Fixed math for P = FPF^ #274

This commit is contained in:
Roger Labbe 2020-05-04 17:40:00 -07:00
parent 82f7dba206
commit 10203d3a42

View File

@ -1769,12 +1769,11 @@
"If you have some experience with linear algebra and statistics, this may help. The covariance due to the prediction can be modeled as the expected value of the error in the prediction step, given by this equation. \n",
"\n",
"$$\\begin{aligned}\n",
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx})(\\mathbf{Fx})^\\mathsf T]\\\\\n",
" &= \\mathbb E[\\mathbf{Fxx}^\\mathsf T\\mathbf F^\\mathsf T] \\\\\n",
" &= \\mathbf F\\, \\mathbb E[\\mathbf{xx}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
"\\bar{\\mathbf P} &= \\mathbb E[(\\mathbf{Fx - \\bar \\mu})(\\mathbf{Fx - \\bar\\mu})^\\mathsf T]\\\\\n",
" &= \\mathbf F\\, \\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]\\, \\mathbf F^\\mathsf T\n",
"\\end{aligned}$$\n",
"\n",
"Of course, $\\mathbb E[\\mathbf{xx}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
"Of course, $\\mathbb E[\\mathbf{(x- \\bar\\mu)(x- \\bar\\mu)}^\\mathsf T]$ is just $\\mathbf P$, giving us\n",
"\n",
"$$\\bar{\\mathbf P} = \\mathbf{FPF}^\\mathsf T$$\n",
"\n",