Kalman-and-Bayesian-Filters.../baseball.py

192 lines
4.5 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
Computes the trajectory of a stitched baseball with air drag.
Takes altitude into account (higher altitude means further travel) and the
stitching on the baseball influencing drag.
This is based on the book Computational Physics by N. Giordano.
The takeaway point is that the drag coefficient on a stitched baseball is
LOWER the higher its velocity, which is somewhat counterintuitive.
"""
from __future__ import division
import math
import matplotlib.pyplot as plt
from numpy.random import randn
import numpy as np
class BaseballPath(object):
def __init__(self, x0, y0, launch_angle_deg, velocity_ms, noise=(1.0,1.0)):
""" Create baseball path object in 2D (y=height above ground)
x0,y0 initial position
launch_angle_deg angle ball is travelling respective to ground plane
velocity_ms speeed of ball in meters/second
noise amount of noise to add to each reported position in (x,y)
"""
omega = radians(launch_angle_deg)
self.v_x = velocity_ms * cos(omega)
self.v_y = velocity_ms * sin(omega)
self.x = x0
self.y = y0
self.noise = noise
def drag_force (self, velocity):
""" Returns the force on a baseball due to air drag at
the specified velocity. Units are SI
"""
B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))
return B_m * velocity
def update(self, dt, vel_wind=0.):
""" compute the ball position based on the specified time step and
wind velocity. Returns (x,y) position tuple.
"""
# Euler equations for x and y
self.x += self.v_x*dt
self.y += self.v_y*dt
# force due to air drag
v_x_wind = self.v_x - vel_wind
v = sqrt (v_x_wind**2 + self.v_y**2)
F = self.drag_force(v)
# Euler's equations for velocity
self.v_x = self.v_x - F*v_x_wind*dt
self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt
return (self.x + random.randn()*self.noise[0],
self.y + random.randn()*self.noise[1])
def a_drag (vel, altitude):
""" returns the drag coefficient of a baseball at a given velocity (m/s)
and altitude (m).
"""
v_d = 35
delta = 5
y_0 = 1.0e4
val = 0.0039 + 0.0058 / (1 + math.exp((vel - v_d)/delta))
val *= math.exp(-altitude / y_0)
return val
def compute_trajectory_vacuum (v_0_mph,
theta,
dt=0.01,
noise_scale=0.0,
x0=0., y0 = 0.):
theta = math.radians(theta)
x = x0
y = y0
v0_y = v_0_mph * math.sin(theta)
v0_x = v_0_mph * math.cos(theta)
xs = []
ys = []
t = dt
while y >= 0:
x = v0_x*t + x0
y = -0.5*9.8*t**2 + v0_y*t + y0
xs.append (x + randn() * noise_scale)
ys.append (y + randn() * noise_scale)
t += dt
return (xs, ys)
def compute_trajectory(v_0_mph, theta, v_wind_mph=0, alt_ft = 0.0, dt = 0.01):
g = 9.8
### comput
theta = math.radians(theta)
# initial velocity in direction of travel
v_0 = v_0_mph * 0.447 # mph to m/s
# velocity components in x and y
v_x = v_0 * math.cos(theta)
v_y = v_0 * math.sin(theta)
v_wind = v_wind_mph * 0.447 # mph to m/s
altitude = alt_ft / 3.28 # to m/s
ground_level = altitude
x = [0.0]
y = [altitude]
i = 0
while y[i] >= ground_level:
v = math.sqrt((v_x - v_wind) **2+ v_y**2)
x.append(x[i] + v_x * dt)
y.append(y[i] + v_y * dt)
v_x = v_x - a_drag(v, altitude) * v * (v_x - v_wind) * dt
v_y = v_y - a_drag(v, altitude) * v * v_y * dt - g * dt
i += 1
# meters to yards
np.multiply (x, 1.09361)
np.multiply (y, 1.09361)
return (x,y)
def predict (x0, y0, x1, y1, dt, time):
g = 10.724*dt*dt
v_x = x1-x0
v_y = y1-y0
v = math.sqrt(v_x**2 + v_y**2)
x = x1
y = y1
while time > 0:
v_x = v_x - a_drag(v, y) * v * v_x
v_y = v_y - a_drag(v, y) * v * v_y - g
x = x + v_x
y = y + v_y
time -= dt
return (x,y)
if __name__ == "__main__":
x,y = compute_trajectory(v_0_mph = 110., theta=35., v_wind_mph = 0., alt_ft=5000.)
plt.plot (x, y)
plt.show()