diff --git a/02-Discrete-Bayes.ipynb b/02-Discrete-Bayes.ipynb index 5d6687c..2073635 100644 --- a/02-Discrete-Bayes.ipynb +++ b/02-Discrete-Bayes.ipynb @@ -369,7 +369,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "hallway = np.array([1, 1, 0, 0, 0, 0, 0, 0, 1, 0])" @@ -462,7 +464,9 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "belief = np.array([0., 1., 0., 0., 0., 0., 0., 0., 0., 0.])" @@ -692,7 +696,9 @@ { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "def scaled_update(hall, belief, z, z_prob): \n", @@ -5489,7 +5495,9 @@ { "cell_type": "code", "execution_count": 31, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "class Train(object):\n", @@ -5538,13 +5546,14 @@ { "cell_type": "code", "execution_count": 32, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "def train_filter(iterations, kernel, sensor_accuracy, \n", " move_distance, do_print=True):\n", " track = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n", - "\n", " prior = np.array([.9] + [0.01]*9)\n", " normalize(prior)\n", " \n",