diff --git a/README.md b/README.md index 1cb4205..ffe0c19 100644 --- a/README.md +++ b/README.md @@ -161,15 +161,15 @@ I recommend using pip for the install, as I try hard (sometimes I fail) to make FilterPy is hosted github at (https://github.com/rlabbe/filterpy). If you want the bleading edge release you will want to grab a copy from github, and follow your Python installation's instructions for adding it to the Python search path. However, it is quite possible that it will not be compatible with the notebooks in this project. I try to make sure the notebooks are in sync with the PyPi hosted version. -Code that is specific to the book is stored with the book in the subdirectory ./*code*. This code is in a state of flux; I do not wish to document it here yet. I do mention in the book when I use code from this directory, so it should not be a mystery. +Code that is specific to the book is stored with the book in the subdirectory ./*kf_book*. This code is in a state of flux; I do not wish to document it here yet. I do mention in the book when I use code from this directory, so it should not be a mystery. -In the *code* subdirectory there are Python files with a name like *xxx*_internal.py. I use these to store functions that are useful for a specific chapter. This allows me to hide away Python code that is not particularly interesting to read - I may be generating a plot or chart, and I want you to focus on the contents of the chart, not the mechanics of how I generate that chart with Python. If you are curious as to the mechanics of that, just go and browse the source. +In the *kf_book* subdirectory there are Python files with a name like *xxx*_internal.py. I use these to store functions that are useful for a specific chapter. This allows me to hide away Python code that is not particularly interesting to read - I may be generating a plot or chart, and I want you to focus on the contents of the chart, not the mechanics of how I generate that chart with Python. If you are curious as to the mechanics of that, just go and browse the source. Some chapters introduce functions that are useful for the rest of the book. Those functions are initially defined within the Notebook itself, but the code is also stored in a Python file that is imported if needed in later chapters. I do document when I do this where the function is first defined, but this is still a work in progress. I try to avoid this because then I always face the issue of code in the directory becoming out of sync with the code in the book. However, IPython Notebook does not give us a way to refer to code cells in other notebooks, so this is the only mechanism I know of to share functionality across notebooks. There is an undocumented directory called **experiments**. This is where I write and test code prior to putting it in the book. There is some interesting stuff in there, and feel free to look at it. As the book evolves I plan to create examples and projects, and a lot of this material will end up there. Small experiments will eventually just be deleted. If you are just interested in reading the book you can safely ignore this directory. -The directory **code** contains a css file containing the style guide for the book. The default look and feel of IPython Notebook is rather plain. Work is being done on this. I have followed the examples set by books such as [Probabilistic Programming and Bayesian Methods for Hackers](http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb). I have also been very influenced by Professor Lorena Barba's fantastic work, [available here](https://github.com/barbagroup/CFDPython). I owe all of my look and feel to the work of these projects. +The directory **kf_book** contains a css file containing the style guide for the book. The default look and feel of IPython Notebook is rather plain. Work is being done on this. I have followed the examples set by books such as [Probabilistic Programming and Bayesian Methods for Hackers](http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb). I have also been very influenced by Professor Lorena Barba's fantastic work, [available here](https://github.com/barbagroup/CFDPython). I owe all of my look and feel to the work of these projects. License -----