Checkpoint. Added a lot to the particle filter chapter.

This commit is contained in:
Roger Labbe 2015-06-28 13:38:12 -07:00
parent 7cf3980e8c
commit 1b92397175
4 changed files with 698 additions and 296 deletions

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,263 @@
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 27 19:45:45 2015
@author: Roger
"""
import numpy as np
import numpy.random
from numpy.random import randn, random, uniform
import scipy.stats
class RobotLocalizationParticleFilter(object):
def __init__(self, N, x_dim, y_dim, landmarks, measure_std_error):
self.particles = np.empty((N, 3)) # x, y, heading
self.N = N
self.x_dim = x_dim
self.y_dim = y_dim
self.landmarks = landmarks
self.R = measure_std_error
# distribute particles randomly with uniform weight
self.weights = np.empty(N)
#self.weights.fill(1./N)
self.particles[:, 0] = uniform(0, x_dim, size=N)
self.particles[:, 1] = uniform(0, y_dim, size=N)
self.particles[:, 2] = uniform(0, 2*np.pi, size=N)
def create_uniform_particles(self, x_range, y_range, hdg_range):
self.particles[:, 0] = uniform(x_range[0], x_range[1], size=N)
self.particles[:, 1] = uniform(y_range[0], y_range[1], size=N)
self.particles[:, 2] = uniform(hdg_range[0], hdg_range[1], size=N)
self.particles[:, 2] %= 2 * np.pi
def create_gaussian_particles(self, mean, var):
self.particles[:, 0] = mean[0] + randn(self.N)*var[0]
self.particles[:, 1] = mean[1] + randn(self.N)*var[1]
self.particles[:, 2] = mean[2] + randn(self.N)*var[2]
self.particles[:, 2] %= 2 * np.pi
def predict(self, u, std, dt=1.):
""" move according to control input u (heading change, velocity)
with noise std"""
self.particles[:, 2] += u[0] + randn(self.N) * std[0]
self.particles[:, 2] %= 2 * np.pi
d = u[1]*dt + randn(self.N) * std[1]
self.particles[:, 0] += np.cos(self.particles[:, 2]) * d
self.particles[:, 1] += np.sin(self.particles[:, 2]) * d
def update(self, z):
self.weights.fill(1.)
for i, landmark in enumerate(self.landmarks):
distance = np.linalg.norm(self.particles[:, 0:2] - landmark, axis=1)
self.weights *= scipy.stats.norm(distance, self.R).pdf(z[i])
#self.weights *= Gaussian(distance, self.R, z[i])
self.weights += 1.e-300
self.weights /= sum(self.weights) # normalize
def neff(self):
return 1. / np.sum(np.square(self.weights))
def resample(self):
p = np.zeros((self.N, 3))
w = np.zeros(self.N)
cumsum = np.cumsum(self.weights)
for i in range(self.N):
index = np.searchsorted(cumsum, random())
p[i] = self.particles[index]
w[i] = self.weights[index]
self.particles = p
assert np.sum(w) != 0
assert w[0] is not np.nan
self.weights = w / np.sum(w)
def resample_from_index(self, indexes):
assert len(indexes) == self.N
p = np.zeros((self.N, 3))
w = np.zeros(self.N)
for i, index in enumerate(indexes):
p[i] = self.particles[index]
w[i] = self.weights[index]
self.particles = p
self.weights = w / np.sum(w)
def estimate(self):
""" returns mean and variance """
pos = self.particles[:, 0:2]
mu = np.average(pos, weights=self.weights, axis=0)
var = np.average((pos - mu)**2, weights=self.weights, axis=0)
return mu, var
def mean(self):
""" returns weighted mean position"""
return np.average(self.particles[:, 0:2], weights=self.weights, axis=0)
def residual_resample(w):
N = len(w)
w_ints = np.floor(N*w).astype(int)
residual = w - w_ints
residual /= sum(residual)
indexes = np.zeros(N, 'i')
k = 0
for i in range(N):
for j in range(w_ints[i]):
indexes[k] = i
k += 1
cumsum = np.cumsum(residual)
cumsum[N-1] = 1.
