxFeTnfrB876N9fWigaG3kQfNQo89dLQkHYEpNC\n8fvf/x61tbVoaWlBSkoKBgwYgA0bNthjbQThNFRXay0KsVDk5/PX7u56b+jIaEJGBlS7d6N59HiN\n+0mpRXHiBK/DsCR+EBHB16gkRkEQpjApFD/88AO8vLzw3XffITIyEgUFBVi1apU91kYQTkNVla5F\nIaTIGridOqwIjB3LhaJjdrUQ0G5t5YFw8c2/b19tsFyMJYFsgchI/i9ZFIQtMJn11NrKfavfffcd\nZs2aBW9vbxpTSjgt+flAVJTtOqEKyFkUZ89KCMXp08Du3To9PYYPB379lbcT12+r4eLCxeLGDe6G\nEjh8WDsIyFxIKAhbYtKimDp1KmJjY3H06FGkpKTg2rVr6NORrUEQzsYDDwA//WT78+pbFIJQGFgU\nLi7A++8bNH5KTOSZT/p9ngSk3E+WBrIBbV0EuZ4IW2BSKNLT07Fv3z4cPXoUvXr1goeHB7Zs2WKP\ntRGEJG1t/MFdn8ZGPq5UXAVtK8TB7MBA/vRfX28640nAXKGoqeGtwhMSLFvvoEHcaiGLgrAFJoWi\nubkZGzZsQFpaGmbOnImPP/4YA2jOIWFnPvwQ+J//4d1Y+/YF3nrL8Jhz57iInDlj++uL02NVKiAy\ngqFq5To05F/BsGGm3+/nx2/aubnST/n6QnH0KM92khlkZ5JevfhcChIKwhaY/N/w6aefRmtrK559\n9lkwxrBhwwY8/fTT+Ne//mWP9REEmpt5G6SNG3kW0NmzwNq1hsfl5vKn/c4QCrFFAbUan11bAPdP\nazHQZ7JOXMEYiYk8tq3EorAmkC3wwQfSMzIIwlxMCsXhw4dx8uRJzeuUlBSMGDGiUxdFEGKOH+d1\nCtOn89e+vsATT3D3kzgonJsLzJgB/N//2X4N1dWArw8DPloHvPEGimJextJ+i9HPVfkj//DhQE6O\ndF8lfaE4cYJbUNbwwAPWvZ8gBEy6ntzc3HDhwgXN64KCArhZag8ThAXs2QPcdpv2dXAw77MkjPsU\nyM0FpkzhsYrKStuuobqyHePeug/IyAB270bBzCX46Rc3RfEJgcREnvmkxKLIzeXCQhDOgMk7/qpV\nqzB58mQMGTIEjDEUFRXhk08+scfaCAIAF4qHHtLdNno0b78dHq7dJowjjY3l7qdJk2y3hqoaF9S/\n8hq8Z00A3Nww+Cx3iZkrFG1tpoWipQW4cMF4R1qCsCcmLYqJEydi4cKFcHFxgb+/P5566ilMnDjR\nHmsjCDBmaFEAfC7EsWPa1/X1wLVrwJAhWqGwJVVVQJ/U2zXR5cGD+XZzhCI+nrvK5ILZ9fX89/Pn\nedZS375WLpogbIRJoZg3bx4KCwvx5ptv4rnnnsPFixcxd+5ce6yNIJCfz2+iYWG620eP5rELgdOn\nuUC4uvKbt1VCoZd7297O01q9vbXbLBGKfv14MaApi0KwjAjCWTDpesrLy8NpUWL65MmTES81RZ4g\nOgEpawLgFsXzz2tfi2+ucXHAzz9beEG1mkfK33gDuPNOALyJX79+uqmqPj5AVhYQEGDe6YcPN50e\nm5tref0EQXQGJi2KMWPGYP/+/ZrXBw4cwC233NKpiyIIATmhiIgAbt7kA3oA3ZurRRaFuEfT3Xfr\nBDh0UmNFTJ1q5jUApKcDaWmG28VCkZdHFgXhXJgUiiNHjmDSpEmIiIhAZGQkJk6ciCNHjmD48OGU\nJkt0Onv3SguFSqXrfhJbFEOGAKWlvHpa4PJlI8FtUadX7DacXS3u82QtMTGAVL0qWRSEM2PS9bR9\n+3Z7rIMgDCgr42NH5TydglDce6+uULi58VhAfr52lsOmTcD+/TzrSKdhIGPAzJnA7NnA4sWSpdDi\nPk+dhSAUjY3ApUtcUAjCWTApFJFCG0qCsDN79wITJvA+e1KMGQN88w2vmWho4JlCAoL7SSwUjPE5\n0oGBopOoVLxculcv2XXY0qKQQxCKs2e5yBlZDkHYHZpwR9iEvDz+QG5L5OITAoJFkZenTT0VEMcp\nzp0DSkr4U7owZU4HE3dle1oU5HYinBESCsIm7NkD/OMf3HViy3MaE4qYGB6L2LvXMPgrFopNm3gA\neZSvGtcvm79AuWC2LRHGoVIgm3BGSCgIm3D2LM9C2rPHNucTbprGGuO5ugIjRvBmgXJCwRiw6XOG\nl/p+hPXHx6Jt30Gz1yLuHNtZiC0KEgrC2SChIGzC2bPALbcAO3bY5nzHj/MbpqkZWWPGSD+Fx8QA\nBQXAiSw1Pr6cisjsDKyZuRt5A+40ey32sCgEocjLI9cT4XyQUBA24exZ4MUXAVslySltijd6NP9X\nXyj69WVY5PERBqeNRd2tqVDt24f22Hhcu2b+WuwVzL52jbvSoqI691oEYS4kFITV3LzJg8VpacDV\nq8CVK9afU6mv/pZbeHW0TiZTByN8LmFC826EreF1EYGBsEgo7BXMvnZN24aEIJwJEgrCas6f50/B\nvXvzouYffrD+nEqzf0aOBA4e1M14AgCoVDj8wLtwTYzXCI6lQmEv1xNAbifCOXGYULS1tWH06NGY\n2tEHobKyEqmpqYiJicGUKVNQXV3tqKURZnL2rLYl9j33WB+nYAw4dUqZRaFSaRv06ZOWBrz7rva1\nNRZFZ7ue+vXj/1Igm3BGHCYU77//PuLj46HqeBRMT09Hamoq8vPzkZKSgvT0dEctjTATfaH48Ude\nAW0p165xsQgOVnCw0KPp/HmDXePHA9OmaV87s0Xh6soD9yQUhDPiEKG4fPkytm3bhieeeAKso6Vz\nVlYW5s+fDwCYP38+tmzZ4oilERYgForQUCAkBDhyxPLzCSmiBu4kfcQ9mvRag0vhzBYFwHtAUfs0\nwhlxiFAsWrQIq1atgouoN0NZWRmCgoIAAEFBQSgT2oISTo9YKADr3U8m4xPiTq+pqbwFh4LmSN7e\nPPDe1KR8Lc3N/EeIIXQmubm6bUgIwlmwu1B89913CAwMxOjRozXWhD4qlUrjkiKcm/Z23iJj2DDt\ntnvvtS5N1mjGE2PAAw/Idno1hkrFM6Qk23jIUFPD3U72+N9RPBiJIJwJZX9hNmTfvn3IysrCtm3b\n0NjYiNraWsydOxdBQUEoLS1FcHAwSkpKECiV7whg2bJlmt+Tk5ORnJxsn4UTkly+zG9w4mE8t93G\ng9F1ddLT3EyRmws8+qjMTpUKePNNXkChUCDECO4n/Yl5ctgjNZYgbE1OTg5ycnJsdj4Vk3ustwO7\nd+/G6tWr8e233+KVV16Bv78/lixZgvT0dFRXVxsEtFUqlawVQjiGH37gw3iys3W3DxnCg9rmFo8x\nxoWnsBDw97fdOgXuuQdYtIhbPUo4dAh49lng8GHbr4Ug7IW1906H11EILqalS5fixx9/RExMDLKz\ns7F06VIHr4xQgn58QsDHh2cLmUtxMW+Q5+8Prho2fjAwN6Btr0A2QTgzdnc9ibnzzjtxZ8dcYj8/\nP+zcudORyyEswNZCoQlkq9XAggXASy8B999v9ToFzBUKe6TGEoSz43CLgujanDtnW6HIy2V4sl2U\n0aTUR6QQsigIwnwcalEQXR85i8Lbm2cMmYVajfveW4DAPrU8o0luBqoVBAZq51QogSwKgiCLgrCC\n2lp+I5XKIDLbomAMmD8fu1xScXHjvk4RCcAy1xNZFERPhywKwmKE+gmpmdZmC4VKhbYdO7HU1w1l\nnVidbInricbGEz0dsigIizl7VrfQTowlMYqLl3grcEtqL5QiJRSffy4/75tcTwRBFgVhBXLxCcCE\nUKjV3J/j5YXkZN4b6re/BW7c6PymeAEB2qaDQrV1djbPtpLi0iXev4ogejJkURAWc+yYfBM7SaEQ\n92javx8XL3KxmTSJtwOfM0fZVDtr6NcPcHfnVeMChw8Dp08blmwwpnyAEkF0Z8iiICyirQ3Yvx/I\nzJTebyAUQl1ErTajadd6ICWFVz4/+yxQVGQfN09gIO/35OXF51SfP8+L/IqLgfBw7XGXLvFjKJhN\n9HTIoiAs4tQpPi9CpiUXfHxE6bH6nV47Mpqys7lQCERG2k8ohDjF8eO8wG/kSG49iBHanRNET4eE\ngrCIPXt48z85vL1FFkV1tUGnV8a4UEye3Plr1UeIUwDc7TRuHBcLEgqCkIZcT4RF/PILcN998vt1\nXE9Llhjsz83l7h5HpJ6KLYrDh4EpU4CWFu5KE5Obq2vxEERPhSwKwmwY40JhzKLw8gLq6+VHou7a\n5bibsL5QjBvHvWH6FoXSud0E0d0hoSDMprCQ/ztkiGijkNF0/DgAXoTn6clj11I4yu0EaIWiqgoo\nK+MpvgkJuplPra28oDAuzjFrJAhngoSCMJtffgFuv1009U2YXf2vfwF9+miOk6ulaG0Ffv7Z8UJx\n5Aiff+Tqytfq5cUznQDgwgVeP2GPEagE4eyQUBBmowlkC1bELbdwP9L+/TqP4HJCceQIT0OVy5jq\nbAShOHSIu50ExAFtCmQThBYSCsJsBIsCDz3ErYjdu4FXXzUYTaqTIivCkfEJQCsUhw8DSUna7fpC\n0dnFfwTRVSChIMyivBwoLe24ib7xBrciEhIkj9VJkRXhyPgEoCsUYosiPp7HKQCyKAhCDAkFYRZ7\n9gATJnC/PkaMMLAixEi5nm7eBA4eBDoGGzqEAQOA69eBpibd9FxyPRGENCQUhGkYA9rbAZhOixUj\nJRS//sqzjLy8bLxGM3Bz4205xo0TBeTBLYozZ7iYqdXA0KGOWyNBOBMkFIRx1GpekfbFFwC4RXH7\n7creKiUUxcXOMd8hMFDX7QTw9Xp7Azt2ANHRQK9ejlkbQTgbJBTdjKYm+doFpbS3A6xd1Ol18mRg\n9mwwBpw4wTcpQUoorlzhbcUdzaBBwMSJhtsTErgmktuJILSQUHQzPvgAmD/f8vdXVAD3xqlxfcwU\nntGUk6PJaKqtBXr35q26lSAlFFevOsd8h2++Ae65x3B7fDzw7bckFAQhhoSim7FrF7B9O2+fbS4N\nDcBvfgMsLnwW+WGTDTKayst5IFgpUumxzmJR9OunG58QSEjg3wMJBUFooaaATszVq8DAgdI3NCla\nWoC9e/lT8Y4dwIwZyq/V3AzMnMnfe/DeLDS1uGCS3v8d16+bJxRS6bHOYlHIIegiCQVBaCGLwknZ\nvp33Utq3T/l7jh7lgeIFC7hrxRyeeIK7ldatAwKDXVBebnhMeTlv0a0UuRiFswvF0KHA4MGOXglB\nOA8kFE7It98C8+bxbhhCAz4l5OQAd90FPPAAsHUrtzCMolYD16+jthb4+mtg82aeOhoQAEmhMNei\n0BcKxrhF4QyuJzm8vID8fN7UkCAIDv05OBn/93/86X7rVh5sFZrUKeGnn4DkZP7EHhPDhUMS8ezq\nvXtx5QoQFgb07ct3GxMKayyKmhpeqOfpqfwcBEE4HhIKJ+L8eeCpp7jbadw43jhPqVAIg3fuuIO/\nnj4d2LJF4kChLkLIaHrgAVy+zIVCQE4ozA1me3nxVN2OWj2ntyYIgpCGhMKJ+PJLYM4c3voaME8o\nDh8GoqIAPz/++sEHuVAIN2kAwPr12roIUUaTYFEI2MqicHPjbbrr6qC5jjPHJwiCkIaEwon46itg\n1izta3OE4qefeHxCYNgwnnV0+LDooKYmnboIgcuXdW/gfn7cEtCPcZhrUQC6KbLOkhpLEIR5kFA4\nCefP82lrkyZpt4WHc0+RMHXNGEIgW8yDD+plPz33nGSnV33Xk4sLF4uKCt3jzLUoAN04hbOnxhIE\nIQ0JhZPw9de87sHVVbvN25vXUEjNdBDT1AQcOGDYg0k2TqGHlEtIyv1kiUUhrqUg1xNBdE1IKJwE\nfbcTwEVCifvp0CHuavLxgTaj6eefMWYMcPEiFxJj6FsUgLRQmJseCxhaFOR6IoiuBwmFE3DxIr9Z\nS3VlVSIUOTk8LVYno2nAALi6AkFBQEmJ8fcrEYqWFt7awsdHwQcSIRYKsigIomtCQuEEfP01jydI\nzQBSIhR79zDMvfGRbkZTfDwAfmO+ckX+vY2NPHCtH3vQF4rr13ncwtxCNLIoCKLrQ72enICvvgKW\nL5fep0Qonjs0D9GXz3LTQi9YbUoohH5S+gIgJRTmBrIBrVC0tfHxowMHmn8OgiAci90tiuLiYtx1\n111ISEhAYmIi1qxZAwCorKxEamoqYmJiMGXKFFRLDVvuhqjVvE1HcrL0fiVC8edeb6DiW+nZ1aaE\nQs4dpC8UlgSyAW167LVrfKqcu7v55yAIwrHYXSjc3d3x3nvvIS8vDwcOHMCHH36IM2fOID09Hamp\nqcjPz0dKSgrS09PtvTSHsGUL780kN3ralFAwBhyuHQb/IOkTmBIKqfgEYHuLguITBNF1sbtQBAcH\nY9SoUQCA/v37Iy4uDleuXEFWVhbmd0zcmT9/PraYyOvMyeE3r67O0aPSk9YEwsP5+FAAXBXa2nT2\n37jBN8sNE1IiFJ1pUQjpsSQUBNF1cWgwu6ioCMePH8f48eNRVlaGoKAgAEBQUBDKysqMvvedd3hP\npK5Obq7x2QehoUBpKdBa0JHRlJGhs7+iAvD3l59ZocT1ZA+LggLZBNF1cVgwu76+HjNnzsT7778P\nT712oiqVCiqZO9+yZcsAAKdPAz/9lIxHH03u5JV2Hm1twNmzmgQlSdzdGF7qtw6qpDeAl/8f8Pjj\nOvsrKow/6YeG8pu0HJcvS1s0UkIxdKj8eeQg1xNB2J+cnBzkyLaPNh+HCEVLSwtmzpyJuXPnYvr0\n6QC4FVFaWorg4GCUlJQgMDBQ8r2CUGzc2PVnBhQUAMHBQP/+Mgeo1cATT2B+SzVO/CMHY+YaBqsF\ni0IOwaJgTNrqkLuB+/sDlZW8qaCLCxeNCROUfS4xYovCmIuNIAjbkZycjGRRhszbb79t1fnsfqtl\njGHBggWIj4/HSy+9pNk+bdo0ZGZmAgAyMzM1AiJHdTVQVNSZK+18Tp0yMXJz6VJg8mT86X/245yb\noUgApoXCw4NPrquqkt4vF8x2d+dtwisr+WsKZhNEz8XuFsXevXuxceNGjBgxAqM7+mmvWLECS5cu\nRVpaGjIyMhAZGYkvv/xS9hyM8ZuPWm2vVXcOubnA8OFGDvj8c0ClQtjv5TOfTAkFoLUqhBbkAm1t\nvBGhXG2D4H4aMMC6YHZtLQkFQXRl7C4Ut912G9p1hiRo2blzp6Jz1Nfz5nmXLmldI12R3FzeCFCW\nDl9ReDiPZUihRChCQviNWl+Uysq4ePTqJf0+QSji4iy3KNzduUVTUEDBbILoqnTJW2x1NRAYyJ9W\nTSRH2RW9zFWTaDKe1GruA5LBWC2FORaFPnJuJwFBKBizrCGggLc3F3RT6yQIwjnpskLh4wNERDhX\nnCIxUVTzYILGRqCokCHu544eTfv2yR7bWUJhyh0kCEVdHbc6+vQxfh05fHy4NSGXwksQhHPTpYUi\nMtI+cYqcHNPDg9rb+fAhpcJVkK1GttsUuGVm8Aukpcke62iLwhprAuD/rSg+QRBdly4rFL6+9rEo\nGAPuu8940RrAb6htbaZbegMAMjIQ9fBYFEalcEtCokeTGD8/oLmZB4X1sVYolFgU5eWWxScEBIuC\nIIiuSZcUiqoqrUXR2UJRWwvcvKltlS2HIBCKhMLNDWtn5+Di7KXyTZ5ECAOMpNxa169b53oii4Ig\nCFN0SaEQxyg62/Uk3PhNCYVQ/WysClrD/PnILkswXkOhh5z7yR6uJ0tTY8XniYiw/P0EQTiWLjmP\nQhyj6GyLQhAKuYI1gatXeRqoIosCpns86SMlFK2tPNBsaupcYCD/zpqa+BoFlLqeLE2NFfjTn6i9\nOE8cIHIAAA+cSURBVEF0ZbqFRWEq0GwN5lgUI0aIhEKYXb11q8GxtbX85jtkiPJ1SAlFZSWP1bi6\nGn+vMBK1tFS7jTHlWU/Wup48PS3PmCIIwvF0aaHw9AT69tVtXmdrzBGKW27pcD2p1UBqKu/0Oniw\nwbF5ebyIzZxCQSk3mxK3k4C++6myklsXsn2mwIXi+nU+dMgai4IgiK5NlxUKX1/+e2enyJaU8Kdh\nU66nkhLgljEMU4o66iLuvptnNEm0hjXX7QRIu9msEQpTgWyAC0mfPryq2hqLgiCIrk2XFAoh6wmw\nLkX2zTe5n98YJSVAbKwyi2Lat0/ikZsZaNyewxv6yWQ0OYNQmApkCwQEAGfOkEVBED2ZLikUgusJ\nsDygffMmH35kyhoxRyjalr6Oh8L2ocTPeF2EyWaAEoSGchdbU5N2mzVCsWMHMGaM6feJGwMSBNEz\n6fJCYWmKrBB7KCgwfVx8vHHXU1tbx8103GAEhrgZzXxqbweOHwdGjjRvva6u3AIQB7QtFYqaGmDD\nBuDpp02/T7AkyKIgiJ5LlxcKSy0KIQNIiVDExelZFIwBLS2al9eu8ZiJuztv2W2sluL8ed4kr2Pq\nq1nof1ZLhSIjA7jnHmDQINPvCwjgQXdTKbgEQXRfupxQtLfz2gEvL/66My2Kmzd5877Bg0VCIWQ0\nffCBzrmEFhUhIcZrKQ4cAG691fz1ArYRitZWYM0aYNEiZe8LCODX6Kqt3AmCsJ4u9+dfV8entgm1\nA8LNU1xLYSpADfCbeUCAcaEoKeGjSn19geqqjroIIaPp+ec1x129qhWKgQONC8XBg8D48abXJ8Xg\nwUBhofa1JUKxZQv/PSlJ2fsCAsjtRBA9nS4nFFVV2tRYgLtEXFy0MYQjR/jNva7O+HlKSoBJk0wL\nxcCBgH+9Gp9c7qiLyMkxyGgSC0VIiHHXky0tCiV9ngSEkahvv63cmgC4SFAgmyB6Nl1OKMTxCQHh\nBnrjBvDoo9y6MDLeAQCPUUyaBFy8KF/ZXVrKhcLz7+9iR/vdaN8j3en16lXtOFFjFsWNG8C5c8Co\nUcbXJoc1rieAWxJ1dYCJceQ6JCUBs2crP54giO5HtxAKIU7x+99zz9CzzwK7dxs/j5D22ru3/JQ8\nwaJwWfcR1nouRe0N6boIpRbF0aO8fsLSdhbWCkV4OPDCC4oa1mqIiwOee0758QRBdD+6XFNAOYti\n3Trg9GngxAl+Q/7DH4yfRxCBqCjufgoOlj8GKhV8fXUL/fSPUxKjsMbtBPBrVFbyIHufPvx3c4Ti\nk0/IjUQQhPl0G4tixw4gM5Pvu/VW4NdfuatHDsGtJAgFAG6WXLigOUYjFODnlSu6E1sUAwbwpn/i\nwjiBAwcsD2QDPBYzaBCvpbBkPGlwsHnWBEEQBNBNhOLee4EPPwSSk/lrDw9e0HbggPQ52tp4IDgw\nkAvFxQJRRtPBg5rjLBEKFxfDTq0CBw9aZ1EAWveTuW4ngiAIS+lyz5f6WU8Ajy/rx5jvvJPHKSZP\nNjzHtWt8vKibGzDCW434vy4ABtXyjCbRicRC4esrLRStrVrRERDcT+JhPZcvcytDopmsWQhC4e9P\nQkEQhH3oFhaFFIJQSKERgE8+wfR3x+KXXndLzq7Wtyik2niUlXF3k9ilI1V0J1gTKpXptRuDLAqC\nIOxNtxWKiRN5TYVUrECIT8DTE1X/l4NljYadXltbebBYKDaTcz2JA9kCUm08rA1kCwhFdyQUBEHY\ni24rFF5ePLXz0CHDfULFNWbNQkByAurqDAv0BEtBqACXcz2J4xMCUplP1gayBciiIAjC3nRboQDk\n3U9il5KLC39Kv3hR/hhA3vUkJRT6tRQtLbxj7LhxytZtDBIKgiDsTfcXipyOjKZNmzTb9UVAJ0VW\n5hg515O4KltA36LYt49fw9tb2bqNERzM24QXF5NQEARhH7qcUEhlPclxR4Qar+Wkov1fGcCIEZrt\nmhhFB0qEwhzXk34w+4MPgCeeULZmU7i48ArrY8dIKAiCsA9dTigUWRSMWxHeKWNxMuBuHHpvn0Ha\nq7gSW6lFIeV6MhXMVquB7Gzgf//X5EdTTGQkn5JHQkEQhD3ockJx4wbQv7+Jg55/XtPp9cKspdh7\nUDejydauJ32hCAjgotLSwgsB//d/AU9Pkx9NMZGRPCuLhIIgCHvQ5QruvLwUDNF59VVeHu3mhvHj\ngaws7S7GlLmeSkv5FDgBY64n/RiFqysvwCsoAD7+GDh8WNFHU0xkJP+X+jYRBGEPupxFoSiQHRqq\nqYu49VbdVh41NbxHUr9+2m2RkXyoj2i6qSKLoqWF11qIq7IFBg4EVq4E7rjD+mpsfYTzkUVBEIQ9\n6NpCwRifVWqEqCjurhJiBvrxCYALx8CBuiNV9YXCw4MX74nFpLSUi4RQayEmJAT49FPgxReVfS5z\niIzkOiiMgyUIguhMupxQaDKehNnVq1YZPV6l4oVuQq8/fQEQELufGOMFd2JBUakMrYorVwzjEwID\nB/JEqzvuUPa5zCEmhg8UsrYdCEEQhBKcSii2b9+O2NhYDB06FCtXrpQ8xsdbb3b1q6+aPK/Y/SQn\nFMnJfETo3r28mK1/fz7USOfaekKRnw8MHSp9zZkzgdWrO+dm7ufH10kQBGEPnEYo2tra8Nxzz2H7\n9u04ffo0Nm3ahDNnzhgc96cD8rOr5RALhX4gW+CNN4A//hFISwMef1z6GP0U2TNneJsQKaZMAVJS\nTC7NYnJycjrv5F0M+i600Hehhb4L2+E0QnHo0CFER0cjMjIS7u7uePjhh/Hf//7X4LjCKOlOr8YY\nN44XqLW2SscoAP7kP2sWkJfHRWLsWMNj9DOfjAlFZ0N/BFrou9BC34UW+i5sh9MIxZUrVzBo0CDN\n67CwMFy5csXguGNTlFkRYnx8+GS43Fx515P42I8+Av79b+l9ziIUBEEQ9sJphEKl0JmvtM+TPoL7\nSc71pPTaguupuZnH06OjLTsXQRBEl4E5Cfv372f33HOP5vXy5ctZenq6zjFRUVEMAP3QD/3QD/2Y\n8RMVFWXV/VnFGGNwAlpbWzFs2DDs2rULISEhSEpKwqZNmxBHvh2CIAiH4jQtPNzc3PDBBx/gnnvu\nQVtbGxYsWEAiQRAE4QQ4jUVBEARBOCdOE8w2hZJivO5KcXEx7rrrLiQkJCAxMRFr1qwBAFRWViI1\nNRUxMTGYMmUKqqW6FnZT2traMHr0aEydOhVAz/0uqqurMWvWLMTFxSE+Ph4HDx7ssd/FihUrkJCQ\ngOHDh+ORRx5BU1NTj/kuHn/8cQQFBWH48OGabcY++4oVKzB06FDExsbihx9+MHn+LiEUSovxuivu\n7u547733kJeXhwMHDuDDDz/EmTNnkJ6ejtTUVOTn5yMlJQXp6emOXqrdeP/99xEfH6/Jluup38WL\nL76I++67D2fOnMHJkycRGxvbI7+LoqIirF+/HseOHcOpU6fQ1taGzZs395jv4rHHHsP27dt1tsl9\n9tOnT+OLL77A6dOnsX37djzzzDNob283fgGrQuF2Yt++fToZUStWrGArVqxw4IocywMPPMB+/PFH\nNmzYMFZaWsoYY6ykpIQNGzbMwSuzD8XFxSwlJYVlZ2ez+++/nzHGeuR3UV1dzQYPHmywvSd+FxUV\nFSwmJoZVVlaylpYWdv/997MffvihR30XhYWFLDExUfNa7rPrZ5Tec889bP/+/UbP3SUsCqXFeD2B\noqIiHD9+HOPHj0dZWRmCgoIAAEFBQSgrK3Pw6uzDokWLsGrVKriIBpP0xO+isLAQAQEBeOyxxzBm\nzBg8+eSTaGho6JHfhZ+fHxYvXozw8HCEhITAx8cHqampPfK7EJD77FevXkVYWJjmOCX30y4hFEqL\n8bo79fX1mDlzJt5//3146o3MU6lUPeJ7+u677xAYGIjRo0eDyeRh9JTvorW1FceOHcMzzzyDY8eO\nwcPDw8C10lO+i4KCAvztb39DUVERrl69ivr6emzcuFHnmJ7yXUhh6rOb+l66hFCEhoaiuLhY87q4\nuFhHEXsCLS0tmDlzJubOnYvp06cD4E8JpaWlAICSkhIESk1Q6mbs27cPWVlZGDx4MObMmYPs7GzM\nnTu3R34XYWFhCAsLw7hx4wAAs2bNwrFjxxAcHNzjvosjR45g4sSJ8Pf3h5ubG2bMmIH9+/f3yO9C\nQO5vQv9+evnyZYSGhho9V5cQirFjx+L8+fMoKipCc3MzvvjiC0ybNs3Ry7IbjDEsWLAA8fHxeOml\nlzTbp02bhszMTABAZmamRkC6M8uXL0dxcTEKCwuxefNmTJ48GRs2bOiR30VwcDAGDRqE/Px8AMDO\nnTuRkJCAqVOn9rjvIjY2FgcOHMDNmzfBGMPOnTsRHx/fI78LAbm/iWnTpmHz5s1obm5GYWEhzp8/\nj6SkJOMns3VApbPYtm0bi4mJYVFRUWz58uWOXo5d+eWXX5hKpWIjR45ko0aNYqNGjWLff/89q6io\nYCkpKWzo0KEsNTWVVVVVOXqpdiUnJ4dNnTqVMcZ67Hfx66+/srFjx7IRI0awBx98kFVXV/fY72Ll\nypUsPj6eJSYmsnnz5rHm5uYe8108/PDDbODAgczd3Z2FhYWxjz/+2Ohnf/fdd1lUVBQbNmwY2759\nu8nzU8EdQRAEYZQu4XoiCIIgHAcJBUEQBGEUEgqCIAjCKCQUBEEQhFFIKAiCIAijkFAQBEEQRiGh\nIAgj1NTU4B//+AcAXt06e/ZsB6+IIOwP1VEQhBGKioowdepUnDp1ytFLIQiH4TSjUAnCGVm6dCkK\nCgowevRoDB06FGfOnMGpU6fw73//G1u2bMGNGzdw/vx5LF68GI2Njfj888/Ru3dvbNu2Db6+vigo\nKMBzzz2H8vJy9OvXD+vXr8ewYcMc/bEIwizI9UQQRli5ciWioqJw/PhxrFq1SmdfXl4evvnmGxw+\nfBivv/46vLy8cOzYMUyYMAGffvopAGDhwoX4+9//jiNHjmDVqlV45plnHPExCMIqyKIgCCOIPbP6\nXtq77roLHh4e8PDwgI+Pj2Ys6/Dhw3Hy5Ek0NDRg3759OnGN5uZm+yycIGwICQVBWEjv3r01v7u4\nuGheu7i4oLW1Fe3t7fD19cXx48cdtUSCsAnkeiIII3h6eqKurs6s9wiWh6enJwYPHoz//Oc/mu0n\nT560+RoJorMhoSAII/j7+2PSpEkYPnw4XnnlFc0kMP2JYfq/C68/++wzZGRkYNSoUUhMTERWVpZ9\nPwBB2ABKjyUIgiCMQhYFQRAEYRQSCoIgCMIoJBQEQRCEUUgoCIIgCKOQUBAEQRBGIaEgCIIgjEJC\nQRAEQRiFhIIgCIIwyv8HmPARYoNhLVwAAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlcVPX+/1/D4sYmLoCAiIKogOKCmmalEtbtplkaZl31\nlmU3278tWt17s24pXm2zsszITCvbfhmlUdcMK9FQUXFHEUaQRZF9387vjzdn1jMzZ+DMjAPv5+PB\nhTlz5jOfOTfPa967ShAEAQzDMAxjAhdHb4BhGIa5umGhYBiGYczCQsEwDMOYhYWCYRiGMQsLBcMw\nDGMWFgqGYRjGLCwUTKfHy8sLubm5jt4GwzgtLBRMp6eqqgqhoaGO3gYAYMmSJRg+fDhcXV2xefNm\no+ffeOMNDBgwAD4+Pli8eDEaGxs1z5WWluL222+Hp6cnQkND8fnnn5t9L3NrMYw1sFAwjB0ZPXo0\n1q9fj7Fjx0KlUuk999NPP2H16tXYvXs31Go1zp8/jxdffFHz/MMPP4wePXrg0qVL+PTTT/HQQw/h\n5MmTku9jaS2GsQqBYZyAQYMGCWvXrhVGjRol+Pj4CPPmzRPq6+s1z3/wwQdCeHi40KdPH2HWrFlC\nQUGB5jmVSiVkZ2cLgiAIO3bsECIjIwUvLy8hKChIWLt2rea877//XoiJiRF69+4tTJ48WcjMzLTZ\n55kyZYqwefNmvWPz588XXnjhBc3j3bt3CwEBAYIgCEJ1dbXQrVs34ezZs5rnFy5cKCxfvlxyfXNr\nMYy1sEXBOAUqlQpfffUVfvrpJ+Tk5CAzMxMff/wxAGD37t14/vnn8dVXX6GwsBCDBg3CXXfdJbnO\n4sWL8cEHH6CyshInTpzA9OnTAQCHDx/G4sWLsXHjRpSWluLBBx/ErFmzTLprRo0aBV9fX8mfRx55\npF2f8eTJk4iJidF7j+LiYpSVlSErKwtubm4IDw/XPB8TE4MTJ05YvRbDWIubozfAMHJ57LHHEBAQ\nAACYOXMmjhw5AgD49NNPsXjxYowePRoAsGrVKvj6+uLChQsICQnRW6Nbt244ceIERo4cCR8fH4wZ\nMwYA8MEHH+DBBx/E+PHjAQALFy7EypUrsX//flx//fVGe8nMzFT881VXV8PHx0fz2NvbGwDFWKqr\nqzWPRby8vFBVVWX1Wr6+vkpvnenksEXBOA2iSABAz549UVNTAwAaK0LEw8MDffv2xcWLF43W+Oab\nb7Bz506EhoZi6tSp2L9/PwBArVbjtdde07MM8vPzUVhYaONPpcXT0xOVlZWaxxUVFQBIEAyfE5/3\n8vKyei2GsRYWCsbpCQwM1Et/rampwZUrVxAUFGR0bmxsLLZv347Lly9j9uzZSEhIAACEhITghRde\nQFlZmeanuroa8+bNk3zPqKgoeHl5Sf4sXbq0XZ8jKipKYyUBwNGjR+Hv7w9fX19ERESgubkZ586d\n03s+Ojra6rUYxlpYKBinRWjrkD9//nxs2rQJR48eRUNDA55//nlcc801Rm6npqYmfPrpp6ioqICr\nqyu8vLzg6uoKAHjggQfw/vvvIz09HYIgoKamBjt27EB1dbXke584cQJVVVWSP+vXrze556amJtTX\n16O1tRWNjY2or6/XfI6FCxciKSkJp06dQllZGf7zn//g3nvvBUBW0h133IF///vfqK2txR9//IHv\nv/8eCxYskHwfc2sxjNU4OJjOMLIIDQ0VfvnlF83jFStWCAsWLNA8fv/994WwsDChT58+wsyZM4WL\nFy9qnnNxcRGys7OFxsZG4eabbxZ8fX0Fb29vYcKECcLevXs156WkpAjjx48XevfuLQwYMEBISEgQ\nqqqqFP0cN9xwg6BSqQQXFxdBpVIJKpVK2LNnj+b5119/XfD39xe8vb2F++67T2hsbNQ8V1paKsye\nPVvw8PAQBg0aJHz++eea59RqteDp6Snk5eXJWothrEElCLYZXHTfffdhx44d8PPzw7FjxwBQwdC8\nefOgVqsRGhqKL7/8Er179wZAAciPPvoIrq6uWLduHWbMmGGLbTEMwzBWYjPX07333ouUlBS9Y4mJ\niYiPj0dWVhbi4uKQmJgIgFL5vvjiC5w8eRIpKSlYunQpWltbbbU1hmEYxgpsJhTXXXedUeAsOTkZ\nixYtAgAsWrQI27dvBwB89913mD9/Ptzd3REaGorw8HCkp6fbamsMwzCMFdg1mF1cXAx/f38AgL+/\nP4qLiwEABQUFCA4O1pwXHBwsmdrIMAzD2B+HZT2pVCqjXjeGzzMMwzCOx66V2f7+/igqKkJAQAAK\nCwvh5+cHAAgKCkJeXp7mvPz8fMkc+PDwcGRnZ9ttvwzDMJ2BsLAwvRoca7GrRTFr1ixNa+XNmzdj\n9uzZmuPbtm1DY2MjcnJycPbsWUyYMMHo9dnZ2RAEgX8EAS+++KLD93C1/PC14GvhjNfi+HH9x3v2\nCJg8WfrclhYB3boJqK+XsbZabXSso1+wbWZRzJ8/H3v27EFJSQkGDhyIl19+GcuXL0dCQgKSkpI0\n6bEAEBkZiYSEBERGRsLNzQ3r169n1xPDMJ2W0lJg5EjgwgVADM9mZwNhYdLnu7gAAwYABQXA4MEW\nFjcoNFUCmwmFqaEqu3btkjz+/PPP4/nnn7fVdhiGYa4aLlwABAH45hvg8cfpmDmhAEhQ8vN1hKKu\nDujZ0+Z7BbiFh9MydepUR2/hqoGvhRa+Flqu5muRlwd4ewNffKE9JlcoIAjAhg1ARATQ1uzR1rBQ\nOClX8z8Ce8PXQgtfCy1X87XIywPmzAHOnCHrApAnFBWZamDGDCApCUhJAXRayduSTiEUffr00aTb\n8k/Hfvr06ePo/zsZptOTnw8MGQLMng18/TUdMysUgoC/XNiAv70ZC8TFAWlpQFSU3fZrs15PtkCl\nUkFqu6aOM9bD15JhbM+CBcCNN1KA+t//JuNg4ECgshKQzOPJz8elmxfg1YB38NYu6wWio/+uO4VF\nwTAM40zk5ZEwTJtGlsQvv5A1YTLZMzgY5z/8Ffsq7WdF6MJCwTAMY2fy8ijm4O4O3HEHsGqV+fgE\noBPMdgAsFAzDMApRXQ3ceaf5c1pbgYsXtfUTCQnAoUNtQiEIwA8/0G8DAgKAy5eBxkbl920JFgqG\nYRiFOH8e+PZbyfu8hpISwNMT6NWLHt9wA9C/PxDTuy2j6eWXJdNe3dwAf39Azhj3p58Gtm1r54eQ\ngIWCYRhGIfLzgZYW8+UNYnxCxM1VwA+zNuCu13QymtoGuhkycKA899MvvwChodbt3Rx2bQrIXD00\nNzfDzY3/72cYJRF7m5aWmrzX6wtFSQkwfz4mVFQAv6VaTHkdOBDIygKuvdb0OdXVdM6YMVZv3yRs\nUdiB1atXIzg4GN7e3hg+fDh2794NQRCQmJiI8PBw9OvXD/PmzUNZWRkAIDc3Fy4uLvjkk08waNAg\n9O/fHytXrtSsl56ejtjYWPj4+CAgIABPPfWU5rnk5GRERUXB19cX06ZNw+nTpzXPhYaG4r///S9G\njRoFLy8vniLIMAojftu/csX0OWIgGwCVZ8+dK7suYv584P33zbu2DhwAYmKA7t3l79sSLBQ25syZ\nM3j33Xdx8OBBVFZW4ueff0ZoaCjWrVuH5ORk/PbbbygsLISvry8efvhhvdfu3bsXWVlZ+OWXX/Dy\nyy/jzJkzAIDHH38cTz75JCoqKnD+/HkkJCQAALKysnD33Xdj3bp1KCkpwS233IKZM2eiublZs+a2\nbdvw448/ory8HC4u/H8/wyiJaFGYE4r8fB2Lols34MEHKQAhg1mzgPJyYM8e0+fs2wdMmiRvv3Lp\nMncKlUqZH2txdXVFQ0MDTpw4gaamJoSEhGDIkCHYsGEDXnnlFQQGBsLd3R0vvvgivv76a71v+S++\n+CK6d++OUaNGISYmBkePHgUAdOvWDWfPnkVJSQl69eqFiRMnAgC++OIL3HrrrYiLi4Orqyuefvpp\n1NXVIS0tre0aqPDYY48hKCgI3ZX8usEwVwE5OUBRkWP3kJ8P9O1r2aLQjVFYg6sr8MwzwH//a/oc\nFooOIAjK/FhLeHg43nzzTaxYsQL+/v6YP38+CgoKkJubi9tvvx2+vr7w9fXVtFgXx8MCQEBAgObv\nXr16obq6GgCQlJSErKwsjBgxAhMmTMCOHTsAAIWFhQjRaTGsUqkwcOBAvbGyA9v7XyjDXOW89hrQ\nNu7GYeTnk9vHSCjUairHrqjokFAAtMyRI0BmpvFzggDs389C4ZTMnz8fv//+O9RqNVQqFZYtW4aQ\nkBCkpKSgrKxM81NbW4sBAwZYXC88PByfffYZLl++jGXLlmHu3Lmora1FYGAg1Gq15jxBEJCXl6c3\nLZDnfDCdlepqaoHhKASBrAU9oRA7vcbGUgzCw0M/RtEOunen1uRSVsW5c9R5XGJAaIdgobAxWVlZ\n2L17NxoaGtC9e3f06NEDbm5u+Mc//oHnn38eF9paR16+fBnJycmy1ty6dSsuX74MAPDx8YFKpYKr\nqyvuvPNO7NixA7t370ZTUxNee+019OjRA5MnT7bZ52OYqwVHC0V5OYUaBg2irCeodTq9pqYCy5ej\n1cUNhYUdEwoA+Mc/gB9/pLfQxRZuJ4CFwuY0NDTgueeeQ//+/TFgwACUlJRg1apVePzxxzFr1izM\nmDED3t7emDRpEtLT0zWvM/fN/6effkJ0dDS8vLzw5JNPYtu2bejevTuGDRuGrVu34tFHH0X//v2x\nY8cOfP/995wGy3QJqqvtNp5BEtGl1Lcv0JxfBIwfb9TptbiY0mY7GiL08QEWLwbWrtU/biuh4O6x\njB58LRln5brr6Ca9fbtj3n/nTmDdOnILvfkm8NPmIuq7oUN6OrB0KXDwYMffr7gYiI4G/vgDGDaM\njsXEAB98ALTlt2jg7rEMwzBwvOtJ16K4cgVGIiGe01G3k4i/P7B8OfDEExQKqaqiGIWShXYiLBQM\nw3QKHOZ6qqoCQBlPwcHm02M7mvFkyKOPUlrwjh1krYweTaUZSsNCwTBMp6Cmxs4Whe7s6suX9SyK\n0lLpl+gV2ylAt27k5nrySYqX2yI+AXCvJ4ZhOgnV1YBOEwLbolYD999PJsyuXUD//hqLwtubRKup\nieZN6JKXB4wbp+xWbr4ZGDECWLMG+PRTZdcWYYuCYRinRxDsFKPQrYswyGgSLQoXF8DXV9qqUNr1\nJPL665RJZatMeLYoGIZxeurqyA3T0gI0NCjbEE+PK1do4ERqql4TP0HQxigAbZzC31//5UoGs3UJ\nD6csqB49lF8bYKFgGKYTUFMDeHnRDbuykgYB2YR+/YCUFKPDYrGdlxc9lgpoNzfTzVzpqmkRW4kE\nwK4nhmE6AdXVgIcHxQcckSJr6FKSCmgXFZHOGMYtnAEWii6Ci4sLzp8/7+htMIxNqK6m8aI+Pgql\nyAoC8M035MuSga7bCQD69DG2KGwVn7AHLBRXKaGhodi9e7ejt8EwToEoFIpYFGKPptWrTee5GiBl\nUUgJhS3iE/aAheIqhVtpMIx8amoUEAqpjCaZwQ5Di0JKKHJzlZ1jbU9YKOyAOPLU29sbUVFR2K7T\njGbjxo2IjIzUPHf48GEsWLAAFy5cwMyZM+Hl5YW1a9ciNTXVaJaErtWRnp6OSZMmwdfXF4GBgXj0\n0UfR1NRk18/JMI5CjFG02/VUVmbU6VXu1DlAnkVx7hxlJzkjLBR2IDw8HH/88QcqKyvx4osv4m9/\n+xuKiorw1Vdf4aWXXsKWLVtQWVmJ5ORk9O3bF1u2bEFISAh++OEHVFVV4emnn5ZcV7fDrJubG956\n6y1cuXIF+/btwy+//IL169fb6yMyjCz++MM263bY9eTtDdxzj+zZ1YbIsSiys4GwsHbs7Sqg6wjF\nihXSs01XrJB/vqlzLTB37lzNtLqEhAQMHToU6enpSEpKwrJlyzCurVQzLCxMb0KdNYwdOxYTJkyA\ni4sLBg0ahCVLlmCPucG6DGNnysupw6st+jF12PXk6gr8/e9WWRG6GFoUffoYhzfYonAGVqyQnm1q\nTijknmuBTz75BGPGjNGMPT1+/DhKSkqQl5eHMIW+YmRlZeHWW2/FgAED4OPjgxdeeAFXzA3uZRg7\nc+YM/c7JUX5txbOerMCw2A4wtigaGig9tp3fAx1O1xEKB6FWq7FkyRK8++67KC0tRVlZGaKjoyEI\nAgYOHIhz585Jvs5wcJGHhwdqa2s1j1taWjRT7gDgoYceQmRkJM6dO4eKigq8+uqraG1ttc2HYph2\ncPo0/bZFlrbsOgq1GkhIoMo3hTAstgOMhSI3lywOZ50hxkJhY2pqaqBSqdCvXz+0trZi06ZNOH78\nOFQqFe6//36sXbsWGRkZEAQB586d04xG9ff3R3Z2tmadiIgI1NfXY+fOnWhqasIrr7yChoYGzfPV\n1dXw8vJCr169cPr0abz33nt2/6wMY44zZ6gPkkMsCt2MprFj6U6uEFL1EaJQiImLzux2AlgobE5k\nZCSeeuopTJo0CQEBATh+/DimTJkCgGIXL7zwAu6++254e3vjjjvuQFlZGQDgueeewyuvvAJfX1+8\n/vrr8PHxwfr163H//fcjODgYnp6eellQa9euxWeffQZvb28sWbIEd911l55VYm60KsPYgzNngGuu\nsY1QmI1RSMyuVvKrvaHbCQB69qSwR00NPXbmQDbgoFGoq1atwtatW+Hi4oKRI0di06ZNqKmpwbx5\n86BWqxEaGoovv/wSvXv31t8sj0K1OXwtGVsRHQ3cdRclFu3cqezaCxcCN95IMYAXXwQ0eRxlZdSD\n+4kngKefVlQgKiuBX38FNm6k/k0bNug/P3AgsHcv7emxx4DBg2luhCNwulGoubm52LhxIzIyMnDs\n2DG0tLRg27ZtSExMRHx8PLKyshAXF4fExER7b41hGBvR0kLfqm+6yXauJ8k6Cl9f4MQJRa0IQQAW\nLSJxePdd4IYbgJdeMj5Pt42Hs1sUdg+teHt7w93dHbW1tXB1dUVtbS0CAwOxatUqTTrnokWLMHXq\nVBYLhukk5OYCfn5AZCT93dpK8QqlMFtHoWA8AgB+/JHGjhYXA716mT5PN6DNMQor6dOnD5566imE\nhIQgMDAQvXv3Rnx8PIqLi+Hf1rzd398fxQpmJTAM41jOnAGGDdNmJhUVKbt+TQ3g01oGHx/bdo9t\nbgaefZbaQJkTCUArFC0tFCYZPNh2+7I1drcosrOz8eabbyI3Nxc+Pj648847sXXrVr1zVCqVyeDr\nCp1ahqlTp2Lq1Kk23C3DMEogCgVAN8ycHCAwUKHFBQE3qz/AuHv+hdb0Q6ioGAhBoBpZpfn4YxKA\nmTMtnysKRX4+tRfv2VP5/ZgiNTUVqampiq1nd6E4ePAgJk+ejL5t5uAdd9yBffv2ISAgAEVFRQgI\nCEBhYSH8/PwkX7+inUVvDMM4jtOngVGj6O8hQ0gorr1WgYXbZlfPKqlA4be/IiR8IFxdgfp65W/M\nNTUUKP/2W3kiJM6kcITbyfBL9EtSQRQrsLvrafjw4di/fz/q6uogCAJ27dqFyMhIzJw5E5s3bwYA\nbN68GbNnz7b31hiGsRGGFkWHi+4MOr3e4pOGbmOoR5OtqrNff51akEyYIO98MZjt7IFswAEWRUxM\nDBYuXIjY2Fi4uLhg7NixWLJkCaqqqpCQkICkpCRNeqxcfH19uU5AIXx9fR29BaYTYigUe/d2cMGq\nKooqt82urniFgtmANqDd1l5NESoqgDffBA4ckP+avn2Bo0edP5ANOGhm9rPPPotnn31W71ifPn2w\na9eudq1XKnO4CMN0BrKzyX3jLN+NKiroxi3Oih4yBDAIS1qPtzfQ1q6/tRWordUGl20xDjU7m+oi\nhgyR/xoxRlFTA8ybp+x+7A1XZjOMk3Hjjbbpl2QrRGtCTIdVxPWkQ20txSPE9W3heioqst5CEYWi\nM1gULBQM42SUl9s2BVRpdN1OAH0zLy4GGhtlvFgQgM8/N3uy2L5DxJJFsW0bYO2olvYKRUlJ54hR\nsFAwjBMhCFRcVl3t6J3Ix1Ao3NzIDdXW/9I0Yo+mN96gO64JxGI7EUsWxY4dwKOPUnhDLu0Vitxc\noEcP2pMzw0LBME5EYyMVfTmzUAAW3E9Ss6vNFF2I7TtELFkU584B//wnDbSTW/jXHqHo3ZuK7Zzd\n7QQ4KJjNMEz7qKqi384kFKdPSwuFZM+nqirgjjvIJGjLaLKEoUUhRyi2byc9uvtu4H//o06v5igq\nAiZPtrgVPdzcSCyc3e0EsEXBME6FKBDOIhQtLXRjjojQPz5kiAmLwtMTWLzYqtnVhjEKc66n8nIq\nxvPzo+I5AHj5Zcvv0R6LAiD3U2ewKFgoGMaJcDahuHCB2lfo3sgBMxaFSkW9yK3o9GqNRSFmIKlU\nZEW8/z6NqbBER4SCLQqGYeyKs7mepOITgBmhsMDRo8D99+sfsyZGYZiqGhZGcXKdYZGStFcoFi8G\nOkM7OhYKhnEinM2iyMujwT2GhLur8dLR2ZTZZAWZmcZV3da4ns6dA4YO1T52daXpdOa2UVNDSQTt\nyVxaskT68zsbLBQM40Q4m1BcvkzxAA1tGU19b47FflyDSq8gq9bLzwcKC/WPtcf1pIulAsDiYrIm\nnKUS3hawUDCME2EL19PXX1O+vy24fBno37/tgc7salVqKv5fxHLk5FmXeJmXR9ZCba32mKHryZxF\ncfassVCI3WxN0V63U2eChYJhnIjqakq5VFIoXnqJxnnaoi2IRihqaoApU7R1EVFRpjOfQGmr9fXG\nx/Pz6beuVWFri4KFgoWCYZyK6mpgwABlheLKFWDhQgq6njun3LqAjlB4eADHj+vNrjYV0C4ro64d\nUs/l5VHzv4IC7TG5LTwqK7XXTxdLFoXoeurKsFAwjBNRVUU3LaWEQhBouM7zz1O18rRp5J5RikuX\ndFxPBtFgUxaFeNOWunnn5wPjxsmzKARB/7VizyXDWANbFJZhoWAYJ6K6WlmhqK2lrqs9e1KGzuLF\nQGJiBxe9fFnvT41QGGDqm7wpoairIwGIidG3KAxjFG5u1F+ppkb/9YYZT5b2IcJCwULBME6F0q6n\n0lKaxCZyww1AVlY7FxN7NEVGAllZEATzQmHqm/z584C7u/HN++JFaiYYFGQsFIYFfVLuJ6lANkCf\nv6WFXF5SsFCwUDCMU6G0RXHlClUPiwwd2k7Xk05GE1JTgYgIVFXRDV8cKGTI4MGUbdXaqn88Jwe4\n5hpjocjLoxblgYH6rifDGAUgnflkai6ESmXeqmChYKFgGKdCjFEYulXai6FFERhI7yF73oVUp9e2\nHk3mrAmA3EU+PsYdXM+fp6UMb9z5+VQcN2BA+ywKcwOEzMUpWChYKBjGqdC1KAyDte3B0KJwcaGb\nqWyror6eLIjUVL2MJsCyUADSAe2cHGD6dPkWhWGMArDOohD3IWVRCAIJhb+/+c/R2WGhYBgnoroa\n8PWl+7Gl/kRyMBQKgDq9yo5T9OxJuawSnV71Mp5MYPhNvrWVvFixsTR3o7xc+1x+PglFeyyKmhpa\nK8hEIbipVN3ycvqIPXua/xydHRYKhrkKEAQgPd2ylVBVRTdFT09l4hSGrieAhEKJFFm5FoXuDbqg\ngPbTs6fxzTsvj1xPvr5kyIjV2VIxCkOhOHeO3svFxB3PVKouu50IFgqGcTBlZUBCAjBxIt0MzSF+\ne1ZKKKQsiqFDJSwKQQA2b7YqOGLU50kCwxv0+fMkEICxUIgWhUpFVkVhIWUrNTQYf+M3dD2ZcztJ\nvZcICwXBQsEwDmTvXmDMGLrxRUeTu8Yc1dWAl5edLQq1GoiPB959l5RFJnIsCkPXU06OaaEQLQpA\nG6eoqaGsKsMiOimLwpxQhIbSxzTMwGKhIFgoGMZB7NlDUz/ffhtYt45uguaEQhC0gVt7WBRCq05G\nU3w8ZTRZ0TO7Pa6n8+fpGKAvFHV19HnF9cQ4hZTbCSChsMai6NmTBFM39gGwUIiwUDCMg1i1in5m\nzqTH/fubF4q6OqBbNwpk29Ki6NcP6C7Uo2laPNVF7NkDLFtm1dQ5QJ5QBAXR4CCxAaChRSFaG/n5\ndK5oOYgWhVQgGyDXkzUWBSAdp2ChIFgoGMYBZGbStLZ77tEe8/PT635hhOh2AmxrUahUQEhED2Tf\n8ihZEZGR7VpbjlC4ulLcQWxzbsqiEOMTIqJFIZUaC2hdT62twGuvUT/CUaPM70UqTsFCQVj3FYFh\nGEV4/XXg0UeB7t21xyxZFGLGE2BboQAoTpEecBtGdOAOISc9FtC6n4YPN7YocnPJ5aYbnwDIojh1\nyrxFce4cFe41N1NGmaXAulTRHQsFwRYF49SUlQGLFim7ZntmOVtDQQHw3XfAP/6hf1yORWFJKKwR\nD0Gg6+fra/ycZOaTFYh9nizdnAGty6eujoRLrHUQs7uKikxbFKZiFP36kRVx881UCyiKj6V9sEUh\nDQsF49QUFQE7dii3XlUVeVoMs1+U5O23gQULjGMDliwKS66nU6eoR5JcKiuBiO5qdJt9C3D6tN5z\n1tRSiDUgutTUkAtLyi1kiPhNXq0mMXB11X8uJ0faohBdT1JCMW4cicuyZfrrydmHLiwUBAsF49TU\n11P1rBLtLAC68dTXm+4k2lGqqoCNG4EnnjB+zpJFYcn1VFBA7hZZIicIaHpnA36ri6WWsQaRXmss\nivPnSaB0x5PKiU+IiN/kdeMTIqJQSFkUYjBbSoxUKnnWjNQ+RJqbKdgv93N0ZlgoGKemvp6KrpRq\nkieuU1yszHqGbNpEw4EMb4iAPItCFAoPD2OhKCmh4jNzYgNAUxfR87MkPDhMOqNp6FASHTkCvG8f\nnXfypPaYtUJx/rx+fELElEXRpw+5qi5flrYo2kNgILm+6uq0n6FvX/kWSWeGhYJxasS0St2eQB3B\n1kKRlgbcdpv0c6JFYermbMn1JNbCqdVmNtDQQB334uORtjYNFUHSGU0+PvQehnUFUuzfTzfT48e1\nx9ojFNZYFGJ19rlzygmFqysV3qWk0GN2O2lhoWCcGqWFQnSf2EooLl82ffPx8KAboCnryJLrqaSE\nfpsViu4+LyNpAAAgAElEQVTdKTd32TKUlLtJZjyJyJ1NsW8f8Ne/AseOaY/JzXgCgN696SZ98KC0\nRXHyJH3Wfv30nxswgNxjSgkFAHz4IbB0KRWhs1BoYaFgnBpbWRSWWmm0F0s30P79TbuOLGU9lZRQ\nQd6FCxY20ebUN5UaKyKni2xNDcXBFy40tiisiREMGUKCI2VRHDpEbifDNh2BgSRkcgLmcpkyhdqq\nrF8PPPMMC4UICwXj1DibRXHpkvkbqJ+faZGS43oaOVLHoigoMBtkkKrK1kWORXHwIPWoGj++/a4n\ngASiqcnYoggJoaCybnxCZMAAGo+qpEUh7mXfPiAsrN21hp0OhwhFeXk55s6dixEjRiAyMhJ//vkn\nSktLER8fj4iICMyYMQPlSv3LZzo1olAolaVkyxhFSwvdzA1dKLqYsyjkuJ7GjgUuqNt6NMXE6PuD\nDFDCoti3D5g0ieIH1dUkPoD1QjF4MMVFDGs6unenugrd+IRIYCD9VlooAKrs/u474NlnlV/bGXGI\nUDz++OO45ZZbcOrUKWRmZmL48OFITExEfHw8srKyEBcXh8TEREdsjXEybGFR9O1rG6EoLaWbobu7\n6XMsWRSWhOL6QWo8t1unR5OZvhVyLAq5QqFS0ewi0apoj0UxeLCxewmg46YsCsA2QsHoY3ehqKio\nwO+//4777rsPAODm5gYfHx8kJydjUVuJ7aJFi7B9+3Z7b41xQsRURiVjFIMH20YoLLmdAMsxCpOu\nJ0HATbkbMG9tLH5siZfVo8mSRTFsGImPqVnSgqAVCoDcXu0ViilTgPnzpZ8bPpzcQIaIFoWSMQpG\nGrsLRU5ODvr37497770XY8eOxQMPPICamhoUFxfDv20wrb+/P4pt5SRmOhX19RTAVdKicKRQtNui\naG7GsMp0NPy0B//FMlTVWW7SZMmi6NaNgtQbN0o/f/48WUeiWyg6WuvpsibrSXytKTfPunXA3/9u\nfJwtCvthd6Fobm5GRkYGli5dioyMDHh4eBi5mVQqFVRSNijDGFBfT5kpSloUQ4aQUChV7S0iJxOo\nvTGK+hZ3LHFJgsf4SISEGGc+NTUBjY36xyxZFADwwANUJGj4WkDf7QTQzV7XorC2MtoUPXpIdzi3\nZYyC0cfu3WODg4MRHByM8ePHAwDmzp2LVatWISAgAEVFRQgICEBhYSH8TPxXtmLFCs3fU6dOxdSp\nU+2wa+ZqxRZCERREN6aqKgpqKoUSFoXoeurRg27+TU30rV4MkqtUwKBBJBRRUdrXrlxJr1+zRnvs\nyhXzFgVAbp/hw4HkZGDuXP3ndN1OgNaiqK2lwL2tb+B9+pDVw64nY1JTU5GamqrYenYXioCAAAwc\nOBBZWVmIiIjArl27EBUVhaioKGzevBnLli3D5s2bMXv2bMnX6woFwygtFLW1NFrT35+sivYIxcmT\n1LF06VL940rEKDw9BCDpI6huvx2enn1QU0MFayUlWusgJMS46G7vXm08B6AbeWWldOdYQ5YsAT74\nwFgo9u/Xn6fRvz8J2OHD9LetnQIqFfDyy1oXFKPF8Ev0Sy+91KH1HDKP4u2338Y999yDxsZGhIWF\nYdOmTWhpaUFCQgKSkpIQGhqKL7/80hFbY5wMUSgOHlRmvZoa+oYqCsXQodav8cEH9G1bSigsDc8x\nZ1H4lKsRsngx0FAJTJ8OT88+qK7WCoWYdjtokL5QCAJw4ADVI7S0UBV0eTmJoJw+RnfcATz+OJCd\nrQ0qi4V2Y8fqnxsdDfz6q/0a6S1bZp/36eo4RChiYmJw4MABo+O7du1ywG4YZ6a+noLPtrIozFFQ\noPWTi7S2At98QzdlQ6yxKARB5xu5IAAffICUkn8C8U8Dzz8FuLnpxSl06zMGDdL2KwKoH5K3N7mo\nsrKAESMsB7J16dGDgtoffkijWwHg998py6lHD/1zR44Edu/mjqudDZ5wxzg1tohR6FoUpmhspAZy\nx49TYZrIgQMkNLm51H9Pd4KdHKHo2ZNu6Jr4SFMT8Ne/Qigvx1TVHmT+M1KTguLpqS0QNOd6Sk8H\nJkwAXFzI8hoxQl4gW5cHHgCmTqV4xSefAEeO0IhRQ6KjgffeM3ZTMc4Nt/BgnJr6erqpV1QoM2yo\ntlaeUFy6RPfwd97RP/7110BCAlka+fnGr5GTCaQXp3B3B55+GtU/pSG3VyRcdP7F6loU5lxP6enU\nYiM2lvomAdZZFAAJxLXXAl99RZP5Ll6UTlmNjiaBVCrjibk6YKFgnJr6erph9uqlzAzpmhp5rqdL\nl0gMtm4lkQLIQ/TNN8CcOdrMI13kpowaxSlmzEB1vZsm40nElOspKIj23tREjw8cIIti3DitUFhr\nUQD02X74AbjzTmOXk4iYacWup84FCwXj1NTV0U2rd29l3E+iReHnZ1kooqOBGTOAjz+mY4cPk3sn\nJgZGtQyNjdAEni0hlfkkNfLT0KIQb/zu7iR0Fy+SWBw9SiIxdiy5jFparLco5OLpSTEjForOBQsF\n49TU15NfXymh0LUozLUaF91Ijz1GM7BbWsjtNHcuBaENhUJsaeFi6l+cWg3cdBNw6JBk5pNusZ2I\nKdcToLVojh2jWIqXF10jf3/gzJn2WRRyiY+n9h9M54GFgnFq6uuVtSjkBrNFoZg0iWoRdu4koZgz\nh543DCibjE8IbZ1eY2Np8lxMjKRQ6BbbiZhyPem+v+h2EhHdT7YUig0bgOuus83ajGPgrCfGqVFa\nKMT0WHd380JRXExiolKRVfHUUxTEjY2l50NCSDhEJHsfqdXA4sVU+bZnj6aJX//+NCNaF2tcT4A2\noJ2Toy8UYkDbVq4npnPCFgXj1CgpFC0tdLPv2ZNSU5uatIOMDNG1EBIS6F4vup0AY9eTkUXR3Azc\ncgv5aQw6vSrpehJTY0XsYVEwnQ+2KBinRkmhqKsjkRBv9qL7yXDqGqB/4+/enbKfdP3yolCIhXNG\nQuHmRndsifQhU8FsKddTQQFdg6YmfSEJCaE9nT9PRXAiYkA7PJwtCkY+bFEwTo2SQiHGJ0TMxSkM\nb/w33qg/hc3Tk0TnyhXp8wGYzDE1FaMwZVGI1oFub6VBg8hQGTmSGueJiAHt48fZomDkw0LBODW6\nQtHRcahiaqyINUIhhcb9lJeHK8XNsovQpCwKc64nQ7eT+N6CoO92Ehk3jjxfbFEwcmGhYJyW5maq\nxnZzU86i6NVL+9hUiqwgyBSKgQJcNm4Axo6F99lDVguF7jwMSxaFoVB4eVE2Vls3fz1iY6kZoI+P\nvP0wjEWheOaZZ1BZWYmmpibExcWhX79+2LJliz32xjBmaWgga0KlUkYo5FoUFRX0vqaqkwEAajX+\nezgeATtpdvUfTRNlC0X37uS2Eiu+AfPpsYYZTyJ33QVMm2Z8fNw4siZ4NhgjF4tC8fPPP8Pb2xs/\n/PADQkNDkZ2djTW6008YxkGIVdkAfXtW2qIwVZ1t1prQqYsoGhmP1+6gjCa5fZ5031vXmrHW9QQA\n69cDwcHGxydNAv7zH/l7YRiLQtHc1i/5hx9+wNy5c+Hj48NjSpmrArEqG7BvMNuiUJw8CezZg+K/\nL0NuvpvGVWVNWwvDOIW1ridz9OwJPPig/PMZxmJ67MyZMzF8+HD06NED7733Hi5duoQeZm1uhrEP\nYiAbUM71ZBijsFooXFyAt94CAIRUUjBbbAVuzchOQ4vCkutJKoWXYZTCokWRmJiItLQ0HDp0CN26\ndYOHhwe2b99uj70xjFmUFgq5FoVYlW0JMetJFBZrDPH+/fXfW8qi8PAw73piGKWwKBSNjY3YsmUL\nEhISMGfOHHz00Ufox/9VMlcBukLh7U1+/I7MpLDKouhPU+dw8aLJ9QICqFVGfr718xkmTgT+9z/t\nY6kYhYcHidvlyywUjG2xKBQPPfQQMjIy8PDDD2Pp0qU4dOgQHnroIXvsjWHMoisUrq5046yqav96\nhhaFry8da2jQP685W40Hvoyn2aB1dSbXc3Gh2RAZGdYLRUIC8Msv2jiFlOvJ1ZU+f14eF88xtsVi\njOLAgQPIzMzUPI6Li8MoSxPiGcYO6AoFoHU/tbc+wDA91sVFG1QODoZmdvUzX/wTuXOfxsDNNLva\nHCEh1MHVWqHw9gZuu43acDz5pLTrCaBjajVbFIxtsWhRuLm54dy5c5rH2dnZcLPwj4Nh7IGUUHSk\nOtswPRbQcT+1tlITv6QkPDJyD0ofWGZRJABqpXHwYPtGg957L7BpE+mTlOsJoGN1dSwUjG2x+F/6\nmjVrMH36dAwZMgSCICA3NxebNm2yx94YxiymLIr2YmhRABRnKCwEMM4FeP55YNIkpEe74TkZwWyA\nLIpPPmmfUFx/PYlXejpNyBNTgXXx9KSW6FIiwjBKYdGimDx5MpYsWQIXFxf07dsXDz74ICZPnmyP\nvTGMWSwJxfbtwNq18teTsigiI6mBHgCaxuPmZlXxXEgI/W7PaFAXF+Dvf6cJep6e0llTnp5kTXBp\nE2NLLArFwoULkZOTg3/961945JFHcP78eSxYsMAee2MYs+hWZgPG1dnbtlEFstwAtyaYrdNkaexY\nCkaLNDbSer6+8tYUhaI9FgUALFpEA5BMWQyiUDCMLbEoFCdOnEBSUhKmTZuG6dOn48MPP8SJEyfs\nsTeGMYtuZTagb1EIAvD770BEBLl+5FBbC/StVgMzZtDEORgLhVizYHL2tQEdFYqQEHJBGWY8iXh6\ncsYTY3ss/uc+duxY7Nu3T/N4//79GDdunE03xTCGbN6srXAWMed6Uqsp/vz668C6dTLqKwQB089u\nwHX/F0vDJa69FgAwdCgFs8V1re3Z1FGhAID77jOdycUWBWMPLArFwYMHce2112LQoEEIDQ3F5MmT\ncfDgQYwcOZLTZBm70NoKPPoocOqU/nFzQvHHH8CUKfTj4QH89JOZN1Crgfh43FyQhNPv7wGWaTOa\nXF2BUaNoKhwgvypbxMODlrPmNYYkJOjP39aFhYKxBxaznlJSUuyxD6aL0NBAN92JE+W/5tw5igsY\nxhrq6/WDz1JCoVIBjz9O7Zf+8heJxQUBmDMHuPNOzC94Cp9FG/+TEN1PU6dab1EAQGKidecb4uKi\nPz1PF09P/Ql2DGMLLApFaGioHbbBdBV++gl47DEgN1f+aw4dot+VlfrH6+v1p7QZCsUDD9Df8+bR\nt/rTp4Hhww0WV6loZmi3bqh6X7px39ixVCUNtE8obMmDD5LVwzC2hCfcMXYlI4M8PVKT40whCoWU\nRSFVcHflCjXji4mh4z16AEuWUJqpJG1fyaXSYwH9gPbVJhRhYQB/l2NsDQsFY1cyMui+fOCAda8Z\nPFjaopCKUaSlAddco184/Y9/AL9tUaOlpt7k+xj2ehKJjCQLqKbm6hMKhrEHLBSMXTl8mEIC6eny\nzhcEbXxAjkVRXq6NT+guEvj9BuypjUXuF3+afJ+6OunqZ3d3ICoKOHrU+mA2w3QGWCgYu3HpEjW3\nS0iQLxTnz1ODvLAwY4vCsOBOUijaMpqQlIS1t+7BrqYbJN+nro5mVZvy94vuJ7YomK4ICwVjNw4f\nphvuxInketIpgDbJoUP0Gi8vyxaFtzcJ0ZEjwMQJ2tnViI8H0tIw6C+RSEuTfh/DWRSGjB1L+2eh\nYLoiLBSM3cjIAMaMAQYMIBdPTo7l1xw6BIwbRyIgFaPQdRW5uNB5UVFtsYYLF6jCuq0uYvJkQKd2\nVA9T8QmRsWNpLywUTFeEhYKxGxkZdMMFgPHj5bmfMjJIKORYFAC5n6ZMAaW9vvoqRaLbiIykGENJ\nifH7WLIoRo6kgr9u3aTjGAzTmXGYULS0tGDMmDGYOXMmAKC0tBTx8fGIiIjAjBkzUN7RAcjMVYeu\nUEyYYFkoBEHrejJlUZgUCglcXel99+83fs6SRdGjBzBsGFsTTNfEYULx1ltvITIyEqq2/siJiYmI\nj49HVlYW4uLikNjRclbmqqKsjNw2Q4fSYzlCkZtL394DAsxYFN3bYhFnzwKgMda33mp6zUmTpN1P\nUrMoDBk7loWC6Zo4RCjy8/Oxc+dO3H///RDaIprJyclYtGgRAGDRokXYvn27I7bG2IgjR6gATswq\nGjeOjjU1mX6N6HYCpC2KPlVqhC6hjCYxMj5+vPmWFpMmQTKgbarYThcWCqar4hChePLJJ7FmzRq4\n6PRqLi4uhn9bgrq/vz+Ki4sdsTXGRui6nQDqhhoSApjrWC+6nQADi0IgK+K7glg0T6WMJkREyNrH\nNdfQaNLmZv3jllxPALBwIbBqlay3YZhOhd2F4ocffoCfnx/GjBmjsSYMUalUGpcU41jS0miwW0FB\nx9Y5fJgynnSZMMF8hbaY8QToWBSCANx2G5CUhFs996D5KXmzq0V8fYHgYODYMf3jloLZAMU/RoyQ\n/VYM02mQ/y9MIdLS0pCcnIydO3eivr4elZWVWLBgAfz9/VFUVISAgAAUFhbCz4SNv2LFCs3fU6dO\nxdSpU+2z8S5KVhZ1b500CdixA4iObt86GRnAM8/oHxMzn8TmfRUVJAbBwdrXiELh6Uk1EgJUUP3r\nX8CYMTjq7WYUzJaDmCarK1xyLAqGcRZSU1ORmpqq2HoqwdTXejuwZ88erF27Ft9//z2effZZ9O3b\nF8uWLUNiYiLKy8uNAtoqlcqkFcLYhjffpHqHCROAJ5+k8aLTp1u3Rk0NzYyuqKB2GCIHDgD330+T\n6N54g5r2ubnR+UOHkhVTWKidB+3pCRQV0W9BoHhHU5P13VM//JDKK7Zs0R577TXg4kUadMQwnY2O\n3jvtblEYIrqYli9fjoSEBCQlJSE0NBRffvmlg3fGAJSt5OsL3HMPEBQEzJpFN29rvn0fPUpFcLoi\nAdBAoLNngfBw4OabKW01PJze8/RpwEUlgP7roP/18iKLw9OTZle7ubWvxfakScaxBrYoGMY0DhWK\nG264ATfcQL13+vTpg127djlyO4wEZWXUZwmgxnwBAUB+PtUUyMUwkC3SvTvw/vvUZUOnLg6+vsCk\nQDWweDHwxBOafFdvb21A27Aq2xpGjKBW5LpV1rW1pseNMkxXhyuzGbOIFoVIUBAJhTWcOkUWhRQL\nF+qLhJjRpOnRdPPNmqdEiwKQLraTi4sLxUd0A+lsUTCMaRzuemKubsrLjYXi4kXr1rh8Gbj+ehkn\nqtusiMpKCiLoKYixRdFeoQAoKH/iBPDXv9JjOQV3DNNVYYuCMUtZGaWFigQHWy8UJSVAv34WThIE\nYNEiTadXQ5EAlLMoALJwdGs45BTcMUxXhS0KxixSrqfTp61bQ5ZQqFTArl1mayKUtCiioig+IsKu\nJ4YxDVsUjFmkhKI9FkXfvjJOtFA4p6RFERlJsZPWVnosp+COYboqLBRdlKoqmh5niY4KhSBQhpGe\nUKjVxo2bZKCkReHjQ59LrabHbFEwjGlYKLooW7cCjz9u/pz6evrGrZuGGhxsXdZTdTXVT/TsCf2M\nJlMThMygpEUB6Mcp2KJgGNOwUDiYLVuoNba9OX6cWnOYo7ycAtm6bbf8/clCMNf1VRdNfEJndjX2\n7AFuusnqPetaFIbzstuDrlCwRcEwpmGhcDBHj1LzO3tz8iS5nlpaTJ9j6HYCKIzQvz+10pBDSQmw\nRNCfXS2V0SQHW1gUJ0/S35weyzCmYaFwMKWlVCFsb06coPYX5txIUkIBWJciW1IC+Hcv15td3V6U\nqswWMbQo2PXEMNKwUDiY0lKa42xPLl+mXknjxwPZ2abPMyUU1lRnl5QAv05Y1m4rQhelLYoRI7SZ\nTxyjYBjTsFA4GEdYFKdO0X176FDzcQrDqmwRazKfZNVQyETJrCeAMp/69KFW6i4uxk0LGYYhWCgc\njCOE4sQJcruEh5sXCsOqbBFJ15OY0XT4sN5h2TUUMlDaogDoOqSnc3yCYczBQuFgSkvpW3Jdnf3e\n8+RJsijkCIUs15OY0fThh0Z37ytXrl6LAiChOHCA3U4MYw4WCgdTVkbfuO1pVZw40XGhuHgRWiti\n3DggLo5qIwxmhSrperKVRXHgAFsUDGMO7vXkQOrq6F47aBAJxaBB9nnfkyfpBunjQ8FsQdCvlRAp\nK5MefapxPc2bR+Pv9uwx2UdcSaHw9KTspNZW5YQiMpK8ZTwLm2FMw0LhQEpLKZjq728/i+LKFRKo\noCASB09PmlgXGGh8rqVgtvDNP6GKijSb8qqkULi6UkpsTY2yQtHYyBYFw5iDXU8ORFco7JUiK8Yn\nRAvCnPvJVDC7Vy+6SZcGj7JYF6GkUADaOIUSldniegMHslAwjDlYKByIKBR+fvazKMT4hIglofD1\nBfmmxDarbcgpupNsCNhBxDiFUhYFQF4zDmYzjGlYKBxIWZn9hUKMT4iEh5suuisrA/rVqIEZM4Av\nvtB7Tk4tRUUF3YC7devgpnUQLQolKrNFoqLYomAYc7BQOJDSUvrG7udnP9eTbItCEHD7pQ0IvC0W\nmD4duPNOvacNU2TLymjukC5K1lCI2MKimD4dGD1ambUYpjPCwWwH4ohgtqFFERYmIRRqNVoX34+/\nNZQDB1KBkcYZTYYWxfr1wJdfUpNDESVrKER0LQqlhOKWW+iHYRhp2KJwIPaOUZSW0nyI4GDtMdGi\nEASdEx9+GHXXTMdffffBRUIkAP0YhSAAH38MnD2rH8pQOpAN2MaiYBjGPCwUDsTeQmGY8QTQ+7u6\n0k1dQ3IyChY9B+8+pg1OXdfTH39QnyQfH30rwxZCYQuLgmEY87BQOBBRKPr3p5uqQWKR4hi6nUSM\n4hQuLiarskV0XU+bNgH33gsMGwacOaM9hy0KhukcsFA4EPFm7O5O35RLS237foaBbKjVQEmJZEDb\nVLGdiOh6qq4Gvv0WWLAAiIigTqwibFEwTOeAhcKBiBYFYB/306FDQEwM9GdX790rKRSmiu1E+val\nCuktW4ApU4CAALIobC0UbFEwjP1hoXAgukJh6+rs8nLKSLoupK0u4sMPgdRU4LbbTAqFOYtCpaK2\nH6tXk9sJsK9FoVRlNsMwlmGhcCD2tCh27QJeGbQRPaa01UXs26cJWEilyFoSCoDcTzU1wK230uOI\nCP0YhdJV2QBbFAzjCLiOwkE0N9NN1tubHttaKFJSgL8NbwC+SDWKaJuyKCzd5IODgbFjtZXXgwdT\nJlRDA9C9u+0sivJyun5KVnwzDGMaFgoHUV5OMQCXNpvOltXZgkBC8ezuR4AI4+f9/Oh3QYG2i2x5\nOQmIOV5+Wd/q6NaNWqWfP09tu20Vo7h8mawJqdboDMMoD7ueHITYvkPEltXZx4/TN/yhQ6WfV6ko\nrn3okPaYpWA2QEJiaHWI7qfWVn3XmlJ4e2uFgmEY+8BC4SAMb6KKuZ7EjKbfftMcSkkBbr7Z/Dfw\n2Fjg4EHtYzkxCinEgHZ5OX37d3e3fg1zeHmRpcJCwTD2g4XCQdhEKNQ6GU06Pp8ffyShMIeURdEe\noRBTZG3hdgLIomhtZaFgGHvCQuEgDIWiQ+mxunURYkZTW2VdVRXNhJ42zfwSokUh9nyyVHBnCtGi\nsJVQeHrSbxYKhrEfHMx2EIpaFAsXAqdPU12EQUbTr78CEydqb7CmCA6mb+oXL9LfHXE9nTljO6Fw\ncaHPwkLBMPbD7hZFXl4epk2bhqioKERHR2PdunUAgNLSUsTHxyMiIgIzZsxAeXm5vbdmktWraa6y\nkhjeiL28gKYmoLa2HYv98596dRG6/Pgj8Je/WF5CDGgfPEiCUVlJTf6sJTCQ0n6zs5WvoRDx8mKh\nYBh7YnehcHd3xxtvvIETJ05g//79ePfdd3Hq1CkkJiYiPj4eWVlZiIuLQ2Jior23JkljI/Dcc0Bh\nobLrGloUKlUHrIphwyRnV4tpsZbiEyKiUFRW0sQ3V1frt6JSkVWxb59tLAqA4hQsFAxjP+wuFAEB\nARjdNk7M09MTI0aMwMWLF5GcnIxFixYBABYtWoTt27cr8n7vvQccOdL+11+4QDdcpQ0cqdRRiymy\nggC0tMh+j5QUuqHqNQI0gygU7XU7iUREAHv32k4o2KJgGPvi0GB2bm4uDh8+jIkTJ6K4uBj+/v4A\nAH9/fxQrVH22Ywdw+HD7X5+TQ78rKhTZjgYpoTBrUYgZTUlJstZvaQGWLQNWrpRfmKakUBQU2Nai\nUGpeNsMwlnFYMLu6uhpz5szBW2+9BS8vL73nVCoVVCbubitWrND8PXXqVEydOtXs+1RUkCulvYhC\nYQ+LQrI6WxCADz6gOMT//R9w332y1t+6lb55z54tf0+BgVRdfeRIx4UCYIuCYRxFamoqUlNTFVvP\nIULR1NSEOXPmYMGCBZjddifz9/dHUVERAgICUFhYCD+xr4QBukIhh8rKjgnF+fP0W2mhKCuT4XpS\nq4H776c3l8hoMkV9PfCvfwGff259m4vYWOB//7NclW2OYcPoty0tCqUL+RimM2H4Jfqll17q0Hp2\ndz0JgoDFixcjMjISTzzxhOb4rFmzsHnzZgDA5s2bNQLSUSoqqJagveTk0LdrW7ieDL+1G7meli83\n6vQqh3feoWZ9115r/b5iY4FffumYRSG2CmGLgmE6B3a3KPbu3YutW7di1KhRGDNmDABg1apVWL58\nORISEpCUlITQ0FB8+eWXirxfRy2KnBxgzBhlLQpBkI4D+Pnpt9HAZ59ZbRKUlVE6r04HD6uIjaVe\nSh0Rit69KdMqKKj9a5jD21v5dGWGYUxjd6GYMmUKWk0Mh961a5ei7yUIyrie/v53ZS2Kqir6RmzY\nJtvI9dSO9qiffEJ1EyNGtG9v48bR744IBUD1G7YiKooGFzEMYx86dWV2bS1l/7TX9SROUouIANLT\nlduXUSBbrQZcXeHnF9zhVuO//QbMmdP+1/v7AwMHdlwobMnf/uboHTBM16JT93oSrYD2WhQ5OUBo\nqPIxCo1Q6PZoSkvrcGNAQQD++INmWHeEKVNs5zZiGMb56NQWhXhzb69FkZNDU9t8fJSNUZSVAcN7\nqsvbj4kAAA7LSURBVIEZ99Mm2zKa+jeTiDQ3Gxda//wz8OWXwLPPatNPDTl3juZOhIR0bH9bt/JQ\nIIZhtHRqi6KykqyB9loU58+TUPTuraxF4f11Et4/FAvExQFpaZqMJjc32m9JifFr9uwBMjMpk+me\ne6gHoCFKWBMANd5joWAYRqRTC0VFBXVC7YjracgQ5S2K6jo3vD4zldJfDUyHgACgqMj4NYWFwAMP\nULO96GgSjJoa/XOUEgqGYRhdOrVQVFZSYLajrqfeveUJxf/9H33rt8T+YYvQEC5dF2FqLkVRETBg\nAKWGPvccMGECkJysfw4LBcMwtqBTC0VFBd14m5ral3cvup58fGgtcaiPKT76CLjpJprHYA5zs6QD\nAqSForCQnhNZsADYskX7+NIlep0VdXkMwzCy6NRCIc5U8Pa23qoQBCA3l4SiRw/y2dfXmz6/qYlc\nQa++CsTHA7k5bRlNO3YYnSvVvkPE31/a9SRaFCK33UbhDVFU9u4FJk9uX2twhmEYc3RqoaioIJHw\n8rJeKC5dog6l3t702FJA+8oVGtRz333Af+5X42JUPBrfSyKlMUCqfYeIlEXR0kIBbt32Vx4ewKxZ\nwLZt9JjdTgzD2IpOLRS6FoW1AW0xPiFiKaBdUgL060tWxKK3Y9E67UYMLkzDt2eMh0GYcz1JWRSX\nLpGwGDbCW7CAUlkBFgqGYWxHp6+jiIxsn1CI8QkRSxZFSQmwuvQBICkTSE3FdVFR+CqNxlknJ1P/\npePHaYZ1ZiYJghRSwWxDt5PI9Ok04/rQIVp7/HjrPiPDMIwcuoRFIcf1lJICHDumfSymxorIsSh2\njH5Bry5i8mSa7dCtG6XpvvACuZG++cb01Dmp9FjDQLaIqytw993AY48BMTE8zIdhGNvQ6S0Kb295\nFsXatRRnOHiQbsA5Ofrf0C2lyJaUAK2DBhtdUU9PimmvXy8v0GyNRQFQ36PXXgOeecby2gzDMO2h\nS1gUlrKeBAE4ehRobQU+/JCOGbqexBRZzQuamvTWKCkxP39BbjZSv34kSLrLFxaaFoqYGJo9ERcn\nb32GYRhr6dRCoZv1ZM6iEF09n3wC/PvfFGw2DGZrLAq1mvJf33lHbw1LQiEXV1fKnrp8WX9/Uq4n\ngNJ209KofoNhGMYWdHqhkJP1lJkJjBpF387nzqVYQkEBMGiQ9pzePgIifm3r9HrjjcCjj+qtoZRQ\nAMZxCnMWBUCNABmGYWxFp45RVFZqYxQFBabPE4UCAF5+mbqz+vvrDBZSq7Fwy2K0lFeanF2tpFAY\nxiksCQXDMIwt6bQWRXMzDR3y9LTsejp6lKwJgNw+K1dS4z0Nr76KktE34t9xaSZ7ZChtUegKhTnX\nE8MwjK3ptEJRVUUCoVLJdz2JPPgg8N13Oids2ID8vy1HaaVpA0xpi0J0PQkCWxQMwziWTisUYnwC\nMJ/11NhIA38M6xr0qqBVKlnpsbZwPVVV0XwIT09l1mYYhrGWTisUYnwCMO96OnVK2/gPajWphgTm\nKrPr6sjV5eHR8X0D+sFstiYYhnE0nVYo5FoUmZnAqJE6s6v//FPyPHOV2VeukDWh1FQ4XYvCXLEd\nwzCMPei0WU+6FoW5GMWF39VYeXAxcN50RhNg3qJQ0u0EGFsUHMhmGMaRdAmLwqTradMmPPxxLBqm\n3KjXo0kKT0+aN9HSYvyc0kKha1Gw64lhGEfTaYXCMEZRVSUxoc7LC7d5p8LzFePZ1Ya4uJi2TJQW\nir596X0aGzk1lmEYx9NphULXoujeneIHDQ365xRfNxfHWqMQFCRvTVNxCqWFwsUF6N+f5lCwRcEw\njKPptEKha1EA0taAWD8hNwhtKkVWaaEAtHEKDmYzDONoOq1QaCwKgTKa7nH53CjzKTNTW5EtB1MB\nbVsIhRin4GA2wzCOptNmPVVUAAMa1UD8YqCyEnm+myQtiuuvl7+mvVxPgLY6my0KhmEcTee0KAQB\nkzI3YObLbZ1e09Jw2S/KSCiOHtVv3WEJe1oUAQFAfj69n9JrMwzDWEPntCgefRTTctJx5M1UTLyP\nUl4Ni+5aWoDTp81mxBphb4vi998pqO3SOeWcYRgnoXPegp57DgvD0uAWo1UBw1qKwkKgTx+gVy/5\ny9rbojhyhN1ODMM4ns4pFEFBKK10M8p60rUocnKA0FDrlpWyKASBhKJv33bvVhJ/f9ojB7IZhnE0\nzi0UggDU10s+Jc7LFjFMjzUcdSoHqfTYmhqq1evZ07q1LCEKBFsUDMM4GucVCnF29Zo1Rk8JgnZe\ntoih6yk3t31CYeh6soXbCSCLAmCLgmEYx3NVCUVKSgqGDx+OoUOHYvXq1dInCTqdXm+8EXjuOaNT\nGhqoiK5HD+0xW7mebCUUvr40E4MtCoZhHM1VIxQtLS145JFHkJKSgpMnT+Lzzz/HqVOnjE+MjweS\nkqjT63LpHk2G1gSgnOvJXhaFiwvg52daKFJTU5V/UyeFr4UWvhZa+Foox1UjFOnp6QgPD0doaCjc\n3d1x11134Tu9eaRt3Gi506thfAJQxvVkT4sCAMLCgCFDpJ/jfwRa+Fpo4Wuhha+Fclw1dRQXL17E\nwIEDNY+Dg4Pxp9QQoeXLLa5lyqIQXU9NTZQeq/N2srCnRQEAv/7KNRQMwzieq+Y2pFJqPBykLQpd\n11N+PgWJ9eZiy0C0KHTbldtSKFgkGIa5KhCuEvbt2yfcdNNNmscrV64UEhMT9c4JCwsTAPAP//AP\n//CPFT9hYWEduj+rBMFonI9DaG5uxrBhw/DLL78gMDAQEyZMwOeff44RI0Y4emsMwzBdmqsmRuHm\n5oZ33nkHN910E1paWrB48WIWCYZhmKuAq8aiYBiGYa5OnCZcKqsYr5OSl5eHadOmISoqCtHR0Vi3\nbh0AoLS0FPHx8YiIiMCMGTNQLtXatpPS0tKCMWPGYObMmQC67rUoLy/H3LlzMWLECERGRuLPP//s\nstdi1apViIqKwsiRI3H33XejoaGhy1yL++67D/7+/hg5cqTmmLnPvmrVKgwdOhTDhw/Hzz//bHF9\npxAK2cV4nRR3d3e88cYbOHHiBPbv3493330Xp06dQmJiIuLj45GVlYW4uDgkJiY6eqt246233kJk\nZKQmW66rXovHH38ct9xyC06dOoXMzEwMHz68S16L3NxcbNy4ERkZGTh27BhaWlqwbdu2LnMt7r33\nXqSkpOgdM/XZT548iS+++AInT55ESkoKli5ditbWVvNv0KFQuJ1IS0vTy4hatWqVsGrVKgfuyLHc\ndtttwv/+9z9h2LBhQlFRkSAIglBYWCgMGzbMwTuzD3l5eUJcXJywe/du4dZbbxUEQeiS16K8vFwY\nPHiw0fGueC2uXLkiRERECKWlpUJTU5Nw6623Cj///HOXuhY5OTlCdHS05rGpz26YUXrTTTcJ+/bt\nM7u2U1gUUsV4Fy9edOCOHEdubi4OHz6MiRMnori4GP5t3QP9/f1RXFzs4N3ZhyeffBJr1qyBi06h\nSVe8Fjk5Oejfvz/uvfdejB07Fg888ABqamq65LXo06cPnnrqKYSEhCAwMBC9e/dGfHx8l7wWIqY+\ne0FBAYKDgzXnybmfOoVQKFmM58xUV1djzpw5eOutt+Dl5aX3nEql6hLX6YcffoCfnx/GjBkDwUQe\nRle5Fs3NzcjIyMDSpUuRkZEBDw8PI9dKV7kW2dnZePPNN5Gbm4uCggJUV1dj69ateud0lWshhaXP\nbum6OIVQBAUFIS8vT/M4Ly9PTxG7Ak1NTZgzZw4WLFiA2bNnA6BvCUVFRQCAwsJC+Pn5OXKLdiEt\nLQ3JyckYPHgw5s+fj927d2PBggVd8loEBwcjODgY48ePBwDMnTsXGRkZCAgI6HLX4uDBg5g8eTL6\n9u0LNzc33HHHHdi3b1+XvBYipv5NGN5P8/PzERQUZHYtpxCK2NhYnD17Frm5uWhsbMQXX3yBWbNm\nOXpbdkMQBCxevBiRkZF44oknNMdnzZqFzZs3AwA2b96sEZDOzMqVK5GXl4ecnBxs27YN06dPx5Yt\nW7rktQgICMDAgQORlZUFANi1axeioqIwc+bMLncthg8fjv3796Ourg6CIGDXrl2IjIzsktdCxNS/\niVmzZmHbtm1obGxETk4Ozp49iwkTJphfTOmAiq3YuXOnEBERIYSFhQkrV6509Hbsyu+//y6oVCoh\nJiZGGD16tDB69Gjhxx9/FK5cuSLExcUJQ4cOFeLj44WysjJHb9WupKamCjNnzhQEQeiy1+LIkSNC\nbGysMGrUKOH2228XysvLu+y1WL16tRAZGSlER0cLCxcuFBobG7vMtbjrrruEAQMGCO7u7kJwcLDw\n0Ucfmf3sr776qhAWFiYMGzZMSElJsbg+F9wxDMMwZnEK1xPDMAzjOFgoGIZhGLOwUDAMwzBmYaFg\nGIZhzMJCwTAMw5iFhYJhGIYxCwsFw5ihoqIC7733HgCqbr3zzjsdvCOGsT9cR8EwZsjNzcXMmTNx\n7NgxR2+FYRzGVTMKlWGuRpYvX47s7GyMGTMGQ4cOxalTp3Ds2DF8/PHH2L59O2pra3H27Fk89dRT\nqK+vx2effYbu3btj586d8PX1RXZ2Nh555BFcvnwZvXr1wsaNGzFs2DBHfyyGsQp2PTGMGVavXo2w\nsDAcPnwYa9as0XvuxIkT+Pbbb3HgwAG88MIL8Pb2RkZGBiZNmoRPPvkEALBkyRK8/fbbOHjwINas\nWYOlS5c64mMwTIdgi4JhzKDrmTX00k6bNg0eHh7w8PBA7969NWNZR44ciczMTNTU1CAtLU0vrtHY\n2GifjTOMgrBQMEw76d69u+ZvFxcXzWMXFxc0NzejtbUVvr6+OHz4sKO2yDCKwK4nhjGDl5cXqqqq\nrHqNaHl4eXlh8ODB+PrrrzXHMzMzFd8jw9gaFgqGMUPfvn1x7bXXYuTIkXj22Wc1k8AMJ4YZ/i0+\n/vTTT5GUlITRo0cjOjoaycnJ9v0ADKMAnB7LMAzDmIUtCoZhGMYsLBQMwzCMWVgoGIZhGLOwUDAM\nwzBmYaFgGIZhzMJCwTAMw5iFhYJhGIYxCwsFwzAMY5b/D3zG1yc+QmSHAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 