changed from \bar to \overbar for prediction.
More visible, and works better with things like matrices.
This commit is contained in:
parent
ab33584a0c
commit
122fe27680
@ -518,7 +518,7 @@
|
||||
"\n",
|
||||
"The first two equations are the constraint that the weights must sum to one. The third equation is how you compute a weight mean. The forth equation may be less familiar, but recall that the equation for a covariance is:\n",
|
||||
"\n",
|
||||
"$$COV(x,y) = \\frac{\\sum(x-\\bar{x})(y-\\bar{y})}{n}$$\n",
|
||||
"$$COV(x,y) = \\frac{\\sum(x-\\overline x)(y-\\bar{y})}{n}$$\n",
|
||||
"\n",
|
||||
"and you should see where it came from.\n",
|
||||
"\n",
|
||||
@ -750,8 +750,8 @@
|
||||
"$$\\begin{array}{l|l}\n",
|
||||
"\\mathrm{Kalman} & \\mathrm{Unscented} \\\\\n",
|
||||
"\\hline \n",
|
||||
"\\mathbf{\\bar{x}} = \\mathbf{Fx} & \\mathbf{\\bar{\\mu}} = \\sum w^m\\boldsymbol{\\mathcal{Y}} \\\\\n",
|
||||
"\\mathbf{\\bar{P}} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q & \\sum w^c({\\boldsymbol{\\mathcal{Y}}-\\bf{\\bar{\\mu}})(\\boldsymbol{\\mathcal{Y}}-\\bf{\\bar{\\mu}})^\\mathsf{T}}+\\mathbf Q\n",
|
||||
"\\mathbf{\\overline x} = \\mathbf{Fx} & \\mathbf{\\bar{\\mu}} = \\sum w^m\\boldsymbol{\\mathcal{Y}} \\\\\n",
|
||||
"\\mathbf{\\overline P} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q & \\sum w^c({\\boldsymbol{\\mathcal{Y}}-\\bf{\\bar{\\mu}})(\\boldsymbol{\\mathcal{Y}}-\\bf{\\bar{\\mu}})^\\mathsf{T}}+\\mathbf Q\n",
|
||||
"\\end{array}$$\n",
|
||||
"\n"
|
||||
]
|
||||
@ -800,7 +800,7 @@
|
||||
"\n",
|
||||
"Finally, we compute the new state estimate using the residual and Kalman gain:\n",
|
||||
"\n",
|
||||
"$$\\mathbf x = \\mathbf{\\bar{x}} + \\mathbf{Ky}$$\n",
|
||||
"$$\\mathbf x = \\mathbf{\\overline x} + \\mathbf{Ky}$$\n",
|
||||
"\n",
|
||||
"and the new covariance is computed as:\n",
|
||||
"\n",
|
||||
@ -818,17 +818,17 @@
|
||||
"$$\\begin{array}{l|l}\n",
|
||||
"\\textrm{Kalman Filter} & \\textrm{Unscented Kalman Filter} \\\\\n",
|
||||
"\\hline \n",
|
||||
"\\mathbf{\\bar{x}} = \\mathbf{Fx} & \\mathbf{\\bar{\\mu}} = \\sum w^m\\boldsymbol{\\mathcal{Y}} \\\\\n",
|
||||
"\\mathbf{\\bar{P}} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q & \\mathbf{\\bar{P}} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q \\\\\n",
|
||||
"\\mathbf{\\overline x} = \\mathbf{Fx} & \\mathbf{\\bar{\\mu}} = \\sum w^m\\boldsymbol{\\mathcal{Y}} \\\\\n",
|
||||
"\\mathbf{\\overline P} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q & \\mathbf{\\overline P} = \\mathbf{FPF}^\\mathsf{T}+\\mathbf Q \\\\\n",
|
||||
"\\hline \n",
|
||||
"\\mathbf{y} = \\boldsymbol{\\mathbf{z}} - \\mathbf{H\\bar{x}} &\n",
|
||||
"\\mathbf{y} = \\boldsymbol{\\mathbf{z}} - \\mathbf{H\\overline x} &\n",
|
||||
"\\mathbf{y} = \\mathbf{z} - \\sum w^m h(\\boldsymbol{\\mathcal{Y}})\\\\\n",
|
||||
"\\mathbf{S} = \\mathbf{H\\bar{P}H}^\\mathsf{T} + \\mathbf R & \n",
|
||||
"\\mathbf{S} = \\mathbf{H\\overline PH}^\\mathsf{T} + \\mathbf R & \n",
|
||||
