Runge-Kutta code working for ball - w=0, no initial vertical velocity.
This commit is contained in:
parent
a29f30e293
commit
3d69728b25
110
exp/RungeKutta.py
Normal file
110
exp/RungeKutta.py
Normal file
@ -0,0 +1,110 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jul 05 09:54:39 2014
|
||||
|
||||
@author: rlabbe
|
||||
"""
|
||||
|
||||
from __future__ import division
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.integrate import ode
|
||||
|
||||
|
||||
class BallEuler(object):
|
||||
def __init__(self, y=100., vel=10.):
|
||||
self.x = 0.
|
||||
self.y = y
|
||||
self.vel = vel
|
||||
self.y_vel = 0.0
|
||||
|
||||
|
||||
|
||||
def step (self, dt):
|
||||
|
||||
g = -9.8
|
||||
|
||||
|
||||
self.x += self.vel*dt
|
||||
self.y += self.y_vel*dt
|
||||
|
||||
self.y_vel += g*dt
|
||||
|
||||
#print self.x, self.y
|
||||
|
||||
|
||||
|
||||
def rk4(y, x, dx, f):
|
||||
"""computes 4th order Runge-Kutta for dy/dx.
|
||||
y is the initial value for y
|
||||
x is the initial value for x
|
||||
dx is the difference in x (e.g. the time step)
|
||||
f is a callable function (y, x) that you supply to compute dy/dx for
|
||||
the specified values.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
k1 = dx * f(y, x)
|
||||
k2 = dx * f(y + 0.5*k1, x + 0.5*dx)
|
||||
k3 = dx * f(y + 0.5*k2, x + 0.5*dx)
|
||||
k4 = dx * f(y + k3, x + dx)
|
||||
|
||||
return y + (k1 + 2*k2 + 2*k3 + k4) / 6
|
||||
|
||||
def fy(y, t):
|
||||
""" returns velocity of ball at time t.
|
||||
return -9.8*t
|
||||
|
||||
|
||||
def fx(y, t):
|
||||
""" returns velocity of ball. Need to set vx.vel prior to first call
|
||||
return fx.vel
|
||||
|
||||
class BallRungeKutta(object):
|
||||
def __init__(self, y=100., vel=10.):
|
||||
self.x = 0.
|
||||
self.y = y
|
||||
self.vel = vel
|
||||
self.y_vel = 0.0
|
||||
self.t = 0
|
||||
|
||||
fx.vel = vel
|
||||
|
||||
|
||||
def step2 (self, dt):
|
||||
self.x = rk4 (self.x, self.t, dt, fx)
|
||||
self.y = rk4 (self.y, self.t, dt, fy)
|
||||
self.t += dt
|
||||
|
||||
print self.x, self.y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
dt = 1./30
|
||||
y0 = 15.
|
||||
vel = 100.
|
||||
be = BallEuler (y=y0, vel=vel)
|
||||
brk = BallRungeKutta (y=y0, vel=vel)
|
||||
|
||||
|
||||
solver = ode(f).set_integrator('dopri5')
|
||||
solver.set_initial_value(y0, 0)
|
||||
t = 0
|
||||
y = y0
|
||||
|
||||
|
||||
while be.y >= 0:
|
||||
be.step (dt)
|
||||
#plt.scatter (be.x, be.y, color='red')
|
||||
|
||||
|
||||
while brk.y >= 0:
|
||||
brk.step2 (dt)
|
||||
|
||||
y = solver.integrate(t+dt)
|
||||
t += dt
|
||||
#print brk.x, y[0]
|
||||
|
||||
plt.scatter (brk.x, brk.y, color='blue', marker='v')
|
||||
plt.scatter (brk.x, y[0], color='green', marker='+')
|
Loading…
Reference in New Issue
Block a user