5 + "prompt_number": 38 }, { "cell_type": "code", @@ -220,13 +220,13 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVdX+//HXYUhTAXECEQ0TEcFZsswG1LAyp3Ku1GuY\ndv1pWpqa6Vdvg2JmqZXmdBWH1EYzNVMjbEDylmOoqSjHmRwYBFMG9+8PlKIUJzj7HM77+XicR7DP\n5pzPXsn5sPb6rLUshmEYiIiIXIWL2QGIiIh9U6IQEZFCKVGIiEihlChERKRQShQiIlIoJQoRESmU\nEoU4PQ8PD5KSkswOQ8RuKVGI0zt79iwBAQFmhwHAtm3baNq0KWXLliUsLIzt27df9dx//etflCpV\nCg8PDzw8PPD09ETToqQ4KFGI2ImsrCw6duxI7969SU1NpU+fPnTs2JHs7Owrnm+xWBg5ciRnz57l\n7NmzpKenY7FYbBy1OAMlCikRAgICmDJlCg0bNqR8+fL06NGDCxcu5D8/Z84cateuTcWKFenYsSPH\njx/Pf87FxYUDBw4AsGbNGkJDQ/H09MTf358pU6bkn7dq1SoaNWqEt7c3LVq0YOfOnUV6DbGxseTm\n5jJkyBDc3d0ZPHgwhmEQExNz1Z9RD0JsQYlCSgSLxcLHH3/M119/zcGDB9mxYwcLFiwAICYmhtGj\nR/Pxxx9z/Phx7rjjDnr06HHF14mMjGT27Nmkp6eTkJBAq1atANi6dSuRkZHMmTOHM2fOMGDAADp0\n6EBWVtYVX6dBgwZ4e3tf8TFo0KAr/kxCQgINGjQocKxhw4YkJCRc9bpnzJhBxYoVCQsL47PPPrtW\nM4ncFDezAxApKs8//zy+vr4AtG/fnm3btgGwZMkSIiMjadSoEQATJ07E29ubQ4cOUaNGjQKvcdtt\nt5GQkED9+vXx8vKicePGAMyePZsBAwZw1113AdC7d28mTJhAfHw8DzzwwD9i2bFjxw3Hn5GRgZeX\nV4Fjnp6enD179qrX+/bbb+Pl5cXXX39N9+7d8fX15d57773h9xYpjHoUUmJcThIAt99+O5mZmQD5\nvYjLypYtS8WKFTl69Og/XuPTTz9lzZo1BAQEEB4eTnx8PABWq5UpU6YU6BkcOXKkwC2sW+Xh4UF6\nenqBY2lpaXh6el7x/MaNG+Pt7Y2LiwuPPvooTz31lHoVUiyUKKTE8/PzK1D+mpmZyenTp6lWrdo/\nzg0LC2PFihWcPHmSTp060a1bNwBq1KjBK6+8QkpKSv4jIyOD7t27X/E9Q0ND86uR/v4YOHDgVX/m\n7z2RHTt2EBoaepNXLlI0lCikxLo80NuzZ0/mz5/P9u3buXDhAqNHj+aee+75x22n7OxslixZQlpa\nGq6urnh4eODq6grAs88+ywcffMDmzZsxDIPMzExWr15NRkbGFd87ISEhvxrp748ZM2Zc8WfCw8Nx\ndXVl+vTpXLhwgenTp+Pi4pI/TvJ3n3zyCRkZGVy8eJF169axZMkSOnTocLPNJXJVShRSIlkslvxS\n0datW/Paa6/RuXNn/Pz8OHjwIMuWLStw7mWLFy+mZs2aeHl5MXv2bJYsWQJA06ZNmTNnDoMGDaJC\nhQrUrl2bhQsXFmnM7u7urFixgoULF+Lt7c3ChQtZsWIFbm55Q4lLliyhXr16+edPnz4df39/vL29\nGTlyJHPnzr3ieInIrbIU18ZFzzzzDKtXr6ZKlSr5ZYRnzpyhe/fuWK1WAgIC+OijjyhfvjyQN8D4\n3//+N/8vqjZt2hRHWCIicoOKrUfRt29f1q5dW+BYVFQUERER7N27l9atWxMVFQXArl27WL58Obt2\n7WLt2rUMHDiQixcvFldoIiJyA4otUdx///14e3sXOLZy5Ur69OkDQJ8+fVixYgUAX3zxBT179sTd\n3Z2AgAACAwPZvHlzcYUmIiI3wKZjFMnJyfj4+ADg4+NDcnIyAMeOHcPf3z//PH9//yuWLoqIiO2Z\nNpj918HGqz0vIiLms+nMbB8fH06cOIGvry/Hjx+nSpUqAFSrVo3Dhw/nn3fkyJEr1rgHBgaSmJho\ns3hFREqCWrVqsX///pv+eZv2KDp06EB0dDQA0dHRdOrUKf/4smXLyMrK4uDBg+zbt49mzZr94+cT\nExMxDEMPw2DcuHGmx2AvD7WF2sLZ2uLMGYO6dQ2GDDH47DODHTsMMjIuPW+1/uP8W/0Du9h6FD17\n9mTjxo2cOnWK6tWr8+qrrzJq1Ci6devGvHnz8stjAUJCQujWrRshISG4ubkxY8YM3XoSEbmCrCx4\n4gl4+GF4550rnPC3iaRFodgSxdKlS694fMOGDVc8Pnr0aEaPHl1c4YiIODzDgH79wNsb3nrtD+B2\nm7yvZmY7qPDwcLNDsBtqiz+pLf5UEtvitdfgtz0Gy1rOwrVuEKSl2eR9i21mdnGwWCw4ULgiIkVm\n3ToY08vK98H9KPVHGsyfD9e5YOStfnaWiB5FhQoV8stt9bi1R4UKFcz+3ykif3PsqMGGrrP44UIY\npR5tDXFx150kikKJ2LgoJSVFPY0ioiICEfuSkwPPdz7KWxWWcduqWJsmiMtKRKIQESmJcnNhzBhI\n8/Cn+o/fgqs5cShRiIjYkbNn4dNPYe1aWL8eAgJgzRpwNSlJQAkZoxARcXSGAYsXGQwKWMWKzw0i\nImD7dvjlF7i0RJ5pSkTVk6qhio7aUsT2fv0Vxve1Mvy3ftTzT6Nc3Dq4tFdPUVDVk4iIAztz2mDR\nfbNYtCeMZqNaU25HXJEmiaKgMQonlZOTk7/FpoiY5NQpjtXvycDSadz+TawpFU3XQz0KG5g0aRL+\n/v54enoSHBxMTEwMhmEQFRVFYGAglSpVonv37qSkpACQlJSEi4sLCxcu5I477qBy5cpMmDAh//U2\nb95MWFgYXl5e+Pr6MmzYsPznVq5cSWhoKN7e3rRs2ZI9e/bkPxcQEMCbb75JgwYN8PDw0C6CIiZb\n/b0ny3K6UOk3286LuGGGA7lauPZ8GXv27DGqV69uHD9+3DAMw7BarUZiYqIxdepUo3nz5sbRo0eN\nrKwsY8CAAUbPnj0NwzCMgwcPGhaLxejfv79x/vx5Y/v27UapUqWMPXv2GIZhGPfcc4+xePFiwzAM\nIzMz04iPjzcMwzB+++03o2zZssaGDRuMnJwc48033zQCAwON7OxswzAM44477jAaN25sHDlyxDh/\n/vwV47XnthQpSc6cMYxq1Qzj22+L/71u9ffaaXoUFkvRPG6Uq6srFy5cICEhgezsbGrUqMGdd97J\nrFmzeP311/Hz88Pd3Z1x48bxySefFPgrf9y4cZQqVYoGDRrQsGFDtm/fDsBtt93Gvn37OHXqFGXK\nlOHuu+8GYPny5bRr147WrVvj6urK8OHD+eOPP4iLi7vUBhaef/55qlWrRqlSpW69UUXkphgGDB0K\nnTqBIyxJ5TSJwjCK5nGjAgMDmTp1KuPHj8fHx4eePXty7NgxkpKSePzxx/H29sbb2zt/ifXL28MC\n+Pr65n9dpkwZMjIyAJg3bx579+6lbt26NGvWjNWrVwNw/PhxavxliWGLxUL16tULbCtbvXr1G78I\nEbk1Viv06oWRmsbatdCsGezaBVFRZgd2fZwmUZipZ8+efP/991itViwWCyNHjqRGjRqsXbuWlJSU\n/Me5c+eoWrXqNV8vMDCQDz/8kJMnTzJy5Ei6dOnCuXPn8PPzw2q15p9nGAaHDx8usFuglugQsSHD\ngFmzMMLC+M09lPDHyvLiizBiBPz0E5QrZ3aA10eJopjt3buXmJgYLly4QKlSpShdujRubm4899xz\njB49mkOHDgFw8uRJVq5ceV2vuXjxYk6ePAmAl5cXFosFV1dXunbtyurVq4mJiSE7O5spU6ZQunRp\n7r333mK7PhEpaO9eSEyE01us5LRqw8moeXT0jKXbL6N49t9u7NwJXbuCiwN9+qo+sphduHCBl19+\nmd27d+Pu7k6LFi2YPXs2Pj4+GIZBmzZtOHbsGFWqVKFHjx506NABKPwv/6+//pphw4Zx7tw5AgIC\nWLZsGaVKlaJOnTosXryYwYMHc/ToURo3bsyXX36pMlgRG3njDZg6Fe4sc4JVh+9ivMuLbI8YztDh\nbrRqdXPjnPZAM7OlALWlyM2ZOBGio+Hbb6FqVeDECfjLOKOZbvX3WolCClBbity4N9+EuXMhNhb8\n/MyO5p9u9fda9yRERG7C77/DV1/B2o/P8steD7791j6TRFFwoOEUERHzHT0KjzwCQbUNzk+bxbwf\ngti8+iR/KS4scZQoRESu04YNEBYGj9WzciasDQPc5lHmxw2Ur13Z7NCKlRKFiEghLlyAPXtg3Djo\n3csgtucsBkeH4RJh+72rzaIxChGRK5g0Cd5/H5KToUYNaNIEtqw/je/wz/NGrZ0gQVymqicpQG0p\nAq+9Bh9+mLclaVAQOPpUJFU9iYgUoddfz0sS335rN9MgTKcxCifh4uLCgQMHzA5DxK69+SYsXgwx\n3xj4/vgp5OaaHZJdUKKwUwEBAcTExJgdhojTOHUqb3Z1bLSVqn3a5A1SnDljdlh2QYnCTmmsQMS2\n/jvP4J3gWfi2C4PWlyqaKpfsstfrpURhA5e3PPX09CQ0NJQVK1bkPzdnzhxCQkLyn9u6dSu9evXi\n0KFDtG/fHg8PD9566y1iY2P/sZfEX3sdmzdvpnnz5nh7e+Pn58fgwYPJzs626XWKOKqLp1O4d3wb\nuqTPy6toGjXK8Uewi5AShQ0EBgbyww8/kJ6ezrhx43j66ac5ceIEH3/8Mf/5z39YtGgR6enprFy5\nkooVK7Jo0SJq1KjBqlWrOHv2LMOHD7/i6/51hVk3NzemTZvG6dOn2bRpE9988w0zZsyw1SWKOLSv\nN3mywecpym5zjnkRN8p5EsX48Vfe23T8+Os//2rnXkOXLl3yd6vr1q0btWvXZvPmzcybN4+RI0fS\ntGlTAGrVqlVgh7ob0aRJE5o1a4aLiwt33HEH/fv3Z+PGjTf1WiLOZuZsV6qP/RcWd/UirsR5WmX8\n+Bv7oL/R8wuxcOFC3nnnHZKSkgDIyMjg1KlTHD58mFq1ahXJe+zdu5cXX3yRX375hXPnzpGTk0NY\nWFiRvLZISWa1wo8/wtKlZkdiv5ynR2ESq9VK//79ef/99zlz5gwpKSnUq1cPwzCoXr06+/fvv+LP\n/X3jorJly3Lu3Ln873Nzc/N3uQP497//TUhICPv37yctLY033niDixcvFs9FiTgqqxW6dcubbn3J\n7NnQqxeULWtiXHZOiaKYZWZmYrFYqFSpEhcvXmT+/Pn8+uuvWCwW+vXrx1tvvcWWLVswDIP9+/fn\nb43q4+NDYmJi/usEBQVx/vx51qxZQ3Z2Nq+//joXLlzIfz4jIwMPDw/KlCnDnj17mDlzps2vVcRu\nXdq7mrAwjvk2Yd6KikRHw5IlMG8e/PvfZgdo35QoillISAjDhg2jefPm+Pr68uuvv3LfffcBeWMX\nr7zyCk8++SSenp488cQTpKSkAPDyyy/z+uuv4+3tzdtvv42XlxczZsygX79++Pv7U65cuQJVUG+9\n9RYffvghnp6e9O/fnx49ehTolRS2tapISXT69KUvrFZo04bc2fOIeiSWJh+NIm6zGzExsHo1DBoE\ndeqYGqrdM2Wtp4kTJ7J48WJcXFyoX78+8+fPJzMzk+7du2O1WgkICOCjjz6ifPnyBYPVWk/FTm0p\nJcH06TBsGIT6pbDxZF12thpKr+3DCX/IjcmToVIlsyO0LYfbCjUpKYlWrVqxe/duSpUqRffu3Wnb\nti0JCQlUqlSJESNGMGnSJFJSUoiKiioYrBJFsVNbiqPbvRseeAA2bYKsLIj78jTfJVSkb19o2dLs\n6MzhcIsCenp64u7uzrlz53B1deXcuXP4+fkxceLE/HLOPn36EB4e/o9EISJSmOzsvIHp11+HwMC8\nYyEhFelnblgOz+ZjFBUqVGDYsGHUqFEDPz8/ypcvT0REBMnJyfj4+AB5A7nJf6lKEBG5ppQUXn8d\nqlSB/v3NDqZksXmPIjExkalTp5KUlISXlxddu3Zl8eLFBc6xWCxXHXwd/5e5DeHh4YSHhxdjtCJi\njy5ehI8+yhuLKO9l0DdnNm03jWVl6V9Ys7M6zl67ERsbS2xsbJG9ns3HKJYvX8769euZO3cuAIsW\nLSI+Pp6YmBi+/fZbfH19OX78OC1btmTPnj0Fg9UYRbFTW4o9MwxYtQrGjIHSpeGN/lYavtuP7NNp\nvN90Pg8ODKVNG7OjtD+3+ntt81tPwcHBxMfH88cff2AYBhs2bCAkJIT27dsTHR0NQHR0NJ06dbJ1\naCJixy5cgD59YORIeO1Vg/i+s3hoVBiVe7TG72Acb6xQkiguNr/11LBhQ3r37k1YWBguLi40adKE\n/v37c/bsWbp168a8efPyy2Ovl7e3t+YJFBFvb2+zQxD5h99/h8cfBz8/+PlnKJNzFnp/5XR7V5ul\nROyZLSIl186d0KED9O4N48aBi6YJ3zCHK48VEbleGzdC164wdSo8+aTZ0Tgv5WYRsUuffw5duxjE\nPLuUJ7tkmR2OU1OiEBG7cnn9vgkDrOyv1YZ669/J29BaTKNEISJ24/Bh6NjB4Pj4WcTnhOHZ6dLe\n1X5+Zofm1DRGISKmy82F996Dd149S0z5JwjwT8NlQawqmuyEEoWImO7VV+Grr+DrH8tx57ZI6NIF\n3PTxZC9UHisipvr5Z2jbFrZt0x2m4uJwM7NFRC47fz5vfsTUqUoS9kyJQkRsz2qFTp14e4iVkBDo\n2dPsgKQwShQiYjt/2bs6sfI9zPiiGjNn4vSrvdo7jRaJiG1YrWT27EfqoTSGVIrluy9CmT8fKlc2\nOzC5Fg1mi0ixMzIyOesfzPSc/8fpvsPp1MWNFi1U2GQrDrdn9q1QohBxPH/8Af36wZFdaSz50gt/\nf7Mjcj6qehIRu2MYcOgQrF4N99+fd2xtnJKEo1KPQkSKjNUK/xl0ks++r8ztt0P9+tCxIwwcqAFr\nM+nWk4iYLjcX3p1ucHjsbF41xnAh5kcq3B1kdlhyifajEBFTpaVBn3ArY5L6Ue/ONEovjaVsqJJE\nSaIxChG5eYbBJxGzWLQnjCYjWlN6S5wW8iuB1KMQkZu2dP55fH+Lxe37WFzClCBKKo1RiMhNOXAA\n7r4b1q+HRo3MjkYKozEKESl26el5K7xmZ8Njj8Gjj8KQIfDyy0oSzkBjFCJSqJwc6NnDINItmqix\nmaSlQa9e4OsLQ4eaHZ3Ygm49iUihxve10mFlJI3uTMfl00+gRg2zQ5IbpHkUIlJkkpLgm2/gjjsg\n4A6DQ2Nn0+iTMdw+Zji3jxmmxZkclBKFiBSZf/0LEhPhdst5xv2vHeUupuP9xQJqPBJidmhyC5Qo\nRKRInDsH1arB7t154w988UXeyLV6EQ5PVU8iUiRWrIB77rmUJCBvkSYRVPUkIpcsWpRXzSTyd0oU\nIs7MaoW2bfn9uz3Ex0OnTmYHJPZIiULEGf1l72oefJAlPwXSqROUKWN2YGKPNEYh4mS2fG4l91+R\nhFZPp8zGjRASwsLGMGWK2ZGJvVKPQsSJJB+6QMWurUhuEMGdJ+L4cFsIO3fCqVMQHm52dGKv1KMQ\ncRLZ2dD16VJEDN/B2KiyrNsBjz+eV/361FPgoj8b5Sr0T0PESbz0Enh4wCsTygLQoAH87395e1o/\n+6zJwYld04Q7kZLq2DGoWhUsFqKj4bXX8hKDt7fZgYmt3epnpyk9itTUVLp06ULdunUJCQnhp59+\n4syZM0RERBAUFESbNm1ITU01IzQRx3e5oqlhQ9i5k3XrYMQIWLlSSUJujimJYsiQIbRt25bdu3ez\nY8cOgoODiYqKIiIigr1799K6dWuioqLMCE3EsVmtEBEB8+bBxo38kt2Ap5+GTz+FEC3XJDfJ5ree\n0tLSaNy4MQcOHChwPDg4mI0bN+Lj48OJEycIDw9nz549BYPVrSeRKzMMmD0bxoyB4cNh2DASrW7c\nfz+8/37eoLU4L4db6+ngwYNUrlyZvn37sn37dpo2bcrUqVNJTk7Gx8cHAB8fH5KTk20dmojDsVrh\n++8h+UgO9y3ezMd3bWTL1yEkL4TDh2HSJCUJuXU271H8/PPPNG/enLi4OO666y6GDh2Kh4cH7733\nHikpKfnnVahQgTNnzhQMVj0KEQByc+G99/IGqB96CPz988atq1YFHx+oUiXv60qVzI5U7IHD9Sj8\n/f3x9/fnrrvuAqBLly5MnDgRX19fTpw4ga+vL8ePH6dKlSpX/Pnx48fnfx0eHk64ZgmJk9mzByIj\nwdUV4uIgKMjsiMTexMbGEhsbW2SvZ0p57AMPPMDcuXMJCgpi/PjxnDt3DoCKFSsycuRIoqKiSE1N\n/ceAtnoU4qxyc2HtWpj1gUHAt/+lwf89zjPDK2iSnFwXh9y4aPv27fTr14+srCxq1arF/Pnzyc3N\npVu3bhw6dIiAgAA++ugjypcvXzBYJQpxQt98k9eDaOBlZWZ2JL5l0nH9eDnUrGl2aOIgHDJR3Cwl\nCnE2ixfDiy8YxD45m5AP/6xo0q5zciMcboxCRK7NMPIqlubMyOZA7ccotykVLq30KmJrShQidubi\nRRgyBL77Dr7b5E65hOHQqpV6EWIa3XoSsSNZWdCnT94yTStXgpeX2RFJSaBbTyIlRGYmdO4MpUvD\n11/n/VfEHqi4TsQOnPrFys5qD9P8tl/45BMlCbEvShQiZjIMjoydhaVZGGfDWvF/nzbUUITYHf2T\nFDGL1crJjpH8npDOiUkbaTtcFU1inzSYLWKGnBxSajRkRkZvHvpqGHe30N9sUnw0mC3igObMd+NN\n11/4aktpAgPNjkakcEoUIjY2d27eqq8x3ypJiGNQohApbocPk12pKv/b6sYXX8CHH0JMDEoS4jCU\nKESK2LFjMG0apKYY3LVtNl22jeEJ91WkBN1Nq1Z5K3HceafZUYpcv2uWx7700kukp6eTnZ1N69at\nqVSpEosWLbJFbCIOadQoyEiwMva7CB4/PY+d727kI+vdbN0KU6YoSYjjuWaiWLduHZ6enqxatYqA\ngAASExOZPHmyLWITcTi/7TGo/Nks3o0Pw79vBBV/i+P+ASHaaU4c2jVvPeXk5ACwatUqunTpgpeX\nFxaLpdgDE3FEr79mMLj+LlzmaaVXKTmumSjat29PcHAwpUuXZubMmfz++++U1voCIv+wezesXefC\n+4nTwNPsaESKznVNuDtz5gxeXl64urqSmZlJeno6VatWtUV8BWjCndiznj2hQQN4+WWzIxEpqNh3\nuMvKymLmzJl89913AISHh/Pcc8/h7u5+0296s5QoxG4YBsyZA489BtWqkZCQt2XE/v3g4WF2cCIF\nFXuiiIyMJCcnhz59+mAYBosWLcLNzY25c+fe9JveLCUKMdO5c/DLL+CVaqXWhEhcMtP5us+HrN0X\nyFdfweDBeTuVitibYk8UDRo0YMeOHdc8ZgtKFGKW5GR4rK1Bp99n8/9OjGFe+eHM9hhGgyZu3H8/\ntGgBTZuC6jzEHhX7Wk9ubm7s37+fwEvTSBMTE3HTOsjiRPbvh0cfvsgal8cIrHoay9cbGR4SgjoP\n4iyu+Yk/efJkWrVqxZ133olhGCQlJTF//nxbxCZius2boVMnGD/ehdp1R0Pz5tq7WpzONSfc3Xvv\nvfTv3x8XFxcqVqzIgAEDuPfee20Rm4hpUlNh6FBo1w5mzoT+/YH771eSEKd0zUTRu3dvDh48yNix\nYxk0aBAHDhygV69etohNxOYMA6IXGNStmzd4nZAAHTuaHZWIua45mB0SEsKuXbuuecwWNJgtxSk5\nGUb1tDLg536UnzyG4AEPmh2SSJG41c/Oa/YomjRpwqZNm/K/j4+Pp2nTpjf9hiL26MuVBlOCZvFe\nfBhhox4iOLKF2SGJ2I1r9iiCg4PZu3cv1atXx2KxcOjQIerUqYObmxsWi8WmZbLqUUhxmDHSSoPp\nkTQMSMfj0wVao0lKnGKfR5GUlFToCwQEBNz0m98oJQopagvmGzR57i4ChnfF8z/DNFgtJVKxJwp7\nokQhRemrr6BvX4hdl0Vwg9vMDkek2BT7hDuRkig+Hnr3hi++QElC5BqUKMQpWK2waZmVDTt9iIkr\nTXo6zJsHmhIkcm3XrHoScVSJifDCC1A32ODderNoOy6MDj4/sWoV/P675keIXC/1KKREslqhZUsY\n+JiVnzwj8fBMx7JgIx1U0SRyw9SjkBInORkiHjJY0HwWoz4Jw7NzBJa4OJW9itwk9SikRElNhYcf\nhqeeglbZh2Cc9q4WuVUqj5USwTBg9Wp45ZW8W07vvKO9IUQuK/YlPIpLbm4ujRs3pn379kDevtwR\nEREEBQXRpk0bUlNTzQpNHIhhwMcfQ+PGMGZM3kNJQqRomZYopk2bRkhICJZLv9FRUVFERESwd+9e\nWrduTVRUlFmhiYPIyoJn+hrsHjqLdwbuY+tW6NpVSUKkqJmSKI4cOcKaNWvo169ffndo5cqV9OnT\nB4A+ffqwYsUKM0ITB5GWBn1bWRmyOoJXqs6jZbihBCFSTExJFC+88AKTJ0/GxeXPt09OTsbHxwcA\nHx8fkpOTzQhNHMAhq8HUurP44JcwGrwYgWt8HAQFmR2WSIll86qnVatWUaVKFRo3bkxsbOwVz7FY\nLPm3pET+Ku5Hg4zWHRlQ5QTlft6IJVQVTSLFzeaJIi4ujpUrV7JmzRrOnz9Peno6vXr1wsfHhxMn\nTuDr68vx48epUqXKFX9+/Pjx+V+Hh4cTHh5um8DFdNHR8NJLFj6PGovvoMZa6VXkKmJjY6/6h/jN\nMLU8duPGjbz11lt8+eWXjBgxgooVKzJy5EiioqJITU39x4C2ymOdU1YWjB4NK1bAypWaFiFyoxy2\nPPayy7eYRo0axfr16wkKCiImJoZRo0aZHJmYzjDYvcugeXP47Tf46SclCREzaMKd2CUjycqRRyIZ\neXwo4ZPb8eyzKnsVuVkO36MQ57ZrF2Rm/uWAYXDy9VmkBYXxRWYE4zc9Qv/+ShIiZtJooJjm0CG4\n+25wd8/A5c2sAAARfklEQVSbKDfgESuVRkVyKjGd7S9s5LmJIRqvFrED6lGIaV59FQYPhp07IeAO\ng+yn+vBVTgQeO+PoO1lJQsReaIxCTPHbb3DffbB3L3h7XzqYk6OSV5FioDEKcUhjx8KwYX9JEqAk\nIWKn1KMQm/t1tZUnIr3ZdsCTMmXMjkak5FOPQhyHYcCsWVR/PIwpXTYpSYg4CPUopFisXw/h4XkV\nTUDeJtaRkaQdTqdr5gJWHQjhttvMjFDEeahHIXbnt9+gTZu8TYQAmDULwsL4474IGmbGMWKBkoSI\nI1GikCL33nvw3HOwdCl8+SV5G1lv3MhzB0fyWEc3HnrI7AhF5Ebo1pMUqbQ0qFkzb26E1QqPPw6b\nN8PWrfDSS7BtG5Qta3aUIs7lVj87VY8oRWrBAoiIgGrV8h4jRkDnznD0KHzyiZKEiCPSrScpGobB\nxZmziJmyleef//Pwiy9CrVrw7LPQooV54YnIzVOPQm7dpYqm9ENpuJV7gHvv/fMpiwWWLzcvNBG5\ndepRyM27NC+Cpk2hdWueDNhEh5F1tdKrSAmjHoXcvO7dMQ4eJOH9jXx5IJRftsNnK80OSkSKmqqe\n5Lrl5MCbb8KBA3DmDHhZd/BlYgg+1dxo2RKeegqaNzc7ShH5u1v97FSikOs2eDDs2AFPPw0VKuQt\n6BcaCj4+ZkcmIoVReawUP8PgvXcNvvnGhbg4KF/e7IBExJY0mC2Fs1o51bQNCf+3nFWrlCREnJF6\nFPIPP/wAcT8aBH83m1bfjuEDlxd5enVX7rzT7MhExAwao5AC1qyBsb2tLC3Xj7LZqWx4agG1OoRy\n331mRyYiN0uD2VJkNmyAJ5+E34La4f1Yi7zFmbTrnIjDU6KQIvHdd3lrMn32Gdzf4iK4aPhKpKTQ\nfhRyS86fh6goeOKJvGXB778fJQkRKUCfCE7KMOCrD6y0qHOKn36C+Hi0T4SIXJEShRP6/juDyYGz\nuHtQGPP7/cjnn0NgoNlRiYi90kilE0lIgLcGW4nc1I9nqqbitSWWCg1CzQ5LROycehROYsECmHvP\nHN7fHMY9o1tRae8mXJUkROQ6qEdRwmVlwQsv5JW+xj5/gTJPxuYt0CQicp1UHluCpaXBY49BxYqw\ncCF4eZkdkYiYQeWxckXnz0OHDtCoEXz+uZKEiNw8JYqSxjDInTGL1yK+w88Ppk/XtAgRuTUaoygB\nLlzI60GUPWXF9bl+HN6WSnLtaKKjlSRE5NbpY8TBpaZCaIjBWJ9ZpASGMTamFU/W3MQ7X4dw221m\nRyciJYEGsx2YYUD37jB8ey+aee7BmL+A87VCue02cHU1OzoRsRcON5h9+PBhWrZsSWhoKPXq1WP6\n9OkAnDlzhoiICIKCgmjTpg2pqam2Ds3hzJ0Lv/0GDT8eA5s2YakXyu23K0mISNGyeY/ixIkTnDhx\ngkaNGpGRkUHTpk1ZsWIF8+fPp1KlSowYMYJJkyaRkpJCVFRUwWDVo8iXkADh4Xmrvtata3Y0ImLP\nHK5H4evrS6NGjQAoV64cdevW5ejRo6xcuZI+ffoA0KdPH1asWGHr0OyfYZB8LJdPP4Vu3WDSJCUJ\nESl+po5RJCUl8eCDD/Lrr79So0YNUlJSADAMgwoVKuR/f5mz9iiysmDOGCuN3uvHx3RlX8v+PPYY\n/PvfYLGYHZ2I2Ltb/ew0rTw2IyODzp07M23aNDw8PAo8Z7FYsFzlE3D8+PH5X4eHhxMeHl6MUZrv\nu40GMT1m88KZMWT2f5G3pzyDi6qZRKQQsbGxxMbGFtnrmdKjyM7Opl27djz66KMMHToUgODgYGJj\nY/H19eX48eO0bNmSPXv2FAzWiXoUFy/C+L5WHlrej/r+qZRfsQBLPa3RJCI3zuHGKAzDIDIykpCQ\nkPwkAdChQweio6MBiI6OplOnTrYOza6MGwf3rx5Fs5Gt8N6zSUlCRExj8x7FDz/8wAMPPECDBg3y\nby9NnDiRZs2a0a1bNw4dOkRAQAAfffQR5cuXLxisk/QoFiyA116D+E0GlatoEEJEbs2tfnZqwp2d\niYmBnj1h40YIDjY7GhEpCRx2MFv+wmoFV1e2nvSnZ09YvlxJQkTsh9Z6MpNhwKxZEBbGvug4HnkE\nZs7Mm0gnImIv1KMwQXo6lDlpxe25fpCWxi9TYnl0eCjz5+dtNCQiYk/Uo7ChrCx44w0Y7TOPlMAw\npv3amqfvjOPR4aEsXaokISL2SYPZNvLDDzBgANSsCQtaRlPmgTASCGXnzrxd6Jo0MTtCESmpVPXk\nAKZNy1uXafp06NxZy26IiG2p6smOGQZMmJA3LyI+HmrUMDsiEZEbp0RRTIyLBp+3nc3R3f58F/8Y\nVauaHZGIyM1RoigG2fut7H8wkqDUdFquW4C3koSIODBVPRUlwyBjyiwyQ8L4yeMhahyOw7tFiNlR\niYjcEvUoilBq12exrtrB+qdieWFuqLYkFZESQVVPRcAwYM4cmDXqIM9Prk6fSOVfEbEfqnqysZ07\nYd8+aNAA7rwTjhyBfv0gJQUWfl+TUK0GLiIljBLFDdi8Gdq1g2Z3GezemcPvKe64u8NLL+U93NSa\nIlIC6dbTddq+Hdq0gaVRVlotiYTHHiO17wucPw++vqaEJCJyXRxuhztHtGcPPPqIwZqOs2g1Igwe\neggGD6Z8eSUJESn5dLPkGjIzIfIhKz9XiMRvWzrExqKBCBFxJupRXMPUqfCfUm/g1+shiItTkhAR\np6MxikKcPAl16+btXR1YWyv5iYhj0uqxxWjIkLw5EtOn2+wtRUSKnBJFUbJaITsbAgM5cACaNYPd\nu6Fy5eJ7SxGR4qaqp5v044/QogW8/Tb8ce7Pvav56ScAXnkFhg5VkhARcboehWHABx/AuHF525Ju\n/thK7+8iqVM1naT/m8+m9FC2boX162HvXihbtoiCFxExiW493YALF2DgwLxOw+efQ+0f5sOIERzq\nNox/7x9OaoYbDRtCw4Z5UyVq1SrC4EVETKK1nq7TxYvQuzecP5+321y5csB2D4iNpUZoKKvNDlBE\nxE45TY9i7Fj45huIiYHSpYs4MBERO6YexXVYtAgWL8675aQkISJyY0p81dMP3xtsHziL7wYupUoV\ns6MREXE8JbpHkZFghYhIxtyRTvm2880OR0TEIZXMHoXx57yIE/UeonyC1mgSEblZJbNHMXgwGTGb\naVculs/WhZbUqxQRsYkS2aPIGvYy9xLHwPdDqVDB7GhERBxbifxbO2pRNQICoWtXsyMREXF8jp0o\nDAMuXCAztzSffpq3ftMPP8Dp0/C//4FFK4OLiNwyh5twl5Vl4O5O3kqvkZHk3vcgj/w4FsOADh3g\nvvugQQNwc+wUKCJSZErU6rFr164lODiY2rVrM2nSpCue88TjBlnv5lU0Ga0f4jnry5QqBWvXwvPP\nQ5MmShIiIkXJbhJFbm4ugwYNYu3atezatYulS5eye/fuf5w38ecIEl+ZR8aqWKIYxS/b3Vi2zPmS\nQ2xsrNkh2A21xZ/UFn9SWxQdu0kUmzdvJjAwkICAANzd3enRowdffPHFP84LGfIQ7z8ZR+OnQ/ng\nA1i16tICf05GvwR/Ulv8SW3xJ7VF0bGbv8OPHj1K9erV87/39/fnp0ubCP2Vy8ujeNeA996Dli3B\nz8+WUYqIOB+7SRSWGyhRslhg8OBiDEZERP5k2IlNmzYZDz/8cP73EyZMMKKiogqcU6tWLQPQQw89\n9NDjBh61atW6pc9nuymPzcnJoU6dOnzzzTf4+fnRrFkzli5dSt26dc0OTUTEqdnNrSc3Nzfee+89\nHn74YXJzc4mMjFSSEBGxA3bToxAREftkN+Wx13I9k/FKqsOHD9OyZUtCQ0OpV68e06dPB+DMmTNE\nREQQFBREmzZtSE1NNTlS28nNzaVx48a0b98ecN62SE1NpUuXLtStW5eQkBB++uknp22LiRMnEhoa\nSv369XnyySe5cOGC07TFM888g4+PD/Xr188/Vti1T5w4kdq1axMcHMy6deuu+foOkSiudzJeSeXu\n7s4777xDQkIC8fHxvP/+++zevZuoqCgiIiLYu3cvrVu3JioqyuxQbWbatGmEhITkV8s5a1sMGTKE\ntm3bsnv3bnbs2EFwcLBTtkVSUhJz5sxhy5Yt7Ny5k9zcXJYtW+Y0bdG3b1/Wrl1b4NjVrn3Xrl0s\nX76cXbt2sXbtWgYOHMjFixcLf4NbGgq3kbi4uAIVURMnTjQmTpxoYkTm6tixo7F+/XqjTp06xokT\nJwzDMIzjx48bderUMTky2zh8+LDRunVrIyYmxmjXrp1hGIZTtkVqaqpRs2bNfxx3xrY4ffq0ERQU\nZJw5c8bIzs422rVrZ6xbt86p2uLgwYNGvXr18r+/2rX/vaL04YcfNjZt2lToaztEj+JKk/GOHj1q\nYkTmSUpKYuvWrdx9990kJyfj4+MDgI+PD8nJySZHZxsvvPACkydPxsXlz3++ztgWBw8epHLlyvTt\n25cmTZrw7LPPkpmZ6ZRtUaFCBYYNG0aNGjXw8/OjfPnyREREOGVbXHa1az927Bj+/v75513P56lD\nJIobmYxXkmVkZNC5c2emTZuGh4dHgecsFotTtNOqVauoUqUKjRs3vupqmM7SFjk5OWzZsoWBAwey\nZcsWypYt+49bK87SFomJiUydOpWkpCSOHTtGRkYGixcvLnCOs7TFlVzr2q/VLg6RKKpVq8bhw4fz\nvz98+HCBjOgMsrOz6dy5M7169aJTp05A3l8JJ06cAOD48eNUqVLFzBBtIi4ujpUrV1KzZk169uxJ\nTEwMvXr1csq28Pf3x9/fn7vuuguALl26sGXLFnx9fZ2uLX7++WfuvfdeKlasiJubG0888QSbNm1y\nyra47Gq/E3//PD1y5AjVqlUr9LUcIlGEhYWxb98+kpKSyMrKYvny5XTo0MHssGzGMAwiIyMJCQlh\n6NCh+cc7dOhAdHQ0ANHR0fkJpCSbMGEChw8f5uDBgyxbtoxWrVqxaNEip2wLX19fqlevzt69ewHY\nsGEDoaGhtG/f3unaIjg4mPj4eP744w8Mw2DDhg2EhIQ4ZVtcdrXfiQ4dOrBs2TKysrI4ePAg+/bt\no1mzZoW/WFEPqBSXNWvWGEFBQUatWrWMCRMmmB2OTX3//feGxWIxGjZsaDRq1Mho1KiR8dVXXxmn\nT582WrdubdSuXduIiIgwUlJSzA7VpmJjY4327dsbhmE4bVts27bNCAsLMxo0aGA8/vjjRmpqqtO2\nxaRJk4yQkBCjXr16Ru/evY2srCynaYsePXoYVatWNdzd3Q1/f3/jv//9b6HX/sYbbxi1atUy6tSp\nY6xdu/aar68JdyIiUiiHuPUkIiLmUaIQEZFCKVGIiEihlChERKRQShQiIlIoJQoRESmUEoVIIdLS\n0pg5cyaQN7u1a9euJkckYnuaRyFSiKSkJNq3b8/OnTvNDkXENHazFaqIPRo1ahSJiYk0btyY2rVr\ns3v3bnbu3MmCBQtYsWIF586dY9++fQwbNozz58/z4YcfUqpUKdasWYO3tzeJiYkMGjSIkydPUqZM\nGebMmUOdOnXMviyRG6JbTyKFmDRpErVq1WLr1q1Mnjy5wHMJCQl8/vnn/O9//+OVV17B09OTLVu2\n0Lx5cxYuXAhA//79effdd/n555+ZPHkyAwcONOMyRG6JehQihfjrndm/36Vt2bIlZcuWpWzZspQv\nXz5/W9b69euzY8cOMjMziYuLKzCukZWVZZvARYqQEoXITSpVqlT+1y4uLvnfu7i4kJOTw8WLF/H2\n9mbr1q1mhShSJHTrSaQQHh4enD179oZ+5nLPw8PDg5o1a/LJJ5/kH9+xY0eRxyhS3JQoRApRsWJF\nWrRoQf369RkxYkT+TmB/3zHs719f/n7JkiXMmzePRo0aUa9ePVauXGnbCxApAiqPFRGRQqlHISIi\nhVKiEBGRQilRiIhIoZQoRESkUEoUIiJSKCUKEREplBKFiIgUSolCREQK9f8BZLrSEgjUdTUAAAAA\nSUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX+x/HXIGhJgKgJKSrmDcEbhpa1FWrYVopaXtst\nKsxay+1iqWu2+Ws3xS3L7LZe8H63NjM1MjPcbdFc09S8hJKMNyCLm6By/f7+mKIoxRvMmYH38/GY\nh8yZM2c+830485nv3WaMMYiIiJyDh9UBiIiIa1OiEBGRCilRiIhIhZQoRESkQkoUIiJSISUKERGp\nkBKF1Hg+Pj6kpqZaHYaIy1KikBrv5MmTBAcHWx0GAF999RXXXXcd3t7eREREsHPnznOe+8ADD1Cn\nTh18fHzw8fHB19cXTYuSqqBEIeIiCgsL6devH/fffz/Z2dnExMTQr18/ioqKznq+zWZj7NixnDx5\nkpMnT5Kbm4vNZnNy1FITKFFItRAcHMzUqVPp1KkT9erVY+jQoRQUFJQ9PmvWLFq3bk2DBg3o168f\naWlpZY95eHjw7bffArBu3TrCwsLw9fUlKCiIqVOnlp23Zs0aOnfujL+/PzfddBO7d++u1PeQmJhI\nSUkJTzzxBF5eXowaNQpjDBs3bjznc1SDEGdQopBqwWazsXLlSj7++GMOHTrErl27mDdvHgAbN25k\n/PjxrFy5krS0NJo3b87QoUPPep3Y2FhmzpxJbm4ue/bsoWfPngDs2LGD2NhYZs2aRWZmJo888gjR\n0dEUFhae9TodO3bE39//rLfHH3/8rM/Zs2cPHTt2LHesU6dO7Nmz55zv++2336ZBgwZERETwr3/9\n63zFJHJJPK0OQKSy/PnPfyYwMBCAvn378tVXXwGwePFiYmNj6dy5MwCTJ0/G39+fw4cP06xZs3LX\nqF27Nnv27KFDhw74+fkRHh4OwMyZM3nkkUfo2rUrAPfffz+TJk1iy5Yt3HLLLb+JZdeuXRcdf15e\nHn5+fuWO+fr6cvLkyXO+31dffRU/Pz8+/vhjhgwZQmBgIDfeeONFv7ZIRVSjkGrjpyQBcOWVV5Kf\nnw9QVov4ibe3Nw0aNODYsWO/ucZ7773HunXrCA4OJjIyki1btgBgt9uZOnVquZrB0aNHyzVhXS4f\nHx9yc3PLHcvJycHX1/es54eHh+Pv74+Hhwd33HEHf/jDH1SrkCqhRCHVXuPGjcsNf83Pz+eHH36g\nSZMmvzk3IiKCVatWceLECfr378/gwYMBaNasGc899xxZWVllt7y8PIYMGXLW1wwLCysbjfTr28iR\nI8/5nF/XRHbt2kVYWNglvnORyqFEIdXWTx29w4YNY+7cuezcuZOCggLGjx/PDTfc8Jtmp6KiIhYv\nXkxOTg61atXCx8eHWrVqAfDwww/zz3/+k61bt2KMIT8/n7Vr15KXl3fW196zZ0/ZaKRf395+++2z\nPicyMpJatWoxffp0CgoKmD59Oh4eHmX9JL/27rvvkpeXR2lpKevXr2fx4sVER0dfanGJnJMShVRL\nNputbKhor169+Nvf/sY999xD48aNOXToEMuWLSt37k8WLVpEixYt8PPzY+bMmSxevBiA6667jlmz\nZvH4449Tv359WrduzYIFCyo1Zi8vL1atWsWCBQvw9/dnwYIFrFq1Ck9PR1fi4sWLad++fdn506dP\nJygoCH9/f8aOHcvs2bPP2l8icrlsVbVx0UMPPcTatWtp1KhR2TDCzMxMhgwZgt1uJzg4mBUrVlCv\nXj3A0cE4Z86csl9UvXv3roqwRETkIlVZjeLBBx8kISGh3LG4uDiioqJITk6mV69exMXFAbB3716W\nL1/O3r17SUhIYOTIkZSWllZVaCIichGqLFHcfPPN+Pv7lzu2evVqYmJiAIiJiWHVqlUAfPDBBwwb\nNgwvLy+Cg4Np1aoVW7durarQRETkIji1jyIjI4OAgAAAAgICyMjIAOD48eMEBQWVnRcUFHTWoYsi\nIuJ8lnVm/7Kz8VyPi4iI9Zw6MzsgIID09HQCAwNJS0ujUaNGADRp0oQjR46UnXf06NGzjnFv1aoV\nKSkpTotXRKQ6aNmyJQcPHrzk5zu1RhEdHc38+fMBmD9/Pv379y87vmzZMgoLCzl06BAHDhygW7du\nv3l+SkoKxhjdjOGFF16wPAZXuaksVBY1vSxKSw1//ashKMiwfZX9N49f7g/sKqtRDBs2jE2bNvH9\n99/TtGlTXnzxRcaNG8fgwYOJj48vGx4LEBoayuDBgwkNDcXT05O3335bTU8iIhegpAT+9CfYuRO2\nbYOAgGbnf9JFqrJEsXTp0rMe37Bhw1mPjx8/nvHjx1dVOCIi1cvp0xR5XskDD8Dx47BhA/j4VM1L\naWa2m4qMjLQ6BJehsviZyuJn1bYsjMH8cwbFLdsQ0z+HnBxYt67qkgRU4czsqmCz2XCjcEVEKk1p\nKSyZbCf0teGQk8MTPnMJGxzG9OlQu3bFz73c785qkSjq169PVlaWBRFVP/7+/mRmZlodhoj8wrGj\nhpVRM4k5OIG0YaPxffEZmjT35EK7ci83UVSLjYuysrJU06gkGkQg4jqMgZUrYdLIY6zyWYbPtkT8\nOzl/2flqUaNQk1TlUVmKuIZt22DMGEhPh3nz4CwzBi7Y5X6u1ZktIuIisrMdo5fuvReio2HoUNi1\n6/KSRGVQohARsdjUqRASAkFNDJ88sYawUENyMowYAZ4u0EGgpicpR2Up4lzbtkGfPrAh3jGiySM3\nB9avhx/36qkManoSEXFTJSUw8k+Gf90+g/YPROBxWy9ISqrUJFEZXKBSI1YoLi4u22JTRKyxaNr3\nvHVgGBG2HEhMhDDnj2i6EKpROMGUKVMICgrC19eXkJAQNm7ciDGGuLg4WrVqRcOGDRkyZEjZXJDU\n1FQ8PDxYsGABzZs35+qrr2bSpEll19u6dSsRERH4+fkRGBjI6NGjyx5bvXo1YWFh+Pv706NHD/bv\n31/2WHBwMP/4xz/o2LEjPj4+2kVQxEInTsD4OF+uGTUQW1KSyyYJAIwbOVe4rvw29u/fb5o2bWrS\n0tKMMcbY7XaTkpJipk2bZrp3726OHTtmCgsLzSOPPGKGDRtmjDHm0KFDxmazmREjRpgzZ86YnTt3\nmjp16pj9+/cbY4y54YYbzKJFi4wxxuTn55stW7YYY4z55ptvjLe3t9mwYYMpLi42//jHP0yrVq1M\nUVGRMcaY5s2bm/DwcHP06FFz5syZs8brymUpUl2Ulhrz4IPGPPmkc17vcj/XbvWtcDmJwjF15fJv\nF+vAgQOmUaNGZsOGDaawsLDseLt27cynn35adv/48ePGy8vLlJSUlCWKY8eOlT3erVs3s3z5cmOM\nMbfccot54YUXzIkTJ8q91osvvmiGDBlSdr+0tNQ0adLEbNq0yRhjTHBwsJk7d+55ysmt/kuIuJWC\nAmMWLTKma1djQkONyclxzute7ue6xjQ9VVaquFitWrVi2rRpTJw4kYCAAIYNG8bx48dJTU1lwIAB\n+Pv74+/vX7bE+k/bwwIEBgaW/V23bl3y8vIAiI+PJzk5mXbt2tGtWzfWrl0LQFpaGs2a/bzEsM1m\no2nTpuW2lW3atOnFvwkRuTx2O2lR99GxeQ5z5sDzzzvmR/j6Wh3YhakxicJKw4YN4z//+Q92ux2b\nzcbYsWNp1qwZCQkJZGVlld1OnTrFNddcc97rtWrViiVLlnDixAnGjh3LwIEDOXXqFI0bN8Zut5ed\nZ4zhyJEj5XYL1BIdIk5kDMyYQWmXCOZsCWN6vDeffgp9+0KtWlYHd+GUKKpYcnIyGzdupKCggDp1\n6nDFFVfg6enJo48+yvjx4zl8+DAAJ06cYPXq1Rd0zUWLFnHixAkA/Pz8sNls1KpVi0GDBrF27Vo2\nbtxIUVERU6dO5YorruDGG2+ssvcnIudgt0Pv3pj4eB4LSyR/1Dh63+meIw3dM2o3UlBQwF/+8hf2\n7duHl5cXN910EzNnziQgIABjDL179+b48eM0atSIoUOHEh0dDVT8y//jjz9m9OjRnDp1iuDgYJYt\nW0adOnVo27YtixYtYtSoURw7dozw8HA+/PBDDYMVcbb0dOjaFZ5+mn96P8P/5nuSNNHqoC6dZmZL\nOSpLkcuzd69j2Y2GxekcLw0kMhL++19o29a6mLTMuIiIi5g7F559Fvz9ITMzkNxc+Oc/rU0SlUE1\nCilHZSlykU6eBB8fdu+Gnj1h0yYIDXU8ZAwXvLlQVdJaTyIiVvhxRBNt2pB36ASDBsGrr/6cJMA1\nkkRlUKIQEblAJSUQHw83BdnZVr8338XFk/PeBh6ZcDU33wz33Wd1hFVDiUJE5AJ88gmEdzZkTp5B\nYn4EV/bpxePhSQTdHsbXX8P06VZHWHXURyHlqCxFfmv1ahg5Ema89D13Lv0jtqlTyxbxy8mB2rXh\nyistDrICl/u5VqKQclSWIuVlZ0P79rB4Mdx6q9XRXBoligqOy8VTWYqU9/DDjnkR77xjdSSXTqOe\n5IJ4eHjw7bffWh2GiMv67juYMAHWrQNTauC99/h0fQkffwxTplgdnbWUKFxUcHAwGzdutDoMkWqv\nuNjRER0WBhkZ8NqTdrb69yZz3BTGjcjknXfcZ5XXqqJE4aLUBCRS9dLToUsX+OADSPzMMCtiBuuz\nIqjbpxe3XZlEu1uu5q67rI7SekoUTvDTlqe+vr6EhYWxatWqssdmzZpFaGho2WM7duzgvvvu4/Dh\nw/Tt2xcfHx9eeeUVEhMTf7OXxC9rHVu3bqV79+74+/vTuHFjRo0aRVFRkVPfp4i7GTsWbrsNNqzM\nIuyp3hAfjy0xkQ6Lx7F9lyfz51sdoYu4rG2PnOxc4br621i5cmXZVqjLly833t7eJi0tzaxYscI0\nadLEbNu2zRhjzMGDB43dbjfGOHaj++UOeJ999pkJCgoqd91fnvPll1+aL774wpSUlJjU1FTTrl07\nM23atLJzbTabSUlJOW+srl6WIpUlKcmYxo2Nyc01xhQXGzN3rjE/bhtc3Vzu57rm1CgmTnTMp//1\nbeLECz//XOeex8CBA8t2qxs8eDCtW7dm69atxMfHM3bsWK677joAWrZsWW6HuovRpUsXunXrhoeH\nB82bN2fEiBFs2rTpkq4lUt2VlsKf/+zopPbxwbGL0AMPOIY3yW/UnFKZOPHivugv9vwKLFiwgNde\ne43U1FQA8vLy+P777zly5AgtW7aslNdITk7m6aef5ssvv+TUqVMUFxcTERFRKdcWqW7mzQMvL/jD\nH6yOxD3UnBqFRex2OyNGjOCtt94iMzOTrKws2rdvjzGGpk2bcvDgwbM+79cbF3l7e3Pq1Kmy+yUl\nJWW73AH86U9/IjQ0lIMHD5KTk8NLL71EaWlp1bwpEXdlt1M4YDCvjcvgjTeqz6J9VU2Joorl5+dj\ns9lo2LAhpaWlzJ07l6+//hqbzcbw4cN55ZVX2L59O8YYDh48WLY1akBAACkpKWXXadOmDWfOnGHd\nunUUFRXx97//nYKCgrLH8/Ly8PHxoW7duuzfv5933Hl2kEhl+3Gl16LOEczZ0YWbohvwY4uvXAAl\niioWGhrK6NGj6d69O4GBgXz99df87ne/Axx9F8899xz33nsvvr6+3H333WRlZQHwl7/8hb///e/4\n+/vz6quv4ufnx9tvv83w4cMJCgriqquuKjcK6pVXXmHJkiX4+voyYsQIhg4dWq5WUtHWqiLVmt3O\nqd/15uD4eHp7JeIxfhxvvFNzWt0rgyVLeEyePJlFixbh4eFBhw4dmDt3Lvn5+QwZMgS73U5wcDAr\nVqygXr165YPVEh5VTmUp1YnJzOJ0i3ZMLX4Sz3HP8MRoT+rWtToq53O7tZ5SU1Pp2bMn+/bto06d\nOgwZMoQ777yTPXv20LBhQ8aMGcOUKVPIysoiLi6ufLBKFFVOZSnVRU6OY52mjL0/MOtfDWjTxuqI\nrON2az35+vri5eVVNjLn1KlTNG7cmNWrVxMTEwNATExMuUlpIiIX49Ahx4zrq6+Gj7fV7CRRGZye\nKOrXr8/o0aNp1qwZjRs3pl69ekRFRZGRkUFAQADg6MjNyMhwdmgi4s5+7N8rKIBBg+Cxx+Ctt+CK\nKyyOqxpweo9OSkoK06ZNIzU1FT8/PwYNGsSiRYvKnWOz2c7Z+TrxF3MbIiMjiYyMrMJoRcTlGQMz\nZ8Lzz8OXXzJ6SlOCg+Gpp6wOzDqJiYkkJiZW2vWc3kexfPlyPvnkE2bPng3AwoUL2bJlCxs3buSz\nzz4jMDCQtLQ0evTowf79+8sHqz6KKqeyFHdSnGLH89Hhjg6JuXNZ/nUY48fD9u3g52d1dK7D7foo\nQkJC2LJlC6dPn8YYw4YNGwgNDaVv377M/3EFrvnz59O/f39nhyYibuDkSVi00PBGhxlktYrgla96\nMbJzErM3hzFqFKxcqSRR2Zze9NSpUyfuv/9+IiIi8PDwoEuXLowYMYKTJ08yePBg4uPjy4bHXih/\nf3/NE6gk/v7+Vocg8hulpbBpE8yZ49i/uvcNJ3m1zkdcuSWR2+qE8dlnsGYNvPaaoxNbKle12ApV\nRKqvlSth3DioWxdiYx3rM119tdVRuRe3m0dxOZQoRGqWgwfhhhvg/ffhd7/T2kyXyu36KERELkRp\nKcQ+ZFhwx1Juvr5QScJCWvBERFzSopfsvLxrOF1P58D3t0LjxlaHVGOpRiEirsUYvn9pBne+EEFw\nbC9sm5OUJCymGoWIWK60FHbuhOPfnKTj/91N7pEctjyZSOzUMKtDE9SZLSIuYPRoeO89aB9m6F+w\nnJO3D2TUU57ambSSaNSTiLi1996DZ56BL7+E+vWtjqZ6UqIQEbeVnOwY9rpuHWiL96qj4bEi4n7s\ndor79mdUtJ0XX1SScHVKFCLiPD/uXW2ui2BJyg0EdGnCI49YHZScj7qKRMQ57HYYPpzTGTkM8Uuk\n0Y1hzHxTs63dgWoUIlJlEhLgxhth1EP55IX/jq2+vWhxPInov4Qxe7Y2FXIX6swWkSpRUAChoTBm\nDBQVwd7NOSRn+BEXpz4JZ9OoJxFxSa+9Bhs3wocfWh2JKFGIiGs5cYLMWlcTEuLYQ6JdO6sDEg2P\nFRHLnThB2YgmQkOZMTqZe+5RkqguNOpJRC5LUhLce5Od5T7DadEgh6wZiUwd0YY9e6yOTCqLahQi\ncslKig0bh8xgv08Efnf34pH2SYQNDuOppyAgwOropLKoRiEilyz+rTN0L0ikTlIiIe3DeB9HM5TW\nbKpe1JktIpfk++8dw18//RQ6dLA6GqmIRj2JiCVGjIC6dWHaNKsjkfO53O9ONT2JyPkZQ/b0BXzV\naiCHf/AmJcUxP2LfPqsDE2dQohCRcyothc8X2/F7OpaSrFze6dqD2q28CQqC99+HevWsjlCcQU1P\nInJWBw8YFt48kye+n8DBfs8QNmc03n76bemO1EchIpXuu8NnOBDSh1aNcmm0dh62sFCrQ5LLoJnZ\nIlKp8vOhz8ArSO0zioCDSUoSohqFiPysuBgGDHDMg5g3T3tFVBeqUYhIpUhKgh49oLAQZs1SkpCf\nKVGI1GAm1U7O7+5kZM/9DB0KDz0Ea9dC7dpWRyauRIlCpIYxBhI/M6zoNYOslhG8vedW2tzZiuRk\nePBB8NTAJvkV9VGI1CDffw/j/2Dngc9jae6fy8np82g7IFTNTNWchseKyAX55BN45IEC/pcfit+z\nI/AcO1rVhxpCS3iIyFnl5MAXX8CWLY6O6q+/hnnz69Cg+y7w9rY6PHEjqlGIVDOlpY6N5p5/HsLC\n4IYbHLeePcHPz+roxAqqUYhImYMHYfhwOHMGkt49Tptbr9E4V7lslox6ys7OZuDAgbRr147Q0FC+\n+OILMjMziYqKok2bNvTu3Zvs7GwrQhNxW7t2OWoO/aINSTEzaDOoE+zebXVYUg1Y0vQUExPDrbfe\nykMPPURxcTH5+fm89NJLNGzYkDFjxjBlyhSysrKIi4srH6yankTO6a67YFA3Ow/8JxZycx1Tq0O1\n/Ia44ainnJwcwsPD+fbbb8sdDwkJYdOmTQQEBJCenk5kZCT79+8vH6wShchZff4fw7oBM3nJNgHb\nM8/AaI1okp+53RIehw4d4uqrr+bBBx+kS5cuPPzww+Tn55ORkUHAj7uxBwQEkJGR4ezQRNySMfDc\n2GIeDN2KbdMmGDtWSUIqldMTRXFxMdu3b2fkyJFs374db2/vszYx2dQBJ3JB1q2D73O8uPazeDU1\nSZVw+s+OoKAggoKC6Nq1KwADBw5k8uTJBAYGkp6eTmBgIGlpaTRq1Oisz584cWLZ35GRkURGRjoh\nahHXYLfDhAmOfHDvvdC0KTz3HPz971CrltXRiatITEwkMTGx0q5nSWf2LbfcwuzZs2nTpg0TJ07k\n1KlTADRo0ICxY8cSFxdHdna2OrNFfmHlSnhspGFW9zn8u8EA5n9Yn2uugbp1HZPqVAmXc3G7zmyA\nnTt3Mnz4cAoLC2nZsiVz586lpKSEwYMHc/jwYYKDg1mxYgX1frUhrxKF1ERnzsBjj8HBT+182CgW\nX3Jh+XIKm7QgIQFat4Z27ayOUlyZWyaKS6VEITVNaSncO8xw6zczeeToBDye1YgmuXiamS1Sjf3t\nr0U89fFddG2Vjce/N6mzWiyh/ShEXNTixTBvsRdtZjyDx5YkJQmxjJqeRFzQp5/CsGGwcSO0b291\nNOLu1PQkUo0kJ8P48Y5RTEuWKEmIa1DTk4gLyNtjZ1+z2/lTty+JiHAkjNtuszoqEQclChErGcPB\nZ2dQ0DGCPQE9WfFNJ8aNc8yNEHEVanoScaIzZ+DoUTh9Gkq+tXPVE7GcPJ7L4dc3MfBxdVaLa1Jn\ntoiT5ObCzTc7tij18y7m/W87sbXd/fRcM5pGjfWbTaqOJtyJuIHiYujbF5o3h3fe+XG5jTNn4Ior\nrA5NagAlChEXZwyMHAmHDsGaNZpULc6n4bEiLm7WX4+w5fNr2PRfTyUJcUsa9SRSVYzhqz/N4J5J\nXUh46Ut8fa0OSOTSnDdRPPvss+Tm5lJUVESvXr1o2LAhCxcudEZsIu7Lbif3hihKZ8eTtnQTAdHX\nWx2RyCU7b6JYv349vr6+rFmzhuDgYFJSUnj55ZedEZuI+zEGZsygpEsEb+6P4vDSJNoP1rBXcW/n\nbTEtLi4GYM2aNQwcOBA/Pz9tUypyLsZQ8NVehl29ie6xofQfaHVAIpfvvDWKvn37EhISwpdffkmv\nXr347rvvuEJD+kTOyn7Eg67/fZ0mUaE884zV0YhUjgsaHpuZmYmfnx+1atUiPz+f3NxcrrnmGmfE\nV46Gx4orMab89qNJSTBwIDz7LDz5pLYmFddR5cNjCwsLWbhwIf/+978BiIyM5NFHH73kFxSpDj5a\nZ/jo7ll80fAu/Ns3oWlT+OADmD8f7rjD6uhEKtd5axSxsbEUFxcTExODMYaFCxfi6enJ7NmznRVj\nGdUoxBUkzLBTd1Qs4a1yyXxjCV+faUVyMvz+99q7WlxTlc/M7tixI7t27TrvMWdQohBLGcP/Hp7J\ntXMmcObxZ2jyqvauFvdQ5U1Pnp6eHDx4kFatWgGQkpKCpz4cUsMUF5Zi73AXnod+IPP9TbTupyGv\nUnOc9xv/5ZdfpmfPnlx77bUYY0hNTWXu3LnOiE3EJezfDw884MENV43n6f3daXatfihJzXLepqfT\np08zdepUNm7cSL169YiIiODpp5+2ZIismp6kqhUXw1tvwQ8/OP7OyYHly+HFF+HRR8FDi96IG6ry\nPopBgwbh6+vLH//4R4wxLFmyhJycHFauXHnJL3qplCikqk2dCsuWGvr0teHpCbVrw913Q8uWVkcm\ncumqPFGEhoayd+/e8x5zBiUKqUrffgt3X2cnKXQ4dSdNgFtvtTokkUpxud+d561Id+nShc2bN5fd\n37JlC9ddd90lv6CIKzKlhg/7zCCpKIK60bfBTTdZHZKIyzhvjSIkJITk5GSaNm2KzWbj8OHDtG3b\nFk9PT2w2m1OHyapGIVXCbiftzlh+SM0lZPM8PDtqRJNUL1U+PDYhIeGSLy7i8oyhKPoeZtsHcddn\no/HsqBFNIr923k9FcHCwE8IQcb6CAnj7bRuvHE9i1ITadOlmdUQirkk/n6TGMQZWroRx4yA0FNYn\n1iYszOqoRFyXEoXUHHY7e74P4PFnriAzE2bPhp49rQ5KxPVp+pBUWx9/DP36wYiHDavvmsHJkAjG\n9/qCgQPhyy+VJEQu1AXtR+EqNOpJLlReHoSEwEsj7PRaEovtZC7/ip7HkP8LpVEjq6MTca4qn3Dn\nSpQo5EI9N97Q8tOZPPTtBHjmGRitlV6l5qry4bEi7ubbb2HGDDj0h8Mwd5Ojx1pELplqFFLtDBgA\nXbvC+PFWRyLiGqp8CY+qUlJSQnh4OH379gUc+3JHRUXRpk0bevfuTXZ2tlWhiRvbsAF27YKnn7Y6\nEpHqw7JE8frrrxMaGortxx3o4+LiiIqKIjk5mV69ehEXF2dVaOJOjMH8cwa73jvAE0/A0KHw2mtg\nwSr4ItWWJYni6NGjrFu3juHDh5dVh1avXk1MTAwAMTExrFq1yorQxI2c+cbOkXZR7H4qntFPG+rX\nhy1bIDra6shEqhdLEsVTTz3Fyy+/jMcvdoHJyMggICAAgICAADIyMqwITdxAbo7ho/4zyG8XwUaP\nKHI/SmJ9ahteeAF+3LFXRCqR00c9rVmzhkaNGhEeHk5iYuJZz7HZbGVNUiK/9N/PDad696NN3XSy\nVm0iJlojmkSqmtMTRVJSEqtXr2bdunWcOXOG3Nxc7rvvPgICAkhPTycwMJC0tDQanWNW1MSJE8v+\njoyMJDIy0jmBi6WKi+Gll+Cdd2ys+PvztPxzuOZFiJxDYmLiOX+IXwpLh8du2rSJV155hQ8//JAx\nY8bQoEEDxo4dS1xcHNnZ2b/p0Nbw2JojLw/efBOOHIH0dNi3Dxo3hgULHP+KyIVz+wl3PzUxjRs3\njsGDBxMfH09wcDArVqywODKx0sSJ8NUOQ//+EBlpo3Fj6N4dPLQ6mYjTacKduJyvv4b7b7WzJSyW\n2mOehD6qBMT5AAARXElEQVR9rA5JxK257YQ7kbMxpYaEATP4b2EEte+Kgt//3uqQRGo8y5ueRMrY\n7aTfGcsdx3OpvWUTdNCIJhFXoBqFuAZjKP5DDHOORHFqQxK1lCREXIZqFOJUWVnwxhuQnw9FRY59\nq9PT4ehRG/aUDQy835Ou3a2OUkR+SZ3Z4lQjR8Lhw3DzzY5pELVrQ2AgNG0KQUHQpAlorqVI5dLG\nReI2vv4aevWCb9bbqdfCH3x9rQ5JpEbQqCdxC8bAU08alvWYQb3bImDzZqtDEpELpD4KcYqNc+28\nuDmW60NzYZN2nRNxJ6pRSJUrfmsG4SMiqD8kCo/NSUoSIm5GNQqpdMeOwdtvww8/OEY2df93Nv/r\nvokZc5QgRNyROrOl0mRlwZQpMGsW3H8/tG3rGNnk5QV33AHnWBBYRKqY2y8KKNXDhx/CQw/BgAGw\nc6djqKuIVA9KFHLZli51jGjaGjuTFkO6QVC41SGJSCVSZ7ZclpkzYdpTdg62iKLFp7PhiiusDklE\nKpkShVyy16cZUsfPIKnwOq7q18sxN6JdO6vDEpFKps5suSQLF4L/o4OJanWIOkvmQViY1SGJyDlo\nCQ9xuoQEiImBpH/uomXfUO1dLeLilCjEqf73P7jzTvjgA7jxRqujEZELoeGxUvWMAWPYuduD6GiI\nj1eSEKlJ1Jktv7FsGbz3niM/YLdD796kTFpO796OvSSio62OUEScSU1PUk5+PjRvDgGNDLElM/nz\niQkcHfQ03f/1LDPneNK3r9URisjFUtOTVKpFi2BAFzszSofz/YFsetoS2fNuGEuXQu/eVkcnIlZQ\njULKGAPt28Mmnz407HcTPPssWSc9yciAkBCroxORS6UahVSaTz8FDw9o8N/VUMvRfeXv77iJSM2l\nzmwp8/rr8MQTYKul/xYi8jM1PdVkdjt4e0PDhhw8CN27Ow7VrWt1YCJSmbRntlw8Yyh+awbF4RHk\nrf8vxsCbb8Lw4UoSIvJbqlHUNHY7p+4dzqGvshl11Ty2nQ6jsNCxudDevdC0qdUBikhlU41CLtys\nWZzpEMGrX/Vk0+TNfJoeRm6uY2e6o0eVJETk7DTqqRorKYENGyA5GQ4dgmvXFfBR/UReWhVG584/\nn3fllY6biMjZqOmpmtq6FR57DEpL4YYboEULCA6G3/8errrK6uhExJk0j0LKyc6GZ5+FtWthyhT4\n4x/BZrM6KhFxZ6pRVDN//IOhx4GZDJnYjqvuvMXqcETEBagzW8pse8/OiPd680DJbK4Kbmh1OCJS\nTShRVAfGUPrODFoOjcCvf09qfbEZQkOtjkpEqgk1PVUH993Hd//Zz+j681jwZZj6JESkHLdrejpy\n5Ag9evQgLCyM9u3bM336dAAyMzOJioqiTZs29O7dm+zsbGeH5rZyRk2g86nNjJ6jJCEilc/pNYr0\n9HTS09Pp3LkzeXl5XHfddaxatYq5c+fSsGFDxowZw5QpU8jKyiIuLq58sKpRlGMM7NwJf/sbNGoE\n77xjdUQi4orcrkYRGBhI5x9ne1111VW0a9eOY8eOsXr1amJiYgCIiYlh1apVzg7N9RkDJSWcPAlj\nx0KrVnD33XDttTB5stXBiUh1Zek8itTUVHbs2MH1119PRkYGAQEBAAQEBJCRkWFlaK7Hbofhw8m6\nbRA9lo6gY0fHvtadOmmehIhULcsSRV5eHvfccw+vv/46Pj4+5R6z2WzYzvHtN3HixLK/IyMjiYyM\nrMIorZWaCldeYQj4YCZMmEDasKe58c2H+NMox6Q6JQgROZvExEQSExMr7XqWjHoqKiqiT58+3HHH\nHTz55JMAhISEkJiYSGBgIGlpafTo0YP9+/eXD7aG9FFkZ8OECfD5Yjuv5Q3H35bNzO7zeHdfGG+8\nAUOGWB2hiLgTt+ujMMYQGxtLaGhoWZIAiI6OZv78+QDMnz+f/v37Ozs0yxkDCxdCu3ZQXAxf9BxH\n5P/1pN7ezdz2RBjr1ytJiIjzOb1G8fnnn3PLLbfQsWPHsualyZMn061bNwYPHszhw4cJDg5mxYoV\n1KtXr3yw1bhGUVoKTz3l2Ld6zhzo1g1H5lD7kohcpsv97tSEOxdQXAwPP+xYDnztWvhVfhQRuSxa\nPdbNFRTAE/3tFOTXYv36ILy9rY5IRKQ8rfVkJWNY3nMGUzZGMP+RJCUJEXFJqlFYxW7nu+jhdPom\nB6/PE/HqGmZ1RCIiZ6UahRXi4yntEsHMb3tx6pMk6ipJiIgLU43CSX45gMnU8uTx9ok0uCWM7jdb\nG5eIyPlo1JMTTJ3qmEAXHg633uo4tn49bNkCXl7WxiYi1Z9GPbm4SZNg3jzHKq9Hj8KmTY6/Fy1S\nkhAR96AaRRUxpYY10TNZuzOIv35xF40bWx2RiNRUmnDngkyqnZTIWE5/l8s1CfNoeIu2JRUR67jd\nWk/V2o97V+e3i+Cjotu45tskJQkRcXvqo6hEpcMfxr56FxPaJvJWYpiW4hCRakFNT5WktBRG332I\n3dlNWbXGk6uusjoiEREHjXpyEWPGwPasFiQkwJVXWh2NiEjlUaK4FMY4lnz9cXzrm2/CmjWQlKQk\nISLVjzqzL5bdDlFRjuwAfPCBY67ERx9B/foWxyYiUgVUo7hQxsDMmeQ/PYHZvqNZljOKWu/BN9/A\nunXQooXVAYqIVA11Zl8Iux1iY8m05zLs9Fz+9i/HIn4FBXDNNdCqlfNDEhG5UJpw5wwjRvBDvWtp\nP/cZVq/zpGtX54cgInKplCicoOCM4abf2YiJgVGjnP7yIiKXRYmiihUWwuOPQ2YmrFz581LhIiLu\nQkt4VJK0NDiWZKc0+SAARUUwZw60bQuHD0N8vJKEiNRMNXrUU24uvPceLFxg6LR1JhPOTGC45zS+\nCmtFdjZce61jOfCbbrI6UhER69TYpqf0dOjUCaI72XkpPZaGtXPxmD+XnKAwvvnGUXtQp7WIVAfq\no7hEI0ZAr8NzGfLlGBg9Gp55BjxrdAVLRKopJYpLsGuXY3L1t/94F++IdhAWVgnRiYi4JiWKi2SM\nI0kMGACPPVZJgYmIuDCNejqPnBw4c+bn+2vXwvHj8Mgj1sUkIuJOqnWj/OnTcH03w+8Pz6RluC/X\nPD2MCRPg1VfVHSEicqGq9dflq0/YWZkdS0hILqt6z2XmTMdIpzvusDoyERH3UT37KIzh4JiZ+L86\ngSvGj8b7BY1oEpGaSzvcnUXRo6PIn7+V1FcTue0JjWgSEbkc1bJG8fxDx7CfCWDBkmqZB0VELopq\nFL+QnOyYO3fgQBOSkqyORkSkenDv4bHGkJNxhh07HAnixhvhlltg505tSyoiUlncrkaxYQN89hns\n/9jOn3fG8m/braxo+zw33wx79kBAgNURiohULy5Vo0hISCAkJITWrVszZcqUs57z1+cNXbfPYOnB\nCK4bdxsT8v/C7t3w9ttKEiIiVcFlEkVJSQmPP/44CQkJ7N27l6VLl7Jv377fnJfkHUX/H+Kp/d9E\nrvrbOGxeblcpqhSJiYlWh+AyVBY/U1n8TGVReVwmUWzdupVWrVoRHByMl5cXQ4cO5YMPPvjtibfd\nBklJNX4hP30Ifqay+JnK4mcqi8rjMoni2LFjNG3atOx+UFAQx44d++2J48Zp8pyIiBO5TKKwaZ9R\nERHXZFzE5s2bze233152f9KkSSYuLq7cOS1btjSAbrrppptuF3Fr2bLlZX0/u8zM7OLiYtq2bcun\nn35K48aN6datG0uXLqVdu3ZWhyYiUqO5TGO/p6cnb775JrfffjslJSXExsYqSYiIuACXqVGIiIhr\ncpnO7PO5kMl41dWRI0fo0aMHYWFhtG/fnunTpwOQmZlJVFQUbdq0oXfv3mRnZ1scqfOUlJQQHh5O\n3759gZpbFtnZ2QwcOJB27doRGhrKF198UWPLYvLkyYSFhdGhQwfuvfdeCgoKakxZPPTQQwQEBNCh\nQ4eyYxW998mTJ9O6dWtCQkJYv379ea/vFoniQifjVVdeXl689tpr7Nmzhy1btvDWW2+xb98+4uLi\niIqKIjk5mV69ehEXF2d1qE7z+uuvExoaWjZarqaWxRNPPMGdd97Jvn372LVrFyEhITWyLFJTU5k1\naxbbt29n9+7dlJSUsGzZshpTFg8++CAJCQnljp3rve/du5fly5ezd+9eEhISGDlyJKWlpRW/wGV1\nhTtJUlJSuRFRkydPNpMnT7YwImv169fPfPLJJ6Zt27YmPT3dGGNMWlqaadu2rcWROceRI0dMr169\nzMaNG02fPn2MMaZGlkV2drZp0aLFb47XxLL44YcfTJs2bUxmZqYpKioyffr0MevXr69RZXHo0CHT\nvn37svvneu+/HlF6++23m82bN1d4bbeoUVzwZLwaIDU1lR07dnD99deTkZFBwI8LXAUEBJCRkWFx\ndM7x1FNP8fLLL+Ph8fN/35pYFocOHeLqq6/mwQcfpEuXLjz88MPk5+fXyLKoX78+o0ePplmzZjRu\n3Jh69eoRFRVVI8viJ+d678ePHycoKKjsvAv5PnWLRKHJeA55eXncc889vP766/j4+JR7zGaz1Yhy\nWrNmDY0aNSI8PPycG7HUlLIoLi5m+/btjBw5ku3bt+Pt7f2bppWaUhYpKSlMmzaN1NRUjh8/Tl5e\nHosWLSp3Tk0pi7M533s/X7m4RaJo0qQJR44cKbt/5MiRchmxJigqKuKee+7hvvvuo3///oDjV0J6\nejoAaWlpNGrUyMoQnSIpKYnVq1fTokULhg0bxsaNG7nvvvtqZFkEBQURFBRE165dARg4cCDbt28n\nMDCwxpXFtm3buPHGG2nQoAGenp7cfffdbN68uUaWxU/O9Zn49ffp0aNHadKkSYXXcotEERERwYED\nB0hNTaWwsJDly5cTHR1tdVhOY4whNjaW0NBQnnzyybLj0dHRzJ8/H4D58+eXJZDqbNKkSRw5coRD\nhw6xbNkyevbsycKFC2tkWQQGBtK0aVOSk5MB2LBhA2FhYfTt27fGlUVISAhbtmzh9OnTGGPYsGED\noaGhNbIsfnKuz0R0dDTLli2jsLCQQ4cOceDAAbp161bxxSq7Q6WqrFu3zrRp08a0bNnSTJo0yepw\nnOo///mPsdlsplOnTqZz586mc+fO5qOPPjI//PCD6dWrl2ndurWJiooyWVlZVofqVImJiaZv377G\nGFNjy+Krr74yERERpmPHjmbAgAEmOzu7xpbFlClTTGhoqGnfvr25//77TWFhYY0pi6FDh5prrrnG\neHl5maCgIDNnzpwK3/tLL71kWrZsadq2bWsSEhLOe31NuBMRkQq5RdOTiIhYR4lCREQqpEQhIiIV\nUqIQEZEKKVGIiEiFlChERKRCShQiFcjJyeGdd94BHLNbBw0aZHFEIs6neRQiFUhNTaVv377s3r3b\n6lBELOMyW6GKuKJx48aRkpJCeHg4rVu3Zt++fezevZt58+axatUqTp06xYEDBxg9ejRnzpxhyZIl\n1KlTh3Xr1uHv709KSgqPP/44J06coG7dusyaNYu2bdta/bZELoqankQqMGXKFFq2bMmOHTt4+eWX\nyz22Z88e3n//ff73v//x3HPP4evry/bt2+nevTsLFiwAYMSIEbzxxhts27aNl19+mZEjR1rxNkQu\ni2oUIhX4Zcvsr1tpe/Togbe3N97e3tSrV69sW9YOHTqwa9cu8vPzSUpKKtevUVhY6JzARSqREoXI\nJapTp07Z3x4eHmX3PTw8KC4uprS0FH9/f3bs2GFViCKVQk1PIhXw8fHh5MmTF/Wcn2oePj4+tGjR\ngnfffbfs+K5duyo9RpGqpkQhUoEGDRpw00030aFDB8aMGVO2E9ivdwz79d8/3V+8eDHx8fF07tyZ\n9u3bs3r1aue+AZFKoOGxIiJSIdUoRESkQkoUIiJSISUKERGpkBKFiIhUSIlCREQqpEQhIiIVUqIQ\nEZEKKVGIiEiF/h8lHfGSt70UyQAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 6 + "prompt_number": 39 }, { "cell_type": "markdown", @@ -259,11 +259,11 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VNW9//F3YtKmcpFLgcBMMEoCmQAmQEIEqwQBA1Qj\nN2uOcimGmtpSRNFaTn9W8HgEqrSiOS3RtiiKEatCUGNUpBGOAsESxdOABExgGAwqGAJECBnW748l\nKQnJ5DYzay7f1/PMY2Zm75lPcOc7a9Zee60QpZRCCCFEQAs1HUAIIYTnSbEXQoggIMVeCCGCgBR7\nIYQIAlLshRAiCEixF0KIINBssS8oKCAuLo7Y2FiWLVt20fN79uxhxIgRREREsHz58nrPLVmyhIED\nBzJ48GBuu+02zpw5477kQgghWsxlsXc6ncydO5eCggJKSkrIzc1l9+7d9bbp3r07Tz31FPfdd1+9\nx8vLy3nmmWfYuXMnn376KU6nk5deesn9v4EQQohmuSz2RUVFxMTEEB0dTXh4OBkZGeTl5dXbpkeP\nHiQlJREeHl7v8c6dOxMeHk51dTW1tbVUV1djsVjc/xsIIYRolsti73A4iIqKqrtvtVpxOBwteuFu\n3bqxYMEC+vbtS58+fejSpQtjx45tX1ohhBBt4rLYh4SEtPmF9+/fzxNPPEF5eTmHDx/m5MmTrFmz\nps2vJ4QQou3CXD1psViw2+119+12O1artUUv/NFHHzFy5Ei6d+8OwJQpU/jwww+5/fbb620XExPD\n/v37W5tbCCGCWr9+/di3b1+Lt3fZsk9KSqK0tJTy8nJqampYu3Yt6enpjW7bcD61uLg4tm3bxrff\nfotSio0bNxIfH3/Rfvv370cp5XO3hx56yHgGyeTdTLW1ivfeU8yZo0hKUkRGKvr3V4wfr8jOVnz5\nZWD9O/lqLsnUsltrG8kuW/ZhYWFkZ2eTlpaG0+kkMzMTm81GTk4OAFlZWVRUVJCcnExVVRWhoaGs\nWLGCkpISEhISmDlzJklJSYSGhjJ06FDuvPPOVoUTwlvefx9+9SsIDYXp0yEzE6xWqKqCPXvglVfg\nwQdh7lz4zW/g0ktNJxaidVwWe4AJEyYwYcKEeo9lZWXV/RwZGVmvq+dCv/71r/n1r3/dzohCeE5t\nLSxYAOvWwR/+AFOnQsNTVfHxMGUK2O1w//1w1VWQlwcDB5rJLERbNFvsg1VqaqrpCBeRTC3T0kzH\nj8O0aRAWBrt2QZcurrePioKXXoIXXoDRo2HVKvjxj92bydt8MZdk8owQpZTRxUtCQkIwHEEEoVOn\n4IYbdCs9OxsuuaR1+2/bBjffDM89B+PHeyajEK60tnZKsRdBp6YGJk6Evn3hL3/R/fRtsXWrLviv\nvALXXefejEI0R4q9EM345S91//u6da1v0Tf07rswcyYUFeluHiG8pbW1U2a9FEHl2Wdh40Z4/vn2\nF3qAcePg3nv1id3Tp9v/ekJ4irTsRdD47DO45hrYvFmPsHEXpeCWW/RQzSeecN/rCuGKdOMI0Qin\nUxf66dP1WHl3O3YMBg+GF1+EUaPc//pCNCTdOEI04vHH9YVQv/iFZ16/WzfIyYHZs+HkSc+8hxDt\nIS17EfDKy2HYMPjnPyE62rPvNWMG9OkDjazzI4RbSTeOEA1MmQJDh8L/+3+ef6+KCt2d87//CwMG\neP79RPCSbhwhLvD22/DJJ9BgITWPiYyE//xPmDdPn7gVwldIsRcBy+nU89788Y8QEeG99507Fw4e\nhIIC772nEM2RYi8C1gsvQNeucNNN3n3f8HB49FFYuBDOnfPuewvRFCn2IiCdOQMPPQRLllw8i6U3\nTJoE3/8+rF3r/fcWojFS7EVAysnRJ0p/9CMz7x8SAkuX6pPCZ8+aySDEhWQ0jgg4p09Dv37w+ut6\nFI5Jo0frsfczZ5rNIQKP20fjFBQUEBcXR2xsLMsaGTy8Z88eRowYQUREBMuXL6/3XGVlJdOmTcNm\nsxEfH8+2bdtaHEyItnr2WUhMNF/oQbfsH31UnywWwiSXLXun08mAAQPYuHEjFouF5ORkcnNzsdls\nddt89dVXHDhwgPXr19O1a1cWLFhQ99ysWbMYNWoUd9xxB7W1tZw6dYrLLrusfgBp2Qs3OnsWYmMh\nNxdGjDCdRg+/HDkS7rkHfvIT02lEIHFry76oqIiYmBiio6MJDw8nIyODvLy8etv06NGDpKQkwsPD\n6z1+/PhxtmzZwh133AHo9WwbFnoh3C03F6680jcKPei++/Ote2nTCJNcFnuHw0HUBZN0W61WHA5H\ni164rKyMHj16MHv2bIYOHcrPfvYzqqur25dWCBeUguXL4YEHTCepb+JE/Y1j0ybTSUQwc7kGbUg7\nxqzV1tayc+dOsrOzSU5OZv78+SxdupSHH374om0XLVpU93NqampArPcovO+99/QC4jfcYDpJfSEh\nes775cthzBjTaYS/KiwspLCwsM37uyz2FosFu91ed99ut2O1Wlv0wlarFavVSnJyMgDTpk1j6dKl\njW57YbEXoq3+8AddVE2Mq2/O7bfr7pySEvfOpS+CR8OG8OLFi1u1v8tunKSkJEpLSykvL6empoa1\na9eSnp7e6LYNTxRERkYSFRXF3r17Adi4cSMDBw5sVTghWmr3bti5UxdVXxQRoadXlsVNhCnNjrN/\n6623mD9/Pk6nk8zMTBYuXEhOTg4AWVlZVFRUkJycTFVVFaGhoXTq1ImSkhI6duzIJ598wpw5c6ip\nqaFfv36sWrVKRuMIj7j7bujcGf7rv0wnadqRIxAXp6dclrEKor1kimMRdKqr9WLfO3fC5ZebTuPa\nrbfCddfpRc+FaA+Z4lgEnbVr9VBLXy/0AD//OaxcKcMwhfdJsRd+LydHF1F/kJoKNTWwdavpJCLY\nSLEXfq24GA4fhgkTTCdpmZAQyMrSrXshvEn67IVf+/nPwWKBBx80naTljh7VE7Xt3w/du5tOI/yV\nnKAVQePECd1P/3//pxf59iczZuiJ2u65x3QS4a/kBK0IGi++qPvA/a3Qg5yoFd4nxV74rZUr/efE\nbEMjR+rlC9tx9bsQrSLFXvilTz6BY8dg7FjTSdomJATmzNFz7wvhDdJnL/zSggXwgx/AI4+YTtJ2\nR47AgAFw6BB07Gg6jfA30mcvAl5tre6vnzHDdJL26dULrrkG1q0znUQEAyn2wu9s3Ah9++pWsb+b\nOROef950ChEMpNgLv7N6deAs4J2eDh99BC1cE0iINpNiL/xKVRXk5+sJxQLBD34AU6bobikhPEmK\nvfArr76qx9b/8Iemk7jPzJnw3HMy5l54lhR74VdWr/b/E7MN/ehHcPIkfPyx6SQikEmxF37jwAHY\ntQtuvNF0EvcKDdUfYHKiVnhSs8W+oKCAuLg4YmNjWbZs2UXP79mzhxEjRhAREcHy5csvet7pdDJk\nyBBuuukm9yQWQWvNGvjJT+D73zedxP1mzND99rW1ppOIQOWy2DudTubOnUtBQQElJSXk5uaye/fu\nett0796dp556ivvuu6/R11ixYgXx8fGE+OIq0MKvvPii764x2179++tJ3TZtMp1EBCqXxb6oqIiY\nmBiio6MJDw8nIyODvLy8etv06NGDpKQkwsPDL9r/0KFD5OfnM2fOHLlKVrTLv/4Fx4/rOWUC1a23\n6lW3hPAEl8Xe4XAQFRVVd99qteJoxYDge+65h8cee4zQUDk1INpn7VrdhRPIh9Itt8D69XolKyHc\nLczVk+3pennjjTfo2bMnQ4YMobCZqf0WLVpU93Nqaiqpqaltfl8ReJTSxX71atNJPCsqCmw2ePdd\n+PGPTacRvqawsLDZWuqKy2JvsViw2+119+12O1artUUv/OGHH7Jhwwby8/M5ffo0VVVVzJw5k9WN\n/MVeWOyFaOiTT3Rrd/hw00k873xXjhR70VDDhvDixYtbtb/LL8VJSUmUlpZSXl5OTU0Na9euJT09\nvdFtG/bJP/roo9jtdsrKynjppZe4/vrrGy30QjTnfBdOMJzjnzYNXn8dTp82nUQEGpct+7CwMLKz\ns0lLS8PpdJKZmYnNZiMnJweArKwsKioqSE5OpqqqitDQUFasWEFJSQkdG8zZKqNxRFuc78J55RXT\nSbyjd29ITISCApg0yXQaEUhkPnvh03bsgNtug717g6NlD3oFrvffh9xc00mEL5P57EVAWbtW92MH\nS6EHmDoV3noLqqtNJxGBRIq98FnnzsHLLwfODJct1aOHPhn95pumk4hAIsVe+Kxt2/RyfYMGmU7i\nfXKBlXA3KfbCZ736qr7QKJi6cM6bPFmPtz91ynQSESik2AufpJS+mnTyZNNJzOjWTXflvP226SQi\nUEixFz7p00/B6YSEBNNJzJkyBV57zXQKESik2AufdL5VH4xdOOdNmqRP0spcOcIdpNgLn7RuXfB2\n4ZzXuzfEx8u0x8I9pNgLn1NWBg4HXHON6STmSVeOcBcp9sLn5OXBTTfBJZeYTmLe5Mn638PpNJ1E\n+Dsp9sLnrFsn88Kcd+WV0KcPfPCB6STC30mxFz7lq6/g449h7FjTSXyHdOUId5BiL3zK66/DuHHw\ngx+YTuI7zhd7mS9QtIcUe+FTgvlCqqbEx+sPv3/+03QS4c+k2AufcfIkFBbCxImmk/iWkBDpyhHt\nJ8Ve+Iy334arr4auXU0n8T1Tpui5gqQrR7RVi4p9QUEBcXFxxMbGsmzZsoue37NnDyNGjCAiIoLl\ny5fXPW632xk9ejQDBw5k0KBBPPnkk+5LLgKOXEjVtKQk+PZb2L3bdBLhr5pdqcrpdDJgwAA2btyI\nxWIhOTmZ3NxcbDZb3TZfffUVBw4cYP369XTt2pUFCxYAUFFRQUVFBYmJiZw8eZJhw4axfv36evvK\nSlUC4OxZ6NVLz4ljsZhO45vmz4fu3eHBB00nEb7A7StVFRUVERMTQ3R0NOHh4WRkZJCXl1dvmx49\nepCUlER4eHi9xyMjI0lMTASgY8eO2Gw2Dh8+3OJwIngUFkL//lLoXZF+e9EezRZ7h8NBVFRU3X2r\n1YrD4Wj1G5WXl1NcXExKSkqr9xWBTy6kat4118Dhw/D556aTCH8U1twGIW6YdvDkyZNMmzaNFStW\n0LFjx4ueX7RoUd3PqamppKamtvs9hf84d05PCSATfrl2ySWQnq4/GL/rKRVBpLCwkMLCwjbv32yx\nt1gs2O32uvt2ux2r1driNzh79ixTp05l+vTpTGqi6XZhsRfBZ8cO6NwZBgwwncT3TZ4MS5ZIsQ9G\nDRvCixcvbtX+zXbjJCUlUVpaSnl5OTU1Naxdu5b09PRGt214skApRWZmJvHx8cyfP79VwUTwkAup\nWm7MGH0S+8gR00mEv2l2NA7AW2+9xfz583E6nWRmZrJw4UJycnIAyMrKoqKiguTkZKqqqggNDaVT\np06UlJTw8ccfc91113HVVVfVdQctWbKE8ePH/zuAjMYJenFxsHq1XoZPNO/WW/WUEnPmmE4iTGpt\n7WxRsfckKfbBbc8ePenZwYMQKpf4tchLL8Hzz+tVrETwcvvQSyE86fwoHCn0LTdhAmzZAlVVppMI\nfyJ/YsKo9etlyGVrXXaZHoZZUGA6ifAnUuyFMQ4HlJbCqFGmk/ifSZP0tyIhWkqKvTAmLw9+/GNo\ncOG1aIGbb9Yt+zNnTCcR/kKKvTBGJj5ru8hIPc/9P/5hOonwF1LshRHffAPbt0Namukk/mvSJH3O\nQ4iWkGIvjHjzTRg9Gjp0MJ3Ef02apLvCzp0znUT4Ayn2wgiZ+Kz9YmP1lMfbt5tOIvyBFHvhdd9+\nCxs3wk03mU7i/yZPllE5omWk2Auve/ddGDoUfvhD00n83/khmHIRumiOFHvhdXIhlfsMHaqHX5aU\nmE4ifJ0Ue+FVtbXw+utS7N0lJEQusBItI8VeeNUHH0BUFFx+uekkgWPyZBmCKZonxV54lVxI5X7X\nXgvl5XrmUCGaIsVeeI1S0l/vCWFhcOONesy9EE1pttgXFBQQFxdHbGwsy5Ytu+j5PXv2MGLECCIi\nIli+fHmr9hXB5eOPdWEaNMh0ksAjQzBFc1wuXuJ0OhkwYAAbN27EYrGQnJxMbm4uNputbpuvvvqK\nAwcOsH79erp27cqC7xbHbMm+IIuXBJPf/Q6qq+Hxx00nCTzV1dC7N3z+ub7QSgQ+ty5eUlRURExM\nDNHR0YSHh5ORkUFeg++KPXr0ICkpifAGUxe2ZF8RXGStWc+59FK9Pu0bb5hOInyVy2LvcDiIioqq\nu2+1WnE4HC164fbsKwLP/v3w5Zdw9dWmkwQumRhNuOKy2J9fJLwt2rOvCDzr10N6OlxyiekkgevG\nG+G993SXjhANhbl60mKxYLfb6+7b7XasVmuLXrg1+y5atKju59TUVFJTU1v0HsJ/rFsHv/2t6RSB\nrVs3SE6Gt9+W7rJAVFhYSGFhYZv3d3mCtra2lgEDBvDee+/Rp08fhg8f3uhJVtAFu1OnTnUnaFu6\nr5ygDXxHjsCAAfq/3/++6TSBLTsbduyA554znUR4Wmtrp8uWfVhYGNnZ2aSlpeF0OsnMzMRms5GT\nkwNAVlYWFRUVJCcnU1VVRWhoKCtWrKCkpISOHTs2uq8IPhs2wPjxUui94eab4aGH4OxZWe5R1Oey\nZe+VANKyD3g//jHMmAEZGaaTBIfkZFi2DK6/3nQS4UluHXopRHtVVcGWLTBxoukkwUMusBKNkWIv\nPOqtt+Caa6BzZ9NJgsf5IZjyhVlcSIq98KjXXoOpU02nCC42m77I6p//NJ1E+BIp9sJjTp/WwwDT\n000nCS7n57iXC6zEhaTYC495911ITISePU0nCT7Sby8akmIvPOa112DKFNMpgtPw4fDNN7B3r+kk\nwldIsRcecfasXn5QruQ0IzRUj7mXrhxxnhR74RGbN8OVV+olCIUZsjatuJAUe+ER0oVj3ujRsGcP\nfPGF6STCF0ixF2537pxuUUqxN+t734MJE2S5QqFJsRdut327noGxf3/TScTkydJvLzQp9sLtpAvH\nd4wfDx9+CMePm04iTJNiL9xKKSn2vqRTJ7juOsjPN51EmCbFXrjVrl36vwkJZnOIf5MLrARIsRdu\ndr5VL6tS+o6bboJ33tHTV4jgJcVeuJV04fienj3hqqv0+rQieDVb7AsKCoiLiyM2NpZly5Y1us28\nefOIjY0lISGB4uLiuseXLFnCwIEDGTx4MLfddhtnzpxxX3Lhc/buhaNHISXFdBLRkFxgJVwWe6fT\nydy5cykoKKCkpITc3Fx2795db5v8/Hz27dtHaWkpTz/9NHfddRcA5eXlPPPMM+zcuZNPP/0Up9PJ\nSy+95LnfRBi3bp3uHw6V74s+Z9IkvTyk02k6iTDF5Z9lUVERMTExREdHEx4eTkZGBnkNrtDYsGED\ns2bNAiAlJYXKykqOHDlC586dCQ8Pp7q6mtraWqqrq7FYLJ77TYRxr74qc+H4qiuvhN694YMPTCcR\nprgs9g6Hg6gLJjexWq04HI4WbdOtWzcWLFhA37596dOnD126dGHs2LFuji98RXk5lJVBaqrpJKIp\n06bBK6+YTiFMcVnsQ1o4pKKxRW/379/PE088QXl5OYcPH+bkyZOsWbOmbSmFz/v73/WJ2bAw00lE\nU265RRd76coJTi7/NC0WC3a7ve6+3W7HarW63ObQoUNYLBYKCwsZOXIk3bt3B2DKlCl8+OGH3H77\n7Re9z6JFi+p+Tk1NJVWah37n5Zdh6VLTKYQrcXHQo4fuyrnuOtNpRGsVFhZSWFjY9hdQLpw9e1Zd\neeWVqqysTJ05c0YlJCSokpKSetu8+eabasKECUoppbZu3apSUlKUUkoVFxergQMHqurqanXu3Dk1\nc+ZMlZ2dfdF7NBNB+IH9+5Xq2VOps2dNJxHNeeQRpX75S9MphDu0tna6bNmHhYWRnZ1NWloaTqeT\nzMxMbDYbOTk5AGRlZTFx4kTy8/OJiYmhQ4cOrFq1CoDExERmzpxJUlISoaGhDB06lDvvvLPtn0rC\nZ/3973pRcenC8X0/+Qlcey2sWAGXXGI6jfCmkO8+IcwFCAlptM9f+I9hw2D5cjk56y+GDoU//EH+\nf/m71tZOGREt2mXfPnA4dGtR+Ief/ESfYxHBRYq9aJeXX9ZD+qRLwH/ccou+JqK21nQS4U1S7EW7\nvPyybikK/9Gvn14bePNm00mEN0mxF2322Wfw5ZdwzTWmk4jWkq6c4CPFXrSZdOH4r1tu0TOUnj1r\nOonwFin2ok2UghdfhIwM00lEW1xxhZ4vR6Y9Dh5S7EWbfPwxnDkDI0aYTiLa6vbbQWYwCR4yzl60\nyX33QUQEPPKI6SSirb78Evr310NnO3QwnUa0loyzFx7ndEJuLtx2m+kkoj169tTfzDZsMJ1EeIMU\ne9Fq77+vC0V8vOkkor2kKyd4SLEXrbZmjS4Swv/dfDNs2QJff206ifA0KfaiVU6f1ssPyiicwNCp\nE0ycqCezE4FNir1olfx8SEiABssaCD8mXTnBQYq9aBXpwgk8aWn6aujyctNJhCdJsRctVlkJGzfq\nq2ZF4AgP11fUvvii6STCk6TYixb7+99hzBjo0sV0EuFu06fD88/rK6NFYGq22BcUFBAXF0dsbCzL\nli1rdJt58+YRGxtLQkICxcXFdY9XVlYybdo0bDYb8fHxbNu2zX3JhdetWgU//anpFMITRozQ109s\n3246ifAUl8Xe6XQyd+5cCgoKKCkpITc3l927d9fbJj8/n3379lFaWsrTTz/NXXfdVffc3XffzcSJ\nE9m9eze7du3CZrN55rcQHrdnD3z+OUyYYDqJ8ISQEP1B/t2qoiIAuSz2RUVFxMTEEB0dTXh4OBkZ\nGeTl5dXbZsOGDcyaNQuAlJQUKisrOXLkCMePH2fLli3ccccdgF7P9rLLLvPQryE87dln9Vf98HDT\nSYSnzJypu+qqq00nEZ7gstg7HA6ioqLq7lutVhwOR7PbHDp0iLKyMnr06MHs2bMZOnQoP/vZz6iW\no8gvOZ26P3f2bNNJhCdZrTB8OKxfbzqJ8IQwV0+GhIS06EUaTsYTEhJCbW0tO3fuJDs7m+TkZObP\nn8/SpUt5+OGHL9p/0aJFdT+npqaSKish+5R33gGLBQYONJ1EeNrs2fCXv8i8R76osLCQwsLCNu/v\nsthbLBbsdnvdfbvdjrXB1TQNtzl06BAWiwWlFFarleTkZACmTZvG0qVLG32fC4u98D2rVkmrPljc\nfDP88pdw8CD07Ws6jbhQw4bw4sWLW7W/y26cpKQkSktLKS8vp6amhrVr15Kenl5vm/T0dFavXg3A\ntm3b6NKlC7169SIyMpKoqCj27t0LwMaNGxkoTUO/c+yYbtnL9AjBISICbr0VnnvOdBLhbi5b9mFh\nYWRnZ5OWlobT6SQzMxObzUZOTg4AWVlZTJw4kfz8fGJiYujQoQOrLjid/9RTT3H77bdTU1NDv379\n6j0n/MOLL+oROF27mk4ivGX2bF3wf/tbCJUrcQKGLF4iXBo2DJYsgRtuMJ1EeItScNVVkJ0No0aZ\nTiOaIouXCLfZuVNPfTtmjOkkwptCQuCOO+CZZ0wnEe4kLXvRpDvvhMsv11/nRXA5dkwvSL5vH/zw\nh6bTiMa0tnZKsReNOn4coqNh926IjDSdRpjw05/q4bb33286iWiMdOMIt3j+ed1PL4U+eN11F+Tk\nwLlzppMId5BiLy6iFKxcCT//uekkwqThw6FzZz2ttfB/UuzFRf73f6G2FuRC5uAWEqI/8P/8Z9NJ\nhDtIn724yG236Vbd/PmmkwjTTp7UV9Lu2iVLUfoaOUEr2uXLL2HAAD2dsVxIJQDmztUjcmRWE98i\nJ2hFu6xaBZMnS6EX//bzn+sx92fPmk4i2kOKvahTW6v7Zy9Yf0YIBg2CmBhYt850EtEeUuxFndde\ng6go+G6iUiHq3HMPLF8ua9T6Myn2AtB/xMuXw4IFppMIX3TTTXD0KHz4oekkoq2k2AtA/xEfPar/\nqIVo6JJLdOv+D38wnUS0lYzGEQBMnQrXX68XrhCiMadO6bmStm+Hfv1MpxEy9FK02v79kJICBw5A\nhw6m0whftnChLvpPPmk6iZBiL1pt3jxd5JcsMZ1E+LrDh/XonP37ZXiuaW4fZ19QUEBcXByxsbEs\nW7as0W3mzZtHbGwsCQkJFBcX13vO6XQyZMgQbpLOYJ/0zTfwwgvwq1+ZTiL8QZ8+cOON8PTTppOI\n1nJZ7J1OJ3PnzqWgoICSkhJyc3PZvXt3vW3y8/PZt28fpaWlPP3009zVYJD2ihUriI+PJyQkxP3p\nRbutXKn/ePv0MZ1E+It779XdOKdPm04iWsNlsS8qKiImJobo6GjCw8PJyMggLy+v3jYbNmxg1qxZ\nAKSkpFBZWcmRI0cAOHToEPn5+cyZM0e6anzQyZPwxBPwm9+YTiL8SWKivsmS0v7FZbF3OBxERUXV\n3bdarTgcjhZvc8899/DYY48RKqsW+6SVK/XMlvHxppMIf/Pgg/ocT02N6SSipcJcPdnSrpeGrXal\nFG+88QY9e/ZkyJAhFBYWutx/0QUzLKWmppIqc+t6XHW1vojqnXdMJxH+6OqrwWaDZ5/Vy1cKzyss\nLGy2lrristhbLBbsdnvdfbvdjrXBPKcNtzl06BAWi4VXX32VDRs2kJ+fz+nTp6mqqmLmzJmsXr36\novdZJNPpeV1ODlxzDQwebDqJ8FcPPaSnw549G8LDTacJfA0bwosXL27dCygXzp49q6688kpVVlam\nzpw5oxISElRJSUm9bd588001YcIEpZRSW7duVSkpKRe9TmFhobrxxhsbfY9mIggPqK5WqndvpYqL\nTScR/m7MGKX++lfTKYJTa2uny5Z9WFgY2dnZpKWl4XQ6yczMxGazkZOTA0BWVhYTJ04kPz+fmJgY\nOnTowKomztrIaBzf8cwzenGSxETTSYS/+93vdMt+xgxp3fs6uagqyJw+raerzcuDYcNMpxGBIDUV\nfvpTfRPeI1fQCpeWL4fNm3WxF8Id3n9fF/o9e+D73zedJnhIsRdNOnZMLzm4ebMeSSGEu9x0k27h\nyxTZ3iMfY2YsAAAPMElEQVTFXjRpwQI9idXKlaaTiEBTUgKjRsFnn0G3bqbTBAcp9qJRn3+uV6D6\n178gMtJ0GhGIsrKgY0fdVSg8T4q9aFRGhr5S9ne/M51EBKqKChg4ED76CK64wnSawCfFXlykqAgm\nT4a9e2W+euFZixfrE7W5uaaTBD4p9qIepXRf6syZMGeO6TQi0J08Cf37w7p1ekEc4Tlun89e+Lfn\nn9cnZWfPNp1EBIOOHWHpUvjFL6C21nQacSFp2Qewo0d1H+obb0BSkuk0IlgoBWPGwM03w913m04T\nuKQbR9SZMwcuvVTWCxXe99lneqK9jz+GBnMnCjeRYi8A2LIF/uM/9Pjnzp1NpxHB6KGH4P/+D159\n1XSSwCR99oKaGrjrLr0KlRR6YcrChfDpp7obUZgnxT4APf44XH45TJ1qOokIZhER8Kc/wdy5cOKE\n6TRCunECzM6dMH487NihC74Qps2Zo0/a/vWvppMEFunGCWLV1XD77br7Rgq98BVPPKFnxnztNdNJ\ngpu07APIL38JlZWwZo3pJELUt307pKfrb54Wi+k0gcEjLfuCggLi4uKIjY1l2bJljW4zb948YmNj\nSUhIoLi4GNBr1o4ePZqBAwcyaNAgnpQxgB7zxhvw5pvwP/9jOokQF0tJ0X33s2bBuXOm0wSp5tYt\nrK2tVf369VNlZWWqpqam2XVot23bVrcO7RdffKGKv1vo9MSJE6p///4X7duCCKIZFRVKRUYqtXmz\n6SRCNO3sWaVGjlTq8cdNJwkMra2dzbbsi4qKiImJITo6mvDwcDIyMshrsMzRhg0bmDVrFgApKSlU\nVlZy5MgRIiMjSfxuodOOHTtis9k4fPiw2z+wgllNDdxyC9x5J1x7rek0QjQtLAxeeAF+/3vdhy+8\nq9li73A4iIqKqrtvtVpxOBzNbnPo0KF625SXl1NcXEyKzI7kVnffDV266AtYhPB1V1yhC35GBpSX\nm04TXMKa2yAkJKRFL6QanCi4cL+TJ08ybdo0VqxYQceOHS/ad9GiRXU/p6amkpqa2qL3DHYrV+ol\nBrduhVAZVyX8xLhx8Otfw6RJ8MEHMu12SxUWFlJYWNjm/Zst9haLBbvdXnffbrdjbTDZRcNtDh06\nhOW7U+5nz55l6tSpTJ8+nUmTJjX6HhcWe9Eymzfr1vwHH8hVssL/zJ8Pn3yiZ2NduxZa2KYMag0b\nwosXL27V/s22B5OSkigtLaW8vJyamhrWrl1Lenp6vW3S09NZvXo1ANu2baNLly706tULpRSZmZnE\nx8czf/78VgUTTSsthVtv1dMXx8SYTiNE64WE6G+mBw5IF6S3NNuyDwsLIzs7m7S0NJxOJ5mZmdhs\nNnJycgDIyspi4sSJ5OfnExMTQ4cOHVi1ahUAH3zwAS+88AJXXXUVQ4YMAWDJkiWMHz/eg79SYDt4\nUH8N/q//ghtuMJ1GiLaLiIANG+C66/R5p3vvNZ0osMlFVX6kokL/YfziF/prsBCB4OBBfVz/9rfw\ns5+ZTuM/Wls7m23ZC99w7JhuyU+fLoVeBJa+feHddyE1FTp10iN1hPtJsfcDX30FEyboYv/gg6bT\nCOF+sbFQUKC7KEEKvifIgD0f9/nnesWf8ePhscdk1IIIXIMH6xb+fffpydOEe0mfvQ8rLoYbb4T/\n/E89yZkQweDAAd24SU/Xi5dLA6dxsixhgHjnHd0//6c/wbRpptMI4V1Hj+qGTkwMPPOMHrkj6pP5\n7P2c0wmLF+uLTV55RQq9CE7du8N77+m5n0aOhP37TSfyf1Lsfcj5E7H/+Ad89JEejiZEsLr0Unjp\nJbjjDhgxAtatM53Iv0mx9xFvvw1Dh0JyMmzcCL17m04khHkhIXoe/DfegHvugV/9Ck6eNJ3KP0mx\nN+yrr3Tf/F13wd/+Bv/933oqWCHEvw0frle5OnECBg2C/HzTifyPFHtDzp2DZ5/VB25kJHz66b/H\nGAshLtatm/6b+ctfdAv/P/4DvvjCdCr/IcXey5TSX0mHDNETQeXnw+OPyzSvQrTU2LG6cRQdrRtL\nv/kNfPON6VS+T4q9lygFmzbp1aQeeECPuNm6FYYNM51MCP9z6aWwZImeJvnYMejfHx59FCorTSfz\nXVLsPezbb+Gvf4XERH2i6c47YdcuvXCDXCwiRPtYrfD003pdh5ISuPJKfQHiZ5+ZTuZ75KIqD1BK\nD5188UVYs0aPsLn7bt0nLwVeCM85fBj+/Gf9AZCQADNm6IZVp06mk7mfXEFryLlzerTAhg2Qm6sf\nu+02PdImNtZsNiGCzenTelz+iy/qVd3Gj9cXKI4bp+fODwRuv4K2oKCAuLg4YmNjWbZsWaPbzJs3\nj9jYWBISEiguLm7Vvv5KKSgr04snz5ihR9TMmAHV1foA27tX98tLoRfC+yIi9Gid11/Xkwlefz2s\nWqWnU772Wj3E+YMP9IdC0FAu1NbWqn79+qmysjJVU1OjEhISVElJSb1t3nzzTTVhwgSllFLbtm1T\nKSkpLd73u28VriIY849//KPuZ6dTqf37ldqwQaklS5SaOlWpyEh9mzJFqT/9SamyMu9m8hWSqWV8\nMZNSvpnLk5mqq5V66y2l7r5bqWHDlLr0UqWuvlqpe+5RavVqpT7+WKnTp72bqa1aWztdXr5TVFRE\nTEwM0dHRAGRkZJCXl4fNZqvbZsOGDcyaNQuAlJQUKisrqaiooKysrNl9fcnp02C361VzDh6E554r\nJDo6lX/9C3bvhq5dYeBAPdRr8mQ9XPLyy73bB19YWFhvwWFfIJlaxhczgW/m8mSmH/xAd+mcXxn1\n1CnYsUOPjMvP17Nsfv65HtbZrx9ccYU+6bt9eyHdu6diseha4I/n3lwWe4fDQVRUVN19q9XK9u3b\nm93G4XBw+PDhZvf1tn379FWqX3+tr1z9+ut//3zihD6z37evvp07Bz/6kR49M3AgXHaZ0ehCCA/o\n0EGvkHXhZ8vp01BaqrtpP/9c33buhFtv1SeAq6uhZ0/o1UvfbDZYvtzUb9ByLot9SAs/vpSfnGAN\nCdH/cy+/HHr0gB/+sP4t9IIzGIsWwZw5xqIKIQyJiNALqQwe/O/HFi3SN9AfBl9+CUeO6FtNjYmU\nbeCqj2fr1q0qLS2t7v6jjz6qli5dWm+brKwslZubW3d/wIABqqKiokX7KqVUv379FCA3uclNbnJr\nxa1fv37u67NPSkqitLSU8vJy+vTpw9q1a8k9P67wO+np6WRnZ5ORkcG2bdvo0qULvXr1onv37s3u\nC7Bv3z5XEYQQQriBy2IfFhZGdnY2aWlpOJ1OMjMzsdls5OTkAJCVlcXEiRPJz88nJiaGDh06sGrV\nKpf7CiGE8D7jF1UJIYTwPK/OjXPHHXfQq1cvBl945uM7y5cvJzQ0lGPHjnkzUpOZnnrqKWw2G4MG\nDeKBBx4wnqmoqIjhw4czZMgQkpOT2bFjh1cz2e12Ro8ezcCBAxk0aBBPPvkkAMeOHWPcuHH079+f\nG264gUovz0TVVK77778fm81GQkICU6ZM4fjx48YznWfiWHeVydSx3lQmk8f66dOnSUlJITExkfj4\neBYuXAiYP86bytWq47xVPfzttHnzZrVz5041aNCgeo8fPHhQpaWlqejoaHX06FFvRmo006ZNm9TY\nsWNVTU2NUkqpL7/80nimUaNGqYKCAqWUUvn5+So1NdWrmb744gtVXFyslFLqxIkTqn///qqkpETd\nf//9atmyZUoppZYuXaoeeOABn8j1zjvvKKfTqZRS6oEHHvBqrqYyKWXuWG8qk8ljvalMpo/1U6dO\nKaWUOnv2rEpJSVFbtmwxfpw3las1x7lXW/bXXnstXbt2vejxe++9l9///vfejFKnsUx//vOfWbhw\nIeHh4QD06NHDeKbevXvXfWpXVlZisVi8mikyMpLExEQAOnbsiM1mw+Fw1LuobtasWaxfv954rsOH\nDzNu3DhCvxtLm5KSwqFDh4xnAnPHelP//1auXGnsWG8qk+lj/dJLLwWgpqYGp9NJ165djR/njeXq\n1q1b645zr3wkXaCsrKxei3X9+vVq/vz5SillpGXfWKbExET10EMPqZSUFDVq1Ci1Y8cO45nKy8uV\n1WpVUVFRymKxqIMHD3o904XZ+vbtq6qqqlSXLl3qHj937ly9+6ZynThxot7jN954o1qzZo3xTL5w\nrF+YqaqqyieO9QsznThxwvix7nQ6VUJCgurYsaO6//77lVLKJ47zxnJdqLnj3GixP3XqlBo+fLg6\nfvy4Ukr/AXz99dfejnRRYR00aJCaN2+eUkqpoqIidcUVVxjPNGbMGPXaa68ppZR6+eWX1dixY72e\nSSn9dXvo0KFq3bp1Sil10UHftWtXE7HUiRMn1LBhw+pynffII4+oKVOmGM/kK8d6w38nXzjWG2by\nlWO9srJSpaSkqE2bNvnMca7Uv3NdOF9PS45zo8V+165dqmfPnio6OlpFR0ersLAwdfnll6sjR44Y\ny6SUUuPHj1eFhYV19/v16+f1P8yGmTp16lT387lz51Tnzp29mkcppWpqatQNN9yg/vjHP9Y9NmDA\nAPXFF18opZQ6fPiwGjBggE/kUkqpVatWqZEjR6pvv/3WeCZfONYb+3cyfaw3lskXjvXzHn74YfXY\nY4/5xHHeWC6lWn6cG12pavDgwRw5coSysjLKysqwWq3s3LmTnj17mozFpEmT2LRpEwB79+6lpqaG\n7t27G80UExPD+++/D8CmTZvo37+/V99fKUVmZibx8fHMnz+/7vH09HSee+45AJ577jkmTZrkE7kK\nCgp47LHHyMvLIyIiwngm08d6U/9OJo/1pjKZPNa//vrrupE23377Le+++y5Dhgwxfpw3latVx7mH\nP4DqycjIUL1791bf+973lNVqVX/729/qPX/FFVd4vR+zsUw1NTVq+vTpatCgQWro0KFen970fKbw\n8PC6TDt27FDDhw9XCQkJ6uqrr1Y7d+70aqYtW7aokJAQlZCQoBITE1ViYqJ666231NGjR9WYMWNU\nbGysGjdunPrmm2+M58rPz1cxMTGqb9++dY/dddddxjNdyNvHelP//0we6039O5k81nft2qWGDBmi\nEhIS1ODBg9Xvf/97pZQyfpw3las1x7lcVCWEEEFAFhwXQoggIMVeCCGCgBR7IYQIAlLshRAiCEix\nF0KIICDFXgghgoAUeyGECAJS7IUQIgj8fxncASVSIaMEAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 9 + "prompt_number": 40 }, { "cell_type": "markdown", @@ -295,32 +295,22 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl0XNV9x7+j0WjfbUuyJdsilldsvNUy5AQs1wiThlAH\nUpmck6IWSGlTmrrhYAdoDw5JaxmnEMh6WhPXpxDAp2nBTowDxkiEOsUOa8A4xsa7FmPtGi0zmrn9\n43I1b0Zv9vfmzYy+n3N+5913331v7tPy/d25y+/ahBAChBBC0o4MqytACCHEHCjwhBCSplDgCSEk\nTaHAE0JImkKBJ4SQNIUCTwghaUpIgb/jjjtQUVGBJUuWjOd1d3ejoaEB8+bNww033IDe3t7xa9u2\nbcPcuXOxYMECvPTSS+bVmhBCSFhCCvxf/uVf4sCBA355zc3NaGhowIkTJ7Bu3To0NzcDAI4dO4bn\nnnsOx44dw4EDB/D1r38dXq/XvJoTQggJSUiBv/baa1FaWuqXt3fvXjQ1NQEAmpqa8PzzzwMAXnjh\nBXzlK1+Bw+FATU0NamtrceTIEZOqTQghJBxR98F3dnaioqICAFBRUYHOzk4AQFtbG6qrq8fLVVdX\n4+LFiwZVkxBCSLTENchqs9lgs9lCXieEEGINmdHeUFFRgY6ODlRWVqK9vR3l5eUAgKqqKpw/f368\n3IULF1BVVTXh/traWpw6dSqOKhNCyORjzpw5OHnyZFT3RN2Cv/nmm7F7924AwO7du7Fhw4bx/Gef\nfRYulwunT5/GRx99hLq6ugn3nzp1CkKItLWHHnrI8jqkw/u5XAKXLwt8/LHAO+8ItLYK7Nsn8PTT\nAj/5iUBzs8ADDwjcc4/A7bcLfPvbqfV+6f7747sZb7E0jEO24L/yla+gtbUVly9fxsyZM/Hwww/j\nW9/6FhobG/Hkk0+ipqYGe/bsAQAsWrQIjY2NWLRoETIzM/HjH/+YXTSTkLExoL/fZ319+ulw5y4X\nUFTks+Ji/fOKCnm84gqr35yQ5COkwD/zzDO6+QcPHtTNf+CBB/DAAw/EXyuSVPT0AD/7GdDbC7z0\nEnDmTHCRHh31F+Jg4lxeHvp6bi7A9gEh8RF1HzwJTX19vdVVMBynE/jxj4GODqCxsR5r1gQX8Ly8\n1BbmdPz9aUnn90vnd4sVmxAioRt+2Gw2JPgjiQEMDgL33Qfs3w/86EfAdddJQSeEJIZYtJMCT6Li\nwAHgH/8R+PBDoLAQmDcPmDvX/zhnjuxiIYQYBwWeJAwhgLY24MQJ4KOP5FGlT5+Wg59a0VfpmhrA\n4bC69oSkHhR4khSMjQFnz04U/hMngIsXgexsn+XkhD6aVSYzM7XHCsjkgwJPkh63GxgelrNtRkeB\nkRH9o9nXPJ7EOZNwZehoSCRQ4AmJEI/HfIcSSRmXS3ZZhXICtbXAp2sLySQmFu3kNEkyKbHb5ZTO\nvDzjny2EXDNw6RLQ2SktWLqzU3ZplZbKcYvycnnUpufPN76OZHLAFjwhMTI4CDQ3y3EFrXhfuiRb\n5pmZcoVtbS0we7ZPuAOFvLCQ3TQkPGzBE5JAbDbZhVJaKsW8sFAK9sCAz3p6gEOHZCu9sNBnRUWh\nz0OVKSgAMrjZJokAtuAJSQBut0/0+/v9nUC0eUNDcp1BOCcReF5dDVxzjdU/CRIrHGQlJE1QQdv6\n+mR/vvbY0yO7hS5cAM6fl9bWJu/Rkp0NlJTIUBIlJcBnPgMECS9FUgAKPCEWI4QU2tFRKdCB4hzp\ncWjIF+dHK9LRHLOzrf5pECOhwJO0ZmxMDl7qmZpyaMX1wGuZmUBWVnwCzX52EggFnsSE12uO0Bl9\n3WaTwhnKsrOtvZ6VRWEm5sBZNGQCY2PAmjVAd3dwEfV4In+eapkqU4N52vOcHFmuoMBY8bTbzfs5\nEZKOsAU/CThxQgq8dhWlMu25EenRUZ9Y5+T4r87UO48kHcs9dAYk3WAXDbEcIeS3gnAOIfDc6ZTT\nAAcHI0+Hwm6P3kHk5gKbN8uIl4QkG+yiSSPUbAxlbnf6pj0eKciZmdIcDv10VpZcSFRVFbxMvOmC\nAqt/84QYx6QW+J4euUOREWJltPhpRc8sMQuWVuF0E/W5djsHJgkxg0kt8G1twL59Ukw9Hp+whrNI\nyoUqEwzVd11UJNMOhxS/cKZEMtJySkyFkDNoxsZ8aY/HV87lMu4zzSiXkcEYLoSEgn3wFqCENJFO\nJV2epS0nhBT5ZHVAyfCZM2ZwwVO6wEFWMqkQInJnoQZ+tbN9hof147TrDQiHivkebOA4kX/mdrv8\nxqe6vdTxwQeBr389cfUg5kGBJzHj9cr+/8AxhWjyoi2fyM/KyNAXQO3R6LxEPYPbD04OOIuGhOSr\nXwVeeUVfCI32udnZvg01cnPlMT/fl9Zabq5coh+Yl51tjGBmZnIQl0xO2IKfRPT1AV1dsrtCCbzb\nnbzn2la3GnROtXO2rIlRsIuGpA2qf90Ih2GU03G5ZJRHp9O32GpoSPa7B0P1jcfqIKqrgccfT9zP\nnSQv7KIhKYMScCWcWhHVppPpfGzMJ77K8vP9zwOvx3teUWH1b4qkMhR44sepU8Avf5kY0VRdMGYI\nZF6e8YLLwUySalDgiR/d3cCxY3IKoZ4NDU3M83onPsdulwOnxcVAWZkvXVzsi5Oen+8bUA1lgWUy\n+VdLSESwD57EhRCyNR7KAUTiJKIpY7NF5giiLZOfD8ybJ4+EJBscZCWTAuVQjHAm2uuDg8DJk8Cc\nOcCqVUBdnTwuWSK7agixEgo8IXHicgG//z1w5Ahw9Kg8nj4NXHWVT/Dr6oDaWs6tJ4mFAk+SFrVS\nVrvIKtjq02Qpp9I9PcDly/7vc9NNMlAdIYmC0yRTHO3c71iEKJnLeb3+87z1VqCGSkdbLj/f2OcF\npvPyrP5rISQ8FHiDuf9+4I03YhPDsTHj6mGz+XYsUrsWRbINngpXHOluSHrnesLI0L6EJJ6Yu2i2\nbduGp556ChkZGViyZAl27doFp9OJjRs34uzZs6ipqcGePXtQUlLi/4Fp3kXz/vvA+fORhb1Vpg0f\nnGrlA8uGCuGrjeMeSRjcRJVPxjoFK89+/8lLwvrgz5w5gz/+4z/Ghx9+iOzsbGzcuBF/8id/gg8+\n+ABTp07F5s2bsX37dvT09KC5uTnuSpLUIVQI30Q7m1QqH2lZILkcTrjyc+YATU3W/k2mCwnrgy8q\nKoLD4cDQ0BDsdjuGhoYwY8YMbNu2Da2trQCApqYm1NfXTxB4kt7YbL4IjsR4lCOwyjk5nXJW0alT\n0j7+WAaxU9jtwMyZcuPy2bNlmlhHTP+GZWVluPfeezFr1izk5uZi/fr1aGhoQGdnJyo+DZ5RUVGB\nzs5OQytLyGQnIyN8N436FqX2+Q1nemWdTuDiReDMGWlnz8pjT48MgFZTA6xYAXzpSz4xr6mRO0jR\nuScPMf0qTp06he9///s4c+YMiouL8Wd/9md46qmn/MrYbDbYgoyqbd26dTxdX1+P+vr6WKpByAS0\n+8zGY9EIZKKfF+5ZHo/vW1Sg2e3Br2ktJ0eK9uzZwM03+0R8+nSOAySKlpYWtLS0xPWMmPrgn3vu\nObz88svYuXMnAOA///M/8X//9384dOgQXn31VVRWVqK9vR1r167F8ePH/T+QffCm4/HIELbJKlBm\nPy+ciEUqctFYMj2TM5bSk4T1wS9YsADf+c53MDw8jJycHBw8eBB1dXXIz8/H7t27sWXLFuzevRsb\nNmyI5fEkTu6917wY4ipEbkGBNJXOz/dPFxT4dmnS7qxktsjZ7RQ3QhQxT5N85JFHsHv3bmRkZGDF\nihXYuXMnBgYG0NjYiHPnzk3aaZLJggoCFm5TabPzXC79+fKh5uGHm6cfSx5D/ZJUh6EKSNLh9UqR\nT7Rj0R6dTtltoecAcnOB//gPGWuGkGSGoQpI0qGENSfH+GcPDwPt7UBbm7SLF31preXmAlVVcoaH\nOmpt0SLj60ZIMsAWPEkJ3n4beOIJfxF3OuWsDq1Y6wl4URG7Z0jqwxY8SVvy82UYiA8/BB55BGhs\nlDtFccoeIcHhvwdJeoSQLfX/+i/gnnuAv/974O67gU8+sbpmhCQ3bMGThDAyAvT2ypWQvb0T0+Gu\n5eQAJSVAaSlw9dVy4PbcOeDThdOEEB3YB08iRolqNOKs0kJIcVYiXVLiM+253rXiYm6ZRwj74Imp\n7NwJPPSQbw9Trzd42awsoLJSLnGfPl0KtZqWqI7atPbocMiVqUND8jOGhvzLMNYJIZHBFjyJGbWQ\nanh44lEvz6iyNpu+cwjmMIwqS8dCrIQLnUjaI4SMN2OU44jGuag5/Urw8/Kk5ecbl87J4ZROog8F\nnhCT0IZ+UI5heFh2Hzmd8qhMex5tenRUOhAjnUZgOiuLTiQVocATkuJ4PPqOw8i0xxO5Q1AWeB4q\nj99CzIECTwgJi9stnUgoJ6DO9dLh8txuf2cRqWOINC8ry+qfoDVQ4AkhljM25u80gjmGvj6gv99n\nfX3+eSrtdPo/PzMztCMI5hgaGlI77hCnSRKSZKi9TfU2JtFLW1U20Z/r9cpB68CY/yptt/um2upd\nDyyr8rxeOU4yNgYMDvpfv/LK1Bb4WKDAk4TT0yMXTCWDsJldVojgYhSNcBlVNjfXms/Vy2M/vflQ\n4EnCaG8Hvvc9YNcuGfXR4TBHQBwO37x1q8WV2+cRK6HAE9M5fx7Yvh34+c+B228H3nsPqK62ulaE\npD8UeGI4o6PAG28Ar74q7b33gK99TYb6ZXAwQhIHZ9GQuHG7gaNHfYL+xhvAwoXA2rXSPvc5uQk3\nISR2OE2SxMzoqJx1MDAQ+hiYd/myFPfaWp+gX3utjABJCDEOCvwkwevVF9tQQhyuLAAUFsqWduBR\nL08dS0qAujq5uxIhxDwo8CnMr34FHD4cmWgPDcl7bDYprFOnSisuDi7E4cR6sq4OJCRV4EKnFGZ4\nWHaTeL1yel12tsx3OOQqvOJiuYBjdNT/ODIi55SfOOG7LydHml7a7LzsbE4LJCRZYAs+TVBhdJXo\n6zkCvbTReS6X/DYQq8OI9J7Vq+USdEImC+yiIZbj9UqRN9OJHD4M/Nu/ARs3Wv22hCQOCjxJe1wu\noLxcdkmVl1tdG0ISRyzamWFSXQgxhY8/lvPuX3/d6poQkvxQ4ElKsWAB8OKLwAMPAF/6EnDhgtU1\nIiR5ocCTlOO664B335VTRBctAk6ftrpGhCQnnCZJUo6REWDHDuCFF4D77wdmzrS6RoQkJxR4kpSM\njQFdXcAnn0i7dMmXfvpp4KqrgDffBGbPtrqmhCQvnEVDEoLbLePWKJHWE25tXn8/UFoKTJvms/Jy\nefzc54Drr7f6jQhJLJwmSSyhv1+GWlBirSfaAwOyz1wr1HriraysTK7MJYRIGKqAWMK5c3IzDxUv\nR5nTKYV9bAwoKpIrXD0emef1yuuXL8sNQfLzfbFyCgomngfm5efLXZMIIcFhC56YjsvlE/xABxDq\nPFwZhyO0U4jmvLhYfnMgJFlJaBdNb28v7rrrLnzwwQew2WzYtWsX5s6di40bN+Ls2bOoqanBnj17\nUFJSEnclCQlECDmbJpQDGBiQ3w4++shnTqf+86ZMAT74gDtOkeQloQLf1NSENWvW4I477sDY2Bic\nTif++Z//GVOnTsXmzZuxfft29PT0oLm5Oe5KEqJFCKC7G2hrkxt5Bzu2twO5ucD06cCMGfpHZQxc\nRpKdhAl8X18fli9fjo8//tgvf8GCBWhtbUVFRQU6OjpQX1+P48ePx11JQgDZX3/11bJV7nLJvKws\nYNUqmT9zpr+AV1bKUMuEpAMJE/h33nkHd999NxYtWoR3330XK1euxPe//31UV1ejp6cHACCEQFlZ\n2fh5PJUkRPHBB8Af/gCcOgWcPOk7dnQA1dVy68DaWmDOHF/6iitkiGFCUpmECfzvfvc7XHPNNTh8\n+DBWrVqFTZs2obCwED/84Q/9BL2srAzd3d1xV5KQYHg8sr/98mXg978H3n7bZypOjc3mE/8vfAG4\n915r60xILCRsmmR1dTWqq6uxatUqAMCXv/xlbNu2DZWVlejo6EBlZSXa29tRHiSe69atW8fT9fX1\nqK+vj6UaJEVRUyUHBuQc+sB0qLzAa8PDshumqEhuPaiOK1fKDcC1eYWFwOLFVr89IZHR0tKClpaW\nuJ4R8yDrddddh507d2LevHnYunUrhj7dKHTKlCnYsmULmpub0dvby0HWScD//i/wu99FLsojI3JQ\nM1CUtelQedprBQVABkPmkUlAQmfRvPvuu7jrrrvgcrkwZ84c7Nq1Cx6PB42NjTh37hynSU4idu4E\nWlrkZuBDQ7JVrT1q02NjUtzz82XLOzfX/xhpXiTluRKWpBMMVUCSHrd7ogMI5RDiyXM44ncSwY6B\naX6LIGZDgSfkU4SQUymjcQ6ROg6VVjYy4nMmgaZ1AsEsljL8djL5oMATYgFCyA3BtaKvdRChLJIy\neuUyMxPnTHJzGfcnGaDAk7RGCBmkzOuVM3H0jqGumV02UZ/t8chvDcFi9TidsoyRKIfy7/8ObNxo\n7LNJZDCaZJwIkb6ikMr1VGkhZF93Robsogh1NKqM2WUzM4Hs7NSpb1mZ1f+lJBqSRuAPHwa2bbNW\nkADfH3My/VPFUzYz0/o6GFXWZpNGCImMpOmi6eoCWlvlLAtlLlfi0x6PFMWsLDlw5nCkVjozkyJI\nSDrCPngD8Hr9nYxVjibWtHJQZjuUKVPkStF58+hQCEkEFHgCr1cuJgrmBIxyKG1twCuvSHFvaJC2\nbh03zSDELCjwJKEIISM7vvyytNZWGcXx+utl637aNDnzIifHd1TGhUGERAcFnliK2w0cOSLF/rXX\ngN5eOZ1vZMS3IEhZVtZE4ddLh7se7TOystilRFITCjxJCbxe2dUTKPx66XDXo02PjcXmGIxwLlws\nROKBAk9IGNQiITOcRyjHNDwsp3sGxrmJJx3sek4Ov6WkIxR4QpIUIWQXViwxb6ItOzoqRd4oRxIq\nzW8liYMCT0iKo2ZBKfN4/M8jMbdbhi3o79ePzR8sTv+nWzpERWamvvDffjtwzz3G/3wmMxR4krKo\nODPBRCsWoYv2nmT4DCHkOgO1CjlSi7a82ffMmyc3PSfGwVg0JC56e4EdO3yDkYkWRhWbJRbxMUqs\n1GCoVULK6aPESCjwZBy7XbYeT58GTp4ETp0CtHumz54NzJ8vbcECYOZMWd4IgVPxZgghxsEuGhKS\n7m4p9CdPTrTBQbmwqbbWZ9XVvr1SCwrk1nzqyE0qCIkd9sGThDIwMFH8L16cGJ9cHbOzfcIfaMoR\nhLPActnZnBJIJgcUeJK0CCGn8WnFX88CN7AIV3ZszDhnUVAgwys4HFb/tAiZCAWeTDrc7sicQlcX\ncOIEcPy4PI6MTHyWzQb80z8B3/524t+DkHBQ4MmkpL9fdg1duCBNpbV5/f3A9OlyjEBZVZV/evp0\ntt5J8kKBJ6YihC8UcaJNhSrW2vAw0N4up1yGEu7qatn1wlk6JJXhPPgURO0DG624WWV2u4zIaLTl\n50d/T3a2bHUXF3OglRA92IKPg48+ApqbZeyPeEQz2h+H2uFeRSsMZZGU0SunJ6hqhSUhJPGwBZ9g\nysqAq6/2rczUmtrIO5RFUiaaZ7ndcvDw8uX4P89m820+rt2EPDAvljJGPitVP4/dRSQRsAVPdAnn\nDKxwYOn0eUKkrwMrLARuvZXf9oyGLXhiGBkZ0sycVRKpQEZjZjzTjM9VUR9DjbUMDcXejRdKgCMV\n8VitoAD40z+lwCcDFHiDGR0FzpxJTdFJ9OcCkYuG2aIUyeepMYhEfV48z+KgMwEo8Ibzi18AmzYB\nn3wSutzUqTJY19SpxgpEZqacXWKFAMbyDEKIebAP3iRcLjlHu63NZxcvTjx3uYAZM6RVVfnSgXn5\n+Va/ESHESrjQKYlxufx31FHW1gb84Q9yCf3x4zJUr9c78f6SEuDNN4HPfCbxdSeEWA8F3mBUgKzA\n7c5isbExoKgodispkYt6CCGTEwp8jPz618Djj+sLsxoMDEVBAVBaKq2szJfWnhcU+Da2UH3leulQ\n16K5hwNthKQXFPgYuXgROHzYfwqbXjrUtWS7x+v1bYFnpiNJt3voFEmyQoEn46gYN8nofJL5HrWC\nNxmdjzZdWgp87WtW/5WRRJLwhU4ejwd/9Ed/hOrqauzbtw/d3d3YuHEjzp49i5qaGuzZswclJSXx\nfASJEZvNt99pdrbVtUkuhJDrFUZHZWgHdRwZkYuLhoZkjPlAC5avrvX3y9jzqtzYWPi6ZGdLy8mR\nptLBjio9OGj+z4mkPnG14B999FG8+eabGBgYwN69e7F582ZMnToVmzdvxvbt29HT04Pm5mb/D2QL\nnujQ3Q0cOzZRdPVEOJ4yIyNyRpOKRqknnpEIbLTX9MpkZbFLiEROQrtoLly4gL/4i7/Agw8+iEcf\nfRT79u3DggUL0NraioqKCnR0dKC+vh7Hjx+Pu5Ik/XnySeBHP/JF5lQtbG1ab/qoHtnZvtlHxcX+\ns5GKi2WsFCWwqgUdLh3qelYWF20R80loF80//MM/YMeOHejv7x/P6+zsREVFBQCgoqICnZ2dsT6e\nTDLuvFNaKDye0A5ALx3qel9f5GXDfYbDEZkziMZxGFGWA8eTm5gE/pe//CXKy8uxfPlytLS06Jax\n2Wyw8S+LGIjdDuTlSUsmhJCBwuJ1ONpxgb6++ByOyhMCWL8e+M53gJUrrf5JkUQTk8AfPnwYe/fu\nxf79+zEyMoL+/n78+Z//+XjXTGVlJdrb21FeXq57/9atW8fT9fX1qK+vj6UahCQFNpuvqybZGBmR\n3V9f/CJwzTXAww8DV15pda1IJLS0tARtQEdK3NMkW1tb8b3vfQ/79u3D5s2bMWXKFGzZsgXNzc3o\n7e3lICtJC7xeOStGTalU6VQ57+8HWlulM3r0URkQj6QWlsWDV10x3/rWt9DY2Ignn3xyfJokST2E\nSH1BM/oc8E07VXPSrTrPyYnt/gcekOn58639+yKJgwudkoy9e4Hf/tZ6QVOrYJNB0Kw+t9s5S4ZY\nD3d0SgMcDimwPT1AV5ecH97dLdNdXXIATYvdDkybBpSXS6uqAioqfHkVFfKoYuFEKmgcHyck9WEL\nPoVQ0S21wq/EP1S6q0uKdlmZtClTgqeLi2Xs+YICaSqdnU3RJ8RKGIuG6CKEXD4fzil0dcnBOKdT\nLoUfHPSlx8b8BT/SdLhyXM1JSGRQ4IlpuN2+uCuB4q93Hsm1gQH57GidQrhyapWq3W7tz4wQI6HA\nk5TD5YrNaYQqp2LP2O0TV3bGcjTiGYFHh4PfXEh0UOAJ+RQhZLeSdnVn4EpPM4/hyoyNmec8jHgG\nv/0kHxR4QkwmWJz9aM/dbjlgPjTkOyqL5lz7DCP/rQK//Wjj3fz0p8C11xr3WSQyKPAkIrQLmWIV\nqMl6LoT/phzhNuqI9tzIZ5lxbrfLUAcOh9V/xZMPzoNPATweYMsWGUzKKsHyen0bgiSr0GRnJ6dI\ncq9bkkpQ4BNMRgZw1VVyIZPqq43FlFC73cHLKGw2IDdXznHPzZWm/eptpqkwuuHKcKUoIcbDLpo0\nRTvIGMoJJIO53bKVnCgHs2oVIyqS1INdNJMY1Zp3u6Wwa4/B0sHyvF7pIGw22bK22319rtpNqbOy\njPlMl8s3WOh0Ar29E99PhVFwOKTppSO9npNDgSeTA7bgIRfcdHZGL0xGiKlRzwRiE7torpvxzEiu\nMzYOIZxFEzPf/Cbw7LO+TZlHRuKfcpaRIff+VKssCwt959pjYBl1zM+PTgw5b5mQ9IYCbxCq/1or\n+IGmtlaL9Xq4Mm637EpQlp3tf65nRpeh0yAkeaDApxEej/8enaGcxNCQ7Lfu6ZFBw3p6fKbNHxyM\nrg6ZmT7Rv/VWucCFEGINFPgkQQgpvtpVhoGmlx9NWW2+yyVFWE2B1FpenjH5FRWy64gQYg0UeJM5\nfhx48MHw4jwyEv5Z2dlAUZG04mJp6jxUvorXrhXfnBwOQhKS7lDgTaavD3jxRd/cbTXFT6VD5UVT\nNtz9GRm+AVZlas53LHmJvF/lc2YMIdFBgZ8EqGBXiXImZjkurzdxzsThkKuHGxqs/u0REjtc6DQJ\nUDFkMjNl90y8CDExvG286UjKjYxMjO/e2+ub068lWGRDvXSwa1OmxP+zIiTVYAveQoaGgPffN1Zc\no0273eHF0co0Y5MTImELPsX49a+BrVv9uy/0jl5v9M/OzfXf2m7aNP0t7/LypKBquzNiOQa7xn52\nQqyDLfgUQK/PPZ6jEc+I5Oh2+1bcxuM8jDpGU5bfGkiywUFWklToRbRMBefkcsn6Z2XJb0L5+fKb\nTiQWaVlVjt9ySKRQ4AkxCI/HP8plMHM6Q18PV87rNcZhhCqbk8N4++kABZ6QFMPt9nci4RzG4KAM\nO3H5ss+6uuTR6Qz+OWqVcqAj2LABuPfexL0viR0OshJiAV6v/qrmWI+hro2OykFxFVIiL0+ubp4+\n3T/URKTHRYus/ukRM2ELniQlalNwFfc+MB3qWqTl9K6NjkYvytpYQOEENRYR1h6zs9ndMllhF00a\nowYszRY4q8upcyEmxr/X7uoULh3rtcDWcSSizFhAJBGwiyYKnE7g9ddTRyQ9Ht/WefGKWLTl8vIS\n91nKOE2RkPiZtAL/4YfAjh3xiW4sC5AAX5gBFQkyN1f2o6rY64HXcnN9i5GMFNJo72ErlZDUgl00\ncaD6iZO5y8PIciqKpdmOxOxvCKHuyc+nIyPJCfvgiWkIIR1aMjugeMu53UBpKfDFLwI33wysXSu/\nRRGSDFDgCYmTP/wB2LsX2LcPePddYN06KfZf+IKM50OIVVDgCYFskevttBVJWnt+/jzw2mvym4vN\nBvzt3wI/+IHVb0cmKwkT+PPnz+P222/HpUuXYLPZ8Fd/9Vf4xje+ge7ubmzcuBFnz55FTU0N9uzZ\ng5KSkrgrSVIbISbOL483HeqaxxN8mqPeeSTp3FygpgaYMcPqnyaZrCRM4Ds6OtDR0YFly5ZhcHAQ\nK1euxPONMLUlAAAOdklEQVTPP49du3Zh6tSp2Lx5M7Zv346enh40NzfHXUmSXLz+OvDUU5GL7/Cw\nnPZYUGCM2Ia7nwG8SDqSsHnwlZWVqKysBAAUFBRg4cKFuHjxIvbu3YvW1lYAQFNTE+rr6ycIPEl9\npkwB5s71340p2NHhkOLudMpdnNTuTEL4dqdyOORgZl6ef8z6cEeVdjis/okQkpzE3Qd/5swZrFmz\nBu+//z5mzZqFnp4eAIAQAmVlZePn4x/IFvykRAgp8FoHEM45hDpq03Z75E5B6xxmzgRuuMHqnwwh\nkZHwlayDg4O49dZb8fjjj6OwsHBCZWxBvidv3bp1PF1fX4/6+vp4qkFSAJvN141i5GwUtadsOKfQ\n2wscOgS8/LKcDllYCHz5yxR4kry0tLSgpaUlrmfE3IJ3u9246aab8PnPfx6bNm0CACxYsAAtLS2o\nrKxEe3s71q5di+PHj/t/IFvwJEF0dgL79wMvvggcPAjMmgV8/vPAjTcCn/0su3ZIapGwQVYhBJqa\nmjBlyhQ89thj4/mbN2/GlClTsGXLFjQ3N6O3t5eDrMQyGhtlq10N9DocEwdo9QZtjchjADJiNAkT\n+Ndffx3XXXcdrrrqqvFumG3btqGurg6NjY04d+4cp0mSpEI7VTPYTB8j81TcdrMcSGBedjYdSrrD\nhU6EJAlerxT5WJzD4CBw6ZLsYlL2ySehg9tpxzhKSoAjR4CyssS9LzEfCjwhFqFmCQ0MAP39Ey2a\n/KEhOcunqMjfCgsjyysrk+MNJL2gwBNiIiMjwF//tWxd6wmz3R5cdKMR6Px87tpEJsINPwgxkaws\nYMUK4Cc/AU6eBG67DbjnHmDOHCnU2dlW15AQf9iCJ2lL4DaHHs/E+P2xmNsNtLYCTz8t+9k3bAAe\nfhhYsMDqNybpDFvwZBwh/AXNKHELNDOea9QzvV7/LQC1m3zEa3Y7cMstvvOuLqt/44RMhAIPoK0N\n6OhIDnEz6rlqD9dQAmW04Onl5+QY+7xoLCODUwfJ5IZdNACamoBXXwV6euQUtUgoLZVL7svL5XHa\nNDlApoJrGSmesQie3U5xIySd4CwaA3C5ZNySnh5p3d2Rp71eKfylpXKqml462DUO0BFCQkGBt5jh\nYZ/oh3IIetccDjk9zogY6eHSnIJHSOpBgU9RhJARD43a7ShUemRkYkwWM9PcfIMQY6DAk7ComCzB\nnIDTKRft9PTIrqq+Pl9az9zu0J9ntwd3APn5wBNPAPPnJ+bdCUllOE0yhVBxzEdHpQVLR3se770u\nl2x1Z2XJcQFl2vPycqC6Wv9aNOc5OcDs2Vb/JghJX9iCj5Bjx4A9e4wT2sCWr2rRql2HcnImimOs\nQqp3HuxaVhb76AlJRtiCNxGPR4q0WkBjs0khVJtGqHRWlhRnteLR7dZP6+UNDvq6PdTzHA7fvqXa\ntF5eJOlkKEsHQkhiYAs+CdGuQo3EMUTjRKy+Tzkvs51IvI7qyiuB6dOt/ksgxAcHWUlK4PEk3hGN\njgIXLgBnzkjr7NSvW2mpHF/4u78Dvva1RP5UCAkNBZ5MSlwuGW7iwgXg4kV5VKbOOzrkorLqamlV\nVb60Oq+qkuMfhCQjFHgyKamvl9Edg1FWBlxxhRzA1g4sB5oa2I7HtIPjHGsgRkKBJ5MWtUVePDYy\nEv8z1HPUdNNYHYQRTibQ7Harf0skHijwhCQJgescwtnQkNwlSrtTlPZcpbXnIyPR1cluD+4UFi8G\nfv5zc34WxBg4TZIQHdQUV+1iLjPO43mGEBPXIyhT53l5ckPtYNeDnUdShjOG0hO24ElS0tIC/OIX\nxoin1+t7blaW7IsvKJCCabRQxnrO7hMSDrbgSdpQXAzMmjWxhaxnbndk5ZQ5nTK+js3mE1q1SC1a\ni/W+aO9lfH8SC2zBk0mL6rqJ1qJ1KLHeo73P6028Y7nySmDJEqt/S0TBFjwhUaCNdKlFLcQKNCW4\nwSzc9XieMToqv3k4nTKkhdMp94ENFc3TZvOt1FXCHsz0rjc0UOBTHQo8MY3RUeCTT6wVxlg+A4hc\nBOO5npcX+f2xfDb79QkFnpjGd78rDZCDmjNnGiOSgcJolAiraxRGki6wD56YhhDAO+8Au3cDzzwD\nzJsH3H470NgoB1EJIZHDhU4kaXG7gRdflGJ/8CBQUSEjN2qjOKZqmiEJSCKgwJOUoLdXRnMcG/OP\nDJmqaRX+OJGOhc5s8kGBJyTBaGP3G+1A1OyZYLFuIo2fE1je5Yr9fc1wZgUFwGOPySMJDqdJEtNQ\nQub1yqMyq8+ToQ5m1VkIKah2u8/CnQfmFRQARUXRPSPe82jvycuTK3qJ8VDgDWBkBHj2WWB4OLmE\nxEjh0YqN0f/gZotMZqYUkGQTtnDn7A4h8UKBN4DRUeDIEZ/Aj43pH0Ndi6SMXl60ZGZOjImSmxs8\nToqaPpiVJe9Vgqk96uVFci2R92dkcKk/mXywDz6FEcLXwo7VQcTrYFLlfiGCO4NUcFCxlpk2jZEi\n04WkGGQ9cOAANm3aBI/Hg7vuugtbtmyJu5KExIsaQ3C55DetkZGJx2B5wa6Ful97PjwsP98MMjKC\nL9zKzARWrACee86czyaJxXKB93g8mD9/Pg4ePIiqqiqsWrUKzzzzDBYuXBhXJVOJlpYW1NfXW10N\nw/B4/Jfzt7S0oK6uXneD62jMqvuA0CtdXa4WlJTU+01HjNUScX+0/fTp9vepJZ3fDUiCWTRHjhxB\nbW0tampqAAC33XYbXnjhBT+BT3dS/Y9s40bgV7/yCePEv6cWAPVhn2O3y9WqRUX+x+JiObNDL2RA\nYAgCMwTSbg9d761bW7B1a/j3S1VS/e8zFOn8brFiqMBfvHgRM2fOHD+vrq7GG2+8YeRHEJPZvVvG\nSh8akl0LQ0P+6aeeAm68Uf9asLTTCVy+7Mt3uXxRHPPypBmRVqKuznNz5TkhkxVD//xtnKaQ8uTk\nhB6U+/3vgbvvju8zvF6f+EfjKHp6gLa2yMsPDckWeyjnsG0bsHRpfO9DSNIiDOS3v/2tWL9+/fj5\nv/zLv4jm5ma/MnPmzBEAaDQajRaFzZkzJ2pNNnSQdWxsDPPnz8crr7yCGTNmoK6ubsIgKyGEkMRg\naBdNZmYmfvjDH2L9+vXweDy48847Ke6EEGIRCV/oRAghJDGYGu3ijjvuQEVFBZZoNnY8cuQI6urq\nsHz5cqxatQpHjx41swqmcv78eaxduxZXXnklFi9ejCeeeAIA0N3djYaGBsybNw833HADent7La5p\nbAR7v/vuuw8LFy7E0qVLccstt6Cvr8/imkZPsHdT/Ou//isyMjLQ3d1tUQ3jI9T7/eAHP8DChQux\nePHiCQsRU4Vg75cu+jIyMoLVq1dj2bJlWLRoEe6//34AMWhLXKOqYXjttdfEW2+9JRYvXjyet2bN\nGnHgwAEhhBD79+8X9fX1ZlbBVNrb28Xbb78thBBiYGBAzJs3Txw7dkzcd999Yvv27UIIIZqbm8WW\nLVusrGbMBHu/l156SXg8HiGEEFu2bEnJ9wv2bkIIce7cObF+/XpRU1Mjurq6rKxmzAR7v0OHDonr\nr79euFwuIYQQly5dsrKaMRPs/dJJX5xOpxBCCLfbLVavXi1+85vfRK0tprbgr732WpSWlvrlTZ8+\nfbzF19vbi6qqKjOrYCqVlZVYtmwZAKCgoAALFy7ExYsXsXfvXjQ1NQEAmpqa8Pzzz1tZzZjRe7+2\ntjY0NDQg49MllKtXr8aFCxesrGZMBHs3APjmN7+JRx55xMrqxU2wv82f/vSnuP/+++FwOAAA06ZN\ns7KaMRPs/dJJX/Ly8gAALpcLHo8HpaWl0WuL2V7o9OnTfi34M2fOiOrqajFz5kxRVVUlzp07Z3YV\nEsLp06fFrFmzRH9/vygpKRnP93q9fuepinq/gYEBv/ybbrpJPP300xbVyhi07/b888+LTZs2CSFE\nSrfgtWj/NpctWyYeeughsXr1arFmzRpx9OhRq6sXN9rfXzrpi8fjEUuXLhUFBQXivvvuE0KIqLUl\n4QK/bt068d///d9CCCH27Nkjrr/+erOrYDoDAwNixYoV4n/+53+EEGLCD720tNSKahnGwMCAWLly\n5fj7Kb773e+KW265xaJaGYP23ZxOp6irqxN9fX1CCCnwly9ftriG8RH4u1u8eLH4xje+IYQQ4siR\nI+KKK66wsnpxE/h+6agvvb29YvXq1eLQoUNRa0vCBb6wsHA87fV6RVFRkdlVMBWXyyVuuOEG8dhj\nj43nzZ8/X7S3twshhGhraxPz58+3qnpxo/d+Qgixa9cu8dnPflYMDw9bVLP4CXy39957T5SXl4ua\nmhpRU1MjMjMzxezZs0VnZ6fFNY0Nvd/djTfeKFpaWsbP58yZk7JOTO/90k1fFA8//LDYsWNH1NqS\n8D1jamtr0draCgA4dOgQ5s2bl+gqGIYQAnfeeScWLVqETZs2jefffPPN2L17NwBg9+7d2LBhg1VV\njItg73fgwAHs2LEDL7zwAnJyciysYezovduSJUvQ2dmJ06dP4/Tp06iursZbb72F8vJyi2sbPcF+\ndxs2bMChQ4cAACdOnIDL5cKUKVOsqmbMBHu/dNGXy5cvj8+QGR4exssvv4zly5dHry1mep3bbrtN\nTJ8+XTgcDlFdXS1+9rOfiaNHj4q6ujqxdOlScfXVV4u33nrLzCqYym9+8xths9nE0qVLxbJly8Sy\nZcvEiy++KLq6usS6devE3LlzRUNDg+jp6bG6qjGh93779+8XtbW1YtasWeN5f/M3f2N1VaMm2Ltp\nueKKK1K2Dz7Y36bL5RJf/epXxeLFi8WKFSvEq6++anVVYyLY7y9d9OW9994Ty5cvF0uXLhVLliwR\njzzyiBBCRK0tXOhECCFpCrf1JYSQNIUCTwghaQoFnhBC0hQKPCGEpCkUeEIISVMo8IQQkqZQ4Akh\nJE2hwBNCSJry/yXT+WdwmqA+AAAAAElFTkSuQmCC\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtwXNV9x78r7ephyXpYj5Ut2cj4bWxsQ7DTzhBEwJgk\nhHFoasOUxASYzpBpiRtqm0eTeEJayyYJCcm06QzE1SSU4k4TsClxeTgSJCYYMOCAY1OM/JZlWW+t\nHqvdPf3j16u9u7p3dfd59/H9zPzmnnPu2btHj/3+zp7H7ziUUgqEEEKyjjy7G0AIISQ5UOAJISRL\nocATQkiWQoEnhJAshQJPCCFZCgWeEEKylIgCf/fdd8PtdmP58uUTZT09PVi7di0WLlyIm266CX19\nfRP3duzYgQULFmDx4sV46aWXktdqQgghUxJR4L/2ta9h//79IWXNzc1Yu3YtPvroI9xwww1obm4G\nABw9ehTPPvssjh49iv379+PrX/86AoFA8lpOCCEkIhEF/tprr0VlZWVI2d69e7Fp0yYAwKZNm/Dc\nc88BAJ5//nnccccdcLlcaGxsxPz583Ho0KEkNZsQQshURD0G39nZCbfbDQBwu93o7OwEAJw/fx4N\nDQ0T9RoaGnDu3LkENZMQQki0xDXJ6nA44HA4It4nhBBiD85oX+B2u3HhwgXU1dWho6MDtbW1AID6\n+nqcOXNmot7Zs2dRX18/6fXz58/HiRMn4mgyIYTkHvPmzcPHH38c1Wui7sHfeuutaGlpAQC0tLRg\n/fr1E+X/8R//Aa/Xi/b2dvzv//4vVq9ePen1J06cgFIqY+073/mO7W1IRvvfflvh9tsVvv51hW99\nS+HxxxVaWhReeEHh4EGFY8cULl5UGB9Pz/ZnirH9bHusFkvHOGIP/o477kBbWxsuXbqE2bNn47vf\n/S4efPBBbNiwAU899RQaGxuxZ88eAMDSpUuxYcMGLF26FE6nE//8z//MIZoMYuZM4JZbgJ4esfZ2\n4O23g/meHqC7G+jvB0pLgRkzxKqqjNPh+cpKwBn190VCSDxE/Mg988wzhuWvvPKKYfnDDz+Mhx9+\nOP5WkZQzaxbwV381db1AQEReE/xwB9DeDrzzDtDVBZw7B5w9C2hbJcrLzZ3B/PnA/y/OIoQkCPap\noqSpqcnuJsSEzweMjAArVjTh1ClJj4wAw8PBtJlZqRNez+8HiovFZs8OpjVzOoHxcWBwUNpWWGjt\n58jU378G228fmdz2WHEopVJ64IfD4UCK3zJj6OoCjh+PXkyt1AkEgGnTJgttuCWqTkEBwBE6QhJH\nLNrJHnwa8W//Bjz9tPRsp7KpNgkXFQFlZYDbLdeSEsDlis4KCoC8PHkvrxdQSt57ZGTq10XzPnmM\niERIUmAPPkMJBEIF3+u15hiMLNbXJuI9fT4R+FgcQ6wOJVmvy8/ntxaSPGLRTgo8sRWlRORT7ViS\n8dpAQMR/+nT51qRZeN5KWWmpOAxCNCjwhNhIIACMjQFDQ8DAgEwgDwyEmtUyj0fmOmJxDuFlRUX8\nZpENUOAJyRICARH5aB2DUZnfP9kJzJkDXHklsHy52OzZdALpDgWeEDIJr3ey8Le3A0eOAH/8o9jw\nsAi9JvpXXgksWybOgKQHFHhCCACZ2/B6xcbGJl/Dy86dkw1qb78NvP++lAHAZZeJ2F97LbBli70/\nU67DZZKEpJBwETUS0qmENdo6Vl8/Ph5c8VNYOPlqVFZQACxYAFxxxeS6JSV2/7ZJLFDgSVbg8wFt\nbTLBmSph1UTUTCwjCalZ3dLS+J9XWMj9BUSgwJOMp7UV+Nu/FWGrr59aAMvKrImkFWHmxCRJZyjw\nJGM5cwb4+78H3nwT+MEPgNtuo+ASooeTrCRjufVWYN8+oKJCQjLoo1NOZeXl3EhEMguuoiE5h9cr\n4Yj1YYuNLDy08eCgDNVE4xS0uPYul90/NclFKPCEWMTvt+YYwq23V3aYzpgh3xxKS4NWUhJbmjtN\niRUo8IQkmUBAev+a2Hs8snJnaMg4beW+1xsU+1idhD5Nx5GdUOAJyUB8PhH6WB2E2X294zBzBosW\nAQ89ZPdvgFiBG50IyUCcTpn0LS9P7HPHxoB33wUOHhR74w3gvfdE3LVwBJddltj3JOkFe/CEZAkd\nHcAzz0iMmSNHgKNHZa3+n/2Z2IoVIupz53ITVCbCIRpCcpiDB4Hvf1+CifX3BwOL9ffLcI0WTbK8\nPBhVMtp0cTHH9e2CAk8IMUQ74NxI/KdK6/M+X+zOobwcuPxyfnuIFQo8ISlCKVlq6fMFr+HpSPcy\n9TUjI7J6yO83/r3k5cmcQn6+XPXp/HygpQW44YbU/q2yBU6ykqQQCKS36NjxmkBABEsvZGbCFp62\nWi+a1xQW2t+G/Hz2ztMNCnyOc/AgsHGjfIU3EzelUiMQVuq5XDIObGcbNDHjWDRJdyjwOU5+voyP\nvvKKuZjl5VHMCMlEOAaf4wwOArW1wIYNwTC5kUwfTteqFRTwqzsh8cJJVhIT+/cDFy4ED7aIZPoD\nMKya1xs8GCMZDiQWh8NY7iTToMCTtEQ72i4ZziOSjY7Klv3hYTGPJ3T1R6KdyfTpwF13SZqQRMNV\nNDmOUrK6w2wViNWyWF+Xbs8PBEInTadPnzyRajS56nTKkJJS8hxArmNjkV9XXCxOigJP0oWcE/jR\nUdnCnWliZbVMW4ccSbxiLYvmdUVFqX9PI5EmJJfJOYFvawO2bJm8ScXKNRloa5gLC0UU9V/5i4tD\n89p9fT19WUGBjHXrN5ZYuUZTN9IzuNqGkPSCY/AW0YY/zBxAtM4iWc+wsz3hm3/scjTxPiOZ7eG3\nChIrnGQltjLV9v1IjkQ/MWp2jXTP6nV0VNppFw5HUPBfeIHb9ol1KPAZSngogFwzrecfPoaezZaf\nLwducEiLWIWraFLMnXcC589HFi8rwh0ITP1eLpecBVpcLFctrY9BEo9Nm5ZacQvPU+gISTwx9+B3\n7NiBX/7yl8jLy8Py5cuxe/dueDwebNy4EadOnUJjYyP27NmDioqK0DfMoh78m28CFy9KHBevV0yf\nDs9HuhdNXX3a4Qhu3HG5gunwfDLuxfIcl4vj0ITEQsqGaE6ePInPfvaz+NOf/oTCwkJs3LgRn//8\n5/Hhhx+iuroaW7duxc6dO9Hb24vm5ua4G0mM0ca8k+1EEu2onM7kOJ+iIqC6GqipCVp1NTBjBp0K\nyXxSNkRTVlYGl8uF4eFh5OfnY3h4GLNmzcKOHTvQ1tYGANi0aROampomCTxJHA5HcJijuNju1lhD\n2zyUDCcyNAScPAl0dQGXLsm1q0vi7VRWhoq+3gmEl1VXi8MgJNOJSeBnzJiBBx54AHPmzEFxcTHW\nrVuHtWvXorOzE263GwDgdrvR2dmZ0MaSzMfhkJ63y5W69xwfB7q7Q0VfcwLHjwO/+12oU+juljkJ\no28DWtrtlhUwqfw5CImWmAT+xIkT+NGPfoSTJ0+ivLwcf/mXf4lf/vKXIXUcDgccJjNn27dvn0g3\nNTWhqakplmYQYgmXS0S5sBAoKQEqKiTf3w/09U223l75JvDxx8CJE8HnTJ8ur62okG8E8+eLEZIM\nWltb0draGtczYhqDf/bZZ/Hyyy/jySefBAD84he/wB/+8AccOHAAv/3tb1FXV4eOjg5cf/31OHbs\nWOgbcgyexIDfby7I4WZUb2goVKArKuSMUH0+kpWVyWofQuwiZWPwixcvxqOPPoqRkREUFRXhlVde\nwerVq1FSUoKWlhZs27YNLS0tWL9+fSyPJ1mKUjIe3tsr1tNj/To0JCIbSYTnzTMXbS3QGCG5RMzL\nJHft2oWWlhbk5eXhqquuwpNPPonBwUFs2LABp0+fzollkrnK2Fh04qxd+/pkpUtlpaxsqawMTUcq\nKy/nShiS23AnK0kK774LbNokIt3TA4yMRK6flycTkrW1Mhnpdku6tlYmL/Vr4o0slnvsnZNshwJP\nkoLPJyKvLUnULDxv1z39hq9EOg077vFbCjGDAk9yEv2GL7udjdV7Y2PBU6b0oSry8xPvNJYuBf7m\nb+z7+5DEwFg0JCfQNkuZiWqkbxrJvme1nlIivsXFk8VZnzdLR3Ovvt7uvxixCwo8icj4+OQ14v39\nobtI7RBLfU83WQJZUpK85zPAGkkFFPgsJxCQJYa9vUGB1ot1eDq8bHQ0dLlhZaUsVywsjCxgmjgm\nSyA5Vk3I1HAMPkPo75fQxFaFWbsODMjKFb1Ah6eNyrQ0Y5YTkh5wkjWL+dKXgAMHpDduFj/e4ZAl\niQ0NYrNny/hrRYUItWbTp4fmS0sZXIuQdIcCnwMoJcMmQ0PR2eBg5HsOx2TRt2JGzkKzoiL2/glJ\nFBR4EjNauN1YHISZeb1BsZ82TQS/sFCuyUrr807OMJEsggJP0gqfT9Z5Dw3J1ejw7ESmw/MOR/Id\niplz0dIFBfwWQxIDBZ4QHT5f/M7C45FvL4ODMmE9MBCaHxyUDUuRiMZZrFwJPPJIan4/JLPgRieS\n1igVXM+e6CMGk5VXSoRXW6qpPy6wqgqYOTP6s2sj5efOtfuvRLIJCnyO88c/Aq+9lhqR9flChS1R\nolhQEBrELJHPZxAzkslQ4HOcM2eAd96RoYjh4aAZ5X0+42cUFwcP0NDC/YYfqKFtkCopETHWrppp\neZcrtT8/IdkMx+CJZcbHzR2AmVOINg9MFn2reaOy6mpgwQJ7f2+EJAJOspKMJ5ITiSbf3w+8/roc\nGHL2rHzLICSTocATAuDoUeCrX5WDtZ98ktEUSXZAgSc5j9cL1NVJLJ5Vq6QHH378n/6qT0+bxjXr\nJH2hwBMCGZ65dMnaObH6tM9n3RmEnyHLyWGSbCjwhMTB6KiIfSQnYHTt7ZUxfr3wG8WSN0pbCZ0c\nzzMYVjl7oMATYgNKyY5WzRn09MhEr9XDTKJJR/s6hyM9HE0sz2Dc/1Ao8ISQCcLPqk2Ew0imMzJK\nayd3JcvRlJcD99+fGYHpGKqAEDKBwyHC5XRm1jJRpWTJa3+/DH9dugR0dwev+vSlS8F0X9/kZxUW\nygY7M3M45P2yFfbgCSFJoasLOHw4GKStvz+YjmSDg+KQIgmzFZs+XQQ+W2APnhCSNrz0EvDEE6Hi\nPTQ0uV5xsZxANn++XGfNCoa20IQ6XLjLynigjBXYgyeEpAztEHh9bz2892417/dHdgDR5LN1DJ4C\nTwjJSLzeyQ6gqwtobwc++QQ4eVLS7e2yBNaMK68E3n8/Zc2OGQo8ISQrUEqWmoZPqEaabO3uFtGv\nrpZY/VVVwbTZtapKVtJkwnJMCjwhJCLhSyfDlydGslTU83iCgu1wWBNofVlpafaOy1PgCUkSSkko\ng2hFLN0EdHxceqtGa8OnslTU1UI8V1VJmgShwJOc5uBBYM+e5IiizycTcekggvHWzYThCDIZLpMk\nOU1pKVBbGxoj3u8PHr4d6YAS/eempETGZWtrg6dSlZfHduCIviwTVmqQ7II9eJLzKAWMjZmfVGX1\nBCt9uX5Zn7b2WxuCMHMEVpxGUxPgdtv66yI2wR48SRmBQLB3HH5NRVk6v1cgIDFUnE65lpUF81qZ\nzyeOYGxMnIC+vv4aXlZbS4En1qHAR8n4uMzyZ6s4WS1TKrIQJaMs0r2CgtS911RleXnZu5KDZBYx\nC3xfXx/uvfdefPjhh3A4HNi9ezcWLFiAjRs34tSpU2hsbMSePXtQUVGRyPbazk9+Ajz6qPS8RkcT\nH6ioqEi+kpeWylUzfT78XlGRfP1PpcByoo6Q9CfmMfhNmzbhuuuuw9133w2fzwePx4N//Md/RHV1\nNbZu3YqdO3eit7cXzc3NoW+YRWPwSkmPXhP70dHY0/E8w+8XkS8qkuBK+mu06XheR9EnJHmkbJlk\nf38/Vq1ahU8++SSkfPHixWhra4Pb7caFCxfQ1NSEY8eOxd1IEhm/PzGOIh6HNDYmPftwB1BaGoz3\noTcrZWVl8iwOdxCSwknW9vZ21NTU4Gtf+xref/99XH311fjRj36Ezs5OuP9/BsjtdqOzszOWx5Mo\nyc8PrrKwC6VkDble+EdGZAXJ4GDQtJUlg4PAmTOTy8LzgUBsjsGoTkkJv2WQ3CImgff5fDh8+DB+\n+tOf4pprrsHmzZsNh2Ic7HrlDA6H9La1AxYShT6glN4J9PVJYKmuLtnWfvw4cPFiMN/dLc4hnNJS\nY0dQWQns2iWrVAjJFmIS+IaGBjQ0NOCaa64BAHz5y1/Gjh07UFdXhwsXLqCurg4dHR2oNfm0bN++\nfSLd1NSEpqamWJpBbEI/JBQ+XJOKfPi8Q/iw0Lx5wNKl5vf1aS2vTV4Tki60traitbU1rmfEPMn6\nmc98Bk8++SQWLlyI7du3Y3h4GABQVVWFbdu2obm5GX19fVk9yZoJnDoF7N+fWIENBIxFMpV5p5Nj\n8yS3SGksmvfffx/33nsvvF4v5s2bh927d8Pv92PDhg04ffq06TJJCnxq2bIFeOMN4OqrEyewFFdC\nUg+DjZFJfOELwOc/D9x8s/na9vA0xZuQ9IMCTyZx113A738fuhPVaLerfpt9Xp75JqdwhxCpLNn1\n7W4jnSFJJRR4EjfagRBWHYLVe+lWPxHP0pxhNjmtZDliOsP4ocATkkKMnGE6OK9464+Oyv4FvQ0O\nyr140DtDp1PCa7zyCrBqVWL+HtkOBZ6QLGN8PLhpLNySVQ4AxcViRUXBtN6iLTe6N20aUFNj7+83\nk6DAE5ImjIxEPjD60iXZrDWVACuVPIE1K3e57P7tESMo8IQkGKXkEI+pxDq8zOeb+sDoigrpxUYS\nXpeLY9dEoMATYoDfL+PI2ilLetPCIPT0mIs2IKI8lWDrryUlFGaSWCjwJGvQjtELF+JIIm1mIyPB\nqJbhpsWimTHDXLDtDOJGiAYFnqQdZ84Af/rT1CJsdB+Qw67NhNmo3KgOo0iSbIBnspK04+c/B/bu\nnTyBqMW4Cae4WCI6Xn65jFGbTQTq80VFcmSfwyFj38PDwfDFw8OT6+bnp/73QIgdsAdPbCMQCAq/\nkQMwW10Sb12n05rjMHIkVuuG5xm/h8QLh2gImQKtZ2/mHDwemVjV4srrY85r+e5umbiNhscfBzZv\nTs7PRHIDCjzJGZQK7rj0eCbvvLRaFl4+MiKTqqWlQdNixUcqm6oOjx4k8UKBJ1nJtm3Ayy9PFujw\nE5uqqoDZs4H6epmcjVakS0tlOIUTsiQdocCTrOSTT4Bjx2TnZ18f0Nsbeg1P9/eLUFdWykRtRYVx\n2uz+9OnsbZP0gwJPCKRnPzRkzRn09gIXLshyzs5OGfrJyzN3APX1wLe/zV4+ST1cJkmyFm3MXT9M\nY5S2WqZPO50yPDN7dnDYRj98oy+rrLT7N0GIddiDJymhtxc4eFB6zbEKs8sVWXxjKSspYXAtkhlw\niIakFSdOyCanffuAt98GPv1p2f4fqzA7+X2T5DAUeGIrgQDw5psi6nv3ynrxL34RuPVW4IYbGNOF\nkHigwBNbefVV4Etfko1EY2MSEqCwUMIIhF+NyqzcS+TruVKGZBIUeJI2KCVxYTSx11+NyhJdZ6rX\nj4/L2Hu6Oh/GgSfhUOAJsYhSIvLJcjDROqGhIYlJr8dI/KdNA154AZg7157fG7EPLpMkxCIOR7C3\nnGiUkvDHWuya8Ks+PTYmG7M8HomiWVMjE9FmV7cbaGxMfJtJdsIePMlKtB661lPWm1l5rPcHBiYL\nuctlLNJmwl1Rwc1TJDLswZOkoZREUEy0OEZ73+oz9GPs2pi2ljayaO4XF4eWl5WFinV1tdQhxG7Y\ng89gXn1V4rSkSmDz8uIXy1S9lpOUJNtgDz7HePNN4IMPphZno3JtgtHs/0ULmVtTE9xopJ2cZFV4\njcqjqWtUztOYCLEOe/A5jt9vrQdv5iSi+RaQiGdrk6OpdCpWvkG43TJUQ0iy4DJJkvWEO6RkOyAr\ndUdHJSJlfj7Q0BDZKis5dERigwJPiE0oJcsdz541tnPn5Do2JiGHIzmBmhquqCGTocATkuYMDYnY\nnz4tAdh+/3uxvr5gHZcL2LWLZ7iSUCjwhKQJfj9w/jxw8qTYqVOh1zNn5FjByy6TjUvh1wULZPcq\nIRoUeEJs5MAB4NFHRcTPnJFhm6uuAubPnyzgc+YwuiaJDi6TJMRGliwBNm4Ejh+XM2SPHweOHJFh\nmZERqVNYKD13t5sCT5IPe/CEJJGREeDjj0XwDx8GDh2SsfeBAZlMXbwYWLRIDkO55x67W0vSmZT3\n4P1+Pz71qU+hoaEB+/btQ09PDzZu3IhTp06hsbERe/bsQUVFRTxvQYjtaId49/dPtoEBa+UDAzJ5\nWl4O1NWJqJeXiwUCwMWLdv+UJBuJqwf/wx/+EO+88w4GBwexd+9ebN26FdXV1di6dSt27tyJ3t5e\nNDc3h74he/DEJjyeYO/ZSJTNBHtoSIZTNEEuL5dNTfp8uIXfLytLTuRKkjukdJL17NmzuOuuu/DI\nI4/ghz/8Ifbt24fFixejra0NbrcbFy5cQFNTE44dOxZ3IwlJBPv3A//wD8FgZFOZ9m9aVCTmcok5\nncF0tGbXa10urq3PdFI6RPN3f/d3eOyxxzAwMDBR1tnZCbfbDQBwu93o7OyM9fGEJJybbxazihY9\nUzOfz7pzCLepXjs8HN/rrbwWyEzHZPZ6OqypiUngX3jhBdTW1mLVqlVobW01rONwOODgnmySweTn\nixUV2d2SxBDusGJ1TiMjMmw1OCjXoSGgtzc0r7/v8cg10V/cy8okmmpVVWKfm03EJPAHDx7E3r17\n8eKLL2J0dBQDAwP4yle+MjE0U1dXh46ODtTW1hq+fvv27RPppqYmNDU1xdIMQnICpSTEwdiYxL3R\n0mZlU+XjrZOXJ8s9i4rkqjetrKoKmDUrch2zfDR1snleo7W11bQDbZW4l0m2tbXh+9//Pvbt24et\nW7eiqqoK27ZtQ3NzM/r6+jjJSkgE7rwTOHEissiOjwfPZZ1K+JItqIWFDNlsF7ZtdNKGYh588EFs\n2LABTz311MQySUKIOd/4BnDwoGyIOnIEaG+XaJNXXQWsXi32qU8Bl1/OMWcSPdzoREgS0cIbj40F\nwwtraaOy4WHgww9lOedbb0kYYkAOXFm+HLjySuDBB4G5c+39uUjqYagCknP4fNaEc6r7sbzGyjMD\ngeAQhzbMoh0SYpTWrtOnA5/7nHE9DpEQq1DgSULo7wfeeENWWKRSbJUKFdCphNPK/dLS6F9jVpaf\nzwM+iH1wiIbETF8fsHcv8J//CbS1AVdfLbs2YxXWWF7jZBeF5AgMF0ySTm9vUNRffx24/nrgy18G\nvvhFEXdCSHKgwJOk84UvAC++KOnlyyVo1syZsuZ51qzQdEUFhycISRQUeJIShoeBjg45sUi7GqXH\nxoKCb+YEZs6kIyDEChR4klZ4PCL0kZzA+fMyWTprlpx0tHBhqDU2StwRQnIdCjzJSDweEfr2duCj\nj0Lt/Hk55k4v+gsWyLW+nj1/kjtQ4ElGo8Vc8XhkGMjjAXp6gD/+EXj3XeC992S3p3b83bRpQbF/\n6CFg1Sp7209IMuFGJ5JUlJLYKHoB1qeNyqK973KJcJeUiOnTs2aJoBvdZ0RBQibDHnwOMTwM/OpX\ncmqRVdHVp0dGZO25mQBr6VjvFxdzXTshZrAHTyLS3w/85jcSm3t4WAR7eDg0rV31/0clJUB1tVhp\nqYhycbFczdJWy4qKOI5OSLJgD55MQhsLj+QAYikzuu/1ishH4xSiuV9WxvNQSXbASVaScfj9Mq4f\nr6MwKvN45FSh/n4Z2zc7DDvSQdn6/LRp/LZB7IMCT4gBSono9/eLDQwE0+F5s3R/v3zb0EQ/VkdR\nVsZokCQ2KPCEJJHx8aDoR3IEkRzG4KAMSZWXS0jg0lLjazT36DByAwo8IWmOUjLJ3d8fejC10dVK\n2dCQRNe04his1iks5FBUOkKBJyTH8PslbHNPD9DdHbyGp8PLhobMn+l0mov/t78txwmS1MNlkoQk\niEBAhmS0g0WMDiAxsqnuJ7qO3x8aH19v4eVVVRLcLVKdSM9xuSRsBMkc2IMnaY9SMiTR0SFnlHZ0\nAF1dxic8JUpUfT7rAhitUCayDk+Myh04REMyCr9fhFqLOKmJt9E1Lw+oq5Me6MyZQE2NrHVPlpg6\nnRROkl5Q4EnaEAgAf/hDMCywkWhfugTMmBEq3Fo6vKy01O6fiBB7ocCTtOGjj4Dbb5f156OjMvyh\n2eio9N61wGKFhbJ0UDs8e6p8NHWt5LlqhGQCFHiSMfj9oYJvlE5Vfnw8OGSTaudi5Gy4rp0YQYEn\nJAYCgeAkqxWHMDgoh4+HW09PaH5sLLb2OJ3A//wP8NnPJvbnJJkNBZ7kND5fMC6Nmelj18RaBwiG\nOjYzfeCzqSy8bnGxhDQgRA8FnmQ1x48D990XjFEfLsrj4+avLS6WdeBVVTKxq0/PmBEMg2xFjHlG\nLLEDCjzJasbGgNZWEfTRURF1bRJXS4fnrdwbHRXRLi6WMfHi4snpSPes1gvPcykmiQYKPCExoMW/\nT6TTsHJPqdgcQ3k58MADkia5A0MVEBIDDocIaFGRxFzRx5XXTJ8fHg5d9aKdJatZfn6oORxBUypo\nHo9M7urrulwyl+D3y+SvZuwTkVhgD55kLB4P8Nprkw/7MBJlK6I9MiLiqvWUtTH38PRU+Wju8Qxa\nYhUO0ZCc4p13gG98Q3bEXrokyxSN/rWqq4HZs4E5c8S09OzZQG1t6EqWggKOi5P0hAJPchq/X0Re\nE/yurmDaLD8+HjxQvKYmmDbL19RwFQ2xBwo8IVHi8cjyyw8/DLX2duP6d98NPPVUattICECBJwSA\nrIi5eBHo7AxezdI9PbIqxe0OWm2teZorV4hdUOBJznLggGyC6uyU4/DMqKsLHY9vaJBdqeHxYCLF\nitHfY9wYkipSJvBnzpzBV7/6VVy8eBEOhwN//dd/jfvvvx89PT3YuHEjTp06hcbGRuzZswcVFRVx\nN5KQqRgbA44cMY4fEym2TDT3je45HNE7BiuOI9bX0uFkLykT+AsXLuDChQtYuXIlhoaGcPXVV+O5\n557D7t3UGuGuAAAOvklEQVS7UV1dja1bt2Lnzp3o7e1Fc3Nz3I0kJF3x+ZLvVLQAZ+GHbxsFM3M6\nY3cOX/oSsG5d6n+HxBop2+hUV1eHuro6AEBpaSmWLFmCc+fOYe/evWhrawMAbNq0CU1NTZMEnhA7\n8ftlc5F23qr+3NV0Tfv9wTNRtROnamqCaX15POmaGrv/OiTRxD0Gf/LkSVx33XX44IMPMGfOHPT2\n9gIAlFKYMWPGRH7iDdmDz3nGx4G9e6U3mmrBDASkt5ooUUxFmjFrCGBDqIKhoSH8xV/8BX784x9j\n+vTpkxrjMPmv3L59+0S6qakJTU1N8TSDZBgeD/DrXwd3jmrm90fOW60TCEx+z2nTJGKkXjSdThmz\n1tJmeUA2UPn9QSehpa0+J5l1pnpdXl5q/74kMbS2tqK1tTWuZ8Tcgx8fH8ctt9yCz33uc9i8eTMA\nYPHixWhtbUVdXR06Ojpw/fXX49ixY6FvyB48STKaGCfDeSTqdcl8tr5sfFx6/3Y7oUQ4Kqt1snU5\na8p68Eop3HPPPVi6dOmEuAPArbfeipaWFmzbtg0tLS1Yv359LI8nJC40QUvXOC+aA9JME+RIZfHk\nx8cjT/KaTe5qp1x5PMGJYKOTr1JNXl5Q1PWB2rT8ffcB3/pW6tuVjsTUg//d736Hz3zmM7jyyisn\nhmF27NiB1atXY8OGDTh9+jSXSWY5SslQRSKFKJa8He8Zbz4QCIpUJKGymk/EM1Kdj/UZeXm5Ox/B\njU4kbp54AnjssanFKhAI/eqfLsKRCeKYn5+7IkVihwJP4mZkBPj4YwnE1dUlW/q1dHhZfz9QUREM\nwqVZbe3kMi1wV7oOmxCS7lDgSUrx+SSWixVn0NUF9PbKYdJ60Xe7gZkzxerqgle3m1EbCdFDgSdp\njd8vIq8X/s5OoKMDuHAh9NrVBVRWhoq+kSOYOVNOYSIk26HAk6zB75eY7UbiH552OIwdwYwZwaP4\ntG36U+UZz4WkKxR4kpMMDho7gp6eyTFdNAsv0+edTusOIRF5o3t0MiQcCjwhcaJUcN24VYeQjHx+\nfmqcS3ExsHw5HUomQIEnJEPQHIn+EPDR0WB6YEDmK3p7gb6+YFrL68sixb8Pp6Bg8oHgTz8NrFiR\nvJ+VJAYKPCEx4veHim0k0wtxPHXz8kRktZ60VYumvr4uDyjJbCjwJCdQSoY0tLjokUwfP93svscj\nAp8sYTUz7gkg0UCBJ2mL15sYQdbq5OXJ8kgzKy21fn/aNBm64O5Sks5Q4IltDA8Dzz4L/Nd/yeqV\ncFEGYhNfs/sFBfb+vISkmpTHgyfk+HHgZz8DfvELYM0aYNMmoL5+sigXFtrdUkJyDwo8iYn33we+\n+U3gwAFgzhzg4YdluV1paaiVlLC3TYhdcIiGxMR77wH//u8yHq43bYxcb15vqOhrwyxWzKzutGkc\nMye5BcfgSVri88lKlUhOwMgi1RsdDR7DF4vTmDEDmDtXAp7RUZBMgAJPcga/XyZ2Y3UYly4B7e3i\nKObOBS6/PHjV0nPnihMhJB2gwBMSJf39IvTt7cAnn4hp6VOnJN59uPBr1/p6bhwiqYMCT0gCCQQk\naNnhw8C+fcALL0he45FHgO99z772kdyCAk9IHHg8wNGjwAcfBO3DDyXuyxVXAMuWiWnpmTM5fk9S\nBwWekBh4803gjjtkaEbPnDnA6tXA4sUyOasF5wo3o/LiYtltS0iioMATEgNeL/D22xIAbHh4ssVa\nXlBgzRnEU15czHmAXIECT0iaoAVEi8ZJeDwy6dvXN/mqpX2+ye9VWGjdSdx4I3Dbban/fZD4YagC\nQnT4/RJz3esV06fNyuys4/NJhMmCgqC5XHKtrgZmzQotC69jlteXVVXZ/VchqYQ9eJJUvF7gv/9b\neqipFtRAwFzoohHIWF4Ty3NdLk7aEnPYgydpR3+/BCLr7p483GBGYSFQWyu7TGtrg6bPV1fL0EMk\nwczPp2CS3IY9eGILfr/sLNULvpYON6N7AwMi8BUVxlZebn5Pi25ZWBh0BISkO5xkJTlDICAhB8wc\nQySHMTgoE6Ca5eWJ0OtFX39NdFk09bnUkmhQ4AmJAZ9Pxuw1wdfSVstieY2VMq9Xvl3Y6WAiPYPD\nX6mFAk9IFqGUOJ90czxjYzKp7XJNdgRapM6qKrlqFp7XyoqL7f4tZw4UeEJISlDK2AEMDsqRjd3d\nctVbeFl3t3wLMHMCZk5hxgxxDLn2DYICT0gOoJSY3y9zEYGAeTrSvWjTiXyWltZCN3d1yVVLd3UZ\nb+rSKCyc7ARuuQW4557U/R1SDZdJkqhQKjkf2lx5ll1tVEp6r3l5Mkaflxc5bbVetOlEPau0VFY9\nLVwY37OWLbP7E5V+5JTA+/3AM89IryGbBcBqGkivD3qin6WtQskEkYvmuXl5uTc8QWIj5wT+0CEZ\nJ/T7Q83ni5yPtU54WTw4nTKxpd/Qo010hZdNlS8okOc5nSIeerNSlso6WhmFjZDo4Bh8igkEEuc8\nkuWE0rWOUsHebKKdh93OK5o6TqesVqmslOENOr3cIC0mWffv34/NmzfD7/fj3nvvxbZt2+JuJCFA\ncGIxnZ1QKpypzyffQnt75UzZigoRe70ZlYXfKy/nRqpMwnaB9/v9WLRoEV555RXU19fjmmuuwTPP\nPIMlS5bE1ch0orW1FU1NTXY3I2bYfntJdPu9Xtmd29sbvBqZ0b2hIaCsbGqnoC//6KNW3HxzEyoq\n5JtEJpHp/zu2r6I5dOgQ5s+fj8bGRgDA7bffjueffz5E4DOdTP8nYfvtJdHt10IAl5RIALaxMenV\nh5tRuccDXLwo58xq9t57skY9wk8AQNpfWwscOybCnwlk+v9OLCRU4M+dO4fZs2dP5BsaGvDmm28m\n8i0ISSsCgVDxNBJSfdl77wH/+q/W6kYq05cHAkBRUdAKC0PzU5XPmyfnzFqp++STwAMPSLqkRIZ5\nSPqSUIF3cLaHZAlf+Qpw4cLUojs+HhRDK8La3g4cPhxaXloqve9YxLmwUIZKUvXRq6kBLr88Ne9F\nEoBKIG+88YZat27dRP6f/umfVHNzc0idefPmKQA0Go1Gi8LmzZsXtSYndJLV5/Nh0aJFePXVVzFr\n1iysXr160iQrIYSQ1JDQIRqn04mf/vSnWLduHfx+P+655x6KOyGE2ETKNzoRQghJDUnd5nD33XfD\n7XZj+fLlIeU/+clPsGTJEixbtmzSRqh0wqj9hw4dwurVq7Fq1Spcc801eOutt2xsoTlnzpzB9ddf\njyuuuALLli3DE088AQDo6enB2rVrsXDhQtx0003o6+uzuaXGmLV/y5YtWLJkCVasWIHbbrsN/ZEO\nd7URs/Zr/OAHP0BeXh56Iq9JtI1I7c+Ez69Z+zPl8zs6Ooo1a9Zg5cqVWLp0KR566CEAMXx+45pV\nnYLXXntNHT58WC1btmyi7MCBA+rGG29UXq9XKaXUxYsXk9mEuDBq/3XXXaf279+vlFLqxRdfVE1N\nTXY1LyIdHR3q3XffVUopNTg4qBYuXKiOHj2qtmzZonbu3KmUUqq5uVlt27bNzmaaYtb+l156Sfn9\nfqWUUtu2bcu49iul1OnTp9W6detUY2Oj6u7utrOZppi1P1M+v2btz5TPr1JKeTwepZRS4+Pjas2a\nNer111+P+vOb1B78tddei8qwXRD/8i//goceeggulwsAUFNTk8wmxIVR+2fOnDnRa+zr60N9fb0d\nTZuSuro6rFy5EgBQWlqKJUuW4Ny5c9i7dy82bdoEANi0aROee+45O5tpilH7z58/j7Vr1yLv//fX\nr1mzBmfPnrWzmaaYtR8AvvnNb2LXrl12Nm9KzP5/fvazn2XE59es/Zny+QWAadOmAQC8Xi/8fj8q\nKyuj//wm2wu1t7eH9IBXrlypvvOd76g1a9ao6667Tr311lvJbkJchLf/5MmTqqGhQc2ePVvV19er\n06dP29g6a7S3t6s5c+aogYEBVVFRMVEeCARC8umK1v7BwcGQ8ltuuUU9/fTTNrXKOvr2P/fcc2rz\n5s1KKZXWPXg9+v+fTPv8KhX6+8+kz6/f71crVqxQpaWlasuWLUopFfXnN+UCv2zZMnX//fcrpZQ6\ndOiQmjt3brKbEBfh7b/hhhvUr371K6WUUnv27FE33nijXU2zxODgoLrqqqvUr3/9a6WUmvQPUVlZ\naUezLDM4OKiuvvrqifZrfO9731O33XabTa2yjr79Ho9HrV69WvX39yulROAvXbpkcwsjE/77z7TP\nb3j7M+3zq5RSfX19as2aNerAgQNRf35TLvA333yzam1tncjPmzcvrf/Jw9s/ffr0iXQgEFBlZWV2\nNMsSXq9X3XTTTerxxx+fKFu0aJHq6OhQSil1/vx5tWjRIruaNyVG7VdKqd27d6s///M/VyMjIza1\nzBrh7T9y5Iiqra1VjY2NqrGxUTmdTnXZZZepzs5Om1tqjNHvP5M+v0btz6TPr57vfve76rHHHov6\n85vyYKHr16/HgQMHAAAfffQRvF4vqqqqUt2MmJk/fz7a2toAAAcOHMDChQttbpExSincc889WLp0\nKTZv3jxRfuutt6KlpQUA0NLSgvXr19vVxIiYtX///v147LHH8Pzzz6OoqMjGFkbGqP3Lly9HZ2cn\n2tvb0d7ejoaGBhw+fBi1tbU2t3YyZr//TPn8mrU/Uz6/ly5dmlghMzIygpdffhmrVq2K/vObTK9z\n++23q5kzZ6qCggLV0NCgfv7znyuv16vuvPNOtWzZMnXVVVep3/72t8lsQlxo7Xe5XBPtf+utt9Tq\n1avVihUr1Kc//Wl1+PBhu5tpyOuvv64cDodasWKFWrlypVq5cqX6zW9+o7q7u9UNN9ygFixYoNau\nXat6e3vtbqohRu1/8cUX1fz589WcOXMmyu677z67m2qIWfv1zJ07N23H4M3+fzLl82v2+8+Uz++R\nI0fUqlWr1IoVK9Ty5cvVrl27lFIq6s8vNzoRQkiWwvNcCCEkS6HAE0JIlkKBJ4SQLIUCTwghWQoF\nnhBCshQKPCGEZCkUeEIIyVIo8IQQkqX8Hxq7GUiw7XSSAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 18 + "prompt_number": 41 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Eyeballing this confirms our intuition - no dog moves like this. However, noisy sensor data certainly looks like this. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Implementing Sensing\n", + "Eyeballing this confirms our intuition - no dog moves like this. However, noisy sensor data certainly looks like this. So let's proceed to see how we might solve this mathematically. But how?\n", "\n", - "Recall the histogram filter uses a numpy array to encode our belief about the position of our dog at any time. That array stored our belief that the dog was in any position in the hallway using 10 positions. This was very crude, because with a 100m hallway that corresponded to positions 10m apart. It would have been trivial to expand the number of positions to say 1,000, and that is what we would do if using it for a real problem. But the problem remains that the distribution is discrete and multimodal - it can express strong belief that the dog is in two positions at the same time.\n", "\n", - "Therefore, let us use a single gaussian to reflect our current belief of the dog's position. Gaussians extend to infinity on both sides of the mean, so the single gaussian will cover the entire hallway. They are unimodal, and seem to reflect the behavior of real-world sensors - most errors are small and clustered around the mean. \n", - "\n", - "So let us implement the sensing function, but using gaussians instead of the histogram array. First, here is the histogram code for reference:\n", + "Recall the histogram code for adding a measurement to a pre-existing belief:\n", "\n", " def sense (pos, measure, p_hit, p_miss):\n", " q = array(pos, dtype=float)\n", @@ -332,11 +322,11 @@ " normalize(q)\n", " return q\n", " \n", - "Note the algorithm is essentially computing:\n", + "Note that the algorithm is essentially computing:\n", "\n", " new_belief = old_belief * measurement * sensor_error\n", " \n", - "The measurement term might not be clear, but recall that measurement in this case was always 1 or 0, and so it was left out for convience. \n", + "The measurement term might not be obvious, but recall that measurement in this case was always 1 or 0, and so it was left out for convience. \n", " \n", "If we are implementing this with gaussians, we might expect it to be implemented as:\n", "\n", @@ -344,9 +334,251 @@ " \n", "where measurement is a gaussian returned from the sensor. But does that make sense? Can we multiply gaussians? If we multiply a gaussian with a gaussing is the result another gaussian, or something else?\n", "\n", + "Of course the answer is 'yes', or this chapter would be for naught. It is not particularly difficult to perform the algebra to derive the equation for multiplying two gaussians, but I will just present the result:\n", + "$$ N({\\mu}_1, {{\\sigma}_1}^2)*N({\\mu}_2, {{\\sigma}_2}^2) = N(\\frac{{\\sigma}_1 {\\mu}_2 + {\\sigma}_2 {\\mu}_1}{{\\sigma}_1 + {\\sigma}_2},\\frac{1}{\\frac{1}{{\\sigma}_1} + \\frac{1}{{\\sigma}_2}}) $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's immediately look at some plots of this to inform our intuition about this result. First, let's look at the result of multiplying $N(23,5) $ to itself. This corresponds to getting 23.0 as the sensor value twice in a row." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import gaussian\n", + "def multiply (mu1, sig1, mu2, sig2):\n", + " m = (sig1*mu2 + sig2*mu1) / (sig1+sig2)\n", + " s = 1. / (1./sig1 + 1./ sig2)\n", + " return (m,s)\n", "\n", - " \n", "\n", + "xs = np.arange (16, 30, 0.1)\n", + "\n", + "\n", + "m1,s1 = 23, 5\n", + "m, s = multiply (m1,s1,m1,s1)\n", + "\n", + "ys = [gaussian.gaussian (x,m1,s1) for x in xs]\n", + "p1, =plot (xs,ys)\n", + "\n", + "ys = [gaussian.gaussian (x,m,s) for x in xs]\n", + "p2, = plot (xs,ys)\n", + "\n", + "legend ([p1,p2],['original', 'multiply'])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcTekfB/DPrW5SoUXSKi0SrbQwpIxoNGQZS2RvaMwY\nYzbDDGMd2yxmaJAZDIOUNUtiLGEMsjNKYoqUbJU2Wm7P74/zE6lu99a999zb/b5fr/tyl7N8Sufb\n6TnPeR4BY4yBEEJIo6bBdwBCCCHyR8WeEELUABV7QghRA1TsCSFEDVCxJ4QQNUDFnhBC1ECdxT4+\nPh7t27eHg4MDli5dWu3z2NhYuLm5wcPDA507d8axY8ckXpcQQohiCMT1sxeJRHB0dMSRI0dgYWEB\nLy8vREVFwcnJqXKZoqIi6OnpAQCuX7+OQYMG4fbt2xKtSwghRDHEntknJibC3t4eNjY2EAqFCAkJ\nQWxsbJVlXhZ6ACgsLETLli0lXpcQQohiiC32mZmZsLKyqnxtaWmJzMzMasvt2bMHTk5O6Nu3L1as\nWCHVuoQQQuRPbLEXCAQSbWTgwIFITk7Gvn37MHr0aNAIDIQQoly0xH1oYWGBjIyMytcZGRmwtLSs\ndXlfX1+Ul5cjJycHlpaWEq1rb2+PO3fu1Cc7IYSoLTs7O9y+fVvyFZgYZWVlzNbWlqWlpbGSkhLm\n5ubGkpKSqixz+/ZtVlFRwRhj7OLFi8zW1lbidf9/cVhcBKU3Z84cviM0COXnlyrnV+XsjKl+fmlr\np9gzey0tLURERCAwMBAikQhhYWFwcnJCZGQkACA8PBw7d+7Epk2bIBQKoa+vj23btoldlxBCiOKJ\nLfYA0LdvX/Tt27fKe+Hh4ZXPp0+fjunTp0u8LiGEEMWjO2gbyN/fn+8IDUL5+aXK+VU5O6D6+aUl\n9qYqhQQQCKj3DiGESEna2llnMw4hhLzJyMgIubm5fMdQC4aGhsjJyWnwdujMnhAiNTpuFae277W0\n/wfUZk8IIWqAij0hhKgBKvaEEKIGqNgTQtTa5MmTsXDhQpkvK056ejo0NDRQUVHR4G1Jii7QEkKk\nRsdtw6Snp8PW1hbl5eXQ0BB/zk0XaAkhpIEUeWbNNyr2hJBGJzk5Gf7+/jA0NISzszP27dsHABg3\nbhwmT56MoKAg6Ovr4/jx4xg3bhxmz55due6yZctgbm4OS0tL/P7779DQ0MB///1Xuf7LZRMSEmBp\naYmffvoJpqamMDc3xx9//FG5nQMHDsDDwwMtWrSAtbU15s2bp7hvQA2o2BNCGpWysjL0798f77zz\nDh4/foyVK1ciNDQUt27dAgBERUVh9uzZKCwsRPfu3SEQCCrn7oiPj8fy5ctx9OhRpKamIiEhocq2\nX18WAB4+fIj8/HxkZWVh3bp1+Oijj/Ds2TMAgL6+PjZv3oxnz57hwIEDWL16Na+z9VGxJ4TIhUAg\nm4e0zp49i6KiIsyYMQNaWlro2bMn+vXrh6ioKAgEAgwcOBBdu3YFADRp0qTKujExMZgwYQKcnJzQ\ntGnTGs/GX28nFwqF+Pbbb6GpqYm+fftCX18fKSkpAAA/Pz907NgRAODi4oKQkBCcOHFC+i9IRqjY\nE0LkgjHZPKSVlZVVZUpUAGjTpk3ltKjiJmB68OBBtelUxTE2Nq5ygVVXVxeFhYUAgHPnzqFnz55o\n1aoVDAwMEBkZiadPn0r99cgKFXtCSKNibm6OjIyMKmfgd+/ehYWFBQDx062amZlVm2HvTZJO1zpy\n5EgMHDgQ9+/fR15eHj744ANeLwhTsSeENCpdunSBrq4uli1bhrKyMiQkJGD//v0YMWJEjV0VGWOV\n7w8bNgwbNmzAzZs3UVxcjAULFtS6bF0KCwthaGgIbW1tJCYmYuvWrRL/opAHKvaEkEZFKBRi3759\nOHjwIExMTDBlyhT8+eefaNeuXbULrEDVi67vvPMOpk6dip49e6Jdu3bV2vbfXF9c8V61ahW+/fZb\nNG/eHAsWLMDw4cOr7VeR6KYqQojU1OW4TU5OhouLC0pLS+u8+Ule6KYqQgiRg927d6OkpAS5ubn4\n6quvEBwczFuhlyXV/woIIUSG1q5dC1NTU9jb20MoFGL16tV8R5IJasYhhEiNjlvFoWYcQgghEqNi\nTwghaoCKPSGEqAEq9oQQogao2BNCiBqgYk8IITWYO3cuRo8eXevnW7ZsQWBgoETb+uOPP+Dr6yur\naPVCxZ4QQmrw+nAGNc0ZGxoaikOHDvERrV7qLPbx8fFo3749HBwcsHTp0mqfb9myBW5ubnB1dUW3\nbt1w7dq1ys9sbGzg6uoKDw8PeHt7yzY5IYTIUW2DpqkqscVeJBJhypQpiI+PR1JSEqKiopCcnFxl\nGVtbW5w8eRLXrl3D7NmzMWnSpMrPBAIBEhIScPnyZSQmJsrnKyCEkNfY2Njghx9+gKurK5o1a4aw\nsDA8fPgQffv2RYsWLdC7d2/k5eUhISGh2rj3NjY2OHbsWOXrl2f3PXr0AAAYGBigefPmOHv2bLWm\nGQ0NDaxcuRJ2dnYwMTHB9OnTa/zl8NFHH+GLL76o8l5wcDB+/vlnmX0PaiK22CcmJsLe3h42NjYQ\nCoUICQmpNq1W165d0aJFCwCAj48P7t+/X+VzVf5NSNQPYwwPCh7geNpxrLu0DnGpcUjLTUMFU5+J\nqVWdQCDArl27cPToUaSkpGD//v3o27cvlixZgkePHqGiogIrVqyocdTJN997Wb9OnToFAHj27Bny\n8/PRpUuXGve9Z88eXLx4EZcuXUJsbCzWr19fbZlx48YhKiqqcttPnjzB0aNHERoa2qCvuy5a4j7M\nzMysNmvLuXPnal1+3bp1CAoKqnwtEAgQEBAATU1NhIeHY+LEiTKITIjsVbAKHLh1AEtOL8HNJzfR\n0aQj2hq2xYOCB0h6nISmwqaY/tZ0jHEbgyZaTereIIFgnmyG8GVzpD9h/Pjjj2FiYgIA8PX1hamp\nKdzc3AAAgwYNwtGjR+Hn5yd5BglPWr/66isYGBjAwMAA06ZNQ1RUFMLCwqos4+XlhRYtWuDo0aMI\nCAjAtm3b0LNnz8q88iK22Esz3vLx48exfv16nD59uvK906dPw8zMDI8fP0bv3r3Rvn173q9IE/Km\nu3l3MXzHcJSKSjGj+wy85/QeNDU0Kz9njOHUvVNY8vcSfHfqO2wbsg1dLGs+syOv1KdIy4qpqWnl\n86ZNm1Z5raOjUzl1oKy9fnJsbW2NrKysGpcbM2YMNm/ejICAAGzevBmffvqpXPK8Tmyxt7CwqDZF\nV01zMl67dg0TJ05EfHw8DA0NK983MzMDAJiYmGDQoEFITEyssdjPnTu38rm/vz/8/f2l/ToIqZdD\ntw9h7J6x+PKtL/FZ189q/dO+R5se6NGmB/am7EVwVDDm+M3Bh14f8jrzEJFcTWfmenp6KC4urnwt\nEonw+PHjGteX9P/53r17cHJyqnz+cirEN40aNQouLi64evUqbt68iYEDB9a57YSEBCQkJEiUoyZi\ni72npydSU1ORnp4Oc3NzREdHIyoqqsoy9+7dw+DBg7F582bY29tXvl9cXAyRSIRmzZqhqKgIhw8f\nxpw5c2rcz+vFnhBFif43GtMOTUP0kGj42Uj2J32wYzDOhJ3BoOhBuJ9/H4sDFss5JZGXdu3a4cWL\nF4iLi0Pv3r2xaNEilJSU1LisiYkJNDQ0cOfOHTg4ONS6zR9++AE+Pj4oKCjAihUr8Pnnn9e4nKWl\nJTw9PTFmzBgMGTKkciYscd48EZ43b16d67xO7AVaLS0tREREIDAwEB06dMDw4cPh5OSEyMhIREZG\nAgDmz5+P3NxcTJ48uUoXy+zsbPj6+sLd3R0+Pj7o168f+vTpI1U4QuQlLjUOU+On4tCoQxIX+pfs\njOxwbOwxxKbEYtnpZXJKSGTpzakEBQIBmjdvjlWrVuH999+HpaUl9PX1qzTDvD4Foa6uLr755ht0\n69YNRkZGOHfuXI1THA4YMACdO3eGh4cH+vXrV9leX9OyY8eOxfXr18XeuCVLNJ49UTtnMs4geFsw\n9obsRVerrvXezv38+/Dd4ItZvrMQ1ims7hUaETpuq9PQ0MDt27dha2sr0fKnTp3CqFGjcPfuXbHL\n0Xj2hNTDk+InGLZjGDYM2NCgQg8Als0tcWjUIcw4OgOXH1yWUUKiDsrKyvDzzz8rtIciFXuiNhhj\nGB87HiEdQ9CvXT+ZbLOdcTuseGcFhu8YjoKSAplsk6gmSS/iJicnw9DQEA8fPsS0adPknOoVasYh\namP5meXYdmMbTo0/BW1NbZlu+/2976NEVII/B/0p0+0qKzpuFYeacQiRQurTVHx36jtEvRcl80IP\nAL+88wsSMxMRezO27oUJ4QEVe9LoMcbwUdxHmNl9JmwNJbt4Ji09bT2sfnc1psZPRWGpfG7YIaQh\nqNiTRi/6RjQeFj3EVJ+pct3P223fRo82PTD/xHy57oeQ+qA2e9KoPXvxDB1WdcCOoTsa3PtGEg8L\nH8JltQuOjjkKF1MXue+PL0ZGRsjNzeU7hlowNDRETk5OtfelrZ1U7Emj9vXRr5FdmI31A6qPPigv\nEYkR2H9rP+JHxStsn0T90AVaQv7vQcEDRF6MxDx/6W4rb6hJnSchNScVx9OOK3S/hIhDxZ40WgtO\nLsB49/GwamFV98IypK2pjQU9F2Dm0Zn0VytRGlTsSaN0O+c2Ym7EYGb3mbzsP8Q5BC/KX2DPzT28\n7J+QN1GxJ43S3IS5+LTLpzDWNeZl/xoCDSzutRizjs+iWa6IUqBiTxqdOzl3cOjOIXzs8zGvOd6x\nfwd6Qj260YooBSr2pNFZdnoZPuj8AZo3ac5rDoFAgK99v8aivxdR2z3hHRV70qhk5mdie9J2fNLl\nE76jAOAmOykuK8aR/47wHYWoOSr2pFH56cxPGOM2Bi11W/IdBQDXdj+j2wws+nsR31GImqNiTxqN\n3Oe52HBlAz7vWvNUcHwJcQ5Bel46zt4/y3cUosao2JNG4/dLvyPIIUjh/errItQUYqr3VPxy7he+\noxA1RsWeNArlFeWIOB+BT3yUo63+TRM8JuDQ7UPIzM/kOwpRU1TsSaOwN2UvLJpZwMvCi+8oNWqh\n0wKhLqFYdX4V31GImqJiTxqFX879orRn9S9N8Z6C3y79hudlz/mOQtQQFXui8q5kX8F/uf9hsNNg\nvqOI5djSEZ7mnth6fSvfUYgaomJPVN6q86vwQecPINQU8h2lTlN9pmLVBWrKIYpHxZ6otPySfGxP\n2o6wTmF8R5FIH7s+yHmegwtZF/iOQtQMFXui0rZe34pebXuhtX5rvqNIREOggYmdJiLyQiTfUYia\noWJPVBZjDJEXIzGp8yS+o0hlvPt47EjegfySfL6jEDVCxZ6orPNZ55Ffko8A2wC+o0jFrJkZ3m77\nNl2oJQpFxZ6orMgLkZjYaSI0BKr3YxzeORyRFyNpNEyiMKp3lBACoLC0EDuTd2Kc+zi+o9RLgG0A\n8l7k4Ur2Fb6jEDVRZ7GPj49H+/bt4eDggKVLl1b7fMuWLXBzc4Orqyu6deuGa9euSbwuIfW1K3kX\nult3V5kLs2/SEGhgtOtobLy6ke8oRF0wMcrLy5mdnR1LS0tjpaWlzM3NjSUlJVVZ5p9//mF5eXmM\nMcYOHjzIfHx8JF6XcX/DiotASI16bezFYv6N4TtGg6Q+TWWtvm/FSstL+Y5CVJC0tVPsmX1iYiLs\n7e1hY2MDoVCIkJAQxMZWnWKta9euaNGiBQDAx8cH9+/fl3hdQuoj41kGLmdfRn/H/nxHaRB7I3vY\nG9kj/nY831GIGhBb7DMzM2Fl9Wq4WEtLS2Rm1j5q37p16xAUFFSvdQmR1OZrmzG0w1DoaOnwHaXB\nxrqNxaZrm/iOQdSAlrgPBQKBxBs6fvw41q9fj9OnT0u97ty5cyuf+/v7w9/fX+J1iXphjGHj1Y1Y\nP2A931FkYljHYZj+13TkPM+BUVMjvuMQJZaQkICEhIR6ry+22FtYWCAjI6PydUZGBiwtLastd+3a\nNUycOBHx8fEwNDSUal2garEnRJzEzESImAhdLbvyHUUmDHQMEGgfiOh/ozHZazLfcYgSe/NEeN68\neVKtL7YZx9PTE6mpqUhPT0dpaSmio6MRHBxcZZl79+5h8ODB2Lx5M+zt7aValxBpbbq6CWNcx0j1\nl6Oyo6Ycoghiz+y1tLQQERGBwMBAiEQihIWFwcnJCZGR3Lge4eHhmD9/PnJzczF5MndWIhQKkZiY\nWOu6hNRXSXkJom9E48KkxjWIWB+7PpgQOwEpT1Lg2NKR7zikkRL8vwsPfwEEArqLkEhkV/IurExc\nieNjj/MdReY+P/Q5mgqbYuHbC/mOQlSEtLWT7qAlKmPj1Y0Y4zqG7xhyMdZ9LP689icqWAXfUUgj\nRcWeqITHRY9xIv0EhnQYwncUuXA1dYWhjiES0hP4jkIaKSr2RCVE/RuFfu36oVmTZnxHkZuxbmNp\n+AQiN1TsiUrYen0rRrmO4juGXI1wGYG9KXtpQnIiF1TsidJLz0vH7Zzb6NW2F99R5Kq1fmt0NuuM\nuNQ4vqOQRoiKPVF6O5J2YFD7QSoxoXhDhTiHYNuNbXzHII0QFXui9KJvRGO483C+YyjEYKfBOHzn\nMApKCviOQhoZKvZEqf2X+x/u5t2Fv40/31EUwqipEXytfbE3ZS/fUUgjQ8WeKLXtN7ZjsNNgaGmI\nvdm7UaGmHCIPVOyJUotJisHwjurRhPNSsGMwTt49iZznOXxHIY2I+pwuEZVzO+c2MvMz0aNND4Xs\nr7gYSE4G0tOB/HygsBBo2hRo3hwwNwc6dgT+P6irXDVv0hy9bXtjd/JuhHUKk/8OiVqgYk+UVsyN\nGLzn9B40NTTlsv2yMuDIESA+Hjh8mCvy7doBtraAgQGgpwe8eAE8ewbcuwckJXHFvlcvoE8f4N13\nuV8E8hDiHILIi5FU7InM0EBoRGm5r3HHir4rZH5mf/s2sGYN8OefgL090K8fEBgIuLoCWmJOfxjj\n1j18GDh4EPj7b2DgQOCDD4AuXWQaEcVlxTD/0RwpU1Jgqm8q242TRoEGQiONQsqTFDwqeoRuVt1k\nts2bN4FRo4CuXQGhkCvWp08DM2cCnTqJL/QAIBAADg7ARx8B+/cDt24BLi7AiBHc2f6JEzKLCl2h\nLvq164cdSTtkt1Gi1qjYE6UUcyMGQzoMkUkTTm4uMHUq0KMH1+5+5w6weDFXuBuiVSvg88+5oj96\nNDBhAnemn5bW4MgAqFcOkS0q9kQpyaoXTkwM4OTEtc8nJ3Nn8bJuZxcKgXHjgBs3AG9vwMuL+2Ui\nEjVsu33s+iDpcRIynmXUvTAhdaBiT5RO0uMk5D7PRVer+s8zm5sLjBwJzJ4N7N0LrF4NGBvLMGQN\ndHSAr78GLl7kLvz26MH9FVFf2praGNR+EKJvRMsuJFFbVOyJ0om5EYOhHYZCQ1C/H89Ll7g2eCMj\n4PJl7mxbkdq0Af76Cxg6lLtwu3t3/bc1vONwxNyIkV04orao2BOlwhhDzI2Yeo+Fs3Ej17Nm2TIg\nIgLQ1ZVxQAlpaADTpgFxcdy/M2fWr1mnZ9ueSMtLQ1qujC4EELVFxZ4olX8f/YuisiL4WPhItV5F\nBTBjBrBwIdcrZuhQOQWUkpcXcOECcO4cMHgwd+OWNLQ0tDC4/WBsT9oun4BEbVCxJ0rlZROOQCCQ\neJ2SEq5L5cmTwJkzQIcOcgxYDyYm3I1bBgZAz57Ao0fSrT+s4zBqyiENRsWeKA3GmNS9cIqLgf79\nuTtdjx4FWraUY8AG0NYG/viDu/O2e3cgQ4oONn42frj37B7+y/1PbvlI40fFniiNqw+volRUCk9z\nT4mWLygA+vYFWrfmulg2bSrngA0kEAALFgDh4YCfn+T98bU0tPCe03vYfoOackj9UbEnSiPmRgyG\ndRgmURNOQQF3IbZ9e+6Mua67X5XJ559zDz8/4D8JT9aHdRyGmCRqyiH1R8WeKAVpeuG8bLpxdubG\nuNFQwZ/ijz7ieugEBAD379e9fI82PXA//z5u59yWfzjSKKngYUIao8vZlwEAHq09xC5XUsL1arGy\n4gq9FNdxlc7kycCHH3Lj6jx8KH5ZTQ1NasohDULFniiF6H+jMayj+Cacigpg7Fiu7/yGDap5Rv+m\nL74AQkK44ZKLisQvS005pCEaweFCVN3LXjjDOg4Tu9yXXwJZWcDWrarVRl+XuXNfjZ4p7sYrX2tf\nPCh4gNSnqQrLRhqPOot9fHw82rdvDwcHByxdurTa5zdv3kTXrl2ho6ODH3/8scpnNjY2cHV1hYeH\nB7wVfc86URkXsi5AW1MbbqZutS7z88/AoUNAbCw3Bk1jIhAAkZHctYhp07hx82uiqaGJIR2G0A1W\npF7EFnuRSIQpU6YgPj4eSUlJiIqKQnJycpVljI2NsXLlSnzxxRfV1hcIBEhISMDly5eRmJgo2+Sk\n0Yi+ES22F87Bg9zwB3FxipkWkA/a2sCOHcDx48Avv9S+HN1gRepLbLFPTEyEvb09bGxsIBQKERIS\ngtjY2CrLmJiYwNPTE0KhsMZt0CxURJyXvXBqa8K5eZNrp9++HbC2VnA4BTMwAA4cAL7/vvbB07pZ\ndcOjokdIeZKi2HBE5Ykt9pmZmbCysqp8bWlpiczMTIk3LhAIEBAQAE9PT/z222/1T0karXOZ56Cv\nrQ/nVs7VPsvNBQYMAJYsAbrJbsIqpdamDTck86RJ3FDJb6KmHFJfYi9zSTM+SU1Onz4NMzMzPH78\nGL1790b79u3h6+tbbbm5c+dWPvf394e/v3+D9ktUR229cMrLuV4qQUHcDFDqpHNnbvz9IUO4QdTe\nHId/aIeh+CjuI8zqMYufgIQXCQkJSEhIqPf6You9hYUFMl4bxCMjIwOWlpYSb9zMzAwA19QzaNAg\nJCYm1lnsifqoYBXYnrQdh0cfrvbZ9Onchcrvv+chmBIYMoQbKXPECO6aheZrszN2s+6Gp8+fIvlx\nMpxMnPgLSRTqzRPhefPmSbW+2GYcT09PpKamIj09HaWlpYiOjkZwcHCNy77ZNl9cXIyCggIAQFFR\nEQ4fPgwXFxepwpHG7UzGGRg2NUQHk6rDVP75Jzehd3R04+piKa3Fi7m/cObMqfq+hkADQ5yoKYdI\nR+yhpKWlhYiICAQGBkIkEiEsLAxOTk6IjIwEAISHhyM7OxteXl7Iz8+HhoYGfvnlFyQlJeHRo0cY\nPHgwAKC8vByhoaHo06eP/L8iojJe9sJ5XVIS8NlnXK+UxtrzRlJaWsC2bYCnJzcu/oABrz4b1nEY\nwveH41u/b/kLSFSKgPHcXUYgEFCPHTUkqhDBarkVjo89DseWjgC4O0i9vbm7SseP5zmgEjl3jhsL\n6PRpwMGBe6+CVcB6uTUOjz5c7S8joh6krZ10By3hxemM02il16qy0APc4GCensC4cfzlUkY+PtzQ\nyK/PdKUh0MDQDkNprBwiMSr2hBcve+G8tGEDcP48sGqVag9uJi+TJgFublwT10s0Vg6RBhV7onCi\nChF2Ju+sLPb//sv1vtm+HdDT4zmckhIIuF+ER44AO3dy7/lY+qCgpAA3Ht3gNxxRCVTsicKdvHsS\nFs0tYG9kj8JCbnLwH35QvrljlU3z5twgcJMnA3fv/r9XTochNHwCkQgVe6JwL2ekAoBPP+Uuyo4d\ny3MoFeHtzY3+GRrKdct82ZRDnRxIXajYE4UqryjHzuSdGNpxKHbvBo4dA1au5DuVavn8c25M/wUL\nAB8LHxSXFePfR//yHYsoOTW+ZYXwISE9ATYGNtB5bovJk4Fdu7jmCSI5DQ1g0yagUyfg7bcFXK+c\npO1wMaWbFknt6MyeKFTMjRgM7TAM48cDH3wAvPUW34lUU+vWwPr1wOjRQF9rbthjasoh4lCxJwpT\nJirD7pu7UZg4FPn5wCwax6tB3nmHu9nqj0VeeFH+AtcfXec7ElFiVOyJwhz57wgsdBywalEbbN6s\n3uPeyMqyZcDZMwK4C2lSEyIeFXuiMJuvRuHRsRH4/nvAzo7vNI2Dnh7Xfn9qzTBEXaOmHFI7KvZE\nIZ6XPceuf/fBTWsodbOUsa5dgfDgznjwqAxXsq/yHYcoKSr2RCFWHIxDRWYn/BHRmoZDkIO5cwTQ\nvzsMs7dRUw6pGRV7IncvXgDf7d2GcZ4jYGrKd5rGSVsbWBk+DAfvxSAtjZpySHVU7InczZhTgOfm\nh7Fo9GC+ozRqw3w7wcCQYcjHV1BRwXcaomyo2BO5OnsW2PBPLHra9oCxrhHfcRo1gUCA97sOw8OW\n27BiBd9piLKhYk/k5vlzbmx6+4HbMLZTCN9x1EKo6whUdIzCwu8qkJTEdxqiTKjYE7mZPRtw6vwU\nt8tOYUD7AXWvQBrM1dQVxvotMH7OaYwZA5SV8Z2IKAsq9kQuTp8GtmwBekzahUC7QOhr6/MdSW2E\nuoQi32YLWrYEli7lOw1RFlTsicwVF3NzyK5aBey/uw0hztSEo0gjnEdgZ9IOrIosxYoVwFXqek9A\nxZ7IwTffAF5eQJeAB7j04BKCHIL4jqRW2hi0gZOJE/59EY+lS7nrJtScQ6jYE5k6eRKIiQFWrAC2\nJ21HsGMwdLR0+I6ldkJdQrHl+haMGweYmwOLFvGdiPCNij2RmaIiYMIEYPVqwNgY2Hp9K0Y4j+A7\nlloa2mEo4m/Ho7C0AGvXAr/+Cly+zHcqwicq9kRmZs7kxqcPDgZSnqTg7rO7CLAN4DuWWjLWNYZf\nGz/svrkbFhbAjz9yUz+WlvKdjPCFij2RiYQEbtapX37hXm++thkjnUdCS4PGMebLSJeR2HJ9CwBg\n1CigbVtuKkOinqjYkwYrLOSabyIjAUNDoIJV4M9rf2KM2xi+o6m1YMdgnLt/DtmF2RAIgDVrgLVr\ngQsX+E5G+EDFnjTY9OmAvz/w7rvc61N3T6F5k+Zwa+3Gay51pyvURbBjcOWkJmZmwPLlXO+ckhJ+\nsxHFo2JPGuToUWD/fuCnn169t+nqJjqrVxIve+W8NGIE0K4dMG8ej6EIL+os9vHx8Wjfvj0cHByw\ntIbb8W7/xgCBAAAfzklEQVTevImuXbtCR0cHP/74o1TrEtWWnw+EhXFNAwYG3HvFZcXYdXMXRrqM\n5DccAQD0su2Fu3l3kfo0FQAgEHC9pdavBxITeQ5HFEpssReJRJgyZQri4+ORlJSEqKgoJCcnV1nG\n2NgYK1euxBdffCH1ukS1ffkl0Ls3N/H1S7E3Y+Fj4QPzZub8BSOVtDS0EOIcgk1XN1W+Z2rK3Qcx\ndiw31wBRD2KLfWJiIuzt7WFjYwOhUIiQkBDExsZWWcbExASenp4QCoVSr0tU1+HDQHw816XvdZuu\nUROOshnvPh4br26EqEJU+d6wYYCzM/DttzwGIwoltthnZmbCysqq8rWlpSUyMzMl2nBD1iXK7dkz\n4P33gd9/B5o3f/V+dmE2zt4/i4HtB/IXjlTj1toNJnomOJp2tMr7q1YBf/4JnDnDUzCiUGI7QQsa\nMFmoNOvOnTu38rm/vz/8/f3rvV8if599BgQFcU04r9t6fSsGth8IXaEuP8FIrSa4T8CGKxvQx65P\n5XsmJkBEBNc758oVoGlT/vKRuiUkJCAhIaHe64st9hYWFsjIyKh8nZGRAUtLS4k2LM26rxd7otz2\n7weOH695JMVNVzdheeByxYcidRrhMgLfHPsGuc9zYdjUsPL9994DduwAZs2q3iRHlMubJ8LzpOxS\nJbYZx9PTE6mpqUhPT0dpaSmio6MRHBxc47KMsXqvS1TD06dAeDiwYQPQrFnVz65mX0XO8xz42fjx\nE46IZdTUCO/Yv4Oof6OqfbZyJRAVBfz9Nw/BiMKILfZaWlqIiIhAYGAgOnTogOHDh8PJyQmRkZGI\njIwEAGRnZ8PKygrLly/HwoULYW1tjcLCwlrXJarr44+5C3t+NdTzjVc3YrTraGgI6NYNZTXBYwLW\nX15f7f2WLbmB0saP5+YiII2TgL15Sq7oAAJBtb8KiPLZsYMbp76mtt0X5S9gtdwK594/B1tDW34C\nkjqJKkSw+cUGB0YegKupa7XPR43iCv/PP/MQjkhN2tpJp2GkTo8eAVOmABs31nwRb1fyLni09qBC\nr+Q0NTQxzm0cNlzeUOPnK1YA27cDJ04oOBhRCCr2RCzGuHb68eOBLl1qXmbtxbWY1HmSYoORehnn\nPg5brm9Bqaj6WMdGRtxgaRMmcIPbkcaFij0Ra8sW4PZtoLYOUylPUnDzyU0EO9LFd1VgZ2SHDiYd\nsP/W/ho/798f6N4dmDFDwcGI3FGxJ7XKzOT61G/aBDRpUvMyay+uxTj3cdDW1FZsOFJvtV2ofenn\nn4E9e4BjxxQYisgdFXtSI8a4u2SnTAE8PGpe5kX5C2y6tgkTO01UbDjSIO85vYd/Mv5BZn7Nd7Qb\nGnKD24WFAQUFCg5H5IaKPanR778Djx9zUw3WZnfybri3doedkZ3igpEG09PWQ4hzCH6/9HutywQF\nAW+/DbwxviFRYVTsSTWpqcDXX3PNN2+Mb1fF2ktrMakTXZhVRR94foDfLv2G8oryWpf56SduwLt9\n+xQYjMgNFXtSRVkZ19967lygQ4fal7v19BaSHidhQPsBCstGZMfV1BVtDNpgX0rtlbxFC+4X/qRJ\nwMOHCgxH5IKKPaliwQLA2Bj48EPxy629uBbj3OjCrCqb7DkZqy+sFruMry/XFTMsjLuOQ1QXFXtS\n6Z9/gN9+42YxEjdoaUl5CTZd3YSJnenCrCob0mEIrmRfqZzFqjZz53Jn9mvWKCYXkQ8q9gQAN8Xg\n6NFAZCTQurX4ZXcm74SrqSvsjewVE47IhY6WDsa7j8eaC+KruFAIbN7MTXRy86aCwhGZo2JPAACf\nfAIEBACSDEy64twKfOz9sfxDEbmb7DUZf1z9A4Wl4m+ZdXQEFi4EQkOB0uo33xIVQMWeICYGOH2a\n631Rl3P3z+FR0SP0a9dP/sGI3NkY2MCvjV+VOWprM2kSYGEBzJ6tgGBE5qjYq7k7d7gbp7ZtA/T0\n6l5+ReIKTPGeAk0NTfmHIwrxic8nWJm4EhWsQuxyAgF3PWfrVuDQIQWFIzJDxV6NlZYCISHcLEWd\nOtW9fFZBFg6mHsQEjwnyD0cUpkebHtDW1MZfd/6qc9mWLbn2+3HjgKws+WcjskPFXo3NmMH9Wf6x\nhM3vay6swUiXkTDQMZBvMKJQAoEAn/h8gl/O/SLR8n5+wAcfcPdjiERyDkdkhoq9mtq/H9i5s+5u\nli8VlxVjzYU1mOozVf7hiMKNcB6BSw8uIelxkkTLz5rF9btftEjOwYjMULFXQ/fvc4Ocbd3KjWEu\niQ2XN6CbdTe0M24n33CEF02FTfGR10f44Z8fJFpeU5Mb/vrXX4GTJ+UcjsgEFXs1U14OjBwJTJ0K\ndOsm4ToV5fjp7E+Y/tZ0+YYjvPrQ60PsubkHWQWSNcabm3OTz4eGcoPmEeVGxV7NzJgB6OpKNznF\nruRdMNM3Q1errvILRnhnrGuMUa6j8MtZydruAaBvX67YjxxJ7ffKjoq9Gtm+nWun37IF0JDwf54x\nhu//+R5fvvWlfMMRpfBpl0/x++XfkV+SL/E6CxcCFRXU/17ZUbFXE0lJ3OBmO3dyA51J6mjaURSW\nFqK/Y3/5hSNKo61hWwTaBWL1efEDpL1OS4u7T2PLFm6GK6KcqNirgfx8YNAg4PvvJetP/7oFJxfg\nG99voCGgHxV18bXv11h+djmKSoskXsfEhPvLcdIkICVFjuFIvdER3Mgxxt0A07Mn9680TqSfQFZB\nFkKcQ+QRjSgp51bO6G7dHZEXI6Vaz9uba9IZPBgoFD/UDuGBgDF+R6kWCATgOUKjtnQpsHs3cOJE\n7ZOG1yZgUwBCXUIx3mO8fMIRpXUl+wqCtgThztQ7aCpsKvF6L+cuLizkmnYkuYeD1I+0tZPO7Bux\nffuAFSu4P6+lLfT/ZPyDO7l3MMp1lHzCEaXm3todnuaeWHd5nVTrCQRc3/u0NOC77+QUjtQLFftG\n6upVboahXbsAKyvp1599fDa+7v41hJpiJqEljdocvzlY/PdiFJcVS7Wejg4QGwusXcudaBDlQMW+\nEcrO5salj4gAfHykX//If0eQ8SwD49zHyTwbUR2dzTujq2VXRCRGSL2umRmwdy/XA+z8eTmEI1Kr\ns9jHx8ejffv2cHBwwNKlS2tcZurUqXBwcICbmxsuX75c+b6NjQ1cXV3h4eEBb29v2aUmtXr+HBgw\ngDurHz5c+vUZY/j66NeY33M+ndUTLOi5AD/88wOevXgm9bru7sDvv3M9wTIy5BCOSIeJUV5ezuzs\n7FhaWhorLS1lbm5uLCkpqcoyBw4cYH379mWMMXb27Fnm4+NT+ZmNjQ17+vSpuF2wOiIQKVRUMDZ8\nOGMjRnDP62NX0i7mvsadiSpEsg1HVNa4PePYrKOz6r3+smWMubszVlAgw1BE6top9sw+MTER9vb2\nsLGxgVAoREhICGJjY6sss3fvXowdOxYA4OPjg7y8PDx8+PD1XyYy/wVFajZnDpCeDqxbV79eEOUV\n5fjm2DdY2HMh9asnleb6zcWqC6uQXZhdr/W/+IK7v2PkSG5sJsIPsUd0ZmYmrF67umdpaYnMzEyJ\nlxEIBAgICICnpyd+++03WeYmb/j1VyAqirsw1lTynnJVrL24Fq31WyPIIUi24YhKa2PQBuPdx2PW\nsVn1Wl8gAFavBkpKuHHw6fyPH2KLvUDC08Pazt7//vtvXL58GQcPHsSvv/6KU6dOSZ+Q1Ck6Gli8\nGDh8GDA1rd828l7kYd6Jefgp8CeJ/9+J+pjVYxb23dqHK9lX6rW+tjY3VMf168A338g4HJGIlrgP\nLSwskPHalZWMjAxYWlqKXeb+/fuwsLAAAJibmwMATExMMGjQICQmJsLX17fafubOnVv53N/fH/7+\n/lJ/Ierqr7+44Yr/+gto27b+21l4ciGC2wXDvbW77MKRRsNAxwBz/ebis0Of4eiYo/U6IdDXBw4c\nAHx9ueEVPv1UDkEbsYSEBCQkJNR/A+Ia9MvKypitrS1LS0tjJSUldV6gPXPmTOUF2qKiIpafn88Y\nY6ywsJC99dZb7NChQw2+yEBeSUxkzMSEsZMnG7adW09uMeOlxuxBwQPZBCONUpmojHX8tSPbnby7\nQdu5e5cxKyvGNm2SUTA1JW3tFHtmr6WlhYiICAQGBkIkEiEsLAxOTk6IjOTGzAgPD0dQUBDi4uJg\nb28PPT09bNiwAQCQnZ2NwYMHAwDKy8sRGhqKPn361P+3Eqni5k2uL/26ddyZUn0xxjDl4BR81e0r\ntNZvLbuApNHR0tDCir4rMCF2Anrb9oaetl69tmNtDcTHA2+/DRgaAv36yTgoqRGNjaOCbt4EevUC\nliwBRo9u2LZibsRgwckFuDTpEvWrJxIJ3RUKq+ZWWBKwpEHbOXcO6N8f+OMPIIj6BEhN2tpJxV7F\nJCcDAQHcBdkxYxq2rfySfDj96oSYITHoZi3hHIVE7WUXZsNltQuOjz0O51bODdrW2bPcX6gbNgDv\nviujgGqCBkJrxJKSuEK/ZEnDCz0AzDo2C33t+1KhJ1Jprd8a8/znYfKByahgFQ3aVpcu3IB948cD\n+/fLKCCpERV7FXHjBlfoly5teNMNwI1VvzN5J5b1XtbwjRG1E945HIyxeo2b8yYfH67QT5jAFX4i\nH1TsVcCVK0Dv3txMU6NkMOJwYWkhJuydgDXvroFRU6OGb5CoHU0NTWwYsAHzT8xH6tPUBm/P25vr\nlhkWxo3USmSPir2SO3YM6NOHG5c+NFQ225xxZAZ8rX1pXlnSIA7GDvjW71uMjx0PUYWowdvz8gIO\nHQI+/hhYtUoGAUkVVOyV2LZtQEgIEBMDDBkim23GpcZhb8peLA9cLpsNErU2xXsKhJpCLPm7YT1z\nXvLwAE6dApYvB2bNoqEVZIl64yipn37ifuDj4gAXF9lsM6sgC50iOyFmaAx6tOkhm40StXc//z48\n13pi57CdMrvY/+gR1//exQVYswYQUq/gaqg3jooTiYDPP+fGAT99WnaFXlQhwqhdo/Ch14dU6IlM\nWTa3xG/9f8PIXSOR8zxHJtts1YprwnzwABg4ECgokMlm1RoVeyWSm8vdZHLxIvD339ydhrIy/8R8\nMDB840ujUBHZ6+/YH4PbD8bYPWMb3B3zJX19bhRXc3Oui2Zqw68DqzUq9kri33+5HgkODtygZkYy\n7CSzK3kXNlzZgG3vbYOmhqbsNkzIa5b2Xoq8F3mYc3yOzLYpFHJz2U6ZAnTrBhw8KLNNqx0q9kpg\n506gZ09g9mzgl19k2z55/eF1hO8Px67hu2CqX8/xjwmRgLamNnYM3YFN1zZhR9IOmW1XIAAmT+a6\nZL7/PrBoEV24rQ+6QMujsjKuwEdFcT/InTvLdvvZhdl4a91bmN9zPka5yqCDPiESuPTgEgI3ByJu\nZBy8LLxkuu3MTK5nmpkZNwigoaFMN69S6AKtikhJAd56i5vM4fx52Rf6/JJ8BG0Jwjj3cVToiUJ1\nMuuE3/v/juBtwbidc1um27awABISACsrwM0NOH5cpptv1KjYKxhjQGQk0L37q/FAWrWS7T5KRaV4\nL+Y9eFt4Y3aP2bLdOCESGNB+AOb5z0Pg5kA8LHxY9wpSaNKEa+787TfujvLp07kpD4l41IyjQI8e\ncW2OmZnA5s2Ak5Ps91EqKsXQ7UOhpaGFmCExdEGW8GrBiQWIvhGNY2OPoZWejM9qADx5AkycCKSn\nc8dUx44y34XSomYcJVRRwfUocHbmHmfOyLfQCyBA1HtRVOgJ72b1mIXBToPx9sa38ajokcy337Il\nd73ro48Af3/urtvnz2W+m0aBzuzl7OpVricBwN0J6Ooqn/0UlRZh+I7h3Bn90Bhoa2rLZ0eESIkx\nhjkJc7AzeSfiQ+Nh1cJKLvvJygI++wxITAQiIhr/hCh0Zq8k8vO5O2F79+ba5v/+W36F/knxE/Ta\n1AvGusbYPnQ7FXqiVAQCAeb3nI8J7hPQbX033Hh0Qy77MTfnxpNaswaYOpXrtZORIZddqSQq9jL2\n4gU3po2DA5CTw41DP3EioCGn73TKkxR0W98NPW164o8Bf9DUgkRpff7W51jcazHe3vQ2jvx3RG77\n6dOH6+Xm7Ay4uwNffAE8fSq33akMKvYyIhJxc2k6OnJdw44e5aZaMzGR3z73puxF9w3d8UXXL7A4\nYDEEAoH8dkaIDIS6hmLbe9swevdo/PDPD3Jrwm3aFJg7l7szvaiIOy6/+457rq6ozb6BSkuB6Ghu\nqkAjI+7fbnKe5a9UVIo5x+dg8/XN2D50O7pYdpHvDgmRsXvP7mFQ9CDYGtoisl+k3CfRSU3lbmA8\neZJr1584EWjRQq67lDtqs1eQ/Hzghx8AOzvujP6nn7gfJHkX+pQnKXhr3Vu4/ug6Lk66SIWeqCTr\nFtY4PeE0LJpZwH2NO46lHZPr/hwcuPb8uDjg0iXA1hb48kvg/n257lapULGXUkoK1wbYti33QxMb\nyzXZBAZyY3jIS6moFN+d/A7d1ndDmEcY9o3YJ5d+y4Qoio6WDn5+52f81v83jNk9BhP3TpTZEMm1\ncXcHtm7lRpYtL+c6TYwZA/zzT+Mfb4eKvQSKirj29+7dAT8/7mLrxYvcD02nTvLdN2MMh24fgvsa\nd5zNPIuLky5istdkap8njUagfSBufHgDOlo66LiqI9ZdWieTaQ7FsbHhOlLcucPNGTF+PNChA/fX\n+iPZ3w6gFKjNvhYlJdwZ+44dwJ49XPNMWBjw7ruKmzXnQtYFzDw6E/ee3cPSgKUY4DiAijxp1M5n\nnsfnhz9HzvMcLO61GP3a9VPIzzxj3GRB69YBu3dzN2gNHcrNlqWsbfvS1k4q9q8pLgYOH+YK/IED\n3K3X770HDBvGDcCkCIwxnLp3CotOLcKNxzcws/tMTOw0kbpUErXBGMO+W/sw69gsaAg08LXv1xjs\nNBhaGloK2X9+Pjfs+M6d3HW4Hj24OtC/P3fHrrKgYi+Figrg8mWuwP/1Fzf6pLc39x87aBA3jKqi\nFJQUIOrfKKw6vwrFZcWY3m06RruORhOtJooLQYgSYYzhQOoBLP57MTKeZSC8czgmeEyAWTPFHZj5\n+dxghTt3AkeOAO3acTdK9u7NjVrbhMfDk4q9GEVFwIUL3Ng0Z85wf7a1avXqP8/PD2jWTCFRAAAv\nyl/gyH9HsPX6VsSlxqFn25740PND9LLtBQ0BXU4h5KXLDy5j1flV2J60HT6WPgh1CUWQQxBa6iru\nVLu0FDh7ljsx/OsvICmJOzns2pV7dOki2xnm6iLzYh8fH49p06ZBJBLh/fffx1dffVVtmalTp+Lg\nwYPQ1dXFH3/8AQ8PD4nXlVexz83lxqW5ehW4do07g09J4S7GvPzP6dZNcc0zAHemkvwkGSfST+BI\n2hEc+e8I3EzdMLzjcAx3Hq7QH1xCVFFxWTH2puzFtn+34Xj6cXQw6YAg+yAEOQTBw8xDoSdJubmv\nThz/+YdrGTAz4zptuLm9epiZyaennkyLvUgkgqOjI44cOQILCwt4eXkhKioKTq8N2RgXF4eIiAjE\nxcXh3Llz+OSTT3D27FmJ1q1P4Nfl53NX0+/cAW7frvrIz+cKu5sb173K3Z176OjUa1e1SkhIgL+/\nf42f5b3Iw/WH13El+wpO3juJk3dPQleoC782fuhp0xNBDkEw0ZPjLbYSEJdfFVB+/vCdvaS8BKfu\nnUJcahziUuPwuPgxvC284W3uDW8Lb3hZeIntnizr/CIRNzzKlSuvTjSvXuUu/jo4APb2rx52dty/\nxsb1/0Ugbe0Ue8UjMTER9vb2sLGxAQCEhIQgNja2SsHeu3cvxo4dCwDw8fFBXl4esrOzkZaWVue6\nNamo4Ap1Tg43VvWDB9wjK+vV48EDbkz4oqJX3zQ7O8DLCxgxgntubS2/8Whe99fRv9DauTXSctOQ\nlpeGtNw0JD1JwvWH15H7IhcurVzgauqK4HbB+LHPj7BuYS3/UFLg+4BtKMrPH76zN9FqggDbAATY\nBuCnwJ+QVZCF85nnkZiZiJ/P/YzzmeehK9SFY0tHOBo7op1xOzgaO6KNQRtYNLPA8ePHZZpfU5M7\nsXx9wEPGgIcPX52E3rnDXQN4+ZoxwNKSO/s3N+cerz83MeF+IRgYNLyeiS32mZmZsLJ6NRyppaUl\nzp07V+cymZmZyMrKqnPdl7p04Yp7Tg6Qlwfo6XFtX0ZGr75oc3Oufez116amDfvzqIJVoFRUilJR\nKYrLilFYWlj5KCotqnye8zwHj4sf40nxEzwufozHRa+ePzv9DNtbbUdbw7awaWEDGwMbTOw0Ea6m\nrrAxsKG2d0IUxLyZOQa0H4AB7QcA4I7v+/n3cevpLaQ8SUHK0xQcvnMY957dw/38+3j+93NErYyC\nRXMLGDU1gpGOEQybGsJQx7DKv/ra+tDR0kFTraZoKmxa5blQQyi2a6hAALRuzT26d6/+eU4Od+L6\n8iQ2Kwu4dYsbXysrC3j8mFumoIAr+MbGwIkT3PakJbbYS9q/taFt7mxUIEy0GFoLK6ClyQABQwWr\nAAPDM8aQyyrwL/7/XjYDy2aouFgBxhjYy/fZq3Vefy6qEKFUVIqyirLKwl4qKkWZqAwiJkITzSYQ\nagqhJ9SDnrYe9LX1oa+tDz0h91xPWw9GOkYw0TNBZ7POaKnbEiZ6JjDRNYGJnglWFq3EvI/nNejr\nJ4TInoZAA9YtrGHdwhoBtgHVPp9ZNBNjR4xFZn4mcp7nIPdFLnKf5yLneQ7S8tIqXxeVFeFF+Qs8\nL3uO5+XPqzyvYBXQ0dKBjpYONAWa0NTQlOpfLQ0tCAQCCCDg6q0FILDgnutDgGYCAewgACBAeRn3\ngO6fAOpxfY+JcebMGRYYGFj5etGiRWzJkiVVlgkPD2dRUVGVrx0dHVl2drZE6zLGmJ2dHQNAD3rQ\ngx70kOJhZ2cnrnxXI/bM3tPTE6mpqUhPT4e5uTmio6MRFRVVZZng4GBEREQgJCQEZ8+ehYGBAUxN\nTWFsbFznugBw+7ZsZ58nhBBSndhir6WlhYiICAQGBkIkEiEsLAxOTk6IjIwEAISHhyMoKAhxcXGw\nt7eHnp4eNmzYIHZdQgghisf7TVWEEELkT6FdRSZMmABTU1O4uLhUeX/lypVwcnKCs7NzjTdeKYua\n8icmJsLb2xseHh7w8vLC+fPneUxYu4yMDPTs2RMdO3aEs7MzVqxYAQDIyclB79690a5dO/Tp0wd5\neXk8J61Zbfm//PJLODk5wc3NDYMHD8azZ894Tlqz2vK/9OOPP0JDQwM5OfId4re+xOVXheO3tvyq\ncPy+ePECPj4+cHd3R4cOHTBz5kwA9Th2pWrhb6CTJ0+yS5cuMWdn58r3jh07xgICAlhpaSljjLFH\njx4pMpJUasrv5+fH4uPjGWOMxcXFMX9/f77iifXgwQN2+fJlxhhjBQUFrF27diwpKYl9+eWXbOnS\npYwxxpYsWcK++uorPmPWqrb8hw8fZiKRiDHG2FdffaVy+Rlj7N69eywwMJDZ2Niwp0+f8hmzVrXl\nV5Xjt7b8qnL8FhUVMcYYKysrYz4+PuzUqVNSH7sKPbP39fWFoaFhlfdWr16NmTNnQvj/cYNN5Dlp\nawPVlN/MzKzybDIvLw8Wihx/QQqtW7eGu7s7AEBfXx9OTk7IzMysclPc2LFjsWfPHj5j1qqm/FlZ\nWejduzc0/n+3iY+PD+4r6dRDteUHgM8++wzLli3jM16davv5WbNmjUocv7XlV5XjV1dXFwBQWloK\nkUgEQ0ND6Y9duf9KekNaWlqVM2N3d3c2Z84c5uPjw/z8/Nj58+cVHUkqb+ZPT09nlpaWzMrKillY\nWLB79+7xmE4yaWlpzNramuXn5zMDA4PK9ysqKqq8VlYv8xcUFFR5v1+/fmzLli08pZLc6/n37NnD\npk2bxhhjSn1m/7rXf35U7fhlrOr3X1WOX5FIxNzc3Ji+vj778ssvGWNM6mOX92Lv7OzMpk6dyhhj\nLDExkbVt21bRkaTyZv5evXqxXbt2McYYi4mJYQEBAXxFk0hBQQHr1KkT2717N2OMVfsBMTQ05COW\nxAoKCljnzp0r87+0cOFCNnjwYJ5SSe71/EVFRczb25s9e/aMMcYV+ydPnvCcULw3v/+qdvy+mV/V\njt+8vDzm4+PDjh07JvWxy3uxf+edd1hCQkLlazs7O6X+gX8zf7NmzSqfV1RUsObNm/MRSyKlpaWs\nT58+bPny5ZXvOTo6sgcPHjDGGMvKymKOjo58xatTTfkZY2zDhg3srbfeYs+fP+cpmWTezH/t2jXW\nqlUrZmNjw2xsbJiWlhZr06YNe/jwIc9Ja1bT91+Vjt+a8qvS8fvS/Pnz2ffffy/1scv7wC0DBw7E\nsWPczPK3bt1CaWkpjI2NeU4lOXt7e5w4cQIAcOzYMbRr147nRDVjjCEsLAwdOnTAtGnTKt8PDg7G\nxo0bAQAbN27EwIED+YooVm354+Pj8f333yM2NhY6sh7SVIZqyu/i4oKHDx8iLS0NaWlpsLS0xKVL\nl9CqlfJNJF/b919Vjt/a8qvC8fvkyZPKnjbPnz/HX3/9BQ8PD+mPXTn/EqoiJCSEmZmZMW1tbWZp\nacnWr1/PSktL2ahRo5izszPr1KkTO378uCIjSeVlfqFQWJn//PnzzNvbm7m5ubEuXbqwS5cu8R2z\nRqdOnWICgYC5ubkxd3d35u7uzg4ePMiePn3KevXqxRwcHFjv3r1Zbm4u31FrVFP+uLg4Zm9vz6yt\nrSvfmzx5Mt9Ra1Rb/te1bdtWadvsa/v5UZXjt7bvvyocv9euXWMeHh7Mzc2Nubi4sGXLljHGmNTH\nLt1URQghaoD3ZhxCCCHyR8WeEELUABV7QghRA1TsCSFEDVCxJ4QQNUDFnhBC1AAVe0IIUQNU7Akh\nRA38D9RdEf53Rgb8AAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is either amazing or what you would expect, depending on your state of mind. I must admit I vacillate freely between the two! Note that the result of the multiplation is taller and narrow than the original gaussian. If we think of the gaussians as two measurement, this makes sense. If I measure twice and get the same value, I should be more confident in my answer than if I just measured once. \"Measure twice, cut once\" is a useful saying and practice due to this fact! \n", + "\n", + "Now let's multiply two gaussians (or equivelently, two measurements) that are partially separated. What do you think the result will be? Let's find out:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "xs = np.arange (16, 30, 0.1)\n", + "\n", + "\n", + "m1,s1 = 23, 5\n", + "m2,s2 = 25, 5\n", + "m, s = multiply (m1,s1,m2,s2)\n", + "\n", + "ys = [gaussian.gaussian (x,m1,s1) for x in xs]\n", + "p1, = plot (xs,ys)\n", + "\n", + "ys = [gaussian.gaussian (x,m2,s2) for x in xs]\n", + "p2, = plot (xs,ys)\n", + "\n", + "ys = [gaussian.gaussian (x,m,s) for x in xs]\n", + "p3, = plot (xs,ys)\n", + "legend ([p1,p2,p3],['measure 1', 'measure 2', 'multiply'])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlczPkfB/DXlBxRdBEVUSRHucmZXaHWIqxjJXbdLOvn\nthd2rbO1u44l96LNTaJyxyJyX7lK0kGi0qVr5v3746NW1DRT35nvTH2ej8c8mmm+38/33THv+czn\n+/m+PxIiInAcx3Flmo7YAXAcx3Gqx5M9x3FcOcCTPcdxXDnAkz3HcVw5wJM9x3FcOcCTPcdxXDlQ\nbLIPCgpC48aN0bBhQyxbtuyj5/38/ODo6IiWLVuidevWOH36tML7chzHceohkTfPXiqVws7ODidP\nnoSFhQXatm0LX19f2Nvb52+Tnp6OqlWrAgDu3LkDd3d3hIeHK7Qvx3Ecpx5ye/ahoaGwtbWFtbU1\n9PT0MHToUPj5+RXYJi/RA0BaWhpMTU0V3pfjOI5TD7nJPjY2FlZWVvmPLS0tERsb+9F2hw4dgr29\nPVxdXbFq1Sql9uU4juNUT26yl0gkCjXSv39/3L9/H/7+/hgxYgR4BQaO4zjNUkHekxYWFoiOjs5/\nHB0dDUtLyyK379KlC3Jzc5GYmAhLS0uF9rW1tUVERERJYuc4jiu3bGxsEB4ervgOJEdOTg41aNCA\nIiMjKSsrixwdHSksLKzANuHh4SSTyYiI6Nq1a9SgQQOF9313clheCBpv/vz5YodQKjx+cWlz/Noc\nO5H2x69s7pTbs69QoQLWrFmDXr16QSqVYvTo0bC3t4e3tzcAYPz48di/fz+2b98OPT09VKtWDbt2\n7ZK7L8dxHKd+cpM9ALi6usLV1bXA98aPH59/f/bs2Zg9e7bC+3Icx3Hqx6+gLSVnZ2exQygVHr+4\ntDl+bY4d0P74lSX3oiq1BCCR8Nk7HMdxSlI2dxY7jMNxXNlkbGyMpKQkscPgimFkZITExMRSt8N7\n9hxXTvHXnnYo6u+k7N+Pj9lzHMeVAzzZcxzHlQM82XMcx5UDPNlzHMeVAzzZcxzHqVlOTg4GDRqE\n+vXrQ0dHB2fPnlX5MXmy5ziOK6Xc3Fyl9+natSt27twJc3NzhSsMlwZP9hzHaRxra2t4eXnBwcEB\nBgYGGD16NOLj4+Hq6orq1avDxcUFycnJ+dtfunQJHTt2hJGREVq0aFGgp7x161Y0adIEhoaGsLGx\nwYYNG/Kfe/XqFfr06QMjIyOYmJiga9eu+c/p6OjgyZMn+Y9HjRqFH3/8EQAQHBwMS0tLLF++HLVr\n18bo0aNBRFi6dClsbW1hamqKIUOGFHkdg56eHqZOnYpOnTpBV1dXsN+bPDzZcxyncSQSCQ4cOIBT\np07h4cOHOHLkCFxdXbF06VK8fPkSMpmswEJJffr0wU8//YSkpCR4eXlh4MCBeP36NQCgVq1aOHr0\nKFJSUrB161b873//w82bNwEAv/32G6ysrPDq1Su8fPkSS5YskRvT+z3w+Ph4JCUl4dmzZ/D29saq\nVatw+PBhnDt3Ds+fP4eRkREmT56swt+Scniy5ziuUBKJMLeSmjJlCszMzFCnTh106dIFTk5OcHR0\nRKVKleDu7o4bN24AAHbu3Ak3Nzf07t0bANCjRw+0adMGR48eBQC4ubmhfv36ANjQSc+ePXHu3DkA\nQMWKFfH8+XM8ffoUurq66NSpk9yY3r+ISUdHBwsXLoSenh4qV64Mb29vLFq0CHXq1IGenh7mz5+P\nffv2QSaTlfyXICCe7DmOKxSRMLeSqlWrVv79KlWqFHhcuXJlpKWlAQCioqKwd+9eGBkZ5d8uXLiA\nFy9eAAACAwPRoUMHmJiYwMjICAEBAfm9/lmzZsHW1hY9e/aEjY0Nli1bpnB8ZmZmqFixYv7jp0+f\nwt3dPT+GJk2aoEKFCoiPjy/5L0FAPNlzHKcViioNULduXYwYMQJJSUn5t9TUVMyePRtZWVkYOHAg\nZs+ejZcvXyIpKQlubm75bVWrVg1eXl6IiIjA4cOHsXLlSpw5cwYAoK+vj4yMjPzjPH/+vMAwzocn\nVevWrYugoKACcWRkZKB27dpC/ypKhCd7juO0moeHB/z9/XH8+HFIpVJkZmYiODgYsbGxyM7ORnZ2\nNkxNTaGjo4PAwEAcP348f98jR44gPDwcRARDQ0Po6upCR4elxRYtWsDHxwdSqRRBQUH5Qz9FmTBh\nAr777js8e/YMAJCQkIDDhw8XuX1WVhYyMzM/uq8qPNlzHKcVPuxV5z22tLSEn58fFi9ejJo1a6Ju\n3br47bffQEQwMDDAqlWrMHjwYBgbG8PX1xf9+vXLbyc8PBwuLi4wMDBAx44dMXnyZHTr1g0A8Oef\nf8Lf3x9GRkb4559/4O7uXmQ8APDtt9+ib9++6NmzJwwNDeHk5ITQ0NAifx47Ozvo6+sjLi4OvXr1\nQtWqVfPfKFSBV73kuHKKv/a0A696yXEcxymMJ3uO47hygCd7juO4coAne47juHKAJ3uO47hygCd7\njuO4coAne47juHKAJ3uO47hygCd7juO4coAne47jODW7dOkSXFxcYGJigpo1a2Lw4MH5VTpVpdhk\nHxQUhMaNG6Nhw4aFlv/08fGBo6MjHBwc0KlTJ9y+fTv/OWtrazg4OKBly5Zo166dsJFzHMdpCGWX\nJUxOTsaECRMQFRWFqKgoGBgY4KuvvlJRdO+QHLm5uWRjY0ORkZGUnZ1Njo6OFBYWVmCbixcvUnJy\nMhERBQYGUvv27fOfs7a2ptevX8s7BBUTAsdxKqLJr7169erRihUrqHnz5lStWjX6+uuv6cWLF9S7\nd28yNDSkHj16UFJSUv72ISEh5OTkRDVq1CBHR0cKDg7Of27Lli1kb29PBgYG1KBBA/L29s5/LiEh\ngT777DOqUaMGGRsbU5cuXfKfk0gkFBERkf945MiR9MMPPxAR0ZkzZ8jCwoKWLVtG5ubm5OnpSTKZ\njJYsWUI2NjZkYmJCgwcPpsTERIV+3mvXrpGBgUGhzxX1d1L27ye3Zx8aGgpbW1tYW1tDT08PQ4cO\nhZ+fX4FtnJycUL16dQBA+/btERMT8+GbiYBvTRyn5YiA6GjgxAlg82bg+HHg2bPSrfJRBpW3ZQnP\nnTuHZs2alfTXpZAK8p6MjY2FlZVV/mNLS0tcvny5yO03b94MNze3/McSiQQ9evSArq4uxo8fj7Fj\nxwoQMsdpodxcYP9+YOlSIC4OaNoUqFuXJf5794CaNYG5c4HBg4EKcl+WaiNZWIo1Bd9D80v2Rpa3\nLCEAdOnSBbVq1YKjoyMAwN3dHadOnQIgf1lCT0/PAjnp/WUJW7RoUWBZQhsbmxIvS6inpwdvb2+s\nWbMGderUAQDMnz8f9erVw86dO/Nr5Bfm9u3b+OWXX+TWvheC3P+qD+s1y3PmzBls2bIFFy5cyP/e\nhQsXULt2bSQkJMDFxQWNGzdGly5dSh4tx2mj+/dZEq9eHVi0CHBzK7g4KxEQFMTeCH75Bdi7F1Bx\nL08RJU3SQlF2WUJ/f//853Nzc/HJJ58AYMsSLly4EI8fP4ZMJkNGRgYcHBwAsGUJFyxYgJ49ewIA\nxo0bhzlz5igUX1HLEr6f2POWJSxqtarw8HC4ublh1apVxb7RlJbcZG9hYYHo6Oj8x9HR0bC0tPxo\nu9u3b2Ps2LEICgqCkZFR/vfzfkAzMzO4u7sjNDS00GS/YMGC/PvOzs5wdnZW9ufgOM20Zw8weTJL\n5KNHF76NRAK4urLb9u1A9+7AH38Aw4erN1YNV9SQcN6yhBs2bPjoubxlCXfu3Il+/fpBV1cX7u7u\nHy1L6OXlhXv37uGTTz5Bu3bt0L1790KXJXx/pKOwZQm3bt0KJycnhX6eqKgouLi44KeffsJwBf7W\nwcHBCA4OVqjtQskb0M/JyaEGDRpQZGQkZWVlFXqCNioqimxsbCgkJKTA99PT0yklJYWIiNLS0qhj\nx4507NixUp9k4DitsWYNUb16RNeuKbffrVtEDRoQrVypkrDyaPJrz9ramk6dOpX/2MPDgxYsWJD/\neOPGjdSjRw8iIoqOjiZzc3M6duwY5ebm0tu3b+nMmTMUExNDKSkppKurS2fPniWZTEYBAQGkr69P\nP/74IxER+fv70+PHj0kmk9GzZ8+odu3a+Sd3O3XqRHPnzqXc3FwKDAykKlWq5O935swZsrS0LBDz\n77//Ts7OzhQVFUVERC9fviQ/P79Cf76YmBhq0KABeXl5Ffu7KOrvpOzfT+4J2goVKmDNmjXo1asX\nmjRpgiFDhsDe3h7e3t7w9vYGAPz8889ISkrCxIkTC0yxfPHiBbp06YIWLVqgffv26NOnT/5HJY4r\n83buZL35M2eAVq2U29fBge33xx/Ali2qiU8LlaVlCTdt2oTIyEgsWLAABgYGMDAwgKGhoSC/p6Lw\nZQk5TmgBAcDXXwOnTrETsSX18CHg7AysWwf07y9YeHn4a087CLUsIU/2HCekqCigXTvg4EGgY8fS\nt3flCjuhe+kSYGNT+vbew1972oGvQctxmiYnBxg2DJg5U5hEDwBt2wI//AAMHQpkZwvTJlcu8Z49\nxwll3jzg5k3g6FFAzrxqpREB/foBtrbAypWCNctfe9qBD+NwnCYJDQX69gVu32YXSAnt9Wt24nbP\nHkCg+dj8tacd+DAOx2mK3FxgwgRg+XLVJHoAMDFhvfqJE9lwEccpiSd7jiutv/4CDA2BESNUe5zB\ng4HatYE//1TtcbgyiQ/jcFxpxMUBjo7AuXOAvb3qjxceDnToAFy/zmrrlAJ/7WkHPmbPcZpgzBg2\nxFLIWg8q89NPwNOnrLRCKfDXnnbgY/YcJ7YHDwA/P1atUp1mzgSOHQPu3FHvcbXMggULMELO0JqP\njw969eqlUFvbtm3T+iKOPNlzXEn98ANLvO8V/1MLQ0M2zfP779V7XC3zfjmDp0+fQkdHBzKZLP97\nw4cPx7Fjx8QITRQ82XNcSYSGsqtap0wR5/gTJ7JpnufPi3N8LVDYEEd5HrbiyZ7jSuKHH9jYub6+\nOMevVAlYuLBM9u6tra3h5eUFBwcHGBgYYPTo0YiPj4erqyuqV68OFxcXJCcnIzg4uEDJ4bx9T58+\nnf84r3fftWtXAECNGjVgaGiIS5cufTQ0o6Ojg9WrV8PGxgZmZmaYPXt2oW8OkydPxsyZMwt8r2/f\nvvjjjz8E+x2oAk/2HKes0FA2Xj9qlLhxDB8OxMSUud69oksSFra40offy0vW//77LwDgzZs3SElJ\nQYcOHQo99qFDh3Dt2jVcv34dfn5+2FJI1dFRo0bB19c3v+1Xr17h1KlTCtWkFxNP9hynrCVLgFmz\ngPdWKRJFhQrAnDksHlWQSIS5lUDekoR16tRBly5d4OTkBEdHR1SqVAnu7u64ceOGUu0pOnwzZ84c\n1KhRA1ZWVpg2bRp8fX0/2qZt27aoXr16/rKIu3btQvfu3fOXUNRUPNlznDLu3QNCQopedUrdRo5k\n9XjeLaAtKCJhbiWg6JKEQnt/WKhu3bqIi4srdDtPT0/s3LkTAFsDV96sH03Bkz3HKWPpUmDqVPHG\n6j9UqRIwfbrqevcaorCeedWqVQssGyiVSpGQkFDo/oqup/3s2bMC9y0sLArdzsPDA35+frh16xYe\nPHiA/ipYb0BoPNlznKKiotjCJJMmiR1JQePHA6dPs6try5FGjRohMzMTAQEByMnJwaJFi5CVlVXo\ntmZmZtDR0UFERITcNr28vJCcnIzo6GisWrUKQ4YMKXQ7S0tLtGnTBp6enhg0aBAqVapU6p9H1Xiy\n5zhFrVnDhk1q1BA7koKqVWNX8q5eLXYkKlPYkoSGhob466+/MGbMGFhaWqJatWofLQiet5++vj6+\n//57dOrUCcbGxrh8+XKB5/P069cPrVu3RsuWLdGnTx+MfjdcV9i2I0eOxJ07d7RiCAfg5RI4TjHp\n6UC9emwmToMGYkfzsehoVqPn6VN20ZUC+GuvIB0dHYSHh6OBgn/ff//9Fx4eHoiKilJpXLxcAsep\n044dQOfOmpnoAcDKCnBxAbZuFTuSciEnJwd//PEHxo4dK3YoCuPJnuOKQwSsWgV8+63Ykcg3dSob\nypFKxY5EKyl6Evf+/fswMjJCfHw8pk2bpuKohFNB7AA4TuOdOAHo6QHOzmJHIl/Hjux8QkAA8Pnn\nYkejdaQKvkna29urbOqnKvGePccV56+/gG++KfEFQmojkbDe/V9/iR0Jp4H4CVqOkyc2FmjeHHj2\njM160XRv37Lx+6tXAWtruZvy15524CdoOU4dNm8Ghg7VjkQPAFWqAB4ewMaNYkfCaRjes+e4okil\nQP36wOHDQIsWYkejuLAw4NNP2acRPb0iNzM2NkZSUpIaA+NKwsjICImJiR99X9ncyU/QclxRAgPZ\nAt/alOgBoEkTwNYW8PcHBgwocrPCEghXdvFhHI4rirc3K0WgjcaPZ/Fz3Dt8GIfjCvP8Oeshx8QA\nVauKHY3yMjMBCwvgxg2gbl2xo+FUQPATtEFBQWjcuDEaNmyIZcuWffS8j48PHB0d4eDggE6dOuH2\n7dsK78txGsvHB3B3185EDwCVKwNffAG8K8PLcSA5cnNzycbGhiIjIyk7O5scHR0pLCyswDYXL16k\n5ORkIiIKDAyk9u3bK7zvu08V8kLgOPWTyYiaNSMKDhY7ktK5eJHIzo79PFyZo2zulNuzDw0Nha2t\nLaytraGnp4ehQ4fCz8+vwDZOTk6oXr06AKB9+/aIiYlReF+O00g3bwKpqcB765NqpQ4dAJmMFW/j\nyj25yT42NrZAyVBLS0vExsYWuf3mzZvh5uZWon05TmNs3w54egI6Wj5/QSJhP8f27WJHwmkAuVMv\nFS0MBABnzpzBli1bcOHCBaX3XbBgQf59Z2dnOGt6DRKu7MrJAf75p+ws4j1iBNC6NbByJVvVitNa\nwcHBCA4OLvH+cpO9hYUFoqOj8x9HR0fD0tLyo+1u376NsWPHIigoCEZGRkrtCxRM9hwnqqAgNke9\nYUOxIxFGvXqs3MORI8DAgWJHw5XChx3hhQsXKrW/3M+pbdq0wePHj/H06VNkZ2dj9+7d6Nu3b4Ft\nnj17hgEDBmDnzp2wtbVVal+O0zh5QzhlyciRfCiHK36efWBgIKZNmwapVIrRo0dj3rx58H53scb4\n8eMxZswYHDx4EHXfzeXV09ND6LsTQoXt+1EAfJ49pykSE9niJE+fat7Sg6WRmsqKoz1+DJiZiR0N\nJxBlcye/qIrj8qxfD5w5A+zeLXYkwhsxAmjblpVA5soEXvWS40rq77/L3hBOnpEj2c/HlVs82XMc\nADx8CERGAr16iR2JanTvDsTHA3fvih0JJxKe7DkOYAuKf/klUKGMFoLV1WVDObx3X27xMXuOIwJs\nbIB9+4BWrcSORnXu3QN69waiorT/gjGOj9lznNKuXWM935YtxY5EtZo2BYyMgHcXPnLlC0/2HLdn\nDzB4sOYvKC6EoUOBXbvEjoITAR/G4co3ov+WHnRwEDsa1YuIADp2ZAupl9XzE+UEH8bhOGWEhrLa\n782bix2JetjYsBIKZ86IHQmnZjzZc+VbeRrCycOHcsolPozDlV8yGWBtzRYWb9pU7GjUJyYGcHQE\n4uJ4JUwtpmzu5IN2XPl16RJgYJCf6DMygPv3WWmclBQgLQ2oUgUwNATq1PlvMoumSs5MRlhCGGJS\nYpCSlYKMnAxUq1gNhpUMYV3DGvam9qhasSpgacl+mOPHgc8/FztsTk14z54rt6RTp+FJohHWmMzH\n8eMsyTdqxGqh1ajBlp/NzATevAGePQPCwliy//RToGdP4LPP2BuBWNKy03D00VEcjziOk5Enkfg2\nEfam9qhbvS6qV6qOKnpVkJ6TjjeZb/Ak6QkevX6EutXrwqWBC8ZflsL+cRJ0//EV7wfgSoUXQuO4\nYoSHA97rZJj+hxVmOJxE88H26NWLTcaRN0GFiO17/Dgb+Tl/HujfH5gwga0AqC5XYq9g/dX1OPDg\nAJwsneBq64qeNj3R0KQhdCRFn4aTyqS48/IOjoUfw4VrB7Fjbih+9Z2E0Z2nwM7UTn0/ACcInuw5\nrggPHgCLFgHHjgGLev2LUVcno9KD2yVu7+VLVmVhzRr2aeCnn4Bu3QQM+APnn53Hz2d/xsPXDzG5\n7WR4OnrCvJp5idvL6N4Zfl1r4dtq/+KT+p/gh64/oFnNZgJGzKkSn3rJcR9ISmKVfbt2ZUPVERHA\neKM9qOQxuFTt1qwJzJgBPHrEys58/TXr6UdGChT4O1HJURi0ZxA8DnhgcNPBeDzlMWZ3ml2qRA8A\n+iO+xrC7QMTUCLSq3Qqfbv8Uk45OQuLbRIEi5zQJT/ZcmbZnD2Bvz5aWvX8fmDcPMKwqZXVwBpcu\n2efR0wNGjWKlZ9q1Y2XjlywBpNLStSuVSbHiwgq02tAKDrUccH/yfYxpNQYVdSsKEjfc3YGTJ2GQ\nRZjdaTbuT74PHYkO7Nfaw+e2D//EXcbwYRyuTEpKAiZPZmVvduxgSThfcDDwv/8BN26o5NhRUayX\nn5nJVgO0sVG+jcikSIw8NBIAsK3/NjQwaiBwlO/07QsMGlSgjv+1uGvwPOSJpmZNse6zdTDRN1HN\nsblS4cM4XLl3/TorXmlszPJ5gUQP/HchlYrUqwecOAF88QU7cXvwoHL7+z/0R/tN7dHXri/OjDyj\nukQPAEOGsN/He1rXaY2rY6/CwsACrTa0wpXYK6o7Pqc+JDINCIErQ7ZtIzI1Jdqzp4gNcnKIatYk\nCg9XSzyhoUR16xLNnUuUmyt/W6lMSj+e/pEsV1pSSHSIWuKjN2+IDAyIEhMLffrg/YNkttyMNlzd\noJ54OIUpmzv5MA5XJshkwHffAfv3A35+QJMmRWx46hQwZw5w9araYktIYB1oAwPA1xfQ1/94m7c5\nbzHi4Ai8TH+JvV/sRa1qtdQWH9zdgX792ImHQjx89RD9d/eHm60bVvRcIXd6J6c+fBiHK3eysgAP\nD+DcOSAkRE6iB1Q+hFMYMzMgKIhdqNW9O5uy+b5XGa/QY0cP6Onq4cSIE+pN9AD7fXwwlPM+O1M7\nXPz6Iq4+v4oh+4YgMzdTjcFxQuHJntNqGRnsiv/MTNZpNzWVs3FuLnDggNqTPQBUrAhs28auvO3c\nGYiOZt+PS41D161d0dmqM3wG+KBSBRFq1fTpwxY0SUoqchOjKkY47nEcuhJduPq4Ii07TY0BckLg\nyZ7TWqmpgKsrYG7OOqZVqhSzw+nT7Oona2t1hPcRiQT45Rdg/Hh28dX5O8/QbVs3eDh4YJnLMvGG\nRwwMgB49gEOH5G5WqUIl+AzwgY2RDXrt7IU3mW/UFCAnBJ7sOa2Umgr06gU0bsx6zAqtwyHCEE5h\nZswAvpoWBee/u2Fog8n4rst3YodU7FBOHl0dXWz4fANamreEyw4XnvC1CD9By2mdjAzAzY0VLfP2\nVrAUfU4OULs2m5dZt67KY5QnLjUO3bZ1Q4vsb3Bt7bc4d44VohRVWhpgYQE8eQKYFD+vnogwJXAK\nbr64iWMex1g1TU6t+AlarkzLygIGDACsrID165VYc+TUKfbuIHKif5XxCi47XPB1i6+xd8a3mDSJ\nVdGMjxc1LKBaNcDFpdihnDwSiQSrXFehoUlD9N3Vl5+01QI82XNaQyYDRo5kUxe3bgV0lPnv3b1b\n9CGc9Ox0uPm4oZ9dP8zrMg8AMHMmWzjqs8+A9HRRw1N4KCePjkQHmz7fBJMqJhh5aCRkJFNhcFxp\n8WEcTmvMmAFcucJKDFeurMSO2dnsLO7t26KNl+RIc9B/d3+YVzXHpr6bIHnvIwkRK6/w+jW72lZX\nV5QQ2btNnTqsUpzcaU0FZeZmosf2HuhctzOW9liqwgC59wk+jBMUFITGjRujYcOGWLZs2UfPP3jw\nAE5OTqhcuTJ+++23As9ZW1vDwcEBLVu2RLuPrlnnOMX98QcrTeznp2SiB1jtgqZNRUv0RISJRycC\nANb3WV8g0QNsKMrbm52LmDaNJX9RVK3KznorOJSTp3KFyjg09BAO3D8A76veKgqOKzV5l9fm5uaS\njY0NRUZGUnZ2Njk6OlJYWFiBbV6+fElXrlyh77//nry8vAo8Z21tTa9fv5Z7CW8xIXAcBQQQ1a5N\nFBVVwgZGjCBatUrQmJSx8uJKclznSKlZqXK3S0oiatqU6Pff1RRYYfbuJXJxKdGuj18/JnMvcwp4\nFCBwUFxhlM2dcnv2oaGhsLW1hbW1NfT09DB06FD4+fkV2MbMzAxt2rSBnp5eUW8mQr0vceXQgwds\nnH7v3hKeW83MBPz9gYEDBY9NEcfCj2H5xeXwG+qHahWryd22Rg3g6FFgxQrli6cJxs0NuHyZ1XhQ\nkq2xLQ4MPgDPQ5648Vw1FUW5kpOb7GNjY2FlZZX/2NLSErGxsQo3LpFI0KNHD7Rp0wYbN24seZRc\nuZSUxEq2LF0KdOpUwkaOHwccHdlYtJo9ev0Inoc8sfeLvahXo55C+9SrBxw+DIwbx8ozq52+PrtS\nrYTvNk5WTlj32Tr03dUXz1OfCxwcVxpyL0X5cGxRWRcuXEDt2rWRkJAAFxcXNG7cGF26dPlouwUL\nFuTfd3Z2hrOzc6mOy2m/3Fw2S8XNjZ28LDGRZuEkZybjc9/PsfiTxehct7NS+7ZuDaxbx8rMX72q\n0LR3YX3xBQtg3LgS7T6oySCEJYRhyL4hOOV5Cnq6hX/q55QTHByM4ODgEu8vdzbOpUuXsGDBAgQF\nBQEAlixZAh0dHcyZM+ejbRcuXIhq1aphxowZhbZV1PN8Ng5XmOnTgbt3gYAABa+OLczbt+xCqocP\ngVrqKy4mlUnx2T+fwc7EDn+6/lnidmbNAm7dYoubq3WGTkYG+709fszWXiwBGcnQ17cvbI1t8Ufv\nPwQOkAMEno3Tpk0bPH78GE+fPkV2djZ2796Nvn37FrrthwfNyMhAamoqACA9PR3Hjx9H8+bNFQ6M\nK7927ACOHGGd8hIneoCVmmzdWq2JHgC+O/UdcmW5+K3Xb8VvLMeSJewTzvz5AgWmKH199pHqwIES\nN6Ej0cGfsQmhAAAgAElEQVQO9x3wf+QP3zu+AgbHlVhxZ3ADAgKoUaNGZGNjQ4sXLyYiovXr19P6\n9euJiOj58+dkaWlJhoaGVKNGDbKysqLU1FSKiIggR0dHcnR0pKZNm+bvW9ozylzZdu8eW3zkzh0B\nGhsyhOjd/6m6+D/0J6uVVpSQniBIe/HxRFZWRIcOCdKc4g4cIOrevdTN3Hx+k0yXm9LtF7cFCIp