Added likelihood and orthogonal projections
Added the likelihood equations/form from the discrete bayes chapter to better tie in that form of reasoning. then I converted the 1d equations to the orthogonal projection form to show how the Kalman gain is computed and where the residual comes from computationally. This should make the full KF equations much more approachable.
This commit is contained in:
parent
005fe0618c
commit
0a41e78aeb
File diff suppressed because one or more lines are too long
@ -19,9 +19,9 @@ from __future__ import (absolute_import, division, print_function,
|
||||
import book_plots as bp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def plot_dog_track(xs, measurement_var, process_var):
|
||||
def plot_dog_track(xs, dog, measurement_var, process_var):
|
||||
N = len(xs)
|
||||
bp.plot_track([0, N-1], [1, N])
|
||||
bp.plot_track(dog)
|
||||
bp.plot_measurements(xs, label='Sensor')
|
||||
bp.set_labels('variance = {}, process variance = {}'.format(
|
||||
measurement_var, process_var), 'time', 'pos')
|
||||
|
@ -104,9 +104,11 @@ def show_residual_chart():
|
||||
plt.text (0.5, 159.6, "prediction", ha='center',va='top',fontsize=18,color='red')
|
||||
plt.text (1.0, 164.4, r"measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue')
|
||||
plt.text (0, 157.8, r"posterior ($x_{t-1}$)", ha='center', va='top',fontsize=18)
|
||||
plt.text (1.02, est_y-1.5, "residual", ha='left', va='center',fontsize=18)
|
||||
plt.text (1.02, est_y-1.5, "residual($y$)", ha='left', va='center',fontsize=18)
|
||||
plt.text (1.02, est_y-2.2, r"$y=z-\bar x_t$", ha='left', va='center',fontsize=18)
|
||||
plt.text (0.9, est_y, "new estimate ($x_t$)", ha='right', va='center',fontsize=18)
|
||||
plt.text (0.8, est_y-0.5, "(posterior)", ha='right', va='center',fontsize=18)
|
||||
plt.text (0.75, est_y-1.2, r"$\bar{x}_t + Ky$", ha='right', va='center',fontsize=18)
|
||||
plt.xlabel('time')
|
||||
ax.yaxis.set_label_position("right")
|
||||
plt.ylabel('state')
|
||||
|
Loading…
Reference in New Issue
Block a user