for j in range(k, N):
indexes[j] = np.searchsorted(cumsum, random())
return indexes
def residual_resample2(w):
N = len(w)
w_ints =np.floor(N*w).astype(int)
R = np.sum(w_ints)
m_rdn = N - R
Ws = (N*w - w_ints)/ m_rdn
indexes = np.zeros(N, 'i')
i = 0
for j in range(N):
for k in range(w_ints[j]):
indexes[i] = j
i += 1
cumsum = np.cumsum(Ws)
cumsum[N-1] = 1 # just in case
for j in range(i, N):
indexes[j] = np.searchsorted(cumsum, random())
return indexes
def systemic_resample(w):
N = len(w)
Q = np.cumsum(w)
indexes = np.zeros(N)
t = np.linspace(0, 1-1/N, N) + random()/N
i, j = 0, 0
while i < N and j < N:
while Q[j] < t[i]:
j += 1
indexes[i] = j
i += 1
return indexes
def Gaussian(mu, sigma, x):
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
g = (np.exp(-((mu - x) ** 2) / (sigma ** 2) / 2.0) /
np.sqrt(2.0 * np.pi * (sigma ** 2)))
for i in range(len(g)):
g[i] = max(g[i], 1.e-229)
return g
if __name__ == '__main__':
DO_PLOT_PARTICLES = False
from numpy.random import seed
import matplotlib.pyplot as plt
#plt.figure()
seed(5)
for count in range(1):
print()
print(count)
#numpy.random.set_state(fail_state)
#if count == 12:
# #fail_state = numpy.random.get_state()
# DO_PLOT_PARTICLES = True
N = 4000
sensor_std_err = .1
landmarks = np.array([[-1, 2], [2,4], [10,6], [18,25]])
NL = len(landmarks)
#landmarks = [[-1, 2], [2,4]]
pf = RobotLocalizationParticleFilter(N, 20, 20, landmarks, sensor_std_err)
#pf.create_gaussian_particles([3, 2, 0], [5, 5, 2])
pf.create_uniform_particles((0,20), (0,20), (0, 6.28))
if DO_PLOT_PARTICLES:
plt.scatter(pf.particles[:, 0], pf.particles[:, 1], alpha=.2, color='g')
xs = []
for x in range(18):
zs = []
pos=(x+1, x+1)
for landmark in landmarks:
d = np.sqrt((landmark[0]-pos[0])**2 + (landmark[1]-pos[1])**2)
zs.append(d + randn()*sensor_std_err)
zs = np.linalg.norm(landmarks - pos, axis=1) + randn(NL)*sensor_std_err
# move diagonally forward to (x+1, x+1)
pf.predict((0.00, 1.414), (.2, .05))
pf.update(z=zs)
if x == 0:
print(max(pf.weights))
#while abs(pf.neff() -N) < .1:
# print('neffing')
# pf.create_uniform_particles((0,20), (0,20), (0, 6.28))
# pf.update(z=zs)
#print(pf.neff())
#indexes = residual_resample2(pf.weights)
indexes = systemic_resample(pf.weights)
pf.resample_from_index(indexes)
#pf.resample()
mu, var = pf.estimate()
xs.append(mu)
if DO_PLOT_PARTICLES:
plt.scatter(pf.particles[:, 0], pf.particles[:, 1], alpha=.2)
plt.scatter(pos[0], pos[1], marker='*', color='r')
plt.scatter(mu[0], mu[1], marker='s', color='r')
plt.pause(.01)
xs = np.array(xs)
plt.plot(xs[:, 0], xs[:, 1])
plt.show()

View File

@ -153,10 +153,6 @@ def hinton(W, maxweight=None):
if reenable:
plt.ion()
if __name__ == "__main__":
hinton(np.random.randn(20, 20))
plt.title('Example Hinton diagram - 20x20 random normal')
plt.show()
if __name__ == "__main__":
p = [0.2245871, 0.06288015, 0.06109133, 0.0581008, 0.09334062, 0.2245871,

View File

@ -1,62 +1,10 @@
import numpy as np
import pylab as plt
from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow
import book_plots