7\nn7K5k19UxWmM9HS2hODMmcBXX5WysbyhiPBwVlBeDaKSo9BuUzscHHIQHa06Ctbu5cusjPOFC0DD\nhoI1K5+AQ2A7b+/EwrMLcXXsVVSvXF2gADleG4fTWpMnA23aFLlgknICAoD27dWW6LOl2Riybwhm\nOs0UNNED7Mf45RdWEygjQ9Cmi1alCqvhUIqhnDweDh7obdMbIw+N5B07EfFkz2mErVtZKYS//lKi\nuJk8ap6FM+/kPJhVNcOMjoVPUCitcePYDNLp01XSfOGUrJUjz2+9fkNsaizWXlkrSHuc8vgwDie6\nu3fZcn1nzxazpKCilCzXW1p+D/zwbdC3uD7+OoyrGKvsOCkpQKtWwLJlarpGLDOTDeXcv89qC5VS\neGI4nDY74eSIk3A0dxQgwPKND+NwWiUtjU3r9vISKNED7DLUjh3VkuifJj/FuCPjsGvQLpUmegAw\nNAT++QeYOBGIilLpoZjKldlQzv79gjRna2yL33v9jqH7hyI9W+wSn+UPT/acqP73P3ZSduRIARtV\n04pUubJceBzwwEynmehg2UHlxwPY72rWLGD4cDYtU+UEHMoB2Ph9O4t2mBY0TbA2OcXwZM+J5uBB\ntizs6tUCNpqaCpw8CfTvL2CjhVt6fikqVaiksnH6osyYwabC//KLGg7WsycrDf1cuNIHa1zXIDgq\nGHvuCfcmwhWPJ3tOFHFxbDhixw42PCEYf3+gSxfAyEjARj8WGhuK1aGr8Xf/v9W+ULiODrB9O7Bx\nIzvPoVKVK7N5nwIN5QCAQSUD7Bq4C98EfIOnyU8Fa5eTjyd7Tu1kMjaPfsIENrQuKDUM4aRlp2H4\ngeFY47oGlobi1Mg3Nwe2bAFGjACSk1V8MIGHcgCgdZ3WmNNpDjwOeEAqkwraNlc4PhuHU7s//wR2\n7QL+/beU5RA+9OYNq4McFcXqBavI2MNjkUu52Npvq8qOoajJk9nI1fbtKjxIVhablXPnDpvlJBAZ\nyfDp9k/hauuK2Z1mC9ZuecFn43Aa7c4dYNEiYOdOgRM9wFZY6t5dpYn+4P2DOP30NFb1XqWyYyhj\n+XIgJESQa5+KVqkS0LevoEM5AKufs7XfVqy4uAJ34u8I2jb3MZ7sObXJymKzSFasAGxsVHAAX19g\n2DAVNMw8T32OiUcnYqf7ThhUMlDZcZRRtSrr1U+aBMTHq/BAKhjKAQDrGtZY3mM5RhwcgWxptuDt\nc//hwzic2nz/PRAWxnqhglwl+76EBMDWlp35rVpV4MZZVdd+u/rBoZYDFn2ySPD2S+v779mnJj8/\nFfxuAZUu2k5E6L+7P5qZNcOvn/4qaNtlGR/G4TTSlSvA5s3A+vUqSkb79rGyvCpI9AAr5hX1Jgo/\ndftJJe2X1vz5wLNnwLZtKjpAxYps2bB9+wRvWiKRYEOfDdh8YzNCokMEb59jeLLnVC4zk1009eef\nKiwtv2uXyoZwYlNiMeP4DGzrtw0VdSuq5BilVbEim8Y6ezbw9KmKDqKioRwAqFWtFv767C94HvLk\nV9eqCB/G4VRuzhwgIoItGq6SXn1MDKsSFhfHTiYKiIjQx7cP2tZpiwXOCwRtWxWWL2cFP0+fZvPx\nBZWdzWbl3LwJvLc2tZA8D3rCoKIB1n7GC6YVhw/jcBrl0iXg778FrGZZmD172BWzAid6APj71t+I\nS43Dd12+E7xtVZgxg5VRWKWKyUIVK7Lfs4p69wCwynUV/B/543jEcZUdo7ziyZ5TmbdvWW361atL\nvJSpYnbtYquTCywmJQazT8zW6OGbD+nqsjfXX39lJ8MFN2wYq8amIjUq18CWflsw+vBoJL1NUtlx\nyiM+jMOpzMyZbIRl1y4VHiQ8HOjUCYiNFXTiPhHB1ccVnet2xg9dfxCsXXXZsIHdQkIAPT0BG5ZK\n2RDO6dNA48YCNlzQ1MCpSHybiJ0DdqrsGNqOD+NwGuHCBcDHB1izRsUH2r2b1UgW+AqtzTc2IyEj\nAXM6zRG0XXUZOxYwNWW17wWlq8s+Ramwdw8AS3ssRWhsKA7eP6jS45QnvGfPCS4jA2jRgiUad3cV\nH6x5c2DdOqBzZ8GafPbmGVpvaI0zI8+gWc1mgrWrbjExbLGTEyfY+WvBXL0KDBnCPlWp7EQMcOHZ\nBXyx9wvcnngbpvqmKjuOtuI9e050338PtG2rhkR/9y6rhyNgNTUiwujDozG9w3StTvQAu/Zp2TJ2\n3iQnR8CGW7dmn6QuXxaw0Y91qtsJw5oNwzcB36j0OOUFT/acoM6dY5M1VDIb5EO7drEepoBzDDdc\n24A3mW8wq9MswdoU06hRQJ06wOLFAjYqkbC6Fz4+AjZauEWfLMLNFzexL0z4i7nKGz6MwwkmPZ0N\nF6xcyepmqRQRK4+wdy8bqxDA0+SnaLuxLc6OOosmZkKtkSi+2FigZUvg2DH2VRAqOjFemEsxl+C+\n2x23JtxCzaqqnNalXfgwDieaefPYiIrKEz3AzgBXrixY9pKRDKMPj8asjrPKVKIHWFXi335jVzFn\nC1VrzNYWqF+frQqmYh0sO8DTwROTjk7iHcNS4MmeE0RwMCtw9uefajrgjh2Ap6dgJwjXX12PjJwM\nzHBS7xKD6uLhwXKzoEsZfvmlWoZyAGBh94UISwjjSxmWAh/G4UotLQ1wcGAXT332mRoOmJnJuqu3\nbglSgfFJ0hO039Qe5786DztTOwEC1EzPn7NZUkePAm3aCNBgfDxgZ8eGclRUgO59obGh+Nz3c9ye\ncBu1qqmqyJL24MM4nNrNng04O6sp0QNsndmWLQVJ9DKS4Su/rzCv87wynegBVtbm99/ZSdusLAEa\nrFUL6NCB/T3UoJ1FO4xuORoTj07kHcQS4MmeK5VTp4AjR9hJWbXZvp0N4QhgbehaSGVSfNv+W0Ha\n03TDhgGNGgELFwrUoJpm5eSZ320+Hr1+BN+7vmo7ZplBxQgMDCQ7OzuytbWlpUuXfvT8/fv3qUOH\nDlSpUiXy8vJSat93Q0jFhcBpqDdviOrVIwoMVONB4+OJqlcnSk0tdVOPXz8mk2Um9PDVQwEC0x4v\nXhDVqkV0+bIAjaWkEBkaEiUkCNCYYq7GXqWaK2pSXEqc2o6piZTNnXJ79lKpFN988w2CgoIQFhYG\nX19f3L9/v8A2JiYmWL16NWbOnKn0vpx2mzULcHEBevdW40F9fdl0n2rVStWMVCbFqEOj8GPXH9HI\npJFAwWmHWrXYdRAjR7LTH6ViYMDG73zV19NuXac1xrcej/FHxvPhHCXITfahoaGwtbWFtbU19PT0\nMHToUPj5+RXYxszMDG3atIHeB9WWFNmX017HjwNBQWxKn1oJNISz6vIq6Eh0MKX9FAGC0j6DBwPN\nmgE/CbHw1tdfA1u3CtCQ4n7o+gOi3kRhx+0daj2uNpOb7GNjY2H13iIFlpaWiI2NVajh0uzLabY3\nb4AxY4BNmwBDQzUe+N49NgOke/dSNfPo9SP8+u+v2NpvK3Qk5fe01V9/sRmsIaVdCfCTT4DXr9mi\nJmpSUbcitvXbhpnHZyI2hecVRci99E1SijnMyuy7YMGC/PvOzs5wdnYu8XE51Zs+nS336uKi5gPv\n2MFOCOrqlrgJqUyKkYdGYoHzAtgY2wgYnPYxM2NVSUeNYnm6SpUSNqSjwxrZulWNF1oALWu3xOS2\nkzHuyDgcGXakVPlKGwQHByM4OLjE+8tN9hYWFoiOjs5/HB0dDUsFp7sps+/7yZ7TbEeOAGfOsCnu\naiWVAjt3srGjUvC66AV9PX1MajtJoMC028CBbA3xH34o5ZDcqFFAu3ZsXUQVrBhWlO+6fId2m9ph\n281t+KrlV2o7rhg+7AgvVHJKldzPsG3atMHjx4/x9OlTZGdnY/fu3ehbxLXwH54oUWZfTju8fg2M\nH886cAYGaj74mTPszGKzkleivPvyLrxCvLCl75ZyPXzzodWr2fnV8+dL0Uj9+qzctJrm3OfR09XD\n3/3/xuyTsxH9Jrr4Hcqz4qbrBAQEUKNGjcjGxoYWL15MRETr16+n9evXExHR8+fPydLSkgwNDalG\njRpkZWVFqe+mxRW2b2mnD3HiGTaMaNo0kQ4+fDjRH3+UePfs3Gxqub4lbbq2ScCgyo4DB4hsbYnS\n00vRyI4dRK6ugsWkjF/O/kK9dvQimUwmyvHFoGzu5OUSOIXs28fq1JdqbLekEhOBBg2AiAjAxKRE\nTSwMXojQuNByMbZbUh4ebHWrP/4oYQMZGeyq5jt3WDkLNcqR5sBpsxMmtJmAMa3GqPXYYuHlEjjB\nvXwJfPMNW8ha7YkeYNMt+/QpcaK//vw6/rr6FzZ+vpEnejlWrWIVo8+eLWED+vpsicjt2wWNSxF6\nunrY1n8b5p2ah6jkKLUfXxvwZM/JRcTG6b/6ipVBESWADRuAceNKtHtWbhY8D3piZc+VqGNQR+Dg\nyhZjY2D9ejZtPi2thI18/TWwZQv7u6lZs5rNMMNpBkYfHs1HCwrBkz0nl48PW6dCtAlTFy4AMhnQ\npUuJdp8fPB92pnb4svmXAgdWNn3+OVvOd+7cEjbQrh2gp8f+biKY2XEmUrNT4X3NW5TjazI+Zs8V\nSSUrHCnL05PV5Z0+XeldQ6JDMGDPAL7CkZKSktjEmu3b2fVSSvPyAsLCWA9fBGEJYei6tSuujL2C\n+kb1RYlBHZTNnTzZc4UiYhdOOTkJdEl9SZTixGxGTgZarG+BpT2WYoD9ABUFWHYFBACTJwO3b5dg\nmm18PNC4MRAVpeZLrP+z4sIKBIYH4qTnyTI7zZafoOUEsWkTkJDAlhoUzc6drMhWCU7Mzjs5D+0s\n2vFEX0JubqxX/0F9Q8XUqgV8+qlaSx9/aLrTdLzNfYu1oWtFi0HjCDfrs2Q0IATuA48eEZmaEt27\nJ2IQMhlRkyZEwcFK7xr0OIisVlpRYkaiCgIrP5KTiaytiQ4fLsHOJ08SNW/O/o4iefTqEZkuN6V7\nL8X8R1YdZXMn79lzBeTksPnWCxYATcRcd/viRSA3F+jaVandXmW8wujDo/F3/79hVMVIRcGVD9Wr\ns3H7cePYyIxSundn9ZMvXlRJbIpoaNIQiz9ZjOEHhiNbKtRK69qLJ3uugF9+YaMmk8QuHZM33VKJ\nefFEhHH+4zCs2TB0r1+6ypgc06ULm005erSSsyl1dIAJE4B161QWmyLGtBqDetXr4aczYp140hz8\nBC2X7+JFVhjrxg3A3FzEQJKSWK2V8HB2SaeCttzYglWXV+HymMuoVEF9xbjKupwcoGNHlvQnTlRi\nx7wT7I8fsxKbIklIT0AL7xbwGeADZ2tn0eIQGj9By5VISgowYgTg7S1yogfY2IGbm1KJPjwxHHNO\nzoHPAB+e6AWmp8fOlf/0E/DggRI7GhsD7u6iTcHMY1bVDJs+34SRh0YiOTNZ1FjExHv2HAB2hWzF\niizZi0oqBezsWO16JyeFdsmV5aLzls74svmXmNp+qooDLL+8vdnoWkgI+19RyLVrLOE/eQJUkFtR\nXeWmBExBYmYifAaIN0tISLxnzyltzx52wePKlWJHAiAwkPUIlajN8PPZn1G9cnV80+4bFQbGjRvH\n6pv9+KMSO7VuDdStCxw6pLK4FLXcZTluPL+BHbfK51KGPNmXcxERrMjZrl1A1apiRwO20tHUqQqf\nmD0deRqbrm/C3/3/LrMXz2gKiYSNyPzzD7uqWmHffsuqrImsil4V7Bq0C9OPT8ej14/EDkft+Kuj\nHMvOBoYOZasUtWoldjRga8zeu8dWw1ZAfFo8Rhwcge3u22FeTewTDeWDqSkbvx81CoiLU3Cn/v2B\nyEh25l9kDrUc8Ev3XzB472Bk5maKHY5a8WRfjs2dyz6WT5kidiTvrF7NpuspMCAsIxk8D3lilOMo\n9GjQQw3BcXm6dWN/Jg8PdoqlWHp6rPaCGtenlWd86/FoaNIQM4+X5PJg7cVP0JZTR46w19+NG2yI\nXHQvX7ITsw8esMvti7Hs/DL4P/JH8KhgVNAR98RfeSSVAj16sJIKCo3hv34NNGwI3L0L1BG/1HRy\nZjJaebeCV08vrS2pwU/QcsWKiQHGjGFjrxqR6AFg7Vo2fKNAor8YfRErL63EPwP/4YleJLq6rPTN\n2rXAuXMK7GBiAgwfrhFj9wBQo3IN7Bq0CxOOTMDT5Kdih6MWvGdfzuTmst5Y797Ad9+JHc076ens\nIqrz54FGjeRumvg2Ea28W2GV6yr0teML2IstMJDN0rl+XYHrpiIjgbZt2TRMkaphfsjrohf2he3D\nua/OoaKuovNJNQPv2XNyzZ3LVo8r8eIUqrB1K1sxo5hELyMZPA54YID9AJ7oNYSrK+uwf/mlAuP3\n9euzsZ+NG9USmyKmO02HWVWzcjF+z5N9ObJ3L7B/P/v4raMpf/ncXDbBf9asYjf9+ezPSM9Jx7Ie\ny9QQGKeoRYvYYmIKjd3PmsVWNM/JUXlcitCR6GCH+w4EPA6Az+2ycbFVUTTlJc+pWFgYK262f3+J\n1+1WjT172JSgYq6WPfroKDZd34Tdg3ZDT1dPTcFxiqhQgV2n4eOjwLVTrVuzE/E7d6olNkXUqFwD\nB4YcwLRj03A7/rbY4aiOMJWVS04DQijz3rwhatSIaOtWsSP5gFRKZG9PdOyY3M3CX4eT2XIzuvDs\ngpoC40ri8mUiMzOiBw+K2fDMGSJbW6KcHHWEpbCdt3aSzZ82lPQ2SexQFKJs7uQ9+zKOiF0A0707\n+6pR9u9nJ+pcXIrcJCMnAwP3DMRP3X5CR6uOagyOU1a7dmxIZ8AAIC1NzobdugG1a7OPAxpkuMNw\nuDV0w4iDIyAjmdjhCI7Pxinjli0DDh4Ezp4FKmlSMUiZjK1ivngxW3qwEESEkYdGgkDY3n87JErU\ntufEQcSm9aalsVxe5J/sxAlWFuPuXTaPU0NkS7Pxyd+foKdNT/zUTbNr4PPZOFw+f382rXnvXg1L\n9ABw+DAb7HVzK3ITr4teuPvyLrz7ePNEryUkEjb3PjIS+PVXORv26MGWwtq/X22xKaKibkXs/WIv\nNl7fiAP3D4gdjrCEH0lSjgaEUCbdvMnWkb10SexICiGVEjk4EB06VOQmB+8fJIvfLCj6TbQaA+OE\nEhdHZGVFtGePnI0CA9k5m9xctcWlqGtx18h0uSldjb0qdihFUjZ38p59GfTiBdC3L7BmDdC+vdjR\nFGL3bqBKFRZkIW48v4Fx/uNwaOghWBpaqjk4Tgi1a7MPb5MmAVeuFLFRr16sstoOzSs53Kp2K3j3\n8Ub/3f0RmxIrdjjCKO7dIDAwkOzs7MjW1paWLl1a6DZTpkwhW1tbcnBwoOvXr+d/v169etS8eXNq\n0aIFtW3bVpB3J06+jAyidu2IFiwQO5IiZGcT2dgQnTpV6NOxKbFktdKK9t7bq+bAOFU4dIjIwoLo\n2bMiNvj3X6J69YgyM9UZlsKW/LuEWnm3orSsNLFD+YiyuVPu1rm5uWRjY0ORkZGUnZ1Njo6OFBYW\nVmCbo0ePkqurKxERXbp0idq3b5//nLW1Nb1+/VrQgLmiyWREQ4YQDRvG7mskb2+iHj0KfSo9O53a\nbGhDi84uUnNQnCotX07UogVRamoRG7i5Ea1apdaYFCWTycjzoCcN2D2ApDKp2OEUoGzulDuMExoa\nCltbW1hbW0NPTw9Dhw6Fn59fgW0OHz6MkSNHAgDat2+P5ORkxMfHv//JQeDPIlxR5s8Hnj4FNm9W\neO0P9UpPB37+mc3A+YBUJoXnQU80Nm2M77poStEeTggzZ7L1Er78kl0w/ZFff2X/E6mpao+tOBKJ\nBBv6bMDL9JeYd3Ke2OGUitxkHxsbCysrq/zHlpaWiI2NVXgbiUSCHj16oE2bNtioQfUwyqK1awFf\nX8DPjw2HayQvL1YDp23bAt8mInwT8A0S3yZi4+cb+cybMkYiAdatA7KyWB38j/p/LVqway2WLBEl\nvuJUqlAJB4ccxOFHh/F7yO9ih1NicuvDKvqiK6r3fv78edSpUwcJCQlwcXFB48aN0aVLF+Wj5OTa\nvZu9Tv79V6EKweKIiWHzQK9f/+iphWcX4nLsZQSPCkblCpVFCI5TtYoV2SzLTz8Fvv++kA93ixcD\njo6shKa1tRghymWqb4pjHsfQeUtnmFU1g4eDh9ghKU1usrewsEB0dHT+4+joaFhaWsrdJiYmBhYW\nFgCAOu8WKTAzM4O7uztCQ0MLTfYLFizIv+/s7AxnZ2elf5DyKu/alBMnWFFBjfXdd6xbV69egW+v\nDV0Lnzs+OP/VeRhW0oyyt5xqVKsGHD0KdOnCyiH/73/vPWlpyf6R587VuCtr89StXhdBHkH45O9P\nYFzFGG4Ni75GRBWCg4MRHBxc8gbkDejn5ORQgwYNKDIykrKysoo9QRsSEpJ/gjY9PZ1SUlKIiCgt\nLY06duxIxwqpgVJMCJwcoaGsFsm5c2JHUozLl4lq1yZ69/+QZ9edXWTxmwU9SXwiUmCcGKKi2Bz8\n7ds/eCItjcjSkuj8eVHiUlRIdIhG1GpSNncWu3VAQAA1atSIbGxsaPHixUREtH79elq/fn3+NpMn\nTyYbGxtycHCga9euERFRREQEOTo6kqOjIzVt2jR/39IGzDH37xOZmxMdPix2JMXIzSVq3Zpo27YC\n3z4WfoxqrqhJt17cEikwTkz37hHVqkXk7//BE76+RM2bsym6GizwcSDVXFGTbr+4LVoMgid7VePJ\nXnn37xPVqVNIz0gTrV5N1K1bgbmgx8OPk+lyU/o36l/x4uJEd+kS+2R69Oh735TJ2NRcLy/R4lKU\n7x1fMvcypzvxd0Q5Pk/2ZVxYGEv0f/8tdiQKiItjNRveG/o7Fn6MzJab8UTPERFRSAhL+EeOvPfN\nR4+ITEzkXImlOfISvhg9fJ7sy7B797SoR0/ErvCaNy//YdDjIDJbbkbnozR7TJZTr7wefoEhnfnz\nifr10+CrA/+z684uMvcyV/uQJE/2ZdTdu+wc544dYkeioH372Iop6elExMY4eaLnipK38En+OajM\nTKImTYj++UfUuBS1++5uqrWiFt18flNtx+TJvgy6cYMl+p07xY5EQS9fsrPHFy8SEdHhB4c1YvYC\np9nyZpft3//eN2rWZMOBWmDP3T1Ua0UtuhJ7RS3H48m+jDl1ir0A9mpTXbAvviCaNYuIiDZe20jm\nXuZ0OeayyEFx2uD6dTZUuXbtu298/z1R375aMZxDRHTo/iEyW25GQY+DVH4snuzLEF9flujPnBE7\nEiVs305kb0+yjAz6OfhnavBnA3r46qHYUXFaJCKCLVH7/fdEsreZbO2DDRvEDkth56POU80VNWn7\nTdWeXFM2d/JlCTXUypXA778DAQFA8+ZiR6OgR4+ATp0gPXkCk6PXIzQ2FAHDA2BezVzsyDgt8/Il\n0KcP+99f/+196H3aFQgOBpo2FTs0hYQlhMHVxxWT2kzC7E6zVVLvSdncyZO9hpFKgdmzgcBAICgI\nqFtX7IgUlJkJODkha/QoDDULRlp2GvYP3s9LIHAllpYGDB7MCqnt+2wLqvy1EggNBfT1xQ5NIbEp\nsejt0xvdrbtjZa+VqKAjtzqN0niy12JJScDw4UBGBnDgAGBsLHZESpg4EelxUejYOwYta7fChs83\noKJuRbGj4rRcTg5b7eriBUKIrQcMTSoCW7ZoaA3vjyVnJmPQnkGQSCTYNXAXTPRNBGubLziupe7e\nBdq1Axo2ZEXNtCrRe3sj7UQAHNpewehWY7C131ae6DlB6OkBGzYA30yRwDHEGynB19h6m1qiRuUa\nCPIIgmMtR7Td2Ba3XtwSLxgBzxeUiAaEILp9+9iFplpxVewHZGfPUppRNXKaY0rBkcFih8OVYf/+\nS9ShZgSlVqtFslOnxQ5Haf/c/odMl5uS7x1fQdpTNnfyYRwR5eQAP/7IFh05cABo3VrsiJSTGnYT\nuZ2c8NMIS8z65RTqVteWEwyctoqNBZa6nMLPT4ZD59xZVG9nJ3ZISrn14hbcd7vDvbE7lvRYUqpP\nwHwYR0s8fAh07AjcuQNcuaJ9iT7kmh9ed2uLwC/bYvlvt3mi59TCwgLwuvEpAjsvxpuOvXFh33Ox\nQ1KKo7kjroy9goikCLTf1B73E+6r7dg82asZEeDtzVbn++or4MgRoGZNsaNSXLY0GwuOzESV/oOQ\nPXggvlx7DlX0NHUdRK4sqlQJ+PLk18jyGIMaw1zx07dvkJUldlSKM9E3wcEhBzGpzSR03dYVa0PX\nqmV0gw/jqNHLl8CYMeyj6M6dgL292BEp58GrBxj7zzCsW/cMDTq4QX/Ldq2ZFcGVQUR4O3Yqog5e\nwxiLIHj7GmrLNPx8j18/xvADw2Gqb4rNfTejtkFthfflwzgaSCZjMwqaNWO3kBDtSvSZuZmYf2Y+\neq3rhN3b0tHUqR/0N//NEz0nLokEVTb8CbsvHLE/ozf6dE3BDz8Ab9+KHZjiGpo0xIWvL6BNnTZw\nXO+IdVfWQSqTquRYvGevYrduARMnsvvr1wMODuLGo6zjEccxOWAyOla1x4aNL1DJvhmwaROgw/sJ\nnIaQyYDJk5F9+QYm1zuCU7dMsWYN4KbeJWJL7e7Lu5h4dCKycrOwvs96tKrdSu72SudOQeYAlYIG\nhKASb94QTZ/Oatts2EAklYodkXJi3sTQkL1DqP4f9enU2W2s3Oz//qd9PwhXPshkRHPnEtnZ0dm/\nI8nGhmjgQK1Y/6QAqUxKW65voZoratLUgKmU9DapyG2VzZ28eyawzExW06ZhQyAxEbh3Dxg7Vns6\nwgE3vWsAAA9tSURBVElvkzD35Fw4rHeAjZEN7jntwCcePwJff80K9mjLD8KVLxIJsGQJMGkSun7X\nGXc3X0azZkCLFsDMmcDr12IHqBgdiQ6+avkVwiaF4W3uWzRa3QheF73wNqf0Y1P8lSsQqRTYtg2w\ns2P1mk6dArZuBczMxI5MMRk5GVh6fikarWmExLeJuDXhFn6Na4wqn/VnSX7GDLFD5LjiTZ0KrF2L\nyoP6YEHdLbh7F0hPZ6/LX39l97WBib4JNny+AWdHncXF6ItotKYRNl3fhFxZbskbLe3HjtLSgBBK\nJSuLVfVt0oSoc2ei81q2EFNKZgqtvLiS6vxWhwbtGUQPEh6w1aUmTGB1Zu+Is5gyx5VKWBiRnR3R\n6NFEqan06BFbJbN2baIVK4iSk8UOUDmXoi+R8zZnslttR3EpbDEXZXMn79mXUEoK4OUF2NiwHv3K\nlcC5c0CnTmJHppi41DjMPTkX9f+sj0uxl3B46GHs/WIv7J6lsyu8UlOBq1fZ9CGO0zb29qxCZm4u\n0KoVGiaFYtcuVjL8+nWgQQNg1iwgJkbsQBXT3rI9TnuexsbPN5a8ZLgq3oWUoQEhKOXBA6IZM4iM\njYmGDSO6dk3siBQnk8noUvQlGnVoFBktNaIpAVPoSeIT9mRaGtHs2eyMso+PuIFynJD27GHLG06f\nTpSaSkREkZFE06YRGRkRjRhBdOGC1iyGlU/Z3Ml79gpIT2fj7507A926sXOU164B//wDtJI/O0oj\nJKQnYGXISjRf1xweBz1gZ2KHx1MeY5XrKtSvYQ3s38968DExrH7Dl1+KHTLHCeeLL1hZ2Vev2OIn\nu3fDuh7h99+BiAi2QMpXXwFNmrBP6y9fih2wavB59kXIymInWfftAw4dYsMzo0cDn33Gyq5qupSs\nFBx9dBT77u/DqSen0NeuL0a3HI2u9br+t2rOuXPAnDnsKpTffgM+/VTcoDlO1YKD2WQDXV1g2TLA\n2RmQSEAEXLgAbN4MHDzIvv3FF2y1rOrVRY65CHzxklLIyACOH2cJ/uhR1gkYOJCtlmNhIXZ0xUt8\nmwj/h/7Yf38/gp8Go3PdzhhoPxADmwxEjco12EZEbAmsxYuBuDhg/nzAw4NPqeTKD5mMlZpduJBN\nl5s3j12B9e41kJLCPuzu38/6Q127sjzw+eeAqanIsb+HJ3slyGTAjRsswZ84wapPtmvH/rDu7kBt\nxctUiCJbmo2Q6BCceHICxyOO48GrB/i0wacYaD8QfRr1+S/BA2wZrO3bgb/+AipXZj36wYOBCsIu\nlcZxWkMqZT27ZcvYhISJE4GRIwGT/1aTSklhxQr37wdOngQaNQJcXNitY0dWlE0sPNnLkZ7OJpiE\nhLDbhQus4mTeH69bN8DAQC2hlEjS2yRcirmEkJgQhMSE4HLMZTQ2bQyXBi5wsXGBk6UTKlV4778v\nPZ314n182JiUmxsweTIbk+J1bTiOIQIuXQLWrgX8/dkYzpdfAr16ATX+6zBlZ7PNTpxgt7Aw1jl0\ncmK3Dh3Uu8Kc4Mk+KCgI06ZNg1QqxZgxYzBnzpyPtpk6dSoCAwOhr6+Pbdu2oWXLlgrvq6pkn5TE\n6tLcugXcvs168A8fspMxeX+cTp00c3iGiPAi7QVuxd/CrRe3cCv+Fm68uIGYlBi0rdMWTpZOcLJy\nQkerjjCu8t5/l0zGTrCePcv+G8+eBdq3B4YOBQYN0tzBR47TFCkpbCWh3buB8+fZDAw3N3Zr1qxA\nJykp6b+O48WLbGSgdm22i6Pjf7fatVXTtxI02UulUtjZ2eHkyZOwsLBA27Zt4evrC/v3SjYGBARg\nzZo1CAgIwOXLl/Htt9/i0qVLCu1bkoDfl5LCzqZHRADh4QVvKSkssTs6suJjLVqwW+XKJTpUkYKD\ng+Hs7Kz0fkSExLeJCE8MR3hiOCKSIvLvP058DCKCo7kjHGs5wqGWA1qat0TTmk0LrlD/6hVL7jdu\nsMHFc+fYGGS3bkD37oCra4GeiZDxawoev3i0OXZAgfgzMtgJ3YAAdhLv7VvWlc+7tWlToCsvlbLy\nKDdv/tfRvHWLfXBo2BCwtf3vZmPDvpqYlPyNQNncKXfANjQ0FLa2trC2tgYADB06FH5+fgUS9uHD\nhzFy5EgAQPv27ZGcnIwXL14gMjKy2H0LI5OxRJ2YyHLZ8+fsFhf33+35c1YTPj39v1+ajQ3Qti0w\nbBi7X7eues45fvgPI5VJkZyZjMS3iUjISMDz1OeIS41DXGocnqf9dz8mhV3NYWtsC1tjW9gY2aC7\ndXeMbTUWtsa2MK9mzmbNpKcDT58CVyOBp/8CT56w/6g7d9g/Y9472tChwLp1Sp9oKPMvWA2nzfFr\nc+yAAvHr6//Xq1+9Gnj2jHXfQ0NZHZ5r11hnqlEjwM4OunZ2cGjUCA5t6gL9LQFDQxAB8fH/dUIj\nItg5gLzHRIClJXvZ1qnDbu/fNzNjbwg1apQ+n8lN9rGxsbCyssp/bGlpicuXLxe7TWxsLOLi4ord\nN0+HDiy5JyYCyclA1arsDdPY+L8fuk4d9mb6/uNatZR7V5SRDDnSHGRLs5EjY1+LumXlZiE9Jx1p\n2WlIz3739d3j9+9fv30dRzceReLbRCS+TURqVioMKxnCuLIRalU2hZW+OSwqmaGunina6DRGbcO2\nqGlYFTXr6MMgRwJJejoQ9Rq49gpIuAAkHGLvcgkJ7JaVBdSrB9SvD1hbs9snn7CPK1ZWfOyd49RB\nImGvw3r12JAowLryz56x8eFHj9hXf3/2vdhYQCKBxMIC5hYWMDc2RmcjI8DICGhhDHRn91N0jZCQ\nro/4lCqIT6mCuMTKiLlZBZdPVEFUfGU8f6WHxCQJUlNZwjcxYaOz5iW4iFZuspcomEhKO+a+ItUE\nkooEHXNAUpsAEEAEygQkTwiIIBABErCvmUSIBOEJAQBBQu89D0BCBLx7DkSQEQEkAwiQQAIdiQS6\n7B503j3WgQQVoAM9iQQGkEAikUAXOtCVsJvOu/s6Eh3oQgcVZIQKuYSliSmYH5IKnVwpdHIJkpzK\nkOSkA9lJgM5TNim/YkX2Dla1KlCtGrvl3a9alf0FTU1ZQjczK3gzMuIJneM0ka4ue83Wrw/07l3w\nOSI2RBEby4Yj8nqzSUmsBGd4OJCUBMPERBi+fQubt2/ZMFFmJvuadyMCqlQBVa8EmW5FyFL1IMm5\nDED5qYL/b+/+Qprq4ziOfxKNh7JwyKOpyyauyWxjm9UWQY+FTiNCxCsvgiAvopuQYIhXUcRDKRGU\nUN0kXjxEXZTdLClYf7wJBwu88KJ6mDhTDLXZEGuyfZ4LdTg7Zzmf9LfDfq8rd9jgzeF8fzsMzzkp\nF/uysjKEQqHE61AoBL1en/I94+Pj0Ov1WFxc/OVnAaCyshJ/jfybdvjGLX+ZAAB+zxNh/o6o3Eov\nHl86M//xY+lfuzLUlStXRCf8L7JfHC23Axrpn59Pvl1neSmApbUzHSkX+0OHDuHjx48YHR1FaWkp\nHj16hIcPHya9p6mpCT09PWhtbcW7d+9QUFCA4uJiFBYW/vKzAPDp06e0giVJkqT0pVzsc3Nz0dPT\ng8bGRsRiMbS1tcFsNuP+/fsAgPPnz+PUqVPwer0wGo3YuXMnent7U35WkiRJ2nrCL6qSJEmSNt+W\n3hDl3LlzKC4uhtVqTdp+584dmM1mWCwWxQuvMoVS/9DQEJxOJxwOBw4fPgy/3y+wUF0oFMKJEydw\n4MABWCwW3L59GwAwOzsLt9sNk8mEhoYGhMNhwaXK1Po9Hg/MZjNsNhtaWlowNzcnuFSZWv+Kmzdv\nIicnB7Ozs4IKU0vVr4X5VevXwvx+//4dLpcLdrsd1dXV6OzsBLCB2d3wzZQ34O3btwwEArRYLIlt\nPp+P9fX1jEajJMkvX75sZVJalPpra2s5MDBAkvR6vTx+/LiovJQmJyf5/v17kmQkEqHJZOLIyAg9\nHg9v3LhBkrx+/To7OjpEZqpS63/x4gVjyw9B7+jo0Fw/SY6NjbGxsZEGg4EzMzMiM1Wp9WtlftX6\ntTK/8/PzJMnFxUW6XC4ODg6mPbtbemZ/7Ngx6HS6pG13795FZ2cn8pbvG/xnBj+0Vam/pKQkcTYZ\nDodRlon3XwCwZ88e2O12AEB+fj7MZjM+f/6cdFHc2bNn0d/fLzJTlVL/xMQE3G43cpavNnG5XBjP\n0EcPqfUDwKVLl9DV1SUy75fUjp979+5pYn7V+rUyvzt27AAARKNRxGIx6HS69Gd307+S1ggGg0ln\nxna7nZcvX6bL5WJtbS39fv9WJ6Vlbf/o6Cj1ej337t3LsrIyjo2NCaxbn2AwyPLycn779o0FBQWJ\n7fF4POl1plrpjyw/dWjF6dOn+Y8GnrK1ur+/v5/t7e0kmdFn9qutPn60Nr9k8v7XyvzGYjHabDbm\n5+fT4/GQZNqzK3yxt1gsvHjxIklyaGiIFRUVW52UlrX9dXV1fPLkCUny8ePHrK+vF5W2LpFIhDU1\nNXz69ClJ/nSA6HQ6EVnrFolEePDgwUT/imvXrrGlpUVQ1fqt7p+fn6fT6eTc3BzJpcV+enpacGFq\na/e/1uZ3bb/W5jccDtPlctHn86U9u8IX+5MnT/L169eJ15WVlRl9wK/t37VrV+LveDzO3bt3i8ha\nl2g0yoaGBt66dSuxraqqipOTkyTJiYkJVlVVicr7JaV+kuzt7eXRo0e5sLAgqGx91vYPDw+zqKiI\nBoOBBoOBubm53LdvH6empgSXKlPa/1qaX6V+Lc3viqtXr7K7uzvt2RX+eKLm5mb4fD4AwIcPHxCN\nRlG46uEBmc5oNOLNmzcAAJ/PB5PJJLhIGUm0tbWhuroa7e3tie1NTU3o6+sDAPT19aG5uVlUYkpq\n/QMDA+ju7sazZ8/wx+++pelvpNRvtVoxNTWFYDCIYDAIvV6PQCCAoqIiwbU/U9v/WplftX4tzO/0\n9HTiP20WFhbw8uVLOByO9Gd3k7+EkrS2trKkpITbt2+nXq/ngwcPGI1GeebMGVosFtbU1PDVq1db\nmZSWlf68vLxEv9/vp9PppM1m45EjRxgIBERnKhocHOS2bdtos9lot9tpt9v5/PlzzszMsK6ujvv3\n76fb7ebXr19FpypS6vd6vTQajSwvL09su3DhguhURWr9q1VUVGTsb/Zqx49W5ldt/2thfoeHh+lw\nOGiz2Wi1WtnV1UWSac+uvKhKkiQpCwj/GUeSJEnafHKxlyRJygJysZckScoCcrGXJEnKAnKxlyRJ\nygJysZckScoCcrGXJEnKAnKxlyRJygL/Ae0jhEcptT5AAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another beautiful result! If I handed you a measuring tape and asked you to measure the distance from table to a wall, and you got 23m, and then a friend make the same measurement and got 25m, your best guess must be 24m. \n", + "\n", + "That is fairly counter-intuitive, so let's consider it further. Perhaps a more reasonable assumption would be that either you or your coworker just made a mistake, and the true distance is either 23 or 25, but certainly not 24. Surely that is possible. However, suppose the two measurements you reported as 24.01 and 23.99. Surely you would agree that in this case the best guess for the correct value is 24? Which interpretation we choose depends on the properties of the sensors we are using. Humans make galling mistakes, physical sensors do not. \n", + "\n", + "This topic is fairly deep, and I will explore it once we have completed our Kalman filter. For now I will merely say that the Kalman filter requires the interpretation that measurements are accurate, with gaussian noise, and that a large error caused by misreading a measuring tape is not gaussian noise. So perhaps you would be justified in thinking that a histogram filter will perform better for the human readings, and the Kalman filter will perform better with sensor readings that have gaussian noise.\n", + "\n", + "For now I ask that you trust me. The math is correct, so we have no choice but to accept it and use it. We will see how the Kalman filter deals with movements vs error very soon. 24 is the correct answer to this problem." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Implementing Sensing\n", + "\n", + "Recall the histogram filter uses a numpy array to encode our belief about the position of our dog at any time. That array stored our belief that the dog was in any position in the hallway using 10 positions. This was very crude, because with a 100m hallway that corresponded to positions 10m apart. It would have been trivial to expand the number of positions to say 1,000, and that is what we would do if using it for a real problem. But the problem remains that the distribution is discrete and multimodal - it can express strong belief that the dog is in two positions at the same time.\n", + "\n", + "Therefore, we will use a single gaussian to reflect our current belief of the dog's position. Gaussians extend to infinity on both sides of the mean, so the single gaussian will cover the entire hallway. They are unimodal, and seem to reflect the behavior of real-world sensors - most errors are small and clustered around the mean. Here is the entire implementation of the sense function for a Kalman filter:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def sense (mu, sigma, measurement, measurement_sigma):\n", + " return multiply (mu, sigma, measurement, measurement_sigma)" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Kalman filters are supposed to be hard! But this is very short and straightforward. All we are doing is multiplying the gaussian that reflects our belief of where the dog was with the new measurement. Perhaps this would be clearer if we used more specific names:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def sense_dog (dog_pos, dog_sigma, measurement, measurement_sigma):\n", + " return multiply (dog_pos, dog_sigma, measurement, measurement_sigma)" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That is less abstract, which is good, but it is poor coding practice. We want to write a Kalman filter that works for any problem, not just tracking dogs in a hallway, so we don't use variable names with 'dog' in them. Still, the *sense_dog()* function should make what we are doing very clear. \n", + "\n", + "Let's look at an example. We will suppose that our current belief for the dog's position is $N(2,5)$. Don't worry about where that number came from. It may appear that we have a chicken and egg problem, in that how do we know the position before we sense it, but we will resolve that shortly. We will create a dog_sensor object initialized to be at position 0.0, and with no velocity, and modest noise. This corresponds to the dog standing still at the far left side of the hallway. Note that we mistakenly believe the dog is at postion 2.0, not 0.0." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "dog = dog_sensor(velocity = 0, noise = 1)\n", + "\n", + "pos,s = 2, 5\n", + "for i in range (20):\n", + " pos,s = sense (pos, s, dog.sense(), 5)\n", + " print 'time:', i, 'position = ', \"%.3f\" % pos, 'variance = ', \"%.3f\" % s\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time: 0 position = 1.132 variance = 2.500\n", + "time: 1 position = 0.798 variance = 1.667\n", + "time: 2 position = 0.279 variance = 1.250\n", + "time: 3 position = 0.121 variance = 1.000\n", + "time: 4 position = 0.017 variance = 0.833\n", + "time: 5 position = 0.071 variance = 0.714\n", + "time: 6 position = 0.213 variance = 0.625\n", + "time: 7 position = 0.191 variance = 0.556\n", + "time: 8 position = 0.223 variance = 0.500\n", + "time: 9 position = 0.257 variance = 0.455\n", + "time: 10 position = 0.398 variance = 0.417\n", + "time: 11 position = 0.450 variance = 0.385\n", + "time: 12 position = 0.537 variance = 0.357\n", + "time: 13 position = 0.603 variance = 0.333\n", + "time: 14 position = 0.548 variance = 0.312\n", + "time: 15 position = 0.624 variance = 0.294\n", + "time: 16 position = 0.566 variance = 0.278\n", + "time: 17 position = 0.492 variance = 0.263\n", + "time: 18 position = 0.505 variance = 0.250\n", + "time: 19 position = 0.568 variance = 0.238\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because of the random numbers I do not know the exact values that you see, but the position should have converged very quickly to almost 0 despite the initial error of believing that the position was 2.0. Furthermore, the variance should have quickly converged from the intial value of 5.0 to 0.238.\n", + "\n", + "By now the fact that we converged to a position of 0.0 should not be terribly suprising. All we are doing is computing new_position = old_position * measurement, and the measurement is a normal distribution around 0, so we should get very close to 0 after 20 iterations. But the truly amazing part of this code is how the variance became 0.238 despite every measurement having a variance of 5.0. \n", + "\n", + "If we think about the physical interpretation of this is should be clear that this is what should happen. If you sent 20 people into the hall with a tape measure to physically measure the position of the dog you would be very confident in the result after 20 measurements - more confident than after 1 or 2 measurements. So it makes sense that as we make more measurements the variance gets smaller.\n", + "\n", + "Mathematically it makes sense as well. Recall the computation for the variance after the multiplication: $\\sigma^2 = \\frac{1}{\\frac{1}{{\\sigma}_1} + \\frac{1}{{\\sigma}_2}}$. We take the reciprocals of the sigma from the measurement and prior belief, add them, and take the reciprocal of the result. Think about that for a moment, and you will see that this will always result in smaller numbers as we proceed.\n", + "\n", + "\n", + "#Implementing Updates\n", + "\n", + "That is a beautiful result, but it is not yet a filter. We assumed that the dog was sitting still, an extremely dubious assumption. Certainly it is a useless one - who would need to write a filter to track nonmoving objects? The histogram used a loop of sense and update functions, and we must do the same to accomodate movement.\n", + "\n", + "How how do we perform the update function with gaussians? Recall the histogram method:\n", + "\n", + " def update (pos, move, p_correct, p_under, p_over):\n", + " n = len(pos)\n", + " result = array(pos, dtype=float)\n", + " for i in range(n):\n", + " result[i] = \\\n", + " pos[(i-move) % n] * p_correct + \\\n", + " pos[(i-move-1) % n] * p_over + \\\n", + " pos[(i-move+1) % n] * p_under \n", + " return result\n", + " \n", + " \n", + "In a nutshell, we shift the probability vector by the amount we believe the animal moved, and adjust the probability. How do we do that with gaussians?\n", + "\n", + "It turns out that we just add gaussians. Think of the case without gaussians. I think my dog is at 7.3m, and he moves 2.6m to right, where is he now? Obviously, $7.3+2.6=9.9$. He is at 9.9m. Abstractly, the algorithm is *new_pos = old_pos + dist_moved*. It does not matter if we use floating point numbers or gaussians for these values, the algorithm must be the same. \n", + "\n", + "How is addition for gaussians performed. It turns out to be very simple:\n", + "$$ N({\\mu}_1, {{\\sigma}_1}^2)+N({\\mu}_2, {{\\sigma}_2}^2) = N({\\mu}_1 + {\\mu}_2, {\\sigma}_1 + {\\sigma}_2)$$\n", + "\n", + "All we do is add the means and the variance separately! Does that make sense? Think of the physical representation of this abstract equation.\n", + "${\\mu}_1$ is the old position, and ${\\mu}_2$ is the distance moved. Surely it makes sense that our new position is ${\\mu}_1 + {\\mu}_2$. What about the variance? It is perhaps harder to form an intuition about this. However, recall that with the *update()* function for the histogram filter we always lost information - our confidence after the update was lower than our confidence before the update. Perhaps this makes sense - we don't really know where the dog is moving, so perhaps the confidence should get smaller (variance gets larger). I assure you that the equation for gaussian addition is correct, and derived by basic algebra. Therefore it is reasonable to expect that if we are using gaussians to model physical events, the results must correctly describe those events.\n", + "\n", + "I recognize the amount of hand waving in that argument. Now is a good time to either work through the algebra to convince yourself of the mathematical correctness of the algorithm, or to work through some examples and see that it behaves reasonably. This book will do the latter.\n", + "\n", + "So, here is our implementation of the update function:\n", "\n", "\n" ] @@ -354,11 +586,335 @@ { "cell_type": "code", "collapsed": false, - "input": [], + "input": [ + "def update(pos, sigma, movement, movement_sigma):\n", + " return (pos + movement, sigma + movement_sigma)" + ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 7 + "prompt_number": 58 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What is left? Just calling these functions. The histogram did nothing more than loop over the *sense()* and *update()* functions, so let's do the same. " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# assume dog is always moving 1m to the right\n", + "movement = 1\n", + "movement_error = 2\n", + "sensor_error = 10\n", + "pos = (0, 500) # gaussian N(0,50)\n", + "\n", + "dog = dog_sensor (pos[0], velocity=movement, noise=sensor_error)\n", + "\n", + "zs = []\n", + "ps = []\n", + "\n", + "for i in range(10):\n", + " pos = update (pos[0], pos[1], movement, movement_error)\n", + " print 'UPDATE:', \"%.4f\" %pos[0], \", %.4f\" %pos[1]\n", + " \n", + " Z = dog.sense()\n", + " zs.append(Z)\n", + " \n", + " pos = sense (pos[0], pos[1], Z, sensor_error)\n", + " ps.append(pos[0])\n", + " \n", + " print 'SENSE:', \"%.4f\" %pos[0], \", %.4f\" %pos[1]\n", + " print\n", + " \n", + "p1, = plot (zs,c='r', linestyle='dashed')\n", + "p2, = plot (ps, c='b')\n", + "legend ([p1,p2], ['measurement', 'filter'], 2)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "UPDATE: 1.0000 , 502.0000\n", + "SENSE: 1.9162 , 9.8047\n", + "\n", + "UPDATE: 2.9162 , 11.8047\n", + "SENSE: 3.8256 , 5.4138\n", + "\n", + "UPDATE: 4.8256 , 7.4138\n", + "SENSE: -0.0667 , 4.2574\n", + "\n", + "UPDATE: 0.9333 , 6.2574\n", + "SENSE: 5.1593 , 3.8490\n", + "\n", + "UPDATE: 6.1593 , 5.8490\n", + "SENSE: 4.9393 , 3.6904\n", + "\n", + "UPDATE: 5.9393 , 5.6904\n", + "SENSE: 5.9086 , 3.6267\n", + "\n", + "UPDATE: 6.9086 , 5.6267\n", + "SENSE: 6.2753 , 3.6007\n", + "\n", + "UPDATE: 7.2753 , 5.6007\n", + "SENSE: 8.0741 , 3.5900\n", + "\n", + "UPDATE: 9.0741 , 5.5900\n", + "SENSE: 8.0308 , 3.5856\n", + "\n", + "UPDATE: 9.0308 , 5.5856\n", + "SENSE: 9.3586 , 3.5838\n", + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEACAYAAACnJV25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX6B/DvYcoJFJBJwYuCE4hAmTOKE2mOqJlammld\nrWy4lqX3Zuq95ZT6OPzqZllpaZpDaKWSmR000GsmlOWMIIg4ECijAof1+2PFUWQ6cIZ9hu/nec4D\nHDd7vwi8rPPutd6lEkIIEBGR1bBTOgAiIjIsJnYiIivDxE5EZGWY2ImIrAwTOxGRlWFiJyKyMnon\n9qlTp8LLywshISHa5xYsWABfX1+Eh4cjPDwcsbGx+l6GiIh0pHdif/rppyslbpVKhVmzZiExMRGJ\niYkYPHiwvpchIiId6Z3YIyIi4OrqWul5rnsiIlKG0Wrsa9euRWhoKKZNm4abN28a6zJERHQfoyT2\n5557DikpKUhKSoKPjw9effVVY1yGiIiq4GCMk3p6emrff+aZZzB8+PBKxwQGBiI5OdkYlycisloB\nAQG4cOFCjccYZcSemZmpfT8mJqbCjJlyycnJEEKY3WP+/PmKx8CYGJMtxsWYdHvoMiDWe8Q+YcIE\nxMXFISsrC35+fli4cCHUajWSkpKgUqnQunVrrFu3Tt/LEBGRjvRO7Fu2bKn03NSpU/U9LRER1RNX\nnt4nMjJS6RAqYUy6YUy6M8e4GJPhqIQQikw4V6lUUOjSREQWS5fcaZRZMfpwc3NDTk6O0mGQAlxd\nXZGdna10GEQWz+xG7BzJ2y5+74lqp8vvCWvsRERWhomdiMjKMLETEVkZJnYiIivDxE5Gt2HDBkRE\nRCgdBpHNYGK3UqWlpUqHQEQKYWKvA39/fyxfvhydO3eGs7Mzpk2bhmvXrmHIkCFo2rQpBg0apO09\nf/ToUfTs2ROurq4ICwtDXFyc9jyffvopgoKC4OLigoCAAHz44Yfaf8vKysKwYcPg6uoKd3d39OnT\nR/tvdnZ2uHjxovbjKVOmYN68eQAAtVoNX19fLFu2DD4+Ppg2bRqEEFiyZAkCAwPRvHlzPP7449o1\nAqmpqbCzs8OGDRvQqlUruLu744MPPsDPP/+Mzp07w9XVFS+++GKFr/+TTz5BUFAQ3NzcMHjwYKSl\npVWIbd26dWjXrh1cXV0xc+ZMAMDp06fx3HPP4ciRI3B2doabm5uhvh1EVB2hkOourWBItfL39xc9\nevQQ169fFxkZGcLT01OEh4eLpKQkcfv2bdG/f3+xcOFCcfnyZeHu7i727dsnhBDi+++/F+7u7iIr\nK0sIIcSePXvExYsXhRBCxMXFiUaNGonExEQhhBBz5swRM2bMEKWlpaK0tFT89NNP2uurVCqRnJys\n/XjKlCli3rx5QgghfvzxR+Hg4CDmzJkjiouLRVFRkVi1apXo0aOHyMjIEMXFxWL69OliwoQJQggh\nUlJShEqlEs8995y4c+eO2L9/v3BychKjRo0SN27c0H59cXFxQgghdu3aJQIDA8WZM2eERqMRb7/9\ntujZs2eF2IYPHy5u3bol0tLShIeHh4iNjRVCCLFhwwbRu3fvWv9/zfl7T2QudPk9scwR+4IFgEpV\n+bFgge7HV3dsLV588UV4eHigRYsWiIiIQI8ePRAaGooHHngA0dHRSExMxObNm/Hoo49q93odOHAg\nunTpgj179gAAHn30UbRu3RoA0KdPH0RFReHQoUMAACcnJ2RmZiI1NRX29vbo1atXjfGIexYq2NnZ\nYeHChXB0dESDBg2wbt06vP3222jRogUcHR0xf/587NixA2VlZdrPmTdvHpycnDBo0CA4Oztj4sSJ\naN68ufbrS0pKAgB88MEHmDt3Ltq3bw87OzvMnTsXSUlJSE9P155rzpw5cHFxgZ+fH/r166f9XMFF\nR0QmZbmJXYjKj5oSu67H1sLLy0v7fsOGDSt83KBBA+Tn5+PSpUvYvn07XF1dtY/4+HhcvXoVALBv\n3z50794d7u7ucHV1xd69e/Hnn38CAGbPno3AwEBERUUhICAAS5cu1Tk2Dw8PODk5aT9OTU1FdHS0\nNoagoCA4ODjg2rVrOn09DRs2RH5+PgDg0qVLePnll7Xncnd3BwBkZGRoj/f29ta+36hRIxQUFOgc\nOxEZjmUmdjNy72hUpVIBAPz8/DBp0iTk5ORoH3l5eXj99ddx584djBkzBq+//jquX7+OnJwcPPro\no9rzNGnSBMuXL0dycjK+/vprrFy5Ej/++CMAmSwLCwu118vMzNRe897rl2vVqhViY2MrxFFYWAgf\nH586f52tWrXChx9+WOFcBQUF6N69e62fe39cRGRcTOwGVJ6cn3zySXzzzTfYv38/NBoNbt++DbVa\njYyMDBQXF6O4uBjNmzeHnZ0d9u3bh/3792vP8e233+LChQsQQsDFxQX29vaws5PfprCwMGzevBka\njQaxsbHa8k11ZsyYgX/+85/am5w3btzA119/Xa+vacaMGVi0aBFOnToFALh16xa2b99e4+eVf66X\nlxcuX76MkpKSOl2biOqHiV1P94+YVSoVfH19sXv3bixatAienp5o1aoVVqxYASEEnJ2dsWbNGowb\nNw5ubm7YsmULRo4cqT3HhQsXtPXunj174oUXXkDfvn0BAKtXr8Y333wDV1dXfPHFF4iOjq42FgB4\n+eWXMWLECERFRcHFxQU9evTAsWPHqj2+pq9v1KhReOONNzB+/Hg0bdoUISEh+O6776o9V/n/BQAM\nGDAAwcHB8Pb2rrAfLhEZB7s7ktng956oduzuSERkg5jYiYisDBM7EZGVYWInIrIyTOxERFaGiZ2I\nyMowsRMRWRkmdiIiK8PEXkdnz55FWFiYdrn/O++8A0D2Q/fz81M4OiIiJvY6W7ZsGQYMGIDc3Fxo\nNBr861//qvI4f39/HDx40MTRERExsdfZpUuXEBQUVOtx+iyPv7eBFhFRXTGx10H//v2hVqsxc+ZM\nODs744knntBuTXevSZMmIS0tDcOHD4ezszOWL18OoObt8iIjI/Hmm2+iV69eaNy4MVJSUkz2dRGR\ndWFir4ODBw8iIiIC7733HvLy8uDk5FRlh8TPP/8crVq1wrfffou8vDy89tpryMjIwLBhw/DWW28h\nJycHy5cvx5gxY7QbbADApk2bsH79euTn56NVq1am/NKIyIpYZGKvale8+jwMQdeSyaZNm2rcLk+l\nUmHKlCno2LEj7Ozs4ODgYJgAicjmWGRir2pXvPo8TKm27fIAcFYNERkEh4V6qm6ziqq2qZs0aRI+\n/PDDOp+LiKguLHLEbi5qmr3i5eWF5ORk7cc1bZd37/mIiPTFxK6He7d/K/+43Ny5c/H222/D1dUV\nK1eurHG7vKo+n4iovvTeGm/q1KnYs2cPPD09cfLkSQBAdnY2Hn/8cVy6dAn+/v7Ytm0bmjVrVvHC\n3BqP7sPvPVHtTLI13tNPP43Y2NgKzy1ZsgSDBg3CuXPnMGDAACxZskTfyxARkY4Mspl1amoqhg8f\nrh2xd+jQAXFxcfDy8sLVq1cRGRmJM2fOVLwwR+x0H37viWqn2GbW165dg5eXFwB5E/HatWvGuAwR\nEVXB6NMd77/BeK8FCxZo34+MjERkZKSxwyEisihqtRpqtbpOn2O0UoxarYa3tzcyMzPRr18/lmKo\nVvzeE9VOsVLMiBEjsHHjRgDAxo0bMWrUKGNchojINuTl1elwvUfsEyZMQFxcHLKysuDl5YV///vf\nGDlyJMaNG4e0tLQ6T3d0c3NDTk6OPiGRhXJ1dUV2drbSYRCZDyGAOXOAc+eAmBgAuo3YDVKKqQ++\n7LYgJSWAo6PSURDZlpIS4NlngTNngD17AHd3AAqWYsjKMKmTsQgBnD6tdBTmp7AQiI4GbtwAfvgB\ncHdHYaF20F4rJnYiUoYQwKuvAjNmVG63asuv5ouKgIEDAXd33NywC5tiGmP0aMDHB3jvPd1OwcRO\nxpWVBUyfbtu/qFS1t94CDh4Edu2quEGCRgMMGADUcYqftbh6swE+CPsAj1zdgFYBjtixAxg1CkhJ\nAQ4c0O0cTOxkXG5uQHy8fDlJVG7JEmDnTmD/fsDVteK/2dsDc+cC48cDa9bYxKDg4kVgxQqgd2+g\nY5AKh291xt//rkJmpvy7N3my/FXSFW+eUvUyMoCGDev2E1WVjRuBzZvlLzHR2rXA6tXAoUNAixbV\nH5eSIoeqYWHABx/In0UrIQTw+++yZv7VV0BmJjByJDB6NNC/P+DkVP3nclYM6WfmTKBNG2DWLP3O\nU1wsz/PNN0B4uGFiI8v1/fdAu3bA3/5W+7EFBcAzzwDnzwNxcUDjxsaPz0jKyoBjx+4m85ISeX90\n9LBi9Ix0gr29budhYif9PPgg8P77QPfu+p9r+XLgxAngiy/0PxfZFiFkcXnQIKUjqbOSEvnC5Kuv\nZEmlWTM5Ko+OlmMc1Wcb5auRhASdN2JmYqf6y88HvLyA7GzggQf0P19uLtCzpxyyNGqk//mIzFRR\nkXxR8tVXwLffAgEBMpFHRwPt2/91kBDAu+/KgVNsLNChg87n1yV3cs9TqtrPPwOhoYZJ6gDg4gKc\nPKnzqITIkty6JdcQxcTIW0kPPSQT+X/+A1Tao76sDJg9G/juO+CnnwBfX4PHw8ROVUtIkCNsQ2JS\ntz1qtXz1N2yY4c99+jTQpEkVmdM0rl8Hdu+Wyfynn4C+fWUy/+9/gebNq/mksjI5xSU1FTh8uPKM\nIAPhdEeqWuPGwCOPKB0FWbIjR4Bx42TyNYaEBKBrV3lT1UQuXQJWrQL69JH3f3/4AZgyRU4g++Yb\nYOrUGpI6ANjZAUOHVj3N04BYYyciwztxAhgyRE51HTy41sNLSuQEGHt7mfvs7e++b2dXw4u9/fuB\nSZOAN9+Us7gM/KqwvONB+UyWtDRgxAh5A3TAAKBBA4NeTie8eUpEpvfHH3JJ/Pvvy9pEDS5floet\nXw/cuSMXnWo0smJR/laIuwn+3oSvfR8a2OfmwN7RHnZuzWDvoKryD0R93j9zRv7BKZ/J0rs34KBw\nAZs3T8k8/fkn8NRTskCp6+Rdsgzlk7NXrKg2qQshqzSrV8vZI5MmycXJbdtWfUohKib7yu/bQ5PX\nCJp/vIaykdHQ9B9Uw7FV//Go7t99feWN0Hq/ENBoFPkZ54idTE8IoFcvufBp7FiloyFDu34d8PSs\n9PSdO8C2bTKh37oFvPiirE+7uBjoukKY1w36w4flF/m//xludhlYiiFztmsXsGiR/KE3p19GMrir\nV+UanHXrgJAQ4OWXZfndzpqnbuzeLXupb95s8IVV7MdOdZebq3tvUH2MGCGHbYcOGf9apIiff5Zl\nlo4dgWvX5AyS/fvlpBCTJnVTDyDXr5etiPfuVWy1LBM7VXT0qHy9bGx2dsBrrwHLlhn/WmQ8ZWUV\nPiwpAbZulUsgHntMrnG7eFHO7Q4KUiC+CxfkBPP0dNNcb9Ei+YiLA7p0Mc01q8DEThUdOQL06GGa\na02aJNdf5+eb5npkWLm5MmkmJuLGDZnPWreWJZfZs4HkZPm324jTtWsXECAXR3XrZppXh76+8k5w\nu3bGv1YNWGOnih55BHjhBVkqIapOYSEweDB+9YrCGud/4asYFcaMkfcKQ0OVDq4K5fPd582TP98W\nfF+HN0+pbsrKZO/1c+eqnNVABAClBXfwda+lWHP1MVxw6IAXXlDh2WdrWXFpDpKT5RTMPn2A//s/\npaOpN85jp7o5dUr+djKpUxVycoD16zR479830bLROLy0pi1GP6aynL3OAwJkqTEpyTDnM7fplfdg\njZ3ucnUFVq5UOgoyM6dOyUkebdoAJxNysSNiDeKvtMHjE+0tJ6mXa9xYrqHQ18WL8g5xVpb+5zIC\njtjprpYt5UMpZjwCsjVlZXK23urVcgu3GTNkzxRvb1cA7ygdnrKSkuSczX/9y2zrT0zsZB5ycmR/\nkYQEg67So7rJzQU+/VRuS+rqKhcTPfaYDXxL4uLkzJnaunqp1bJj5fvvm/WqaZZiyDy4usra/qZN\nSkdik86dA156CfD3l2Xozz+Xm109+aQNJHVALirq21d2JavOzp0yqX/5pVkndYCJnczJ66/L7cLu\nW/RCxiGE3MRn6FDZtdDZGfjtN7nAqEePv6pip04pHaZpfPaZnDHTtavs8VKVggL5H9avn2ljqwdO\ndyTzIQTw8MNyrvHIkUpHY7Xy82UeW7sWcHKS5ZYJE4CGDe87cPlyWZdJSoLl3SWtp9hY2Xl0/nzg\nuefM8p4P57GT7v7+d/lavFMnZeMob/8XH69sHBbm9m3ZVPH6ddmXpaa3OTlyMeZLL8kp3VXmrvff\nl4n90CGj7Mlp1i5ckG0nt28HfHyUjqYSJnbSTWmpXJiUmirfKh3L5MmyHaDB+rlaHiHkjcyakvS9\n7xcVyVsUXl61v23evJYB+IYNwFtvyRuKrVub6ks2L2Y8Q4uJnXSTlCRfi58+rXQkVq20VE571mVU\nff26LJPokqg9PYFmzQyUh7ZtA155BfjxR6B9ewOckAyNK09JNwkJpmv8ZQNycuR/aXw88PPBPGTe\nbIhrfzrg5k05+aeq5NyuXcXnPD2rqHmbgr+/rDMzqVs0JnaS89v69lU6CoskhKxgxccDP/0kH5cu\nySnRvXoB//D6An6nP4On40007+UN+04dgeBgOW3O3V3p8Cvr2lXpCMgAWIohIDBQ7vgSHKx0JGav\ntBT49de7iTw+/u5Of717y0do6H0bHgsBZGbKTZ5//12+XbCg6puSv/0G/O1vQNOmpvqSyMKwxk66\nuXIF8PY2z73KSkoUnWqXlyd37ysfjR87BrRqdTeR9+ol7y8a7D5b//7yIq6ucoZScLB8PPGELLqT\nzVM8sfv7+8PFxQX29vZwdHTEsWPH6hQc2bjcXKBzZ+DkSbl6xgQyMiqOxs+eBcLD7ybxnj2rmTiU\nkiJ7lBviVU9Zmazv/PGHfJw9C3z8ceU/vGVl8sZ3x471K8j/+qt8hTBpkv4xk8konthbt26NX375\nBW5V/CYwsZNOJkyQi5ZmzTL4qcvK5MLK8tF4fLwcod87Gn/oIR2W1H/xhZxJsmKFaZPkn3/KVZDn\nz8uyTvno/sEHgTFjav7c06flq4M1a2QzGLIYZpHYjx8/DvcqbhIxsVsuIWSFxCSVgRMngFGj5CYJ\nepZkiorkBsvlSTwhQc7pLk/ivXvLySA6l1Vyc4GZM+VJv/hCDu2VUFIiF9WU1+8LC6veSzYvT+79\naW8PDBgg97KbPNn08ZJeFE/sbdq0QdOmTWFvb4/p06fj2WefrVNwZH6EkC1cP/pI5lkXF1kl0eVt\ndf/m7FzLH4mBA+Uy7zqOhm/cqFhW+e03Wba+d0Tu5VXP/4hjx4CJE2WCXLlS9vk2d8ePy1dAaWly\nde+MGUpHRPWgeGLPzMyEj48Pbty4gUGDBmHt2rWIiIjQOTgyssJCmZ3rMBL+4AO5q9jRo3LmR26u\nHAjW5W1Vzzk41PBHITcdzv/7AS4vPgVnF1W1x92+fXf++E8/ycU+3bvfna3StSvQqJGB/u+2bZMj\n39pKHuaorMw8b5STThRfoOTzV58FDw8PREdH49ixY9rEDgALFizQvh8ZGYnIyEhjhkP3W79e1lr/\n+1+dDo+Pl72R4uOBJk3kcw0a6L+TnhAyKVf7x+CWL/LymyO3oBip2Q9U+wfDweFuIi9ve2Nvr19s\n1Ro3zkgnNgEmdYuiVquhVqvr9DlGG7EXFhZCo9HA2dkZBQUFiIqKwvz58xEVFSUvzBG78iZMAAYP\nlmWOWly5Iu9hfvQR8OijJoiNiKqkS+402p/ua9euISIiAmFhYejWrRuGDRumTepkJnRsJXDnjqw4\nPP+8DSb1wkLZDIvIgnCBkq3KyJBLJG/cqHUayPTp8rAdO2zsVfyvv8pXNT17yrIVkRlQdMRuMVJS\n5M49trZrz5Ej92yTU70PP5QbymzcaENJXQg5v3vgQGDOHFl/IrIgtvKrWllpqVxQ8vDDshmTrSX2\nrCyZuGpw5Ajw5ptATIzJFn7q5uZN4537+nW5C8WmTfI/YPJks+3LTVQd2+zumJgIPPusbLR09Khs\ngnUvW5gOVssc5sxMuSDxk0/MrINrXh7Qtq1ciKPvdJyq5OTIhUbz59vOdnBkdWyvxh4fLzetXbpU\nbn91/2gsNlb25di+3fSxmYniYrnaPCpKbqRjdqZPlyuL/v1vpSMhMjnFFyjVeGGlErtGI3tsVDfa\ny82V7fsuXJDrzW3QCy8Aly/LEoxZvnA5d05OVk9JsYwVn0QGxJunVbG3rzapFxUBwtkFGDoU2LrV\nxIGZh08+AX74Qe5ib5ZJHZDbDUVEyGDrSwjgwAH5lsjKmOuvrv6EkA2PdPDLL8D48fIG4euvA2LS\nZDkNxMYcOyYngezaZQH7PMyeLXu0lJbW/XNzcoDHHwdefdW4N2KJFGKdiT09HRgxQjaNqmZEJoQs\npw8YIJsHPvywrL4cOgT8fccgaDKuyp6u1kYIOSFdo6nw9LVrwNixcnpjhw4KxVYX3bvLvgGFhXX7\nvMOHgbAwwMdH7qDh6mqc+IiUJBRilEuXlgqxdq0QzZsL8Z//CHHnTqVDiouF+OwzIUJChOjUSYiN\nGyselpsrRP/+QjzW6ZS4s3234WNUWkqKEF5eQpSVaZ8qLhYiIkKIefOUC8voSkrkF+jtLcS33yod\nDVG96ZI7rWe64+nTwLRpshPU4cOVhp25uXKdyapVskS7bBnwyCOVJ8U4OwN79gDjx3fEiPUdsXOI\nld2fO3JErqS85wt/9VX5dd/Tk836lJYC2dlyqqu3t9LREBmV9ZRi8vJkMyu1ukJSv3JF1o3btJH7\nIezaJW8ODh5c/bqTBg1ktcLLSyZ/qyrDlq84/cvGjbIktXmzGd8sNYQGDWS/YSZ1sgHW86vctauc\n3/xXdjp1Cpg6Ve4UVlAgbwxu3Sq3OtOFgwPw6adyl7F+/WQN2iokJMgRO+RN49dek3/smjVTOC4i\nMhjrSeyQ9wUPHwaGD5fJuHVreUN07Vo5Yq8rOzu50cyIEXJ2XVqa4WM2qYICWbJ66CHcuAGMHg2s\nWwcEBSkdmAGkpNx9/5dfZO2NyEZZXmKPiQHmzavwlEYD7NwpKwxTp8pp6Kmp8rAqtlutE5UKWLhQ\ntqyNiADOnNHvfIoqLAQWLECpQwOMGwc8+aRM7havoADo0kUm96VLgSFDZMsBIhtlOTdPr1wBXnxR\nbtj7V7e9oiJZI16xQibw118HRo408K45aWnAihV4ZfVqNGsmXwns2SNLNBbHwwOYPRuvz5IlZ6tZ\nkd+4MfDMMzK5BwfLvT1btVI6KiLlmGB2TpV0vrRGI8S6dXIK45tvClFUJLKyhFi4UAhPTyGGDxfi\n0KEKs/cM684dee2LF4UQQuzcKYSHh7ymJdq0SYiAACGys5WOxMBu3JA/J6WlSkdCZFS65E7z7xWz\nbJmss6xfj5QmIVi5Us7giI6W0/RMUh+eOVO2IfirI9aBA3L/hY0bLWtHocRE2djr4EEgJETpaIio\nPqyjCVhhIX75/QG8u9IeBw7IbrsvvSQXDprMzz/LTH7+vHaO5NGjsuyzZo1cnW7usrLk6tqlSy17\nH2YiW2fRTcDKl/z3H9YIo8bYo2tXeW9s8WITJ3VA1m6dnGTL37907y5H7rNmyWX45qy0VPbCGTeO\nSZ3IFpjPzdP8fODaNRT7BWDrVmD5cvn07NkyKSm654FKJRc/xcTIdrF/CQmR+xxHRcm+Um+8oWCM\nNZg7F7DLSMOihVcAdFc6HCIyMvNI7Hv3Inf6bHwUvAqr/ghAu3bAu+/KhGk2u5K9/HKVf10CA+Xc\n+UGD5ArVRYvMKGbIRVk7dwI/N5oEe4dlSodDRCagbI392jVc+fsCrFaHYn3Z04ga6oTZsy1zKmFW\nlpw+/dBDwHvvGXjKZT39+qvc1vTA7gKERnnJXilOTkqHRUR6MPsa+9S//YBO3y1H0YSpOP6rE7Zs\nscykDsjNln74ATh7FnjiCbm9nJKys+XiozVrgNCio7JVLZM6kU1QNLG3mdIH5y83wpr/OqJ1ayUj\nMQwXF2DvXrnAc9SourcKNxSNRk7iiY6Wb5GQUKHxFxFZN0UT+5v/ban3kn9z07ChrGm7uckOkrdu\nmT6GN9+UM2GWLPnrifJWvURkE8x2uqPZunMH+PjjGvfKdHSUe4Z27ixbENy4Ybrwtm8HtmwBvvxS\ndqgEIO/o9u9vuiCISFHmv0DJ3JSVyVaRMTFAeHiNhwohG5Ht2AF8/z3g52fc0E6elPn7u+8s914F\nEdXM7G+eWiQ7O2Cybptdq1TA22/L1bIREcC5c8YLKydH1tRXrmRSJ7J1HLHXx4ULQK9ewOXLOq+c\n+vhjOXrfu1dOUDEkjUb2oG/XTm79R0TWiyN2YwkMBNq2lT0PdDRtmpx6GBVVoTOBQcyfL2fgvPuu\nYc9LRJaJib2+nnpKp3LMvcaOBT7/XE6FrMPfhBp99ZU857ZtVbx4sNRXRESkF5Zi6is3VxbNu3Sp\n86fGx8t6+HvvAY89Vv8QTp0C+vYF9u2rJozYWLlx65df1v8iRGRWdMmd5tErxhK5uNQrqQOyPL9/\nv+zlfuuW3Pynrm7dkn8c3n23hjCOHAECAuoVIxFZLpZiFBIWBqjVctZMeSdLXZWVyf1Ko6KAKVNq\nOPDIEa44JbJBLMUoLD1dJujRo2WS16Uz5Pz5wI8/yt401U7K0Wjk8tfkZNnIhoisAksxFsDPDzh0\nSLYfuHkTWLtWTpWvzu7dwCefyP2aa5xpeeoU4OXFpE5kg4xWiomNjUWHDh3Qtm1bLF261FiXMQ/J\nybI+Uk8eHnIf0t9/l2ufSkqqPu7MGVmP37FD5uwa/fFHhU1BiMh2GKUUo9Fo0L59exw4cAAtW7bE\nww8/jC1btqBjx453L2xNpZgHH5R3MQcM0Os0RUVyloxKJacvNmx4999yc4GuXeWOUtOm6XjCsrKa\nh/9EZHEUW6B07NgxBAYGwt/fH46Ojhg/fjx2795tjEuZBx1bDNSmYUPZgsbZWW7akZsrny8rk5fo\n168OSR15fO5DAAANC0lEQVRgUieyUUb5zc/IyIDfPR2vfH19kZGRYYxLmYeJE4Gvvwby8vQ+laOj\nXHDUsaNs6JWVBbzzjuwQuXq1AWIlIqtnlMSuMqdNP03B0xPo00cuAzUAe3vg/fflbJkuXYB162Rd\nnRsgEZEujDIrpmXLlkhPT9d+nJ6eDl9f30rHLViwQPt+ZGQkIiMjjRGOaUyeLLPxU08Z5HQqlWyj\n3qaN7A7s42OQ0xKRhVGr1VCr1XX6HKPcPC0tLUX79u3xww8/oEWLFujatat13zwF5AYcixfLSeZK\nv2JJSgKCgjjEJ7JCuuROoy1Q2rdvH1555RVoNBpMmzYNc+fOrXNwVA+lpYCrq1z51KyZ0tEQkYEp\nmthrw8RuJCdOyLLQ778rHQkRGQH7sdsi9ochsnlM7NYmIYGJncjGMbEbgxB6tRjQy5EjQM+eylyb\niMwCE7sxTJ8O7Nxp+usWF8uk3q6d6a9NRGaDid0Yevc2SIuBOnNyAjZtYisBIhvHWTHGkJ8v+/Ge\nOaNDG0YiIt1xVoxSmjQBRo4EvvhC6UiIyAYxsRuLgTo+EhHVFRO7sURGyuZg2dlKR0JENoY1dmux\nf79s6B4RoXQkRGRErLHbkvXrgdRUpaMgIjPAxG4t2EqAiP7CxG4N0tNl2+CAAKUjISIzwMRuDcpH\n60r3gScis8DEbgrbtwPbthnv/AkJ7A9DRFpM7KbQsCGwapXxzj92rHwQEYHTHU2jpATw9QV++glo\n21bpaIjIgnG6o7lwdAQmTgQ++0zpSIjIBnDEbipJSbJ/TEoKuy8SUb1xxG5OwsLk5tLHjysdCRFZ\nOY7YTSkvD3B2VjoKIrJgHLGbG0Mn9ZQUIDrasOckIovHxG7JEhIAe3uloyAiM8PEbsnYH4aIqsDE\nbskSEpjYiagSJnYlXLwIHDig3zkKCoCzZ4EHHzRMTERkNZjYlXD1KjBzJqDPrKDjx4HOnYEGDQwX\nFxFZBU53VIIQQLt2wObNQNeu9T9Hdjbg7m7Y2IjIrHG6o7lSqfTf7FqlYlInoipxxK6U1FSgSxcg\nIwN44AGloyEiC8ERuznz9wdCQoA9e5SOhIisDEfsSvrtN6B5c6BFC6UjISILoUvuZGK3RFlZsr7O\nrfCIbA5LMdaqf392iSSianHEbmlyc2XpJjsbcHJSOhoiMjGO2K3R//4nV5syqRNRNYyS2BcsWABf\nX1+Eh4cjPDwcsbGxxriM9Sgrk9MfdcHGX0RUC6MkdpVKhVmzZiExMRGJiYkYPHiwMS5jPc6fB3r2\nBEpLaz+Wjb+IqBZGK8Wwfl4H7dsDfn66NQZTqZjYiahGRkvsa9euRWhoKKZNm4abN28a6zLWQ9cW\nA/v2AV5exo+HiCxWvWfFDBo0CFevXq30/DvvvIPu3bvDw8MDADBv3jxkZmbi448/rnhhlQrz58/X\nfhwZGYnIyMj6hGId/vwTCAgALl0CmjZVOhoiMhNqtRpqtVr78cKFC5VfoJSamorhw4fj5MmTFS/M\n6Y6VjRkDDBkCPPOM0pEQkZlSbLpjZmam9v2YmBiEhIQY4zLW5+WXgb9e6RAR1ZdRRuyTJ09GUlIS\nVCoVWrdujXXr1sHrvrowR+xERHXHXjHW5MwZICeHM2KIbJwuudPBRLGQvjZvlm+Z2ImoFmwpYCm4\n4pSIdMRSjLkS4m5b3tJSwM1Nth1wc1M0LCJSFpuAWarCQiAoSL4FgN9/B1q2ZFInIp0wsZujRo3k\n1nm7dsmPWYYhojpgYjdX97YYaN8eeOopZeMhIovBGru5KiqS5ZeTJ+VbIiKwxm7ZGjaULQbKpzkS\nEemIid2cPfUUkJKidBREZGFYiiEisiAsxRAR2SAmdiIiK8PETkRkZZjYiYisDBM7EZGVYWInIrIy\nTOxERFaGiZ2IyMowsRMRWRkmdiIiK8PETkRkZZjYiYisDBM7EZGVYWInIrIyTOxERFaGiZ2IyMow\nsRMRWRkmdiIiK8PETkRkZZjYiYisDBM7EZGVYWInIrIyTOxERFaGiZ2IyMowsRMRWZl6J/bt27cj\nODgY9vb2OHHiRIV/W7x4Mdq2bYsOHTpg//79egdJRES6q3diDwkJQUxMDPr06VPh+VOnTuHLL7/E\nqVOnEBsbi+effx5lZWV6B2oqarVa6RAqYUy6YUy6M8e4GJPh1Duxd+jQAe3atav0/O7duzFhwgQ4\nOjrC398fgYGBOHbsmF5BmpI5fiMZk24Yk+7MMS7GZDgGr7FfuXIFvr6+2o99fX2RkZFh6MsQEVE1\nHGr6x0GDBuHq1auVnl+0aBGGDx+u80VUKlXdIyMiovoReoqMjBS//PKL9uPFixeLxYsXaz9+5JFH\nxNGjRyt9XkBAgADABx988MFHHR4BAQG15uUaR+y6EkJo3x8xYgQmTpyIWbNmISMjA+fPn0fXrl0r\nfc6FCxcMcWkiIrpPvWvsMTEx8PPzw9GjRzF06FAMGTIEABAUFIRx48YhKCgIQ4YMwfvvv89SDBGR\nCanEvcNtIiKyeIqsPI2NjUWHDh3Qtm1bLF26VIkQKpk6dSq8vLwQEhKidCha6enp6NevH4KDg9Gp\nUyesWbNG6ZBw+/ZtdOvWDWFhYQgKCsLcuXOVDklLo9EgPDy8Tjf2jcnf3x+dO3dGeHh4leVIJdy8\neRNjx45Fx44dERQUhKNHjyodEs6ePYvw8HDto2nTpmbxs7548WIEBwcjJCQEEydOxJ07d5QOCatX\nr0ZISAg6deqE1atXV3+gvjdP66q0tFQEBASIlJQUUVxcLEJDQ8WpU6dMHUYlhw4dEidOnBCdOnVS\nOhStzMxMkZiYKIQQIi8vT7Rr184s/q8KCgqEEEKUlJSIbt26icOHDysckbRixQoxceJEMXz4cKVD\nEUII4e/vL/7880+lw6hg8uTJ4uOPPxZCyO/fzZs3FY6oIo1GI7y9vUVaWpqicaSkpIjWrVuL27dv\nCyGEGDdunNiwYYOiMZ08eVJ06tRJFBUVidLSUjFw4EBx4cKFKo81+Yj92LFjCAwMhL+/PxwdHTF+\n/Hjs3r3b1GFUEhERAVdXV6XDqMDb2xthYWEAgCZNmqBjx464cuWKwlEBjRo1AgAUFxdDo9HAzc1N\n4YiAy5cvY+/evXjmmWcq3MxXmjnFcuvWLRw+fBhTp04FADg4OKBp06YKR1XRgQMHEBAQAD8/P0Xj\ncHFxgaOjIwoLC1FaWorCwkK0bNlS0ZjOnDmDbt26oUGDBrC3t0ffvn3x1VdfVXmsyRN7RkZGhW8a\nFzDpJjU1FYmJiejWrZvSoaCsrAxhYWHw8vJCv379EBQUpHRI+Mc//oF3330Xdnbm09dOpVJh4MCB\n6NKlCz766COlw0FKSgo8PDzw9NNP48EHH8Szzz6LwsJCpcOqYOvWrZg4caLSYcDNzQ2vvvoqWrVq\nhRYtWqBZs2YYOHCgojF16tQJhw8fRnZ2NgoLC7Fnzx5cvny5ymNN/lvAGTJ1l5+fj7Fjx2L16tVo\n0qSJ0uHAzs4OSUlJuHz5Mg4dOqT4sutvv/0Wnp6eCA8PN6sRcnx8PBITE7Fv3z689957OHz4sKLx\nlJaW4sSJE3j++edx4sQJNG7cGEuWLFE0pnsVFxfjm2++wWOPPaZ0KEhOTsaqVauQmpqKK1euID8/\nH5s3b1Y0pg4dOuCNN95AVFQUhgwZgvDw8GoHMiZP7C1btkR6err24/T09AotCKiikpISjBkzBk8+\n+SRGjRqldDgVNG3aFEOHDsXx48cVjSMhIQFff/01WrdujQkTJuDgwYOYPHmyojEBgI+PDwDAw8MD\n0dHRivdM8vX1ha+vLx5++GEAwNixYyt1ZlXSvn378NBDD8HDw0PpUHD8+HH07NkT7u7ucHBwwOjR\no5GQkKB0WJg6dSqOHz+OuLg4NGvWDO3bt6/yOJMn9i5duuD8+fNITU1FcXExvvzyS4wYMcLUYVgE\nIQSmTZuGoKAgvPLKK0qHAwDIysrCzZs3AQBFRUX4/vvvER4ermhMixYtQnp6OlJSUrB161b0798f\nn332maIxFRYWIi8vDwBQUFCA/fv3Kz7jytvbG35+fjh37hwAWc8ODg5WNKZ7bdmyBRMmTFA6DABy\ndHz06FEUFRVBCIEDBw6YRcnx+vXrAIC0tDTExMRUX7Yy3T3du/bu3SvatWsnAgICxKJFi5QIoZLx\n48cLHx8f4eTkJHx9fcUnn3yidEji8OHDQqVSidDQUBEWFibCwsLEvn37FI3pt99+E+Hh4SI0NFSE\nhISIZcuWKRrP/dRqtVnMirl48aIIDQ0VoaGhIjg42Gx+zpOSkkSXLl1E586dRXR0tNnMisnPzxfu\n7u4iNzdX6VC0li5dKoKCgkSnTp3E5MmTRXFxsdIhiYiICBEUFCRCQ0PFwYMHqz2OC5SIiKyM+Uwh\nICIig2BiJyKyMkzsRERWhomdiMjKMLETEVkZJnYiIivDxE5EZGWY2ImIrMz/A14YcwxABXEMAAAA\nAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is a fair bit of arbitrary constants code above, but don't worry about it. What does require explanation are the first few lines:\n", + "\n", + " movement = 1 \n", + " movement_error = 2\n", + " \n", + "For the moment we are assuming that we have some other sensor that detects how the dog is moving. For example, there could be an inertial sensor clipped onto the dog's collar, and it reports how far the dog moved each time it is triggered. The details don't matter. The upshot is that we have a sensor, it has noise, and so we represent it with a guassian. Later we will learn what to do if we do not have a sensor for the *update()* step.