Fixed math for P = FPF^ #274
This commit is contained in:
parent
82f7dba206
commit
10203d3a42
@ -1769,12 +1769,11 @@
|
||||
"If you have some experience with linear algebra and statistics, this may help. The covariance due to the prediction can be modeled as the expected value of the error in the prediction step, given by this equation. \n",
|
||||
"\n",
|
||||
"$$\\begin{aligned}\n",
|
||||
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx})(\\mathbf{Fx})^\\mathsf T]\\\\\n",
|
||||
" &= \\mathbb E[\\mathbf{Fxx}^\\mathsf T\\mathbf F^\\mathsf T] \\\\\n",
|
||||
" &= \\mathbf F\\, \\mathbb E[\\mathbf{xx}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
|
||||
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx - \\bar \\mu})(\\mathbf{Fx - \\bar\\mu})^\\mathsf T]\\\\\n",
|
||||
" &= \\mathbf F\\, \\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
|
||||
"\\end{aligned}$$\n",
|
||||
"\n",
|
||||
"Of course, $\\mathbb E[\\mathbf{xx}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
|
||||
"Of course, $\\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
|
||||
"\n",
|
||||
"$$\\bar{\\mathbf P} = \\mathbf{FPF}^\\mathsf T$$\n",
|
||||
"\n",
|
||||
|
Loading…
Reference in New Issue
Block a user