import numpy as np
from numpy.random import randn, random, uniform, multivariate_normal, seed
from nonlinear_plots import plot_monte_carlo_mean
import scipy
#from nonlinear_plots import plot_monte_carlo_mean
import pylab as plt
import scipy.stats
from RobotLocalizationParticleFilter import *
def plot_random_pd():
def norm(x, x0, sigma):
return np.exp(-0.5 * (x - x0) ** 2 / sigma ** 2)
def sigmoid(x, x0, alpha):
return 1. / (1. + np.exp(- (x - x0) / alpha))
x = np.linspace(0, 1, 100)
y2 = (0.1 * np.sin(norm(x, 0.2, 0.05)) + 0.25 * norm(x, 0.6, 0.05) +
.5*norm(x, .5, .08) +
np.sqrt(norm(x, 0.8, 0.06)) +0.1 * (1 - sigmoid(x, 0.45, 0.15)))
with plt.xkcd():
#plt.setp(plt.gca().get_xticklabels(), visible=False)
#plt.setp(plt.gca().get_yticklabels(), visible=False)
plt.axes(xticks=[], yticks=[], frameon=False)
plt.plot(x, y2)
def plot_monte_carlo_ukf():
def f(x,y):
return x+y, .1*x**2 + y*y
mean = (0, 0)
p = np.array([[32, 15], [15., 40.]])
# Compute linearized mean
mean_fx = f(*mean)
#generate random points
xs, ys = multivariate_normal(mean=mean, cov=p, size=3000).T
fxs, fys = f(xs, ys)
plt.subplot(121)
plt.gca().grid(b=False)
plt.scatter(xs, ys, marker='.', alpha=.2, color='k')
plt.xlim(-25, 25)
plt.ylim(-25, 25)
plt.subplot(122)
plt.gca().grid(b=False)
plt.scatter(fxs, fys, marker='.', alpha=0.2, color='k')
plt.ylim([-10, 200])
plt.xlim([-100, 100])
plt.show()
@ -76,30 +24,6 @@ class ParticleFilter(object):
self.particles[:, 2] = uniform(0, 2*np.pi, size=N)
def create_particles(self, mean, variance):
""" create particles with the specified mean and variance"""
self.particles[:, 0] = mean[0] + randn(self.N) * np.sqrt(variance)
self.particles[:, 1] = mean[1] + randn(self.N) * np.sqrt(variance)
def create_particle(self):
""" create particles uniformly distributed over entire space"""
return [uniform(0, self.x_dim), uniform(0, self.y_dim), 0, 0]
'''def assign_speed_by_gaussian(self, speed, var):
""" move every particle by the specified speed (assuming time=1.)
with the specified variance, assuming Gaussian distribution. """
self.particles[:, 2] = np.random.normal(speed, var, self.N)'''
def control(self, dx):
self.particles[:, 0] += dx[0]
self.particles[:, 1] += dx[1]
self.particles[:, 1] = (self.particles[:, 1] + vy*dt)
def predict(self, u, std):
""" move according to control input u with noise std"""
@ -158,6 +82,57 @@ class ParticleFilter(object):
def plot_random_pd():
def norm(x, x0, sigma):
return np.exp(-0.5 * (x - x0) ** 2 / sigma ** 2)
def sigmoid(x, x0, alpha):
return 1. / (1. + np.exp(- (x - x0) / alpha))
x = np.linspace(0, 1, 100)
y2 = (0.1 * np.sin(norm(x, 0.2, 0.05)) + 0.25 * norm(x, 0.6, 0.05) +
.5*norm(x, .5, .08) +
np.sqrt(norm(x, 0.8, 0.06)) +0.1 * (1 - sigmoid(x, 0.45, 0.15)))
with plt.xkcd():
#plt.setp(plt.gca().get_xticklabels(), visible=False)
#plt.setp(plt.gca().get_yticklabels(), visible=False)
plt.axes(xticks=[], yticks=[], frameon=False)
plt.plot(x, y2)
def plot_monte_carlo_ukf():
def f(x,y):
return x+y, .1*x**2 + y*y
mean = (0, 0)
p = np.array([[32, 15], [15., 40.]])