\n", + "\n", + "For now let's walk through the code and output bit by bit.\n", + "\n", + " movement = 1\n", + " movement_error = 2\n", + " sensor_error = 10\n", + " pos = (0, 500) # gaussian N(0,500)\n", + " \n", + " \n", + "The first lines just set up the initial conditions for our filter. We are assuming that the dog moves steadily to the right 1m at a time. We have a relatively low error of 2 for the movement sensor, and a higher error of 10 for the RFID position sensor. Finally, we set our belief of the dog's initial position as $N(0,500)$. Why those numbers. Well, 0 is as good as any number if we don't know where the dog is. But we set the variance to 500 to denote that we have no confidence in this value at all. 100m is almost as likely as 0 with this value for the variance. \n", + "\n", + "Next we initialize the RFID simulator with\n", + " dog = dog_sensor (pos[0], velocity=movement, noise=sensor_error)\n", + "\n", + "It may seem very 'convienent' to set the simulator to the same position as our guess, and it is. Do not fret. In the next example we will see the effect of a wildly inaccurate guess for the dog's initial position.\n", + "\n", + "The next code allocates an array to store the output of the measurements and filtered positions. \n", + "\n", + " zs = []\n", + " ps = []\n", + " \n", + "This is the first time that I am introducing standard nomenclature used by the Kalman filtering literature. It is traditional to call our measurement $Z$, and so I follow that convention here. As an aside, I find the nomenclature used by the literature very obscure. However, if you wish to read the literature you will have to become used to it, so I will not use a much more readable variable name such as $m$ or $measure$.\n", + " \n", + " \n", + "Now we just enter our *sense()->update()* loop.\n", + "\n", + " for i in range(10):\n", + " pos = update (pos[0], pos[1], movement, sensor_error)\n", + " print 'UPDATE:', \"%.4f\" %pos[0], \", %.4f\" %pos[1]\n", + "\n", + "Wait, why *update()* before sense? It turns out the order does not matter once, but the first call to dog_sensor.sense() assumes that the dog has already moved, so we start with the update step. In practice you will order these calls based on the details of your sensor, and you will very typically do the *sense()* first.\n", + "\n", + "So we call the update function with the gaussian representing our current belief about our position, the another gaussian representing our belief as to where the dog is moving, and then print the output. Your output will differ, but when writing this I get this as output:\n", + "\n", + " UPDATE: 1.000 502.000\n", + "\n", + "What is this saying? After the update, we believe that we are at 1.0, and the variance is now 502.0. Recall we started at 500.0. The variance got worse, which is always what happens during the update step.\n", + "\n", + " Z = dog.sense()\n", + " zs.append(Z)\n", + " \n", + "Here we sense the dog's position, and store it in our array so we can plot the results later.\n", + "\n", + "Finally we call the sense function of our filter, save the result in our *ps* array, and print the updated position belief:\n", + " pos = sense (pos[0], pos[1], Z, movement_error)\n", + " ps.append(pos[0])\n", + " print 'SENSE:', \"%.4f\" %pos[0], \", %.4f\" %pos[1]\n", + " \n", + "Your result will be different, but I get\n", + "\n", + " SENSE: 1.6279 , 9.8047\n", + " \n", + "as the result. What is happening? Well, at this point the dog is really at 1.0, however the predicted position is 1.6279. What is happening is the RFID sensor has a fair amount of noise, and so we compute the position as 1.6279. That is pretty far off from 1, but this is just are first time through the loop. Intuition tells us that the results will get better as we make more measurements, so let's hope that this is true for our filter as well. Now look at the variance: 9.8047. It has dropped tremendously from 502.0. Why? Well, the RFID has a reasonably small variance of 2.0, so we trust it far more than our previous belief. At this point there is no way to know for sure that the RFID is outputting reliable data, so the variance is not 2.0, but is has gotten much better.\n", + "\n", + "Now the software just loops, calling *update()* and *sense()* in turn. Because of the random sampling I do not know exactly what numbers you are seeing, but the final position is probably between 9 and 11, and the final variance is probably around 3.5. After several runs I did see the final position nearer 7, which would have been the result of several measurements with relatively large errors.\n", + "\n", + "Now look at the plot. The noisy measurements are plotted in with a dotted red line, and the filter results are in the solid blue line. Both are quite noisy, but notice how much noisier the measurements (red line) are. This is your first Kalman filter shown to work!\n", + "\n", + "\n", + "#More Examples\n", + "\n", + "Before I go on, I want to emphasize that this code fully implements a 1D Kalman filter. If you have tried to read the literatue, you are perhaps surprised, because this looks nothing like the complex, endless pages of math in those books. To be fair, the math gets a bit more complicated in multiple dimensions, but not by much. So long as we worry about *using* the equations rather than *deriving* them we can create Kalman filters without a lot of effort. Moreover, I hope you'll agree that you have a decent intuitive grasp of what is happening. We represent our beliefs with gaussians, and our beliefs get better over time because more measurement means more data to work with. \"Measure twice, cut once!\"\n", + "\n", + "So I didn't put a lot of noise in the signal, and I also 'correctly guessed' that the dog was at position 0. How does the filter perform in real world conditions? Let's explore and find out. I will start by injecting a lot of noise in the RFID sensor. I will inject an extreme amount of noise - noise that apparently swamps the actual measurement. What does your intution tell about how the filter will perform if the noise is allowed to be anywhere from -300 or 300. In other workds, an actual position of 1.0 might be reported as 287.9, or -189.6, or any other number in that range. Think about it before you scroll down." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "sensor_error = 30000\n", + "pos = (0,500)\n", + "\n", + "dog = dog_sensor (pos[0], velocity=movement, noise=sensor_error)\n", + "\n", + "zs = []\n", + "ps = []\n", + "\n", + "for i in range(100):\n", + " pos = update (pos[0], pos[1], movement, movement_error)\n", + " \n", + " Z = dog.sense()\n", + " zs.append(Z)\n", + " \n", + " pos = sense (pos[0], pos[1], Z, sensor_error)\n", + " ps.append(pos[0])\n", + "\n", + "\n", + "p1, = plot (zs,c='r', linestyle='dashed')\n", + "p2, = plot (ps, c='b')\n", + "legend ([p1,p2], ['measurement', 'filter'], 2)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4FFXWxt/ORhKykIQskAaiJBCCLAFFQYUIJipCBJco\nKIKi8wmj4oyKgKLgIOA+i+KKyiAO4EYQNQIDgREEFFmUiARIILvZyEKWzlLfH4dKb1XVVV1V3Z1w\nf8+TJ0kv1be7q+6559xz3mPgOI4Dg8FgMC5qvNw9AAaDwWC4H2YMGAwGg8GMAYPBYDCYMWAwGAwG\nmDFgMBgMBpgxYDAYDAY0MAZxcXEYOnQokpOTMWrUKABAVVUVUlNTMWDAAKSlpeHcuXMdj1+xYgUS\nEhKQmJiIrVu3qn15BoPBYGiAamNgMBiQnZ2NQ4cO4cCBAwCAlStXIjU1FSdOnMCECROwcuVKAEBO\nTg42bNiAnJwcZGVlYe7cuWhvb1c7BAaDwWCoRJMwkW3d2ubNmzFz5kwAwMyZM7Fp0yYAQGZmJqZN\nmwZfX1/ExcUhPj6+w4AwGAwGw31o4hlcf/31uPzyy/Hee+8BAMrKyhAdHQ0AiI6ORllZGQCguLgY\nRqOx47lGoxFFRUVqh8BgMBgMlfioPcCePXvQq1cvlJeXIzU1FYmJiVb3GwwGGAwG0edL3cdgMBgM\n16DaGPTq1QsAEBkZialTp+LAgQOIjo5GaWkpYmJiUFJSgqioKABAbGwsCgoKOp5bWFiI2NhYu2PG\nx8fj1KlTaofGYDAYFxX9+/fHyZMnnXquqjBRQ0MD6urqAADnz5/H1q1bMWTIEKSnp2PNmjUAgDVr\n1mDKlCkAgPT0dKxfvx4mkwl5eXnIzc3tyECy5NSpU+A4jv1wHJ577jm3j8FTfthnwT4L9llI/6hZ\nRKvyDMrKyjB16lQAQGtrK+6++26kpaXh8ssvR0ZGBlavXo24uDhs3LgRAJCUlISMjAwkJSXBx8cH\nq1atYmEiBoPB8ABUGYNLLrkEhw8ftrs9PDwc27dvF3zOokWLsGjRIjUvy2AwGAyNYRXIHk5KSop2\nB3v8caATp/Jq+ll0cthnYYZ9Ftpg4DjO45rbGAwGeOCwOj8GAzBjBvDvf7t7JAwGQwfUzJ2dyhiE\nh4ejurraDSNiuJOwsDBUVVW5exgMhsdz0RgD5jFcnLDvncG4wD33AJdeCjz/vODdzBgwujTse2cw\nLmAwAAMGAL//LnK389eK6qIzBoPBYLiI558Hmpt1OTTLJmIwGIzOQmAg0NCgy6GZMWAwGIzOQkAA\n0Nioy6GZMWC4jY8++gjXXnutu4fBYHQebrwRePBBXQ7N9gwuMlpbW+Hjw752BqNTcumluh2aeQYa\nEBcXh1deeQVDhw5FcHAwZs+ejbKyMtx0000IDQ1FampqR+vPffv2YcyYMQgLC8Pw4cOxa9eujuN8\n+OGHSEpKQkhICPr374933323476KigpMmjQJYWFhiIiIwNixYzvu8/LywunTpzv+nzVrFhYvXgwA\nyM7OhtFoxEsvvYRevXph9uzZ4DgOK1euRHx8PHr27Ik777yzo34jPz8fXl5e+Oijj9C3b19ERETg\n7bffxo8//oihQ4ciLCwMjzzyiNX7/+CDD5CUlITw8HDceOONOHv2rNXY3nnnHQwYMABhYWF4+OGH\nAQC//fYb5syZgx9++AHBwcEIDw/X6utgMLouhYVAfb0+x+Y8ELFheehwubi4OG706NHcH3/8wRUV\nFXFRUVFccnIyd/jwYa6pqYkbP348t3TpUq6wsJCLiIjgvv32W47jOG7btm1cREQEV1FRwXEcx339\n9dfc6dOnOY7juF27dnGBgYHcoUOHOI7juAULFnAPPfQQ19rayrW2tnLff/99x+sbDAbu1KlTHf/P\nmjWLW7x4McdxHLdz507Ox8eHW7BgAWcymbjGxkbu73//Ozd69GiuqKiIM5lM3P/93/9x06ZN4ziO\n4/Ly8jiDwcDNmTOHa25u5rZu3cr5+flxU6ZM4crLyzve365duziO47hNmzZx8fHx3PHjx7m2tjZu\n2bJl3JgxY6zGNnnyZK6mpoY7e/YsFxkZyWVlZXEcx3EfffQRd8011zj8fD31e2cwXM7NN3Pc5s2i\nd6u5VrqWZ7BkCeXh2v4sWSL/8WKPdcAjjzyCyMhI9O7dG9deey1Gjx6NYcOGoVu3bpg6dSoOHTqE\ndevWYeLEibjxxhsBoKND3Ndffw0AmDhxIi655BIAwNixY5GWlobdu3cDAPz8/FBSUoL8/Hx4e3vj\n6quvlhwPZ5Fr7OXlhaVLl8LX1xf+/v545513sGzZMvTu3Ru+vr547rnn8Nlnn1n1o168eDH8/PyQ\nmpqK4OBgTJ8+HT179ux4f7xA4dtvv42FCxdi4MCB8PLywsKFC3H48GGrvhULFixASEgI+vTpg+uu\nu67juRyrHWAwlNHSAvj66nLormcMOM7+R8oYyH2sA/g2nwAQEBBg9b+/vz/q6+tx5swZfPrppwgL\nC+v42bNnD0pLSwEA3377La666ipEREQgLCwM33zzDSorKwEATz75JOLj45GWlob+/fvjxRdflD22\nyMhI+Pn5dfyfn5+PqVOndoyBlxTn25M6ej8BAQGov+CqnjlzBvPmzes4VkREBABYtTONiYnp+Dsw\nMBDnz5+XPXYGg2FBayszBp0Ny1Uv37OhT58+mDFjBqqrqzt+6urqMH/+fDQ3N+O2227D/Pnz8ccf\nf6C6uhoTJ07sOE5QUBBeeeUVnDp1Cps3b8Zrr72GnTt3AqAJtsEi97ikpMSqT4Rtz4i+ffsiKyvL\nahwNDQ0dXeuU0LdvX7z77rtWxzp//jyuuuoqh89lvSwYDIWcPQvMm6fLoZkxcAH8hH7PPffgq6++\nwtatW9HW1oampiZkZ2ejqKgIJpMJJpMJPXv2hJeXF7799lts3bq14xhbtmzByZMnwXEcQkJC4O3t\nDS8v+vqGDx+OdevWoa2tDVlZWR2hJTEeeughLFq0qGOjt7y8HJs3b3bqPT300ENYvnw5cnJyAAA1\nNTX49NNPJZ/HPzc6OhqFhYVoaWlR9NoMhktoaAAueO0eQ0MDcOyYLofWxBi0tbUhOTkZkydPBgBU\nVVUhNTUVAwYMQFpaWkcmDQCsWLECCQkJSExMtJrsuhq2K3ODwQCj0YjMzEwsX74cUVFR6Nu3L159\n9VVwHIfg4GD885//REZGBsLDw/Gf//wHt9xyS8cxTp482RG/HzNmDP785z9j3LhxAIB//OMf+Oqr\nrxAWFoZPPvmko/uc0FgAYN68eUhPT0daWhpCQkIwevRoHLDocyBnxc4/ZsqUKXjqqadw1113ITQ0\nFEOGDMF3330neiz+swCACRMmYPDgwYiJienok81geAw7dgCzZ7t7FNYkJOh2aE2E6l577TUcPHgQ\ndXV12Lx5M+bPn4+ePXti/vz5ePHFF1FdXY2VK1ciJycH06dPx48//oiioiJcf/31OHHiRMcKt2NQ\nTKiOYQH73hluYfp04D//ob1ET6G+HoiOBkT23dRcK6o9g8LCQnzzzTd44IEHOgaxefNmzJw5EwAw\nc+ZMbNq0CQCQmZmJadOmwdfXF3FxcYiPj7dakTIYDIbHIKIM6lZ4OQodDJRqY/CXv/wFL7/8stXq\nvqysrCP7JDo6uiNLpbi4GEajseNxRqPRKuuEwWB4MI8+CnzwgbtH4TosUq09Bm9vyibSQblUlS7B\nli1bEBUVheTkZGRnZws+xjJGLHa/EEssUjxTUlJYn1MGw914ewM1Ne4ehevwpPCQJZ99Rt8FSGFA\nbO5ViipjsHfvXmzevBnffPMNmpqaUFtbixkzZiA6OhqlpaWIiYlBSUlJx+ZgbGysVTFSYWEhYmNj\nBY+9xMl8fwaDoRNBQfpJIXgiXh6abHkhUQewXygvXbrU6cOqerfLly9HQUEB8vLysH79eowfPx5r\n165Feno61qxZAwBYs2YNpkyZAgBIT0/H+vXrYTKZkJeXh9zcXIwaNUrNEBgMhqu42IxBdDTw7bfu\nHoU1ublUeKYDmspX8iGfBQsWICMjA6tXr0ZcXBw2btwIAEhKSkJGRkZHxeuqVatY4RGD0VkICqKi\np4uFpUt1VQl1itGjgd9+AyIjNT8064HM8HjY9+4BVFUBERHAzJnARx+5ezQXLz16APn59FsAt6aW\nMhiMi4DKSqBPH8BCVp3hBphQnefz+++/Y/jw4R1SES+88AIA2u3v06ePm0fHYKikshKIiQEsBA8Z\nbqC1FXjxRUCH+ixmDDTipZdewoQJE1BbW4u2tjY8/fTTgo+Li4vDjh07XDw6BkMlfJjoYiM/H2hr\nc/cozLS0AL/8osveDTMGGnHmzBkkJSU5fJyamJ6lyBuD4VKqqoCLsRvdiBGAhbaaW2lvBxITaSO/\nsVHzwzNjoAHjx49HdnY2Hn74YQQHB+Puu+/uaDtpyYwZM3D27FlMnjwZwcHBeOWVVwBIt8JMSUnB\nM888g6uvvhrdu3dHXl6ey94Xg9HBxegZTJoE+PjoUu3rFF5eQE4OSVJYSNZrdnjNj3gRsmPHDlx7\n7bV48803UVdXBz8/P8GU2bVr16Jv377YsmUL6urq8MQTT6CoqAiTJk3Cs88+i+rqarzyyiu47bbb\nOpraAMDHH3+M999/H/X19ejbt68r3xqDQTzwAPD88+4ehetobQWysoDu3YGmJnePxprAQOYZOEKo\n46UzP1ogN5zz8ccfS7bCNBgMmDVrFgYNGgQvLy/4+GhaGsJgyCMwkDaPLxbvoLGRVuABAZ5nDHix\nOo3pUjNLZwyn860wv/rqq47bWltbMX78+I7/WTYSwyPw96f4eXu750o1aEVDAxlAf3/PMwb33qvL\n59+ljIEnIVZZLdSCcsaMGXhXIn+bVWkzPAIvL3O8OijI3aPRl4YGeq+XXOLukdgzaJAuh+3i5t09\nSGX9REdH49SpUx3/S7XCtDweg+ERXCz6RI2N5Bl8/jllFHkCJhNw8qRuh2fGQAdsZbst/164cCGW\nLVuGsLAwvPbaa5KtMIWez2C4lYvFGPTpA7z3nrtHYU1BAZCWptvhmTYRw+Nh37sHEB8P/PQTkJJC\n2kTDh7t7RPacP08ZIIGB9vfdcw+waBEgoxbIYzl+HLjlFskObGquFbZnwGAwpGlro0rc4GBg/37P\nlaR4+WX6LdQL5cgR3aSfXUZrq266RAALEzEYDEecOweEhFB3rW7dtMu/1pqmJsr+EaK5mcbemWlp\noSK4o0cBEbkbNTBjwGBoTVYWpf91FTqLFEVTk/iE76wxqKjwHDkKXrG0thbQqNWlJcwYMBhaU11N\nmR9dhcrKzlFsJuUZmEzOhbeWLQM+/FDduLTCzw/o35/2RDxNjqKpqQlXXnklhg8fjqSkJCxcuBAA\nUFVVhdTUVAwYMABpaWk4Z2FZV6xYgYSEBCQmJmLr1q3qRs9geCL19V0rD78zeQZixqC0FPj5Z/nH\n+vJL4K23PKvobPhwYP163SqQVRkDf39/7Ny5E4cPH8bRo0exc+dOfP/991i5ciVSU1Nx4sQJTJgw\nAStXrgQA5OTkYMOGDcjJyUFWVhbmzp2L9vZ2Td4Ig+Ex1NcDq1d7lvSxGtLSgA0b3D0Kx/z4I7B8\nufB9Y8dSNo5cTpwA8vLIGHiKUB2PJ3oGABB4IY3LZDKhra0NYWFh2Lx5M2bOnAkAmDlzJjZt2gQA\nyMzMxLRp0+Dr64u4uDjEx8fjgIImDWFhYR05/Ozn4vkJCwtTe5q6Fj4PX4cL1i34+NAGMgCsXAk8\n84x7xyPGyy9TCqwQo0dTzF0uvDaRJ3kGPJ6qTdTe3o4RI0bg1KlTmDNnDgYPHoyysjJER0cDoIrb\nsrIyAEBxcTGuuuqqjucajUarSltHVFVVqR0uw1P56CNg504gOhro2ROYP9/dI3Ie3hjU11M6ZlfC\n3x8oKXH3KITx8xPfq1E6qTc00D5Jt26eZwzCwoB//1vzw6o2Bl5eXjh8+DBqampwww03YOfOnVb3\n86s7McTuW2KRK5ySkoKUlBS1Q9WO998Hxo8HLr3U3SPpOvAbfFIXdGfh2WfpYq2rA3r1cvdotMWT\nK5C7dRMP6QQE0N6HXHjPIDxc2fNcga8vcNNNAKitbrZGmUWaFZ2Fhobi5ptvxsGDBxEdHY3S0lLE\nxMSgpKQEUVFRAIDY2FgUFBR0PKewsBCxsbGCx1siVDjiKXz+ORAby4yBlsycCdx9N/D226SK2Znp\n3p36BXvqpKmGzmoM/P2VhVZ41dJ77tFmbFpQU0OfvcWcabtQXrp0qdOHV7VnUFFR0ZEp1NjYiG3b\ntiE5ORnp6elYs2YNAGDNmjWYMmUKACA9PR3r16+HyWRCXl4ecnNzMWrUKDVDcA8hIZTry9CObt1o\nEn38ceDJJ909GvV48qSpBk9+X1LG4NprqXOZXP76147Vt8ewZYuu14Yqz6CkpAQzZ85Ee3s72tvb\nMWPGDEyYMAHJycnIyMjA6tWrERcXh40bNwIAkpKSkJGRgaSkJPj4+GDVqlWSISSPo62NVq2dzRi8\n9x41e/jTn9w9Ev2pq6MVnbe3e8cxZw6JnXUFxo0DXnsNGDnSs41BeDiFcG0pLaWK3W+/lX+swYO1\nG5dW8EVnOtGphOrczjffAG+8QXrivXvTKrYzsHAhbWQuWkTKh3/5C/DZZ+4elT4YDFQopEO5/kVL\nfDxNpAkJtBjiOPcbWyH69we2bqXflpw8CdxwA2AhHd8pef99YN8+YYN3ATVzJ6tAVgJfTBQSQivQ\nzgIf/wToYlaQztspKS529wi6FlVV5gpkLy/PNASAeNFZV9AlAszaRADwyCPA6dOaHp4ZAyXwxiAt\njaR8Owt8ZgQgHVftCjzxBNCvn3vHMHIkFSx1BdraKCQaGurukThGD2PQ3AycPatuXFphGSY6cAAo\nL9f08MwYKIE3BqNHdy5jYOkZeGLeNEAbY+++S2NTk8oXEUFaOu6ksNBsfDs7loqlno6YUJ2zukQA\ncOwY9RDwBEJDzZlEfPtRDWHGQAnnz3dOzRlLz8ATy+sBSpvjOODrr4EHH3T+OFFRjusUzpzR1yB2\ndm0iSxkNyxCRpyPlGVRWAn//u/xj3X03bTx7UgXyzJnAggX0d2Cg5lXIzBgowWTqnBWlL75IRXIA\nrZxMJpp4PQnelffzU2es7r8feP118fs5DrjzTiAz0/nXkKKtjS7So0dJ7Kyz8eKLVnnsiI+nxjCW\ncJznnT+trUBkJDBhgn2dyogRwEsvSW682rF9O/321MWTDpIUrNOZEp57zt0jcA5LvRYvL2DvXveN\nRQxXVSB/+SWt9O64Q5/j8yG548eB778Hpk7V53X0YvBgoKyMvODu3YXbSEZHU/gkMtI9YxTCx8e8\nkm9utg7TBQcDQ4cqmzx5b7q93XM8A0t0EKtjnsHFyFVXeV63Kt4z4D0XZ+A4Sv8Vo7WV0mtXriSj\nWFsLKNDGkgUfIgoK6lwZZzyTJpEXya+MhQgM9NxaA7HFRECAcm2iwEDPChNZ8sQTwHXXaXpIZgyc\nobaWctkZ2qGFZ9DUBNx6q/j9H35IWkE33ED/f/wxsHixc68lRnQ0kJPj2cVZjkhPBzZvFr/fk9+b\nWLackkmdVzf19aXnGY3ajU8rhg3TfFzMGDhDWxvw6qvuHkXXYv16mqQDA51PY+RDG0JwHLB0KXkF\nvFeUkqJ9+0AvL6qE9eQJ0xGTJ5P0gZhGlCe/NyljIDdMZJl9FxhI+z+eQGmprqJ5zBg4Q3AwhQA8\nbROtMxMURF7B8OHKZAMs4Y1BZaV9YxmOI4HBK6803zZoED3nzBnnxy2GJ0+Yjrj0UmDXLjKaQue4\nJ783MWMQEAA8/7y8YwQGAl99pe24tOCFF8ib1QlmDJTQ0EAXh48PnXSdpXlJSkrnjF8r5fx5upCH\nDbOvQvbysjYEAE12engHANC3L/Dww9of11UkJtLnM2OGfZczTzQGJhP1nt6wwTobCgDWrSNP/okn\n5B3L15f0mDwNnbWJmDFQQnIytcMDOpdY3Q8/WJ9EM2cCv/3mvvHoRUMDeQZKCs/0MgY9ewKzZ2t/\nXL144gnh1paVleYuZzyff+55WVI//QTcfDNw+eX2BX9FRcAff+j32mvXukbOvrX1IjYGp04B27a5\nexRmLIuJOosxaGujFYVlZebvv1NlaVcjMJAyYcLD5RuD66+nibsr8skn8vr+chzt2Qwdan9fZSV9\nnpZ4YjWyWMEZoK4CWQ4RESQ/Ulqq32sA1tpE27cDr7yi6eE92xjs20ftED0FS2OwcCG1n/N0+Hxp\ny1TSrqpPlJREfXCVeAYJCfQcrXj7beCpp7Q7nhq+/pqaxDvi4EHyqBIT7e+rqrI3Bp6IlDFQK1SX\nny99vUycCMyapWs8H4B1mKiigrwhDfFsY8DHgD0BjiNjwGerzJpF0geejmVmBI8n5k5fdhnJa7e3\nq1cdjYhwX6vC6mrPqeHo1Utev+JNm4ApU+zHzXHknXcGOQoxXSJAvTGYNAnIzZV+zP33Ax98oG9S\nSUyM2TBfdNpEUqmCrqapiVxNn05WtG2pS8TjiZ5BRQWtekwm9fFXo5Hiq5Y88wytlPXGk3SJevWS\nZ1gPHqROYLbwC4bOrFgKmMNEf/87iQg6Yvdua7UBOYuna66hlfv+/fLHrJTXXjN3X/M0baKCggJc\nd911GDx4MC677DL885//BABUVVUhNTUVAwYMQFpaWkdrTABYsWIFEhISkJiYiK1bt0q/gCcZg4YG\nzyq/l0tMjP0k6InGoLmZLlhfX/pbzQpr8WL7TJ6ff3ZNKrClMXjxRX03Lh0h1zNoahIOeQYEiDey\nsU3dFeP0aeDZZ+U9Vg1eXrT3s3gxsGOH9X1PPEHCc+vXyzMGBQXWnoAcfSKDgRrrXHGF8rE7g6d5\nBr6+vnj99ddx7Ngx7Nu3D2+++SZ+++03rFy5EqmpqThx4gQmTJiAlStXAgBycnKwYcMG5OTkICsr\nC3PnzkW7VPNzTzIGERGeo2uuhG7dgCFDrG9bvpwEvTwJk4nG6u1NP7Yre7WUlZFh1BtLY/DJJ/Im\nY73o3Vve6+/cCVx9tfzjrltHGWly2LgR+Nvf5B/bWe66C/jXvyisZfuejUYK6cotPLP1puWGVS+5\nxHWb657mGcTExGD48OEAgKCgIAwaNAhFRUXYvHkzZl44WWbOnIlNmzYBADIzMzFt2jT4+voiLi4O\n8fHxOCDVdWvkSKr+O3xYzTAZtiQkeF4cmPcMAOf1iX77TTy2W1pKUhFi/Pe/zhe7WWJpDNyVj3/6\nNDV0HzSI9ra0pnt3+e9r1Cj67aoCTSk5E7n6RLb7bFLGoKhI/41jIRISgAuRGK3QbM8gPz8fhw4d\nwpVXXomysjJEX7jwoqOjUVZWBgAoLi6G0UJPw2g0okhKKOz22+kLPHhQq2FqR3Y2bbwx1NPWRhvH\n/H6Ms/pEH31EOfC2tLdTVyipDf/SUuC995S/ptAY+Bx8dxmD3btpryA6mjY2tUbJ+xo/ntKwXZXK\nLBUCddYziIsTz+//+WfyAF1NcDDtU2iIJruh9fX1uO222/CPf/wDwTZ6/waDAQaJ7Aqx+5YsWUJ/\nnDyJFIMBKZ5WwJOTA/z6K2VhMNTh5UXZP/y50KePc2Gi8+eFxbuqq2k1K5VRMmEC9ZVta1Pn6ltO\nIu4yBt9/r/lEYYXS99WvH8XqXZGK7cgYOOMZvPGG+GPPnqVqc1dw+jTtA1mcY9nZ2cjWqGhStTFo\naWnBbbfdhhkzZmDKhYkxOjoapaWliImJQUlJCaIurMhiY2NRUFDQ8dzCwkLE2paOX6DDGERG0qTr\naYSEXBwSD1LU1dFErnZfx2AAevQw/++sMBh/EfPpqbxhCAlx3MMhJoZi7D//bN4EXLKEMpsSE83h\nDiUEB7vHGOzZA/z5z/odX6kxOHhQ18pZK6SMwYwZ8vpjKwmtnTljf8zcXDr3tG59euedwJtvWp2L\nKSkpSLFowbt06VKnD68qTMRxHGbPno2kpCQ89thjHbenp6djzZo1AIA1a9Z0GIn09HSsX78eJpMJ\neXl5yM3NxShHF5ncjAi9aW62PsmCgztHBfKmTaTWqQcrV5IstKfAJxy0tdFmHh+n9vWl+Lkjrr/e\nrOPf3Ewx2RMngNWrnRvP9OkkYeJKKioojm2bNCBGW5vympOgIGWbl64wBDU1NKY//5k+d0tmz6YC\nrYkTqXmPIy65hH7kcPasvTGYPl0fpVNPlqPYs2cPPv74Y+zcuRPJyclITk5GVlYWFixYgG3btmHA\ngAHYsWMHFlzo25mUlISMjAwkJSXhpptuwqpVqyRDSABotaa2CEkLPvwQmDfP/H9nkaMoLqZMGkvW\nrtVm8+mPP/Qt81cK7xn4+tKqTOn3M2ECbSQDJIMyeDB5Bc56gGlpwhIPerJ3LzUvklsPc/w4tYVU\nQr9+wMmTyscmRVMTCQk6m/K8YAHt18TF2YcKc3L0654n5BlER9tfc1qgs1CdqjDRNddcI5oaul2k\nU9KiRYuwaNEieS/wySfA6NHA4487O0TtsC0m6izGQKgCuaJCG9nmc+eswzvuJjmZ9hsAsySFkoKp\n664zi7Jt3AhkZJjlyvXgpZfIE/ngA+0alaSkWK9+t2whg52WJvz42lp7ITpHKKmw/v57CvUOHCj9\nOH9/Gue2bVTxqxQ95SikmD7d/r3pZQxaW62N/O2307mj9PsTwbMrkJ9+2tzA3N1YSlEAtAKxCI15\nLHpWIHuaMXj+eXNYxhlJiqAgki5uaiI9+9tuU7Y3xHH0ecjd/D5+nCY/OfpBcgkJAfr3N///yy/S\nLSxravStMH7vPVLNlcMddwCffurc6+hpDKqqxIsHH3nEXugwJsY1nsGePZruSXm2MfCkojNbzyAi\ngjakPJ2GBntjoJU2kVbG4JdfrIueKirUj0+Jcqktu3dTeKd3b2WeQVMTTTxyQzSFhTRx61nM6Kjw\nzBnPQAn8NXz+vOPH3nYbGWFnFipS2kRqVUvff1+ZQmh0tD4KppdcYn0tBwZqWoXMjIFcPElzRgmN\njfZhIq2kU2kHAAAgAElEQVQ8g+pqbYxBU5N1TDcjw3H2jyMSEswr9FmzKFwhl7Q0c6erXr2A1FR5\nz1N6jhQVURhUT2PgKAGjtlZfz+D8eZrAwsMdn3OxsRTikvJkxJDjGezdC3z2meNjPfwwLVB4lC6e\n4uP1+Uy3byfjzhMQoGkVsucag/Z24YnMnXQGwS5bnnjCPrtCK2Pw9tvadPOydeP9/NSP7803qdkJ\nQJkdStP8+NVybCxlTcnB1hgcP06fkRhFRcCYMfobA6lVanOzcxLVfKGgI86fJ++qd2/S/BGC42iT\nl+MoVCQ3rGRJ9+702W/bZi0yBwDffEOfQ06OvCrzH36wPv/kaBNZMnEitajUG42NgedKcDY20pfg\n5SH2Suqi9mSENibHj6dew2qZMIFOfLUxWVs33tkKZDEcSVFoha0xKC0lcbSHHhJ+rMlE4Sg9e3Y4\n8gycrUcYNQp45x3qLCYF793360dGLz7e/jHl5aSaWllJiwtnrnl+xf/ZZ8CxY9b3XXYZ/Za7wrfd\nZ+vWzfMk34GLLEzErzo3b3Z+Y4lhT3i48EWpFINBWSMZMSx1iQDntIk4jmoqbDVw5EhRaIWtMQgK\nEt9vCAwkUbUBA7SrYt+4kTY0LYmIAJYt014bSG7h2cSJtKHar594Btvp02bZcrWLPymvUmttorVr\n3aub9sor8utJZOC5xqB7d0q9A8i93LnTveMR4qWXOqeSqZb07KneGPCKpTzOeAZNTaRcaZv2WFVF\nYQpX1ENceaW5TgGQnjC9vGjVHhlJXfO0oLjY/v0bDMCcOdo33JFrDP72N/JO+/YVv1YsjYFapBYS\nzmoTRUQIy9f/+9/6ZA3J5YorNBWc9FxjYIlcKV5Xs3kzMwYREZT9o4abb7YW+4qKUt5ESKieAnCd\ndDVAE7zlGFytTVRZ6To1WqXvrX9/cS/p1CnrdFg16KFNdP31wvpEQgVnenLsmK7qr567Z2CJ3I5N\nrqazFJ7pSc+e6o2Bj4/15P/668qPYZt5ZjLROTNgAG0qqiEzk4TflE607jAGcuQWtEDpe5PS+zl9\nWlk/BSmkwkQDBwL/93+Oj/H1146zGNvbKWLBFznakpND85ZW4nzt7bT3IWfT3kk6j2cgZQy++846\nFUwPqqvtrXJnEKu77TbtpQMA4H//o1aSS5YAY8dqf3yl2BqDM2doRefrSxlBali2zLnPMCiInusq\nKirsC6AcUVvr3AQTEqLdpmpwMJCUZH3bf/+rLPxYVkbvY8gQ2tjmqakxn59Go7wC1rFjHSvXlpfT\n9ytmNObPp2tEK/iCMx37a3cOY8BX9ImdtO++S41N9KRXL/uTvzOI1R05Yn9bSQkwebK64+bn089l\nl7kmU8cRtq59eLjyCmQxnDX6Pj72G7p64kyYaNQo4Pfflb/W669rk1YMkE7WmDHWtz33HK2u5dK/\nP50DwcHWelCNjSQ2qDVnzkhLV2stSaGzSB3gycbg+HHqKQqQ67dunbgx+PVXfSUrWlvJMtsWtTgb\nJho+nJrjuAKhCmSOIxVHNZw75xp9erl0726tv9OjB303cnv1SqGHPtG4ceZMlF9+oUwgtXzxhXBj\n+337rFfLluhZgVxfD/znP849V27VMo9Y0ZleukS9e1O/ZTG0NgYtLfb7aOvWkTaRRniuMdizh3K0\nee64Q3xTsbycfusVTzt/nlxCWxft9tvpolZKcLB2q1ZH6FWBrFX1sVYkJloXh3l70yRXXa3+2HKN\nwfz58tVgT5wwZ6gUFjovk21JaKjwxFdRQfseQuipTVRaSqFEZ+jeXX4OPV9pLjQ/2KYtO0NLi32Y\n0GiUTgmOidFWkkJIsbS4WJn35ADPNQZypSjq6mhVoKQvq1JsRep4Ro92XHQjRO/e9OXqDcfR52hr\nDLTQJtJSpO7FF61j63V12rRJdEasTgi5xqCmRt4qtKWFQjp8lpNU2qUWiBWetbaarx09sL2Gq6vl\nG+fAQPmegdTq3zZt2RkqKpR3jtNDudR2X+WikaOQawzOnCEFUaUhm4YGSg3dsMHxY7XWJdLTcFnS\n0ECrJduLQQvPQMswUX299eb8O+9Qfrpahg2jLBXbilSljBsnr0hP7nlSUkLps/wmZZ8+ZAz0ShsU\nMwZ1dXTd6LUpaXsN/+1vJPomByVhIrmKpa2tJM8iRU6OfcaRM4un/v3FM42cITKSBBQt8bQK5Pvv\nvx/R0dEYYlEJV1VVhdTUVAwYMABpaWk4Z7HKW7FiBRISEpCYmIit/J6AEHKNQVAQ8Je/KN/ky80F\npk0DnnzS8WObm+mC0oqgIGXxUGfp1g04cMD+dt6ddqbPMM9TT1F1aWkpCcupwdaV10qO4rPP6L2q\n9WDuvBO44QbHjxMyBm+/bW+MioqsZUJCQug96xU6jIoiT8T2+xbrGS0HjnO8KrW9hoU8oKNHhcMp\nV10lv7dwS4t54m1upp4OPIMGmfctvL2BV1+VDieXl9snozhjDC6/HHjtNWXPUYqneQb33XcfsrKy\nrG5buXIlUlNTceLECUyYMAErL8Ryc3JysGHDBuTk5CArKwtz584VbY4j2xjExQEPPqh8k6+igjIp\n6urMew5iDB0K7Nol/9iOULo55iw+PmZdFlsOHFBX+j9wIIU5unUzb/Q7i60r74wchRBtbfQ9u0KK\nAhA2Bt99Z5/NUlRkn+6qZ6jIx4eyq2w1+Y1G51Oyf/rJcejE9hoWkqRYvFhYofa++2ixIYeYGPNm\nvI8PraB5LyswkGpNAPKAHHnFYntsJpNiz43jyIboVhqgsWeguujs2muvRX5+vtVtmzdvxq4Lk+fM\nmTORkpKClStXIjMzE9OmTYOvry/i4uIQHx+PAwcO4KqrrrI/8Jgx1pWjBw9S1yZbRUKeH35QVrXK\n69UkJ9Oxb7xR/nPV8thj7hfgGzlSm+OEhtJFr6Yln5BnoDSMdewYfaaWvY75TmeuasYuZAyEirNu\nu82sqMrz1FPqqoe3bwfeegv4/HPh+997T9tQZ1iY4/i/0Wg9oQsZPC2rjwFa/Xt5iadi8vpEYiq2\nQtl3Xl50LH7R0t4OPPAA6v+xGr8dNyAnh7JzT56kt5OfT5cEf1q3t9PHFRlJU05MDP1ERpLBMJno\nJyCAykQiI+mjGzLE/JW1tJAiz+efk+NSVQVUV05C/14TsNvuTTiHLhXIZWVliL6Qex4dHY2yCxsp\nxcXFVhO/0WhEUVGR8EHuuMP6/5YWkqIVMwZK5QvKy+mT79sX+Pln54xBWRnwwAPkEpaV0Qbis886\nbvGXnExVl10BLy8606uqnK830EKbaO1amvgtjUFZmWtrIHbvtj8PhYyBwWA/4djKjCvljz+kjV56\nurrj2xIe7tgYXH65dYKFrWfAcXQdyG0+Lxf+/BH6PHh9IrH9rsZGcAGBOPgTbSkeP06nuFdQJtrv\n9kJlDVBe0oaynBWo3WDAwIG0rztwIDB1Ktm1uDgKVHTrRs9taaHLo7ycTsmyMoqMlZfT/X5+9PjG\nRoqalZfTx5STQ9GvhARa6yYk0Dpi2jRaN4SHeyMsTDsDr7schcFgkGx6L3WfFVpLUlRUkAlOTHRe\nETU4mAS22trojCgro3SzAwfoPiHa22kzT6+erO6Al6RwduJ9801rTyk0VPzzE6OhwX5fx5W6RIDw\nd+oqSYrKSuXVx2oIDaUQa3u7fC83IoIMAr/hW1ZGYSSN6hxaW+lS7MaHgrp3R2srrfX27KFJOcR0\nP4I3+MC7F30tdXXWv88dvBK7f70J3Q8Ct9xCky/HAe3pN3a8hajq04ha+mfE/LrdYaEyQDYpOpp+\nxKK2Yu/n+HHyOt5+vRFG7xLtBP0E0MUYREdHo7S0FDExMSgpKUHUhZhtbGwsCiwaXBQWFiJWRCpg\nyZIlHX+npKQgZfRoOnna2hyXissbJPlso0c7H58ODAT+8Q/r2+LipLMz+OwGHcvKXY5aGWvbTJBJ\nk5Q3RRfaY0pJcS7115aKCpIWmDpV+XOlZKzVYNscvaLCdSJ1AF2DQUHkDcvNKjMYrCWfT59G0yWD\ncDqHQiynT5PcT0EBrZzDw+ly6tePXqqhgX7a2ugle/YkO3L0KNVw7t1Ldia89Tj6pQahew/a2ujX\nj2rxAgKAU0PuRd2eULR503qDV5QID6fHBSf2xHMDz2HgDRINf749DfTzARxNQ7/+Sge27E6mAH7L\n77LLAOw9BDz+uF3jn+zsbGRrVMCqizFIT0/HmjVr8NRTT2HNmjWYcqE4Iz09HdOnT8df//pXFBUV\nITc3F6NGjRI8hqUx6KBvX4oN8+Xm58+TprdY6EiKuXPNf997r/Rj6+vp5JfTLWv2bOn7peKVWvPG\nG3QBOtvARIzaWgrjffcd/f/WW9qm0TmDkDHQIpMIIE9u8WLnjMHNN2tfU/LiizQJL19uvq2y0rxR\nKhcl5/UFzp+nibqkBDgfcgeCdzQhZCBNymFh5trM1laa4HNyKI5eXk72qqKCQiZVVUBV2eU4V7sD\n/aZS5i6fjXnFFUCMbyUqfy3BmeDLkJdHRqB7dxqqtzftwVdWUqQqaUAr/jStEWvXBiMsDCj5rgxn\nAsJQ2wRcUbYFPfN/Ig0tAICDEC56XPiRoLhY3gT/97+TrPmDDzp+rCNE9uRSUlKQYpE9tXTpUqdf\nQrUxmDZtGnbt2oWKigr06dMHzz//PBYsWICMjAysXr0acXFx2Hih1D4pKQkZGRlISkqCj48PVq1a\nJT9MBFCHrp07zcYgP5+qlHljoMRlVcLy5XSWL1qk/lh8BzdXcPq0uEjbrFm00nCmOUZVFfmvPEp8\nX70QKq7TCjVyFLaeCcfRearGu42Ntdecqqiw1/dxxIoVNLtKVAm3tNBWyJdfUhFzeTlF43r1AoIS\n30P9q7Q2qKmhibm5mYxCXR0NMymJYt1RURRX79mTj3cDYWF+iIwU2e7772Fg1wvAjh2O38eXX1Fv\ngXu/BAAYJw5FR8LsqrPaF3+VlMhLNdey8MwF2kSqjcF/RLRHtos0tV60aBEWyZlUP/iAAnaWpfIL\nFljHZfPzyY8EaBV8/Liw7rha6uu1iz03NdHS6vbb5TXnVsO5c+KSxqdOOS/V4Gm6RAClCeulLa+l\nNlFFBX0ntmmeADBvHjVMktpP2rULWLrUvtnKmjXSocfiYqryXrXKfFtNjdV5bTJRyOXgQco4/eUX\n+j8+npyi776j/XlHUdDqavIUAvftoLQYpR4LoE/RmVZMnizPmMfEOCcCKISQNpHGeG4F8tNP258M\nl15qvdK1NAZ6xWYBbSuQ+/Wj+LOGmiKiSOkHqalC1lKKQisWL9amr7MQvDqtVJ55QYG8FMmiIvGF\nRWYm6RRJkZdH4VKbdG506yapwcMFBKJt7Sdoa+XQ1kan9IHTPfHezyPxyCNU4xUWRlHO/fvprSxe\nTHPZjz+SU5yU5Hirq1s3enuBgaB01oMHpZ8ghqcZgzNnzIkAw4bJ84a19AzUpG7LxHOb28gpOrM0\nBnrKSTtjDE6doqCpbeWqtzcFRl2RYSK1glejT6S1MRg7liSR+dqHlhZaQWtZ9a0GPz/63qT2e+rr\n5QmiFRaKV/0mJtKemJRRKSykoPr339tNghxHtubQIfNPQQGFdv74IxTNTVUwXJgXfX2BQf73YtgI\nHwydRFtAI0ZoW4qgKnSnVJtIb2Pw4IMkZWGpjOuI6GjtxOoCA7VPwbWh8xsDPiarRI6iqYlSD8aP\nN9/2pz/RxpzQ5CkmVCfFkSOU+y4kY+CqCmSpSdtVnsH27fR+R48Wf0xNjbULfPIkcOut+veoUMLc\nudKlpHIXDELVx6AMmepB16Jhx0k0D6KvprXV7IyYTDSvFH93KUpDBqAxKAFtDzehtbs/KipoBX/i\nBNmq5GT6mTaN1kpRUUBkpAHdrxpK5yTvQV03G3hmMTBepuyDUuSqCAih1DOQEqqzNODr1tEmhkji\nCp59lrSoJkywvr1bN+WLp379tGtYP2GC/Zg0xnONgW0rRCHuuYfOekBZXLeggCz9qVPm2377jZZS\nlgaCx89PucyvVKm4q3LPv/hCfHWtxhhMnGitm3/sGMW616yxf+zy5dQEJTmZDLDQylqLCmS9cdSK\ns65O2BiUlYFb9RYa5i+hbJrsWpxuvwG/PEsx+RMnaPuguhoICXgS3Vtr0G0LfT0+PhSWMRjo75gY\noPfZMMSMCUbEk/fDx9cAb29yqB59lELzkls5fNEXbwx8fdXt/bS00GQrNuGrMQYhIfZV2mL4+VnX\nWPz1r7QnN2YMNReyjG3t3EnXpZgxOHKEXCRbnPGk4+Ks92g8HM81BlInUVsbfcG33GK+LThY/gRb\nXm6/AZecTDnQQsZg0yZ5x7VESkSqWzdzwxw944BSbuWyZc7r2EdFWev9+PjY5T8DoKyLQ4fIeDz9\nNBlfoVirFhXI7qa+Hg0BEcj+hgrl9+8nB6qmuidqKhfC+2WgZ08OERXp6HtNHwxpB+66iyJDMTGU\nYeNTVELB+5MCCqM8wxcC8z8Eki0mOI6TV7diWwGsVlPqww+pwFJMiVSNMQgMpOPLwTJNHKDzjN+g\nt92fsZ3UW1pI6LKoiEKTR46QXIwt/v6et0DRGM81Bo8+Kn5fSgrw8st04fAkJVGRhxz46mNLevfW\nNgUtMFDcGBgMtIGsRfGcs2hZyShWdLZxI8kg+PuTa37ypLAxsPUMlArVcRxlZt1+u6piPo4z9ws5\ndIgqVw8doiiWry8NMSCAFtPh4WRLGxro/nOnr8bxs6kYcZ5s391308cS2laD0DGD4V9dAsAAcAPE\nx9i3L2XDSaVIb91qv5o/coTCnEIKtZY88oi2mTWOJCmmTnVPS1Qpr5fXJuLx8qLzpqrKLAyUmGj/\nPN6I5ObSxvhLL+kzdjfiucZAqOiM5/LLyd2zNAZKJgFel8iS8HDrsJFaAgKEw0QbN1Lu9Ntva/da\n7iYsjGZE2+pwyxqQ+Hi6kIRQ6xk0N1PI0FbPSoK2NooM/vgj/Rw6REbA35/WFcnJVAS9eDFN6iYT\nLSIbGmj+q6qilX/37mQUQkPCMbB/K3rYrDFgCgLOWxhKqfPUYKB0aimEFFgrK+XtVwhNcmrgNanE\neP55bV9PLlLnD69NxOPtbS15LUa/fvRlnzxJ+bZdEM81BlJcdx3wr38BCxc693whz0CtpIItUVG0\n4rCltlZdHwFPxNubZsTqarORzcujC4ff9IqPty+U4snLs8466dZNmex0Q4PDrJX2dnIcd+4kW7x7\nNw111ChKzrnrLjICzsv7GAAIhPx4j0evXrwAnc+u1CXikaNc6g6kPAN/f+eSN/jCvNWrnZaXUEVF\nBa1GdMyw65zGYOxY8sOdvcB697YvULrmGvnNNOQQFUXFQbZI5UR7As5WyPJidfyk1KsXVSnxeyIJ\nCeLyyrar2oAA+x4AUtjEpuvqSCn57FkyAP/7H2ViRkTQOmLaNODddxVGMP73P8qgciY7hE8Y0NIY\ncJxZhr2y0rW6RDxylEu1huModUrKy5EyBjfcoK7la0mJMmNw9Chd784U3lny739T4oujRAYVdE5j\n0KMHXVwrVkiHk8SYMcP+Nl5W0BaTiVbzWq28XGUM9u6lUNS//63seSdOUC71zz+LTzB33EHN5y3z\n4Tdtsjaw/v7WWRnXXiucpXGB9nYgK4uunZAQ809QkFlQLDCQ7ERAAC24+bTL2oJm7Gi7A9/dRyH1\n6moaSt++JIFwzz3USVPVouqLL6g+xBlj8Prr2n/n7e00ntpa5zyDlhYK7ak5r8PD9RVc3LqV4nWW\nXvz+/ZSmbFkAWFlpPjkA6l7I/z13Lrl9Y8fS/2qFC4uLxav6hfjPf+gEVitlc1EXnTli40Zr7XrA\nnGWkpT7RTz8JqgU6jau0icrKpFNt162jVY5tT9hDh2hJ/cwzJEAnxL599iem7XdhQXs7UG/yR3O7\nP5oK6Lz296cfjqPr5Z//pGtm/HhKeKmtpZ/6erPEcEMDfXyNjWSj+bRLf984jPWaghsup2suPl6H\nOUqNJMXMmdqOBSDPzWik76qqSnlB0tGj1Ivj0CHnxxASYl8JrSXLllHf5HHjzLcNGmQvb/7gg2Tx\nb72V/rf8LHJz1XkCthQXA6mp8h8fGalNB7vOoE2kG1u3Slf7CW0WjhpF/r9WXbwAutDCJeRsldLU\nRKuYxx6jk0puLrVSpKQo+Pvz8uxu5g4dRu0lwxFY1yQUAScuFJ2VlFhP3OfOUeSCKl6pWLaggH77\n+tJizd+fMlFNJvooTCbqK/TBB9S73qlJ/MRpYM1W4M/jHD/WWYKDpatJtRRJfOIJ+lCuv9769r/8\nhTyT+++n/+Pi6Dt8/XVaCMnhySep54bJ5HxqsRxqaqgz4d13O38MocKzkBAKATU2mlf/auQo7ryT\nvIdxMs+dp582qx7IISpKniTHJ59Qhp9Q10fAJdpEnmsMNm1SVvoNaCsoxuNkPJYvVrWbH/iNqDlz\nhMXKtMJGiqK9nZQnDx+m67TmpzTUFY9GUx5dLw0NFzownVkCL68lwHoOw/LIviYl0VzT3Aycr23D\nkfrV2DckGPX1tAoPDaVrNDSUFkKxsSTfYjRSqMZo1Fm1e8AA4IUXdHwB0Lkllg0FUBjslVekK63l\n4uNDYT5bY5CXZw53ALQCzs83V6XJobKS0qaiovQ1BoWF9J1obQwMBhp7ebl5j0+qAtmRMTh+XF5z\nnXPnaG654gp5Y+eJjHTcYx2gz2n4cHFPraVFd+l7zzUGzhSr6KFPJGEMOI4Wi8ePm3/4Jh35+UA3\nQzOuGeeNceN9MGQIzSVHjwbg11+BwIKF6Pd7G+IKaD+Kz13n9fbOnaMfPz+6LyyMFiSy964ueAYc\nR+37nn2WrolJkyjUH9pUjiCfnxDw55EdK/aoSA4xYwYhaPki1H2ahZ8Wfo59+yhC5utLz/fnmjEp\ncAeWbc8QDsfs2UNxXrmaNKWlVClq2wa0qIj2cHReDcnG0UKjrEy7faWRI4GPP7a/3VbXKC5OeZiG\nLzzr1k2zDmOCqCk44xGTpIiKooUUbwzUaBOVlsrbTNqyhTa1hL4XKfixykFK7qRnT+Xd/xTiIVea\nAM6cSHL0iVpagG+/Fe4J+/DD5rp+Hgtj0NxMWxX//S/lqB8/TpN1YiL9DBxIMe/+/WnRdn7gaOye\nnIVdv0Xh22/psCNGUC+dpjf+hzOtvZFvSsLevTR3V1fT8ENCKMITGkrefHU1GYYTJ2ihMWECLUSD\ng8nz8Pamcfj703l//jxw7PvB+KVtEL7/gt7GsmVkCDom741FQPX3wM3zLN5rFRDqDcTHI7i5Atdd\nR9k3VpwsBr7ZBiQIfLa1tSTve/SouDGwrZblRXhsueYaygHVWZxLNoMHS1e4//GHsnRYKUaMoJCQ\nLbbGYOBAx4VmtvTrRydwTIy+noEW/SXExOpuucV6gpcKE5lM1gWNp04BX31FYdrWVgoD26aZC+GM\nNhFAbvI118h7rNRehND5oDFdyxjICRP98Qfw0EPCxuDYMbrgLIwBZ/BCgf8ArH6OMlKGDqXtigcf\nJAMgFUHqHtSA26+rxO1zBSaJncVAyxngbxNlvjlaOBw5Qtfyp59S2LS9nUI4JhPNq/x1MTh+CoYM\n5nD7aIos2IWrhNLvIiLIfTl8WHyiMBrJ1bAlO5s2Sm+4QVyVc9cuygDLyjLfZltwxuNp+kTDh4tL\nZDc20li1WmlfeilNgmVl5gw3k4kmLkuDc8cdigrtAJg9g6uu0iZnvb6ejLvt9aqFZzBmjL23degQ\nZQNaLhJ69LB+rc2bSfjp6adJFtyyC195OWUsPPaY2ZuTk0btrMpvVJS8HivFxe5JD7bALcYgKysL\njz32GNra2vDAAw/gqaeesn+QM6uKkBBxcTie8nKU9kjEj19R9uTJkxSKzc8HWiq+RM+ZBvS8lL77\nggLgzJm/ISAAyMighWpSkoLxSOkTBQXRC0jxl79QUvwFUS0vL7MipWMcZCyNGycsDWEw0AsITfjA\nBUsjkFrn5UVZExe62gnSp491hzTAXoqCpzPpE/H5/lqlMBkM5B0cPEjaFgBNFr162U9cSutC+vWj\n70mrVqhPPUUZPg8/bH0736dSDUIp4P/8J7nFlsbgv/+1fkx1tbmpTIKNC2s5qcvtWMY/T8/FiQfI\ntbvcGLS1teHhhx/G9u3bERsbiyuuuALp6ekYZJua6CAfmONoAucLik6dAkJDX0SPCgNCHqOFCR9e\naWig6FBLC1BRlIiGc5tw+b/oJSZMoPMqLg7we/oFVFw6ChXX3YHGRgpJ9uunIlQnpVx6332OK5E3\nbKDVgpjCohp69NC2J8GAAeQuXXml+GP69qUYraVbb+vG8yjRJ/rlFzJGSvK/taSyUnsNnvXrrTWI\n4uLsDSlAE9rll5OxkEPfvuKG3hnEqpDj4vTJlJMjny5Xmyg52d6QiOHvT3Lsr7/ukpCNO3C5MThw\n4ADi4+MRdyE966677kJmZqa9MbgwqdTXm9vv/forebh8damfHy0Srr2WlB/q6gw4d45C1927m+e7\n7t1pA9TXF+ixeyvi9qyDYeMG+8EZvdHLPxewjZM7i5BnMGkSraYsJaDFmDVLo4G4gJgYSuuVwseH\nJqO8PHNdglSYSK4x+OQTstjuMgbJycpj944QimMLZZNUVChLffbxMfcQ14KwMNrst2XUKH0WMTU1\njo2BXG0ib2/5Et78a1ZUyHt8J8TlxqCoqAh9LGJ4RqMR+/fvt3vcqlV0jR86RPPG0KEU1Rg/nuaT\nPn3oenHomS9bRi78n/5E//8vH4gS2TCKiNBWufTWW+3dv4oK+RkysbG0j9GV4NVLeWMwapRw03Oj\nUX7e/vnz2vWodhYtCx2VUFnpHl0inrAwWq25inPnHG98O9Imcib2P2QIpYO7K5xTUGDO39YJlxsD\ng8y46vffAwsWUKmBnG6CoixeTFaDNwZ9+ohfPHfeqW21oq3OOqBMjqJ3b/Wa83IpL6exWW626UF8\nvFvjB0EAACAASURBVHVFppeX8P6Q1N6DLTKE6jRh1Srg//7PvdLjtuTkuHdvxdVidefO0QowM9O6\nn4klUsYgNJSqmp2huNi+9kMOP/1E56ejDccNGyhiIJQ//vjjpGh7553KX18mLjcGsbGxKLDYOC0o\nKIBRIPtkwIAl+Okn+hxTUlKQIkdmVoiRI4E33zT/P3Wq+GNthera2sgiK6k4dIRUH11bYmOFXXBH\nmEy08j55Ut6m5ldfUa5sfr65M9OZM2QYbFe8zz9PaVQZGcrHBQCvvab9ZKpF5oocFi4Epk/Xdq9F\nLW+95Zz3WFxMHrPaOg4tjiFGSQnFhi1TLseNo9d7+GEyBnzjZ8s55IorSNXYZKJws2Uhl78/GXRn\nKC52TrH0888pjClmDD7+mMZ49CidW0KvISJHkZ2djezsbOVjEoJzMS0tLdyll17K5eXlcc3Nzdyw\nYcO4nJwcq8c4Paz2do5rbLS+LTKS40pKnDteURHHxcQ491wx+vbluLw8eY9tanJu7GVlHNezp/zH\n33gjx4WHc9y775pvCwvjuMpK+8dOm8Zxa9cqH5OeTJ7McZs26f86sbEcd/as/q9jSXk5x23ZwnEm\nk/D9xcUcd+KE8uP268dxp0+rGpru7NzJcePG2d/e0MBxfn50vdfXc1xgoPDza2s5rnt37cZjNHJc\nfr7y5736KsfNmyd+/8qVHPfEExx3990ct2aN8GMmTeK4zEyHL6VmSnd5oNPHxwdvvPEGbrjhBiQl\nJeHOO++03zwGnOsR/Ouv1uXiDQ20m+xsMZAe0sC8Z1BYKL2J/PXXlA/tTCzcRorCIU89RTnslnn0\nYplQSo/tCkaPtpck1wOxOpaGBmsVTS1pbKQUy9hYOmds6dXLPn3SET/8QJ6fnhXIWVnKZMiFEKtA\nDgigUFBtreOCM6nq48REZSJyn33mnGfAy2eIwfdXiY4W37PsqkJ1N910E2666SbpBzU3y+veZImt\nHEV7OxV8OLu5p4cxyM2l91VRIZwqyLNvn/PutyOROlvGjaNQ2rBh5tukjIEnhUkA55scKUXMGFxz\nDbVC1FIgkadPHyoD37RJu/RVPldaT2Pw7rukt6NGx1+sAhkwyzwEBkrrEoltOPK56Uo236XSpqVw\npE9UXk4hJINB3Bi4QKjOTSkQMtCiAjkoiGR6naWyUp1i6c8/0064JSEhZJyCgqQ7LhUVOd9RSemE\nbTDQZrflhSN2IWptDD74wL5gCSBPRWudKbWIyZ1oKUUhxCOPkGeg1cqQ3xvTc6WppzYRYDYGzuoS\nnTtH97ki8SAyUlqfqLzc7BmIKeP26aOvfAg82Rg40xWKNwZCLntNDW1efvyxtEs/caI5RFVVpc4z\n2LWLXEsh+OIXMenh4mKaAJxBi1COmGdQU6P+pGxuNq+UxIrynn1WeWMevbnjDvvUQr7jmBx9G2dJ\nSZEngyyXkBD9wlo8ehuD22+n692ZMNHf/ka6Lq5KE+3TR1qBme/JPmKEeLbShx/qU7dhgedqEzlT\n2u/nR6tuoYydwEBg+XKKvd1zj/gxjh2jEE5QEB3LspuXUqTkKHg9l4YG4RLnoiLnjUF6urn3sLOI\nCcTxImdqWL+eWmJ+8om0HIUnaRMBwlko586ZGzXoiZ7GRi1lZeQtWk68WgjVBQdbZ/8VFNDPmDHA\nX/9Ktx07Zp8FWFNDaZhff01qo7Zs2EAG0VXGIDISeOkl8fu3baPPytdXWCLGRXiuZ+AsUVHCm8++\nvrSacHRRhYeTRwAAs2eri0dLGQPA3BtXCD5M9K9/KW/tGRCgvhBp3TrqNmNLYqL62GVyMoXQAG0q\nkN2J3iGizsDUqZQDbokWnoG/P+3F8OzaZZ0mDlDVuaXwIUCLuH376LwS2lz396f9AncXKvKEhuq+\nOSyHrmcMCgrEJ/x773Vc+BERQXsFWiClTQRQP1ehsXIcuYU9e5LBEOhI1qkZNIiyOOrrxT0DJdpE\nn3yif9hDjHPn7FemFxvh4faFZ9Omae/NyN2vkio6A2ixNHUqsGaNdmPrAnQ9Y2DJY4/RCcQzZgxV\nLkph6RmoxdYzOH3aOmOnb1/hVbbBQAU1BgN5B84Unnkyvr60ojtyRL1nYDKRdLaejdmluPJKEjC7\nmAkLs79mli7VPhNPjhQFQOdXa6t4sxhekkKVtEHXo+sag9ZWqs5UGrfU0jOIjzdLEAPkJThSKrUl\nNla+ImVnYsQIqrpcupR6/toSESEvzHDkCH3ODPfhKkkKOSJ1AC0MpBYTlsqlnYXff9c9bNp1jUFx\nMYVZlFr/J56QlqxQQmKitW68EikKHmclKTydsWPp5Pb1Ff6OHnoIWLTI8XG++oq6q7mC338HvvnG\nNa/VmdDSm5bCMkxUW0v7WmJIhYoeesj1Crd799LCxRGffipcf5SWpvuisOsag7NnnatK7d/fnGVw\n/Lh46qczKBGp4+nRgyZNJRXZN9wg3lhbLufO2cv17t0L3H+/uuPy3H23OSNEDa40Br/+Crz/vmte\nqzNhNOpXEPXtt+bc+6FDzWq3TU0UBq6rEzZEO3cCu3cLe50TJ6rLEnSGLVuEM5vWr6c+IDyZmcJy\n6C0tum8ydz1jwPd/PHNGnUQBx9HJpzSsI0Vjo3JjYDBQxoqSzIy8PPVpfe+/D6xcaX3bH39oF0LT\ngrNnKWFg9GjXvF5oqGsVOjsLDzxA6sB68NJLpMwKUPEdL+ESEUELljVrhD3IkSPpu5Kq6HUlYlXI\npaXW0QIxSQoXyFF0PWOwYAFJUJw5oy7Lo66OwhfOFL+JYRsmevZZ4YyGpUuBPXvM/wcHK9sgVSpH\nIYRQJlRdnYq2bzpgMFDnKZ3L9DsYMoT6Q1tuTFZVaes9dgUqK7UrGBQrPOMb0xQVKa9Abmyk89iV\nGWhiVci8LhGPmDG4qOUonIXXJ5o8WbiHqlzUVh8LcdNN5BbyNDYKnyDbtyvzSBYvBtaupb85ThvJ\nCCE5itpazzIGffqo+46VEh1N+1D8ShUgXSIpjamLkbNnqdpfCxxJUpw9K61NJHRfWZm2PavlICZW\nx1cf88TECEtSsDCRE/D6MUOGqKvmU6tLBNCE/sYb5v99fKzDPd27C+8FKJWiOHiQNqoLCmg17+ur\n3qPhq6MtqavTXtzs1lspLmxLY6O2Xee04pprrPWmWNGZPVr2lxA6D3l4Y6DUMygpcX3HMjHPwFbK\nRMwzGDiQGQPF2CqXKqWmhvRBtFAs9fICHn1U3B0VEqvjOOVNNOrqKN/9nXe0CREBrgkTnT8PfPml\ncLObnTuB++7T7rW0YvZscyZKayudL2oXDV0NrY2BmGdw1120OJHSJhLKVFu7Vvue1Y7o2xeYMsX+\n9ooKa89g8GB6X7YcPKi75InnahM5i5iypFwCA4HsbGD+fPIu1ODlRSejWEqpkGdQVUVfuu0GcHu7\nuBR3r17AM8+YPSEtetKGh9tPco89pq1rzYfChIyBJ2oTAeQZ8JSX04LBk9pguouTJylDx2DQ1hhc\nfbU5o+7LL63bPv7pT7TaFlq0PfQQpYhb9ujgUZqQoQUREbQXaMv27dbXtdFICw430PWMQY8e4pWH\ncvD1pRNl1ChppUG5BAZSyEPIGAhpEwmFiPbtoxQ5WzlsHtt+wVrsdYwebZ+lo7W8AF9NWlNjf58S\nOQp3wUJEZkaOpM31Sy7RRqSOh18ll5QA8+bZ9wB+5hnh5506RYZJqAfExx+7PptIDA+qgnY6TPTp\np59i8ODB8Pb2xs+86NgFVqxYgYSEBCQmJmKrRUP3gwcPYsiQIUhISMC8efOcH7UUN95IhRtqCA/X\nLoUyIEA85jl1KvCPf1jfFhdnn2EUFUX7AV2RX34hlVVbpCpI9+4FZs3SdViyqK9X3mWsq/L448CT\nT9LfAwYAkyZpe3y51cc8UkVn/v6elQjhIThtDIYMGYIvv/wSY8eOtbo9JycHGzZsQE5ODrKysjB3\n7lxwF2Lmc+bMwerVq5Gbm4vc3Fxk2aoNasWuXcCLLzr//IgI7Soqec8AAJ57zjrLIijIfhUfHGzf\nMat3b8owUOPxeCqXXSacMidmDE6epII1y3CNu7j6amp2ziBD8PPPJHF+5ZUkVKclSjPkOovqrQfh\ntDFITEzEAIGWdpmZmZg2bRp8fX0RFxeH+Ph47N+/HyUlJairq8OoCw0a7r33XmzatMn5kUtx+LBw\nv1i5aGkMZs82t++srXUu5s6vZGwrgrsygYH2YakjR6hF56JF6jrYMbQnIIAWOo88ok8IRq5IHY8j\n5dLORGsr8Ntvur+M5tlExcXFMBqNHf8bjUYUFRXZ3R4bG4sivTR31FYfv/EGcNVV2oxlwQJzGpsz\nchQ8XVG9VIqBAwGLECN276Y9nNdfty7fdwccR13PhPY6LmZuuYVqP95+W/tjC3kGdXXir+WJxiA7\n27rvg1iW4Rdf0D4hT3k59cHWGckN5NTUVJQKFEAsX74ck3XWg1li0dAlJSUFKSkp8p989qy6yTwh\ngQqL/PyUC8tJ4YwcBY/RKJyn3NREjToSE1UNTZDcXFIE5b2Za6+lzWpX52gDVIuwZg3tCbkbg4Eu\n0H37SAeKQRgMwOrV2sbji4vJ0+/d274lJMcBc+ZQCrJtPcGzz1JTqJgYKvb0BLZto/nk8svp/y++\noK5rtgkge/bQuPk5TKLgLDs7G9nZ2ZoMT9IYbNu2TfEBY2NjUWCx2VlYWAij0YjY2FgUWoRuCgsL\nEStRWLVEaXcvS44epQ0tNaSnU9u8gQPVHccSZ1RLebZsEU4t/f13qsI9elTd2IS47DIKbfEX2i+/\n6N/eUYwVK9zzumJcfTVldzFjYI2F968JJ09Su9rvvyelW0t4o7N7N5Caan3fpZeS5yDVadDVREZa\nN6qqqBDeB7EtPJPQJbJdKC8VSl+ViSZhIs7C3UlPT8f69ethMpmQl5eH3NxcjBo1CjExMQgJCcH+\n/fvBcRzWrl2LKUJFGFqQm6usaEsIPeQobMNEDQ2UeWFJaqqwGJpYjUFtrfZVwTyWkhQcR9kzLAuD\nuOYakhbxlBTFropU0RnvsYrVFYlVILsL2ypk2+pjHltj4AJdIkCFMfjyyy/Rp08f7Nu3DzfffDNu\nuuCKJSUlISMjA0lJSbjpppuwatUqGC58aatWrcIDDzyAhIQExMfH40a9XP7mZnV7Bm1tNMmGhWk3\nJoAmj5tvNv/frRutfPgsIZOJMqGUTO56SETwWFYhNzZS2MxVonCezujR9N11tZaknoaUHAVAKcZi\nqrWeZgxGjqRsq5IS+t9Wl4hHyBi4oEey01f21KlTMVWkCcyiRYuwSEBWduTIkfhFi+pYR6gt5Kiu\npglWi8rSHTuobmH4cPsQi7c33dbYSCf9zz+TXruS19VTPM7SGHiaSJ276dGDipdcrYt/sSHlGQDU\nK1wMTzMGiYlUNf3oo1QLVV4OXHGF/eOioqw9CF9fcx8HHWHLPCH27tVOt37zZiokEyqLB8xVyN27\nk+EYP17Z8V3lGXiafLUncPfd7h5B18eRMZBCTJvInSxeTGFsgELRQmGiSy4hg8EzcCDw2We6D63r\nCdVpQVqacFciZwgIkN7EshSr27lT3BhwnLC73L27/b6DVgwcaE5/69ePXFwGw5UEBZEkRWamsjqb\n9espa2foUP3G5gzdupk1xL791n7jG6DwtFYdBRXAPAMh/P2tY/tqcGQMeLE6k4lSFcVWAGfP0qal\nrSzF9OnajFMIy5Q3Pz91+zAMhjP4+QFvvQUkJVFoRSjGLkR1Ne3FaZkarjUGg2t7KjiAGQO9CQwU\nblbBs3077Sn4+tJmpFiVZY8eVHjDYFyMKJWj8MSiMw+HhYn0xtIz6NfPvttRdLQ5U0Bq1RMcTMdh\nqYyMixEtheoYgjDPQG9GjDBvElVVOZ/d4OVFXsO5c9pLSTMYnozJRD9KZLG7klBdTQ2FveLidH0Z\n5hnozejRQEYG/a2mAhmgjSWtspwYjM5CTQ0thJTE1zu7Z7BxI9UcAZRl+Nhjur8kMwauorWVNrTU\nFG317m3fDCcnR7ooRw0VFeaw1quvAv/6lz6vw2BI8c03wMSJyp4zdiztx3XWsOrPP5NGEeCyojNm\nDFwFL0UhtLopLJR30u7eTWEnS+66y5y3rDVvvkkKroD8MTIYWvPxx6S/pYSQELrmOmvFfGSkeSEm\noU2kJcwYuAqxENGrr5LsL78KUIreRWd8DQSrQGa4C8vzUC58wZkHpW4qIirKbAw8XZuIoZCICKoV\nsIVvrymmr+IIV8lR6Gl0GAwpnKlC9sTqYyVYegYsTNRFqK4GPviAVihC2RC80JkzWUYcx7SJGF0f\nR2J1QniaLpFSLBVOQ0NdUvDJjIHe1NQAzz8vfv+rr1LzDmdobqaUU71OesuLkHkGDHfhTJiosxuD\n/v2B+fPp7zvuoGY9OtNJd1c6EY7kKHr3lt97oaWF9h74FXpTE3Uf04uePc2FcJ9/rqzoh8HQCsvC\nTCXP4VMzOyM9egDTprn0JQ0cJ9aI030YDAZ44LCco66OJnuxBhxK+PRTapPnAgVDBsNjaGuj31pI\nyndx1MydzDPQG0eegRJY0RnjYoQZAZfg9J7Bk08+iUGDBmHYsGG49dZbUVNT03HfihUrkJCQgMTE\nRGzdurXj9oMHD2LIkCFISEjAvHnz1I28s+DjQ5vHX3xBsT81MGPAYDB0wmljkJaWhmPHjuHIkSMY\nMGAAVlxoWJ6Tk4MNGzYgJycHWVlZmDt3bofbMmfOHKxevRq5ubnIzc1FVlaWNu/C03nySaocVpvz\nzIwBg3HxUVJi3flMJ5w2BqmpqfC60KT9yiuvRGFhIQAgMzMT06ZNg6+vL+Li4hAfH4/9+/ejpKQE\ndXV1GDVqFADg3nvvxaZNmzR4C52A5cspDVSttjqTsWYwLh7WriVJjb//ndLTdUaT1NIPPvgAEy9o\nhxQXF8NoNHbcZzQaUVRUZHd7bGwsioqKtHj5zkFjo30PZKWEhlIhTXs7/V9cDJw5o35sYrS3A7/9\nBuTnA1dfrd/rMBgMe379FThwwGVyFJIbyKmpqSgVaMyyfPlyTJ48GQDwwgsvwM/PD9M17ri1ZMmS\njr9TUlKQkpKi6fFdDq9NpAZvb6CszPz/unX0/yuvqDuuGG1twJAhwE8/aZMNxWAw5BMVRZpgbW2i\nchTZ2dnIzs7W5OUkjcG2bdskn/zRRx/hm2++wX8teuPGxsaiwKI1Y2FhIYxGI2JjYztCSfztsbGx\nose2NAZdArXy1ULo3aTe15eK2iorWcEZg+FqIiOBQ4fo2hPxDGwXykuXLnX65ZwOE2VlZeHll19G\nZmYm/C1WvOnp6Vi/fj1MJhPy8vKQm5uLUaNGISYmBiEhIdi/fz84jsPatWsxZcoUpwfe6XjiCelK\nZGeordV/kg4MJO+DSVEwGK6F1ydykVCd06/wyCOPwGQyITU1FQAwevRorFq1CklJScjIyEBSUhJ8\nfHywatUqGC5k0axatQqzZs1CY2MjJk6ciBtvvFGbd+HpfP45MHw4lZhrid6eAWDu4cyMAYPhWnjl\n0iuvdEl3Q1aB7AqmTAFmzaLfWnLHHfTDd1LTg4QEYOpUatn5/vv6vQ6DwbCmpgbIzgZuuUX2U1gF\nsqejZRUy3+ksKIiUDCX2XTThssuA6dOBvn31fR0Gg2FNaKgiQ6AWZgxcgaUUtFqWLiWXcf58/bKI\nLPnyS/1fg8FguB0mYe0KAgK0MwasCpnBYOgAMwauICAAePRR4Ouv1R+LGQMGg6EDzBi4ggkTKF9f\niypCZgwYjIuLU6fMe4U6woyBK7jxRpJzUFuBDDBjwGBcTLz/PhAfD/z4o+4vxYyBq2hs1KYCOTKS\n9IlaW4EfflB/PEeUlpIh279f/9diMBjW5ObSbxdoEzFj4Cq00CYCgBEjgC1bSCLCFRXcr70G7N1L\nBojBYLgWvtiMGYMuhFbGgKe21jVVwYGB9JtVIDMYroc3Bp4sR8FQyLFj2n6hdXWuEY9jxoDBcB9R\nUfSbeQZdhPx8anvppeHH7SrPoHt3+s1USxkM18N7Bvx1qCPMGLiC/Hzgrbe0PaarPAN+RaJliIvB\nYMhjwADgu++0F7kUgBkDV6ClNhFA/VC9vWkzWW+MRhLZU9u/mcFgKCckBEhLc8lLMWPgCrTUJgJI\npTQggHSK9GbiRODDD/V/HQaD4VaYMXAFWnsGrPCMwWBoDDMGrqCtDTh9Wrvj9ejBjAGDwdAUp43B\n4sWLMWzYMAwfPhwTJkyw6nu8YsUKJCQkIDExEVu3bu24/eDBgxgyZAgSEhIwb948dSPvTAwcCJw8\nqd3xwsKAc+e0Ox6DwbjocdoYzJ8/H0eOHMHhw4cxZcqUjkbMOTk52LBhA3JycpCVlYW5c+d2dN6Z\nM2cOVq9ejdzcXOTm5iIrK0ubd9EZ0DIbgIWJGAyGxjhtDIItctzr6+vRs2dPAEBmZiamTZsGX19f\nxMXFIT4+Hvv370dJSQnq6uowatQoAMC9996LTZs2qRz+RYrRCPz2G0lSMBgMhgao2jN4+umn0bdv\nX3z00UdYuHAhAKC4uBhGo7HjMUajEUVFRXa3x8bGoqioSM3LX7zcdx/VGfz0k7tHwmAwugiS+gip\nqakoLS21u3358uWYPHkyXnjhBbzwwgtYuXIlHnvsMXyoYQrikiVLOv5OSUlBSkqKZsfuEtTWsqpg\nBuMiJzs7G9nZ2ZocS9IYbNu2TdZBpk+fjokTJwKgFb/lZnJhYSGMRiNiY2NRWFhodXusRDN3S2PA\nEKCujukFMRgXObYL5aUqao+cDhPl8jrboH2C5ORkAEB6ejrWr18Pk8mEvLw85ObmYtSoUYiJiUFI\nSAj2798PjuOwdu1aTHGFBHNXhXkGDAZDQ5yW0Vy4cCF+//13eHt7/397d/vSVP/HAfw9mY8iCCO1\nnKms6TrepGEKPStbiqndKJKCokVEEtnN36DTIkqhXQ+iQIrSZxmRQ0WCwJvIFUkTXLHBmtMH2iBD\n0uzze/C7nD8v036XG9vqvF9woPN17HzPG9273XzPoNfr8dff195RFAWVlZVQFAVarRYWiwWavy9l\nYLFYUFdXh/n5eRQXF6OoqCg4Z6FGfGZAREGkkeXPfUYQjUaDCJxWZDGZgJ6ekFznnIh+D4E8drIM\niIj+EIE8dvJyFERExDIgIiKWARERgWVARERgGRAREVgGREQElgEREYFlQEREYBkQERFYBkREBJYB\nERGBZUBERGAZEBERWAZERIQglMHNmzcRFRWF2dlZ/5jZbIbBYIDRaERvb69/fHR0FJmZmTAYDGhs\nbAz00EREFCQBlYHb7UZfXx+SkpL8Y3a7HV1dXbDb7bBarWhoaPBfX/vChQu4d+8eHA4HHA4HrFZr\nYLNXgWB92fWfgFmsYBYrmEVwBFQGV69exfXr11eNdXd3o6qqCtHR0UhOTsaePXswMjICr9eLL1++\nIC8vDwBQW1uLJ0+eBHJ4VeAv+gpmsYJZrGAWwbHpMuju7oZOp0NWVtaq8cnJSeh0Ov++TqeDx+NZ\nM56QkACPx7PZwxMRURBt+AW6JpMJU1NTa8abmppgNptXvR/Ar6kkIvqNySaMjY1JbGysJCcnS3Jy\nsmi1WklKSpKpqSkxm81iNpv9ty0sLJTh4WHxer1iNBr9448ePZLz58//9P71er0A4MaNGzdu/2LT\n6/WbeUgXERGNSOD/pU9JScHo6ChiYmJgt9tRXV2NV69ewePx4MiRI/jw4QM0Gg3y8/PR3t6OvLw8\nHDt2DJcuXUJRUVGghyciogBt+DLR/0uj0fj/rSgKKisroSgKtFotLBaL/+cWiwV1dXWYn59HcXEx\ni4CIKEIE5ZkBERH93iJqBbLVaoXRaITBYEBra2u4pxNSbrcbhw4dQnp6OjIyMtDe3g4AmJ2dhclk\nQmpqKo4ePQqfzxfmmYbO0tIScnJyUFpaCkC9Wfh8PlRUVGDv3r1QFAUjIyOqzcJsNiM9PR2ZmZmo\nrq7Gt2/fVJPFmTNnEBcXh8zMTP/YRue+3uLf9URMGSwtLeHixYuwWq2w2+14/PgxxsfHwz2tkImO\njsatW7fw/v17DA8P486dOxgfH0dLSwtMJhMmJiZQUFCAlpaWcE81ZNra2qAoiv9lRrVm0djYiOLi\nYoyPj+Pdu3cwGo2qzMLlcuHu3buw2WwYGxvD0tISOjs7VZNFfX39moW66537zxb//vjxY+MDbPqt\n5yAbHByUwsJC//4/P5WkNsePH5e+vj5JS0uTqakpERHxer2SlpYW5pmFhtvtloKCAhkYGJCSkhIR\nEVVm4fP5JCUlZc24GrOYmZmR1NRUmZ2dlcXFRSkpKZHe3l5VZeF0OiUjI8O/v965Nzc3S0tLi/92\nhYWFMjQ0tOF9R8wzA4/Hg8TERP/+8mI1NXK5XHjz5g3y8/MxPT2NuLg4AEBcXBymp6fDPLvQuHLl\nCm7cuIGoqJVfUTVm4XQ6sWPHDtTX12P//v04d+4cvn79qsosYmJicO3aNezevRu7du3Ctm3bYDKZ\nVJnFsvXOfb3FvxuJmDL4308kqdnc3BzKy8vR1taGrVu3rvqZRqNRRU7Pnj1DbGwscnJy1l3MqJYs\nvn//DpvNhoaGBthsNmzZsmXNyyBqyeLjx4+4ffs2XC4XJicnMTc3h4cPH666jVqy+JlfnfuvcomY\nMkhISIDb7fbvu93uVc2mBouLiygvL0dNTQ1OnDgB4L9tv7wK3Ov1IjY2NpxTDInBwUE8ffoUKSkp\nqKqqwsDAAGpqalSZhU6ng06nw4EDBwAAFRUVsNlsiI+PV10Wr1+/xsGDB7F9+3ZotVqcOnUKQ0ND\nqsxi2Xp/E/98PP306RMSEhI2vK+IKYPc3Fw4HA64XC4sLCygq6sLZWVl4Z5WyIgIzp49C0VRcPny\nZf94WVkZOjo6AAAdHR3+kviTNTc3w+12w+l0orOzE4cPH8aDBw9UmUV8fDwSExMxMTEBAOjvugmG\n2gAAAQNJREFU70d6ejpKS0tVl4XRaMTw8DDm5+chIujv74eiKKrMYtl6fxNlZWXo7OzEwsICnE4n\nHA6H/yKh6wr2GxyBeP78uaSmpoper5fm5uZwTyekXr58KRqNRvbt2yfZ2dmSnZ0tPT09MjMzIwUF\nBWIwGMRkMsnnz5/DPdWQevHihZSWloqIqDaLt2/fSm5urmRlZcnJkyfF5/OpNovW1lZRFEUyMjKk\ntrZWFhYWVJPF6dOnZefOnRIdHS06nU7u37+/4bk3NTWJXq+XtLQ0sVqtv7x/LjojIqLIeZmIiIjC\nh2VAREQsAyIiYhkQERFYBkREBJYBERGBZUBERGAZEBERgP8AFxy9nGS7z+AAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 121 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example the noise is extreme Yet the filter still outputs a nearly straight line! This is an astonishing result! What do you think might be the cause of this performance? If you are not sure, don't worry, we will discuss it latter.