Kalman-and-Bayesian-Filters.../experiments/ekfloc.py

291 lines
6.3 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
Created on Sun May 24 08:39:36 2015
@author: Roger
"""
#x = x x' y y' theta
from math import cos, sin, sqrt, atan2
import numpy as np
from numpy import array, dot
from numpy.linalg import pinv
def print_x(x):
print(x[0, 0], x[1, 0], np.degrees(x[2, 0]))
def control_update(x, u, dt):
""" x is [x, y, hdg], u is [vel, omega] """
v = u[0]
w = u[1]
if w == 0:
# approximate straight line with huge radius
w = 1.e-30
r = v/w # radius
return x + np.array([[-r*sin(x[2]) + r*sin(x[2] + w*dt)],
[ r*cos(x[2]) - r*cos(x[2] + w*dt)],
[w*dt]])
a1 = 0.001
a2 = 0.001
a3 = 0.001
a4 = 0.001
sigma_r = 0.1
sigma_h = a_error = np.radians(1)
sigma_s = 0.00001
def normalize_angle(x, index):
if x[index] > np.pi:
x[index] -= 2*np.pi
if x[index] < -np.pi:
x[index] = 2*np.pi
def ekfloc_predict(x, P, u, dt):
h = x[2]
v = u[0]
w = u[1]
if w == 0:
# approximate straight line with huge radius
w = 1.e-30
r = v/w # radius
sinh = sin(h)
sinhwdt = sin(h + w*dt)
cosh = cos(h)
coshwdt = cos(h + w*dt)
G = array(
[[1, 0, -r*cosh + r*coshwdt],
[0, 1, -r*sinh + r*sinhwdt],
[0, 0, 1]])
V = array(
[[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w],
[(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w],
[0, dt]])
# covariance of motion noise in control space
M = array([[a1*v**2 + a2*w**2, 0],
[0, a3*v**2 + a4*w**2]])
x = x + array([[-r*sinh + r*sinhwdt],
[r*cosh - r*coshwdt],
[w*dt]])
P = dot(G, P).dot(G.T) + dot(V, M).dot(V.T)
return x, P
def ekfloc(x, P, u, zs, c, m, dt):
h = x[2]
v = u[0]
w = u[1]
if w == 0:
# approximate straight line with huge radius
w = 1.e-30
r = v/w # radius
sinh = sin(h)
sinhwdt = sin(h + w*dt)
cosh = cos(h)
coshwdt = cos(h + w*dt)
F = array(
[[1, 0, -r*cosh + r*coshwdt],
[0, 1, -r*sinh + r*sinhwdt],
[0, 0, 1]])
V = array(
[[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w],
[(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w],
[0, dt]])
# covariance of motion noise in control space
M = array([[a1*v**2 + a2*w**2, 0],
[0, a3*v**2 + a4*w**2]])
x = x + array([[-r*sinh + r*sinhwdt],
[r*cosh - r*coshwdt],
[w*dt]])
P = dot(F, P).dot(F.T) + dot(V, M).dot(V.T)
R = np.diag([sigma_r**2, sigma_h**2, sigma_s**2])
for i, z in enumerate(zs):
j = c[i]
q = (m[j][0] - x[0, 0])**2 + (m[j][1] - x[1, 0])**2
z_est = array([sqrt(q),
atan2(m[j][1] - x[1, 0], m[j][0] - x[0, 0]) - x[2, 0],
0])
H = array(
[[-(m[j, 0] - x[0, 0]) / sqrt(q), -(m[j, 1] - x[1, 0]) / sqrt(q), 0],
[ (m[j, 1] - x[1, 0]) / q, -(m[j, 0] - x[0, 0]) / q, -1],
[0, 0, 0]])
S = dot(H, P).dot(H.T) + R
#print('S', S)
K = dot(P, H.T).dot(pinv(S))
y = z - z_est
normalize_angle(y, 1)
y = array([y]).T
#print('y', y)
x = x + dot(K, y)
I = np.eye(P.shape[0])
I_KH = I - dot(K, H)
#print('i', I_KH)
P = dot(I_KH, P).dot(I_KH.T) + dot(K, R).dot(K.T)
return x, P
def ekfloc2(x, P, u, zs, c, m, dt):
h = x[2]
v = u[0]
w = u[1]
if w == 0:
# approximate straight line with huge radius
w = 1.e-30
r = v/w # radius
sinh = sin(h)
sinhwdt = sin(h + w*dt)
cosh = cos(h)
coshwdt = cos(h + w*dt)
F = array(
[[1, 0, -r*cosh + r*coshwdt],
[0, 1, -r*sinh + r*sinhwdt],
[0, 0, 1]])
V = array(
[[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w],
[(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w],
[0, dt]])
# covariance of motion noise in control space
M = array([[a1*v**2 + a2*w**2, 0],
[0, a3*v**2 + a4*w**2]])
x = x + array([[-r*sinh + r*sinhwdt],
[r*cosh - r*coshwdt],
[w*dt]])
P = dot(F, P).dot(F.T) + dot(V, M).dot(V.T)
R = np.diag([sigma_r**2, sigma_h**2])
for i, z in enumerate(zs):
j = c[i]
q = (m[j][0] - x[0, 0])**2 + (m[j][1] - x[1, 0])**2
z_est = array([sqrt(q),
atan2(m[j][1] - x[1, 0], m[j][0] - x[0, 0]) - x[2, 0]])
H = array(
[[-(m[j, 0] - x[0, 0]) / sqrt(q), -(m[j, 1] - x[1, 0]) / sqrt(q), 0],
[ (m[j, 1] - x[1, 0]) / q, -(m[j, 0] - x[0, 0]) / q, -1]])
S = dot(H, P).dot(H.T) + R
#print('S', S)
K = dot(P, H.T).dot(pinv(S))
y = z - z_est
normalize_angle(y, 1)
y = array([y]).T
#print('y', y)
x = x + dot(K, y)
print('x', x)
I = np.eye(P.shape[0])
I_KH = I - dot(K, H)
P = dot(I_KH, P).dot(I_KH.T) + dot(K, R).dot(K.T)
return x, P
m = array([[5, 5],
[7,6],
[4, 8]])
x = array([[2, 6, .3]]).T
u = array([.5, .01])
P = np.diag([1., 1., 1.])
c = [0, 1, 2]
import matplotlib.pyplot as plt
from numpy.random import randn
from filterpy.common import plot_covariance_ellipse
from filterpy.kalman import KalmanFilter
plt.figure()
plt.plot(m[:, 0], m[:, 1], 'o')
plt.plot(x[0], x[1], 'x', color='b', ms=20)
xp = x.copy()
dt = 0.1
np.random.seed(1234)
for i in range(1000):
xp, _ = ekfloc_predict(xp, P, u, dt)
plt.plot(xp[0], xp[1], 'x', color='g', ms=20)
if i % 10 == 0:
zs = []
for lmark in m:
d = sqrt((lmark[0] - xp[0, 0])**2 + (lmark[1] - xp[1, 0])**2) + randn()*sigma_r
a = atan2(lmark[1] - xp[1, 0], lmark[0] - xp[0, 0]) - xp[2, 0] + randn()*sigma_h
zs.append(np.array([d, a]))
x, P = ekfloc2(x, P, u, zs, c, m, dt*10)
if P[0,0] < 10000:
plot_covariance_ellipse((x[0,0], x[1,0]), P[0:2, 0:2], std=2,
facecolor='g', alpha=0.3)
plt.plot(x[0], x[1], 'x', color='r')
plt.axis('equal')
plt.show()