"\\mathbf P_z = \\sum w^c{(\\boldsymbol{\\mathcal{Z}}-\\bar{\\mu})(\\boldsymbol{\\mathcal{Z}}-\\bar{\\mu})^\\mathsf{T}} + \\mathbf R \\\\ \n",
|
||||
"\\mathbf{K} = \\mathbf{\\bar{P}H}^\\mathsf{T} \\mathbf{S}^{-1} &\n",
|
||||
"\\mathbf{K} = \\mathbf{\\overline PH}^\\mathsf{T} \\mathbf{S}^{-1} &\n",
|
||||
"\\mathbf{K} = \\left[\\sum w^c(\\boldsymbol{\\chi}-\\mu)(\\boldsymbol{\\mathcal{Z}}-\\mathbf{\\mu}_z)^\\mathsf{T}\\right] \\mathbf P_z^{-1}\\\\\n",
|
||||
"\\mathbf x = \\mathbf{\\bar{x}} + \\mathbf{Ky} & \\mathbf x = \\mathbf{\\bar{x}} + \\mathbf{Ky}\\\\\n",
|
||||
"\\mathbf P = (\\mathbf{I}-\\mathbf{KH})\\mathbf{\\bar{P}} & \\mathbf P = \\mathbf{\\bar{\\Sigma}} - \\mathbf{KP_z}\\mathbf{K}^\\mathsf{T}\n",
|
||||
"\\mathbf x = \\mathbf{\\overline x} + \\mathbf{Ky} & \\mathbf x = \\mathbf{\\overline x} + \\mathbf{Ky}\\\\\n",
|
||||
"\\mathbf P = (\\mathbf{I}-\\mathbf{KH})\\mathbf{\\overline P} & \\mathbf P = \\mathbf{\\bar{\\Sigma}} - \\mathbf{KP_z}\\mathbf{K}^\\mathsf{T}\n",
|
||||
"\\end{array}$$"
|
||||
]
|
||||
},
|
||||
@ -1210,7 +1210,7 @@
|
||||
"source": [
|
||||
"Our state transition function is linear \n",
|
||||
"\n",
|
||||
"$$\\mathbf{\\bar{x}} = \\begin{bmatrix} 1 & \\Delta t & 0 \\\\ 0& 1& 0 \\\\ 0&0&1\\end{bmatrix}\n",
|
||||
"$$\\mathbf{\\overline x} = \\begin{bmatrix} 1 & \\Delta t & 0 \\\\ 0& 1& 0 \\\\ 0&0&1\\end{bmatrix}\n",
|
||||
"\\begin{bmatrix}x \\\\ \\dot x\\\\ y\\end{bmatrix}\n",
|
||||
"$$\n",
|
||||
"\n",
|
||||
@ -1513,7 +1513,7 @@
|
||||
"\n",
|
||||
"This requires the following change to the state transition function, which is still linear.\n",
|
||||
"\n",
|
||||
"$$\\mathbf{\\bar{x}} = \\begin{bmatrix} 1 & \\Delta t & 0 &0 \\\\ 0& 1& 0 &0\\\\ 0&0&1&\\Delta t \\\\ 0&0&0&1\\end{bmatrix}\n",
|
||||
"$$\\mathbf{\\overline x} = \\begin{bmatrix} 1 & \\Delta t & 0 &0 \\\\ 0& 1& 0 &0\\\\ 0&0&1&\\Delta t \\\\ 0&0&0&1\\end{bmatrix}\n",
|
||||
"\\begin{bmatrix}x \\\\\\dot x\\\\ y\\\\ \\dot y\\end{bmatrix} \n",
|
||||
"$$\n",
|
||||
"\n",
|
||||
@ -2400,11 +2400,11 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"$$K = \\mathbf P_{xz} \\mathbf P_z^{-1}\\\\\n",
|
||||
"{\\mathbf x} = \\mathbf{\\bar{x}} + \\mathbf{Ky}$$\n",
|
||||
"{\\mathbf x} = \\mathbf{\\overline x} + \\mathbf{Ky}$$\n",
|
||||
"\n",
|
||||
"and the new covariance is computed as:\n",
|
||||
"\n",
|
||||
"$$ \\mathbf P = \\mathbf{\\bar{P}} - \\mathbf{KP}_z\\mathbf{K}^\\mathsf{T}$$\n",
|
||||
"$$ \\mathbf P = \\mathbf{\\overline P} - \\mathbf{KP}_z\\mathbf{K}^\\mathsf{T}$$\n",
|
||||
"\n",
|
||||
"This function can be implemented as follows, assuming it is a method of a class that stores the necessary matrices and data."
|
||||
]
|
||||
@ -2972,7 +2972,7 @@
|
||||
"\n",
|
||||
"In general we model our system as a nonlinear motion model plus noise.\n",
|
||||
"\n",
|
||||
"$$\\bar{x} = x + f(x, u) + \\mathcal{N}(0, Q)$$\n",
|
||||
"$$\\overline x = x + f(x, u) + \\mathcal{N}(0, Q)$$\n",
|
||||
"\n",
|
||||
"Using the motion model for a robot that we created above, we can write:"
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user