\n", + "\n", + "Now let's lets look at the results when we make a bad initial estimate of position. To avoid obscuring the results I'll reduce the sensor variance to 30, but set the initial position to 1000m. Can the filter recover from a 1000m initial error?" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "sensor_error = 30\n", + "pos = (1000,500)\n", + "\n", + "dog = dog_sensor (0, velocity=movement, noise=sensor_error)\n", + "\n", + "zs = []\n", + "ps = []\n", + "\n", + "for i in range(100):\n", + " pos = update (pos[0], pos[1], movement, movement_error)\n", + " \n", + " Z = dog.sense()\n", + " zs.append(Z)\n", + " \n", + " pos = sense (pos[0], pos[1], Z, sensor_error)\n", + " ps.append(pos[0])\n", + "\n", + "\n", + "p1, = plot (zs,c='r', linestyle='dashed')\n", + "p2, = plot (ps, c='b')\n", + "legend ([p1,p2], ['measurement', 'filter'], 2)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8zuX/wPHXvZljwwwbhjG2mXPJqbCwVU4RyVnoIOmr\nE+FXoWJTEr6l0jeHIqGDU8whRopUc8qcbWyzjWxzZqfr98dltx25t/ve7nu738/H437Y/Tle9wfv\n+9p1eF8GpZRCCCGEXXCwdgGEEEIUHQn6QghhRyToCyGEHZGgL4QQdkSCvhBC2BEJ+kIIYUdMCvoj\nR47Ezc2Npk2bGreNHz+eRo0a0bx5c5588kkuXbpk3BcUFETDhg3x9fVl8+bNli+1EEKIAjEp6I8Y\nMYKQkJAs2wIDAzl8+DAHDhzA29uboKAgAMLDw1mxYgXh4eGEhIQwZswY0tPTLV9yIYQQ+WZS0O/Q\noQMuLi5ZtgUEBODgoE9v06YN0dHRAKxZs4aBAwfi5OSEp6cnDRo0YO/evRYuthBCiIKwSJv+woUL\n6datGwDnzp3Dw8PDuM/Dw4OYmBhL3EYIIYSZzA7606dPp3Tp0gwaNCjPYwwGg7m3EUIIYQGlzDl5\n8eLFbNiwgV9++cW4rVatWkRFRRnfR0dHU6tWrRznNmjQgFOnTplzeyGEsDteXl6cPHmy4BdQJoqI\niFBNmjQxvt+4caPy8/NTFy5cyHLc4cOHVfPmzdWtW7fU6dOnVf369VV6enqO6+Xj1iXelClTrF0E\nmyHP4g55FnfIs7jD3NhpUk1/4MCB7Nixg3///ZfatWszbdo0goKCSE5OJiAgAIB27doxf/58/Pz8\n6N+/P35+fpQqVYr58+dL844QQtgIk4L+8uXLc2wbOXJknsdPnjyZyZMnF7xUQgghCoXMyLUB/v7+\n1i6CzZBncYc8izvkWViO4XYbUdHf2GDASrcWQohiy9zYadboncJQpUoVEhMTrV0MYQUuLi4kJCRY\nuxhClGg2V9OX3wDsl/zdC3Fv5v4/kTZ9IYSwIxL0hRDCjkjQF0IIOyJBXwgh7IgEfVHoFi9eTIcO\nHaxdDCEEEvRLrNTUVGsXQQhhgyTo54OnpyezZs2iWbNmODs7M2rUKOLj43n88cepVKkSAQEBJCUl\nAbBnzx7at2+Pi4sLLVq0YMeOHcbrLFq0CD8/PypWrIiXlxcLFiww7vv333/p0aMHLi4uuLq60rFj\nR+M+BwcHTp8+bXz/zDPP8PbbbwMQGhqKh4cHH3zwATVq1GDUqFEopQgODqZBgwZUrVqVp59+2jgH\nIjIyEgcHBxYvXkydOnVwdXXl888/588//6RZs2a4uLjw8ssvZ/n8CxcuxM/PjypVqvDYY49x9uzZ\nLGX74osv8Pb2xsXFhbFjxwJw5MgRXnzxRXbv3o2zszNVqlSx1F+HEKIgzErXZoa8bm3FIt2Tp6en\nateunTp//ryKiYlR1atXVy1btlT79+9XN2/eVJ07d1bTpk1T0dHRytXVVW3cuFEppdSWLVuUq6ur\n+vfff5VSSv3888/q9OnTSimlduzYocqXL6/27dunlFJq4sSJavTo0So1NVWlpqaqXbt2Ge9vMBjU\nqVOnjO+feeYZ9fbbbyullNq+fbsqVaqUmjhxokpOTlY3btxQc+bMUe3atVMxMTEqOTlZvfDCC2rg\nwIFKKZ011WAwqBdffFHdunVLbd68WZUuXVr17t1bXbhwwfj5duzYoZRSavXq1apBgwbq6NGjKi0t\nTb3//vuqffv2WcrWs2dPdenSJXX27FlVrVo1FRISopRSavHixerhhx++5/O15b97IWyFuf9PimdN\nf+pUMBhyvqZONf34vI69h5dffplq1apRs2ZNOnToQLt27WjevDllypShT58+7Nu3j2XLltGtWzce\ne+wxALp27UqrVq34+eefAejWrRv16tUDoGPHjgQGBrJz504ASpcuTWxsLJGRkTg6OvLQQw/dtTwq\n0yQNBwcHpk2bhpOTE2XLluWLL77g/fffp2bNmjg5OTFlyhS+//77LGsWv/3225QuXZqAgACcnZ0Z\nNGgQVatWNX6+/fv3A/D5558zadIkfHx8cHBwYNKkSezfvz/L2gkTJ06kYsWK1K5dm0ceecR4rpIJ\nV0LYjOIb9JXK+bpb0Df12Htwc3Mz/lyuXLks78uWLcvVq1c5c+YMq1atwsXFxfj67bffiIuLA2Dj\nxo20bdsWV1dXXFxc2LBhAxcvXgRg/PjxNGjQgMDAQLy8vJg5c6bJZatWrRqlS5c2vo+MjKRPnz7G\nMmSku46Pjzfp85QrV46rV68CcObMGcaNG2e8lqurK0CWpTDd3d2NP5cvX55r166ZXHYhRNEonkHf\nhmSuxWasG1C7dm2GDh1KYmKi8XXlyhUmTJjArVu36Nu3LxMmTOD8+fMkJibSrVs343Xuu+8+Zs2a\nxalTp1i7di2zZ89m+/btgA6k169fN94vNjY2y1oF2dctqFOnDiEhIVnKcf36dWrUqJHvz1mnTh0W\nLFiQ5VrXrl2jbdu29zxX1lMQwnZI0LegjMA9ZMgQ1q1bx+bNm0lLS+PmzZuEhoYSExNDcnIyycnJ\nVK1aFQcHBzZu3MjmzZuN11i/fj0nT55EKUXFihVxdHTEwUH/NbVo0YJly5aRlpZGSEiIsUkoL6NH\nj2by5MnGDtcLFy6wdu3aAn2m0aNHM2PGDMLDwwG4dOkSq1atuut5Gee6ubkRHR1NSkpKvu4thLA8\nCfpmyl7TNhgMeHh4sGbNGmbMmEH16tWpU6cOH330EUopnJ2dmTdvHv3796dKlSosX76cJ554wniN\nkydPGtvX27dvz0svvUSnTp0AmDt3LuvWrcPFxYVvv/2WPn365FkWgHHjxtGrVy8CAwOpWLEi7dq1\nY+/evXkef7fP17t3b958800GDBhApUqVaNq0KZs2bcrzWhnPAqBLly40btwYd3d3qlevfs97CiEK\nj2TZFDZD/u6FuDfJsimEEEUtPR2K6QRICfpCCJFfy5dDgwZw6JC1S5JvEvSFECK/wsOhbl1d4y9m\nJOgLIUR+RUTAs89C8+aFc/19+/R8okIgQV8IIfIrIgJuz6q3uOPH4f77ISysUC5vUtAfOXIkbm5u\nNG3a1LgtISGBgIAAvL29CQwMNCYaAwgKCqJhw4b4+vpmGYMuhBAlQno61K9fONeeOxcqVoQNGwrl\n8iYF/REjRhASEpJlW3BwMAEBARw/fpwuXboQHBwMQHh4OCtWrCA8PJyQkBDGjBmTJdeLEEIUe3/8\nATVrFs61u3WDTz+F27m6LM2koN+hQwdcXFyybFu7di3Dhw8HYPjw4axevRqANWvWMHDgQJycnPD0\n9KRBgwZZJgQJIUSJM3u25YJ09+7Qvz+0aVMoHcUFbtOPj483Judyc3MzJvE6d+4cHh4exuM8PDyy\nJOUq7o4dO0aLFi2MKRKmT58O6Hz2tWvXtnLphBBWcf483M4qaxGlS+tmHgfLd7uWssRFMk+5z2t/\nbqZmynTp7++Pv7+/JYpTqD744AO6dOliTBucF09PTxYuXEjnzp2LqGRCCKupUwcOHiyUS4eGhhIa\nGmqx6xU46Lu5uREXF4e7uzuxsbHGnCq1atXKkmM9OjqaWrVq5XqNqQVMb2xNZ86coX379vc8zpyp\n0hnnSXZKIYqJ2rVh/XqLXCotDf77Xz1A6PJluHTJn1Gj/OneXe+fNm2aWdcv8O8OvXr1YsmSJQAs\nWbKE3r17G7d/9913JCcnExERwYkTJ2jdurVZhbQVnTt3JjQ0lLFjx+Ls7MzgwYONyxVmNnToUM6e\nPUvPnj1xdnZm1qxZwN2XUPT39+ett97ioYceokKFCkRERBTZ5xJC5MOJE3DjRtZtdepApspuvkVE\nQFISSsHYsbBqlR4R2rEjDB4MjRubV+QsTFlea8CAAapGjRrKyclJeXh4qIULF6qLFy+qLl26qIYN\nG6qAgACVmJhoPH769OnKy8tL+fj4GJfMyy6vW5tYJKvx9/dXX331lVIq53KFHh4exuM8PT3VL7/8\nYnx/ryUUO3XqpOrWravCw8NVWlqaSklJKaqPZDNs/e9eCKWUUs2aKRUWlnXbxYtKVapU8Gs+/rhS\nCxaoyZOVeuABpS5dyvtQc/+fmNS8s3z58ly3b926NdftkydPZvLkyQX7FjKBpVo9LDHhTZl4kaVL\nl+a5hOKwYcMwGAw888wzNGrUCMCYQ18IYUOUgtOnc0zMOn7BBe916/T+/AaoffvgwAE+6rSWH36A\nX3/Vw/QB3UE8cSIsXGiZ8lNMZ+TmtlJiQV5F6V5LKAIy+kcIW3fxIjg5QeXKxk0rVoCPr4Gpv3RA\nkf8aaeqMD5jaeBXz5pdiyxaoVi3TTldX3Vdw5owFCq9ZZPSOPcurszW3pQuHDh3KggUL8n0tIYSN\nyJZ+4fRp3Qa/cSNMmgQJCTBnjukjLaN2nGbw6v9Q+uEH2bMHcqxk6ugIkyfDlSsW+wjFsqZvK1Sm\nJQGzc3Nz49SpU8b3d1tCMfP1hBA2LFPTTnIyDBgAb70Fjz0GoaG6peaZZ2DzZvj4Yxg1Sudl++23\nrK0LiYnwv/9Bq8eq8njHa2z+pVTOgJ/hlVegSROLfQQJ+mbIPj8h88+TJk3i/fffx8XFhdmzZ991\nCcXczhdC2CCDAdq1A3QF3N0d/vMfvatSJdi0SQ+5DA7WvxS0bg2+vjBiBDRrBlOn6i+IunV1q82a\nT6KYtLJlYczByvsjKCtVL2W5RJGd/N2LQjNtGhw+DCtXWuRy27bpGv2+fbrZ/V6Ugu3bYe1aaN9e\np9e5776C3VuWSxRCiHtp1gxu3rTIpZTStfwPP8wW8MPCYOTIrAenp0NiIgYDdO6s2/v79y94wLcE\nCfpCiJKvYUM4edIil9q0SferPvVUth0VKujxlpktXAiPPFL0wwXvQoK+EKLkq19fN7KnpZl1GaV0\nu/yUKbmM0KldG6Kjswb4rVt1Tp7sXwZWJEFfCFHylS8PVavqoGyGjFp+v3553KN8efj3X/1eKT2k\n59tvwdv7znHXr+svICuRoC+EsA8NGui8OXnJnk8nG3UulqkTruVey89Qpw6cPat/jogAZ2c9rtPd\n/c4xq1fDmDH5K7sFSdAXQpRsBw/CuXM62GZPdb57N8yYAUePQosWkJqa52U2fXiQK2eTcq/lZ6hd\n+07itfr19Yih7JYtgyFD8v85LMTmZuS6uLjIeHU7lX11NiEs4p13dJDNLVr/8Yf+QvD1hVq1YOlS\nPRbztpQU+OUXPdJz9fIOfNVrLQ4OA/K+16efQuZ/x6VLZ91//ryeqbVihXmfyQw2F/QTEhKsXQQh\nREnyzz95z2gND9c1fODoiJl8/Z8/2ftNOpevOHDpEsTF6bTG/fvDtMSJ1O72wN3vda/8WStX6uUQ\nrThm0+YmZwkhhMVcu6YzmF2+DKVyqeN26MBy/y/4eJMf0dEwxGkFXZ64D5ch3alUSZ9apQp6KcSA\nAP2bQf36BSuLUrqNf9UqePzxAn8kc2OnzdX0hRDCYsLDwccn94CvFAvCWhF0xofPv4SuXcHxH18I\nDIS+K6F1J33ctWvw5JO66aagAf/2/fi//9M3siKp6QshSq6FC2H7ds68/w3nzkHb1ukYUODoyPLP\nLzF+zDV2HK+BV4NM/YgHDujg7ux8Z9vevTqRjqnCwnS7UJkylvsst5kbOyXoCyFKrp9+IuV6Cm1n\n9+fcOah17RjjxqRS/sHGvDRG8cvcf2g8oKll75maqucEHDsGbm6WvTYS9IUQ4q7efx927YKff4aQ\nx+cyJ6ovf8V5sHkzPPhgIdywVCmdkuHSpUK4uLTpCyFEng4ehLlzdWuLoyN073KT7hfmkP7BrMJL\nZ5yWpieC2SiZnCWEsA1//nknhYEFpKToIffBwZlGUt5OvFao+et79IDXXy/EG5hHgr4QwjYEBemZ\nUNmlpekE9seOmZweOTYWJkzQTepZsh3fKxWDJaxbB4MGFe49zCBBXwhhG5o2hUOHcm4/eVJH7u7d\n9fJUdevCzp1ZDlFKT3R9/nmd26xxY4iM1EsSZpng7+WlFze34/5EadMXQtiGJk10XprsfHx0BAdd\n69+8WadUCA3lRj0/Vq6EefPg8tlEnr8xj5e6ptP01a44JF6Ea35ApgyXFSroXwP27oX//lenXbAz\nZtf0g4KCaNy4MU2bNmXQoEHcunWLhIQEAgIC8Pb2JjAwkKSkJEuUVQhRkuVV08/M0ZHEto+zdPQu\n+r3lg7s7LF8O770Hxz7bzvjQ7jR/6D4cxoyGPn10HoXsDAZ9n9wmbNkBs4ZsRkZG0rlzZ44cOUKZ\nMmV4+umn6datG4cPH6Zq1apMmDCBmTNnkpiYSHBwcNYby5BNIUSGkBBo2RLq1YMLF3SNPBdLl8Ir\nr8DDD8MTT+g+02rVcjlQKTh+XLf15JbA8fXXoXp1ePNNy36OImDVNXIrVqyIk5MT169fJzU1levX\nr1OzZk3Wrl3L8OHDARg+fDirV6825zZCiJLupZf0uPYXX9R5crK5fFknypw+XS9GtXo1jBiRR8AH\nHeh9fHIP+KDTM/j5Wa78xYhZQb9KlSq8/vrr1KlTh5o1a1K5cmUCAgKIj4/H7fZMNDc3N+Lj4y1S\nWCFECXTzJsTE6Fr+Rx9BjRpZdh85Avffryv/f/1lTIppniNHoFEjC1yo+DGrUevUqVPMmTOHyMhI\nKlWqxFNPPcXSbB0jBoMhz/z4U6dONf7s7++Pv7+/OcURQhRHJ0/qgO/klGPXwaUHefTVRgR96JQ5\nzb15rl+HM2f0PYuB0NBQQkNDLXY9s4L+X3/9Rfv27XF1dQXgySefZPfu3bi7uxMXF4e7uzuxsbFU\nr1491/MzB30hhJ06ehR8fDh9Glxd9ahM0LNouz1Xl7lDd/L0M10sd7/SpeGnn/QU3WIge4V42rRp\nZl3PrOYdX19f9uzZw40bN1BKsXXrVvz8/OjZsydLliwBYMmSJfTu3dusQgohrCQ+Xk+MKkzHjrHb\nOZD77wcPD50P55VXdMr5z6pP4ekXKlv2fqVKgR3HJLOCfvPmzRk2bBitWrWiWbNmADz//PNMnDiR\nLVu24O3tzbZt25g4caJFCiuEKGKxsbqT9V5ee00vO1gAiTUbM3DLCL7+Wmdh+OgjvXDJt4tu0ef8\nF3mveiUKRLJsClGcJSfrKf+rVuU9UiW/Mo9sSUvTbS7Hj+shjrlJT9e55+Pj870MoFLQt6/OjTN3\n7u2Na9bokTdXrsBzz+lVq4SRZNkUwp6VLg2bNukxjRmN4eY4cQIee0x3dBoMut37oYfg1191dM7N\nmTO6an474CckwPZl50i+rwopjmVJS4Ny5fTuChX0+uMZ/bbz5+vTly/PdL1Nm/TGMmX02H1hURL0\nhSjuatbUTSuWCPobN+q1YDP/1tCxo851k1fQvz38MTkZPvtMj6V/0Cmeiq4JlGreBEdHuHEDrl7V\nr6goXVxPT50G5/ffsy0w1bSp7sUdOFDnyhEWJUFfiOKuVi09zt0S485DQrKlpQQ6dICxY/M+58gR\ntlZ4gjFNdIzevh0al6uke2S3hOe6etTNm3qkZrlyucT1Jk1gyRL48kvzP4/IQYK+EMVdRk3fXDdu\n6CWmvv3WuOnkSTid+CD33T+WCvsVdT0NVM42mGbVhvKM/XM4i1foETdafRg2DN59Vy8onk3Zsnfp\nn23SBA4f1n0FhZr43j7JExWiOPv0Uzh/Pn9BXykd3LN3Bu7YAc2bkxHVw8OhfXv44GMn3ggfydBh\nBho0gA8/1P3HoHPh/Ofgs2z+4WqmgH/bW2/BypW6EzgvP/2Us6PWxUWX4cwZ0z+TMJkEfSGKs1Wr\ndJrhfv1MPyc2VrfPZx/to5QeLYMeiNO9uw7wW7fqdveDB/WfO3boyvibb+rXLzucaB6Qy8geV1d4\n4w2YMiXvsixYoBv5s5s+PVtDv7AUGbIpRHHm46OHOPr6mn5OaCi8/baO3seO5egLuH4d/P2hWzfI\na9L8xo36l4zZs3UiyzzduKEH3xvXK8ymfn09WqdhQ9PLb+fMjZ0S9IUozipV0s0g2Rva72bBAvjj\nD714bMOGcPYsVKwI6Gb0fv308MolSyw39D9XFy/qKbhXrthtbvuCsGpqZSGEFV2/rhvX8ztU88QJ\nXT2vVk1X6b//3rjrzTd1LP7yy0IO+FFRupZfr54E/CImQV+I4io2Ftzd8x+djx+/05wyfLiu0qN/\nAVizBn78MY/m9HXr9KKzllC7ts6T/MknlrmeMJkEfSGKqypVYM6c/J/n6XlnvGT37hAezpavY3nn\nHfj5Z93/mquyZfUU2sxNC6NGwd9/578MoL94Oncu2LmiwCToC1FcubjoNQMBRo/WKYpNMXeusfdV\nOZVmq+ezDH62LCtX3qM/tUsXSErSi4pn2LTpLt8SwhZJ0BfC1imlUyOcOJH3MWfOwOnT+brkhg16\nrdkxCe+x8KMkOna8x0kODno5w/nz9fvLlyExEerUMfm+wvqkB0UIW7drlx4s/9dfeVfF8zErNy0N\nevWC6GiYPBn69SuFo6OJq0iNGAENGuhhmKdP6yGjMmu2WJGgL4Stmz9frxubS/ONUjpVQsN8BP2P\nPtKJz8LCCrB4VNWqukkpJER/e+RnfoCwCfIVLYSte/xxne+gQ4ccu9as0c3z437rz62z8fe8VFgY\nzJoFX39txmqB//sfDBmiv4TsdHHx4kwmZwlRTKW9+gbNNwQx8W0nfpp/jojDN/juT688Z8hevw73\ne19lyjuKgc87m1+ApCQ9m6tKFfOvJUwmi6gIYaeWL7pJpYbpDB4Mg7uV4/M5Btq316mKy5TRIyyr\nVtWLYPn5wfr10CppCwM7NwUsEPTzMwtY2Ayp6QtRDCXfSKNR+UgW/lKXTp3v1N1iYvRk11u39Csu\nTq9xEh4ON6+nsXJnDSpdOyezYIsxqekLUcJduwbPPKMXsHrxRR2vF867SoPSZ+nUOesKJLVq6Veu\nDh+FvlUk4Ns56cgVwhZdugQ3b5KSAk89pUdFrlmjl4zdsAHen12O6XUW5O+ax4/fIyWmsAfylS+E\nLZo1i/SbyYyMm4mjIyxbBo5/72X1V//y0kvdaNvwIq3uS8zfNSXoCyToC2F70tJQixYzoUsYp0/D\nli23W2Ru3qDP4el0P9aN9GgF56fm77re3vDAA4VRYlGMmN28k5SURL9+/WjUqBF+fn788ccfJCQk\nEBAQgLe3N4GBgSQlJVmirELYhaTVoQy68T+27K/GunVQvvztHY0awZEjlHZSlK1fE9q2zXrirFl6\nPH+GBQt0R0DG/78+faBr1yL5DMJ2mR30x40bR7du3Thy5AgHDx7E19eX4OBgAgICOH78OF26dCE4\nONgSZRWixNu1C1oMa0qVJrXYvTvbEPhq1fSfFy7kfvLNm3qoDujx8x98oPMt5DffvijRzBqyeenS\nJVq2bMnpbImefH192bFjB25ubsTFxeHv78/RbFPIZcimKHESEvSfpUvrsZJffw3Tpt013/3hdaf5\n+9+6HD3hSHg4/LE7nS+vDqRHzBe5j4N/6CGYMQM6dcq5b+FC2LkTFi/WaRImT9Zpjwt1NRRR1Ky6\nclZERATVqlVjxIgR3H///Tz33HNcu3aN+Ph43NzcAHBzcyM+/t7Tw4Uo1lav1kv/eXmBm5seZpM9\naGf6j7pzJwR2TuGxJ0oTMmU3ZZ1SGTwYDq6NpMd7bfKe+OTrm3cK5Vq17uTf+eQTGDtWAr7IwayO\n3NTUVMLCwvjkk0948MEHeeWVV3I05RgMBgx5/MObmmnVZX9/f/z9/c0pjhDWU6oUrF2bo8388mWd\n6v7P0KtUV/FUb+tFfDycPw+TW+9gSK8FlG7dAt5oDaUB6kOb1/K+z7hxUKFC7vsykq5FRuo1cFet\nstSnE1YUGhpKaGioxa5nVvNOXFwc7dq1IyIiAoBdu3YRFBTE6dOn2b59O+7u7sTGxvLII49I846w\nO0eP6r7Tjh3h1f4xXOg7mvMLVuNU1pFujytKNfPTna25JFK7K6V0psvvv9dNSRkuXtRpjxMSICJC\nr0ErShyrNu+4u7tTu3Ztjh8/DsDWrVtp3LgxPXv2ZMntdTeXLFlC7969zbmNEMXOTz/pWP7GG/DF\nF+DbpRYdGsbRt+oOevWCUrtCdZrLhx/O/8UvX4bt27MGfNC9vr//rpt0JOCLPJide+fAgQM8++yz\nJCcn4+XlxaJFi0hLS6N///6cPXsWT09PVq5cSeVsbZRS0xclUXo6TJ2q+1J/+AEefDDTzuBgOHtW\n58e/dk2vduXnl/+bHDsGPXrcfSUtUWKZGzutmnDt5k1FmTLWuLsQlnf5sk4zn5ioW15uj2W448QJ\n3dYTE2PealOhofDOO7o3WNgdqzbvmCsxn7PIhSgSP/2kR+PcS0YqS3TfaZs2egDPL7/kEvBBL3XY\nsKFe6soccXHg7m7eNYTdsmoahsRE+bcrbFBcnF5iKre+qIgIvTbs+fO6xn3jBjFBX9Olix4h+eqr\n97j2jh3mD6P8+ed8LYIuRGZWD/pC2JzGjfXEquxSUqBZM91QX706VK/OhRET6NoVnnvOhIAPlhk3\nP38+pKaafx1hlyToC5Fd48Zw+LAeGpk5SMfF6RmxISGATmkT+Aj07QsTJxZh+ZwtsOqVsFtWbdOX\nPGzCJqSl6aGOGVxd9QSoqKisx9WubQz4f/8N7dvDI4/Ae+8VYVmFMJN05Aqxfz88+2zWbU2a6Np+\nNqmp8O678Pjj8PbbMHu2ZDoQxYs07wixfbuusmc2fboeipNJbKyeYVupEuzbd5dlCYWwYVLTFyJb\n0L98Ga40aq1z2dz2zz/Qrp2eExUSIgFfFF9S0xf2LTVVJ7G/nTYkLk6Pt79yBQYM0AuRx8fDoEEw\nZ47+U4jiTDpyhX0LC4O6daFqVW7c0EPzR42CQ4f0BKvHHoOBA+H7uTEMahFu7dIKYTarpmHo1Elh\nwYyhQuTf3r2wfz/quecZPFiP0vz22zudsykpekEq55lv6dQJ775r3fIKu2duGgZp3hH2rXVraN2a\n996FU6eH8AD7AAAdmUlEQVT0JNvMo3GcnPSLfftyjvARohiSoC/s3tKl8NVXsGcPlCuXacdXX0Fy\nsm7YDwvTq2EJUczJ6B1h17Ztg9degw0boEaNbDtLldKdvHFxOrFa3bpWKaMQlmTVoH/jhm4zFaJI\nxMbC1avGt4cO6RE6K1bozAs5NGmix2ru2wctWsgsLFEiWDXoV6oEly5ZswTCrhw7Bm3akHbsJDt3\nQvfuehhm9nlZRo0awfHjULYsDB1apEUVorBYtU3fxUU38VStas1SCHuxq5Q/iyt/z9pGlalR9zLT\nvFYzaOBQII8afPnyehZWjRp3+WYQonixak2/cmVp1xeFLzERRo7UE6v8+jZiz7enOXCtASOuzLt3\nk03jxrqJR4gSwiZq+qIE2rJF/xkQYJ37z5oFffrw4wEvXn5Z58w5fDgjK3FreOhvvRDKvXz2mf6H\nKkQJIUFfFI7AQChTRs9sKmobN3J13kJe3vcyv/2pO2offjjbMbVr69e9ZMq/I0RJYNXmHRcXScVQ\nYjVsCH/+WfT3vXCBsGFzuF/9hUPZMoSF5RLwhbBjUtMXlnf5MsTE6NEvRSgxIolZ7dfx5fUf+O8n\n5Xn66SK9vRDFgtVr+hL0S6B9+6B5cz25yRzXr2edyLFoUa7t8FevwvR30/D2VsRX9ePvIxUk4AuR\nB4sE/bS0NFq2bEnPnj0BSEhIICAgAG9vbwIDA0nKow1HRu+UUErpWU/meuYZWLyY69fhhRfgwdce\nZuYrsURG6lv88QeMHq0nyv5zxJHfvz7F/w62oXYdmUQlRF4sEvTnzp2Ln58fhtvD34KDgwkICOD4\n8eN06dKF4ODgXM+Tmn4J8MILOvpm5u8P//mPeddNTYWQEMKb9Kd1a13pn9H/ABEHLvPgg3pRqyFD\ndF/s/v2wfDk0HNhKZs0KcQ9mB/3o6Gg2bNjAs88+a0z3uXbtWoYPHw7A8OHDWb16da7nStAvAZyd\nYfPmvPcfOQInT+b7surgIRbfN5ZOvSrx2mvw9dcQ8Hw9Pmc0587B1q16suz//Z9pg3CEEJrZQf/V\nV1/lww8/xMHhzqXi4+Nxc3MDwM3Njfj4+FzPldE7JUDXrjoC5+WHH/RY92zS03Xum//+FxYu1DX5\nDBcuQL9RFfno5hi2bdMTqwwGdP6bmBicki7QqJFU6oUoCLN62tavX0/16tVp2bIloXmshmIwGIzN\nPtl9/fVUTp+GqVPB398ff39/c4ojitK//8L33+ucNE89BdeuQYUKxt2//ab7XU/t+w8nD13n/Cfg\n6qpXo3Jx0QG/cmXdEhQfD2++qYN706YwYQIMcTnKsunnKdt0xJ17OjrCQw/Bzp3Qt2/Rf2YhrCA0\nNDTP+FogygyTJk1SHh4eytPTU7m7u6vy5curIUOGKB8fHxUbG6uUUurcuXPKx8cnx7mAunhRqcqV\nzSmBKBQJCUp9++3dj9mwQanOnfXPHTsqtXGjcdepU0pVr67U7NlKbQlJVaedm6lrp2JVVJRSf/+t\n1KZNSp09m/VyJ08q9dprSrVtq9TOnUqpYcOUCg/Ped9ff72z/cQJpV54oeCfU4hiyMywrSy2XOKO\nHTuYNWsW69atY8KECbi6uvLmm28SHBxMUlJSjs5cg8FAaqqidGk9Ks/BqoNHRRY//QRPPgnbt+uq\neG5mzNAdMh9+CO+9p/Nkz5jB9SWraD/zCUa9WJqXX7597JNP6pr54ME5rzNhgp65+957+S/ne+/p\ntqB58/J/rhDFlLnLJVo01GY040ycOJEtW7bg7e3Ntm3bmDhxYq7HOzrCffdJemWbc/asTjT28cd5\nH5N5Jak33oD330cpGP2yE03qX2Ps2EzHdu16JxdPZhs2wDffwIIF+V9YQSlYtkxnURNCmMxiM3I7\ndepEp06dAKhSpQpb79a5l0lGZ67ktLIhUVEwbBi8/nrex+zbd6d2Xq4cCQnw5X9vcuCaF7u/dc7a\nydq9e85e1/Pn9Zqz330H0dF6iKaTk+ll3L9fL2XYpo3p5wghrJuGAe4M26xXz9olEUa+vjp3jqNj\n7vsvXYL4eE45ejOuh46/ly9Dy/o3+aHZu5SvuCrr8XXr6nVmM1u2TE++ul1RyLdvv9W1fBnCI0S+\n2EzQFzbk2Wfvvj89nVtzP6f/QEd69IBPPtFx3TBnEZxyM+0er7yim2gK6uef9eghIUS+SNAX+efi\nwvgDQ6hbVw+3NVa2//4bOnc27RoGQ+619LNn4ehRnZr5bsLC9DKGQoh8sXrQl/w7xURSkh5iVbEi\nP/0E69bpuJslbvfpA61amXef9ev1he8V9CXgC1EgVg/6UtMvJt55BypU4PiIIF54QQf9HJ3v5k6Y\nSkuDbdvg8cfNu44QIk9WHx0vqRhsW3o6fPklDIgMpt4Ho2nTOp1p0wpp0MzEiTptQ9u2hXBxIQTY\nSE0/OtrapRBG//wDCQnQsSPXrumRm7GxMHp0eaZVXkpDl39xePEu4/fN0bevzt1QxIuvCGFPbCLo\nS/OODVm/HhISiPHqSK9e0KSJnphbpgwQOApq1IAqlWHKFMvfu21bOHVKpmcLUYis/r9Lgr6JPvgA\nfv+98O9z9iynyjWhbVvo1w8WL74d8AHc3XUTjLd34d2/UqXCu7YQwvpBX0bvmCAtDWbPhurV72yL\niYG334abNy16q/Sz0Yz8oRvjxsGkSbmMqgwKgoEDLXpPIUTRsXrQl45cE+zerXMSN2hwZ1vp0nqB\nkgcegD//tNitPtvXlhTHsrz6qsUuKYSwIdKmXxz8+KPOVJlZtWqwahVnP13HnE5/c71VBT7e5Ee5\ncrlfQikI+TaBkL1VKFMGypXTz37YMKhSRR8TGQlTYl9g1w8peWZgEEIUbzZT07dMgucSSKlcg/7R\nozBsuIEW7/TCoWd3Lh2OomtXvbZJ9tO3bIH2TS7zxjMXqFX1ljHIh4XpNDuffqqTXD73rOKNh/bg\n26ZyEX04IURRs1g+/XzfOFNO6Pvu08MCnZ2tURIbd+CA7lE9ftzYwP7NN/Daa/r14otQ2fEK6e0f\nZnK3/fy02sCGDToB2tq1sHo13LiczNSLL/PUd/1wfCwgy+UPHYJx4+DYMT0wZ88eKGX13/+EEHkx\nN5++TQT92rX18np16lijJFbwzz9w9appk5CU0tX3atVISdGp6zds0OucNGmS8/DPPtNBvG5d6NUL\nena+RofxbXEc8wJZk9xnvcWGDbrW7+Vl5mcTQhSqEhH0mzaFpUuheXNrlMQK6tbVHbEnTph8yrVr\nOi19hQr6Wd1t/YErV/RvTwYD+leBtDT44gtJQyxECWBTK2cVlN2N4PnxxyyLiN+LUvD88/o3olxz\n3mTj7Jwpvh86pNMYZw/4S5bA11/nr9xCiGLPJlpvq1fXGXXthre3ruWnp5s0+3TePAgP13Oz8j1Z\n9ddfc9/u66v7Cp5+OtPsKyFESWcTNf2ePWHlSmuXogg5O+uZpyYkHdq5U69B/uOP5Dkc867yylvf\npo3OcZN5IZKvvpJESEKUcDYR9J98UldIL1ywdkmKkK8vRETkvX/pUs7uu8iAAboVxqTlJP/6S3cQ\nm2rMGN3zmyE4WHceCCFKLJsI+s7OupNyxQprl6SQXLigA3JmW7bkvT7syZOsH7OB1o+5MGkSPPqo\nifd57TX44w/Ty9WjB5w5o4eFKqVr+bVrm36+EKLYsYmgDzB0qB5/XiItXQrz5wM6to4ZA+0eduT4\n8ZyH3roF43qc4iWH+Xz/gwMvv5yP+zRvrgO4qUqV0qN7Mn7NqlABypfPxw2FEMWNzQT9rl11Z+6x\nY1YqQGKiziFcGFauhP79UUpXxsPCYMAAeOgh3bqilM6fFhwMTbxvER2Zwv4DDjz8cD7vkznoR0eT\n67dKdpMm6fH7UVFSyxfCDpgV9KOionjkkUdo3LgxTZo0Yd68eQAkJCQQEBCAt7c3gYGBJJkwHrNU\nKZ28celSc0pkhshI0xf1ziwi4u45JM6c0SN1unRhyhT9vbJxo55A9euvsHChbt5v2lRfaon3DL5/\n9wgudSvmvyyZg/7ixbBgwb3PyejkPXvWjmbHCWHHlBliY2PVvn37lFJKXblyRXl7e6vw8HA1fvx4\nNXPmTKWUUsHBwerNN9/McW5utw4LU8rTU6m0tAIUZtMmpdLTC3DibWlpSlWsqNSFC6af8/ffSpUp\no9SOHXkf8+GHSj37rAoOVsrXV6n4+Ky7k5OV+uUXpa5dU7r8Vasqde5cgT6Cun5dqbJllbp1S6nH\nHlPqxx9NP/fgQaXWrCnYfYUQRcbMsK3MOzubJ554Qm3ZskX5+PiouLg4pZT+YvDx8cl541wKnp6u\nVOPGSu3cmc8bp6YqBUqdOlWQYt/RoYNSW7eadmx6ulIPP6yUn59SH3+c92EPtFJTh51U3t5KRUdn\n23npkg7UmSUm5q/M2Y0erVRsrFKVK+f8hhFCFHvmBn2LtelHRkayb98+2rRpQ3x8PG5ubgC4ubkR\nHx9v0jUMBt2hu2RJPm+emppRiHyemE3LlrB/v2nHGgywcSOp/3kN9u3L9RCVrphQ6XN+CKvPzp1Q\nq1a2A4YMgZCQrNsqm5nh8rPPdKdstWpZF10RQggsNCP36tWr9O3bl7lz5+KcLVWmwWDAkEfOl6lT\npxp/9vf3x9/fnxEjwMdHL9BUrZqJBShTBkaOhJMnC9Yun6FFC9i2zeTDl6+7j+dfewb/Ug2YF5F1\nLP3VqzB+vIG/rzxA6I47Oeuz8PYunJ7rXbt0L7EQotgLDQ0lNDTUYtczO+inpKTQt29fhg4dSu/e\nvQFdu4+Li8Pd3Z3Y2Fiq51HjzBz0M1SvrrMDfPYZvPNOPgri5aWDfn6MGaN/tWjXTr/399eJ0O7h\n5k149VXYuhW2boFtv7SnVSu9rVUrWLZM58gJCNDHVMyrT9bHR6+KZWnVqsFTT1n+ukKIIpdRIc4w\nbdo0s65nVvOOUopRo0bh5+fHK6+8Ytzeq1cvltxuo1myZInxy8BUr72mF/a4cSMfJ3XooIfB5Mef\nf5Jliah69WDw4LuecuAAtG+vsx3/9Re0ae/IpLed+Ptv3cozdSo8+KAeLblq1V0CPuiavinDKvOr\nXz/o1s3y1xVCFHtmpVbetWsXHTt2pFmzZsYmnKCgIFq3bk3//v05e/Ysnp6erFy5ksrZ2qrvlR60\nRw944gl47rmCls4EdetCaKhJOQ4SE+GdYRGs3OvJ++8bePZZC2QqjovTYzUvXIBz53T6zAIl2BFC\n2IsSkU8/N9u369aXw4cLkFnSVOXLw/nzcN99KKV/rF49azA/c0anh5gdfIveKauYfrAXrvUKMIY+\nN0rpfoTff4fhw6F3b925K4QQeSgR+fRz4++vK70bN5pw8P/+BwcP5u8GGYnFbue1/+ADXfGvVk23\njEyYoJv6W7WCk4dvscGpN5+vrmFawE9N1cta3St5mcGg24vKl4cdO/LOxSOEEBZiE/n0c2MwwOuv\nw/TpULasTsrm7Kz7PnPU/Jctg/r1c7/QoUPw5Zc6KX1mGcMaDQa2b4c5c3Q/sMGgm/oPHdLt8507\ng9Pr46FffejSJe8CX7yom2ccHGDvXj3F2NSFUsLDdeO/pEEQQhQym63pA/Tvr4P89Ok6PUyXLvB/\n/5fzOBUbx8Lfffn335z7Yr9cz+5FR3PuqFEDNm/m3Dndd/vNN+DhAbXcUum9ZgRv/186jz4KTpcv\n6twQb71198Jm9N4CbN4MgYGmf1Cp5QshiohNB30nJ1i0SA+d37tXJyr76iu9rnhmn53pxtufutPE\nN4UlEw6jFKSkwOzZ0HTBWLqrdeSYH1amDCn1fejfH156SSd8A3QNfft2OH1av1+3Tre116hx98Jm\nnti1ZUv+gn5oqG7PEkKIQmbTQT87d3d491144QW90iDAkX03mXJzItu2G/h53Bbm/a8cjzyi+0c3\nbYLfqvVheN+rvPtuzutNnqwXsJo0KduOFi3uBPBnnoHPP7934Vq00GM2k5J0/0J+UmRWrixBXwhR\nJIpV0Ae9QHh6uq7xJyfDkGEG3neZjY+vgQe6uvCH12AGD9ZNQiFfn8fnyl/834curFiRdUj8xo16\nVM7XX+fSR5ARwDOYMGGLli31OWFh0LGj7ogw1YIFkuFSCFEkbHbIZq6OHgU3Nw5GudC1K/TpA7Fn\nk1kz7EcMAwfozlkfH0hI0Mdv3QqzZkFICMHBejLV99/rIfEPPKDT3HfokMt9Vq/Wnb8//2x62WJi\ndOCPj9ffSpknfQkhhIWU2HH6eZwEw4bBkiWMH69r6YcOZcorppRuKomIuJPsJiUFnJy4cUNPgP3u\nO53eoVOnu6R5iIzUuWtiYkwvm1L6nI0bdZuREEIUghI7Tj+HjEb8mzcBmDFDt6ZkSetjMOgcPKdO\n3dnm5ATff0+5HSG8+64eg5+WBv935nnYuTP3e9Wtqxchyc+DNRj0JCsJ+EIIG1Z8gv7Jk3os+2ef\nATqW16yZy3GvvqrHy2d27Bjs3MmwYXrC69Kl4PjPgbzb6g0GnS3N7DwLQghhW2x2clYO+/bpYZC5\n5ijOZOjQnNtq1oQdO3B01IncAJ1zweTczUIIUTIUn6Dfv7/OwlYQNWvq3tvMMmbkCiGEHSk+zTsG\nQ+5pDaZO1VnRsjt50tj+T40aWYP+jRu6gzfbgi9CCFHS2V7Q/+svcp1JlZdFi+508mb2xBM6pw3k\nrOlfuJAznaYQQtgB2wv633wDU6bomVd5yRhVo5TOSX97PV6jS5d07b9pU/3e1VVnVMs4r0YNvaSg\nEELYGdsL+q++qoP4pk2571+79s7qVklJeuZr+fJZjxkyRI/Xd3LS7zPG92fU7J2c9LBMIYSwM7YX\n9D09dTv9smV3tsXF6cH1oNMPZ2Rci4vTCXmyW79eL5YuhBAiC9sL+qDXeN2y5U5H7GOP6bZ+0NNq\nT5zQXwJxcblnv9y8Wf9GIIQQIgvbTcNw+bKejHX9OlStqhepzai9162r0x+XKaMnXnXuXDSFFkII\nKyu5aRgq3l6WcN8+8PPL2lzj66uTr9WqJQFfCCHywXaDfoY//9SrUmXm63tnkRNT/fYbfPyx/nn4\ncJ2BUwgh7IxtBf3Fi3OuZfvnn9C6ddZtH32k10/Mj6tXYcMG/fPx4zlH/AghhB2wraD/9985M1s6\nOECbNlm3lSpA9ogaNSA2Vv8sKRiEEHaq0IJ+SEgIvr6+NGzYkJkzZ5p20smT0KBB1m3ffKPb9M2V\neVauJFsTQtipQgn6aWlpjB07lpCQEMLDw1m+fDlHjhzJeWDGkMwMuQX9uxk+HK5cMe1YV1e4dk3P\n1r15U/LeCyHsUqEE/b1799KgQQM8PT1xcnJiwIABrFmzJueBu3ff+TklBaKi9OQsU6SkwLffmt42\nbzDoiVwHD+pavuTdEULYoUIJ+jExMdSuXdv43sPDg5jclh7cvv3Oz2fO6HZ3U2fSRkXpdAr5WYt2\n0SKdjycszPRzhBCiBCmUfPoGE2vRUxcv1h21gP9DD+G/bZvpN5kwQadIzg8Z0y+EKGZCQ0MJDQ21\n2PUKJejXqlWLqKgo4/uoqCg8PDxyHDc1IQHGj889T/69PPww/PCDOcUUQgib5+/vj7+/v/H9tGnT\nzLpeoTTvtGrVihMnThAZGUlycjIrVqygV69eOQ+8//6CpzgeNw5u3TKvoEIIYWcKpaZfqlQpPvnk\nEx599FHS0tIYNWoUjRo1ynngf/+rUykUhMGQ98LmQgghcmW7CdeEEELkUHITrhWG6Gj9G8LGjdYu\niRBCWIVtBP3ISHjggcK/T7ly+s/77iv8ewkhhA2yjaB/8mTRzJCtUkX/6exc+PcSQggbZBtB//jx\n/KVfKCiDAcaM0atvCSGEHbJ+0E9Ph5deAheXornfp59KWmUhhN2yftB3cNBB2NfX2iURQogST4Zs\nCiFEMSJDNoUQQphMgr4QQtgRCfpCCGFHJOgLIYQdkaAvhBB2RIK+EELYEQn6QghhRyToCyGEHZGg\nL4QQdkSCvhBC2BEJ+kIIYUck6AshhB2RoC+EEHZEgr4QQtgRCfpCCGFHChz0x48fT6NGjWjevDlP\nPvkkly5dMu4LCgqiYcOG+Pr6snnzZosUVAghhPkKHPQDAwM5fPgwBw4cwNvbm6CgIADCw8NZsWIF\n4eHhhISEMGbMGNLT0y1W4JIoNDTU2kWwGfIs7pBncYc8C8spcNAPCAjAwUGf3qZNG6KjowFYs2YN\nAwcOxMnJCU9PTxo0aMDevXstU9oSSv5B3yHP4g55FnfIs7Aci7TpL1y4kG7dugFw7tw5PDw8jPs8\nPDyIiYmxxG2EEEKYqdTddgYEBBAXF5dj+4wZM+jZsycA06dPp3Tp0gwaNCjP6xgMBjOLKYQQwiKU\nGRYtWqTat2+vbty4YdwWFBSkgoKCjO8fffRRtWfPnhznenl5KUBe8pKXvOSVj5eXl5c5YVsZlCrY\nsuohISG8/vrr7Nixg6pVqxq3h4eHM2jQIPbu3UtMTAxdu3bl5MmTUtsXQggbcNfmnbt5+eWXSU5O\nJiAgAIB27doxf/58/Pz86N+/P35+fpQqVYr58+dLwBdCCBtR4Jq+EEKI4scqM3JDQkLw9fWlYcOG\nzJw50xpFsJqoqCgeeeQRGjduTJMmTZg3bx4ACQkJBAQE4O3tTWBgIElJSVYuadFJS0ujZcuWxsEB\n9voskpKS6NevH40aNcLPz48//vjDbp9FUFAQjRs3pmnTpgwaNIhbt27ZzbMYOXIkbm5uNG3a1Ljt\nbp89v5Nhizzop6WlMXbsWEJCQggPD2f58uUcOXKkqIthNU5OTnz88cccPnyYPXv28Omnn3LkyBGC\ng4MJCAjg+PHjdOnSheDgYGsXtcjMnTsXPz8/YzOgvT6LcePG0a1bN44cOcLBgwfx9fW1y2cRGRnJ\nl19+SVhYGIcOHSItLY3vvvvObp7FiBEjCAkJybItr89eoMmwZnUDF8Dvv/+uHn30UeP77KN97M0T\nTzyhtmzZonx8fFRcXJxSSqnY2Fjl4+Nj5ZIVjaioKNWlSxe1bds21aNHD6WUsstnkZSUpOrVq5dj\nuz0+i4sXLypvb2+VkJCgUlJSVI8ePdTmzZvt6llERESoJk2aGN/n9dlnzJihgoODjcc9+uijavfu\n3Xe9dpHX9GNiYqhdu7bxvT1P3oqMjGTfvn20adOG+Ph43NzcAHBzcyM+Pt7KpSsar776Kh9++KFx\ndjdgl88iIiKCatWqMWLECO6//36ee+45rl27ZpfPokqVKrz++uvUqVOHmjVrUrlyZQICAuzyWWTI\n67MXZDJskQd9GcmjXb16lb59+zJ37lycnZ2z7DMYDHbxnNavX0/16tVp2bIlKo/xBPbyLFJTUwkL\nC2PMmDGEhYVRoUKFHM0X9vIsTp06xZw5c4iMjOTcuXNcvXqVpUuXZjnGXp5Fbu712e/1XIo86Neq\nVYuoqCjj+6ioqCzfVPYgJSWFvn37MnToUHr37g3ob++M2c+xsbFUr17dmkUsEr///jtr166lXr16\nDBw4kG3btjF06FC7fBYeHh54eHjw4IMPAtCvXz/CwsJwd3e3u2fx119/0b59e1xdXSlVqhRPPvkk\nu3fvtstnkSGv/xPZ42l0dDS1atW667WKPOi3atWKEydOEBkZSXJyMitWrKBXr15FXQyrUUoxatQo\n/Pz8eOWVV4zbe/XqxZIlSwBYsmSJ8cugJJsxYwZRUVFERETw3Xff0blzZ7755hu7fBbu7u7Url2b\n48ePA7B161YaN25Mz5497e5Z+Pr6smfPHm7cuIFSiq1bt+Ln52eXzyJDXv8nevXqxXfffUdycjIR\nERGcOHGC1q1b3/1ilu6AMMWGDRuUt7e38vLyUjNmzLBGEazm119/VQaDQTVv3ly1aNFCtWjRQm3c\nuFFdvHhRdenSRTVs2FAFBASoxMREaxe1SIWGhqqePXsqpZTdPov9+/erVq1aqWbNmqk+ffqopKQk\nu30WM2fOVH5+fqpJkyZq2LBhKjk52W6exYABA1SNGjWUk5OT8vDwUAsXLrzrZ58+fbry8vJSPj4+\nKiQk5J7Xl8lZQghhR2S5RCGEsCMS9IUQwo5I0BdCCDsiQV8IIeyIBH0hhLAjEvSFEMKOSNAXQgg7\nIkFfCCHsyP8Dzvtn19hLMloAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again the answer is yes! Because we are relatively sure about our belief in the sensor ($\\sigma=30$) even after the first step we have changed our belief in the first position from 1000 to somewhere around 60.0 or so. After another 5-10 measurements we have converged to the correct value! So this is how we get around the chicken and egg problem of initial guesses. In practice we would probably just assign the first measurement from the sensor as the initial value, but you can see it doesn't matter much if we wildly guess at the initial conditions - the Kalman filter still converges very quickly.\n", + "\n", + "What about the worst of both worlds, large noise and a bad initial estimate:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "sensor_error = 30000\n", + "pos = (1000,500)\n", + "\n", + "dog = dog_sensor (0, velocity=movement, noise=sensor_error)\n", + "\n", + "zs = []\n", + "ps = []\n", + "\n", + "for i in range(1000):\n", + " pos = update (pos[0], pos[1], movement, movement_error)\n", + " \n", + " Z = dog.sense()\n", + " zs.append(Z)\n", + " \n", + " pos = sense (pos[0], pos[1], Z, sensor_error)\n", + " ps.append(pos[0])\n", + "\n", + "\n", + "p1, = plot (zs,c='r', linestyle='dashed')\n", + "p2, = plot (ps, c='b')\n", + "legend ([p1,p2], ['measurement', 'filter'], 2)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXmcTfX/fu69M2NmMIxtLGOM7GPP8rWWLGPJGimJbBVF\nSrKVUEKSoqJEFFlSQkTysyYUIRrL2I19X2afe8/vj2fe8znnbjMYDM7zes3rzr33LJ9z7r3v572/\nLZqmaTBhwoQJEyZSYb3XCzBhwoQJE1kLJjGYMGHChAkDTGIwYcKECRMGmMRgwoQJEyYMMInBhAkT\nJkwYYBKDCRMmTJgwIEPE0KNHD4SEhKBixYppr40cORKhoaGoWrUqqlatihUrVqS9N3bsWJQqVQpl\ny5bFqlWr0l7fvn07KlasiFKlSqF///6ZeBkmTJgwYSKzkCFi6N69O1auXGl4zWKxYMCAAdixYwd2\n7NiB5s2bAwCioqKwYMECREVFYeXKlXjllVcgpRJ9+vTBjBkzEB0djejoaJdjmjBhwoSJe48MEUP9\n+vURHBzs8rq72rglS5agU6dO8PX1RXh4OEqWLImtW7fi9OnTuH79OmrWrAkA6Nq1KxYvXnybyzdh\nwoQJE5mN24oxfPbZZ6hcuTJ69uyJK1euAABOnTqF0NDQtG1CQ0Nx8uRJl9eLFCmCkydP3s7pTZgw\nYcLEHcAtE0OfPn1w5MgR7Ny5E4UKFcKbb76ZmesyYcKECRP3CD63umOBAgXS/u/VqxdatWoFgJbA\niRMn0t6LiYlBaGgoihQpgpiYGMPrRYoUcXvskiVL4tChQ7e6NBMmTJh4KFGiRAkcPHjwto9zyxbD\n6dOn0/7/+eef0zKWWrdujfnz5yMpKQlHjhxBdHQ0atasiYIFCyIoKAhbt26FpmmYPXs22rZt6/bY\nhw4dgqZp5p+mYcSIEfd8DVnlz7wX5r14aO+Fw8G/dLbLLIU6QxZDp06dsH79ely4cAFFixbFqFGj\nsG7dOuzcuRMWiwXFixfHV199BQCIiIhAx44dERERAR8fH0yZMgUWiwUAMGXKFHTr1g3x8fFo0aIF\nmjVrlikXYcKECRMPNIoUAf7+m493ARkihnnz5rm81qNHD4/bDxs2DMOGDXN5vVq1ati9e/dNLM+E\nCRMmTMBiAbS7NyHBrHzO4mjQoMG9XkKWgXkvFMx7ofBQ3Iu7TAwWTbuLZ8sgLBYLsuCyTJgwYeLe\noGhRYNMmICzM62aZJTtvOSvpXiBPnjy4fPnyvV6GibuM4OBgXLp06V4vw4SJe4eYGMBuv2unu6+I\n4fLly6Yl8RBCkhdMmHiokZx81051X7mSTBfTwwnzczfx0MNmAxITAR/vunxm/VbM4LMJEyZMZGVo\nGuBwkBzuEkxiMGHChImsDIeDWUl30aVqEoMJEyZMZGXY7XfVWgBMYjBxDzFr1izUr1//Xi/DhIms\nj8jIu3o6kxgeMqSkpNzrJZgwYeJm4OcHLFtmVj7fbwgPD8eECRNQqVIl5MyZEz179sTZs2fRvHlz\n5MqVC02aNEmbV7FlyxbUqVMHwcHBqFKlCtavX592nJkzZyIiIgJBQUEoUaIEpk2blvbehQsX0LJl\nSwQHByNv3rx47LHH0t6zWq04fPhw2vNu3bph+PDhAIB169YhNDQU48ePR6FChdCzZ09omoZx48ah\nZMmSyJcvH5555pm0+pCjR4/CarVi1qxZCAsLQ968efHll1/i77//RqVKlRAcHIx+/foZrv+bb75B\nREQE8uTJg2bNmuH48eOGtX311VcoXbo0goOD0bdvXwDA3r170adPH2zevBk5c+ZEnjx5MuvjMGHi\nwUPp0kB09N07n5YF4WlZWXS5Wnh4uFa7dm3t3Llz2smTJ7UCBQpoVatW1Xbu3KklJCRoDRs21EaN\nGqXFxMRoefPm1VasWKFpmqb9/vvvWt68ebULFy5omqZpy5cv1w4fPqxpmqatX79eCwwM1Hbs2KFp\nmqYNGTJE6927t5aSkqKlpKRof/zxR9r5LRaLdujQobTn3bp104YPH65pmqatXbtW8/Hx0YYMGaIl\nJSVp8fHx2qeffqrVrl1bO3nypJaUlKS9/PLLWqdOnTRN07QjR45oFotF69Onj5aYmKitWrVK8/Pz\n09q2baudP38+7frWr1+vaZqmLV68WCtZsqS2b98+zW63a6NHj9bq1KljWFurVq20q1evasePH9fy\n58+vrVy5UtM0TZs1a5ZWr169dO9vVv3cTZi4ayhVStP27Ut3s8z6rTxYFsPIkSp6r/8bOTLj23va\nNh3069cP+fPnR+HChVG/fn3Url0blStXRrZs2dCuXTvs2LED33//vaGrbOPGjVG9enUsX74cANCi\nRQsUL14cAPDYY48hMjISGzZsAAD4+fnh9OnTOHr0KGw2G+rWret1PZrO7LRarRg1ahR8fX3h7++P\nr776CqNHj0bhwoXh6+uLESNG4Mcff4TD4UjbZ/jw4fDz80OTJk2QM2dOPPfcc8iXL1/a9e3cuRMA\n8OWXX2Lo0KEoU6YMrFYrhg4dip07dxpmcgwZMgRBQUEoWrQonnjiibR9NbM2wYSJjMFsoncbGDmS\nN8/5zxsxZHTbdBASEpL2f0BAgOG5v78/bty4gWPHjmHhwoUIDg5O+9u0aRPOnDkDAFixYgVq1aqF\nvHnzIjg4GL/++isuXrwIAHjrrbdQsmRJREZGokSJEvjwww8zvLb8+fPDz88v7fnRo0fRrl27tDVI\ni/SzZ89m6HoCAgJw48YNAMCxY8fQv3//tGPlzZsXAAxjWwsWLJj2f2BgIGJjYzO8dhMmTMAkhgcF\nem1YWjoULVoUXbp0weXLl9P+rl+/jkGDBiExMRHt27fHoEGDcO7cOVy+fBktWrRIO06OHDkwYcIE\nHDp0CEuXLsXEiROxdu1aABS2cXFxaec7ffq0oY2Ec0uJsLAwrFy50rCOuLg4FCpU6KavMywsDNOm\nTTMcKzY2FrVq1Up3X7PVhQkTGUBCArB/v5EYli+/o3UNJjHcBYhwf/755/HLL79g1apVsNvtSEhI\nwLp163Dy5EkkJSUhKSkJ+fLlg9VqxYoVK7Bq1aq0YyxbtgwHDx6EpmkICgqCzWaD1cqPr0qVKvj+\n++9ht9uxcuXKNPeTJ/Tu3RvDhg1LCxKfP38eS5cuvaVr6t27N8aMGYOoqCgAwNWrV7Fw4UKv+8m+\nISEhiImJQfJd7AFjwsR9h3Pn+KgnBl2yyZ2ASQx3CM4au8ViQWhoKJYsWYIxY8agQIECCAsLw8cf\nfwxN05AzZ05MnjwZHTt2RJ48eTBv3jy0adMm7RgHDx5M8/fXqVMHr776Kh5//HEAwKRJk/DLL78g\nODgYc+fORbt27TyuBQD69++P1q1bIzIyEkFBQahduzb++usvj9t7u762bdti8ODBePbZZ5ErVy5U\nrFgRv/32m8djyb0AgEaNGqF8+fIoWLCgYYa4CRMmUnHxInD1KhAeDpQvr16/w9a22UTPRJaH+bmb\neChw5gygi8cBALJnB0JDWf188KB6/fPPgX79XOIOZhM9EyZMmLifMX06kJSknhcqBDjPm+nVC2jY\nkC0xdu4EDh26K0szicGECRMm7gX69zcSQ1CQq4vIZuM2NhtQtSrQtOldWdp9NajHhAkTJh4YaJqR\nCDQNsDrp6lYrkC0bUK8esHcvUKIEX3/6aWDbtju2NJMYTJgwYSKzIUL+xg3GCTxtoycGh8OVGGw2\noFgxYNAg4MoVoH17vh4SAsyadUeWDpjEYMKECROZD+ki4C0V29lCcEcMjz8O+PsDVaoAu3cDXbpk\n/lrdwCQGEyZMmMhsCDHY7d63cbYYnGMMjz9OV9K///J57dqZu04PMIPPJkyYMJHZEGLQ9R9zQXIy\naxQEAwbQXaRHhw6ArtAV+fKp/zWNrqo7AJMYTJgwYSKzIbUE3iyGAgWMxLFsGXD+vHGblBTA19f9\n/kuWADlz3t46PcAkhkzC/v37UaVKlbR2FR988AEAzkMoWrToPV6dCRMm7ioy4kqyWo0Faj4+JAI9\nkpOBa9fUcyly++47QN/hYOBAV1K5DZjEkEkYP348GjVqhGvXrsFut+Ptt992u114eDjWrFlzl1dn\nwoSJTIOmAdeve9/GZgPatKFV4AkWi9Fi8EQMe/bw/+bNgalT+b/z+X/4AdA10rxdmMHnTMKxY8dQ\np06ddLe7nZJ12c/sSmrCxD1GUJD3NtjZsgGLF3s/RkYshj//BAICgCZNOPf5yBG+LjLgmWf4aLeT\njDIJpsWQCWjYsCHWrVuHvn37ImfOnOjcuXPaaE09unTpguPHj6NVq1bImTMnJkyYAMD7uM8GDRrg\nnXfeQd26dZE9e3YckS+GCRMm7g3i4/l4uz2JMmIxAMD//R+Fvo+Pck29+iof58/no0kMWQ9r1qxB\n/fr18cUXX+D69evw8/Nzq9XPnj0bYWFhWLZsGa5fv46BAwfi5MmTaNmyJd59911cvnwZEyZMQPv2\n7dMG9ADAnDlzMH36dNy4cQNhYWF389JMmDDhDBHO3jKO0oOmAW3bqqZ5djuwcSO7qOrx0Uec92yz\n8e/0affnNYnBM9xN9byVv8xARt1Fc+bM8Tru02KxoFu3bihXrhysVit8fEzvnwkT9xTy23YnoDUN\n+PDD9K0JhwP44gtAJis6HLQInBU/fa8kHx9g0SJlsehx4UL6cY+bwANFDO6met7K391EeuM+AZhZ\nTSZMZCV4IwaHAxg2LH0N0107DHf7WK1AnjzAo48CRYrwNck+ypbNuG1MTMbWnwGY6ucdgqcAsbsx\nm126dMG0adNu+lgmTJi4B/BGDCkp1Ozj4tgjae9eoGxZ98dIr4EeQEuhdm2gbl2VkSTpqz/+CERF\nARERQJ06pispq0M/vtIZISEhOKTrqe5t3Kf+eCZMmLgDGDwY0E0vzBA0DciVi9lCguHDmUEkxCBu\nHU8ppBnpkwTQUmjYkFlJy5apbQGmsT7xBP+32bzXTNwkTGK4A9CPr5TngqFDh2L06NEIDg7GxIkT\nvY77dLe/CRMmMhF79qiZyhlFrlzA/v2uxzl7VhFDegVuGemTBAAVKtAiAFRDvpQUxiI2b1Zr95TR\ndIswXUmZhLVr16b9P3PmzLT/GzRogOPHj6c9b926NVq3bm3Yt2bNmli3bl26xzVhwkQmw9fXewdU\nPX7/nZq71cq21wAtgipVGAcQ4XztmhLSnjKXSpdmUPnIEaB4cbqdxo0DduzgQB5BeLia6qZvs3Hs\nGNC7t9rOtBhMmDBhwgn16gH79t38fhklhthYFpg5N62z24HoaGDrVhKDBIRFk/ckrE+cAPLnVxlG\nFgtdWlLlrD++ICiI8QYhHb2FULs2kDdv+teRQZjEYMKEifsf588bXTHr1gEJCd73WbKEAVxpae0N\noq07x/v0gtvHB8iRg7ObhWw8EUNQEEkpvcpn/f7XrgGtWwMlSwITJgAzZvB1h4NEU61a+teRQZjE\nYMKEifsf4tsXPPEE8O233vf56CM+pkcgAAV4jhyqm+mNGxTIesEtXVBtNgamu3XzLKxtNh4zI72S\nBH36AOvX042lP6/dDsyenf413ARMYjBhwsT9D2diANKvTJb3W7RI//jOweHixVlUpj+Hvz8ffXxo\nEcycCQQGGo/TooUxA0lvMdhsrsSQlMTH6tVZKe0cuxg1KtOrngGTGEyYMPEg4Phx4PBh42uhod73\nEeGa3nYABW+9ekDHjsw+unCBQl00944dWbMg27rLEHI4gBUrgMREprdmz24kFuemes77SoA5OZlF\ndACtCJMYTJgwYcIDJHsHAIYMAcqU8b69COWMCNUcOeiuWbjQqLXLRDV9Q7xChdynnsp5rl9nRlG7\ndsxOAhisnjoVqFWLz9evBzZtUk3yxO10/rzR9SXurEwmhvsqXTU4ONjM6X8IERwcfK+XYOJuo3Rp\nYPlyoFSpjG1ftqwxK2fs2PT3uRliAJQ2f+KE2t/HB9i2jX2PVq0Cdu0CevZkgNgTkpOBixeBadOA\n8eP5mt3OhnqPPsrna9bQgpAaBn9/WkR79rjGF+x2xjxkXZmA+4oYLl26dK+XYMKECT00jYJOmsFl\n9rEzivz5vfcnunYN6NwZ+OUX9dr27cA776geROlhyhQ+1q7NRyGWatUYeN6yhS6tatUYeAaA334D\nvvwS+PlndZx//wV69XKtfNav39+faxbS6t6df7t38zwCPz/GMfz8WGeRSTBdSSZMmLh1TJ/u2swt\nM+A8qyA9WK3etz90SLWUAFiX0KABULmy55nKznAuQtVbEPv2kRQAWhEXL7JCevVqnku/trg4CnJv\nvZKGDWMcw2rlJLg8eYCXX6bLScZ7fv45cOoU73+XLmaBmwkTJrIIQkKAli0z/7jeArGetvdGDM7W\nRLt2FPTffUdyu1kULqxaZP/4I7Bhg3rPxwc4c4Ya/2efMSahF9p6YvjvPwaj3fVKunGDrrQ2bYAO\nHWh1+Phwe4DEcS97JfXo0QMhISGoWLFi2muXLl1CkyZNULp0aURGRuLKlStp740dOxalSpVC2bJl\nsWrVqrTXt2/fjooVK6JUqVLo379/pl2ECRMm7hHuQOATBw9SA78Zi+Gdd5Q/HgA++IBDbQTOQvfY\nMfX4338MXLubcyBITGQsQfDnn+p/mapYvTof9b2SEhNJDJrGmc2DB/P9AwdoVbRtyzW465U0fz7r\nIR57jM8tFt5rX19mSDVqpMgzk3slZYgYunfvjpUrVxpeGzduHJo0aYIDBw6gUaNGGDduHAAgKioK\nCxYsQFRUFFauXIlXXnklrSFcnz59MGPGDERHRyM6OtrlmCZM3BeIizP6eR9mSBplZkLmDdwMMTRs\nqKahASSKAwfUc2ehW7w4H2024NNP6aopUMDz8S9eZDbRjBnMUJKEiOhoWgWAckldvWokmY0bgREj\n6MoaN44uJsHBg/w+FS1KMnPujVaiBPDkk+q5jw+L7DZuZIM9fQD9blsM9evXd8kMWbp0KV544QUA\nwAsvvIDFqYOvlyxZgk6dOsHX1xfh4eEoWbIktm7ditOnT+P69euoWbMmAKBr165p+5gwcV9h7Vrg\n+efv9SqyBux29+2iM4I9e4BWrVxfdziYttmvHzVqgH580ZydkZRE144zoqLU/85rlJnJ+tefeoqP\ncXGu09D0DewOHSI5AMbU0fbt+bhzJy0K/ZjOceMYhNYfV2RqbCwF+549TIcFVLEcQFIS6Gsk9HGY\nihWBYsWQWbjlGMPZs2cRktphMCQkBGfPngUAnDp1CqG6gpHQ0FCcPHnS5fUiRYoYZg6YMHHfwN/f\ndQTjwwp/f8+a9rVrrgFbPS5fpnbtDEkDzZuXVsDZs8Cbb1JLdoeUFEDnynYLIYD4eAr5Vq1oKWzf\n7rrNjBmqgEy/JoDkVKCA2lavpdeqRa3/iSeYqSWCv1EjCvQxY3i9LVrQ7SX7yswGq5W1DOJakkru\nCxfUOXr0SCPIuAQrfkluhlXzLuK1LyPQa1lb7/fgJpAp6arO8wcyAyNHjkz7v0GDBmjQoEGmHt+E\niVuG8/SthwGxsRT027YBP/0EzJrF15s2VembzvjwQwpDT0HklBT3bigJxIaHs1gsJkZp0p6O424W\nuv4zKleO6wgIoEunUSPlAgJocei7ljofT9NYIV2kCEnj7bdJinp3V4UKnLS2bh1J4bnn2Ebb15ck\ncOWK0fUj59MTA0Ar5KuvgL59jXGDKVM4qQ0ssm7XNjvi7E/BOvBjFLwUhUrVskC6akhISNpc4tOn\nT6NAqtZQpEgRnNAVWsTExCA0NBRFihRBjG4maUxMDIp4yR8eOXJk2p9JCiayFB4GYli+HHjjDfV8\n9WpW6yYkGFtP//WXcsE4o1w59gzyBE8CXYhBAtvpZSd5Oo7slz+/igmVL6/WJEJ64ULWHaRHDFYr\nCXL6dKBmTUpnvcUgldc2G4lm4EB1PID7duumrCR5XSbBCTFIA77HH1fHLlUKiW2fwUcfkW/q1QMG\nvGnFscRncfS357DlkWhMmzbS+326CdwyMbRu3RrfpnYv/Pbbb9E21RfYunVrzJ8/H0lJSThy5Aii\no6NRs2ZNFCxYEEFBQdi6dSs0TcPs2bPT9jFh4r7Cw0AMV6/ShSOQuQWrVtFiEHirN8idG6hf3/M5\nPGU0RUQweCwCWrJ+PCElhUJZnzUEqHYVFy6o8Z1JSaoYT4R6+/ZMuRXL588/VUtrQbZsrHl48UUG\nx6OijN1RO3VS7StsNgaMpQGenjzWruV9eeEFNewnMpKPQgzSUfWzz9hPCcC5V0ehaVMWRDf8Xyw2\nv7sCL72U+jW8Vy0xOnXqhPXr1+PChQsoWrQo3nvvPQwZMgQdO3bEjBkzEB4ejh9++AEAEBERgY4d\nOyIiIgI+Pj6YMmVKmptpypQp6NatG+Lj49GiRQs0a9YsUy/GhIm7Al9f/rgfZDinT0o6pDMJeKs3\nSE9gedL0Q0L4d/o0XUn60ZvuSFk075gYlTL63nvGdhoSE0pKoua+bp0qSLNYSApCDNHRxr5LAGMd\nH3wAVKqkXnM4SBZWq5EghZD27AHmzaNbyTnbqE0bBtQnT2ari7FjaYk88YQKbD/yCHDjBvbuJVc+\n8wwwdy5g3XMIeH4w0L85t7tXxDBv3jy3r69evdrt68OGDcMw5+ANgGrVqmH37t0ZWpin74wJE/cc\noaHGQfD3KyZOZGO4HTtc33OuxPX1dZ8n762wLE8eoyB1RsmSnn/kdeoAH39MYS2auKeeWQUL0jLR\nE9Tw4er/iAhFEklJzHSSlFjB2LF8b8SINC3dBc7X6XAwzvDPP8CcOcD33zP9tFs3xg3276cl4Q7H\nj3P7AQNo6UyfzhjFmjWGzebPZ6jh66/ZginNQtB/NsnJrIDOyMChDCLLVj5n4jWaMJG5SEhwL0zv\nN6xcydRKd3BnMSQnu2rrsbHGdEo96tcH3n/f8/mLF2cbak/YvZvnk+E4ly4Zzy9EVa8eXV+eCKpp\nU9YOtG5Nt1KvXuq9V14B/vgDGDlS7T9kCDV6ZzgryLJ95cpUFKKiOIPh//6PzxMTWQEtNRN69O1L\nApowgZaBjw80WHDhAj1nS5eyn96QIeSKXr1SL33RIpKQZHQuXUpLqU4dtsjIJGRZYti06V6vwIQJ\nD5DA6P0Ob/UHa9YYp4KdPElB/fTTqgMoQJVWevfcLPz8qKXv3u3aGdRiUYRjs7k2utu6VRWUxcTw\nWM7EEB3NbqcTJ1JA//IL/fb6hn/FijGWkpSk3DFWK8d+7tplPN7ff7u/jkOH+CcIDKRFMncuj3n0\nKC0DPXTEezk5B35NaYJHD/6A/PmBBg00DO12CiNH8hIqVQIJ54031PVICmubNkwKaNtWtcrIBGRZ\nYtBXnJswkaWQyVWm9wxt27IHjzs8/TSrbgVJSdS4/f2NrpYKFViI5g579wJvvcX///kHkDY4Fy6w\n0MtioZBu1YoxAT2sVuXzt9lchb7EBwBacIGBrrGOp55SJCbvTZ5M37/g4kV1DyQDSoSPuxoLPWRs\n59y5tBIEgYHA//7HGglxlf34o6H25UxKPoy5+iqaN3UgrGEJTMBAdM7zK1Jgw7FW/fBfYim0LroD\nvudPcYcePeh6kuPpq7w1jffxYSAG02IwkWXhTlDda3z3nRLCGUXv3p7rA/LkYZqnQFJI69Uztnf2\nFvi8coVuGoDBXIkvDh3K+QUAs32OHTM2odu+nftZLFSX8+RRxxHo02Dj4+lz+d//1GvDhzPbqG9f\nPteThqeMsjVrGAiWGQmSLpqSwglt+/fzefnyJAP9vXnpJZIpQGJ47DGuXQR5njw4VKcLxjVchXZY\nhEcOrcKSy/XR4cl4XEjIgTVohIH5v4MNDt4bq5XV0vo24dIrCTCeX9N4HyULKhOQZYkhISFT506Y\nMJF5SE52zVq510hISF/DvRk4N2UTYrDZjG22vfVK0mfq6LOJcuakGygxUbV+0B9DfvirV1M4litH\nP7we5curNhjx8UDjxsaWEKNH01mfkkLyk75JmkaBL35//bWsWeM+qcBq5TFOnuSM5aJFVb+jdesY\nn3AOBp87B1gsOJG7IkZiBOrvmYKaq0bj3+DH0BE/4DjCsBW10LP8FmRDEof2vPOOOobNxjhW797G\ntQjR6GdJP0wWQ506pjvJRBbFrl1ZLysps+MePj7G47lrCw1475V06pTSsvVZTkI6/v6qd5AQw549\nbIndpg1dUTduqKE1zZrxmADTWHfsUDn/Em+Ii1Ouol27eJ7vvlN9kzSNhCKZTnpUq+bacyklxXh9\ndju19UaN+FzWf/SoCmpPmADt2Wfx8YmOqOrYhqvIheEpI3Diw7mY+85edMJ85ENq/GTaNHWe6Gh1\nHqtVVUTrIfdJ//27fJnrFtdWJiDLEkPduqY7yUQWRbZsKl8+q+DkyVsPAushA+6lZYPDQY3cEzHk\nyEFXjzssXWqs8pX/9TGaFi34KMfWt5G226n1lyzJpne//WY8RoEC3E7IAmAhm4wHEAJatky5WQoV\n4lCb/fspyMVVU768exeTcyvutm2ZNpstG8lGiCkhAahSBXjzTSzO/yLq4Q/MPN0MW/E/fJJ/LCIj\nTiJwxmd0VRUqBDRpwv1S679cuvVarbROvv7a+LrUfuktBoDpts5xmttAliWGOnVMYjCRRZEVK5/n\nzTP66W8Vly+zQKtSJeaMv/cehVDp0nS/fP898NpravuXXlJjLJ2hj8McOqSyevTWiLiSChXio7Ti\nFwvo2jWSw5w5fD0piSQoBGKxGJv46bXsdu1YlwAwCH3lCtNj8+Sh62X6dEUYNWq4t7iEGKSGomBB\n9n86d45kktq8b2dgHXy7ogDaH5mAN//rjtfxKbaNWYUSOMxzRUXxfgYEsFWGs/stKcn4nZo8mYUL\nYoW0bk23WvnywOuvq/XUqMFHiW9kErIsMVSrxlkd+rYsJkzcc5w7x0yWrEYMt4I//+TwGD2Skyns\nZs5kDYK4XC5eZKpnfDxrFwSHDxt7+ugRHq7cG3Xrqtf1DeQCAoBff1XpnNKGQ4jBOcifnMwCw7/+\nAjZvNmaKURgWAAAgAElEQVQDOePaNVWhbrVS+ObLR5KQ2ELOnMCkSXRdyZo6dlT7CdGIhn7xIl1J\nqQL52qUUvIXxaPrzy1j0fRxq1wZ2NByIp/Ej/AulCm99F9WxYzmi07lY0M9P1WsAbIikx5IlnPkM\nAJ98ws6zAO9D/vyeP4NbRJYlBn9/1o1IixMTJrIExo2j0MxqxNCunee0UU+YOlVp6AJxjRw/ThKU\nGMH06Xzvn3+Ab77ha6+/TkvlwAFOQXNGjhy0PLZto1YvVoHFolxx/v4kJ+kXJAHUfv3cE0NSEgVo\n9uzsQPrrr3z9q6/YdkKffTR+vGr7bbFwXwl6CzEEBdECqlZNkeT+/STHli1Ve4u2bRncfustHPgv\nCa8cH4zq+BuFhnXHfpTBhseGY0n5tzFwIBCULfUa1q/no94S2biRpKKPZQwdSotM3GliHWUUyckZ\nn1udQWRZYgDMOIOJLAgfH/6A9VO4bhX//ssGOJmBbNk8+/o9wV02kbhWjh83CrScOdWISoCukdhY\n5WqZNMn1WHY7A8BDh6omfPp9AeNAGkARQ926JIsPPzS+f+0a17h5M/Dtt2q9f/9Nd5UQyUcfUcsX\ngVm2rMqg+usv4Nln1XUBzDT68EM2CJTCtvh42ANysGfTsmWY0fYXFF85BZXwLy4hDyahPy7+uR9L\nC76MMrnPqnNLKm1SEtuTf/ml8Rr27mVVePv2rBVJSmJG0iuv8Pugrx/JCMaN89zG4xaRpYmhfn1F\nuiZMZAl8/DFQpoyxwOpWcf165uVk38okNXfEIMJ75kz12ttvK2IQlC9vrOdwdmWsXUut+JFHuC59\n+qsEt594gvEDfRfXwoVZe9CyJbVo/Rpr16bbpEABRQji6pHUWBH0AwcyGOzjo9wPco8uXybBAEqI\nv/gis5dGjcI+lMEwfIByf0yDjw9Qo1le5D6+C+/OLoUv0RtnUBDz0Ql18Sf8c/gwrbZcOcYFWrVi\ns72ZM7nGF15w3xIjOprB9JdeYjBcejnNn8+BPzeDl182pt1mArI0MTRsyGC93qVpwsQ9hcPBzJjN\nm2//WDduGOcS3yyGD1dVu8WKGUdJOiMxkQJID3fEoBf+AQEsHEtJocB17pVks7F/kbtjNWtGrbxH\nD7bqFhcQoIghe3b2/tG3k0hKYoDXYqF1Urq0eu/PP+mLDwpSlsX69UCDBqrLa716zIaSY2XLRi1c\nitCOHzdOlRs/Hnt/PYLh08NQ+73maLZ3Iurn+hdxCMSM4h9g3z5g4vDLWF+gI44+OwRNsQq5oasX\nsVpJknJty5aR6KTdB8D2Hc74+msSxqBBJK2Mxgi2bOHAHsHcucYpdJmELE0M4qI04wwmshSyZ8+c\nyucjRzw3oMsIvvtOzUbo1Qvo2tXztvHxRt/19evsMeSM8uXV/xMnMlgaG0t3SGIiM2UEBw+qeIMz\nMdjt1NbF9eRwKCtLiEG03A0b1GjOfv0YZBULQNwq+uK4hg2V0D10iEQtXV59fNQc6W3bWA0+axaD\n1L//zowi3UjhL37Ij8c6h+IKcqP/E/+inWUJDizZh0/xBurE/x/KRBZD/acLorL/fvjuc+oMXb06\nBfO+fUbLz8+Pz5cs4XN3/v9WrYwk268fU3JPnSKxDBli3H7SJGZYHTqk5lUDQOfObBKYycjSxADQ\n1ehcDW/CxD1F4cKuqY23Mr/8dgvSbiYAHhBgFFDduzN109mKEOjrNKRT6MCBqrBq0SJaAgJ9+2yp\nhTh+HOjTh6+tW0eXFOBKDEOHqlGhhQrx/ooFIOfTNP6FhzNYLISaMye3ddf+O3duVeMgBDV7NrB2\nLfahDFphKSZNAv6evR+f4TU8W2UfXs45V3X3Pn1akZk7N92rr7LWYPRoYzWury8tpd9+43Np2vfs\nsyrN9PXXjcesVInWQ61ajD1JfYPg9ddpZbhre5HevOtbQJYnBjPOYCJLISiIWqizUA8NvXm30O0S\nQ58+TK20WOjn7tzZ87bOLS6kO+d337lu++qrtCZy5GCgNHX4PKxWBnHj45kFVbIk/fi9e3Oby5dZ\n6CXX1bWrEqynT/NYAN1eCxca/eL6/kv/93/Uth0OtY1ULgO0jsSF9cwzJJnu3VXRGMDPaM4coFQp\nnD0L7D0agHEYjGdiPkbEj6NQA3+jLPZhzx4gPDT1vvz4I68xNJTPRQiHhNC627iRz+vWpSWVOtoY\n0dGsI5BaAl9fxkLq1eNzIYYnn1QW17x5ri3PpYgwMlJ9Pnp4mpaX3ujTW0CWJ4YGDeiic1cdbsLE\nXcXrr1Mo2u2uQj1fvpuf6tawoetrx465Vtt6Qp8+9JsD9P+LsHQHcfWIYKlVS6ViOuPMGf6lpNCF\ntHw5XxfNXDKJsmUjUSYkkAAKFaKrRghITP1HHuFrYuFUq+bac0nvipLWED//zHsOkExkf5tNDcDR\nNNzQsuOZj6qj5vOl0bw52yaVmdALTd+qiOzrlyM8zI5mgythC2qhfuA2TGyzARfDHsVHGESZLede\nt4731Dm7q359Zi0lJzNIXb48NX9phxEba7Te9G29AVWR/vzzLFSrV0/FHfRN8rZt4+cPeFYa3BHD\nHWjomOWJISiI9Sim1WDinmPSJLaOXrKE2rJeU7vZ8YqXL1NYinYq6NRJDQFKTqbLxhOCgpQQcu6V\npGnKlbFwIbVfvdXwv/8xXdId+vYlcSQk0H0h6ZbO7hSZYbBsGQV4YiLdJc4arM3Ga9H3SoqJ4XHF\nZWWzkYDOnqVwfvlldmO1WnmdZ88Cw4bR/ZXaUuNI6aYYEf08Ku+eg8BAJgV1aXcDPVqcQT98hudy\nr0BUlc443mkIjtXtjMVoh765v0ezaufht2G1KiKzWpnpFBDgvq1EzpyKDO12psJ27crsI01jDcfO\nnXSJyfZ6vPQSG/QtXsxtbTaVqaSfn61vB+5uWp7Fctfavd8XwzObNuX3wblI04SJuwYRdgMGsCis\nbl2jlnizxPDVVyykiogwvu7vT4EM0D3Uvr13V8GLL/Lx8GFjAPT8eWYGXb9Od9OZMyxSE+Hcrh3/\nnCEDZOTa9NaLMzEkJlKg5smj/NxlyqiMI0knfO01Hu/KFV6bzcZ00UceYf2BxcJjt2yphgNJP6UN\nG6idv/wyfv49O/7e3h67d76P8/1L4+DRH/BM+Rv4/LucaN6Ru9U6thx4ObVGoUw3YMteYO12avmh\noSSi117j5/fEE9yuWDGml7qbTfHMM3RTSUFV9+7Glt+CGzfYo6lHDzWzWZA/P88lFdU+Puq7ItaY\nM9wRA0BX3l1AlrcYACpRc+ZkvU7HJu4xrl9XefcZRUzMrfVZkfP4+7vvlSRZOOkhMZGatgRPRasX\n6InBXW66c2vtnDk50nHyZGbHCGR94rufO5d+6/TW+PPPKr1Tnw5YtChJ4PPPGYTevp1C6tNP6btJ\nTGR1sAg8/efSty9bOKxeTa381CkSjj4Ynj07SUWC4akW0D9rrqDHhQ9R4feJGIJx0G7cQNsbczCu\n614cvxyELxYVRvOOOg1dL1ArVuTozOPHSZJLlrDXE8B7/MYb/D9HDnZL1Wvjbduq665fX93PkBDe\na2eEhvLezpjh+d5arRzW88ILxsI7gXw2RYuqQL3g2WdVhbQ+Y6l0adciwUzAfUEMxYvzs/FEriYe\nUrRte3M+xrlz+aOTNgo3AxkdabVSsDkTQ+fOrr5ld6hRg4J0wgSViaOHv7/S0suUMbZOOHbMNY5h\ns7lvt5wnD/eXIOa+fca2zgDdM5UqkahiY2lxJCfz9a1bKfQF27ZRWJ07R/dS9eoktWzZmFdfujR9\n6ALRqqWXUcOGXA9AoZyQoAThmjUM3Napk7b7H2dKYvS5l9Bi1evI73MFH2Iw/sGjGBv8EXrGf44G\ntRMReP2sa/dRvXA/epSfN8DPLjkZqFmTxWhy7/T3UU8qEsiOi6MCIn78EydInno0bMjj6usx3GHB\nAgbgu3Thd6VvX7qXBGXK0GqpVo3T5/SYN49JAYULM/AtWLbM1R2ZCbgviAGg1ev8eZh4yKHv8Z8R\nSF6581D3jMJi4Zdw+HBXYhg9OmPpo7t3K/eJO/z8s7FoTC+srFbj7OOZMynALRbGDPQCw2ZjDYAI\nymvXXM85bhzXk5TE9MguXYznO3uWsRSAAVSLheQkVcOffcbrBmgx6GMWa9bQfRMRwRYTBQoo19XG\njXTn+PpSUFoswJw50BISsRH10AXfoeO6PtiTWBKbm43ChwU+xpP4FdkRR0Jp0ICB8x076L+X+cpL\nlhiJ4bPPVK2Gw6Eqn0XI6787NpuKj1y5Qu28cWO66qpUIZlUrkwyXLfO2M3UYqGve/hwd5+oEeL2\naNOGcQpphifrcTj4HahSJf1jAXekTxJwHxFDq1a0RDOasGHiIcDatWzqllHUr3/75xQt1znA2Lix\n+0Zy7qCfbTBmjOv7om3nzWvsHiq5/QLR6KXlhD7LKFs2Cs0GDfjcOXNm9WpVIZyczHPlzKkEa4kS\nJAnpKhoQ4ForkJioMnPKlyeRnD1LoTp5Mq2f9esZpAWUtbN6NY/l64tts/agXY/cqPbDIFRcMhrd\nMRPlfA9i4xY/zH9lI4ov/sRo6SQkcN9PP2VcBaAW/++/TGkVYnPusVSjhuqVdPUqYwzOvukpU+gK\nio/nORYvpoA+fJixjp071dhP/b5Wq+dUUj327FHpwRERrgWGFSoYra6MICTEOPktk3DfEEPevLSw\nVqy41ysxkaXgqbBM06gx6iGZILea9223A4MH0we/b5/SnAEKnKpV3VcT6zFnDjV9Ef76fHW7nQKm\nY2ok1deXwkLgLJjl/FeuuPZKSkqiy0zcJgUKGN/fsEEJ1uRkEoCk4gJ0iwQH0zdfurR7YtD3Surc\nmbOKv/qK64qOZl8pvVWXKxe15AoVkFC6EkZWX4bWkxqhrOUA+uEzTB0QjQMF6mPY2ddR4v1uXPv7\n76vMpZYtee8lAyswkO/JtS9YoKzB3r2VdRUWxrXIdu6stQoV2OZkzJg00kL27KpWwVkj1RP2Z5/R\nDbZggcooc4fy5RV5HzzINelRpoz7hABvyJvXtUV3JuC+IQaAMRtvsR0TJtLgcDC1VA/nbJGbhd3O\n+EJKCn3u+ipU8Vd7EwwABehzz1EAhIeroi+Ax/Pz4/HdxUHcVfcCLIgqXZr7SWC9YkUlUBs35vPP\nP1eCTt9uW4ghLs5ImjVr0t2UkKCIQf++zaYa4NlsKh323DlaCo8/zvUuWAAcOwZH4VCsTa6HF2NG\noECbWvj7WAH8kxiBsVdfQTd8i/rFjsMa6E9Ckl5J77yjCP2bb1hhfPEiz+Pjw8/h2We5tl27aEUu\nXcr12u081iOP0M00ahTdWFIrIBbMpUu0NoKC1Fxruc/SKtxTlhBAgS7bZbTgKisOe9LhviKG9u1Z\nM3M77WVMPGDwlCIqQkwvyKRR2a3Ma3Y4VOWraJ56f7asI6MdH0NCKBj0Alqavv33H6tkL1wwBjS9\nuSuGDmXNg6wxe3aVrfL77wxmSsqoXI9AXEZxcazMPXOGpDpsGAV/fDwDzxcvAm++qfbbvZvBT7l+\nIYZUd9umTcCA2VXxHL7H0y8EoNQbLfFG1IsoaDuHQysPYvlyoGD5fCpt9MUX1f3QX6tUlDsc7D4a\nFsbz2GyMgThbAa1aUeN3OEjC77/P19euZU8iOZ5omdKQL3duHicx0VXIyGftnF4M0I0l1ltGv1vu\niCExkfd73z4Ssh7vv+9qYdxB3FfEkCMHlSMzCG0CADM4atZ0/57kxjsXBL37rnGamDM++UQJOz3W\nrKHmDVCo6+cWp6SoSlbnhmZr13Itzi6mMWMYgNQjMZEWQ65czK1fuZLr1UN83O6gn3lw6hTdNnJ/\nihalUHPWfAcNYruHn39W2m5ICEkhWzZeY+vWTPN85x0KZYA+3enT1XE2b8a/iw7iu52V8MHepxCB\n/9DhKTv2rzyC0jiAknG7MbneD9gxcS3ev/gq8udP3W/XLmP6pWQu6a0TfdV2tWp0HZw7RwIaN47W\nkLskhIgI7qNP5/zlF9WHSAhB9rXZ+H/u3O5rFQD3sxLGjVPFaTdDDM5r3r6dluTWrSpRQvDuu+5n\nXtwh3FfEANBqvNWkEhMPGJxdG85wOJSPXTBqFNME3SEpicNf3M1a0AvUL780uhvE//z++67uKnFb\nSNqkHlKvIMiXjy4NIR1xLemP9cUX6rm0hQBISMuWKWJYs4bn1Dd3++8/DoMB1H378EPGAz75hPcG\nYEB5+XLGJVJSFAGkpHCN8fFMcw0KwqXy9fHGY9tR673maLr9A6w6Ugpnd53GFLyCQ5/8guV4EiMx\nCmP/bownU5bAsn4djyUdQm0212lcixaxIlifPTR/PgvFbDZ2GT14kKmbElB2Lk7r14/3oHBh3kd9\n2q8QuhBDSAgD0j/8wNeyZzfWi4iV8O23VA4aNzZ+hxwOklNYWMaJYdMm11RrsUS7dVPzsfW4i66n\n+44YWrRgIsrp0/d6JSbuOfr1Y5qmN0ifGoBarrcg1blz1GD1JLB/P9tP610v8fHUrkXA2O3UMN95\nxzV1UHzP7jB4sPG5+LcvXuQxExKMtQ7O1dWDB6usIel0KgFlh4PZOvo8eUC5mlq2VFpxSgrJ4MgR\nPr9yhamXzo337HZosGDPQX+M+SQAA7WPUP7AIpxOyoNReSZjX2gTzOm2GpPRHw2wHoHZ7Lz+Zs24\n/+XLKqtLzgVQ4DVqpKyF3bu5hhkzlOAPC+O+f/3FH39KCi0/EaYVK6qYgaYxnnL4MPfduJHXK+85\nHIy/yHAcgPdixAhXKw5gNlv58hTYr73GhoH6ehLJMouPzzgxuPOH79unSNLb9+Yu4L4jhoAAfnYL\nFtzrlZi4a+jaVY1b1KNePc/DadxZEgcOuD+OQDR4fdXumTMUrkICffoA06bREgkJ4Wve2mHoiatG\nDa75uecUsThXN8+axeK3lBS1DiEl5/PkyuXaCE+0StlH0ygYjx41bte4sZqzLOcR68THh+c6cyYt\nOP47GqPunN743/+YAbtusx+uWnJjXamXMO+xL9F09wTk6tnBSHbjx6sZCQD98O++y7jA4cOqY6oI\nVbkXI0fSlfXXX7wem41rWbiQ71+4oDRDIQ6AcZkWLZTb7rff+N7q1Sp2IcTw99+uLsUiRVjV7Qzn\nhn8DBhivc+FCav+LFmV8vGqFCiQaPYTUf/5ZXasepsXgHd27UyEwaxoeEsyezZbIAAWyfg4AQCGr\nHw8JKMHRo4dxO2+mpnyh9MQgfnshht69KVyqVzc2VvNEDEFBjDNMn07htmkTfaFbttBXXqmScXsf\nH54zMlK5OvQjMTdvVvOKZX16iGCSfPi4OArjLVuY+y+urvr1lfCR7Co/P5Uym5ICxMfjzLhZ6NAB\neAnT0L7ELgwbRiNs1dTD+LroeyhTNA6WXEFq7YAi6+3bea8kndJiofAT95bcU4uFpKwXviLwLRaS\n2FtvqTYR+mt+6ilg6lT+P2cOYyoSB9E0ZhytXs3/a9ZkvOTDD12/L4BrQSFARaJbN6NQzp7d6DIM\nD2eqcr16GS828/NzbefSrRuTCNq2vfnxnpmM+5IYHn+chDtt2r1eiYm7Bvmx79unfLNXr/KH/PLL\nHAeph16QX7zI/fbsIcGIwHWGWAx64eDry+digQQGumaUSJ+ka9dcXQRWK1Xsnj2N7qgzZ5ha+tdf\n9FeLz93Hhy6gkiXp45fjX73KCl/AaC7bbMYCJyENSVv94w9W6s6ezet45BHX65bUWD8/Cs0RIxCf\n4otPW69B5R0zUaoUsLdQIwx4cj/a/vseck+fQKFfvjw1caneFaGoD+pqmoqFWCxMPc2fn5qduI4s\nFhKkPqskOVkRTWgos7MkWKsXqFFRxt5X+s9O00goAIO6w4apAjN3wWqxlPSoVImWnnze//xjnIcN\n0C3Wq5fr8bzB19d16E6ZMu4LHgEqOPrJbXcY9yUxAHT1OX8+JrI4Fi9WoyA94d9/XSdSRUYqYgCU\ny+Oxxyjs3c0hsNu5T40aLOaSlsiAZ3dSQgJ9u6LhbthAoZ2cTMGiaQxiHjumBMW331L4dupEn7ik\nRrqDXui89ppah17Q2Wws2luzhhpk9uzcr1EjFWDVF72J9eJ8b0Rrl15Chw+TtPTXHhNjaMug+fgC\ndjsWHq+Jilc24Jf/C8Sy9rMwdizgf+owjxUVRQ29e3f1WfbuzUdJBxaCDQlR3VIBY6rrq6+qtVau\nTDeQvt1HSooiGiFld8J8wgRjEFd/j3fuVEHnyZNJWE2b0qpydyx3FgNAS1KE+IEDro0PbwXuLAZv\nmDFDkdxdwH1LDA0a8Pt3K/3QTNwjHD7MwKI3VK6sOmAK9DntVauqmb6S8ucu4Kd378gPXoS5J+Ed\nGEiNW7Tqy5ep0euF6fbtTBuUY3Xrxh/s4MH0Pc+a5TltTu++0Fsc+fKRkHbtopBNTFRrt1j4+vbt\nqn+OXP+iRcwo0gtU0bL19RGA8foFb76JHbN3Y9KVF/Ck9VdYX+yJul+/gMGb2+Iz9MOqoA6oEea0\n5thY5QtfvpzuMICfm7g/DhygOR8ZyYweaRUiFoIz6tRh1pGe4Js1U9cin70UA0ZEkFgkmJ2Sws9J\nYjOCGTOU8I2M5L2SIkF3xNCmjfsiyDffZIymXDkS44IFJMbbQYUK3ifu3WPct8RgtfJ7MGBAxmuK\nTNwmTp++vepCu/3m22QDxmEc06ezyhcgyWzYwDxy5+IWPTGIi0Df+MwdqlVjBpJA1qoXIiJcRYA0\na0aykkDi1atc15EjTB+9cMG9hSIC7No1tVbRSvPmVULxp5/UiEi5BxKXkAZ2Mkf422+N59AHN1Nj\nBwkJlI/LB29A72Ut8SSWY/e5EHQosRM7UAXDaq/Djlemo/mLRWGzO6XLOqcHJyer70NkJK/92DES\nncQIfv2VRDpkCIPlnvDTTypjKmdOZhl17crncs7KlflYvTqDx/v3K2K4eJGxBHeDbJo04bm3blVp\nxu6IYcAA9916f/uNn1NUFONFgGv785tFqVLu5z9kEdy3xADQ+qxenTU6Ju4CihVT839vBYMGuZ8x\n7AznH61e0330UaNWd/gw/fHSP1+gafRLb9tGSfj338oFI4Jm0iRjzxtnCDGIa+nSJVobtWuz1mH/\nfqZBOqcWxsXRHfTeewwWS9B0wABqnZMnsw9///4MTgsx2O0MkL7/viI1fdZVtmyqCyigXG5XrzJA\n6xxnScVJFMa5wlUwbF0kChcml42ZWRB+cZexFbUw/Ynv0T3vUlSx/Isni0chV/YUCs/ixY0FXc4t\nOYKDVa+n4cNZYS3uoshI1kyIVTd2bPopmPK5HDvGKl99ELlPH7rXevZUhYs+PooYcuSgAHcmR03j\nPfPzUw34PBHD8eOuRWTnzhnJUDK5HvAq2/uaGCwWfo4LFxqn4pm4Q5Be/bcCfeZLeriZSWieUKYM\nf9DdutHiuHDBNTU0KoqkERjI4ibndhNCDLKeq1eZEeVw8At3/To10atXjcIjNpZ57n//TS14+XJ+\nWUND6eP+/ntmCbVpw95Kol3Lo91OIadpxiwqf3/3LTGqVQMqVoTDruHsnvM4dgzYEVAHr5wbifrY\ngEp++1Fs6wIcuJQXu3YBh/6NxaaAJpiM/iiaP4HXIfOcJb3U4WCLCn2DNmeLoXBhauF2O7V8Hx9V\nAV68OF1fDgctp+3b0//M5NjBwcZzbdmiJsWdP8/PbPt2Cu2ZM5liKhaWKBEyha5QIcY+bDYS19y5\ndEG5cxm5I4yQEGPNxfDhKpbyAOO+JgaAVvfw4RzGdKtNM01kEMWKue8VkxFI75eMpPM5/zi//FI1\nf0tvW2f89x8DuIAaaCKCPiCAwiU+nl07xT1QvjwzXfTEoJ9oJlqw3U5NXd/SIXduEoMUnuljKpKJ\nIsIzRw5aCGPHUtOWYq2qVfn+oUNcn2DQIMOXXNOAG8iO88iHX+qOQ3inWqhQMxD16gHdkqYh0eGL\nlzAN23f54HpUDH5cHoiivmdYyCXV3fnz0yrYtImCdPRoxks0jZk2YlENH871SAvtvHlV9pG03k5I\nYEBb79vVNFpP27Z5/5wAY9aN3jq5elXFV8TdJOcrWZKuK3GnaRqz1D76iMeYM4duKbFUO3RgZpG7\nmgBPloQzsnDzu8zCfTHzOT307s2K/t9/V5aeiTuAESNufYyg+H6lgOj8eQpefasCgX54CcA2EHXr\n0lUiA+htNgoAd71rnBEfr3oOzZ6thFRgoGpZIWv87TfV11+qZW02BjJfeonPw8KYAvrmm8xI8vVV\nmSpXrrC7pzQ801spUhMRFMS/GjUoiGbPJgHUqcNzFSkC+Pnh6vuTMXdPJfigF44iHCeeuoFTZU9g\nT1AsHDZfnL9yOO3Qj7zlwKynf0XD4B0sLLNUAHaEAE2rAGWyAZbUDqU9exqroQcP5mfxxx+qoynA\ntMm9e9XnNno0awAkqD1+PMl+8WJey9y56r5mz8774HCo1hHz5vGz69fP9fMRc1/ScQHeF4nD6NuP\ntGhBX9iIEcxAOXqU6b1ly9ISKFaMikRSEs955gzXIpbYX3/RzeCc4ABknBhuZjjUfYoH4gp9fZl+\n3bWrsUW+CQ+4lQAwwEwMfX+em4H8yGvVoqb3+OPu+wddueLalkD/g33uOWbjAOn3ShIcOKAsleef\nVwNunInh1CkKfIBCROoI+vUzBjUXLqRrStoXSFVxr14MKo4apTKl9MRQoAAFV8+ewNtvIzERWKY9\nifgzV6EdOow4/zzY+s4v6NwZKJe8C4W+/wgLYupiBZojAf6otO8HPJ30PbZkb4w9Y5dhB6rgHPIj\nDgGIbjcYDcudVp/t5s0kmGXLjBquv78x+6drVxJAhw50z4ir77ffVA2H4MIFCtW4ONWiuk0bHn/h\nQsZeJk9mPKB7d2MzwvXrjS4ZPYRQRCEYNYpWglg1+maIkmHWpInqoCoWoKw3IYFxnW3bFCFIAF+K\n9/z6JasAACAASURBVNxh1Sr3rtI8eeiS+uorPm/Xzjit7gHEA0EMABNOHn/cdXCTCTd45JG7n8ol\nP8boaArNs2dd/eU//0xNbv16ZhYIoqJUle5PP6l4RbduzO+fNcu7eZ+YSKExc6ZRWN24wQCyYNUq\n5fJyOHhMX1815EWgv3cffEAXS/XqzPPPlYuavwTDixVT2zZrBrz9NlLGT8Tyor1Rrx7QO/kzBL3b\nH4EzP0dw7TJ46oUcqFP2En4I6Iar7bpj3bkILMrdEx9jIAbu64WXr4xH+JktKDC0J6rUD0L+PA4E\nIAHW31YYu6s6HHSZ6DugAkaLT/5PSeHnkZSk7uOYMdTg9UI0NJSxhIAAY3fQK1doOfj78y85WZF2\nYCCJEDAOJdJDzilZVytX0sW1Zg2f6zvZ6v8HjAOKJBCdmMiUxX37FJFIBpA3Ypgzh25EZ3TsyM9R\n6jUCAz13X31A8MAQA0BlZupUz0O9sgy8Df24G7h+3bXq8k4jJYU/Vsm579JFCQzB1Kl0bZw54zk4\nCChBULMmg8yeCtwEFSrwB79jh3G+wezZyioAjN1MZX8/P2a6yPPOnUkUPj7UQhcuZKqkaK2JiRSI\n0h0zNffeDis2B7dA/3KrEJrjMkaPZlzseGBZxLzzFY7X6YRL4dVw6Ou1eHXDM6jotx++KaktOmQ8\nJ6Cu9coVXou0wLBYKJTF76/vlbR9u6oB0Nd8SN2BPi1X4gWBgSTNU6fUdb31lhKIQpyAioP4+Kh7\nuGgRXTn6KnHnfk0CeV+sui1bGFBfvpzP9a4k5+pkZ4uhSxdFQIsXKyKR/b0RQ+nSSvjr4etrtPw6\ndVJW5wOKB4oYChakBeutZf09x+nTd2R4900hoy6YzMIXX/DHru9smju3sTALYBpmx44UtM7N4QAl\nwDKydn0r51q1GC9ISTG6jsLCGKeQegAZ/gIo4SNBZHn+/POq706lShSYPj5qv4QEQNPg8A/EstDe\n+P56azzf8BQCfZLQIXEOfE4ew/8l1sPmzfSKWatWRkhQPPJfiUb2KyfhH5AquJ58Ul3ne++5v0aZ\nJicoUEC5Y954g49Xr7L9hAhZvcUgOfmiJLz7LgW/w8E4Qfbsinj8/Ghh7djBz0fv3pOMILFYhFwP\nHOA1NGnC554+NyEGH13IM1s21f20QgXV9iIy0lj53b+/aglitXI7ifdoGoPhGzfyvXbtmEIrs66d\n4a7yeetWugj1xXkBAabFcL9h4EAqgp6SWO45skI1XkYGl7vDli1G10tG0bcv0xeLFOGPumNHvuYc\niPT3p2CNi+Ngdj2Cg5UAk7VLgNOdG8luVwVV27dToMXFMUtB9k9OZgZQv360UMLCVCO9Dh0oWERT\nFGIIDubrjRuT8Pbto089lezP3wjAJ/NCUOHaJoxwvIsfTtVDqccK4cQRO076FsfHIeNRHlHU9hMT\nGfQdOJABWKnkXbeOrhQp6HJXtCWIjaWVlSsX/f3iCpOhO3Pm0NU2dSo1+IIF2XiuRg11DPH9S4Du\nm29ICj/9xGwtgXRD/eQTrl+IXa+x//67Oo5o+jLgyBsxtGqlCLBjR+P6fH3pggR4T/RCOTBQZZ0B\nFOxiHWkaieTCBX7fFi3yXofjrleSKACff66sqYcADxwxFCrE32nTprdfnHhHEBfH9Lk7ic2bvb+v\nzz65Gbz7rgrA3SwKF6aGOnMmWwrky+dqFfj70y/uHADs2pUWhnPQvHx5as2eiKFaNQqN8HCjgJPs\nFxlD6eND/3n37oxbbNhAEnz7bQoUHx8+ahrTJg8fdmmid+axjujfHyh1bRt2nMiPqSGjsO3VWVjS\n/juMGAEUyJvqCxeiKVdOubX08RTRmr/6ikHYqlU9d29t1kytSY577ZpqSgeodhSHD1N77tWLGnZy\nMl+ToTuA6kQrOf+rVxvPJ4V6N25wfTJTW9ZcvDgrnUWI58pFYSxE/OKLrtcg9+KZZ9T3YcECY2aa\nnvwXLfJeJCntwgGmCufPb2yFXbmy0TLRw1OvJIDkdLszw+8jPHDEANAzUKkSXdpZDjdu3N4XLDbW\ns69WUKeOseOkM26VGH7/3Tg4JqOoUYMZSHa7yuF3hxw5qIFv2GB8XbJSHA4KjOefp/Z76pQxdVDf\nsE2EaZ06FDz6H3y7dmq2r68vtc46dfheuXJK246JYTBcPxvhwAFg9mykOKz47z9gPp7BS/7fodLn\nLwErViD6kA3f/ZoPj+fYDotNl4tvt/N8Mm84OVn5+/UasMRdxN1oszEob7erFhdVqpAUfX2pDVeo\noGoppBp6/nzX+yvCNVcuCsj27Xm/x47l63J8m42vO48VlRoWCfjKd8jHh26ssDDGXQYNYpV3p07c\nR7KLPM3OqFiRRYj6dFU99IFufUzBHex2VdMwf77r9t5SUhs0ULUuDzkeSGKQOp0vvshYweVdxe0S\nQ79+1My8IV8+JdzcQdO8r2H7dmPHztuF1B0A3t0iEmR9/XXj6998Q202Vy6VVfTZZ3z89Vc2cnvv\nPVoW+tkF4srwZdfQtJx66e8THKx87iLABw1SLqvERMYkcuVi11cAl6/ZMBn9UOjjN9GqaSK+CvsA\nJQNPYWmjSZgU3QL5Q1Lz77t2pQA6dozuN737SiAZS+LTb9pUbScFXd9/r4rKZMbC0KG8V7/8wueF\nCys/vn5IyVNPGe+jEMMjjzDv/+RJ3iMfH6NWbbPRp54zp3F/Eagys0HWmj27qpDOmVPVINhs1P4X\nLKCLSx/o1yMpidfpbjiN3B/9ACJvdQQpKcaeTM7be9u/Zcv7IHPl7uC2iSE8PByVKlVC1apVUTN1\n8PilS5fQpEkTlC5dGpGRkbiia6M8duxYlCpVCmXLlsUq54ErmYhixajwyBjbLIOwMPUDvxVkpIld\nYCCJYfJk11iCpvEY3kYQSssBd7gVS+OTT1ihCihi+OknVtPqIULfud2yPmtFMmlat+bj3r0U8HJP\nU1IoYJ98kmmPGzfStXb8OMlOxkYCdG3Jutq2VT59IZeEBAq3hg2BPn3w38oTaNYuAIMsH+HjSt/h\n8El/rP0tGYPyfYNapZ0yo+rUYaBT/NM5cnDAuz7xQC9oJXunUiU28pPqZ/0ISV9fPg8PN/pJ9b7v\nUqVU91W5Dl9ffu/0AnHqVGroEjhPSSE5NGrkWSPXr1dvMeTIwc8YoEsrMZEuq1atlLY/eLDr/G2B\nfEc9xb30FoM+PdUdVqzgGooVYwzEHTF4Sm3eu9d19Ktzyu5DgtsmBovFgnXr1mHHjh34K7VlwLhx\n49CkSRMcOHAAjRo1wrjUgFhUVBQWLFiAqKgorFy5Eq+88goctxIEzSBeeonxshEjslC7jLJlVddI\nb5g/39WUByj00uvVkj07XU79+7taDiKAvOX930p189WrqjjMGbVqcc2zZytiuHrVVTsTn7X8mL1Z\nF87arGji+/cbJ7wlJRkbngUEUJBly6a+FD/9RBfPl1/yuQiCxETEWwIx93IzDDr6Cho+F4KmN35C\nfKnK6HoxVRCKVfLoo8b1FC7MzyEggMRgs9HtU748q7iltcPu3Vx7wYJ0KUl65YYNdOfs26eO6evL\n+7J5M9cu7cHFRZOUxPFqMsinTx8+9upF4tOnl4p7R2IsPj7KxZgeMRQv7jmBwc+P66hYkVXpDgfX\n622GgXwOnj7v48fVexs3endHFilCcpVaiuLFGUAWBAZ6roJ1Z00UKPBQTgTLFFeS5iR1ly5dihdS\n+7S/8MILWJxagr9kyRJ06tQJvr6+CA8PR8mSJdPI5E4gMJAKxOLFTM7IMhg6VPXd8YRLl9wXBOXI\n4b5iWA+xGHx8VFBSrIeMlP075/ILypXz3ILi8GGVIukOnTszA2f7dgqVDz5w7YQpJOZwsFbAYmH1\n6mOPUfvW1yB4angnLhjndQsCAuhumTNHBSH37KELKfWY1z79Bj/hKUyIboPwyzvw+YFIpCSk4I9X\n5+O9+LdggaYCrEWKMO7Svr0ilJQU1Rpcfw+TktSfWA5Nm9LneegQs4qsVrZ92LGD6758mdu1acPK\nYiF158/m3DmmQjdpwvcCA9XnOHAgX2vfntq8zKoGSAI5ctCKlGwwT+3JQ0NJuv37UyN3l/pXu7ax\ni6qmUZB7Iwb5LL/4wv372bKpYw4YwD9P8PHh2t58k/dy926jxn/tmueOup6sCclyeoiQKRZD48aN\nUb16dXydOi3q7NmzCEn98oWEhOBsapbJqVOnEKoL7oSGhuLkHfbplSrFWpS3304/ZnvTSE6+tUKx\nXbs8B9oE+/eT1Zzx5JOe89oF2bPzR64nAbEeMkIMQvTx8XS3yI9l9GjPIwy9HXfqVLo7qlVTjdLc\nVT6LfzxfPsYZpMX0xo20oCQILJWszz6rAo1637100xT8+ae6l5Le2KGDIoZUQtJS7Pj4Y6Dg5kX4\ntMq32F+rK5ZorfBnhZcxMbkfSo1OHUqjj/EEBtIF8+efxsFAAudirORk/gkxWK0M6r/+ugqU6hsV\nigJhsZAs5s2j5XXkiBqYA1DgBwYyhuVw8Jpee42EbLdT6BYtqiwFgd46jI83Drl3Rp8+vPcBAcwi\n0mcHjRtHF93rrxst2uHDeZ+nT/c8clFSoKXy2Rn6ArfmzZmN5QkSL2nXjkrCpUvG31pMjGdi0bus\nHnLcdhO9TZs2oVChQjh//jyaNGmCsmXLGt63WCyweHFbeHpv5MiRaf83aNAADfTVnzeJJ56gQlin\nDrMQ9VMibwtvvcUvnqf0uXbtqBlHRPBHt3Qpf1D6L7on7Nzpnsny5nVtMqdH9+4UCo8/roR1cjLP\nmT276knvDbK22Ni0oCsA12Cm8z6ePuehQ5k5U6iQyvpw59vLlYsWhV7DL1yY2vTly/zgXn+d7/ft\ny/hAfDy30afovv8+tWJ9UZII69y5lbafimU7Q/E1FuOfdo8ipHACosp3RPiwrjzn5nNA3keM61y5\n0nitq1dTuElmk7v7omkUWpUqUTiLJWe10q12+DADuBIfEMh5nn6a9QC9e7vvVPrpp+woGhtL0lm6\nlNr/rFnGHkV6Iihc2FhkOHGi9zqVTZtomTRv7qoITJqk0oqdERLCz9CZlAQHD6pjuEN6bkU9JFNr\n+XK6Ct57z6g0SNsMd9i6VWWN3SdYt24d1nly4d4GbpsYCqWaePnz50e7du3w119/ISQkBGfOnEHB\nggVx+vRpFEjNRihSpAhOnDiRtm9MTAyKOFe/pkJPDJmBvn2p3NeuTWvYXUuUm0b+/MbiGmcsXsxM\nh4gIalP9+5MYMvJFv9WgiKST6gO3sbFcp8Wigo0XLrivLgYYhK1Yka6IjFZpnzvnOWCdkqIEo6zL\n3fWlpHBNo0fzHg0bRkEq/vhLlyjsJk/m8w4d+KGOGUM/+4IFFE716/P9tWupFQC85t69mY0QEgJN\nA45uPo3+Ywti75aO6I/38V6ZlShTMxf8N5+jkNyyhZ+f86hOfSrwoEGMD3iaMxEWxh5Kv/5KQv/x\nR+P74hqKi2OmkXNM6IMP+NmJ9iutNgT58vGzXL+e90ysAoeDBDZuHAvGJMguSsWLLxr7RgG8Bm+p\noFL3Abhq12fOuFc4rFZauZMnswuqOwQGug5a0sO5P5I3+PiQ0D/4gBalzaZmUMv7nohhy5aMzQvJ\nQnBWmkdlUrbNbdlNcXFxuJ6aEREbG4tVq1ahYsWKaN26Nb5N9R9/++23aJv6obdu3Rrz589HUlIS\njhw5gujo6LRMpruBAQP4O4mMNCrCN4327ZmGmJ5bpkEDFSAEKAC2bmVzsPQsBmfBuX27azWwJ8iP\nWxqoCTEAFPT58lG4XbrkPpAXFsYbFBxM/35GWNTbfYiNpatFTwxNm1Kb275daXQtW9JNkZhoDFIL\n9DGIP/5gyqreX16rlmphAaj0yOzZKbwXLMBf//qjVZN4jj2oG4Ba1VOwp/1I9MUXqLz5S/j7OYwZ\nN87E+OyzzGYAGAuQpn7uCPS771iw17MnXWcdOtAdo58qZbUqq0Av/PQWSY0aSiD//rvxHOJK0/cj\neu45IwHv2KG08sBAvjZ6tKti4M3qA4wuMHfbuiN7fc3Mzp3uj5tei5aMWNiC11+nwgawFbgzqXgj\nhkcfZa8lZ3gqiHuAcVvEcPbsWdSvXx9VqlTB//73P7Rs2RKRkZEYMmQIfv/9d5QuXRpr1qzBkNTi\nm4iICHTs2BERERFo3rw5pkyZ4tXNdCfQpQst7sqVb2Mk6IEDqh2DN4Go/xLKF/+PPyiU09OA+vRR\nKYsANd1XX+X+zs3nBHIOETYXLlCY6olB3tc0Bubeesv7OsqW5TnTg6ccdT30wjNHDgYJq1dX8wFm\nzuTrDgeL1xo3pltIoE9rTEigENRr75pGbVEqdiMiqEH36IGE8LKYfbU1mj8bhNYBq3HitY8QbS2L\nYcOAbK10QzysVgqT2rXpCnTWICMjeZ7ChRnAypbN2B9Ij8RERWyTJtGNtmOHcc0VKvB7cvKkMV4l\nldp58vCLqtfkn3qK6wNcCxlPnSJZjRnD5xcukJyc/fIFCrhqR+n52JOT+eP56y/333131rPFohIC\nvLXE8Cb4W7dWdRrpoWdPRQwyAU/vOrx2zbNLy13l84YNKrvrIcJtUWHx4sWx040WkCdPHqx2LqdP\nxbBhwzBs2LDbOe1t47nnKHOqV6eSICN0bwreZscKnIlBfgCRkenPTnYu5X/qKWqH8fGev9hCNkK2\nH33EH0quXMa+REePkmh69kxfE9u1S6Virl9Pa8JdgV3FikbhlZjIH6H8SOfPZ9zj3DlqzuPHU3st\nUcJIgADXJKmj+mrZf/5R79tsrjnm4t9u0gRIScHhYzbMPPEiTi6uhblfaqiKV7BihQU1f/pDdVr0\n8XGNRTRtytYLjRoZ23MUK0YL5d9/mfUiRWaeCmb0mm6OHLxe5+/ML7+419LnzSPZbNyoxm0Knn1W\nWYPnztEUlnhU/vz8k0D+5MkkxxMn6DqS4UPuEBioLBB3OHGChDxxIu+FPtblTehLfYi3bbxZDEKC\nGYV0e9U0BtP1RX8VKni2XNz1ShK35EOGhzYEX6AAMxZffNFzlpxHiBmdHjFUrKjaHdy4Qe3F4aAG\npXeBuEOxYka/qwjDn35y7WEjSE0RTmsfIWuUubX67IyNG72b6D/+yP2rV1cCedgwViG7g1QX6+f0\ntm9vdGkcPkwXxsKFDESPGMGgZLt2yr0SHe1a3zBoEIXkTz/xudVKN82//xp98qnnikERTG25HNWr\nA39Y6iOsch4cTy6EzYGNmNIeE6P2sViMlbJWKwO0O3cygCn9g2rUoPBt0oRuGWmpIQLbuY5BjqVv\niSHPnYlABKfuGgAwnbd8eTX4XiC++pde4vYVKxpdaICRAGR75/TSqCjj59+rl/eKULn/sbFMP/UW\nFxD8/LNxyJI7lCiRsWNlFGK9xsTQstOnWOuJyhneeiU9ZHhoiQGg0r5rF+NU06ZlPL6Vpv337eu5\n/wtArbRuXf4vP9yMjg8sXZrHt9upIYpg8TTsBFCTzex2xiP0vtslS1wLe9zlwwv0FdYiPP78k9kv\n//2nWh/v3UthLoFtiRfExzNeYLGwZ47dzpTVdesofN55R2lue/YoYhg/nmsVxMSoatbYWFwsVw83\nXnwDOHkSy/Akvvs1LybiDfTGVDxaVUMRxKAydmHjyhv45fNjWFvtLYx814ECOK+E69y5xmstUoTW\nAUBrSD9UyNeXWrTUaJw5o6aiJSSooS3uNHFnYrDZVB2HHgEB6jvhbE3bbMzq2rJFBd01jcd75BEe\nv1491zkC3uZZCCpXNn7+Zct6nrIGqC6p4eEZ79BbqpTqKOypD1HhwmruQ2YgPJz3RFqNZxRVqhhb\nej/EeKiJAeBva+VKKqAVKlBmuFUaTpxQmpf4YmNjVSDSGQkJaj4uwECfv3/GiUEQF8dsG0m/9BaT\n8fNjumPu3K79bACa2EIOBQtSA3RXaLd5sxI0uXJxW8GNG0yJla6dEREksdq1jYNu4uOZ/iX9eEQw\n2u3Mw//gA7qmAGp4ctOtVjUfAQD27cMqS1N0KL4dEVtmoOzpNQgJAQqun4/umImFsxMwwTYY8aGl\n8f7R57EYbRGDUMxFZ9StGqc09GzZVPBexjLqq6dFQPboYey35OPDTqIyTFzuf2AgiU5XGOcCq5Wa\nx5kzxmZuzts7HPxOPf200e0BsNVEVBStI3EHFi7MtUnjvBIllAKiP7fMMxDIEB+A59PPnwD4+XkT\n9lYrW0ZMnJjxmR4zZjBGNXWqZyXq2jXXSXO3ixUrvJOcO5Qt671VzEOEB4cYoqOBW0xxlYzI4cM5\nGjQyUhWcpuHrr1WBzosv0r+q1widcf68MUgs29apY5zIlR7kx9eqlfdAscPBH5gQz7vv0j8u+x85\nYuy6mju3a1sJgT4f/+pV1yDM/7d33uFRVVsbXzOTSkuAkASSUAwJIfSO5SpIV6ogF1BQrgoWmvCh\ngqjYKHZAuXIVFKULIqA0uYigUm6oAgJBAoRA6D0hbfb3x8ti73PmTBohDMn+PU+eSTkzc+ZkZq29\nV3mXuWSSCMbr6lUYACJZInj2LM6bNXjMYZGoKDisAQMobcESemvbwzRm+T0USQepPJ2hSr3+Qf/a\nN5Ja1DxJMx74hn7Z4E3nzxNt6P1vOk6VaFmrSXT8twSaOS6JHqbl1ITiyJ+uP3dqKsJgy5fjObnx\nauFC7BJ4vgARpHi5SkddGXh7w2BzPN1uRxhswABUMjzwgPtdV/fuiPdv2AAHyh23ZgOpaiWZFw18\nrXgHEBWFc3enlcSwkB3fh8j4XuVzVp8vp1i/3Y73DEtz5GbHwIuoZ5+VOldmcqqGyg+lSln3VGRH\nXJyrKu3Zs4U/7dADKDqO4auv8qaYN2uWYUVvsyEEum0bHEVsLCRubqCu9BctgiPK7sNhlvvl1XvL\nlrmrsHjnHcSYy5SBcbh2DYauYUMpIKfCnozPk3cG5pCCOuKwWrWcBf0efhghJHfw+Vy6BPnm55/H\n73nle+oULmhgoHQM16uTMsiL/m7Wh76iJ+m5zMnU/LG7aOuZKnQp1Zu+DBpFeymWfqBulOBdgwa1\nPUDNyx2g2rWxKYkKvUzelInHbd7cepvHCdkJE+C01A+4+r/75Rc0b3F1lNkxqKi7MC6/dfce8PdH\naK1CBVkmXKaMcUzkvn24VpUr4/fmPgJ2wtwNbbfLudlcCq3u6JghQ6TWFr9fVKPvzpnk5BjU909u\nHIPTiSo+c/hOxVM6jq1280FBJkNQPPCA/0YBkdcVx6ZNsrZbweFAGJ17gzjM77Kq4TdzbhzDlStI\nsPKH7uOPc45/JifLD2+fPkj2PfIIwlFWVUHqEHj1PMuUkcljFjUjwrbZagCM+fWo3c6NGuH2wQdl\n/8OoUXLQOits9ukjDSonPENC6Oq5NNp0sDx9vbsR9aDvqCRdpX/MGkCrqB1V9U2mEaX+Qz90+A9N\n7rGeWr7XgUJ+nEFNz64g76sXXDuLecXL19Tq/+DtDacUGookuvpaP/tM7gIOHULIh8Mx6vvCyjHw\nc/r44HmXL3d9bub0aWO/gLe30UE99hgWAEeOwPibDZPTid0iD/NRtZL4/5ya6tLNTf7+ssuZS185\nj0LkmqwmwvtUUUJ2oWJFeb+QkNxNwhIC1zM7x3Ardgz5wV2YN68hqSJA0XEMjRrlbdWRlpZtl2O9\nesiH7t+PnNv6I1UoJfP68WqpqjvHkJWFFeuJEzAOy5dLEbh9+9x3gTLJyVIlc+ZMfNCdThjdESNc\nj+dVblCQ66pv0ybccrKSCOENtZOVUT+gdeoYf37vPex4oqKkYmWPHrLqg3cJc+cizDJ8OF7zv/9N\nyVdL0z3PxFKf0svoG+pH/6ANdJQq0/HqD9C8F7fQywGf0+Oll5AtOgoGqH9/42Qznr3LekkvvIDH\nt5Js9vLCdfD2Rmw+IQHhI1ULpVMnWXd/+rQx4Z2ZKafsqQ2KRHhMfr2hoTJc5854XL5sDNnxXGT1\nXHfuRLjOagiNOl503Tokw2Jj8f5SRQXNHdPffYc8zpAhKAcODpalw0RGdVkmORmxVHd88omU7Gje\nXOaIsuOjj+AIf/rJ/byFw4eNuk+3i7zm/4owRecq3Huv8cOdE+npxi29BYGB2Dm0a0f06JyuFDn2\nccyY51XjO+9YJCOuw4ZqyRIYIF9fGRbITSdnYqKxsYxlNEJCrNVVMzLQ9+BwwKiNHi3L9tLSYCiD\ng+VKm5VWzYbIZpPjO8ePl8ZeCOwU1q6VPQbm16ogBNHac/Xp65/DaOhQQQ1s26lHTwf9/fkaWkut\naChNplA6iXj5xo0yST1smEwOExk7tolg7N5+G3H6iAg8UcWKxrj9woXw6qrKZ3ZSDwcPIpZ88CCu\nu8MhjaavLwwaX5Py5WVoLTwc5/3pp2hcsyIjw/g+u/tuo/FxOBDmio/Hit7cdakaq5Yt8bq8vV2v\nuXmy3uXLCPN98AGcT6dOOcs9jB6NnWRuyIsR5WvvrvLo3Dnr3xc2+/dbKwF4wm6mkCk6jiEkJPvm\nHTNpafjATpokjd/nnxvHQxLe06+8QnSy2t30nzIj6dFHiVZfaEoZ6dd167lRygxvuc+cwcoyLU1+\n6HObuFNJSjKuEM1kZuJr1iyUgQ4aJD+4aWlYwU+bJsMnR48SDRzoauSJUMfbsyeMNquhZlfLe/21\nxFEjeqvPPnrI52cKCyMatPEx+jmwB9kzM2ht+Z702mtENmF63RUqyB0Nn+/gwXJgCsfP16zBynrs\nWGm027dHjiQ5GRUDH36I90GXLrhVd0PLl6OAgElPd63rnzoVTkB13ELgWqqhv0uXkPMpVQrltO46\nn4lQNqmGbb7/3pgTYCfkdEpxOpUxY+SkNiLkQ86ckf8Pfo3mggCnE7uL//s//Pzll8aGSSty0koy\nP35uDGZgoOx8didQV64cFh23m969813AUtS4cxzDyJEF23zCpZXDhslhKJs3u5+TMGQIdeoff9rU\nbwAAIABJREFURG++SdT5z3eo1bDalHyllAwvmQkPh2jexYtGQbu1a/E8Vob23nulFo7aGCYEDH5O\nuuEhITIGHRCAbTwRHEOpUlh9c6XGmTNYqZrnKxNh1Th/Pj7QnFfIzKRr13D4gAF4qrvvxqFRfRpT\nGbpI3WgxnUkrRQN7nKONG4n2/GWn2ZPP0cdiGNU8c10Ij1939erYcS1cKLtt27XD7bVr0kCq/3OO\nfzudCOE8+6zr9DJVmkNNvB86ZHSs+/e7FgHwKpgVafn5edYBM3gwrs/s2Ui2u9NKWrUKIUB1prMZ\nNYFtJa5otxvVZr/9FqEvpxMhKm7OM8tRqI4tt+RlF5DbhLGPj5SUcKcCmt8Z5AVNo0bWCsJ3mLBe\nQXDnOAZObBYUqamIkUZEyFV0WJh7zZ/rq/xnniFKqRRFD7b1pqjZb1DgyKepY0c3szy8vGBBOSZt\nsyE2FRcnP7hffCGrR/74Aw+UloYQQIUK0DOqW1d+CPfvR5XJxx8bV4BRUfjgccljiRIw/mfPyt1R\nTIx8rU4nVsz9+1u+3EuXiKZOyaJntg6kCmWuUXBlXypRAk6hyqFf6I+O42h8i1U0u+GH9N0Dn9FW\nn3sogarR5NEnqcsXHanKhllYUJqdOb9uHx9ZM84hnw8+kMesXw/DryqbqvkEpxMOXe1idjgQDjpy\nBD9XqQLnxh23qoHOyJCrbS6jnDRJaiWlp2P1aGXwudmQNanc7RgyMnIOk9SoISuNrEKM993nqtVT\npQqc3JUrMpFtdgzcF5CcnP38b5W8OIbcHhscjOvw8MPutWc8xTFYsXq1UU6mmHDnyAZmZcnte0HQ\nrBlu1Td4duV6SvjHTk4aO+Iy9Tn+AfnVj6Fvsh6jRo1gc4ODsSt+7DEi3wsV6XJqEDUODiV7jx4o\nc3U6kUTllcnFi7IztGNHxMr9/LDbKFkShnX3bsSf770XH7JDh2BEzPkNrlThLf6nnyLE0qIFCT9/\n2j5mEe2gLrSfalBpukwlvwqkA6ffoohx8EHh4bhduhRFO61aCLqP/qT/+3wPpcQ0pNI7f6PI1tXI\nFoFt/w2hgZo1iWa+LhON69cjdPXII3IFPH48blu3hjN65RWEs2rWlFU7amUVj9zjUAiRzCFxbuTM\nGWMiNyYGDv+NN+Bwvb0RVgsKQnybJbiJcH05lBQRAQP822943J49pSKrFeZqrnXrEPIxk5tc0tSp\n8rECAlx3DFaPwV3XPj7YMbVsaRxfSYR+kpdfRmjs8cfRcf3gg9mPhS1VKvdjXc+edU3MW8EJerPE\nt/n1eKpjyK14XxHjztkxEBl11c1s3mzsmGVOnyZasMD191yHrcZKs4v9q3+7vo2OLpNMlctfpTFj\n8PncsAH279o1fAZbLHiOeszrQY6Nv1GtD/vT7weDKe1SGr144Fnq9XIVFGlcviyTzKpEcHIytI/Y\n8B0+jL/PmIGuYyuxs1GjiDIyKCXLl2Y/9xv968DL9OaUcvT18bZUt2cN6kEL6QfqSv+jJnQsoDYd\nOOJDVRzH6Px5RLDefpvo8ab76dKUmbSq679pwbYoGkJTqEb4VWrQgKj6J4PI9pLSZPfkk7jlJjhv\nb3hErqb64QecJ4dIrl5FRdWMGeiWnjQJOyQOZ2VkoLqHV/x8rT/+GIaPB7nY7TD+WVlGx8DG5fBh\nOVqTCDMa1q0ziqexyi0ROokfekg+dseOeN9YDUTKysJOxRyLVyt+mNzkklJTpRS2lROweoy4OLxn\nv/4a1zwiwtWJNWoEZ0eE5P7u3dnLqRDBkfDc7Zz46y/rMapmxo/P+biICDhjjcdwZ+wYshvuwmzb\nhtZl88pt3jyU7JnfeNwZqsZK1W5RM6oSKTuT9967MXjF4cBiv2pVLNI/+IBIiBIkBNGpKfNp9MuZ\ndB/9TrYvnNSlziHq9ATs1YzgnnT+aAe6+0WiesdaU9CWYOpAdkryuotWhY2l5vu3Uzo1pLQlp+hM\nmRrU/Mp/6Qg1psCqbahkn/IUsm0nHUirQpViA+n3dSVoOU2hmeeeoEafb6WmdIYuXLJT3CKicRU/\npYdOvksOuv4aQqKJ3r2HaO0Uovdfka/TFkN0gYgOtZA5DYcD8f2dO/F1113YtfBOh69fSgpi8RyP\n9/eHwRo9Wgr7/fQTdgz33y9lNZjMTCTDf/nF+DsO7xAhDzF+vNxxqf8vTmL7++PcnU6c6z33IN6v\nxur5dRGhiismBufJg6PUeH/NmnB4/Bp37DCGUUqXtpZ7yI1jSEmRyemkJGzXuEnQ/BiTJkExt2FD\nrOyjouAYBwyAczPDji0rC55fLf+1olkzXH+z2q0VuZXEaNw452N4DrfGcxAeiMtpZWUhBXvypPs7\nTZiAY5hGjYS4eFGIDz80/p555x0hRo8WYvFiIVJS8Ltdu4TYvt368f/+W4gTJ/B9cLAQyclCXLki\nhLe3EAcOuB5/9qwQv/6K7w8cEM67IsW1kuXEgUdeFpkfTxZCCHHqlBBftp4rVlNr8fbbQnSuvkcE\nB14TREKU8MsUjzwiRNnS6SKITolwOiqaVz8tiISIpHgREZYpiITwoWsi1Pu0sNmEaFRir3i6wg9i\nObXnlLUQf/7JF1WI0qXxRSRE27ZCPPOM67WR6W75de2aEK+8In9OShKiUiUhOnTAzxERQvToIcRL\nLxnv9+STQgweLMQbbwjx+utCXL0qhJ+fEH37CvHVV/K4Vq3k87/yCo5Xz9/pFGLHDiHCw+XreeIJ\nIfr1EyI2Vog+fYRo2FDep0sX+bqqVsX/zgyRENHR8md+jzG9egkxZw6+X7lSiIQEfH/5Mo5btkwe\nGxAgxPnzrs+xfLn1e0/l8GEhKlfG9127CrFokfHviYlCnD5t/N3p00KULy9ETEzOj1+iBB6TSIjX\nXsv+2AYNhIiLy/4YpnVrIVatyt2xObFtmxD16xfMYxVzCsqk3xmhJA715CTwpZKYiFWIuwQZh5JO\nnpTyEQsWuG88e+89KZkwZAhi0Fy9onaUMvv3S4G11FSy2W3k68ikqG61ydEMq6gKFYieqrWJ2tAa\nGjOGaEl8LCWf8yWnk+hqqoMWLSI6s2g9naJgSqTKtDE+iDJ7PU4HKYqOHnNQZiZRcmBNOvHPFynr\n6jWKi+hGX1QbRx1IEe9TV3WscEqEZEhux3YOHWosh/TxQTK7bl38bLcj9GVWb+U8yOOP44tDZVlZ\nxmy9tzdi1j//jP+Lel6ZmfJ3pUpJ9UtuIKxYEcl7VbaZV+CpqThm3jzX1W2DBsbENr9P+D2m7hja\ntZM7ArsdK1y1NNrdqFYewpMdKSkyCX/tmmuMPzXVuky5TBk5K8I8rEfl6lW5u8pp95KXWH9udwy5\nwVM6nzU3uHMcQ8WK2b+xzW+snAbpHDkCMbypU2US8tAh923+6mPxeE6zMTEf73CgdrtePVnB8vDD\nxsEjauhr2jSyzZ2Dl9K/P9Hvv5O9TSuycRfu8ePkqBJ+Y/ygw0FUtnp5oogIsv1nGpyR+VzU2Hdk\npDSGNhuMy7vvWr9elWnT5NxlIjgGHx/kGAICEKY7fhyxbD5XIhjyzEyUpkZFGR0DK31WqwYDFx+P\na8EGh2Uc2rdHiMXcMex04hzCwlDZo77uqCg5vYuI6NVX3b8/VNaskce5SxxbaQRld2xOczcOHJCV\nRVw9prJ2resMjKAg5Ay4o9oqjGRFToY8L8Y+t1pJucFTtJI0N7hz/htvvuleDZTI9Y2Vk2NYsQIf\naLNmvrsVnvmx1DezO8egftAOHMDKrkYN7D64EoeTs0SYgcyx7CNHpPHkyoi6dXF+qpzypUvIc/z5\np/W5hIaiCooIRodXvlWrSkmMzEzsJNT7NmyIBjie96zq+/j4oIY/LAwJ7/vuk3pDjRrBaPDEMjUH\nwAZ0/ny5c0lIQIkpV/qwwRk4EMKI6el4jLJl0RGdlIQqnKwsrK7ZWagrdhZT5JJSK8M5frxrVU2r\nVkb9Iau4t9WqeuFC47AfRpUhd8f8+XJ8qZVjcLeaLlFCPraVIJ6ZUqVcK5fMXLzouutzR5kyRhnv\nm0HvGDyOO8cxPPOMtWOYNw8rPfOoTDb47pwJr+hVx2ClHUSEHcX06cYkteoo1OYnJisLK+EDB2S/\nwU8/odolLk4OwrHbEaoQwvhBS02VMgyvvorbtDQkJp9+GvffuhWr9YAA3D8wUIZ3GCFw7o0aIQnr\ndMJQzpwpjfGWLTgH9cPp749OXHYMKt7eeLxVq3Bfs/aPlxded+PGcBjXE/Rks8lySTZmffuieZH/\nHyx10bIldiQcsgsKgo7P8eNoOBs1CuenlriaYSdjJcXQpk32ncDvvivFAVXsdmPFExFek5UDcNf4\npqJWolmFktQFyJIlxtdiIQLplvr1sx/bSYRdW27nIlSqVHDicseP4zOh8RjuHMdgZsUKfGjmz0ej\nWmysa8zY6URIwqpMT21SUh2D1SqIO6MHDMAtrxoHDjQet2wZdgXvvINQUHw8ypO4yYnLJc1KqMuX\nu27NU1NlmS0bl2vX8IGsWBFVWK+8gtUmD4259148TpMmCMvUrSt1/u+5B6Ek3hWpWkkcI7fZoKnT\noAFWz126GLVzWHiNq3l8fFyHu4SF4fEDAnC7Zw/G4zEcm+/SBbd33SV7VIhQ/aU23ZlXk+PGYY5C\nkyZwFhkZOEdVII+5mVVodLSs6vnsM5lf8vGRu7OcyE4qg1HnDK9Z4zp2Ul2AdO1q1M/KCy1b5iyJ\nMWCA7O/JiYIUnGvTJnuFWk2hc+c6hoceQgnlDz+geaZECdlZmZqKVWdAAFZgVvXobBTj4mRn6LJl\nSJIePWo8lmUkuLmOncmlS9jJMJ07Y4fy2mtIenLXJ8Odvarcgsr583hdDzyAsAzDux71+MmT5ezn\ntDSci8MBZ3LmDMIubPDtdqy2Bw6Ec0hPR8fwhAmQBFm7VkqB+Ppi98CG+6235PXetct4vr6+eG7V\nMUREyNm5bdsiPq7W/POx3IWsHsurxp49ZUOUumL+73+lgS5VCmG5YcOQWxk4EOM31dU853WsZD+u\nXMm9eNtLLxl7YS5cMP5f3eHvn/MweXXOcNmyrjuMSZOkbhSRcZHjrgHPirfeynlspbd3zslypiDz\nAiVLYven8RjuDMeQno7mG5WgIPmBMsd8z57FNje7CU5sMIlkgpDrx80fen6e9u1x+/33Us8nMFDW\naquqp4MGIY6tGvOKFVGnzgbQyrhUq2Y0ZE6ndUKQt/GLFyMZfvUqWpe58zkiQjaBORwwUr6+2HFw\n1c7kyZDoUBPLvr7YffFw++7dkVBu0MA1hLJhA6q4VMeQkQFj7e0Np/zss0bxNL4ekZHQ/fn+e5xj\nQIA0oqmpxjkL/H86dQrnsWqV1AlSeyHKlzfmDfz8MH3NyjgvWGDsqs6OlBTjvIOuXTHYJyeqV5fj\nRN2hhpKsCAw0vq/U90JeHENuyEusX+cFijSe7RjYKGZkEE2ZYvwbywEQuRpOqySemUaNYLj9/KA9\nQ4QPMpHrSoiNGRvAEiVgHPhnXhGrCVoOpcTGGieuLVokywwzMqCDs3gxfrbZ5HafjdkXXyC8wsb8\n3DlUNfE58SjNNm0wr5i1ksqXx+ry6FF5fikpiDXzqvDKFZybqqXj5yfDOkeP4nxffNFa8mH8eITZ\nvv4aq12HA6+pYkVZjnr5srGckq+Rt7eUmw4PhyNi5686g59/NjZq1ayJvMXRo3hc1TH4+uJ8eMcX\nFITdl5VWkKqVlBvUMIy6qLhZeGfrjg4dZEHCggXoimQcDlx7q1Gr+SEvuwA9u6BI49n/2Ro1oL8j\nBFaRbFCJ4BhYItedY/j8cxl62LfPODC9UycZH1eTykSucgfqDAN+Ps4JqB8m9fwcDlnxY7cjzMX3\n4VzFxo0Ig7CRHzJEJggrV4aRTklBmKdBA6ywhcAKnO/DPRQhIfL8eCX35ZdY0bPzsNuNhjMjA1+8\nQ/nnP5HwZSkFTpD7+uJcfvxRhjLGjJHPFx+PZPaQIXi8FStQPcSoO4rHHsNKvXx5vIYnnoC0t7e3\n0QHb7cgnHD0qwyv/+Q9+z6Jyly8bd2QPPIAQHoe/iNDjwB3aKq+95l4G2syRI1Lmg8h68l1+qVwZ\n18sdainso48aiynsduRXctNdnBsCAnKvRZaSoh1DEcaz/7PNmyNOz4afDRURHAMnirt2RfyZFVjZ\nMezbh9Xl1KkIvfzxh9F4mrWSVM2klStR/bNkCRKdX3zhopVETidWsO++a3RObdtCkTEkBLuQY8ew\nK9i1C4buH/9AyemIEQgr/forVulqWEEIPEZWFlbFv/+Ov3/0EXYNHEriKhKnE7uqy5dx3zVrEGJq\n3RrGl0jGs3lHYI69L1iAKV3lyyNnwYaTz2ngQFQQEcmmq4EDYZw6dZK9BteuyR1bUBCuBzN2LIxy\nuXJwdFyj7+WF+yYm4rHtdhhkteFwwwajk0lOttZKUnG3Cj592vh+yo7KlY1hyb17C84o5jBJMFtZ\njffeM5Yu3ywTJtzokcmRlBTr3J2mSODZjoE/FKpGEVO6tCxRbd0ahnL4cCRSeTpbfDxWyy+8II1+\nXJw0FiyiYN4x2O2YyDV9OrpGMzJg0Fnxk50J/3zfffgdb/m/+goGsVUrrF779ZNOLC0Nj3/gABxH\nVhaqXs6cgeHmlakQ+OCrK1OHQ67E+VpwyaLTCWNHhPCV1WrYHM9WxeqYRYtQCrpggXxsHx84lOPH\n5aQwNmbqHGnuh1DLLps2lbLXRJAxvvtuiNrxsURydOmcOfi/cYexuZeAz79bNywIVMewezdu1dh3\ndrHw/K76czPrOLfk1OuQnWNo0SLnSqO80L69UacqOwqywU3jcdwZjsE88D0zE4a0Xj2UYd5/vzym\nVSt8WA4fRgkcGzc2IM2a4W/82LNnS4fQujUec+NGGb4QAsbr7beNYy7tdlTWDB4MJ+JwwND7++M2\nKUlW+jRrhu1+YCCE3tTXw4YuKwvPGRcHo8e7HzVUEhwsjVyXLq5lnRERiNfXrWtt9MyrXHYyqrhc\nqVLoO1ixAg7P4cD5sLIpw8bMzw/nPnIkEtvPPAPn5+eH17p8uTH3wrMO7HYYIQ5rLVyIfIfdjsR9\ny5bGfAfDCWMfH5z/7Nk4t/Bw2feh7hw47GdFTnX92ZFbOZGcyGnE7NNP43oUBhkZ2SfCVQpSEkPj\ncdwZjoFXnywlwU1LlSrJskr+8Ldu7TrJi8jYnxAaKlc8GRlSRXTMGNx37175wW/aVBpZDr289JL8\nndMpa7+//hrOY948JLfffx8ftNRUPB9PIAsPx60Q0mhmZsrX0q2brJRSP6gtWsjvX38dJahs3C5d\ngrHMyMA5ZTcG1Ey1avJ7mw2PtWsXYvajRuF5zGEnX1+Ef8qVQ9hq61acS5UqSIZevSqLA9Q5COwY\nHA78j7ji5uhRhMvsdrwOLy/XHUO5ckbNIk5q9+yJ1a65ByU9Hat7q7BP27boA8kP3t6ujYT5JadQ\nUkiIcXb1rSSvWkl6x1Bk8VzHEB+PTmHVMXB1CScn77rLdXg6YzYG6qrVzw/VLu+9h7m4vKvYu1eG\nrnbuRDPW0qXSCfBjJiXhfkTGlTk7JzZIDgfyGq1aGc8nNha3QqBcs3JlOAbWLVqzBnmI5GQYL06a\nX7kir0XZsmhyu3IFj/PGGzCmnFDnRLhZ9sFqZoXawcqlrlyu6nRiF7N0KX7m2cc+PnAYfG6bN8s+\nh5Ur8Xu+5mp8Xt0xqGzciJW/GqLw9zfu1DiHUaYMDLO3N5xaaCjuw46Bm93YMVmtyG/GsBVkGOXi\nxdyv0m81t0srSeNxeK5j2LkTO4JHH8XPrEBJZF0uqCaGieTfa9TAbXS0XF3bbDDIZcq4dj77+ODx\nv/oKBik42NUxqM+jljw+9hjyHLNny2okPm7zZnkch4f27cP3JUviOdn4Ehnr5nlHwgbvs89gEIcO\nhaEUAvcvUQJGVw2f/O9/SHIzkZGusgujRsmSWV9fOMo5c/CzuQKHJTIGD0YVE59TSopMJLdrh+vY\nvLmswGISE+HwWLiQUbuw+Zpxzobp2xfnd/EiHKYqrMcDdIjkqFS7HU7JairZqFGuXca5pSAnjj3/\nfO6H49xqzp/PXqlVpUYNqfelKXJ4rmNwOhG75wHin30mjRAbkcREJGu/+koOkmfsdoRseN5ybCyM\nc2Skcfi6O8dAhC5oIrlKNmslERkTkX5+SOj+9794rCtX8Br4HDixnJmJUEuTJni+Fi1knwIRDE9m\nJhLAJ08ibs/lqKNGwVlevoxS13vvlQnWXr3QkEaEsBv3enz3nXzsrCw5raxkSZxzaChKQC9cQE7A\nx8cYKlNDHSxIV60a5C/UHIDZWJYvjwY3NaHJ5ZZmo8zOnq8NER7fx0de9/ffNyZbVcfgdOL/reYN\nslvV3n9/7lVJzfBioyCIiDA2sN1O4uLkAiEnXn9dNnxqihye6xhYdplXvv37yyoapxMGZOpUGMMf\nf0Rse9w4GTe225EvGDIEK6ESJfBYLVrIFTU3gzmd6Kb9+29ZHRMSIt/4HBLp1k2ekxDGxrUtW9A3\noRrKvXvRBcwVQtzxzBIQW7bguaZOlf0WfO5ZWVhJTpkCY9qlCx57/35IaR86hGPHjTMqk3JStlo1\n5AjYiTKc5PbykiGeEiVwXECAa038xYvS+Fola9UcgNUq+tdf5axmIoTIli1zDXHxTuf//g+lwUx2\nVUWcU2nWDE7ku++MMhe3apbwzp3GHWxR4ZFHXBdYmmKJ5zoGxipxWLo0krtcLrp9O2658enQIVTa\nzJqFNzobwOrV5Txfux3G6KefYCzZCUybhhW1qrTKq05OSLMzuXABXcFEMGiXLsndBZGrzDHLI/Dg\nGR53SSQlFgIDsQPiRPX06TB6H32EGPpjj6H+nufonjghHUNSEozwnj143J9/xopdvYZNmsBRZmai\nv6JsWYSATp2yvv58LBEMorkaR3UMapUUY1asdScsN3y4UQSRUcuJP/wQ5bRM6dJwxlu2oAbfHDLK\nLmZ+7lzuwyZmzp71nLxAQeLlVXDVVpo7Gs93DDYbPvDqqpETzyxBzB/+I0dgYLZsgRG1ChW89RY6\naLkiich1K9+kCQzaunWotsnKQhiraVPc74svZDhKCOwkeDfAxumdd4yxfSKEOubOlSErzg8QSWNp\nXh2npBiNo5+fsXR09myEm0qWNDbv1a6NoUCqGioRHKb68wsvwIG4Y8ECJJmjo12v0+zZRsdgpU01\nebJx0Iy7uv3q1Y3VUYzamf7XX8YdgY+PzEERyT4OxstLynybGT0aDXb5oWFD95P+7mS0/pHmOneG\nY7CSwvb2dm18UyeEZaeD8/rrCAMNGACDylpJHCqx2+EE+vXDTiIzUz4fr86ffdb4vGwg+YNVujTO\noW5dyEwwM2ciseznh/v06AHjzTuNJk1wy+qjly5hVczGMTFR7iaI0HcwYwbCTvzBttnghE6ehNFX\nr1+bNtgp8HV79VVcg+yIioKDVMnKwvU5fx4/V6pklOhm0tONFWHuHEPbttCEMrN1q7ymKSkIe02e\nbNRIYsy7A39/VIRZre7dzd7IDebwXFFBT1LTXMfz3wWqlr86mET9YLJBYMeQmYnvZ83CqpYI1TmP\nPSbj/b16wajZ7dKoc8jEbkeHbloaGum2boUx41JWdXIbf5gCA2GE1bkAqlbS/ffD2PP9/f3lCttm\nQyw/IkLuOMLDpbjan38iPMbloOrKODra2CHOjoFI7mLUyqCjR43T3o4eldU8y5dbTy1zOOCAvv9e\nTvhavBj3b9IEu4pvv3WtIiJCSa063/mjj2S5roqqlcT89huqo/j1fPcdnOLQobKZTcUq0exOQXX6\n9PyLzxWkiJ4nUbassQhCU2zx/Hf3PfdIrZ3atWUeQV3tDR2KUs8ZM4w7hoMHsTqfPRuVQnPmyIoX\nm00Op+H+CA4t2e24Lxuazz9HfNssmud0Ipk6fDgqcKpUweraz0+GqurXxzmsXw9DtG2bdCQcFuEO\naT8/uWtJTZVObcEC7Ch45T9vnnzts2ZJx7B3L3YJZgPZqZP8XnWop07J1bSvL0JP6rFmRo6UuQju\nk7DZEM558EHr+1SqZAxBNW9uHXJirSSVS5ekzAURHAdPy7NasVvlE7ILj1hN3ssN+b2fp/PFF7Ji\nTVOs8XzH4HRCE4cIhvHzz/G9v79UV61VC8d88AEMOu8Ydu1CiePjj8vwCaMOseEmOm7qsttdk7F/\n/IHErmpoVq+GMYuIQELS4cDXnDlISs+fD+P+8MPycbgLeto02QH9ySe47dgRq/aEBBzHlTtXruD3\n5pBP9+5ScM7phHRC//6ux5lHbzKqphE7O6sQDXPokKy6KugVs5+fq2FXy1GJUG48ahS+V3dm3DFu\n/h8zVo7h669R0ZVfrBRbNZoiwp3hGMyrmMREGOrBg7H6/Mc/jEYlOhplnYsXy92AGmcPCYFh8/ND\nSCEmRq7QGzdGHsBcnfHOOzAG6o4hMBAyGmFhCHHY7Xg8rnDihrUGDSDVERaGx2Djyqt1nr0QHY0w\nUenSMPg1a2I1npaGXgDWNCpfHo4wLAw/s2MoVQqhHW5C49W/alzVsZReXtIxVKiAW3erazaivMsp\n6CTlyJGy85sxO4amTeH0zpxBGTLz+ecoN+7Z03h/fk9YnesTT2AAUX7YuLFgVU01Gg/Dcx2Djw8a\nu86eda2fz8hAKMPfHyvk0aPl3+6/H70K5gSn6hhOnoQT8PaGUd21C4b9iSeQVP71V+kYfH3l6nTH\nDhhTNW6trpwdDhhtnogWGSllru12KVrHRoUdw7PP4nseE5qQIGO9VnHzvn3h9Hr3hrEsW1a+PrWp\ni8Mt7sZQqpPdOJ/hzuDzTF5uMFN1+2fNgqptQWN2DEz58sZQUmgowo3mgTe3qqS0eXNdvaMp0niu\nY0hPR3z544+NRp5r/zmB+9FHMnlKhB1CcrJ7raSgIMhAL16McML338Pgp6YiMc1TyLb7d5PEAAAZ\naElEQVRswYr8wAFZkSMEjOjVq3J+Mz+Pr6/Up8/MxOStpUsRfuIhPURYoXPnbFAQEtac7+BVuToO\ncuFCKZ7H4QsOQW3ciNfVvr2s71dr93v1QhWSGlpSE9FeXnJuMyd+rQzexYvos1i9Ws4NDg2VQ4I2\nbzbmAgqKrCy8xvzicECdVKPR5AnPdQw9e8owx4cfyt+ruQFGLYeMi0NOgf/OjWCsN6T2NgQEyDAM\nl1Ha7VgBDxyIKqLKlaUmjFnOmc+HCOWvJUogx8G5CPW4VatcX+PJk7L0NC0NTVpErsaZQx733ovd\nBjuG4cONDW58X37uf/6T6NNPjc8dFiZzF3Y7jv/lFxxHZJwQxvBrVP/WuLHMjaxbl/0UsvxinjGd\nV2w2Yxe1RqPJFfks5C4EUlKkxs6sWQizrF2LBGtICAzh7t1wHqynxLAGEhHyB/v2IbE8bx5W1moC\nlh0Dyx+rIQoOUU2ciNt9++RuhY0vl2JyyGP3bmOJ7YYNOIft29Fcx68pPR0rbi7/TE2VozzNdO+O\nruO0NMTi27aVoaOePY0ltCyNwZw4AaPNSdusLISi0tJkdVCLFlI8z1wyyo/J14oJDJT3371bSnQU\nJCVKWDsqjUZzS/HcHcOPP8rv9+3Dyv/gQeQcrl2DgXv2WVnP/v77MLzDhknHUKYMGrhOnoTxO3UK\noRCzY7hyBYb34EGjY2ARPV7Vjx4Neevff8dOQBWC42Eq5pzA5MlSsiMuTuYOpk9HGSof/+WXMrHL\nO6XkZORCKlRA8jo+Hg6lbFl57PDhxh1DvXrG12elleRwEI0fb0yw2+3Q/bcSiOPHc1eJ9K9/3ZqQ\nTW47cdu0cW3A02g0+cZzHYMZ/uBnZqJBqn17GGiO9bdpAwG9q1dh5OvUgSGuXVt2ETdogKlkLGdw\n5gwMNO9EiJDQve8++bzTpxslKN55R86OPn1aivZx7N0sg6GydKkU3mNjzaEmbrZ6802Zqzh2TDaE\nvfYanIFZ6fXvv42O4eJFmXMZPBgifKpB79gR0iGbNhnPzTz20/w3Ijkkx4z5GhUUue3EXbPGKEKo\n0WhuCs93DJyQnTEDzWE//ICkM8fZmeho7CS++AIrbT8/15LCqlWlBESlSjKZW7cuqnu4oYzLY5ct\nQ0dvaqrreEUh4KR4RfvHH7hliQjuDFa56y6Z/FWb5IhQcrl7N14XS3Q4HHgOdh49e2J1TiSfd+JE\nhKNUR8N/Yy0mdcfQvDletzn0k51j4HMt7OHvaogsJ3goj0ajuWk8N8fAcEUOEZwDN6+ZdW78/Y3x\nefPfAwMRxuGV8rBhiN1XqYKdxK5d0gDzKMVnnpEdvjEx+DuL3736KpLibLgeeQSOiY3y88+jp+Du\nu3E/ddYzkTzu2WeR6A4Oxhf3IBDJUtqtW5Hs5XkO/DcihIN27JC7HHWVvWCB7NdgBg9GJVTHjsbr\nk51jUMeSFiYBAbkfTq/nD2s0BcZt2TGsXLmSYmJiKCoqiiZyYtcd99wjv+dw0syZrpII5pWxw4FV\ne8uWcCZ9+2JMJBEMzsMPIzTDekiqI3nySTyeKsvM8fijR+U8aXXHwOdQqxZ2Hxze8feHw6he3SgN\nkZuVML+ev/92jaGrTXZqMlyNy58/j4oqVVfo5EnkaVgzijl/Hmq17hxAQEDh1+6zCKFGoylUCt0x\nZGVl0aBBg2jlypW0d+9emjt3Lv2liqxlB6/29+2T1UAbNyLGPXeuUUPIywux9HXrEG45flyWV3KZ\nZmYmwk4DBsAI86qzQwccr8oe9O6NW3VFnpUFyW3OLzgcWNn36iX1mho3Rtjm4EHoJfE58hzi7AbB\ns2NYs8ZVIprvt2yZ0TGoMx5GjkQORpXkYAeoJveJcC3q1oXaq0ajKdYUeihpy5YtVL16dap6PZHZ\nq1cvWrJkCdVkuYfc8Ndf+Bo0CDFzq05Uh0POWR4zxnW1zv0QRCiJDA2Vf1+/3lXqmw2x04l49ocf\nYvdQrpxcZbNWkqrwOnEi7vvuu3AqfGyfPlAjNYe8li9H93apUjKmf/q0cWY0Ef4+ahSqi9TXcvQo\ndkBERO+953rt3MlF8+/vxDkDrVsjZKfRaAqEQt8xJCUlUYRipMPDwymJpSJUchO2mDLF/d/27DHu\nINQmuNhYGNPgYOwO+vZFVc1996HaiXX/GR8fGPodO1DBdPUqZDHKl8d5snibzYbqoYEDjZVCtWtj\nJd6qFVb4KmZDPWiQzGsEByNhvnu3UeOIefttmXjmXULZstnPJF6wALdq5ZWKu+v+0kvYXXkiM2ca\nd0UajeamKPQdgy2XceqxZcqgQmfPHmpBRC0efdQ41N4dFStiFW6eK8DGlgjGtmdP9DUEBECC4rnn\nYMBffJFo5Uq5QwgKkpIRv/2GcBaXgbq+OMT8d+xAfoLlNdLS4Ih27pSrecbsGI4cwao9MhI/s/Kr\nFQ4Hdjv+/tKgq53PVrzwAtE331h3Fa9dK8X0zCxaZJTT8CSsJvVpNMWAdevW0Tpzg28BUOg7hrCw\nMEpUwhWJiYkUbi49JaKxFy/SWD8/GktELdatQx6hZEk0shEZRdxUHA7E+M3JXd4BVKwIaQmW1f71\nV9xyoplDMtxB/L//IflbujR+Z7cjhOPlZT1ZjgiGuUEDnO/06dgF2GyuTiA0FHMizPedM0f+fOSI\nUWJaZf16nG9QEI4jyn7OMRH6Ih591Hpn0LKlzJeYOXTI/VxojUZzW2jRogWNHTv2xldBUeiOoXHj\nxhQfH0+HDx+m9PR0mj9/PnXmpi8VLy/ZmFa5sozd9+uHfgDz/GHm2DHjhDMWektJQclpdLSsebfb\nYfgbN5ZGXnUM/v7YXVSogGMdDiSBK1VCyEat4OF8wPbtWHmbtZLmzTPuWojwnIcPu74Gs9Hm3YOZ\nNm2wI3GnleSO+vWlXlJeyOlxNRpNkaDQQ0leXl706aefUrt27SgrK4ueeuop68RzZqasYXc6US7a\nvTuSti+8gHDPli1YmXt7wzCfPYvj1WRsbCx2A5s3owz13DkZeoiJQZgmIEDmINgZ+frKrupu3dDR\nrCaKR4wwSkqwVtLvv6PDmY1oQgIS1JcvQ9abK53S0yFy9/ffOV+0li1dB90Lgcfg/AI7Bt7VZMfA\ngTk/p5kuXYw9FhqNpshyW/oYOnToQPv376eDBw/SKBZ3y45ffkHIZdYsrLq5G7hFCylCt3w5qo+6\ndjUaxu7dif79bxjMiAj0E/TujbCIjw+Ma2qqHNfo64s+BC8vOUb09GnXPomBA9HARoQmOa4Acjpx\nX3YMc+fKMM/mzVJ4btkydDtbrcLZOaWmEn32Gc6bh/kwfD+z2myXLlKCuyD54QfXuRieQo8et2Ye\nhEZTTPH8zmciyE1UqICKocxMlCeWK4f6fk4SN22Kr4cfhp7QG2+gkqZ+fYRsHA7sNpgKFeAcXnoJ\nj3/iBEJWLVtiRgMREsUdO8IpeHsbh9hnZEin1KiRrPKZMgU9C7wLGj4cX0Tov+A4oFkSgxk0SIbJ\nUlPh7M6fR0muCt+fHYO7MtTiwKJFCLe5mzut0WjyhOdrJc2Ygbj5Rx9hVbhvHxLPnBMwyzIvXw4j\nX6WKnMXgTnNnyRLkCQYNgtNJSMDvu3XD7TffYJWfkQHH0KSJHKeZmSlDS4sWyTALJ7lXr8btiy/K\njuuwMISPiOT5mBPFd90lQ112u/vpazYbqpc4p1DcJ4qpXeoajeam8HzHkJgoNZKWLMHvHA506ZrD\nKyo+PjC6PMjGyjFwE1poqAzxqLBS6vbtMkkcEwMnoTqGixeR9yCC89q/H8cxbLRVJ8Dn8+qrxud8\n8UVj93F2Q+e5mqtNG1mtVVzJrndDo9HkCc93DG+84fq76tXhFNavd/0br+h9fDC5rFIl5A3mzsXx\ne/bIY69dQ/KZ5SuaN7c2MB9/DONLhPBVejpyHdzYlpIi4/rly6MxTQ3t2O3YSZgF8nIit+GhUqVu\nftrZnUxaGnpLNBpNgXBn5BiYhQvd/236dBhl1iDy9pbyDjt2wFjPnIk5DWyg2THwzqFmTeP8aCLs\nTIYNc32+0FD5OO6G4TCbNsF5+PvL33FuRB32Y6Z06VszGa2okZ3elEajyTOe6xhq1TKu7okgbOcO\n8wSx1FTMbyCCzPSVK8ghqDkJdgwBAdKhmLHSGyJCGGf3bnyfmGg8N96BMJGRcFRqcpR3IGatpDVr\nkMzmCqBq1ayfX6PRaG4RnhtKYkPt749qI1V+m5PK2bF8OcpBiWB8MzMRWlL1k+rWRcXQiBGug3gY\nNS9w+LCsWHJ3DJHcgTDR0UT9+xMNHep6X3O46OWXc9fboNFoNLcIz3UMfn6I4aemojJHjSGblUZV\n6teHM+FmNyLpGEJDjfr+Y8bIPIE7VB2eAwfQE2GmeXPj7oblvBl1qpoZs2M4eNBzxeo0Gk2xwHMd\nw5EjqCiqWhWKpb16Qbpi06bsY8rdu2MqWkCA/B2PyDx0yLji9/Z2Xw5KhMdQpTe8vJB4Nu8QbDZj\nj0PlysZj3M0u9vU16iIRoTeC5zprNBrNbcBzHUPPnggFlSsnZyWUKmUc32nm7ruRCC5VCiGiV15B\nqemFC2g88/c3OpWcHIMqZ80/r18vhfdyi9OJnUZcnPH3JUrg/MwU954EjUZzW/Fcx+B0otLo7Fmp\ne9SunXtZhnr10KTGPQvh4RhiU7++exE6lsRwx8SJxrkMqh5RXuB+C9WpZWZCciO7sJhGo9HcBjzX\nMUyahFsvLyigLlyIHYC7xPO336IyyVw6SoTEtVV1T047hqefNpaYcgVRXh1DvXroxFb1fDZuJBo3\nzloriZVaNRqN5jbguY6BcTiIdu1ynXxmpk4dJIrXr3eVt3bX+XzsmLXstTs4EZ0fXaIjR4g+/VT+\n7E4rqVcvY75Co9FoChnPdwyffIKBN998k7vj1693jdtb7SKIkPh116dARPTVV0YnU7kyUcOG+Res\n45AYkXutpOho91PUNBqNphDwfMfw22+Qns4LPN0tKwuG3d2Owdc3+wqnTz5xLR21msSWW6wcw0cf\nGY95802ox2o0Gs1twnMdw7334jav4yR79CB66il8/913qGgKDyeaPDnv52ClyhoXh+FAeeW99zA/\nguHH1fkEjUbjYXiuY+BVOQ+tyS3czEYkV/tnzrifz5wdu3fjvgVBpUrGOdU8/Y2lMTQajcZD8FzH\n8OOPUvmU5aVzg1ppxPH7PXuIpk3L33moc51vhrvuIrr/fvkzV1eZtZJ+/dU1ea7RaDSFiOc6Bi8v\nGHanE1U6HTrk7n7NmsluZXYM6i4iL/z0Eya4FQR3342ObDPmfMXbb6MKS6PRaG4Tnquu6udHFB+P\nSqBmzSAulxt4YA7RzTuGhx7K+33yitkx/PWXUedJo9FoChnP3TGsWgXdoEaN0GjG4zbzAodp8usY\nbiXstMxVScePE/3+e+Gfj0aj0VzHc3cMc+YQhYRgIlu5cvl7jN690fX8559E69YV6OnlmVGjIALY\nvTt+FgKJZ1Xsj1EVXTUajaaQ8VzH4HQSffABcgtq/X9eCA7GV61aGAd6Ozl1iuj8efmzENYT6U6f\ntp4/rdFoNIWE54aSZs/GrZeXtZ5QXihRwlgRdDtISDCqsh48iB2EmaAg10oljUajKUQ81zEwZunr\nO5WNG4lmzZI/2+2uchgajUbjAXju0vTYMfQvvPqqcVjOnYq5g9puLxoOT6PRFDk81zGEheG2Xj3Z\nJZxX0tNR2RQUVHDnlV/MZanaMWg0Gg/Fs0NJQuTfKRARzZjhOUqlr7xiLLkVIm+S3xqNRlNIeLZj\nuFkKSueoIKhQwVh262l9FRqNRnMdzw0lFQSelNyNijKGkypVwpwJjUaj8TCKtmN4+un8N8cVNC1a\nGGW3nU7MdtBoNBoPwyaEJy2rgc1mIw88rYLl4kVUW126dLvPRKPRFBEKynYW7RyDJyOE9VQ5jUaj\nuc1oy1RYTJsGiQ/G4SBq2fL2nY9Go9G4oWjnGDyJixeNVVKlSxMtXnz7zkej0WjcoB1DYREfj0ly\nGo1G4+Ho5HNhERUF4byi9ro0Go3HUFC2U+8YCosBA4h27rzdZ6HRaDQ5oncMGo1GU0TQ5aoajUaj\nuSVox6DRaDQaA9oxaDQajcaAdgwajUajMaAdg0aj0WgMaMeg0Wg0GgPaMWg0Go3GQL4dw9ixYyk8\nPJwaNGhADRo0oBUrVtz42/jx4ykqKopiYmJo9erVN36/detWqlOnDkVFRdHQoUNv7sw1Go1Gc0vI\nt2Ow2Ww0fPhw2r59O23fvp06dOhARER79+6l+fPn0969e2nlypX0/PPP32i4eO6552j69OkUHx9P\n8fHxtHLlyoJ5FUWYdevW3e5T8Bj0tZDoayHR16LgualQklWH3ZIlS6h3797k7e1NVatWperVq9Pm\nzZvpxIkTdPnyZWratCkREfXr149++OGHm3n6YoF+00v0tZDoayHR16LguSnHMGXKFKpXrx499dRT\ndOHCBSIiOn78OIWHh984Jjw8nJKSklx+HxYWRklJSTfz9BqNRqO5BWTrGNq0aUN16tRx+Vq6dCk9\n99xzlJCQQDt27KCKFSvSiBEjCuucNRqNRnMrEQVAQkKCqF27thBCiPHjx4vx48ff+Fu7du3Epk2b\nxIkTJ0RMTMyN38+ZM0cMHDjQ8vEiIyMFEekv/aW/9Jf+ysNXZGRkQZh0kW/Z7RMnTlDFihWJiGjx\n4sVUp04dIiLq3Lkz9enTh4YPH05JSUkUHx9PTZs2JZvNRmXKlKHNmzdT06ZN6dtvv6UhQ4ZYPvbB\ngwfze1oajUajuUny7Rhefvll2rFjB9lsNqpWrRpNmzaNiIhiY2OpZ8+eFBsbS15eXjR16lSy2WxE\nRDR16lR68sknKTU1lR566CFq3759wbwKjUaj0RQYHjmPQaPRaDS3D4/qfF65ciXFxMRQVFQUTZw4\n8Xafzi0nMTGRWrZsSbVq1aLatWvT5MmTiYjo3Llz1KZNG4qOjqa2bdveqPgict88WFTIysqiBg0a\nUKdOnYio+F6LCxcuUI8ePahmzZoUGxtLmzdvLrbXYvz48VSrVi2qU6cO9enTh9LS0orNtfjXv/5F\nISEhN0L1RPn7TOS5ubhAMhUFQGZmpoiMjBQJCQkiPT1d1KtXT+zdu/d2n9Yt5cSJE2L79u1CCCEu\nX74soqOjxd69e8XIkSPFxIkThRBCTJgwQbz88stCCCH27Nkj6tWrJ9LT00VCQoKIjIwUWVlZt+38\nbwUffvih6NOnj+jUqZMQQhTba9GvXz8xffp0IYQQGRkZ4sKFC8XyWiQkJIhq1aqJa9euCSGE6Nmz\np/j666+LzbVYv3692LZt243iHiHy9plwOp1CCCGaNGkiNm/eLIQQokOHDmLFihXZPq/HOIY//vhD\ntGvX7sbP5uqm4kCXLl3Ezz//LGrUqCGSk5OFEHAeNWrUEEIIMW7cODFhwoQbx7dr105s3Ljxtpzr\nrSAxMVG0atVKrF27VnTs2FEIIYrltbhw4YKoVq2ay++L47U4e/asiI6OFufOnRMZGRmiY8eOYvXq\n1cXqWqhVn0Lk/X1w/PhxQ0Xo3Llz3VaEMh4TSkpKSqKIiIgbP3NjXHHh8OHDtH37dmrWrBmdPHmS\nQkJCiIgoJCSETp48SUTumweLCi+++CK9//77ZLfLt2VxvBYJCQlUoUIF6t+/PzVs2JCeeeYZunr1\narG8FuXKlaMRI0ZQ5cqVqVKlShQYGEht2rQplteCyetrz09zscc4Bq5cKo5cuXKFunfvTpMmTaLS\npUsb/maz2bK9NkXluv34448UHBxMDRo0cDvMvLhci8zMTNq2bRs9//zztG3bNipZsiRNmDDBcExx\nuRZ///03ffLJJ3T48GE6fvw4XblyhWbNmmU4prhcCytyeu35xWMcQ1hYGCUmJt74OTEx0eDliioZ\nGRnUvXt36tu3L3Xt2pWIsApITk4mIvSLBAcHE5HrNTp27BiFhYUV/knfAv744w9aunQpVatWjXr3\n7k1r166lvn37FstrER4eTuHh4dSkSRMiIurRowdt27aNQkNDi921iIuLo3vuuYfKly9PXl5e9Mgj\nj9DGjRuL5bVg8vKZCA8Pp7CwMDp27Jjh9zldE49xDI0bN6b4+Hg6fPgwpaen0/z586lz5863+7Ru\nKUIIeuqppyg2NpaGDRt24/edO3emmTNnEhHRzJkzbziMzp0707x58yg9PZ0SEhJuNA8WBcaNG0eJ\niYmUkJBA8+bNowcffJC+/fbbYnktQkNDKSIigg4cOEBERGvWrKFatWpRp06dit21iImJoU2bNlFq\naioJIWjNmjUUGxtbLK8Fk9fPRGho6I3mYiEEffvttzfu45aCSpAUBMuXLxfR0dEiMjJSjBs37naf\nzi1nw4YNwmaziXr16on69euL+vXrixUrVoizZ8+KVq1aiaioKNGmTRtx/vz5G/d59913RWRkpKhR\no4ZYuXLlbTz7W8e6detuVCUV12uxY8cO0bhxY1G3bl3RrVs3ceHChWJ7LSZOnChiY2NF7dq1Rb9+\n/UR6enqxuRa9evUSFStWFN7e3iI8PFzMmDEjX689Li5O1K5dW0RGRorBgwfn+Ly6wU2j0Wg0Bjwm\nlKTRaDQaz0A7Bo1Go9EY0I5Bo9FoNAa0Y9BoNBqNAe0YNBqNRmNAOwaNRqPRGNCOQaPRaDQGtGPQ\naDQajYH/B4WvA02NTYC3AAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 136 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This time the filter does struggle. Notice that the previous example only computed 100 updates, whereas this example uses 1000. By my eye it takes the filter 400 or so iterations to become reasonable accurate, but maybe over 600 before the results are good. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Explaining the Results" + ] } ], "metadata": {}