# Compute linearized mean
mean_fx = f(*mean)
#generate random points
xs, ys = multivariate_normal(mean=mean, cov=p, size=3000).T
fxs, fys = f(xs, ys)
plt.subplot(121)
plt.gca().grid(b=False)
plt.scatter(xs, ys, marker='.', alpha=.2, color='k')
plt.xlim(-25, 25)
plt.ylim(-25, 25)
plt.subplot(122)
plt.gca().grid(b=False)
plt.scatter(fxs, fys, marker='.', alpha=0.2, color='k')
plt.ylim([-10, 200])
plt.xlim([-100, 100])
plt.show()
def plot_pf(pf, xlim=100, ylim=100, weights=True):
@ -189,6 +164,26 @@ def plot_pf(pf, xlim=100, ylim=100, weights=True):
plt.ylim(0, ylim)
def Gaussian(mu, sigma, x):
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
g = (np.exp(-((mu - x) ** 2) / (sigma ** 2) / 2.0) /
np.sqrt(2.0 * np.pi * (sigma ** 2)))
for i in range(len(g)):
g[i] = max(g[i], 1.e-29)
return g
def test_gaussian(N):
for i in range(N):
mean, std, x = randn(3)
std = abs(std)
d = Gaussian(mean, std, x) - scipy.stats.norm(mean, std).pdf(x)
assert abs(d) < 1.e-8, "{}, {}, {}, {}, {}, {}".format(d, mean, std, x, Gaussian(mean, std, x), scipy.stats.norm(mean, std).pdf(x))
def show_two_pf_plots():
""" Displays results of PF after 1 and 10 iterations for the book.
Note the book says this solves the full robot localization problem.
@ -229,5 +224,74 @@ def show_two_pf_plots():
plt.tight_layout()
def test_pf():
#seed(1234)
N = 10000
R = .2
landmarks = [[-1, 2], [20,4], [10,30], [18,25]]
#landmarks = [[-1, 2], [2,4]]
pf = RobotLocalizationParticleFilter(N, 20, 20, landmarks, R)
plot_pf(pf, 20, 20, weights=False)
dt = .01
plt.pause(dt)
for x in range(18):
zs = []
pos=(x+3, x+3)
for landmark in landmarks:
d = np.sqrt((landmark[0]-pos[0])**2 + (landmark[1]-pos[1])**2)
zs.append(d + randn()*R)
pf.predict((0.01, 1.414), (.2, .05))
pf.update(z=zs)
pf.resample()
#print(x, np.array(list(zip(pf.particles, pf.weights))))
mu, var = pf.estimate()
plot_pf(pf, 20, 20, weights=False)
plt.plot(pos[0], pos[1], marker='*', color='r', ms=10)
plt.scatter(mu[0], mu[1], color='g', s=100)
plt.tight_layout()
plt.pause(dt)
#print(mu - pos)
def test_pf2():
N = 1000
sensor_std_err = .2
landmarks = [[-1, 2], [20,4], [-20,6], [18,25]]
pf = RobotLocalizationParticleFilter(N, 20, 20, landmarks, sensor_std_err)
xs = []
for x in range(18):
zs = []
pos=(x+1, x+1)
for landmark in landmarks:
d = np.sqrt((landmark[0]-pos[0])**2 + (landmark[1]-pos[1])**2)
zs.append(d + randn()*sensor_std_err)
# move diagonally forward to (x+1, x+1)
pf.predict((0.00, 1.414), (.2, .05))
pf.update(z=zs)
pf.resample()
mu, var = pf.estimate()
xs.append(mu)
xs = np.array(xs)
plt.plot(xs[:, 0], xs[:, 1])
plt.show()
if __name__ == '__main__':
show_two_pf_plots()
#show_two_pf_plots()
test_pf()