diff --git a/01-g-h-filter.ipynb b/01-g-h-filter.ipynb index 9e7140c..b2b4277 100644 --- a/01-g-h-filter.ipynb +++ b/01-g-h-filter.ipynb @@ -859,7 +859,7 @@ "weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, \n", " 169.6, 167.4, 166.4, 171.0, 171.2, 172.6]\n", "\n", - "time_step = 1.0 # day\n", + "time_step = 1.0 # day\n", "scale_factor = 4.0/10\n", "\n", "def predict_using_gain_guess(weight, gain_rate, do_print=True, sim_rate=0): \n", @@ -885,6 +885,7 @@ "\n", " # plot results\n", " gh.plot_gh_results(weights, estimates, predictions, sim_rate)\n", + "\n", "initial_guess = 160.\n", "predict_using_gain_guess(weight=initial_guess, gain_rate=1) " ] @@ -2515,7 +2516,7 @@ "import time\n", "\n", "with interactive_plot():\n", - " for x in range(2,6):\n", + " for x in range(2, 6):\n", " plt.plot([0, 1], [1, x])\n", " plt.gcf().canvas.draw()\n", " time.sleep(0.5)" @@ -3357,7 +3358,7 @@ ], "source": [ "weight = 160. # initial guess\n", - "gain_rate = -1.0 # initial guess\n", + "gain_rate = -1.0 # initial guess\n", "\n", "time_step = 1.\n", "weight_scale = 4./10\n", @@ -4005,15 +4006,15 @@ " x_est = x0\n", " results = []\n", " for z in data:\n", - " #prediction step\n", + " # prediction step\n", " x_pred = x_est + (dx*dt)\n", " dx = dx\n", "\n", " # update step\n", " residual = z - x_pred\n", - " dx = dx + h * (residual) / dt\n", - " x_est = x_pred + g * residual \n", - " results.append(x_est) \n", + " dx = dx + h * (residual) / dt\n", + " x_est = x_pred + g * residual\n", + " results.append(x_est)\n", " return np.array(results)\n", "\n", "book_plots.plot_track([0, 11], [160, 172], label='Actual weight')\n", @@ -4402,7 +4403,7 @@ " book_plots.plot_filter(data2, label='g=0.4', marker='v')\n", " book_plots.plot_filter(data3, label='g=0.8', lw=2)\n", " plt.legend(loc=4)\n", - " book_plots.set_limits([20,40], [50, 250])" + " book_plots.set_limits([20, 40], [50, 250])" ] }, {