Kalman-and-Bayesian-Filters.../gauss.py

118 lines
2.7 KiB
Python
Raw Normal View History

2014-04-28 23:14:43 +02:00
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 22 11:38:49 2014
@author: rlabbe
"""
from __future__ import division, print_function
import math
import matplotlib.pyplot as plt
import numpy.random as random
class gaussian(object):
def __init__ (self,m,s):
self.mu = float(m)
self.sigma = float(s)
def __add__ (a,b):
return gaussian (a.mu + b.mu, a.sigma + b.sigma)
def __mul__ (a,b):
m = (a.sigma*b.mu + b.sigma*a.mu) / (a.sigma + b.sigma)
s = 1. / (1./a.sigma + 1./b.sigma)
return gaussian (m,s)
def __call__(self,x):
return math.exp (-0.5 * (x-self.mu)**2 / self.sigma) / \
math.sqrt(2.*math.pi*self.sigma)
def __str__(self):
return "(%f, %f)" %(self.mu, self.sigma)
def __getitem__ (self,index):
""" maybe silly, allows you to access obect as a tuple:
a = gaussian(3,4)
print (tuple(a))
"""
if index == 0: return self.mu
elif index == 1: return self.sigma
else: raise StopIteration
class KF1D(object):
def __init__ (self, pos, sigma):
self.estimate = gaussian(pos,sigma)
def update(self, Z,var):
self.estimate = self.estimate * gaussian (Z,var)
def predict(self, U, var):
self.estimate = self.estimate + gaussian (U,var)
measurements = [x+5 for x in range(100)]
def fixed_error_kf(measurement_error, noise_factor = 1.0):
motion_sig = 2.
mu = 0
sig = 1000
f = KF1D (mu,sig)
ys = []
errs = []
xs = []
for i in range(len(measurements)):
r = random.randn() * noise_factor
m = measurements[i] + r
f.update (m, measurement_error)
xs.append(m)
ys.append(f.estimate.mu)
errs.append (f.estimate.sigma)
f.predict (1.0, motion_sig)
plt.clf()
plt.plot (measurements, 'r')
plt.plot (xs,'g')
plt.errorbar (x=range(len(ys)), color='b', y=ys, yerr=errs)
plt.show()
def varying_error_kf(noise_factor=1.0):
motion_sig = 2.
mu = 0
sig = 1000
f = KF1D (mu,sig)
ys = []
us = []
errs = []
xs = []
for i in range(len(measurements)):
r = random.randn() * noise_factor
m = measurements[i] + r
print (r)
f.update (m, abs(r*10))
xs.append(m)
#print ("measure:" + str(f.estimate))
ys.append(f.estimate.mu)
errs.append (f.estimate.sigma)
f.predict (1.0, motion_sig)
#print ("predict:" + str(f.estimate))
plt.clf()
plt.plot (measurements, 'r')
plt.plot (xs,'g')
plt.errorbar (x=range(len(ys)), color='b', y=ys, yerr=errs)
plt.show()
varying_error_kf( noise_factor=100)