Kalman-and-Bayesian-Filters.../mkf_internal.py

128 lines
3.5 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
Created on Thu May 1 16:56:49 2014
@author: rlabbe
"""
import numpy as np
from matplotlib.patches import Ellipse
import matplotlib.pyplot as plt
import stats
def show_residual_chart():
plt.xlim([0.9,2.5])
plt.ylim([1.5,3.5])
plt.scatter ([1,2,2],[2,3,2.3])
plt.scatter ([2],[2.8],marker='o')
ax = plt.axes()
ax.annotate('', xy=(2,3), xytext=(1,2),
arrowprops=dict(arrowstyle='->', ec='b',shrinkA=3, shrinkB=4))
ax.annotate('prediction', xy=(2.04,3.), color='b')
ax.annotate('measurement', xy=(2.05, 2.28))
ax.annotate('prior estimate', xy=(1, 1.9))
ax.annotate('residual', xy=(2.04,2.6), color='r')
ax.annotate('new estimate', xy=(2,2.8),xytext=(2.1,2.8),
arrowprops=dict(arrowstyle='->', ec="k", shrinkA=3, shrinkB=4))
ax.annotate('', xy=(2,3), xytext=(2,2.3),
arrowprops=dict(arrowstyle="-",
ec="r",
shrinkA=5, shrinkB=5))
plt.title("Kalman Filter Prediction Update Step")
plt.show()
def show_position_chart():
""" Displays 3 measurements at t=1,2,3, with x=1,2,3"""
plt.scatter ([1,2,3], [1,2,3], s=128)
plt.xlim([0,4]);
plt.ylim([0,4])
plt.xlabel("Position")
plt.ylabel("Time")
plt.xticks(np.arange(1,4,1))
plt.yticks(np.arange(1,4,1))
plt.show()
def show_position_prediction_chart():
""" displays 3 measurements, with the next position predicted"""
plt.scatter ([1,2,3], [1,2,3], s=128)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel("Position")
plt.ylabel("Time")
plt.xticks(np.arange(1,5,1))
plt.yticks(np.arange(1,5,1))
plt.scatter ([4], [4], c='g',s=128)
ax = plt.axes()
ax.annotate('', xy=(4,4), xytext=(3,3),
arrowprops=dict(arrowstyle='->',
ec='g',
shrinkA=6, shrinkB=5,
lw=3))
plt.show()
def show_x_error_chart():
""" displays x=123 with covariances showing error"""
cov = np.array([[0.003,0], [0,12]])
sigma=[0.5,1.,1.5,2]
e = stats.covariance_ellipse (cov)
stats.plot_covariance_ellipse ((1,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((2,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((3,1), ellipse=e, variance=sigma, axis_equal=False)
plt.ylim([0,11])
plt.xticks(np.arange(1,4,1))
plt.xlabel("Position")
plt.ylabel("Time")
plt.show()
def show_x_with_unobserved():
""" shows x=1,2,3 with velocity superimposed on top """
# plot velocity
sigma=[0.5,1.,1.5,2]
cov = np.array([[1,1],[1,1.1]])
stats.plot_covariance_ellipse ((2,2), cov=cov, variance=sigma, axis_equal=False)
# plot positions
cov = np.array([[0.003,0], [0,12]])
sigma=[0.5,1.,1.5,2]
e = stats.covariance_ellipse (cov)
stats.plot_covariance_ellipse ((1,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((2,1), ellipse=e, variance=sigma, axis_equal=False)
stats.plot_covariance_ellipse ((3,1), ellipse=e, variance=sigma, axis_equal=False)
# plot intersection cirle
isct = Ellipse(xy=(2,2), width=.2, height=1.2, edgecolor='r', fc='None', lw=4)
plt.gca().add_artist(isct)
plt.ylim([0,11])
plt.xlim([0,4])
plt.xticks(np.arange(1,4,1))
plt.xlabel("Position")
plt.ylabel("Time")
plt.show()
if __name__ == "__main__":
show_residual_chart()